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Preface 
 

This book shows how to use the power of optimization, sometimes known as mathematical 

programming, to solve problems of business, industry, and government. The intended audience is 

students of business, managers, and engineers. The major technical skill required of the reader is to be 

comfortable with the idea of using a symbol to represent an unknown quantity. 

 This book is one of the most comprehensive expositions available on how to apply optimization 

models to important business and industrial problems. If you do not find your favorite business 

application explicitly listed in the table of contents, check the very comprehensive index at the back of 

the book. 

 There are essentially three kinds of chapters in the book: 

1. introduction to modeling (chapters 1, 3, 4, and 19), 

2. solving models with a computer (chapters 2, 5), and 

3. application specific illustration of modeling with LINGO (chapters 6-18). 

 Readers completely new to optimization should read at least the first five chapters. Readers familiar 

with optimization, but unfamiliar with LINGO, should read at least chapters 2 and 5. Readers familiar 

with optimization and familiar with at least the concepts of a modeling language can probably skip to 

chapters 6-18. One can pick and choose from these chapters on applications. There is no strong 

sequential ordering among chapters 6-18, other than that the easier topics are in the earlier chapters. 

Among these application chapters, chapters 11 (on integer programming), and 12 (on stochastic 

programming) are worthy of special mention. They cover two computationally intensive techniques of 

fairly general applicability. As computers continue to grow more powerful, integer programming and 

stochastic programming will become even more valuable. Chapter 19 is a concluding chapter on 

implementing optimization models. It requires some familiarity with the details of models, as illustrated 

in the preceding chapters. 

 There is a natural progression of skills needed as technology develops. For optimization, it has been: 

1) Ability to solve the models: 1950’s 

2) Ability to formulate optimization models: 1970’s 

3) Ability to use turnkey or template models: 1990’s onward. 

 This book has no material on the mathematics of solving optimization models. For users who are 

discovering new applications, there is a substantial amount of material on the formulation of 

optimization models. For the modern “two minute” manager, there is a big collection of “off-the-shelf”, 

ready-to-apply template models throughout the book.  

 Users familiar with the text Optimization Modeling with LINDO will notice much of the material in 

this current book is based on material in the LINDO book. The major differences are due to the two very 

important capabilities of LINGO: the ability to solve nonlinear models, and the availability of the set or 

vector notation for compactly representing large models. 
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What Is Optimization?  
 
 

1.1 Introduction 
Optimization, or constrained optimization, or mathematical programming, is a mathematical procedure 

for determining optimal allocation of scarce resources. Optimization, and its most popular special form, 

Linear Programming (LP), has found practical application in almost all facets of business, from 

advertising to production planning. Transportation and aggregate production planning problems are the 

most typical objects of LP analysis. The petroleum industry was an early intensive user of LP for solving 

fuel blending problems.  

 It is important for the reader to appreciate at the outset that the “programming” in Mathematical 

Programming is of a different flavor than the “programming” in Computer Programming. In the former 

case, it means to plan and organize (as in “Get with the program!”). In the latter case, it means to write 

instructions for performing calculations. Although aptitude in one suggests aptitude in the other, training 

in the one kind of programming has very little direct relevance to the other. 

 For most optimization problems, one can think of there being two important classes of objects. The 

first of these is limited resources, such as land, plant capacity, and sales force size. The second is 

activities, such as “produce low carbon steel,” “produce stainless steel,” and “produce high carbon steel.” 

Each activity consumes or possibly contributes additional amounts of the resources. The problem is to 

determine the best combination of activity levels that does not use more resources than are actually 

available. We can best gain the flavor of LP by using a simple example. 

1.2 A Simple Product Mix Problem 
The Enginola Television Company produces two types of TV sets, the “Astro” and the “Cosmo”. There 

are two production lines, one for each set. The Astro production line has a capacity of 60 sets per day, 

whereas the capacity for the Cosmo production line is only 50 sets per day. The labor requirements for 

the Astro set is 1 person-hour, whereas the Cosmo requires a full 2 person-hours of labor. Presently, 

there is a maximum of 120 man-hours of labor per day that can be assigned to production of the two 

types of sets. If the profit contributions are $20 and $30 for each Astro and Cosmo set, respectively, 

what should be the daily production? 
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A structured, but verbal, description of what we want to do is: 

Maximize Profit contribution 

subject to Astro production less-than-or-equal-to Astro capacity, 

 Cosmo production less-than-or-equal-to Cosmo capacity, 

 Labor used less-than-or-equal-to labor availability. 

 Until there is a significant improvement in artificial intelligence/expert system software, we will 

need to be more precise if we wish to get some help in solving our problem. We can be more precise if 

we define: 

A = units of Astros to be produced per day, 

C = units of Cosmos to be produced per day. 

Further, we decide to measure: 

Profit contribution in dollars, 

Astro usage in units of Astros produced,  

Cosmo usage in units of Cosmos produced, and 

Labor in person-hours. 

Then, a precise statement of our problem is: 

Maximize 20A + 30C                  (Dollars) 

subject to     A                60        (Astro capacity) 

                C     50        (Cosmo capacity) 

     A   +  2C   120        (Labor in person-hours) 

 The first line, “Maximize 20A+30C”, is known as the objective function. The remaining three lines 

are known as constraints. Most optimization programs, sometimes called “solvers”, assume all variables 

are constrained to be nonnegative, so stating the constraints A  0 and C  0 is unnecessary. 

 Using the terminology of resources and activities, there are three resources: Astro capacity, Cosmo 

capacity, and labor capacity. The activities are Astro and Cosmo production. It is generally true that, 

with each constraint in an optimization model, one can associate some resource. For each decision 

variable, there is frequently a corresponding physical activity. 

1.2.1 Graphical Analysis 
The Enginola problem is represented graphically in Figure 1.1. The feasible production combinations 

are the points in the lower left enclosed by the five solid lines. We want to find the point in the feasible 

region that gives the highest profit. 

 To gain some idea of where the maximum profit point lies, let’s consider some possibilities. The 

point A = C = 0 is feasible, but it does not help us out much with respect to profits. If we spoke with the 

manager of the Cosmo line, the response might be: “The Cosmo is our more profitable product. 

Therefore, we should make as many of it as possible, namely 50, and be satisfied with the profit 

contribution of 30  50 = $1500.”  
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Figure 1.1 Feasible Region for Enginola Figure  1.1  Feasible Region for Enginola
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 You, the thoughtful reader, might observe there are many combinations of A and C, other than just 

A = 0 and C = 50, that achieve $1500 of profit. Indeed, if you plot the line 20A + 30C = 1500 and add it 

to the graph, then you get Figure 1.2. Any point on the dotted line segment achieves a profit of $1500. 

Any line of constant profit such as that is called an iso-profit line (or iso-cost in the case of a cost 

minimization problem). 

 If we next talk with the manager of the Astro line, the response might be: “If you produce 50 

Cosmos, you still have enough labor to produce 20 Astros. This would give a profit of 

30  50 + 20  20 = $1900. That is certainly a respectable profit. Why don’t we call it a day and go 

home?” 

Figure 1.2 Enginola With "Profit = 1500" 

Figure  1.2  Enginola with "Profit = 1500"
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 Our ever-alert reader might again observe that there are many ways of making $1900 of profit. If 

you plot the line 20A + 30C = 1900 and add it to the graph, then you get Figure 1.3. Any point on the 

higher rightmost dotted line segment achieves a profit of $1900. 

Figure 1.3 Enginola with "Profit = 1900" 
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 Now, our ever-perceptive reader makes a leap of insight. As we increase our profit aspirations, the 

dotted line representing all points that achieve a given profit simply shifts in a parallel fashion. Why not 

shift it as far as possible for as long as the line contains a feasible point? This last and best feasible point 

is A = 60, C = 30. It lies on the line 20A + 30C = 2100. This is illustrated in Figure 1.4. Notice, even 

though the profit contribution per unit is higher for Cosmo, we did not make as many (30) as we feasibly 

could have made (50). Intuitively, this is an optimal solution and, in fact, it is. The graphical analysis of 

this small problem helps understand what is going on when we analyze larger problems. 

Figure 1.4 Enginola with "Profit = 2100" 
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1.3 Linearity 
We have now seen one example. We will return to it regularly. This is an example of a linear 

mathematical program, or LP for short. Solving linear programs tends to be substantially easier than 

solving more general mathematical programs. Therefore, it is worthwhile to dwell for a bit on the 

linearity feature.  

 Linear programming applies directly only to situations in which the effects of the different activities 

in which we can engage are linear. For practical purposes, we can think of the linearity requirement as 

consisting of three features: 

1. Proportionality. The effects of a single variable or activity by itself are proportional 

(e.g., doubling the amount of steel purchased will double the dollar cost of steel 

purchased). 

2. Additivity. The interactions among variables must be additive (e.g., the dollar amount of 

sales is the sum of the steel dollar sales, the aluminum dollar sales, etc.; whereas the amount 

of electricity used is the sum of that used to produce steel, aluminum, etc). 

3. Continuity. The variables must be continuous (i.e., fractional values for the decision 

variables, such as 6.38, must be allowed). If both 2 and 3 are feasible values for a variable, 

then so is 2.51. 

 A model that includes the two decision variables “price per unit sold” and “quantity of units sold” 

is probably not linear. The proportionality requirement is satisfied. However, the interaction between 

the two decision variables is multiplicative rather than additive (i.e., dollar sales = price  quantity, 

not price + quantity). 

 If a supplier gives you quantity discounts on your purchases, then the cost of purchases will not 

satisfy the proportionality requirement (e.g., the total cost of the stainless steel purchased may be less 

than proportional to the amount purchased). 

 A model that includes the decision variable “number of floors to build” might satisfy the 

proportionality and additivity requirements, but violate the continuity conditions. The recommendation 

to build 6.38 floors might be difficult to implement unless one had a designer who was ingenious with 

split level designs. Nevertheless, the solution of an LP might recommend such fractional answers.  

 The possible formulations to which LP is applicable are substantially more general than that 

suggested by the example. The objective function may be minimized rather than maximized; the 

direction of the constraints may be  rather than , or even =; and any or all of the parameters (e.g., the 

20, 30, 60, 50, 120, 2, or 1) may be negative instead of positive. The principal restriction on the class of 

problems that can be analyzed results from the linearity restriction. 

 Fortunately, as we will see later in the chapters on integer programming and quadratic programming, 

there are other ways of accommodating these violations of linearity. 
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 Figure 1.5 illustrates some nonlinear functions. For example, the expression X  Y satisfies the 

proportionality requirement, but the effects of X and Y are not additive. In the expression X 2 + Y 2, the 

effects of X and Y are additive, but the effects of each individual variable are not proportional. 

Figure 1.5: Nonlinear Relations 

 

1.4 Analysis of LP Solutions 
When you direct the computer to solve a math program, the possible outcomes are indicated in 

Figure 1.6. 

 For a properly formulated LP, the leftmost path will be taken. The solution procedure will first 

attempt to find a feasible solution (i.e., a solution that simultaneously satisfies all constraints, but does 

not necessarily maximize the objective function). The rightmost, “No Feasible Solution”, path will be 

taken if the formulator has been too demanding. That is, two or more constraints are specified that cannot 

be simultaneously satisfied. A simple example is the pair of constraints x  2 and x  3. The nonexistence 

of a feasible solution does not depend upon the objective function. It depends solely upon the constraints. 

In practice, the “No Feasible Solution” outcome might occur in a large complicated problem in which 

an upper limit was specified on the number of productive hours available and an unrealistically high 

demand was placed on the number of units to be produced. An alternative message to “No Feasible 

Solution” is “You Can’t Have Your Cake and Eat It Too”. 
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Figure 1.6 Solution Outcomes 

 

 If a feasible solution has been found, then the procedure attempts to find an optimal solution. If the 

“Unbounded Solution” termination occurs, it implies the formulation admits the unrealistic result that 

an infinite amount of profit can be made. A more realistic conclusion is that an important constraint has 

been omitted or the formulation contains a critical typographical error. 

 We can solve the Enginola problem in LINGO by typing the following: 

 MODEL: 

  MAX = 20*A + 30*C; 

           A        <=  60; 

                  C <=  50; 

           A  + 2*C <= 120; 

 END 

 We can solve the problem in the Windows version of LINGO by clicking on the red “bullseye” 

icon.  We can get the following solution report by clicking on the “X=” icon”: 

Objective value: 2100.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.00000 

       C        30.00000           0.00000 

     Row    Slack or Surplus      Dual Price 

       1      2100.00000           1.00000 

       2         0.00000           5.00000 

       3        20.00000           0.00000 

       4         0.00000          15.00000 

 The output has three sections, an informative section, a “variables” section, and a “rows” section. 

The second two sections are straightforward. The maximum profit solution is to produce 60 Astros and 

30 Cosmos for a profit contribution of $2,100. This solution will leave zero slack in row 2 (the constraint 

A  60), a slack of 20 in row 3 (the constraint C  50), and no slack in row 4 (the constraint 

A + 2C  120). Note 60 + 2  30 = 120. 

 The third column contains a number of opportunity or marginal cost figures. These are useful 

by-products of the computations. The interpretation of these “reduced costs” and “dual prices” is 

discussed in the next section.  The reduced cost/dual price section is optional and can be turned on or 

off by clicking on LINGO | Options | General Solver | Dual Computations | Prices. 
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1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices 
Realistic LPs require large amounts of data. Accurate data are expensive to collect, so we will generally 

be forced to use data in which we have less than complete confidence. A time-honored adage in data 

processing circles is “garbage in, garbage out”. A user of a model should be concerned with how the 

recommendations of the model are altered by changes in the input data. Sensitivity analysis is the term 

applied to the process of answering this question. Fortunately, an LP solution report provides 

supplemental information that is useful in sensitivity analysis. This information falls under two headings, 

reduced costs and dual prices. 

 Sensitivity analysis can reveal which pieces of information should be estimated most carefully. For 

example, if it is blatantly obvious that a certain product is unprofitable, then little effort need be expended 

in accurately estimating its costs. The first law of modeling is "do not waste time accurately estimating 

a parameter if a modest error in the parameter has little effect on the recommended decision". 

1.5.1 Reduced Costs 
Associated with each variable in any solution is a quantity known as the reduced cost. If the units of the 

objective function are dollars and the units of the variable are gallons, then the units of the reduced cost 

are dollars per gallon. The reduced cost of a variable is the amount by which the profit contribution of 

the variable must be improved (e.g., by reducing its cost) before the variable in question would have a 

positive value in an optimal solution. Obviously, a variable that already appears in the optimal solution 

will have a zero reduced cost. 

 It follows that a second, correct interpretation of the reduced cost is that it is the rate at which the 

objective function value will deteriorate if a variable, currently at zero, is arbitrarily forced to increase a 

small amount. Suppose the reduced cost of x is $2/gallon. This means, if the profitability of x were 

increased by $2/gallon, then 1 unit of x (if 1 unit is a “small change”) could be brought into the solution 

without affecting the total profit. Clearly, the total profit would be reduced by $2 if x were increased by 

1.0 without altering its original profit contribution. 

1.5.2 Dual Prices 
Associated with each constraint is a quantity known as the dual price. If the units of the objective 

function are cruzeiros and the units of the constraint in question are kilograms, then the units of the dual 

price are cruzeiros per kilogram. The dual price of a constraint is the rate at which the objective function 

value will improve as the right-hand side or constant term of the constraint is increased a small amount. 

 Different optimization programs may use different sign conventions with regard to the dual prices. 

The LINGO computer program uses the convention that a positive dual price means increasing the 

right-hand side in question will improve the objective function value. On the other hand, a negative dual 

price means an increase in the right-hand side will cause the objective function value to deteriorate. A 

zero dual price means changing the right-hand side a small amount will have no effect on the solution 

value. 

 It follows that, under this convention,  constraints will have nonnegative dual prices,  constraints 

will have nonpositive dual prices, and = constraints can have dual prices of any sign. Why? 

 Understanding Dual Prices. It is instructive to analyze the dual prices in the solution to the Enginola 

problem. The dual price on the constraint A  60 is $5/unit. At first, one might suspect this quantity 

should be $20/unit because, if one more Astro is produced, the simple profit contribution of this unit is 

$20. An additional Astro unit will require sacrifices elsewhere, however. Since all of the labor supply is 

being used, producing more Astros would require the production of Cosmos to be reduced in order to 

free up labor. The labor tradeoff rate for Astros and Cosmos is ½.. That is, producing one more Astro 
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implies reducing Cosmo production by ½ of a unit. The net increase in profits is $20 − (1/2)* $30 = $5, 

because Cosmos have a profit contribution of $30 per unit. 

 Now, consider the dual price of $15/hour on the labor constraint. If we have 1 more hour of labor, 

it will be used solely to produce more Cosmos. One Cosmo has a profit contribution of $30/unit. Since 

1 hour of labor is only sufficient for one half of a Cosmo, the value of the additional hour of labor is 

$15. 

1.6 Unbounded Formulations 
If we forget to include the labor constraint and the constraint on the production of Cosmos, then an 

unlimited amount of profit is possible by producing a large number of Cosmos. This is illustrated here: 

MAX = 20 * A + 30 * C; 

A <= 60; 

This generates an error window with the message: 

UNBOUNDED SOLUTION 

 There is nothing to prevent C from being infinitely large. The feasible region is illustrated in 

Figure 1.7. In larger problems, there are typically several unbounded variables and it is not as easy to 

identify the manner in which the unboundedness arises. 

Figure 1.7 Graph of Unbounded Formulation 
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1.7 Infeasible Formulations 
An example of an infeasible formulation is obtained if the right-hand side of the labor constraint is made 

190 and its direction is inadvertently reversed. In this case, the most labor that can be used is to produce 

60 Astros and 50 Cosmos for a total labor consumption of 60 + 2  50 = 160 hours. The formulation and 

attempted solution are: 

MAX = (20 * A) + (30 * C); 

A <= 60; 

C <= 50; 

A + 2 * C >= 190; 

A window with the error message: 

NO FEASIBLE SOLUTION.   

will print. The reports window will generate the following: 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        50.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2700.000           0.0000000 

       2       0.0000000            1.000000 

       3       0.0000000            2.000000 

       4       -30.00000           -1.000000 

 This “solution” is infeasible for the labor constraint by the amount of 30 person-hours 

(190 - (1  60 + 2  50)). The dual prices in this case give information helpful in determining how the 

infeasibility arose. For example, the +1 associated with row 2 indicates that increasing its right-hand 

side by one will decrease the infeasibility by 1. The +2 with row 3 means, if we allowed 1 more unit of 

Cosmo production, the infeasibility would decrease by 2 units because each Cosmo uses 2 hours of labor. 

The -1 associated with row 4 means that decreasing the right-hand side of the labor constraint by 1 would 

reduce the infeasibility by 1. 
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 Figure 1.8 illustrates the constraints for this formulation. 

Figure 1.8 Graph of Infeasible Formulation 
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1.8 Multiple Optimal Solutions and Degeneracy 
For a given formulation that has a bounded optimal solution, there will be a unique optimum objective 

function value. However, there may be several different combinations of decision variable values (and 

associated dual prices) that produce this unique optimal value. Such solutions are said to be degenerate 

in some sense. In the Enginola problem, for example, suppose the profit contribution of A happened to 

be $15 rather than $20. The problem and a solution are: 

MAX = 15 * A + 30 * C; 

A <= 60; 

C <= 50; 

A + 2 * C <= 120; 

Optimal solution found at step:          1 

Objective value:                  1800.000 

Variable           Value        Reduced Cost 

       A        20.00000           0.0000000 

       C        50.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        1800.000            1.000000 

       2        40.00000           0.0000000 

       3       0.0000000           0.0000000 

       4       0.0000000            15.00000 
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Figure 1.9 Model with Alternative Optima 
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 The feasible region, as well as a “profit = 1500” line, are shown in Figure 1.9. Notice the lines 

A + 2C = 120 and 15A + 30C = 1500 are parallel. It should be apparent that any feasible point on the 

line A + 2C = 120 is optimal. 

 The particularly observant may have noted in the solution report that the constraint, C  50 (i.e., row 

3), has both zero slack and a zero dual price. This suggests the production of Cosmos could be decreased 

a small amount without any effect on total profits. Of course, there would have to be a compensatory 

increase in the production of Astros. We conclude that there must be an alternate optimum solution that 

produces more Astros, but fewer Cosmos. We can discover this solution by increasing the profitability 

of Astros ever so slightly. Observe: 

MAX = 15.0001 * A + 30 * C; 

A <= 60; 

C <= 50; 

A + 2 * C <= 120; 

Optimal solution found at step:         1 

Objective value:                 1800.006 

Variable          Value        Reduced Cost 

       A       60.00000           0.0000000 

       C       30.00000           0.0000000 

     Row   Slack or Surplus      Dual Price 

       1       1800.006             1.00000 

       2      0.0000000           0.1000000E-03 

       3       20.00000           0.0000000 

       4      0.0000000            15.00000 

 As predicted, the profit is still about $1800. However, the production of Cosmos has been decreased 

to 30 from 50, whereas there has been an increase in the production of Astros to 60 from 20. 
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1.8.1 The “Snake Eyes” Condition 
Alternate optima may exist only if some row in the solution report has zeroes in both the second and 

third columns of the report, a configuration that some applied statisticians call “snake eyes”. That is, 

alternate optima may exist only if some variable has both zero value and zero reduced cost, or some 

constraint has both zero slack and zero dual price. Mathematicians, with no intent of moral judgment, 

refer to such solutions as degenerate. 

 If there are alternate optima, you may find your computer gives a different solution from that in the 

text. However, you should always get the same objective function value. 

 There are, in fact, two ways in which multiple optimal solutions can occur. For the example in 

Figure 1.9, the two optimal solution reports differ only in the values of the so-called primal variables 

(i.e., our original decision variables A, C) and the slack variables in the constraint. There can also be 

situations where there are multiple optimal solutions in which only the dual variables differ. Consider 

this variation of the Enginola problem in which the capacity of the Cosmo line has been reduced to 30.  

 The formulation is: 

MAX = 20 * A + 30 * C; 

A < 60; 

!note that < and <= are equivalent; 

!in LINGO; 

C < 30; 

A + 2 * C < 120; 

The corresponding graph of this problem appears in Figure 1.10. An optimal solution is: 

Optimal solution found at step:         0 

Objective value:                 2100.000 

Variable             Value        Reduced Cost 

       A          60.00000           0.0000000 

       C          30.00000           0.0000000 

     Row      Slack or Surplus      Dual Price 

       1          2100.000            1.000000 

       2         0.0000000            20.00000 

       3         0.0000000            30.00000 

       4         0.0000000           0.0000000 

 Again, notice the “snake eyes” in the solution (i.e., the pair of zeroes in a row of the solution report). 

This suggests the capacity of the Cosmo line (the RHS of row 3) could be changed without changing the 

objective value. Figure 1.10 illustrates the situation. Three constraints pass through the point A = 60, 

C = 30. Any two of the constraints determine the point. In fact, the constraint A + 2C  120 is 

mathematically redundant (i.e., it could be dropped without changing the feasible region). 
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Figure 1.10 Alternate Solutions in Dual Variables 
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If you decrease the RHS of row 3 very slightly, you will get essentially the following solution: 

Optimal solution found at step:         0 

Objective value:                 2100.000 

Variable             Value        Reduced Cost 

       A          60.00000           0.0000000 

       C          30.00000           0.0000000 

     Row      Slack or Surplus      Dual Price 

       1          2100.000            1.000000 

       2         0.0000000            5.000000 

       3         0.0000000           0.0000000 

       4         0.0000000            15.00000 

Notice this solution differs from the previous one only in the dual values. 

 We can now state the following rule: If a solution report has the “snake eyes” feature (i.e., a pair of 

zeroes in any row of the report), then there may be an alternate optimal solution that differs either in the 

primal variables, the dual variables, or in both.  

 If a solution report exhibits the “snake eyes” configuration, a natural question to ask is: can we 

determine from the solution report alone whether the alternate optima are in the primal variables or the 

dual variables? The answer is “no”, as the following two related problems illustrate. 

Problem D Problem P 
MAX = X +     Y; MAX = X + Y; 

      X +     Y + Z <= 1;       X + Y +     Z <= 1; 

      X + 2 * Y     <= 1;       X +     2 * Z <= 1; 
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 Both problems possess multiple optimal solutions. The ones that can be identified by the standard 

simplex solution methods are: 

Solution 1 

         Problem D                                          Problem P 

 OBJECTIVE VALUE               OBJECTIVE VALUE 

 1) 1.00000000   1) 1.00000000  

Variable  Value Reduced Cost Variable  Value Reduced Cost 

 X   1.000000     0 000000  X   1.000000     0.000000 

 Y   0.000000     0.000000  Y   0.000000     0.000000 

 Z   0.000000     1.000000  Z   0.000000     1.000000 

 

Row 

 

Slack or 

Surplus 

 

 Dual Prices 

 

Row 

 

Slack or 

Surplus 

 

 Dual Prices 

 2)   0.000000     1.000000  2)   0.000000     1.000000 

 3)   0.000000     0.000000  3)   0.000000     0.000000 

Solution 2 

            Problem D                                           Problem P 

 OBJECTIVE VALUE               OBJECTIVE VALUE 

 1) 1.00000000   1) 1.00000000  

Variable  Value Reduced Cost Variable  Value Reduced Cost 

 X   1.000000     0.000000  X   0.000000     0.000000 

 Y   0.000000     1.000000  Y   1.000000     0.000000 

 Z   0.000000     0.000000  Z   0.000000     1.000000 

 

 

Row 

 

Slack or 

Surplus 

 

 

Dual Prices 

 

 

Row 

 

Slack or 

Surplus 

 

 

Dual Prices 

 2)   0.000000     0.000000  2)   0.000000     1.000000 

 3)   0.000000     1.000000  3)   1.000000     0.000000 

Notice that: 

• Solution 1 is exactly the same for both problems; 

• Problem D has multiple optimal solutions in the dual variables (only); while 

• Problem P has multiple optimal solutions in the primal variables (only). 

 Thus, one cannot determine from the solution report alone the kind of alternate optima that might 

exist. You can generate Solution 1 by setting the RHS of row 3 and the coefficient of X in the objective 

to slightly larger than 1 (e.g., 1.001). Likewise, Solution 2 is generated by setting the RHS of row 3 and 

the coefficient of X in the objective to slightly less than 1 (e.g., 0.9999). 

 Some authors refer to a problem that has multiple solutions to the primal variables as dual 

degenerate and a problem with multiple solutions in the dual variables as primal degenerate. Other 

authors say a problem has multiple optima only if there are multiple optimal solutions for the primal 

variables. 

1.8.2 Degeneracy and Redundant Constraints 
In small examples, degeneracy usually means there are redundant constraints. In general, however, 

especially in large problems, degeneracy does not imply there are redundant constraints. The constraint 

set below and the corresponding Figure 1.11 illustrate: 

2x − y  1 
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2x − z  1 

2y − x  1 

2y − z  1 

2z − x  1 

2z − y  1 

Figure 1.11 Degeneracy but No Redundancy 

Y

X

Z

2Y - X 1

2 Z - X 1

 

 These constraints define a cone with apex or point at x = y = z = 1, having six sides. The point 

x = y = z = 1 is degenerate because it has more than three constraints passing through it. Nevertheless, 

none of the constraints are redundant. Notice the point x = 0.6, y = 0, z = 0.5 violates the first constraint, 

but satisfies all the others. Therefore, the first constraint is nonredundant. By trying all six permutations 

of 0.6, 0, 0.5, you can verify each of the six constraints are nonredundant. 

1.9 Nonlinear Models and Global Optimization 
Throughout this text the emphasis is on formulating linear programs.  Historically nonlinear models 

were to be avoided,  if possible,  for two reasons:  a) they take much longer to solve,  and b) once 

“solved”  traditional solvers could only guarantee that you had a locally optimal solution.  A solution is 

a local optimum if there is no  better solution nearby,  although there might be a much better solution 

some distance away.  Traditional nonlinear solvers are like myopic mountain climbers,  they can get you 

to the top of the nearest peak,  but they may not see and get you to the highest peak in the mountain 

range.  Versions of LINGO from LINGO 8 onward have a global solver option.  If you check the global 
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solver option,  then you are guaranteed to get a global optimum,  if you let the solver run long enough.  

To illustrate,  suppose our problem is: 
 

             Min = @sin(x) + .5*@abs(x-9.5);  

                        x <= 12; 

 

The graph of the function appears in Figure 1.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you apply a traditional nonlinear solver to this model you might get one of three solutions: either x = 

0,  or x = 5.235987, or x = 10.47197.  If you check the Global solver option in LINGO,  it will report the 

solution x = 10.47197 and label it as a global optimum.  Be forewarned that the global solver does not 

eliminate drawback (a),  namely,  nonlinear models may take a long time to solve to guaranteed 

optimality.  Nevertheless,  the global solver may give a very good,  even optimal, solution very quickly 

but then take a long time to prove that there is no other better solution. 
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Figure 1.12 A Nonconvex Function:         
sin(x)+.5*abs(x-9.5) 
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1.10 Problems 
1. Your firm produces two products, Thyristors (T) and Lozenges (L), that compete for the scarce 

resources of your distribution system. For the next planning period, your distribution system has 

available 6,000 person-hours. Proper distribution of each T requires 3 hours and each L requires 

2 hours. The profit contributions per unit are 40 and 30 for T and L, respectively. Product line 

considerations dictate that at least 1 T must be sold for each 2 L’s. 

(a) Draw the feasible region and draw the profit line that passes through the optimum point. 

(b) By simple common sense arguments, what is the optimal solution? 

2. Graph the following LP problem: 

Minimize 4X + 6Y 

subject to 5X + 2Y  12 

                3X + 7Y  13 

                X  0, Y  0. 

In addition, plot the line 4X + 6Y = 18 and indicate the optimum point. 

3. The Volkswagen Company produces two products, the Bug and the SuperBug, which share 

production facilities. Raw materials costs are $600 per car for the Bug and $750 per car for the 

SuperBug. The Bug requires 4 hours in the foundry/forge area per car; whereas, the SuperBug, 

because it uses newer more advanced dies, requires only 2 hours in the foundry/forge. The Bug 

requires 2 hours per car in the assembly plant; whereas, the SuperBug, because it is a more 

complicated car, requires 3 hours per car in the assembly plant. The available daily capacities in the 

two areas are 160 hours in the foundry/forge and 180 hours in the assembly plant. Note, if there are 

multiple machines, the total hours available per day may be greater than 24. The selling price of the 

Bug at the factory door is $4800. It is $5250 for the SuperBug. It is safe to assume whatever number 

of cars are produced by this factory can be sold. 

(a) Write the linear program formulation of this problem. 

(b) The above description implies the capacities of the two departments (foundry/forge and 

assembly) are sunk costs. Reformulate the LP under the conditions that each hour of 

foundry/forge time cost $90; whereas, each hour of assembly time cost $60. The capacities 

remain as before. Unused capacity has no charge. 

4. The Keyesport Quarry has two different pits from which it obtains rock. The rock is run through a 

crusher to produce two products: concrete grade stone and road surface chat. Each ton of rock from 

the South pit converts into 0.75 tons of stone and 0.25 tons of chat when crushed. Rock from the 

North pit is of different quality. When it is crushed, it produces a “50-50” split of stone and chat. 

The Quarry has contracts for 60 tons of stone and 40 tons of chat this planning period. The cost per 

ton of extracting and crushing rock from the South pit is 1.6 times as costly as from the North pit. 

(a) What are the decision variables in the problem? 

(b) There are two constraints for this problem. State them in words. 

(c) Graph the feasible region for this problem. 

(d) Draw an appropriate objective function line on the graph and indicate graphically and 

numerically the optimal solution. 

(e) Suppose all the information given in the problem description is accurate. What additional 

information might you wish to know before having confidence in this model? 
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5. A problem faced by railroads is of assembling engine sets for particular trains. There are three 

important characteristics associated with each engine type, namely, operating cost per hour, 

horsepower, and tractive power. Associated with each train (e.g., the Super Chief run from Chicago 

to Los Angeles) is a required horsepower and a required tractive power. The horsepower required 

depends largely upon the speed required by the run; whereas, the tractive power required depends 

largely upon the weight of the train and the steepness of the grades encountered on the run. For a 

particular train, the problem is to find that combination of engines that satisfies the horsepower and 

tractive power requirements at lowest cost. 

 In particular, consider the Cimarron Special, the train that runs from Omaha to Santa Fe. This 

train requires 12,000 horsepower and 50,000 tractive power units. Two engine types, the GM-I and 

the GM-II, are available for pulling this train. The GM-I has 2,000 horsepower, 10,000 tractive 

power units, and its variable operating costs are $150 per hour. The GM-II has 3,000 horsepower, 

10,000 tractive power units, and its variable operating costs are $180 per hour. The engine set may 

be mixed (e.g., use two GM-I's and three GM-II's). 

 Write the linear program formulation of this problem. 

6. Graph the constraint lines and the objective function line passing through the optimum point and 

indicate the feasible region for the Enginola problem when: 

(a) All parameters are as given except labor supply is 70 rather than 120. 

(b) All parameters are as given originally except the variable profit contribution of a Cosmo 

is $40 instead of $30. 

7. Consider the problem: 

Minimize        4x1 + 3x2 

Subject to       2x1 +  x2  10 

                    −3x1 + 2x2  6 

                        x1 +   x2  6                     

                       x1  0, x2  0 

Solve the problem graphically. 

8. The surgical unit of a small hospital is becoming more concerned about finances. The hospital 

cannot control or set many of the important factors that determine its financial health. For example, 

the length of stay in the hospital for a given type of surgery is determined in large part by 

government regulation. The amount that can be charged for a given type of surgical procedure is 

controlled largely by the combination of the market and government regulation. Most of the 

hospital’s surgical procedures are elective, so the hospital has considerable control over which 

patients and associated procedures are attracted and admitted to the hospital. The surgical unit has 

effectively two scarce resources, the hospital beds available to it (70 in a typical week), and the 

surgical suite hours available (165 hours in a typical week). Patients admitted to this surgical unit 

can be classified into the following three categories: 

 
Patient Type 

 
Days of Stay 

Surgical 
Suite Hours  

Needed 

 
Financial 

Contribution 

A 3 2 $240 

B 5 1.5 $225 

C 6 3 $425 
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 For example, each type B patient admitted will use (i) 5 days of the 7  70 = 490 bed-days 

available each week, and (ii) 1.5 hours of the 165 surgical suite hours available each week. One 

doctor has argued that the surgical unit should try to admit more type A patients. Her argument is 

that, “in terms of $/days of stay, type A is clearly the best, while in terms of $/(surgical suite hour), 

it is not much worse than B and C.” 

 Suppose the surgical unit can in fact control the number of each type of patient admitted each 

week (i.e., they are decision variables). How many of each type should be admitted each week? 

 Can you formulate it as an LP?
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2 
 

Solving Math Programs with 
LINGO 

 
 

2.1 Introduction 
The process of solving a math program requires a large number of calculations and is, therefore, best 

performed by a computer program. The computer program we will use is called LINGO. The main 

purpose of LINGO is to allow a user to quickly input a model formulation, solve it, assess the correctness 

or appropriateness of the formulation based on the solution, quickly make minor modifications to the 

formulation, and repeat the process. LINGO features a wide range of commands, any of which may be 

invoked at any time. LINGO checks whether a particular command makes sense in a particular context. 

 The main version of LINGO has a graphical user interface( GUI), althought there is a command line 

interface available for certain special situations, e.g. running under Unix. We will work only with the 

GUI version.  

2.2 LINGO for Windows, Apple Mac, and Linux 
When the GUI version LINGO starts, it opens a blank window known as a Model Window. The Model 

Window is where you “do all your work”. Output in LINGO is displayed in a Report Window. LINGO 

can generate a number of reports pertaining to your model. All the standard commands for opening and 

saving files, familiar to Windows and Mac users are available. The following is a typical screen shot. 
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Some of the less common commands available in the GUI version of LINGO are:  

SOLVE    

Use the SOLVE command from the LINGO/Solver menu, click on the button, or press Ctrl+U to send 

the model currently in memory to the LINGO solver. If you have more than one model open, the 

frontmost (or active) window is the one in memory.  
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MATCH PARENTHESIS Ctrl+P   

Use the MATCH PARENTHESIS command from the Edit menu, click the button, or type Ctrl+P to find 

the close parenthesis that corresponds to the open parenthesis you have selected. 

In addition to this command, there is one other way to find matching parentheses. LINGO will highlight 

matching parentheses in red when the Match Paren option is enabled under the LINGO|Options 

command (see below). By placing the cursor immediately after one of the parentheses of interest, you 

will notice that the color of the parenthesis changes from black to red. LINGO will simultaneously 

display the matching parenthesis in red. These parentheses will remain displayed in red until you move 

the cursor to another position. 

PASTE FUNCTION 

Use the PASTE FUNCTION command from the Edit menu to paste any of LINGO’s built-in functions 

at the current insertion point. Choose the category of the LINGO function you want to paste, then select 

the function from the cascading menu. LINGO inserts place holders for arguments in the functions. 

SELECT FONT... Ctrl +J 

Use the SELECT FONT command from the Edit menu or press Ctrl+J to select a new font in which to 

display the currently selected text.  

INSERT NEW OBJECT 

Use the INSERT NEW OBJECT command from the Edit menu to embed an OLE object into the LINGO 

document. 

LINKS 

Use the LINKS command from the Edit menu to control the links to external objects in your document. 

OBJECT PROPERTIES Alt+Enter 

Use the OBJECT PROPERTIES command from the Edit menu or press Alt+Enter to specify the 

properties of a selected, embedded object 

2.2.1 LINGO Menu  

SOLUTION… X= Ctrl+W 

Use the SOLUTION command from the LINGO menu, click the button, or press Ctrl+W to open the 

Solutions dialog box. Here you can specify the way you want a report of the solution currently in memory 

to appear. When you click OK, LINGO writes the report to a Report Window. 

GENERATE… Ctrl+G/Ctrl+Q 

Use the DISPLAY MODEL and DON’T DISPLAY MODEL sub-commands from the LINGO Solver  | 

Generate command or press Ctrl+G or Ctrl+Q, respectively, to create an expanded version of the current 

model. The expanded model explicitly lists all the generated constraints and variables in your model.  

 If you choose to display the model, LINGO will place a copy of the generated model in a new 

window, which you may scroll through to examine, print, or save to disk. If you choose not to display 
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the model, LINDO will generate the model without displaying it, but will store the generated model for 

later use by the appropriate solver. 

PICTURE   Ctrl+K  

Use the PICTURE command from the LINGO menu or press Ctrl+K to display a model in matrix form. 

Viewing the model in matrix form can be helpful in identifying special structure in your model. 

2.2.2 Windows Menu 

COMMAND WINDOW Ctrl +1 

Use the COMMAND WINDOW command from the Windows menu or press Ctrl+1 to open LINGO’s 

Command Window. The Command Window gives you access to LINGO’s command line interface. In 

general, Windows users will not need to make use of the Command Window. It is provided for users 

who may want to put together application-specific “products” that make use of LINGO through 

Command Window scripts to control the program. Please refer to your help file or user’s manual for 

more information on the command line commands. 

STATUS WINDOW Ctrl +2 

Use the STATUS WINDOW command from the Windows menu or press Ctrl+2 to open LINGO’s Solver 

Status window. 

2.2.3 Help Menu 

HELP TOPICS  

Use the HELP TOPICS command from the Help menu, or click on the first question mark button to open 

LINGO help to the Contents section. Press the second button (with the arrow) to invoke context-sensitive 

help. Once the cursor has changed to the question mark, selecting any command will take you to help 

for that command. 

REGISTER 

Use the REGISTER command from the Help menu to register your version of LINGO online. You will 

need a connection to the internet open for this command to work. Enter your personal information in the 

dialog box supplied and select the register button. Your information will be sent directly to LINDO 

Systems via the Internet. 

 LINDO Systems is constantly working to make our products faster and easier to use. Registering 

your software with LINDO ensures that you will be kept up-to-date on the latest enhancements and other 

product news. 

AUTOUPDATE 

Use the AUTOUPDATE command from the Help menu to have LINGO automatically check every time 

you start the LINGO software whether there is a more recent version of LINGO available for download 

on the LINDO Systems website. You will need a connection to the internet open for this command to 

work.  
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ABOUT LINGO… 

Use the ABOUT LINGO command from the Help menu to view information about the version of LINGO 

you are currently using (e.g., the release number, constraint limit, variable limit, and memory limit). 

2.2.4 Summary 
This is not intended to be an exhaustive description of the commands available in the Windows version 

of LINGO. Please refer to your help file or user’s manual for a more in-depth analysis. 

2.3 Getting Started on a Small Problem 
When you start LINGO for Windows, the program opens an <untitled> window for you. For purposes 

of introduction, let’s enter the Enginola problem we looked at in the previous chapter directly into this 

<untitled> window: 

MAX = (20 * A) + (30 * C); 

!note that the parentheses aren't needed, because LINGO; 

!will do multiplication and division first; 

A < 60; 

C < 50; 

A + 2 * C < 120; 

 Note, even though the strict inequality, “<”, was entered above, LINGO interprets it as the loose 

inequality, “”. The reason is that typical keyboards have only the strict inequalities, < and >. You may, 

and in fact are encouraged to, use the two symbols “<=” to emphasize an inequality is of a 

less-than-or-equal-to nature. Also, notice comments are preceded by the exclamation mark (!). A 

semicolon (;) terminates a comment. 

 Click on the Solve/“bullseye” button , use the Solve command from the Solve menu, or press 

Ctrl+U to solve the model. While solving, LINGO will show the Solver Status Window with information 

about the model and the solution process. When it’s done solving, the “State” field should read “Global 

Optimum”. Then, click on the “Close” button to close the Solver Status Window: 

 The following solution is now in a Report Window:  

Optimal solution found at step:         1 

Objective value:                 2100.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        30.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2100.000            1.000000 

       2       0.0000000            5.000000 

       3        20.00000           0.0000000 

       4       0.0000000            15.00000 

 Editing the model is simply a matter of finding and changing the variable, coefficient, or direction 

you want to change. Any changes will be taken into account the next time that you solve the model. 

 Click on the  button, use the Save command from the File menu, or press Ctrl+S to save your 

work. 
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2.4 Integer Programming with LINGO 
Fairly shortly after you start looking at problems for which optimization might be applicable, you 

discover the need to restrict certain variables to integer values (i.e., 0, 1, 2, etc.). LINGO allows you to 

identify such variables. We give an introductory treatment here. It is discussed more thoroughly in 

Chapter 11, Formulating and Solving Integer Programs. Integer variables in LINGO can be either 0/1 

or general. Variables restricted to the values 0 or 1 are identified with the @BIN specification. Variables 

that may be 0, 1, 2, etc., are identified with the @GIN specification.  

 In the following model, the variables TOM, DICK, and HARRY are restricted to be 0 or 1:  

MAX = 4 * TOM  + 3 * DICK  + 2 * HARRY; 

    2.5 * TOM            + 3.1 * HARRY <= 5; 

     .2 * TOM + .7 * DICK + .4 * HARRY <= 1; 

@BIN(TOM); 

@BIN(DICK); 

@BIN(HARRY); 

 After solving, to see the solution, choose Solution from the Reports menu, or click on the  

button, and choose All Values. The Report Window displays the following: 

Optimal solution found at step:         1 

Objective value:                 7.000000 

Branch count:                           0 

Variable           Value        Reduced Cost 

     TOM        1.000000           -4.000000 

    DICK        1.000000           -3.000000 

   HARRY       0.0000000           -2.000000 

     Row    Slack or Surplus      Dual Price 

       1        7.000000            1.000000 

       2        2.500000           0.0000000 

       3       0.1000000           0.0000000 

 General integers, which can be 0, 1, 2, etc., are identified in analogous fashion by using @GIN 

instead of @BIN, for example: 

@GIN(TONIC); 

This restricts the variable TONIC to 0, 1, 2, 3, …. 

 The solution method used is branch-and-bound. It is an intelligent enumeration process that will 

find a sequence of better and better solutions. As each one is found, the Status Window will be updated 

with the objective value and a bound on how good a solution might still remain. After the enumeration 

is complete, various commands from the Reports menu can be used to reveal information about the best 

solution found. 

 Let’s look at a slightly modified version of the original Enginola problem and see how the GIN 

specification might help: 

MAX = 20 * A + 30 * C; 

A < 60; 

C < 50; 

A + 2 * C < 115; 
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Notice the capacity of 115 on the labor constraint (Row 4): 

Optimal solution found at step:         1 

Objective value:                 2025.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        27.50000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2025.000            1.000000 

       2       0.0000000            5.000000 

       3        22.50000           0.0000000 

       4       0.0000000            15.00000 

 Note that a fractional quantity is recommended for C. If fractional quantities are undesirable, declare 

A and C as general integer variables: 

MAX = 20 * A + 30 * C; 

A < 60; 

C < 50; 

A + 2 * C < 115; 

@GIN( A); 

@GIN( C); 

Solving results in the following: 

Optimal solution found at step:         4 

Objective value:                 2020.000 

Branch count:                           1 

Variable           Value        Reduced Cost 

       A        59.00000           -20.00000 

       C        28.00000           -30.00000 

     Row    Slack or Surplus      Dual Price 

       1        2020.000            1.000000 

       2        1.000000           0.0000000 

       3        22.00000           0.0000000 

       4       0.0000000           0.0000000 

2.4.1 Warning for Integer Programs 
Although the integer programming (IP) capability is very powerful, it requires skill to use effectively. 

In contrast to linear programs, just because you can formulate a problem as an integer program, does not 

mean that it can be solved in very little time. It is very easy to prepare a bad formulation for an essentially 

easy problem. A bad formulation may require intolerable amounts of computer time to solve. Therefore, 

you should have access to someone who is experienced in IP formulations if you plan to make use of 

the IP capability. Good formulations of integer programs are discussed further in Chapter 11, 

Formulating and Solving Integer Programs. 

2.5 Solving an Optimization Model 
Solving a linear or integer program is a numerically intensive process. We do not discuss the 

implementation details of the solution algorithms. Writing an efficient solver requires several 

person-years of effort. For a good introduction to some of the algorithms, see Martin (1999) or Greenberg 

(1978). 
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 Even though commercial optimization is quite robust, good practice is to avoid using extremely 

small or extremely large numbers in a formulation. You should try to “scale” the model, so there are no 

extremely small or large numbers. You should not measure weight in ounces one place and volume in 

cubic miles somewhere else in the same problem). A rule of thumb is there should be no nonzero 

coefficient whose absolute value is greater than 100,000 or less than 0.0001. If LINGO feels the model 

is poorly scaled, it will display a warning. You can usually disregard this warning. However, it is good 

practice to choose your units of measure appropriately, so this message does not appear. 

2.6 Problems 
1. Recall the Enginola/Astro/Cosmo problem of the previous chapter. Suppose we add the restriction 

that only an even number (0, 2, 4…) of Cosmos are allowed. Show how to exploit the @GIN 

command to represent this feature. Note, this kind of restriction sometimes arises in the manufacture 

of plastic wrap. The product starts out as a long hollow tube. It is flattened and then two resulting 

edges are cut off to leave you with two flat pieces. Thus, the number of units produced is always a 

multiple of 2. 

2. Using your favorite text editor, enter the Enginola formulation. Save it as a simple, unformatted text 

file. Start up LINGO, read the model into LINGO, and solve it. 

3. Continuing from (2), use LINGO to prepare an output file containing both the formulation and 

solution. Read this file into your favorite text editor and print it. 
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Analyzing Solutions 
 
 
 

3.1 Economic Analysis of Solution Reports 
A substantial amount of interesting economic information can be gleaned from the solution report of a 

model. In addition, optional reports, such as range analysis, can provide further information. The usual 

use of this information is to do a quick “what if” analysis. The typical kinds of what if questions are: 

(a) What would be the effect of changing a capacity or demand?  

(b) What if a new opportunity becomes available? Is it a worthwhile opportunity? 

3.2 Economic Relationship Between Dual Prices and Reduced 
Costs 

The reader hungering for unity in systems may convince himself or herself that a reduced cost is really 

a dual price born under the wrong sign. Under our convention, the reduced cost of a variable x is really 

the dual price with the sign reversed on the constraint x  0. Recall the reduced cost of the variable x 

measures the rate at which the solution value deteriorates as x is increased from zero. The dual price on 

x  0 measures the rate at which the solution value improves as the right-hand side (and thus x) is 

increased from zero. 

 Our knowledge about reduced costs and dual prices can be restated as: 

Reduced cost of an (unused) activity: amount by which profits will decrease if one unit of this 

activity is forced into the solution. 

Dual price of a constraint: one unit reduces amount by which profits will decrease if the 

availability of the resource associated with this constraint. 

 We shall argue and illustrate that the reduced cost of an activity is really its net opportunity cost if 

we “cost out” the activity using the dual prices as charges for resource usage. This sounds like good 

economic sense. If one unit of an activity is forced into the solution, it effectively reduces the availability 

of the resources it uses. These resources have an imputed value by way of the dual prices. Therefore, the 

activity should be charged for the value used. Let’s look at an example and check if the argument works. 
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3.2.1 The Costing Out Operation: An Illustration 
Suppose Enginola is considering adding a video recorder to its product line. Market Research and 

Engineering estimate the direct profit contribution of a video recorder as $47 per unit. It would be 

manufactured on the Astro line and would require 3 hours of labor. If it is produced, it will force the 

reduction of both Astro production (because it competes for a production line) and Cosmo production 

(because it competes for labor). Is this tradeoff worthwhile? It looks promising. The video recorder 

makes more dollars per hour of labor than a Cosmo and it makes more efficient use of Astro capacity 

than Astros. Recall the dual prices on the Astro and labor capacities in the original solution were $5 and 

$15. If we add this variable to the model, it would have a +47 in the objective function, a +1 in row 2 

(the Astro capacity constraint), and a +3 in row 4 (the labor capacity constraint). We can “cost out” an 

activity or decision variable by charging it for the use of scarce resources. What prices should be 

charged? The obvious prices to use are the dual prices. The +47 profit contribution can be thought of as 

a negative cost. The costing out calculations can be arrayed as in the little table below: 

Row Coefficient Dual Price Charge 

1 −47 1 −47 

2 1 +5 +5 

3 0 0 0 

4 3 15 +45 

 Total opportunity cost =    +3 

 Thus, a video recorder has an opportunity cost of $3. A negative one (−1) is applied to the 47 profit 

contribution because a profit contribution is effectively a negative cost. The video recorder’s net cost is 

positive, so it is apparently not worth producing. 

 The analysis could be stopped at this point, but out of curiosity we’ll formulate the relevant LP and 

solve it. If V = number of video recorders to produce, then we wish to solve: 

MAX = 20 * A + 30 * C + 47 * V; 

           A               + V <=  60; 

                    C          <=  50; 

           A  + 2 * C  + 3 * V <= 120; 

The solution is: 

Optimal solution found at step:         1 

Objective value:                 2100.000 

Variable           Value         Reduced Cost 

       A        60.000000           0.000000 

       C        30.000000           0.000000 

       V         0.000000           3.000000 

     Row    Slack or Surplus      Dual Price 

       1      2100.000000           1.000000 

       2         0.000000           5.000000 

       3        20.000000           0.000000 

       4         0.000000          15.000000 

 Video recorders are not produced. Notice the reduced cost of V is $3, the value we computed when 

we “costed out” V. This is an illustration of the following relationship: 

The reduced cost of an activity equals the weighted sum of its resource usage rates 

minus its profit contribution rate, where the weights applied are the dual prices. A 
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“min” objective is treated as having a dual price of +1. A “max” objective is treated 

as having a dual price of −1 in the costing out process. 

Notice that the dual prices of an LP fully allocate the total profit to all the scarce resources,  i.e., for the 

above example,  5 *60 + 0*50 + 15*120 = 2100. 

3.2.2 Dual Prices, LaGrange Multipliers, KKT Conditions, and Activity 
Costing 

When you solve a continuous optimization problem with LINGO or What’sBest!, you can optionally 

have dual prices reported for each constraint. For simplicity, assume that our objective is to maximize 

and all constraints are less-than-or-equal-to when all variable expressions are brought to the left-hand 

side. The dual price of a constraint is then the rate of change of the optimal objective value with respect 

to the right-hand side of the constraint. This is a generalization to inequality constraints of the idea of a 

LaGrange multiplier for equality constraints. This idea has been around for more than 100 years. To 

illustrate, consider the following slightly different, nonlinear problem: 

[ROW1] MAX = 40*( X+1)^.5 + 30*( Y+1)^.5 + 25*( Z+1)^.5; 

[ROW2]            X                       + 15* Z   <= 45; 

[ROW3]                           Y            + Z   <= 45; 

[ROW4]            X* X      + 3* Y*Y      + 9 * Z*Z <= 3500; 

We implicitly assume that X, Y, Z >= 0. 

When solved, you get the solution: 

Objective value =  440.7100         

Variable           Value        Reduced Cost 

       X        45.00000           0.0000000 

       Y        22.17356           0.0000000 

       Z       0.0000000           0.1140319 

     Row    Slack or Surplus      Dual Price 

    ROW2       0.0000000           0.8409353 

    ROW3        22.82644           0.0000000 

    ROW4       0.0000000           0.02342115 

For example, the dual price of .8409353 on ROW2 implies that if the RHS of ROW2 is increased by a 

small amount, epsilon, the optimal objective value will increase by about .8409353 * epsilon. 

 When trying to understand why a particular variable or activity is unused (i.e., at zero), a useful 

perspective is that of “costing out the activity”. We give the variable “credit” for its incremental 

contribution to the objective and charge it for its incremental usage of each constraint, where the 

charging rate applied is the dual price of the constraint. The incremental contribution, or usage, is simply 

the partial derivative of the LHS with respect to the variable. The costing out of variable Z is illustrated 

below: 

Row       Partial w.r.t Z      Dual price    Total charge 

ROW1          12.5                 -1         -12.5 

ROW2          15               .8409353        12.614029 

ROW3           1                    0            0 

ROW4           0               .02342115         0        

                              Net(Reduced Cost): .11403 
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On the other hand, if we do the same costing out for X, we get: 

Row       Partial w.r.t X      Dual price    Total charge 

ROW1         2.9488391             -1       -2.9488391 

ROW2         1                 .8409353       .8409353         

ROW3         0                      0          0 

ROW4        90                 .02342115     2.107899 

                           Net(Reduced Cost):  0 

These two computations are illustrations of the Karush/Kuhn/Tucker (KKT) conditions, namely, in an 

optimal solution: 

a) a variable that has a positive reduced cost will have a value of zero; 

b) a variable that is used (i.e., is strictly positive) will have a reduced cost of zero; 

c) a “<=” constraint that has a positive dual price will have a slack of zero; 

d) a “<=” constraint that has strictly positive slack, will have a dual price of zero. 

These conditions are sometimes also called complementary slackness conditions. 

3.3 Range of Validity of Reduced Costs and Dual Prices 
In describing reduced costs and dual prices, we have been careful to limit the changes to “small” changes. 

For example, if the dual price of a constraint is $3/hour, then increasing the number of hours available 

will improve profits by $3 for each of the first few hours (possibly less than one) added. However, this 

improvement rate will generally not hold forever. We might expect that, as we make more hours of 

capacity available, the value (i.e., the dual price) of these hours would not increase and might decrease. 

This might not be true for all situations, but for LP’s it is true that increasing the right-hand side of a 

constraint cannot cause the constraint’s dual price to increase. The dual price can only stay the same or 

decrease. 

 As we change the right-hand side of an LP, the optimal values of the decision variables may change. 

However, the dual prices and reduced costs will not change as long as the “character” of the optimal 

solution does not change. We will say the character changes (mathematicians say the basis changes) 

when either the set of nonzero variables or the set of binding constraints (i.e., have zero slack) changes. 

In summary, as we alter the right-hand side, the same dual prices apply as long as the “character” or 

“basis” does not change. 

 Most LP programs will optionally supplement the solution report with a range (i.e., sensitivity 

analysis) report. This report indicates the amounts by which individual right-hand side or objective 

function coefficients can be changed unilaterally without affecting the character or “basis” of the optimal 

solution. Recall the previous model: 

MAX = 20 * A + 30 * C + 47 * V; 

           A               + V <=  60; 

                    C          <=  50; 

           A  + 2 * C  + 3 * V <= 120; 
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 To obtain the sensitivity report, while in the window with the program, choose Range from the 

LINGO menu. The sensitivity report for this problem appears below: 

Ranges in which the basis is unchanged: 

                 Objective Coefficient Ranges 

               Current      Allowable      Allowable 

Variable   Coefficient       Increase       Decrease 

       A      20.00000       INFINITY       3.000000 

       C      30.00000       10.00000       3.000000 

       V      47.00000       3.000000       INFINITY 

                    Right-hand Side Ranges 

     Row       Current      Allowable      Allowable 

                   RHS       Increase       Decrease 

       2      60.00000       60.00000       40.00000 

       3      50.00000       INFINITY       20.00000 

       4      120.0000       40.00000       60.00000 

 Again, we find two sections, one for variables and the second for rows or constraints. The 3 in the 

A row of the report means the profit contribution of A could be decreased by up to $3/unit without 

affecting the optimal amount of A and C to produce. This is plausible because one Astro and one Cosmo 

together make $50 of profit contribution. If the profit contribution of this pair is decreased by $3 (to 

$47), then a V would be just as profitable. Note that one V uses the same amount of scarce resources as 

one Astro and one Cosmo together. The INFINITY in the same section of the report means increasing the 

profitability of A by any positive amount would have no effect on the optimal amount of A and C to 

produce. This is intuitive because we are already producing A’s to their upper limit. 

 The “allowable decrease” of 3 for variable C follows from the same argument as above. The 

allowable increase of 10 in the C row means the profitability of C would have to be increased by at least 

$10/unit (thus to $40/unit) before we would consider changing the values of A and C. Notice at $40/unit 

for C’s, the profit per hour of labor is the same for both A and C. 

 In general, if the objective function coefficient of a single variable is changed within the range 

specified in the first section of the range report, then the optimal values of the decision variables, A, C, 

and V, in this case, will not change. The dual prices, reduced cost and profitability of the solution, 

however, may change. 

 In a complementary sense, if the right-hand side of a single constraint is changed within the range 

specified in the second section of the range report, then the optimal values of the dual prices and reduced 

costs will not change. However, the values of the decision variables and the profitability of the solution 

may change. 

 For example, the second section tells us that, if the right-hand side of row 3 (the constraint C  50) 

is decreased by more than 20, then the dual prices and reduced costs will change. The constraint will 

then be C  30 and the character of the solution changes in that the labor constraint will no longer be 

binding. The right-hand side of this constraint (C  50) could be increased an infinite amount, according 

to the range report, without affecting the optimal dual prices and reduced costs. This makes sense 

because there already is excess capacity on the Cosmo line, so adding more capacity should have no 

effect. 
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 Let us illustrate some of these concepts by re-solving our three-variable problem with the amount 

of labor reduced by 61 hours down to 59 hours. The formulation is: 

MAX = 20 * A + 30 * C + 47 * V; 

           A               + V <= 60; 

                    C          <= 50; 

           A  + 2 * C  + 3 * V <= 59; 

The solution is: 

Optimal solution found at step:         1 

Objective value:                 1180.000 

Variable           Value        Reduced Cost 

       A        59.00000           0.0000000 

       C       0.0000000            10.00000 

       V       0.0000000            13.00000 

     Row    Slack or Surplus      Dual Price 

       1        1180.000            1.000000 

       2        1.000000           0.0000000 

       3        50.00000           0.0000000 

       4       0.0000000            20.00000 

Ranges in which the basis is unchanged: 

                   Objective Coefficient Ranges 

               Current      Allowable      Allowable 

Variable   Coefficient       Increase       Decrease 

       A      20.00000       INFINITY       4.333333 

       C      30.00000       10.00000       INFINITY 

       V      47.00000       13.00000       INFINITY 

                      Right-hand Side Ranges 

     Row       Current      Allowable      Allowable 

                   RHS       Increase       Decrease 

       2      60.00000       INFINITY       1.000000 

       3      50.00000       INFINITY       50.00000 

       4      59.00000       1.000000       59.00000 

 First, note that, with the reduced labor supply, we no longer produce any Cosmos. Their reduced 

cost is now $10/unit, which means, if their profitability were increased by $10 to $40/unit, then we would 

start considering their production again. At $40/unit for Cosmos, both products make equally efficient 

use of labor. 



Analyzing Solutions  Chapter 3     37 

 Also note, since the right-hand side of the labor constraint has reduced by more than 60, most of the 

dual prices and reduced costs have changed. In particular, the dual price or marginal value of labor is 

now $20 per hour. This is because an additional hour of labor would be used to produce one more $20 

Astro. You should be able to convince yourself the marginal value of labor behaves as follows: 

Labor Available Dual Price Reason 

0 to 60 hours $20/hour Each additional hour will be used to 

produce one $20 Astro. 

60 to 160 hours $15/hour Each additional hour will be used to 

produce half a $30 Cosmo. 

160 to 280 hours $13.5/hour Give up half an Astro and add half 

of a V for profit of 0.5 (−20 + 47). 

More than 280 hours $0 No use for additional labor. 

In general, the dual price on any constraint will behave in the above stepwise decreasing fashion. 

 Figures 3.1 and 3.2 give a global view of how total profit is affected by changing either a single 

objective coefficient or a single right-hand side. The artists in the audience may wish to note that, for a 

maximization problem: 

a) Optimal total profit as a function of a single objective coefficient always has a bowl 

shape. Mathematicians say it is a convex function. 

b) Optimal total profit as a function of a single right-hand side value always has an inverted 

bowl shape. Mathematicians say it is a concave function. 

 For some problems, as in Figures 3.1 and 3.2, we only see half of the bowl. For minimization problems, 

the orientation of the bowl in (a) and (b) is simply reversed. 

 When we solve a problem for a particular objective coefficient or right-hand side value, we obtain a 

single point on one of these curves. A range report gives us the endpoints of the line segment on which this 

one point lies. 

Figure 3.1 Total Profit vs. Profit Contribution per Unit of Activity V 
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Figure 3.2 Profit vs. Labor Available 
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3.3.1 Predicting the Effect of Simultaneous Changes in Parameters—The 
100% Rule 

The information in the range analysis report tells us the effect of changing a single cost or resource 

parameter. The range report for the Enginola problem is presented as an example: 

Ranges in which the basis is unchanged: 

                     Objective Coefficient Ranges 

               Current      Allowable      Allowable 

Variable   Coefficient       Increase       Decrease 

       A      20.00000       INFINITY       5.000000 

       C      30.00000       10.00000       30.00000 

                      Right-hand Side Ranges 

     Row       Current      Allowable      Allowable 

                   RHS       Increase       Decrease 

       2      60.00000       60.00000       40.00000 

       3      50.00000       INFINITY       20.00000 

       4      120.0000       40.00000       60.00000 

 The report indicates the profit contribution of an Astro could be decreased by as much as $5/unit 

without changing the basis. In this case, this means that the optimal solution would still recommend 

producing 60 Astros and 30 Cosmos. 

 Suppose, in order to meet competition, we are considering lowering the price of an Astro by $3/unit 

and the price of a Cosmo by $10/unit. Will it still be profitable to produce the same mix? Individually, 

each of these changes would not change the solution because 3  5 and 10  30. 

 However, it is not clear these two changes can be made simultaneously. What does your intuition 

suggest as a rule describing the simultaneous changes that do not change the basis (mix)? 
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The 100% Rule. You can think of the allowable ranges as slack, which may be used up in changing 

parameters. It is a fact that any combination of changes will not change the basis if the 

sum of percentages of slack used is less than 100%. For the simultaneous changes we 

are contemplating, we have: 

3

5











  100 + 

10

30











  100 = 60% + 33% = 93.3% < 100% 

 This satisfies the condition, so the changes can be made without changing the basis. Bradley, Hax, 

and Magnanti (1977) have dubbed this rule the 100% rule. Since the value of A and C do not change, 

we can calculate the effect on profits of these changes as −3  60 − 10  30 = −480. So, the new profit 

will be 2100 − 480 = 1620. 

 The altered formulation and its solution are: 

MAX = 17 * A + 20 * C; 

           A          <= 60; 

                    C <= 50; 

           A +  2 * C <= 120; 

Optimal solution found at step:         1 

Objective value:                 1620.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        30.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        1620.000            1.000000 

       2       0.0000000            7.000000 

       3        20.00000           0.0000000 

       4       0.0000000            10.00000 

3.4 Sensitivity Analysis of the Constraint Coefficients 
Sensitivity analysis of the right-hand side and objective function coefficients is somewhat easy to 

understand because the objective function value changes linearly with modest changes in these 

coefficients. Unfortunately, the objective function value may change nonlinearly with changes in 

constraint coefficients. However, there is a very simple formula for approximating the effect of small 

changes in constraint coefficients. Suppose we wish to examine the effect of decreasing by a small 

amount e the coefficient of variable j in row i of the LP. The formula is: 

(improvement in objective value)  (value of variable j)  (dual price of row i)  e 

Example: Consider the problem: 

MAX = (20 * A) + (30 * C); 

A <= 65; 

C <= 50; 

A + 2 * C <= 115; 
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with solution: 

Optimal solution found at step:         1 

Objective value:                 2050.000 

Variable           Value        Reduced Cost 

       A        65.00000           0.0000000 

       C        25.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2050.000            1.000000 

       2       0.0000000            5.000000 

       3        25.00000           0.0000000 

       4       0.0000000            15.00000 

 Now, suppose it is discovered that the coefficient of C in row 4 should have been 2.01, rather than 

2. The formula implies the objective value should be decreased by approximately 25  15  .01 = 3.75. 

 The actual objective value, when this altered problem is solved, is 2046.269, so the actual decrease 

in objective value is 3.731. 

 The formula for the effect of a small change in a constraint coefficient makes sense. If the change 

in the coefficient is small, then the values of all the variables and dual prices should remain essentially 

unchanged. So, the net effect of changing the 2 to a 2.01 in our problem is effectively to try to use 

25  .01 additional hours of labor. So, there is effectively 25  .01 fewer hours available. However, we 

have seen that labor is worth $15 per hour, so the change in profits should be about 25  .01  15, which 

is in agreement with the original formula. 

 This type of sensitivity analysis gives some guidance in identifying which coefficient should be 

accurately estimated. If the product of variable j’s value and row i’s dual price is relatively large, then 

the coefficient in row i for variable j should be accurately estimated if an accurate estimate of total profit 

is desired. 

3.5 The Dual LP Problem, or the Landlord and the Renter 
As you formulate models for various problems, you will probably discover that there are several rather 

different-looking formulations for the same problem. Each formulation may be correct and may be based 

on taking a different perspective on the problem. An interesting mathematical fact is, for LP problems, 

there are always two formulations (more accurately, a multiple of two) to a problem. One formulation 

is arbitrarily called the primal and the other is referred to as the dual. The two different formulations 

arise from two different perspectives one can take towards a problem. One can think of these two 

perspectives as the landlord’s and the renter’s perspectives. 

 In order to motivate things, consider the following situations. Some textile “manufacturers” in Italy 

own no manufacturing facilities, but simply rent time as needed from firms that own the appropriate 

equipment. In the U.S., a similar situation exists in the recycling of some products. Firms that recycle 

old telephone cable may simply rent time on the stripping machines that are needed to separate the 

copper from the insulation. This rental process is sometimes called “tolling”. In the perfume industry, 

many of the owners of well-known brands of perfume own no manufacturing facilities, but simply rent 

time from certain chemical formulation companies to have the perfumes produced as needed. The basic 

feature of this form of industrial organization is that the owner of the manufacturing resources never 

owns either the raw materials or the finished product. 

 Now, suppose you want to produce a product that can use the manufacturing resources of the famous 

Enginola Company, manufacturer of Astros, Cosmos, and Video Recorders. You would thus like to rent 

production capacity from Enginola. You need to deduce initial reasonable hourly rates to offer to 
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Enginola for each of its three resources: Astro line capacity, Cosmo line capacity, and labor. These three 

hourly rates are your decision variables. You in fact would like to rent all the capacity on each of the 

three resources. Thus, you want to minimize the total charge from renting the entire capacities (60, 50, 

and 120). If your offer is to succeed, you know your hourly rates must be sufficiently high, so none of 

Enginola’s products are worth producing (e.g., the rental fees foregone by producing an Astro should be 

greater than 20). These “it’s better to rent” conditions constitute the constraints. 

 Formulating a model for this problem, we define the variables as follows:  

PA = price per unit to be offered for Astro line capacity, 

PC = price per unit to be offered for Cosmo line capacity, 

PL = price per unit to be offered for labor capacity. 

Then, the appropriate model is: 

The Dual Problem: 
MIN = 60 * PA + 50 * PC + 120 * PL; 

!ASTRO; PA + PL > 20; 

!COSMO; PC + 2*PL > 30; 

!VR;    PA + 3 * PL > 47; 

 The three constraints force the prices to be high enough, so it is not profitable for Enginola to 

produce any of its products. 

The solution is: 

Optimal solution found at step:         2 

Objective value:                 2100.000 

Variable           Value        Reduced Cost 

      PA        5.000000           0.0000000 

      PC       0.0000000            20.00000 

      PL        15.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2100.000            1.000000 

       2       0.0000000           -60.00000 

       3       0.0000000           -30.00000 

       4        3.000000           0.0000000 

Recall the original, three-product Enginola problem was: 

The Primal Problem: 
MAX = 20 * A + 30 * C + 47 * V; 

A +             V <=  60; 

        C         <=  50; 

A + 2 * C + 3 * V <= 120; 
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with solution: 

Optimal solution found at step:         1 

Objective value:                 2100.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        30.00000           0.0000000 

       V       0.0000000            3.000000 

     Row    Slack or Surplus      Dual Price 

       1        2100.000            1.000000 

       2       0.0000000            5.000000 

       3        20.00000           0.0000000 

       4       0.0000000            15.00000 

 Notice the two solutions are essentially the same, except prices and decision variables are reversed. 

In particular, note the price the renter should pay is exactly the same as Enginola’s original profit 

contribution. This “Minimize the rental cost of the resources, subject to all activities being unprofitable” 

model is said to be the dual problem of the original “Maximize the total profit, subject to not exceeding 

any resource availabilities” model. The equivalence between the two solutions shown above always 

holds. Upon closer scrutiny, you should also notice the dual formulation is essentially the primal 

formulation “stood on its ear,” or its transpose, in fancier terminology. 

 Why might the dual model be of interest? The computational difficulty of an LP is approximately 

proportional to m2n, where m = number of rows and n = number of columns. If the number of rows in 

the dual is substantially smaller than the number of rows in the primal, then one may prefer to solve the 

dual. 

 Additionally, certain constraints, such as simple upper bounds (e.g., x  1) are computationally less 

expensive than arbitrary constraints. If the dual contains only a small number of arbitrary constraints, 

then it may be easier to solve the dual even though it may have a large number of simple constraints. 

 The term “dual price” arose because the marginal price information to which this term is applied is 

a decision variable value in the dual problem. 

 We can summarize the idea of dual problems as follows. If the original or primal problem has a 

Maximize objective with  constraints, then its dual has a Minimize objective with  constraints. The 

dual has one variable for each constraint in the primal and one constraint for each variable in the primal. 

The objective coefficient of the kth variable of the dual is the right-hand side of the kth constraint in the 

primal. The right-hand side of constraint k in the dual is equal to the objective coefficient of variable k 

in the primal. Similarly, the coefficient in row i of variable j in the dual equals the coefficient in row j 

of variable i in the primal. 

 In order to convert all constraints in a problem to the same type, so one can apply the above, note 

the following two transformations: 

(1) The constraint 2x + 3y = 5 is equivalent to the constraints 2x + 3y  5 and 2x + 3y  5; 

(2) The constraint 2x + 3y  5 is equivalent to −2x − 3y  −5. 

Example: Write the dual of the following problem: 

Maximize  4x − 2y 

subject to   2x + 6y  12 

 3x − 2y = 1 

 4x + 2y  5 
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Using transformations (1) and (2) above, we can rewrite this as: 

Maximize  4x − 2y 

subject to  2x + 6y  12 

 3x − 2y  l 

 −3x + 2y  −l 

 −4x − 2y  −5 

 Introducing the dual variables r, s, t, and u, corresponding to the four constraints, we can write the 

dual as: 

Minimize 12r + s − t − 5u 

subject to  2r + 3s − 3t − 4u  4 

                    6r−2s + 2t − 2u  −2 

3.6 Problems 
1. The Enginola Company is considering introducing a new TV set, the Quasi. The expected profit 

contribution is $25 per unit. This unit is produced on the Astro line. Production of one Quasi requires 

1.6 hours of labor. Using only the original solution below, determine whether it is worthwhile to 

produce any Quasi’s, assuming no change in labor and Astro line capacity. 

The original Enginola problem with solution is below. 

MAX = 20 * A + 30 * C; 

A         <= 60; 

        C <= 50; 

A + 2 * C <= 120; 

Optimal solution found at step:         1 

Objective value:                 2100.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        30.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2100.000            1.000000 

       2       0.0000000            5.000000 

       3        20.00000           0.0000000 

       4       0.0000000            15.00000 

2. The Judson Corporation has acquired 100 lots on which it is about to build homes. Two styles of 

homes are to be built, the “Cape Cod” and the “Ranch Home”. Judson wishes to build these 100 

homes over the next nine months. During this time, Judson will have available 13,000 man-hours 

of bricklayer labor and 12,000 hours of carpenter labor. Each Cape Cod requires 200 man-hours of 

carpentry labor and 50 man-hours of bricklayer labor. Each Ranch Home requires 120 hours of 

bricklayer labor and 100 man-hours of carpentry. The profit contribution of a Cape Cod is projected 

to be $5,100, whereas that of a Ranch Home is projected at $5,000. When formulated as an LP and 

solved, the problem is as follows: 

MAX = 5100 * C + 5000 * R; 

      C +       R < 100; 

200 * C + 100 * R < 12000; 

 50 * C + 120 * R < 13000; 



44     Chapter 3  Analyzing Solutions 
 

 

Optimal solution found at step:         0 

Objective value:                 502000.0 

Variable           Value        Reduced Cost 

       C        20.00000           0.0000000 

       R        80.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        502000.0            1.000000 

       2       0.0000000            4900.000 

       3       0.0000000            1.000000 

       4        2400.000           0.0000000 

Ranges in which the basis is unchanged: 

                   Objective Coefficient Ranges 

               Current      Allowable      Allowable 

Variable   Coefficient       Increase       Decrease 

       C      5100.000       4900.000       100.0000 

       R      5000.000       100.0000       2450.000 

                      Right-hand Side Ranges 

     Row       Current      Allowable      Allowable 

                   RHS       Increase       Decrease 

       2      100.0000       12.63158       40.00000 

       3      12000.00       8000.000       2000.000 

       4      13000.00       INFINITY       2400.000 

(a) A gentleman who owns 15 vacant lots adjacent to Judson’s 100 lots needs some money 

quickly and offers to sell his 15 lots for $60,000. Should Judson buy? What assumptions 

are you making? 

(b) One of Judson’s salesmen who is a native of Massachusetts feels certain he could sell the 

Cape Cods for $2,000 more each than Judson is currently projecting. Should Judson 

change its planned mix of homes? What assumptions are inherent in your 

recommendation? 

3. Jack Mazzola is an industrial engineer with the Enginola Company. He has discovered a way of 

reducing the amount of labor used in the manufacture of a Cosmo TV set from 2 hours per set to 

1.92 hours per set by replacing one of the assembled portions of the set with an integrated circuit 

chip. It is not clear at the moment what this chip will cost. Based solely on the solution report below 

(i.e., do not solve another LP), answer the following questions: 

(a) Assuming labor supply is fixed, what is the approximate value of one of these chips in the 

short run? 

(b) Give an estimate of the approximate increase in profit contribution per day of this change, 

exclusive of chip cost. 

MAX = 20 * A + 30 * C; 

           A          <= 60; 

                    C <= 50; 

           A +  2 * C <= 120; 
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Optimal solution found at step:         1 

Objective value:                 2100.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        30.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2100.000            1.000000 

       2       0.0000000            5.000000 

       3        20.00000           0.0000000 

       4       0.0000000            15.00000 

                    Right-hand Side Ranges 

   Row       Current      Allowable        Allowable 

                 RHS       Increase         Decrease 

       2    60.00000       60.00000         40.00000 

       3    50.00000       INFINITY         20.00000 

       4    120.0000       40.00000         60.00000 

4. The Bug product has a profit contribution of $4100 per unit and requires 4 hours in the foundry 

department and 2 hours in the assembly department. The SuperBug has a profit contribution of 

$5900 per unit and requires 2 hours in the foundry and 3 hours in assembly. The availabilities in 

foundry and assembly are 160 hours and 180 hours, respectively. Each hour used in each of foundry 

and assembly costs $90 and $60, respectively. The following is an LP formulation for maximizing 

profit contribution in this situation: 

MAX = 4100 * B + 5900 * S - 90 * F - 60 * A; 

         4 * B +    2 * S -      F           = 0; 

         2 * B +    3 * S               - A  = 0; 

                                 F          <= 160; 

                                          A <= 180; 

 Following is an optimal solution report printed on a typewriter that skipped some sections of 

the report. 

Objective value: 

Variable           Value        Reduced Cost 

       B                            73.33325 

       S        60.00000 

       F        120.0000           0.0000000 

       A        180.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        332400.0            1.000000 

       2       0.0000000 

       3                            1906.667 

       4                           0.0000000 

       5       0.0000000            1846.667 

Fill in the missing parts, using just the available information (i.e., without re-solving the model on 

the computer). 
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5. Suppose the capacities in the Enginola problem were: Astro line capacity = 45; labor 

capacity = 100. 

(a) Allow the labor capacity to vary from 0 to 200 and plot: 

• Dual price of labor as a function of labor capacity. 

• Total profit as a function of labor capacity. 

(b) Allow the profit contribution/unit of Astros to vary from 0 to 50 and plot: 

• Number of Astros to produce as a function of profit/unit. 

• Total profit as a function of profit/unit. 

6. Write the dual problem of the following problem: 

Minimize    12q + 5r + 3s 

subject to      q + 2r +  4s  6 

                   5q + 6r −  7s  5 

                   8q − 9r + 11s = 10 

7. The energetic folks at Enginola, Inc. have not been idle. The R & D department has given some 

more attention to the proposed digital recorder product (code name R) and enhanced it so much that 

everyone agrees it could be sold for a profit contribution of $79 per unit. Unfortunately, its 

production still requires one unit of capacity on both the A(stro) and C(osmo) lines. Even worse, it 

now requires four hours of labor. The Marketing folks have spread the good word about the Astro 

and Cosmo products, so a price increase has been made possible. Industrial Engineering has been 

able to increase the capacity of the two lines. The new ex-marine heading Human Resources has 

been able to hire a few more good people, so the labor capacity has increased to 135 hours. The net 

result is that the relevant model is now:  

MAX = 23 * A + 38 * C + 79 * R; 

        A             + R <= 75; 

                C     + R <= 65; 

        A + 2 * C + 4 * R <= 135; 

END 

Without resorting to a computer, answer the following questions, supporting each answer with a 

one- or two-sentence economic argument that might be understood by your spouse or “significant 

other.” 

(a) How many A’s should be produced? 

(b) How many C’s should be produced? 

(c) How many R’s should be produced? 

(d) What is the marginal value of an additional hour of labor? 

(e) What is the marginal value/unit of additional capacity on the A line? 

(f) What is the marginal value per unit of additional capacity on the C line? 
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4 
 

The Model Formulation 
Process 

 
Count what is countable, measure what is measurable, and 

what is not measurable, make measurable. 

Galileo Galilei(1564-1642) 

 
4.1 The Overall Process 
In using any kind of analytical or modeling approach for attacking a problem, there are five major steps: 

1) Understanding the real problem. 

2) Formulating a model of the problem. 

3) Gathering and generating the input data for the model (e.g., per unit costs to be used, 

etc.). 

4) Solving or running the model. 

5) Implementing and interpreting the solution in the real world. 

 In general, there is a certain amount of iteration over the five (e.g., one does not develop the most 

appropriate model the first time around). Of the above, the easiest is the solving of the model on the 

computer. This is not because it is intrinsically easiest, but because it is the most susceptible to 

mathematical analysis. Steps 1, 3, and 5 are, if not the most difficult, at least the most time consuming. 

Success with these steps depends to a large extent upon being very familiar with the organization 

involved (e.g., knowing who knows what the real production rate is on the punch press machine). Step 

2 requires the most analytical skill. Steps 1 and 5 require the most people skills. 

 Formulating good models is an art bordering on a science. The artistic ability is in developing simple 

models that are nevertheless good approximations of reality. We shall see that there are a number of 

classes of problems that are well approximated by optimization models. 

 With all of the above comments in mind, we will devote most of the discussion to formulation of 

optimization models, stating what universal truths seem to apply for steps (3) and (5), and giving an 

introduction to the mechanics of step (4). 
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4.2 Approaches to Model Formulation 
We take two approaches to formulating models: 

1) Template approach, 

2) Constructive approach.  

 The constructive approach is the more fundamental and general. However, readers with less analytic 

skill may prefer the template approach. The latter is essentially a “model in a can” approach. In this 

approach, examples of standard applications are illustrated in substantial detail. If you have a problem 

that closely resembles one of these “template” models, you may be able to adjust it to your situation by 

making modest changes to the template model. The advantage of this approach is that the user may not 

need much technical background if there is a template model that closely fits the real situation. 

4.3 The Template Approach 
You may feel more comfortable and confident in your ability to structure problems if you have a 

classification of “template” problems to which you can relate new problems you encounter. We will 

present a classification of about a half dozen different categories of problems. In practice, a large real 

problem you encounter will not fit a single template model exactly, but might require a combination of 

two or more of the categories. The classification is not exhaustive, so you may encounter or develop 

models that seem to fit none of these templates. 

4.3.1 Product Mix Problems 
Product mix problems are the problem types typically encountered in introductory LP texts. There are a 

collection of products that can be sold and a finite set of resources from which these products are made. 

Associated with each product are a profit contribution rate and a set of resource usage rates. The 

objective is to find a mix of products (amount of each product) that maximizes profit, subject to not 

using more resources than are available. 

 These problems are always of the form “Maximize profit subject to less-than-or-equal-to 

constraints”. 

4.3.2 Covering, Staffing, and Cutting Stock Problems 
Covering, staffing, and cutting stock problems are complementary (in the jargon, they are called dual) 

to product mix problems in that their form is “Minimize cost subject to greater-than-or-equal-to 

constraints”. The variables in this case might correspond to the number of people hired for various shifts 

during the day. The constraints arise from the fact that the mix of variables chosen must “cover” the 

requirements during each hour of the day. 

4.3.3 Blending Problems 
Blending problems arise in the food, feed, metals, and oil refining industries. The problem is to mix or 

blend a collection of raw materials (e.g., different types of meats, cereal grains, or crude oils) into a 

finished product (e.g., sausage, dog food, or gasoline). The cost per unit of the finished product is 

minimized and it is subject to satisfying certain quality constraints (e.g., percent protein  15 percent). 

4.3.4 Multiperiod Planning Problems 
Multiperiod planning problems constitute perhaps the most important class of models. These models 

take into account the fact that the decisions made in this period partially determine which decisions are 



The Model Formulation Process  Chapter 4    51  

allowable in future periods. The submodel used each period may be a product mix problem, a blending 

problem, or some other type. These submodels are usually tied together by means of inventory variables 

(e.g., the inventory of raw materials, finished goods, cash, or loans outstanding) that are carried from 

one period to the next. 

4.3.5 Network, Distribution, and PERT/CPM Models 
Network LP models warrant special attention for two reasons: (a) they have a particularly simple form, 

which makes them easy to describe as a graph or network, and (b) specialized and efficient solution 

procedures exist for solving them. They, therefore, tend to be easier to explain and comprehend. Network 

LPs frequently arise from problems of product distribution. Any enterprise producing a product at 

several locations and distributing it to many customers may find a network LP relevant. Large problems 

of this type may be solved rapidly by the specialized procedures. 

 One of the simplest network problems is finding the shortest route from one point in a network to 

another. A slight variation on this problem, finding the longest route, happens to be an important 

component of the project management tools PERT (Program Evaluation and Review Technique) and 

CPM (Critical Path Method). 

 Close cousins of network models are input/output and vertically integrated models. General Motors, 

for example, makes engines in certain plants. These engines might be sold directly to customers, such 

as industrial equipment manufacturers, or the engines may be used in GM’s own cars and trucks. Such 

a company is said to be vertically integrated. In a vertically integrated model, there is usually one 

constraint for each type of intermediate product. The constraint mathematically enforces the basic law 

of physics that the amount used of an intermediate product by various processes cannot exceed the 

amount of this product produced by other processes. There is usually one decision variable for each type 

of process available. 

 If one expands one’s perspective to the entire economy, then the models considered tend to be 

similar to the input/output model popularized by Wassily Leontief (1951). Each industry is described by 

the input products required and the output products produced. These outputs may in turn be inputs to 

other industries. The problem is to determine appropriate levels at which each industry should be 

operated in order to satisfy specific consumption requirements. 

4.3.6 Multiperiod Planning Problems with Random Elements 
One of the fundamental assumptions of optimization models is that all input data are known with 

certainty. There are situations, however, where certain key data are highly random. For example, when 

an oil company makes its fuel oil production decisions for the coming winter, the demand for that fuel 

oil is very much a random variable. If, however, the distribution probabilities for all the random variables 

are known, then there is a modeling technique for converting a problem that is an optimization model, 

except for the random elements, into an equivalent, although possibly larger, deterministic optimization 

model. Such models are sometimes called stochastic programs. 

4.3.7 Financial Portfolio Models 
An important application of optimization in the last ten years has been in the design of financial 

investment portfolios. In its simplest form, it is concerned with how much to invest in a collection of 

risky investments, so that a good compromise is struck between a high expected return and a low risk. 

More complicated applications of this idea are concerned with investing so as to track some popular 

financial index, such as the S&P 500. 
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4.3.8 Game Theory Models 
Game theory is concerned with the analysis of competitive situations. In its simplest form, a game 

consists of two players, each of whom has available to them a set of possible decisions. Each player 

must choose a strategy for making a decision in ignorance of the other player’s choice. Some time after 

a decision is made, each player receives a payoff that depends on which combination of decisions was 

made. The problem of determining each player’s optimal strategy can be formulated as a linear program. 

 Not all problems you encounter will fit into one of the above categories. Many problems will be 

combinations of the above types. For example, in a multiperiod planning problem, the single period 

subproblems may be product mix or blending problems. 

4.4 Constructive Approach to Model Formulation 
The constructive approach is a set of guidelines for constructing a model from the ground up. This 

approach requires somewhat more analytical skill, but the rules apply to any situation you are trying to 

model. The odds are low you will find a template model that exactly matches your real situation. In 

practice, a combination of these two approaches is needed. 

 For the constructive approach, we suggest the following three-step approach for constructing a 

model, which, with apologies to Sam Savage, might be called the ABC’s of modeling: 

A. Identify and define the decision variables or Adjustable cells. Defining a decision variable 

includes specifying the units in which it is measured (e.g., tons, hours, etc.). One way of 

trying to deduce the decision variables is to ask the question: What should be the format 

of a report that gives a solution to this problem? (For example, the numbers that constitute 

an answer are: the amount to produce of each product and the amount to use of each 

ingredient.) The cells in this report are the decision variables. 

B. Define how we measure Best. More officially, define our objective or criterion function, 

including the units in which it is measured. Among useable or feasible solutions, how 

would preference/goodness (e.g., profit) be measured? 

C. Specify the Constraints, including the units in which each is measured. A way to think 

about constraints is as follows: Given a purported solution to a problem, what numeric 

checks would you perform to check the validity of the solution? 

 The majority of the constraints in most problems can be thought of as sources-equals-uses 

constraints. Another common kind of constraint is the definitional or accounting constraint. Sometimes 

the distinction between the two is arbitrary. Consider a production setting where we: i) start with some 

beginning inventory of some commodity, ii) produce some of that commodity, iii) sell some of the 

commodity, and iv) leave some of the commodity in ending inventory. From the sources-equals-uses 

perspective, we might write: 

beginning inventory + production = sales + ending inventory. 

 From the definitional perspective, if we were thinking of how ending inventory is defined, we would 

write: 

ending inventory = (beginning inventory + production) − sales. 

The two perspectives are in fact mathematically equivalent. 

 For any application, it is useful to do each of the above in words first. In order to illustrate these 

ideas, consider the situation in the following example. 
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4.4.1 Example 
Deglo Toys has been manufacturing a line of precision building blocks for children for a number of 

years. Deglo is faced with a standard end-of-the-year problem known as the build-out problem. It is 

about to introduce a new line of glow-in-the-dark building blocks. Thus, they would like to deplete their 

old-technology inventories before introducing the new line. The old inventories consist of 19,900 

4-dimple blocks and 29,700 8-dimple blocks. These inventories can be sold off in the form of two 

different kits: the Master Builder and the Empire Builder. The objective is to maximize the revenue from 

the sale of these two kits. The Master kit sells for $16.95, and the Empire kit sells for $24.95. The Master 

kit is composed of 30 4-dimple blocks plus 40 8-dimple blocks. The Empire kit is composed of 40 

4-dimple blocks plus 85 8-dimple blocks. What is an appropriate model of this problem? 

4.4.2 Formulating Our Example Problem 
The process for our example problem would be as follows: 

a) The essential decision variables are: 

M = number of master builder kits to assemble and 

E = number of empire builder kits to assemble. 

b) The objective function is to maximize sales revenue (i.e., Maximize 16.95 M + 24.95E). 

c) If someone gave us a proposed solution (i.e., values for M and E), we would check its 

feasibility by checking that: 

i. the number of 4-dimple blocks used  19,900 and 

ii. the number of 8-dimple blocks used  29,700. 

Symbolically, or algebraically, this is: 

30M + 40E  19,900 

40M + 85E  29,700 

In LINGO form, the formulation is: 

MAX = 16.95 * M + 24.95 * E; 

         30 * M    + 40 * E <= 19900; 

         40 * M    + 85 * E <= 29700; 

with solution: 

Optimal solution found at step:         0 

Objective value:                 11478.50 

Variable           Value        Reduced Cost 

       M        530.0000           0.0000000 

       E        100.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        11478.50            1.000000 

       2       0.0000000           0.4660526 

       3       0.0000000           0.7421052E-01 

Thus, we should produce 530 Master Builders and 100 Empire Builders. 
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4.5 Choosing Costs Correctly 
Choosing costs and profit contribution coefficients in the objective requires some care. In many firms, 

cost data may not be available at the detailed level required in an optimization model. If available, the 

“official” cost coefficients may be inappropriate for the application at hand.  

 The basic rule is fairly simple: The cost coefficient of a variable should be the rate of change of the 

total cost as the variable changes. We will discuss the various temptations to violate this rule. The two 

major temptations are sunk costs and joint costs. 

4.5.1 Sunk vs. Variable Costs 
A sunk cost is a cost that has already been incurred or committed to, although not necessarily paid. A 

variable cost is a cost that varies with some activity level. Sunk costs should not appear in any coefficient 

of a decision variable. Whether a cost is sunk or variable depends closely upon the length of our planning 

horizon. A general rule is that: In the short run, all costs are sunk, while all costs are variable in the long 

run. The following example illustrates. 

Sunk and Variable Cost Example 

A firm prepared a profit contribution table for two of its products, X and Y:  

Product:   X_    Y_   

Selling price/unit $1000 $1000 

Material cost/unit $200 $300 

Labor cost/unit $495 $300 

Net Profit contribution $305 $400 

 These two products use a common assembly facility that has a daily capacity of 80 units. Product 

specific production facilities limit the daily production of X to 40 units and Y to 60 units. The hourly 

wage in the company is $15/ hour for all labor. The obvious model is: 

Max = 305 * X + 400 * Y; 

            X           <= 40; 

                      Y <= 60; 

            X       + Y <= 80; 

 The solution is to produce 60 Y’s and 20 X’s. At $15 per hour, the total labor required by this solution 

is 20  495/15 + 60  300/15 = 1860 hours per day. 

 Now, let us consider some possible additional details or variations of the above situation. Some 

firms, such as some automobile manufacturers, have had labor contracts that effectively guarantee a job 

to a fixed number of employees during the term of the contract (e.g., one year). If the above model is 

being used to decide how many employees to hire and commit to before signing the contract, then the 

$15/hour used above is perhaps appropriate, although it may be too low. In the U.S., the employer also 

must pay Social Security and Medicare taxes that add close to 8% to the labor bill. In addition, the 

employer typically also covers the cost of supplemental health insurance for the employee, so the cost 

of labor is probably closer to $20 per hour rather than $15.  
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 Once the contract is signed, however, the labor costs then become sunk, but we now have a 

constraint that we can use at most 1860 hours of labor per day. The variable profit contributions are now: 

Product:   X_   Y_ 

Selling price/unit $1000 $1000 

Material cost/unit $200 $300 

Net Profit contribution $800 $700 

 Now, X is the more profitable product. Before we jump to the conclusion that we should now 

produce 40 X’s and 40 Y’s, we must recall that labor capacity is now fixed. The proper, short term, model 

is now: 

MAX = 800 * X + 700 * Y; 

            X           <= 40; 

                      Y <= 60; 

            X       + Y <= 80;          

       33 * X +  20 * Y <= 1860; 

with solution: 

Optimal solution found at step:         1 

Objective value:                 58000.00 

Variable           Value        Reduced Cost 

       X        20.00000           0.0000000 

       Y        60.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        58000.00            1.000000 

       2        20.00000           0.0000000 

       3       0.0000000            215.1515 

       4       0.0000000           0.0000000 

       5       0.0000000            24.24242 

Therefore, we still produce the same mix of products. 

 Now, suppose in order to be competitive, the selling price of X must be dropped by $350 to $650. 

Also, we still have our labor contract that says we may use up to and must pay for all of 1860 hours of 

labor per day. The correct model is:  

Max = 450 * X + 700 * Y; 

            X           <= 40; 

                      Y <= 60; 

            X       + Y <= 80; 

       33 * X +  20 * Y <= 1860; 

with still the same solution of X = 20 and Y = 60. If we (incorrectly) charge for labor, however, the model 

is:  

Max = - 45 * X + 400 * Y; 

             X           <= 40; 

                       Y <= 60; 

             X       + Y <= 80; 

        33 * X +  20 * Y <= 1860; 

and we would incorrectly conclude that X should not be produced. 
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 There are many planning situations similar to the above. For example, an airline or a trucking firm 

may use essentially the same model for long-range fleet sizing decisions as for daily fleet routing 

decision. When solving the long-term fleet sizing decision, the cost of capital should be included in the 

daily cost of having a vehicle. On the other hand, when making short-run routing decisions, the cost of 

capital should not be included in the daily cost of a vehicle. However, the number of vehicles used is 

constrained to be no greater than the fleet size chosen in the long-term plan. Only operating costs that 

vary with the amount of usage of the vehicle should be included when solving the short-term model. 

4.5.2 Joint Products 
We say we have joint products or byproducts if a single process produces several products. The key 

feature is that, if you run the process in question, you unavoidably get some amount of each of the joint 

products. Some examples are: 

Process Joint Products 

Crude oil distillation gasoline, oil, kerosene, tar 

Raw milk processing whole milk, skim milk, 2%, cream, yogurt 

Meat processing light meat, dark meat, steak, chuck roast 

Semi-conductor manufacturing high speed chips, low speed chips 

Mining of precious metal ore gold, silver, copper 

Sales calls sales of various products in product line 

 There is a temptation, perhaps even a requirement by taxing authorities, that the cost of the joint 

process be fully allocated to the output products. The important point is that, for decision-making 

purposes, this allocation serves no purpose. It should be avoided. The proper way to model a joint 

product process is to have a separate decision variable for each output product, and a decision variable 

for the joint production process. Costs and revenues should be applied to their associated decision 

variables (e.g., the cost of distillation should be associated with the decision variable of how much crude 

to distill). The fact that, if you want to produce gasoline, then you must incur the cost of distillation is 

taken care of by the constraints. Let us illustrate with an example. 

Joint Cost Example 

The Chartreuse Company (CC) raises pumpkins. It costs $800 to plant, harvest and sort a ton of raw 

pumpkins. CC has capacity to plant and harvest 150 tons of pumpkins. In spite of CC’s best efforts at 

genetic engineering, harvested pumpkins fall equally into three classes of pumpkins of increasing 

quality: Good, Premium, and Exquisite. Once sorted, it costs $100 per ton to get each of the classes 

ready for market. Alternatively, pumpkins from any class can be discarded at zero additional cost. Prices 

have dropped recently, so there is concern about whether it is profitable to sell all grades of pumpkins. 

Current selling prices per ton for the three grades are: $700, $1100, and $2200. How much should be 

processed and sold of each grade?  

 A proper model is: 

MAX = ( 700 - 100)* G + (1100 - 100) * P + (2200 -  

      100)* E - 800 * R; 

R <= 150; 

G <= .3333333 * R; 

P <= .3333333 * R; 

E <= .3333333 * R; 
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With solution: 

Optimal solution found at step:         0 

Objective value:                 65000.0 

Variable           Value        Reduced Cost 

       G        50.00000           0.0000000 

       P        50.00000           0.0000000 

       E        50.00000           0.0000000 

       R        150.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        65000.00            1.000000 

       2       0.0000000            433.3333 

       3       0.0000000            600.0000 

       4       0.0000000            1000.000 

       5       0.0000000            2100.000 

 There is a temptation to allocate the cost of planting, harvesting and sorting, over all three grades to 

get the model: 

MAX = ( 700 – 100 – 2400/3) * G + (1100 – 100 –  

      2400/3) * P + (2200 - 100 – 2400/3) * E ; 

G <= .333333 * 150; 

P <= .333333 * 150; 

E <= .333333 * 150; 

 Given their (apparent) negative profit contribution in the above model, good pumpkins will not be 

produced. If we then allocate the planting, harvesting, and sorting costs over just P and E, we get: 

MAX = (1100 – 100 – 2400/2) * P + (2200 - 100 –  

      2400/2) * E; 

G <= .333333 * 150; 

P <= .333333 * 150; 

E <= .333333 * 150; 

 Now, of course, Premium grade is not worth producing. This leaves the Exquisite grade to carry the 

full cost of planting, harvesting, and sorting, and then we see it is not worth producing. Thus, even 

though we started with a profitable enterprise, blind use of allocation of joint costs caused us to quit the 

profitable business. The moral to the story is to not do cost allocation. 

4.5.3 Book Value vs. Market Value 
A common problem in formulating an optimization model for decisionmaking is what cost should be 

attached to product that is used from inventory.  A typical accounting system will carry a book value for 

product in inventory.  The temptation is to use this readily available number as the cost of using product 

from inventory.  For example,  suppose you are a gasoline distributor who bought 10,000 gallons of 

Regular gasoline last month for $2.77 per gallon.  Due to unforeseen events, this month you still have 

5,000 gallons of that Regular gasoline in inventory.  Now the market price for Regular gasoline has 

dropped to $2.70 per gallon,  and you are contemplating your production and market operations for this 

month.  How much should you charge yourself for the use of this Regular in inventory?  One person 

might argue that the purchase is now a sunk cost so we should charge ourselves 0.  Others might argue 

that proper “Accounting”  says we should charge the book value, $2.77/gallon.  Which is it?  The simple 

quick answer is that for decision making purposes,  book value should always be disregarded, except 

when required by law for the calculation of taxes.  Material in inventory should be treated as having zero 
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cost, however, you should completely enumerate all possible options of what you can do with this 

inventory, including selling it on the open market.  

It helps to clarify issues by completing all the details for our little example and explicitly defining 

decision variables for all the possible actions available.  You can buy or sell Regular in unlimited 

amounts this month for $2.70/gallon,  however, it costs you $0.01/gallon in transportation and 

transaction costs for any gasoline you buy to get it onto your property.  Similarly, for any gasoline you 

sell,  there is a transaction cost of $0.02 per gallon.  What can be done with Regular gasoline?  It can 

be sold directly, or it can be blended in equal proportions with Premium gasoline to produce Midgrade 

gasoline.  You have one customer who is willing to pay $2.82/gallon of Midgrade delivered to his door 

for up to 6000 gallons, and a second customer who is willing to pay $2.80/gallon of Midgrade 

delivered to his door for up to 8000 gallons.  Premium gasoline can be purchased in unlimited amounts 

for $2.90/gallon.  What should we do with our Regular gasoline: nothing, sell it back to the market, 

buy some Premium to blend with Regular (perhaps even buying more Regular) to sell to customer 1,  

to customer 2?  Following the ABC’s of optimization, step A is to define our decision variables:  RB = 

gallons of additional Regular gasoline bought on the market this month,  RS = gallons of Regular 

directly sold on the market this month,  PB = gallons of Premium bought,  MS1 = gallons of Midgrade 

sold to customer 1,  and MS2 = gallons of Midgrade sold to customer 2.  Step B, the objective function 

is to maximize revenues minus costs.  Step C is to specify the constraints.  The two main constraints 

are the “Sources EQual Uses” constraints for Regular and Premium.  A formulation is given below.  

Recall that a gallon of Midgrade uses a half gallon of Regular and half gallon of Premium.  To make 

the solution report easier to understand,  we have given a [row name]  to each constraint.  

!Maximize revenues – costs;  

  MAX = (2.70 - .02)*RS + (2.82 - .02)*MS1  + (2.80-.02)*MS2 

      - (2.70 + .01)*RB - (2.90 + .01)*PB; 

!Sources = uses for Regular and Premium; 

 [SEQUR]     5000 + RB = RS + .5*(MS1 + MS2); 

 [SEQUP]     PB =      .5*(MS1 + MS2); 

!Upper limits on amount we can sell; 

 [UL1]            MS1 <= 6000; 

 [UL2]            MS2 <= 8000; 

Notice there is no explicit charge for Regular in inventory.  The book value of  $2.77 appears nowhere 

in the formulation.  Inventory is treated as a sunk cost or free good,  however, we have included the 

option to sell it directly.  Thus,  using Regular to blend Midgrade must compete with simply selling the 

Regular directly at the current market price.  A solution is: 

   Objective value: 13430.00 

     Variable           Value        Reduced Cost 

           RS        2000.000            0.000000 

          MS1        6000.000            0.000000 

          MS2           0.000            0.015000 

           RB           0.000            0.030000 

           PB        3000.000            0.000000 

 

          Row    Slack or Surplus      Dual Price 

            1       13430.000            1.000000 

        SEQUR           0.000           -2.680000 

        SEQUP           0.000           -2.910000 

          UL1           0.000            0.005000 
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          UL2        8000.000            0.000000 

 

Thus, it is more profitable to blend the Regular inventory with Premium to sell it to customer 1 

than to sell it directly to the market,  however,  selling Regular directly back to the market is more 

profitable than selling to customer 2 blended into Midgrade. 

4.6 Common Errors in Formulating Models 
When you develop a first formulation of some real problem, the formulation may contain errors or bugs. 

These errors will fall into the following categories: 

A. Simple typographical errors; 

B. Fundamental errors of formulation; 

C. Errors of approximation. 

 The first two categories of errors are easy to correct once they are identified. In principle, category 

A errors are easy to identify because they are clerical in nature. In a large model, however, tracking them 

down may be a difficult search problem. Category B errors are more fundamental because they involve 

a misunderstanding of either the real problem or the nature of LP models. Category C errors are subtler. 

Generally, a model of a real situation involves some approximation (e.g., many products are aggregated 

together into a single macro-product, the days of a week are lumped together, or costs that are not quite 

proportional to volume are nevertheless treated as linear). Avoiding category C errors requires skill in 

identifying which approximations can be tolerated. 

 With regard to category A errors, if the user is fortunate, category A errors will manifest themselves 

by causing solutions that are obviously incorrect. 

 Errors of formulation are more difficult to discuss because they are of many forms. Doing what we 

call dimensional analysis can frequently expose the kinds of errors made by a novice. Anyone who has 

taken a physics or chemistry course would know it as “checking your units.” Let us illustrate by 

considering an example. 

 A distributor of toys is analyzing his strategy for assembling Tinkertoy sets for the upcoming 

holiday season. He assembles two kinds of sets. The “Big” set is composed of 60 sticks and 30 

connectors, while the “Tot” set is composed of 30 sticks and 20 connectors. An important factor is, for 

this season, he has a supply of only 60,000 connectors and 93,000 sticks. He will be able to sell all that 

he assembles of either set. The profit contributions are $5.5 and $3.5 per set, respectively, for Big and 

Tot. How much should he sell of each set to maximize profit? 

 The distributor developed the following formulation. Define: 

B = number of Big sets to assemble; 

T = number of Tot sets to assemble; 

S = number of sticks actually used; 

C = number of connectors actually used. 

MAX = 5.5 * B + 3.5 * T; 

B - 30 * C - 60 * S  = 0; 

T - 20 * C - 30 * S  = 0; 

         C          <= 60000; 

                  S <= 93000; 
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Notice the first two constraints are equivalent to: 

B = 30C + 60S 

T = 20C + 30S 

Do you agree with the formulation? If so, you should analyze its solution below: 

Optimal solution found at step:         0 

Objective value:                0.5455500E+08 

Variable           Value        Reduced Cost 

       B        7380000.           0.0000000 

       T        3990000.           0.0000000 

       C        60000.00           0.0000000 

       S        93000.00           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.5455500E+08        1.000000 

       2       0.0000000            5.500000 

       3       0.0000000            3.500000 

       4       0.0000000            235.0000 

       5       0.0000000            435.0000 

 There is a hint that the formulation is incorrect because the solution is able to magically produce 

almost four million Tot sets from only 100,000 sticks. 

 The mistake that was made is a very common one for newcomers to LP, namely, trying to describe 

the features of an activity by a constraint. A constraint can always be thought of as a statement that the 

usage of some item must be less-than-or-equal-to the sources of the item. The last two constraints have 

this characteristic, but the first two do not. 

 If one analyzes the dimensions of the components of the first two constraints, one can see there is 

trouble. The dimensions (or “units”) for the first constraint are: 

Term Units 

B Big sets 

30 C 30 [connectors/(Big set)]  connectors 

60 S 60 [sticks/(Big set)]  sticks 

 Clearly, they have different units, but if you are adding items together, they must have the same 

units. It is elementary that you cannot add apples and oranges. The units of all components of a constraint 

must be the same. 

 If one first formulates a problem in words and then converts it to the algebraic form in LINGO, one 

frequently avoids the above kind of error. In words, we wish to: 

Maximize profit contribution 

Subject to:  

Usage of connectors  sources of connectors 

Usage of sticks  sources of sticks 

Converted to algebraic form in LINGO, it is: 

MAX = 5.5 * B + 3.5 * T; 

       30 * B +  20 * T <= 60000; 

       60 * B +  30 * T <= 93000; 
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The units of the components of the constraint 30 B + 20 T  60,000 are: 

Term Units 

30 B 30 [connectors/(Big set)]  (Big set) = 30 connectors 

20 T 20 [connectors/(Tot set)]  (Tot set) = 20 connectors 

60,000 60,000 connectors available 

 Thus, all the terms have the same units of “connectors”. Solving the problem, we obtain the sensible 

solution: 

Optimal solution found at step:         0 

Objective value:                 10550.00 

Variable           Value        Reduced Cost 

       B        200.0000           0.0000000 

       T        2700.000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        10550.00            1.000000 

       2       0.0000000           0.1500000 

       3       0.0000000           0.1666667E-01 

4.7 The Nonsimultaneity Error 
It must be stressed that all the constraints in an LP formulation apply simultaneously. A combination of 

activity levels must be found that simultaneously satisfies all the constraints. The constraints do not 

apply in an either/or fashion, although we might like them to be so interpreted. As an example, suppose 

we denote by B the batch size for a production run of footwear. A reasonable policy might be, if a 

production run is made, at least two dozen units should be made. Thus, B will be either zero or some 

number greater-than-or-equal-to 24. There might be a temptation to state this policy by writing the two 

constraints: 

B  0 

B  24. 

 The desire is that exactly one of these constraints be satisfied. If these two constraints are part of an 

LP formulation, the computer will reject such a formulation with a curt remark to the effect that no 

feasible solution exists. There is no unique value for B that is simultaneously less-than-or-equal-to zero 

and greater-than-or-equal-to 24. 

 If such either/or constraints are important, then one must resort to integer programming. Such 

formulations will be discussed in a later section. 

4.8 Debugging a Model 
LINGO has long had a “Debug” command, see Schrage(1989), that may be helpful in finding 

formulation errors in models that are infeasible or unbounded. Consider the following model. 
               MAX = 2*X + 3*Y; 
      [CON1] 2*X + Y <= 12; 

      [CON2]   X + Y >= 25; 

      [CON3]  X + 3*Y <= 11; 
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If you try to solve the model, it will be reported as infeasible. Typically, an infeasible or unbounded 

model contains one or more errors. For an infeasible model, the Debug command (click on: LINGO | 

Debug) will identify a smallest set of constraints that are infeasible, i.e., cannot all be satisfied. If the 

infeasibility is due to an error,  this set of constraints must contain an error.  The Debug report for the 

above model, if the output level is set to “verbose”, is as follows: 
      

  Constraints and bounds that cause an infeasibility: 
 

  Sufficient Rows: 

  (Dropping any sufficient row will make the model feasible.) 

   [CON2] X + Y >= 25 ; 

 

  Necessary Rows: 

  (If none of the necessary and sufficient rows are dropped, 

   then the model remains infeasible.) 

   [CON1] 2 * X + Y <= 12 ; 

 

 

  Necessary Variable Bounds: 

  (If none of the necessary and sufficient bounds are dropped, 

   then the model remains infeasible.) 

   X >=  0 

 

The report implies that if you drop the constraint X + Y >= 25, then the model will become feasible. 

As long as all of the constraints X+Y >= 25, 2*X + Y <= 12, and X >= 0 are retained, the model will 

remain infeasible. Such a set of constraints is sometimes referred to as an “Irreducible Infeasible Set”, 

or IIS, for short.  For more discussion on infeasibility analysis, see Chinneck(2008). Similar debugging 

analysis is available for unbounded linear programs. 
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4.9 Problems 
1. The Tiny Timber Company wants to utilize best the wood resources in one of its forest regions. 

Within this region, there is a sawmill and a plywood mill. Thus, timber can be converted to lumber 

or plywood. 

 Producing a marketable mix of 1000 board feet of lumber products requires 1000 board feet of 

spruce and 4000 board feet of Douglas fir. Producing 1000 square feet of plywood requires 2000 

board feet of spruce and 4000 board feet of Douglas fir. This region has available 32,000 board feet 

of spruce and 72,000 board feet of Douglas fir. 

 Sales commitments require at least 5000 board feet of lumber and 12,000 square feet of 

plywood be produced during the planning period. The profit contributions are $45 per 1000 board 

feet of lumber products and $60 per 1000 square feet of plywood. Let L be the amount (in 1000 

board feet) of lumber produced and let P be the amount (in 1000 square feet) of plywood produced. 

Express the problem as a linear programming model. 

2.  Shmuzzles, Inc., is a struggling toy company that hopes to make it big this year. It makes three 

fundamental toys: the Shmacrobat, the Shlameleon, and the JigSaw Shmuzzle. Shmuzzles is trying 

to unload its current inventories through airline in-flight magazines by packaging these three toys 

in two different size kits, the Dilettante Shmuzzler kit and the Advanced Shmuzzler kit. It’s $29.95 

for the Dilettante, whereas the Advanced sells for $39.95. The compositions of these two kits are: 

Dilettante = 6 Shmacrobats plus 10 Shlameleons plus 1 Jig Saw 

Advanced = 8 Shmacrobats plus 18 Shlameleons plus 2 Jig Saws 

Current inventory levels are: 6,000 Shmacrobats, 15,000 Shlameleons, and 1,500 JigSaws. 

Formulate a model for helping Shmuzzles, Inc., maximize its profits. 

3. A standard problem encountered by many firms when introducing new products is the "phase-out" 

problem. Given the components for products that are being phased out, the question is: what 

amounts of the phased out products should be built so as to most profitably use the available 

inventory. The following illustrates. The R. R. Bean Company produces, packages, and distributes 

freeze-dried food for the camping and outdoor sportsman market. R. R. Bean is ready to introduce 

a new line of products based on a new drying technology that produces a higher quality, tastier food. 

The basic ingredients of the current (about to be discontinued) line are dried fruit, dried meat and 

dried vegetables. There are two products in the current (to be phased out) line: the "Weekender" and 

the "ExpeditionPak". In its "close-out" catalog, the selling prices of the two products are $3.80 and 

$7.00 per package, respectively. Handling and shipping costs are $1.50 per package for each 

package. It is R. R. Bean's long standing practice to include shipping and handling at no charge. The 

"Weekender" package consists of 3 ounces of dried fruit, 7 ounces of dried meat, and 2 ounces of 

dried vegetables. The makeup of the "ExpeditionPak" package is 5 ounces of dried fruit, 18 ounces 

of dried meat, and 5 ounces of dried vegetables. R. R. Bean would like to deplete, as most profitably 

as possible, its inventories of "old technology" fruit, meat, and vegetables before introducing the 

new line. The current inventories are 10,000 ounces, 25,000 ounces, and 12,000 ounces respectively 

of fruit, meat, and vegetables. The book values of these inventories are $2000, $2500, and $1800. 

Any leftover inventory will be given to the local animal shelter at no cost or benefit to R. R. Bean. 

The prices in the catalog are such that R. R. Bean is confident that it can sell all that it makes of the 

two products. Formulate and solve an LP that should be useful in telling R.R. Bean how many 

“Weekender” and “Expedition Pak” packages should be mixed to maximize profits from its current 

inventories. 
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4. Quart Industries produces a variety of bottled food products at its various plants. At its Americus 

plant, it produces two products, peanut butter and apple butter. There are two scarce resources at 

this plant: packaging capacity and sterilization capacity. Both have a capacity of 40 hours per week. 

Production of 1000 jars of peanut butter requires 4 hours of sterilizer time and 5 hours of packaging 

time, whereas it takes 6 hours of sterilizer time and 4 hours of packaging time to produce 1000 jars 

of apple butter. The profit contributions per 1000 jars for the two products are $1100 and $1300, 

respectively. Apple butter preparation requires a boil-down process best done in batches of at least 

5000 jars. Thus, apple butter production during the week should be either 0, or 5000 or more jars. 

How much should be produced this week of each product? 

5. An important skill in model formulation is the ability to enumerate all alternatives. Scott Wilkerson 

is a scientist-astronaut aboard a seven-day space shuttle mission. In spite of a modest health problem 

that is aggravated by the zero gravity of space, Scott has been allowed on the mission because of 

his scientific skills and because a pharmaceutical company has prepared a set of two types of pills 

for Scott to take each day to alleviate his medical condition. At the beginning of each day Scott is 

to take exactly one type X pill and exactly one type Y pill. If he deviates from this scheme, it will be 

life threatening for him and the shuttle will have to be brought down immediately. On the first day 

of the mission, Scott gets one type X pill out of the X bottle, but in the process of trying to get a pill 

out of the Y bottle, two come out. He grasps for them immediately with the hand that has the X pill 

and now he finds he has three pills in his hand. Unfortunately, the X and Y pills are indistinguishable. 

Both types look exactly like a standard aspirin. There are just enough pills for the full length mission, 

so none can be discarded. What should Scott do? (Hint: this problem would be inappropriate in the 

integer programming chapter.) 

6.   The pharmacy forgot to put labels on 10 of your pill bottles. Of the 10 of them, 9 have pills that 

weigh precisely 5 mg. One of bottles has pills that weigh exactly 5.1 mg.  Your very busy nurse has 

a very precise scale that she is willing to loan to you for just 10 seconds, just enough time to do one 

weighing, no more. What would you weigh to determine which of the bottles has the 5.1 mg pills? 

State all your assumptions. 
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5 
 

The Sets View of the World 
 

In Normal form, each attribute/field of an entity/record should depend on 

the entity key, the whole key, and nothing but the key, so help me Codd. 

-anonymous 

 
5.1 Introduction 
The most powerful feature of LINGO is its ability to model large systems. The key concept that provides 

this power is the idea of a set of similar objects. When you are modeling situations in real life, there will 

typically be one or more groups of similar objects. Examples of such groups might be factories, products, 

time periods, customers, vehicles, employees, etc. LINGO allows you to group similar objects together 

into sets. Once the objects in your model are grouped into sets, you can make single statements in LINGO 

that apply to all members of a set. 

 A LINGO model of a large system will typically have three sections:  1) a SETS section, 2) a DATA 

section, and 3) a model equations section. The SETS section describes the data structures to be used for 

solving a certain class of problems. The DATA section provides the data to “populate” the data 

structures. The model equations section describes the relationships between the various pieces of data 

and our decisions. 

5.1.1 Why Use Sets?  
In most large models, you will need to express a group of several very similar calculations or constraints. 

LINGO’s ability to handle sets allows you to express such formulae or constraints efficiently. 

 For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you 

had to write each constraint explicitly (e.g., “Warehouse 1 can ship no more than its present inventory, 

Warehouse 2 can ship no more than its present inventory, Warehouse 3 can ship no more than its present 

inventory…” and so on). You would prefer to make a single general statement of the form: “Each 

warehouse can ship no more than its present inventory”. 

5.1.2 What Are Sets?  
A set is a group of similar objects. A set might be a list of products, trucks, employees, etc. Each member 

in the set may have one or more characteristics associated with it (e.g., weight, price/unit, or income). 

We call these characteristics attributes. All members of the same set have the same set of attribute types. 

Attribute values can be known in advance or unknowns for which LINGO solves. For example, each 

product in a set of products might have an attribute listing its price. Each truck in a set of trucks might 

have a hauling capacity attribute. In addition, each employee in a set of employees might have an 

attribute specifying salary as well as an attribute listing birth date. 
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5.1.3 Types of Sets 
LINGO recognizes two kinds of sets: primitive and derived. A primitive set is a set composed only of 

objects that can’t be further reduced.  

 A derived set is defined from one or more other sets using two operations: a) selection (of a subset), 

and/or b) Cartesian product (sometimes called a “cross” or a “join”) of two or more other sets. The key 

concept is that a derived set derives its members from other pre-existing sets. For example, we might 

have the two primitive sets: WAREHOUSE and CUSTOMER. We might have the derived set called 

SHIPLINK, which consists of every possible combination of a warehouse and a customer. Although the 

set SHIPLINK is derived solely from primitive sets, it is also possible to build derived sets from other 

derived sets as well.  

5.2 The SETS Section of a Model 
In a set-based LINGO model, the first section in the model is usually the SETS section. A SETS section 

begins with the keyword SETS: (including the colon) and ends with the keyword ENDSETS. A model 

may have no SETS section, a single SETS section, or multiple SETS sections. A SETS section may 

appear almost anywhere in a model. The major restriction is that you must define a set and its attributes 

before they are referenced in the model's constraints. 

5.2.1 Defining Primitive Sets 
To define a primitive set in a SETS section, you specify: 

 the name of the set, and 

 any attributes the members of the set may have. 

A primitive set definition has the following syntax1: 

setname:[attribute_list]; 

 The setname is a name you choose. It should be a descriptive name that is easy to remember. The 

set name must conform to standard LINGO naming conventions: begin with an alphabetic character, 

followed by up to 31 alphanumeric characters or the underscore (_). LINGO does not distinguish 

between upper and lowercase characters in names. 

 An example sets declaration is: 

SETS: 

  WAREHOUSE: CAPACITY; 

ENDSETS 

 This means that we will be working with one or more warehouses. Each one of them has an attribute 

called CAPACITY. Set members may have zero or more attributes specified in the attribute_list of the 

set definition. An attribute is some property each member of the set possesses. Attribute names must 

follow standard naming conventions and be separated by commas. 

 For illustration, suppose our warehouses had additional attributes related to their location and the 

number of loading docks. These additional attributes could be added to the attribute list of the set 

declaration as: 

WAREHOUSE: CAPACITY, LOCATION, DOCKS; 

 
1The use of Square brackets indicates that a particular item is optional. In this particular case, a primitive 

set's member_list and attribute_list are optional. 
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5.2.2 Defining Derived Sets 
To define a derived set, you specify: 

 the name of the set, 

 its parent sets, 

 optionally, any attributes the set members may have. 

A derived set definition has the following syntax: 

set_name (parent_set_list) [membership_filter] [: attribute_list]; 

 The set_name is a standard LINGO name you choose to name the set. The optional 

membership_filter may place a general condition on membership in the set. 

 The parent_set_list is a list of previously defined sets, separated by commas. LINGO constructs all 

the combinations of members from each of the parent sets to create the members of the derived set. As 

an example, consider the following SETS section: 

SETS: 

   PRODUCT ; 

   MACHINE ; 

   WEEK; 

   ALLOWED( PRODUCT, MACHINE, WEEK): VOLUME; 

ENDSETS 

 Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from parent 

sets PRODUCT, MACHINE, and WEEK. Unless specified otherwise, the set ALLOWED will have one 

member for every combination of PRODUCT, MACHINE, and WEEK. The attribute VOLUME might 

be used to specify how much of each product is produced on each machine in each week. A derived set 

that contains all possible combinations of members is referred to as being a dense set. When a set 

declaration includes a membership_filter or if the members of the derived set are given explicitly in a 

DATA section, then we say the set is sparse. 

 Summarizing, a derived set's members may be constructed by either:  

 an explicit member list in a DATA section, 

 a membership filter, or 

 implicitly dense by saying nothing about the membership of the derived set.  

Specification of an explicit membership list for a derived set in a DATA section will be illustrated in the 

next section of the text. 

 If you have a large, sparse set, explicitly listing all members can become cumbersome. Fortunately, 

in many sparse sets, the members all satisfy some condition that differentiates them from the 

non-members. If you can specify this condition, you can save yourself a lot of typing. This is exactly 

how the membership filter method works. Using the membership filter method of defining a derived 

set's member_list involves specifying a logical condition that each potential set member must satisfy for 

inclusion in the set. You can look at the logical condition as a filter that filters out potential members 

who don't measure up to some criteria. 
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 As an example of a membership filter, suppose you have already defined a set called TRUCKS and 

each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that 

contains only those trucks capable of hauling big loads. You could use an explicit member list and 

explicitly enter each of the trucks that can carry heavy loads. However, why do all that work when you 

could use a membership filter as follows: 

HEAVY_DUTY( TRUCKS) | CAPACITY( &1) #GT# 50000; 

 We have named the set HEAVY_DUTY and have derived it from the parent set TRUCKS. The 

vertical bar character (|) is used to mark the beginning of a membership filter. The membership filter 

allows only those trucks that have a hauling capacity (CAPACITY( &1)) greater than (#GT#) 50,000 into 

the HEAVY_DUTY set. The &1 symbol in the filter is known as a set index placeholder. When building 

a derived set that uses a membership filter, LINGO generates all the combinations of parent set members. 

Each combination is then "plugged" into the membership condition to see if it passes the test. The first 

parent set's value is plugged into &1, the second into &2, and so on. In this example, we have only one 

parent set (TRUCKS), so &2 would not have made sense. The symbol #GT# is a logical operator and 

means "greater than". Other logical operators recognized by LINGO include: 

 #EQ# equal 

 #NE# not equal 

 #GE# greater-than-or-equal-to 

 #LT# less than 

 #LE# less-than-or-equal-to 

5.2.3 Summary 
LINGO recognizes two types of sets - primitive and derived. Primitive sets are the fundamental objects 

in a model and can't be broken down into smaller components. Derived sets, on the other hand, are 

created from other component sets. These component sets are referred to as the parents of the derived 

set and may be either primitive or derived.  

 A derived set can be either sparse or dense. Dense sets contain all combinations of the parent set 

members (sometimes this is also referred to as the Cartesian product or cross of the parent sets). Sparse 

sets contain only a subset of the cross of the parent sets. These may be defined by two methods - explicit 

listing or membership filter. The explicit listing method involves listing the members of the sparse set 

in a DATA section. The membership filter method allows you to specify the sparse set members 

compactly using a logical condition, which all members must satisfy. The relationships amongst the 

various set types are illustrated in Figure 5.1 below. 
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Figure 5.1 Types of Sets 

 

5.3 The DATA Section 
A SETS section describes the structure of the data for a particular class of problems. A DATA section 

provides the data to create a specific instance of this class of problems. The DATA section allows you 

to isolate things that are likely to change from week to week. This is a useful practice in that it leads to 

easier model maintenance and makes a model easier to scale up or down in dimension. 

 We find it useful to partition a LINGO model of a large system into three distinct sections: a) the 

SETS section, b) the DATA section, and c) the model equations section. The developer of a model has 

to understand all three sections. However, if the developer has done a good job of partitioning the model 

into the aforementioned sections, the day-to-day user may only need to be familiar with the DATA 

section. 

 Similar to the SETS section, the DATA section begins with the keyword DATA: (including the 

colon) and ends with the keyword ENDDATA. In the DATA section, you place statements to initialize 

either the attributes of the member of a set you defined in a SETS section or even the set members. These 

expressions have the syntax: 

attribute_list = value_list; 

or 

              set_name = member_list; 
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 The attribute_list contains the names of the attributes you want to initialize, optionally separated by 

commas. If there is more than one attribute name on the left-hand side of the statement, then all attributes 

must be associated with the same set. The value_list contains the values you want to assign to the 

attributes in the attribute_list, optionally separated by commas. Consider the following example: 

SETS: 

   SET1: X, Y; 

ENDSETS 

DATA: 

  SET1 = M1, M2, M3; 

     X =  1   2   3; 

     Y =  4   5   6; 

ENDDATA 

 We have two attributes, X and Y, defined on the set SET1. The three values of X are set to 1, 2, and 

3, while Y is set to 4, 5, and 6. We could have also used the following compound data statement to the 

same end: 

SETS: 

   SET1: X, Y; 

ENDSETS 

DATA: 

  SET1  X  Y = 

   M1   1  4 

   M2   2  5 

   M3   3  6; 

ENDDATA 

 Looking at this example, you might imagine X would be assigned the values 1, 4, and 2, since they 

are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data statement's 

value list, it assigns the first n values to the first position of each of the n attributes in the attribute list, 

the second n values to the second position of each of the n attributes, and so on. In other words, LINGO 

is expecting the input data in column form rather than row form.  

 The DATA section can also be used for specifying members of a derived set. The following 

illustrates both how to specify set membership in a DATA section and how to specify a sparse derived 

set. This example also specifies values for the VOLUME attribute, although that is not required: 

SETS: 

   PRODUCT ; 

   MACHINE ; 

   WEEK ; 

   ALLOWED( PRODUCT, MACHINE, WEEK): VOLUME; 

ENDSETS 

DATA: 

   PRODUCT = A  B; 

   MACHINE = M  N; 

   WEEK = 1..2; 

   ALLOWED, VOLUME = 

     A M 1   20.5 

     A N 2   31.3 

     B N 1   15.8; 

ENDDATA 
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The ALLOWED set does not have the full complement of eight members. Instead, ALLOWED is just the 

three member sparse set:  

(A,M,1), (A,N,2), and (B,N,1).  

LINGO recognizes a number of standard sets. For example, if you declare in a DATA section: 

  PRODUCT = 1..5; 

then the members of the PRODUCT set will in fact be 1, 2, 3, 4, and 5. If you declare: 

    PERIOD = Feb..May; 

then the members of the PERIOD set will in fact be Feb, Mar, Apr, and May. Other examples of inferred 

sets include mon..sun and thing1..thing12. 

 If an attribute is not referenced in a DATA section, then it is by default a decision variable. LINGO 

may set such an attribute to whatever value is consistent with the statements in the model equations 

section. 

 This section gave you a brief introduction to the use of the DATA section. Data do not have to 

actually reside in the DATA section as shown in these examples. In fact, a DATA section can have OLE 

links to Excel, ODBC links to databases, and connections to other spreadsheet and text based data files. 

Examples are given later in this chapter. 

 Note, when LINGO constructs the derived set, it is the right-most parent set that is incremented the 

fastest. 

5.4 Set Looping Functions 
In the model equations section of a model, we state the relationships among various attributes. Any 

statements not in a SETS or DATA section are by default in the model equations section. The power of 

set based modeling comes from the ability to apply an operation to all members of a set using a single 

statement. The functions in LINGO that allow you to do this are called set looping functions. If your 

models do not make use of one or more set looping functions, you are missing out on the power of set 

based modeling and, even worse, you're probably working too hard! 

 Set looping functions allow you to iterate through all the members of a set to perform some 

operation. There are four set looping functions in LINGO. The names of the functions and their uses are: 

Function Function's Use 

@FOR Used to generate constraints over members of a set. 

@SUM Computes the sum of an expression over all members of 

a set. 

@MIN Computes the minimum of an expression over all 

members of a set. 

@MAX Computes the maximum of an expression over all 

members of a set. 

The syntax for a set looping function is: 

@loop_function ( setname [ ( set_index_list) 

   [ | conditional_qualifier]] : expression_list); 

 The @loop_function symbol corresponds to one of the four set looping functions listed in the table 

above. The setname is the name of the set over which you want to loop. The set_index_list is optional 
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and is used to create a list of indices each of which correspond to one of the parent, primitive sets that 

form the set specified by setname. As LINGO loops through the members of the set setname, it will set 

the values of the indices in the set_index_list to correspond to the current member of the set setname. 

The conditional_qualifier is an optional filter and may be used to limit the scope of the set looping 

function. When LINGO is looping over each member of setname, it evaluates the conditional_qualifier. 

If the conditional_qualifier evaluates to true, then the expression_list of the @loop_function is 

performed for the set member. Otherwise, it is skipped. The expression_list is a list of expressions to be 

applied to each member of the set setname. When using the @FOR function, the expression list may 

contain multiple expressions that are separated by semicolons. These expressions will be added as 

constraints to the model. When using the remaining three set looping functions (@SUM, @MAX, and 

@MIN), the expression list must contain only one expression. If the set_index_list is omitted, all 

attributes referenced in the expression_list must be defined on the set setname.  

5.4.1 @SUM Set Looping Function 
In this example, we will construct several summation expressions using the @SUM function in order to 

illustrate the features of set looping functions in general and the @SUM function in particular.  

 Consider the model: 

SETS: 

   SET_A : X; 

ENDSETS 

DATA: 

   SET_A = A1 A2 A3 A4 A5; 

       X = 5  1  3  4  6; 

ENDDATA 

X_SUM = @SUM( SET_A( J): X( J)); 

 LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO 

then begins looping over the members in SET_A. You can think of J as a pronoun.  The index variable 

J is first set to the first member of SET_A (i.e., A1) and X( A1) is then added to the accumulator. Then J 

is set to the second element and this process continues until all values of X have been added to the 

accumulator. The value of the sum is then stored into the variable X_SUM. 

 Since all the attributes in our expression list (in this case, only X appears in the expression list) are 

defined on the index set (SET_A), we could have alternatively written our sum as: 

X_SUM = @SUM( SET_A: X); 

 In this case, we have dropped the superfluous index set list and the index on X. When an expression 

uses this shorthand, we say the index list is implied. Implied index lists are not allowed when attributes 

in the expression list have different parent sets.  

 Next, suppose we want to sum the first three elements of the attribute X. We can use a conditional 

qualifier on the set index to accomplish this as follows: 

X3_SUM = @SUM( SET_A( J) | J #LE# 3: X( J)); 

 The #LE# symbol is called a logical operator. This operator compares the operand on the left (J) 

with the one on the right (3) and returns true if the left operand is less-than-or-equal-to the one on the 

right. Otherwise, it returns false. Therefore, this time, when LINGO computes the sum, it plugs the set 

index variable J into the conditional qualifier J #LE# 3. If the conditional qualifier evaluates to true, 

X( J) will be added to the sum. The end result is that LINGO sums up the first three terms in X, omitting 

the fourth and fifth terms, for a total sum of 9. 
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 Before leaving this example, one subtle aspect to note in this last sum expression is the value that 

the set index J is returning. Note we are comparing the set index variable to the quantity 3 in the 

conditional qualifier J #LE# 3. In order for this to be meaningful, J must represent a numeric value. 

Since a set index is used to loop over set members, one might imagine a set index is merely a placeholder 

for the current set member. In a sense, this is true. However, what set indexes really return is the index 

of the current set member in its parent primitive set. The index returned is one-based. In other words, 

the value 1 is returned when indexing the first set member, 2 when indexing the second, and so on. Given 

that set indices return a numeric value, they may be used in arithmetic expressions along with other 

variables in your model. 

5.4.2 @MIN and @MAX Set Looping Functions 
The @MIN and @MAX functions are used to find the minimum and maximum of an expression over 

members of a set. Again, consider the model: 

SETS: 

   SET_A : X; 

ENDSETS 

DATA: 

  SET_A = A1 A2 A3 A4 A5; 

      X = 5  1  3  4  6; 

ENDDATA 

To find the minimum and maximum values of X, all one need do is add the two expressions: 

THE_MIN_OF_X = @MIN( SET_A( J): X( J)); 

THE_MAX_OF_X = @MAX( SET_A( J): X( J)); 

 As with the @SUM example above, we can use an implied index list since the attributes are defined 

on the index set. Using implied indexing, we can recast our expressions as: 

THE_MIN_OF_X = @MIN( SET_A: X); 

THE_MAX_OF_X = @MAX( SET_A: X); 

 In either case, when we solve this model, LINGO returns the expected minimum and maximum 

values of X: 

    Variable        Value 

THE_MIN_OF_X     1.000000 

THE_MAX_OF_X     6.000000 

 For illustration purposes, suppose we had just wanted to compute the minimum and maximum 

values of the first three elements of X. As with the @SUM example, all we need do is add the conditional 

qualifier J #LE# 3. We then have: 

THE_MIN_OF_X_3 = @MIN( SET_A( J) | J #LE# 3: X( J)); 

THE_MAX_OF_X_3 = @MAX( SET_A( J) | J #LE# 3: X( J)); 

with solution: 

      Variable       Value 

THE_MIN_OF_X_3    1.000000 

THE_MAX_OF_X_3    5.000000 
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5.4.3 @FOR Set Looping Function 
The @FOR function is used to generate constraints across members of a set. Whereas scalar based 

modeling languages require you to explicitly enter each constraint, the @FOR function allows you to 

enter a constraint just once and LINGO does the work of generating an occurrence of the constraint for 

each of the set members. As such, the @FOR statement provides the set based modeler with a very 

powerful tool. 

 To illustrate the use of @FOR, consider the following: 

SETS: 

   TRUCKS : HAUL; 

ENDSETS 

DATA: 

   TRUCKS = MAC, PETERBILT, FORD, DODGE; 

ENDDATA 

 Specifically, we have a primitive set of four trucks with a single attribute titled HAUL. If the attribute 

HAUL is used to denote the amount a truck hauls, then we can use the @FOR function to limit the 

amount hauled by each truck to 2,500 pounds with the following expression: 

@FOR( TRUCKS( T): HAUL( T) <= 2500); 

 In this case, it might be instructive to view the constraints that LINGO generates from our 

expression. You can do this by using the LINGO | Generate command under Windows or by using the 

GENERATE command on other platforms. Running this command, we find that LINGO generates the 

following four constraints: 

      HAUL( MAC) <=   2500; 

HAUL( PETERBILT) <=   2500; 

     HAUL( FORD) <=   2500; 

    HAUL( DODGE) <=   2500; 

 As we anticipated, LINGO generated one constraint for each truck in the set to limit them to a load 

of 2,500 pounds. 

 Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any five 

numbers placed into the GPM attribute: 

SETS: 

   OBJECT: GPM, MPG; 

ENDSETS 

DATA: 

   OBJECT =   A     B      C      D      E; 

      GPM = .0303 .03571 .04545 .07142 .10; 

ENDDATA 

   @FOR( OBJECT( I):  

      MPG( I) = 1 / GPM( I) 

       ); 
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Solving this model gives the following values for the reciprocals: 

Variable           Value 

 MPG( A)        33.00330 

 MPG( B)        28.00336 

 MPG( C)        22.00220 

 MPG( D)        14.00168 

 MPG( E)        10.00000 

 Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR 

statement that causes us to skip the reciprocal computation whenever a zero is encountered. The 

following @FOR statement accomplishes this: 

@FOR( OBJECT( I) | GPM( I) #NE# 0: 

   MPG( I) = 1 / GPM( I) 

); 

 The conditional qualifier (listed in bold) tests to determine if the GPM is not equal (#NE#) to zero. 

If so, the computation proceeds. 

 This was just a brief introduction to the use of the @FOR statement. There will be many additional 

examples in the sections to follow. 

5.4.4 Nested Set Looping Functions 
The simple models shown in the previous section use @FOR to loop over a single set. In larger models, 

you may need to loop over a set within another set looping function. When one set looping function is 

used within the scope of another, we call it nesting. LINGO allows nesting.  

 The following is an example of an @SUM loop nested within an @FOR: 

! The demand constraints; 

   @FOR( VENDORS( J):  

     @SUM( WAREHOUSES( I): VOLUME( I, J)) = DEMAND( J); 

       ); 

 Specifically, for each vendor, we sum up the shipments going from all the warehouses to that vendor 

and set the quantity equal to the vendor's demand.  

 @SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on 

the other hand, may only be nested within other @FOR functions. 

5.5 Set Based Modeling Examples 
Recall, four types of sets can be created in LINGO: 

 primitive, 

 dense derived, 

 sparse derived - explicit list, and 

 sparse derived - membership filter. 

 This section will help develop your talents for set based modeling by building and discussing four 

models. Each of these four models will introduce one of the set types listed above. 
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5.5.1 Primitive Set Example  
The following staff scheduling model illustrates the use of a primitive set. This model may be found in 

the SAMPLES subdirectory off the main LINGO directory under the name STAFFDEM.LNG. 

The Problem 

Suppose you run the popular Pluto Dog's hot dog stand that is open seven days a week. You hire 

employees to work a five-day workweek with two consecutive days off. Each employee receives the 

same weekly salary. Some days of the week are busier than others and, based on past experience, you 

know how many workers are required on a given day of the week. In particular, your forecast calls for 

these staffing requirements: 

Day Mon Tue Wed Thu Fri Sat Sun 

Staff Req'd 20 16 13 16 19 14 12 

 You need to determine how many employees to start on each day of the week in order to minimize 

the total number of required employees, while still meeting or exceeding staffing requirements each day 

of the week. 

The Formulation 

The first question to consider when building a set based model is, "What are the relevant sets and their 

attributes?". In this model, we have a single primitive set, the days of the week. We will be concerned 

with two attributes of the DAYS set. The first is the number of staff required on each day. The second is 

the decision variable of the number of staff to start on each day. If we call these attributes REQUIRED 

and START, then we might write the SETS section and DATA sections as: 

SETS: 

  DAYS : REQUIRED, START; 

ENDSETS 

DATA:  

      DAYS = MON TUE WED THU FRI SAT SUN; 

  REQUIRED = 20  16  13  16  19  14  12; 

ENDDATA 

 We are now at the point where we can begin entering the model's mathematical relations (i.e., the 

objective and constraints). Let's begin by writing the objective: minimize the total number of employees 

we start during the week. In standard mathematical notation, we might write: 

Minimize:  START i 

 The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and "@SUM( 

DAYS( I):" for i and we have: 

MIN = @SUM( DAYS( I): START( I)); 

 Now, all that's left is to deduce the constraints. There is only one set of constraints in this model. 

Namely, we must have enough staff on duty each day to meet or exceed staffing requirements. In words, 

what we want is: 

for each day: Staff on duty today  Staff required today,  

i
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 The right-hand side of this expression, Staff required today, is given. It is simply the quantity 

REQUIRED( I). The left-hand side, Staff on duty today takes a little thought. Given that all employees 

are on a five-day on/two day off schedule, the number of employees working today is: 

Number working today = Number starting today +  

Number starting 1 day ago + Number starting 2 days ago + 

Number starting 3 days ago + Number starting 4 days ago. 

 In other words, to compute the number of employees working today, we sum up the number of 

people starting today plus those starting over the previous four days. The employees starting five and 

six days back don't count because they are on their days off. Therefore, using mathematical notation, 

what one might consider doing is adding the constraint: 

i = j - 4, j

 STARTi  REQUIREDj, for j DAYS  

Translating into LINGO notation, we can write this as: 

@FOR( DAYS( J):  

   @SUM( DAYS( I) | I #LE# 5: START( J - I + 1)) 

    >= REQUIRED( J) 

); 

 In words, the LINGO statement says, for each day of the week, the sum of the employees starting 

over the five-day period beginning four days ago and ending today must be greater-than-or-equal-to the 

required number of staff for the day. This sounds correct, but there is a slight problem. If we try to solve 

our model with this constraint, we get the error message: 

 

 To see why we get this error message, consider what happens on Thursday. Thursday has an index 

of 4 in our set DAYS. As written, the staffing constraint for Thursday will be: 

START( 4 - 1 + 1) + START( 4 - 2 + 1) +  

START( 4 - 3 + 1) + START( 4 - 4 + 1) +  

START( 4 - 5 + 1) >= REQUIRED( 4); 

Simplifying, we get: 

START( 4) + START( 3) +  

START( 2) + START( 1) +  

START( 0) >= REQUIRED( 4); 
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 It is the START(0) term that is at the root of our problem. START is defined for days 1 through 7. 

START(0) does not exist. An index of 0 on START is considered "out of range".  

 What we would like to do is to have any indices less-than-or-equal-to 0, wrap around to the end of 

the week. Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a 

function that does just this, and it is called @WRAP.  

 The @WRAP function takes two arguments - call them INDEX and LIMIT. Formally speaking, 

@WRAP returns J such that J = INDEX - K  LIMIT, where K is an integer such that J is in the interval 

[1,LIMIT]. Informally speaking, @WRAP will subtract or add LIMIT to INDEX until it falls in the range 

1 to LIMIT, and, therefore, is just what we need to "wrap around" an index in multi-period planning 

models.  

 Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint: 

@FOR( DAYS( J):  

 @SUM( DAYS( I) | I #LE# 5:  

  START( @WRAP( J - I + 1, 7))) >= REQUIRED( J) 

); 

The Solution 

Below is our staffing model in its entirety: 

SETS: 

  DAYS : REQUIRED, START; 

ENDSETS 

DATA: 

      DAYS = MON TUE WED THU FRI SAT SUN; 

  REQUIRED = 20  16  13  16  19  14  12; 

ENDDATA 

MIN = @SUM( DAYS( I): START( I)); 

@FOR( DAYS( J):  

  @SUM( DAYS( I) | I #LE# 5:  

     START( @WRAP( J - I + 1, 7))) >= REQUIRED( J) 

     ); 

Solving this model, we get the solution report: 

Optimal solution found at step:         8 

Objective value:                 22.00000 

      Variable           Value        Reduced Cost 

REQUIRED( MON)        20.00000           0.0000000 

REQUIRED( TUE)        16.00000           0.0000000 

REQUIRED( WED)        13.00000           0.0000000 

REQUIRED( THU)        16.00000           0.0000000 

REQUIRED( FRI)        19.00000           0.0000000 

REQUIRED( SAT)        14.00000           0.0000000 

REQUIRED( SUN)        12.00000           0.0000000 

   START( MON)         8.00000           0.0000000 

   START( TUE)         2.00000           0.0000000 

   START( WED)         0.00000           0.0000000 

   START( THU)         6.00000           0.0000000 

   START( FRI)         3.00000           0.0000000 

   START( SAT)         3.00000           0.0000000 

   START( SUN)         0.00000           0.0000000 
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           Row    Slack or Surplus      Dual Price 

             1        22.00000            1.000000 

             2       0.0000000          -0.2000000 

             3       0.0000000          -0.2000000 

             4       0.0000000          -0.2000000 

             5       0.0000000          -0.2000000 

             6       0.0000000          -0.2000000 

             7       0.0000000          -0.2000000 

             8       0.0000000          -0.2000000 

The objective value of 22 means we need to hire 22 workers.  

 We start our workers according to the schedule: 

 Mon Tue Wed Thu Fri Sat Sun 

Start 8 2 0 6 3 3 0 

 If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see the slack values 

are 0 on all of the days. This means there are no extra workers on any day.  

5.5.2 Dense Derived Set Example  
The following model illustrates the use of a dense derived set in a blending model. This model may be 

found in the SAMPLES subdirectory off the main LINGO directory under the name CHESS.LNG. 

The Problem 

The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called the 

Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The table 

below lists the number of ounces of the two nuts contained in each pound of each brand and the price at 

which the company can sell a pound of each brand: 

 Pawn Knight Bishop King 

Peanuts (oz.) 15 10   6   2 

Cashews (oz.)   1   6 10 14 

Selling Price ($/lb.)   2   3   4   5 

 Chess has contracts with suppliers to receive per day: 750 pounds of peanuts and 250 pounds of 

cashews. Our problem is to determine the number of pounds of each brand to produce each day to 

maximize total revenue without exceeding the available supply of nuts. 

The Formulation 

 The primitive sets in this model are the nut types and the brands of mixed nuts. The NUTS set has 

the single attribute SUPPLY that is the daily supply of nuts in pounds. The BRANDS set has PRICE and 

PRODUCE attributes, where PRICE stores the selling price of the brands and PRODUCE represents the 

decision variables of how many pounds of each brand to produce each day. 
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 We need one more set, however, in order to input the brand formulas. We need a two dimensional 

table defined on the nut types and the brands. To do this, we will generate a derived set from the cross 

of the NUTS and BRANDS sets. Adding this derived set, we get the complete SETS section: 

SETS: 

   NUTS : SUPPLY; 

   BRANDS : PRICE, PRODUCE; 

   FORMULA( NUTS, BRANDS): OUNCES; 

ENDSETS  

 We have titled the derived set FORMULA, and it has the single attribute OUNCES, which will be 

used to store the ounces of nuts used per pound of each brand. Since we have not specified the members 

of this derived set, LINGO assumes we want the complete, dense set that includes all pairs of nuts and 

brands. 

 Now that our sets are defined, we can move on to building the DATA section. We initialize the 

three attributes SUPPLY, PRICE, and OUNCES in the DATA section as follows: 

DATA: 

    NUTS = PEANUTS, CASHEWS; 

  SUPPLY =   750      250; 

  BRANDS = PAWN, KNIGHT, BISHOP, KING; 

     PRICE =  2      3      4      5; 

    OUNCES = 15     10      6      2  !(Peanuts); 

              1      6     10     14; !(Cashews); 

ENDDATA 

 With the sets and data specified, we can enter our objective function and constraints. The objective 

function of maximizing total revenue is straightforward: 

MAX = @SUM( BRANDS( I): PRICE( I) * PRODUCE( I)); 

 Our model has only one class of constraints. Namely, we can't use more nuts than we are supplied 

with on a daily basis. In words, we would like to ensure that: 

For each nut type i, the number of pounds of nut i used must be less-than-or-equal-to the supply 

of nut i. 

We can express this in LINGO as: 

@FOR( NUTS( I):  

   @SUM( BRANDS( J):  

   OUNCES( I, J) * PRODUCE( J) / 16) <= SUPPLY( I) 

); 

We divide the sum on the left-hand side by 16 to convert from ounces to pounds. 
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The Solution 

Our completed nut-blending model is: 

SETS: 

   NUTS : SUPPLY; 

   BRANDS : PRICE, PRODUCE; 

   FORMULA( NUTS, BRANDS): OUNCES; 

ENDSETS 

DATA: 

    NUTS = PEANUTS, CASHEWS; 

  SUPPLY =   750      250; 

  BRANDS = PAWN, KNIGHT, BISHOP, KING; 

   PRICE =   2      3      4      5; 

   OUNCES = 15     10      6      2  !(Peanuts); 

             1      6     10     14; !(Cashews); 

ENDDATA 

MAX = @SUM( BRANDS( I):  

 PRICE( I) * PRODUCE( I)); 

 @FOR( NUTS( I):  

   @SUM( BRANDS( J):  

     OUNCES( I, J) * PRODUCE(J)/16) <= SUPPLY(I) 

     ); 

An abbreviated solution report to the model follows: 

Optimal solution found at step:         0 

Objective value:                 2692.308 

        Variable         Value   Reduced Cost 

  PRODUCE( PAWN)      769.2308     0.0000000 

PRODUCE( KNIGHT)     0.0000000     0.1538461 

PRODUCE( BISHOP)     0.0000000     0.7692297E-01 

  PRODUCE( KING)      230.7692     0.0000000 

           Row  Slack or Surplus  Dual Price 

             1        2692.308      1.000000 

             2       0.0000000      1.769231 

             3       0.0000000      5.461538 

 This solution tells us Chess should produce 769.2 pounds of the Pawn mix and 230.8 of the King 

for total revenue of $2692.30. The dual prices on the rows indicate Chess should be willing to pay up to 

$1.77 for an extra pound of peanuts and $5.46 for an extra pound of cashews. If, for marketing reasons, 

Chess decides it must produce at least some of the Knight and Bishop mixes, then the reduced cost 

figures tell us revenue will decrease by 15.4 cents with the first pound of Knight produced and revenue 

will decline by 76.9 cents with the first pound of Bishop produced. 

5.5.3 Sparse Derived Set Example - Explicit List 
In this example, we will introduce the use of a sparse derived set with an explicit listing. When using 

this method to define a sparse set, we must explicitly list all members of the set. This will usually be 

some small subset of the dense set resulting from the full Cartesian product of the parent sets. 

 For our example, we will set up a PERT (Program Evaluation and Review Technique) model to 

determine the critical path of tasks in a project involving the roll out of a new product. PERT is a simple, 

but powerful, technique developed in the 1950s to assist managers in tracking the progress of large 

projects. Its first official application was to the fleet submarine ballistic missile project, the so-called 
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Polaris project.  According to Craven(2001),  PERT was given its name by Vice Admiral William F. 

Raborn,  who played a key role in starting the Polaris project.  Raborn had a new bride whose nickname 

was Pert.  In her honor, Raborn directed that the management system that was to monitor the Polaris 

project be called PERT. The Polaris project was completed eighteen months ahead of schedule! Perhaps 

PERT played some role in this success. PERT is particularly useful at identifying the critical activities 

within a project, which, if delayed, will delay the project completion date. These time critical activities 

are referred to as the critical path of a project. Having such insight into the dynamics of a project goes a 

long way in guaranteeing it won't get sidetracked and become delayed. PERT, and a closely related 

technique called CPM (Critical Path Method), continues to be used successfully on a wide range of 

projects. The formulation for this model is included in the SAMPLES subdirectory off the main LINGO 

directory under the name PERTD.LNG. 

The Problem 

Wireless Widgets is about to launch a new product — the Solar Widget. In order to guarantee the launch 

will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the launch. Doing 

so will allow them to identify the critical path of tasks that must be completed on time in order to 

guarantee the Solar Widget's timely introduction. The tasks that must be accomplished before 

introduction and their anticipated times for completion are listed in the table below: 

Task Weeks 

Finalize Design 10 

Forecast Demand 14 

Survey Competition 3 

Set Prices  3 

Schedule Production Run 7 

Cost Out 4 

Train Salesmen 10 

 Certain tasks must be completed before others can commence. These precedence relations are 

shown in Figure 5.2: 

Figure 5.2 Product Launch Precedence Relations 
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 For instance, the two arrows originating from the Forecast Demand node indicate the task must be 

completed before the Schedule Production Run and the Set Prices tasks may be started.  

 Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the 

tasks on the critical path. 

 

The Formulation 

 We will need a primitive set to represent the tasks of the project.  
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We have associated four attributes with the TASKS set. The definitions of the attributes are: 

TIME Time duration to complete the task, given 

ES Earliest possible start time for the task, to be computed, 

LS Latest possible start time for the task, to be computed 

SLACK Difference between LS and ES for the task, to be computed. 

 If a task has a 0 slack, it means the task must start on time or the whole project will be delayed. The 

collection of tasks with 0 slack time constitutes the critical path for the project. 

 In order to compute the start times for the tasks, we will need to examine the precedence relations. 

Thus, we will need to input the precedence relations into the model. The precedence relations can be 

viewed as a list of ordered pairs of tasks. For instance, the fact the DESIGN task must be completed 

before the FORECAST task could be represented as the ordered pair (DESIGN, FORECAST). Creating 

a two-dimensional derived set on the TASKS set will allow us to input the list of precedence relations. 

Therefore, our DATA section will look as follows: 

DATA: 

 TASKS : TIME, ES, LS, SLACK; 

 PRED( TASKS, TASKS); 

 Notice that the PRED set has no attributes. Its purpose is only to provide the information about the 

precedence relationships between tasks.  

 Next, we can input the task times and precedence pairs in the DATA section thus: 

DATA:  

 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN; 

 TIME =   10,      14,      3,      3,      7,       4,       10; 

 PRED = 

    DESIGN, FORECAST, 

    DESIGN, SURVEY, 

    FORECAST, PRICE, 

    FORECAST, SCHEDULE, 

    SURVEY, PRICE, 

    SCHEDULE, COSTOUT, 

    PRICE, TRAIN, 

    COSTOUT, TRAIN; 

ENDDATA 

 Keep in mind that the first member of the PRED set is the ordered pair (DESIGN, FORECAST) 

and not just the single task DESIGN. Therefore, this set has a total of 8 members. Each of which 

corresponds to an arc in the precedence relations diagram. 

 The feature to note from this example is that the set PRED is a sparse derived set with an explicit 

listing of members. The set is a subset derived from the cross of the TASKS set upon itself. The set is 

sparse because it contains only 8 out of a possible 49 members found in the complete cross of TASKS on 

TASKS. The set has an explicit listing because we have included a listing of the members we want 

included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where 

there are thousands of members to select from, but it does make sense whenever set membership 

conditions are not well-defined and the sparse set size is small relative to the dense alternative.  
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 Now, with our sets and data established, we can turn our attention to building the formulas of the 

model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time (SLACK). 

The trick is computing ES and LS. Once we have these times, SLACK is merely the difference of the 

two. Let's start by deriving a formula to compute ES. A task cannot begin until all its predecessor tasks 

are completed. Thus, if we find the latest finishing time of all predecessors to a task, then we have also 

found its earliest start time. Therefore, in words, the earliest start time for task t is equal to the maximum 

of the sum of the earliest start time of the predecessor plus its completion time over all predecessors of 

task t. The corresponding LINGO notation is: 

@FOR( TASKS( J)| J #GT# 1: 

   ES( J) = @MAX( PRED( I, J): ES( I) + TIME( I))); 

 Note, we skip the computation for task 1 by adding the conditional qualifier J #GT# 1. We do this 

because task 1 has no predecessors. We will give the first task an arbitrary start time of 0 below. 

 Computing LS is similar to ES, except we must think backwards. In words, the latest time for task t 

to start is the minimum, over all successor tasks j, of j's latest start minus the time to perform task t. If 

task t starts any later than this, it will force at least one successor to start later than its latest start time. 

Converting into LINGO syntax gives: 

@FOR( TASKS( I)| I #LT# LTASK: 

   LS( I) = @MIN( PRED( I, J): LS( J) - TIME( I))); 

Here, we omit the computation for the last task, since it has no successor tasks. 

 Computing slack time is just the difference between LS and ES and may be written as: 

@FOR( TASKS( I): SLACK( I) = LS( I) - ES( I)); 

 We can set the start time of task 1 to some arbitrary value. For our purposes, we will set it to 0 with 

the statement: 

ES( 1) = 0; 

 We have now input formulas for computing the values of all the variables with the exception of the 

latest start time for the last task. It turns out, if the last project were started any later than its earliest start 

time, the entire project would be delayed. So, by definition, the latest start time for the last project is 

equal to its earliest start time. We can express this in LINGO using the equation: 

LS( 7) = ES( 7); 

 This would work, but it is not a very general way to express the relation. Suppose you were to add 

some tasks to your model. You'd have to change the 7 in this equation to whatever the new number of 

tasks was. The whole idea behind LINGO's set based modeling language is the equations in the model 

should not need changing each time the data change. Expressing the equation in this form violates data 

independence. Here's a better way to do it: 

LTASK = @SIZE( TASKS); 

LS( LTASK) = ES( LTASK); 

 The @SIZE function returns the size of a set. In this case, it will return the value 7, as desired. 

However, if we changed the number of tasks, @SIZE would also return the new, correct value. Thus, we 

preserve the data independence of our model's structure. 
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The Solution 

The entire PERT formulation and portions of its solution appear below: 

SETS: 

   TASKS : TIME, ES, LS, SLACK; 

   PRED( TASKS, TASKS); 

ENDSETS    

DATA:  

 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN; 

 TIME =   10,      14,      3,      3,      7,       4,       10; 

 PRED = 

    DESIGN,FORECAST, 

    DESIGN,SURVEY, 

    FORECAST,PRICE, 

    FORECAST,SCHEDULE, 

    SURVEY,PRICE, 

    SCHEDULE,COSTOUT, 

    PRICE,TRAIN, 

    COSTOUT,TRAIN; 

ENDDATA 

@FOR( TASKS( J)| J #GT# 1: 

   ES( J) = @MAX( PRED( I, J): ES( I) + TIME( I)) 

    ); 

@FOR( TASKS( I)| I #LT# LTASK: 

   LS( I) = @MIN( PRED( I, J): LS( J) - TIME( I)); 

    ); 

@FOR( TASKS( I): SLACK( I) = LS( I) - ES( I)); 

ES( 1) = 0; 

LTASK = @SIZE( TASKS); 

LS( LTASK) = ES( LTASK); 

The interesting part of the solution is: 

        Variable           Value 

           LTASK         7.000000 

     ES( DESIGN)         0.000000 

   ES( FORECAST)        10.000000 

     ES( SURVEY)        10.000000 

      ES( PRICE)        24.000000 

   ES( SCHEDULE)        24.000000 

    ES( COSTOUT)        31.000000 

      ES( TRAIN)        35.000000 

     LS( DESIGN)         0.000000 

   LS( FORECAST)        10.000000 

     LS( SURVEY)        29.000000 

      LS( PRICE)        32.000000 

   LS( SCHEDULE)        24.000000 

    LS( COSTOUT)        31.000000 

      LS( TRAIN)        35.000000 

  SLACK( DESIGN)         0.000000 

SLACK( FORECAST)         0.000000 

  SLACK( SURVEY)        19.000000 

   SLACK( PRICE)         8.000000 

SLACK( SCHEDULE)         0.000000 
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 SLACK( COSTOUT)         0.000000 

   SLACK( TRAIN)         0.000000 

 The interesting values are the slacks for the tasks. SURVEY and PRICE have respective slacks of 19 

and 8. The start time of either SURVEY or PRICE (but not both) may be delayed by as much as these 

slack values without delaying the completion time of the entire project. The tasks DESIGN, FORECAST, 

SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack. These tasks constitute the critical 

path. If any of their start times are delayed, the entire project will be delayed. Management will want to 

pay close attention to these critical path activities to be sure they start on time and complete within the 

allotted time. Finally, the ES( TRAIN) value of 35 tells us the estimated time to the start of the roll out 

of the new Solar Widget will be 45 weeks: 35 weeks to get to the start of training, plus 10 weeks to 

complete training. 

5.5.4 A Sparse Derived Set Using a Membership Filter 
In this example, we introduce the use of a sparse derived set with a membership filter. Using a 

membership filter is the third method for defining a derived set. When you define a set using this method, 

you specify a logical condition each member of the set must satisfy. This condition is used to filter out 

members that don't satisfy the membership condition.  

 For our example, we will formulate a matching problem. In a matching problem, there are N objects 

we want to match into pairs at minimum cost. Sometimes this is known as the roommate selection 

problem. It is a problem faced by a university at the beginning of each school year as incoming first year 

students are assigned to rooms in dormitories. The pair (I,J) is indistinguishable from the pair (J,I). 

Therefore, we arbitrarily require I be less than J in the pair. Formally, we require I and J make a set of 

ordered pairs. In other words, we do not wish to generate redundant ordered pairs of I and J, but only 

those with I less than J. This requirement that I be less than J will form our membership filter.  

 The file containing this model may be found in the SAMPLES subdirectory off the main LINGO 

directory under the name MATCHD.LNG. 

The Problem 

Suppose you manage your company's strategic planning department. There are eight analysts in the 

department. Your department is about to move into a new suite of offices. There are four offices in the 

new suite and you need to match up your analysts into 4 pairs, so each pair can be assigned to one of 

the new offices. Based on past observations you know some of the analysts work better together than 

they do with others. In the interest of departmental peace, you would like to come up with a pairing of 

analysts that results in minimal potential conflicts. To this goal, you have come up with a rating system 

for pairing your analysts. The scale runs from 1 to 10, with a 1 rating for a pair meaning the two get 

along fantastically, whereas all sharp objects should be removed from the pair's office in anticipation 
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of mayhem for a rating of 10. The ratings appear in the following table: 

Analysts 1 2 3 4 5 6 7 8 

1 - 9 3 4 2 1 5 6 

2 - - 1 7 3 5 2 1 

3 - - - 4 4 2 9 2 

4 - - - - 1 5 5 2 

5 - - - - - 8 7 6 

6 - - - - - - 2 3 

7 - - - - - - - 4 

  Analysts' Incompatibility Ratings 

 Since the pairing of analyst I with analyst J is indistinguishable from the pairing of J with I, we have 

only included the above diagonal elements in the table. Our problem is to find the pairings of analysts 

that minimizes the sum of the incompatibility ratings of the paired analysts.  

The Formulation 

The first set of interest in this problem is the set of eight analysts. This primitive set can be written simply 

as:  

ANALYSTS; 

 The final set we want to construct is a set consisting of all the potential pairings. This will be a 

derived set we will build by taking the cross of the ANALYST set. As a first pass, we could build the 

dense derived set: 

PAIRS( ANALYSTS, ANALYSTS); 

 This set, however, would include both PAIRS( I, J) and PAIRS( J, I). Since only one of these pairs 

is required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the 

form PAIRS( I, I). As much as each of the analysts might like an office of their own, such a solution is 

not feasible. The solution is to put a membership filter on our derived set requiring each pair (I,J) in the 

final set to obey the condition J be greater than I. We do this with the set definition: 

PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1; 

 The start of the membership filter is denoted with the vertical bar character (|). The &1 and &2 

symbols in the filter are known as set index placeholders. Set index placeholders are valid only in 

membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross of 

the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if it 

passes the test. Specifically, for each pair (I,J) in the cross of set ANALYSTS on itself, I is substituted 

into the placeholder &1 and J into &2 and the filter is evaluated. If the filter evaluates to true, (I,J) is 

added to the pairs set. Viewed in tabular form, this leaves us with just the above diagonal elements of 

the (I,J) pairing table. 

 We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute that 

corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to indicate if 

analyst I is paired with analyst J. We will call these attributes RATING and MATCH. We append them 

to the PAIRS set definition as follows: 

PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1: RATING, MATCH; 
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 We will simply initialize the RATING attribute to the incompatibility ratings listed in the table above 

using the DATA section: 

DATA: 

  ANALYSTS = 1..8; 

   RATING =  

      9  3  4  2  1  5  6 

         1  7  3  5  2  1 

            4  4  2  9  2 

               1  5  5  2 

                  8  7  6 

                     2  3 

                        4; 

ENDDATA 

 We will use the convention of letting MATCH( I, J) be 1 if we pair analyst I with analyst J, otherwise 

0. As such, the MATCH attribute contains the decision variables for the model. 

 Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is 

just the inner product on the RATING and MATCH attributes and is written as: 

MIN = @SUM( PAIRS( I, J):  

   RATING( I, J) * MATCH( I, J)); 

There is just one class of constraints in the model. In words, what we want to do is: 

For each analyst, ensure the analyst is paired with exactly one other analyst. 

Putting the constraint into LINGO syntax, we get: 

@FOR( ANALYSTS( I): 

  @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: 

     MATCH( J, K)) = 1  

     ); 

 The feature of interest in this constraint is the conditional qualifier J #EQ# I #OR# K #EQ# I on the 

@SUM function. For each analyst I, we sum up all the MATCH variables that contain I and set them 

equal to 1. In so doing, we guarantee analyst I will be paired up with exactly one other analyst. The 

conditional qualifier guarantees we only sum up the MATCH variables that include I in its pairing. 

 One other feature is required in this model. We are letting MATCH( I, J) be 1 if we are pairing I 

with J. Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value from 

0 to infinity. Since we want MATCH to be restricted to being only 0 or 1, we need to add one other 

feature to our model. What we need is to apply the @BIN variable domain function to the MATCH 

attribute. Variable domain functions are used to restrict the values a variable can assume. Unlike 

constraints, variable domain functions do not add equations to a model. The @BIN function restricts a 

variable to being binary (i.e., 0 or 1). When you have a model that contains binary variables, it is said to 

be an integer programming (IP) model. IP models are much more difficult to solve than models that 

contain only continuous variables. Carelessly formulated IPs (with several hundred integer variables or 

more) can literally take forever to solve! Thus, you should limit the use of binary variables whenever 

possible. To apply @BIN to all the variables in the MATCH attribute, add the @FOR expression: 

@FOR( PAIRS( I, J): @BIN( MATCH( I, J))); 
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The Solution 

The entire formulation for our matching example and parts of its solution appears below: 

SETS: 

   ANALYSTS; 

   PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1: 

    RATING, MATCH; 

ENDSETS 

DATA: 

   ANALYSTS = 1..8; 

   RATING =  

      9  3  4  2  1  5  6 

         1  7  3  5  2  1 

            4  4  2  9  2 

               1  5  5  2 

                  8  7  6 

                     2  3 

                        4; 

ENDDATA 

MIN = @SUM( PAIRS( I, J):  

   RATING( I, J) * MATCH( I, J)); 

@FOR( ANALYSTS( I): 

  @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: 

                             MATCH( J, K)) = 1  

     ); 

@FOR( PAIRS( I, J): @BIN( MATCH( I, J))); 

A solution is: 

     Variable           Value         

 MATCH( 1, 2)       0.0000000         

 MATCH( 1, 3)       0.0000000            

 MATCH( 1, 4)       0.0000000            

 MATCH( 1, 5)       0.0000000            

 MATCH( 1, 6)        1.000000            

 MATCH( 1, 7)       0.0000000            

 MATCH( 1, 8)       0.0000000            

 MATCH( 2, 3)       0.0000000            

 MATCH( 2, 4)       0.0000000            

 MATCH( 2, 5)       0.0000000            

 MATCH( 2, 6)       0.0000000            

 MATCH( 2, 7)        1.000000            

 MATCH( 2, 8)       0.0000000            

 MATCH( 3, 4)       0.0000000            

 MATCH( 3, 5)       0.0000000            

 MATCH( 3, 6)       0.0000000            

 MATCH( 3, 7)       0.0000000            
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 MATCH( 3, 8)        1.000000            

 MATCH( 4, 5)        1.000000            

 MATCH( 4, 6)       0.0000000            

 MATCH( 4, 7)       0.0000000            

 MATCH( 4, 8)       0.0000000            

 MATCH( 5, 6)       0.0000000            

 MATCH( 5, 7)       0.0000000            

 MATCH( 5, 8)       0.0000000            

 MATCH( 6, 7)       0.0000000            

 MATCH( 6, 8)       0.0000000            

 MATCH( 7, 8)       0.0000000            

 Notice from the objective value, the total sum of incompatibility ratings for the optimal pairings is 

6. Scanning the Value column for 1’s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5). 

 

5.5.5 Disabling Sections of Code Temporarily 
 

If debugging a model or program it is useful to be able to disable or “comment out” a section of code 

temporarily, and re-enable it later. A special case of the @FOR command can be used for this.   Two 

steps are needed, the first, a setup step and a second step that can be used for any section of code you 

wish to disable.  The general structure is: 

 
    SETS: 

    ! Any other set declarations; 

 

      SYS/1..1/; ! Declare a set of size 1, call it SYS (or anything else); 

    ENDSETS 

 

    ! Other parts of model; 

 

    @FOR( SYS | 0:   ! 0 to disable,  1 to turn back on; 

    ! Section of code to be disabled, - or re-enabled; 

 

        ); ! End of @FOR( SYS loop; 

 

Realize that if the condition is “SYS | 0”, the loop will never be executed, whereas if the condition is 

“| 1”, then because the set SYS is of size 1, the loop will be executed exactly once.  The “!” character 

can used to disable a single statement, but it applies only to the next “ ; ”, not an arbitrary section. 

 

5.6 Domain Functions for Variables 
Variable domain functions were briefly introduced in this chapter when we used @BIN in the previous 

matching model. Variable domain functions allow one to put restrictions on the values allowed for 

decision variables. Examples of the four domain functions available are: 

  @BIN( Y); 
 @GIN( X); 

 @BND( 100, DELIVER, 250); 

 @FREE( PROFIT); 
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 The statement @BIN( Y)  restricts the variable Y to be a binary variable. That is, it can take on 

only the values 0 and 1. 

 The statement @GIN( X)restricts the variable Xto be a general integer variable. That is, it can take 

on only the values 0, 1, 2, … 

 The @BND() specification allows one to specify simple upper and lower bounds. The statement 

@BND( 100, DELIVER, 250) restricts the variable DELIVER to be in the interval [ 100, 250]. The 

same effect could be achieved by the slightly more verbose: 

DELIVER >= 100; 

DELIVER <= 250; 

 LINGO, by default, gives a lower bound of zero to every decision variable. The statement @FREE( 

PROFIT)  overrides this default lower bound for the variable PROFIT and says that (unfortunately) 

PROFIT can take on any value between minus infinity and plus infinity. Each of the domain functions 

can appear inside @FOR loops, just like any other constraint. 

5.7 Spreadsheets and LINGO 
In this chapter, we have seen how LINGO can be useful for modeling very large problems. The most 

widely used method for modeling of any sort is undoubtedly spreadsheet models. When is which 

approach more appropriate? 

 The major advantages of doing a model in a spreadsheet are: 

-  Excellent report formatting features available, 

-  Large audience of people who understand spreadsheets, and 

-  Good interface capability with other systems such as word processors. 

The major advantages of doing a model in LINGO are: 

-  Flexibility of various kinds. 

-  Scalability--It is easy to change the size of any set (e.g., add time periods, products, 

customers, suppliers, transportation modes, etc.) without having to worry about copying or 

editing formulae. There is no upper limit of 16,384(as in a spreadsheet) on the number of 

columns, or 1,048,576 on the number of rows.   

-  Sparse sets are easily represented. E.g., not every plant produces every product. 

-  Auditability and visibility--It is easy to see the formulae of a LINGO model in complete, 

comprehensive form. Truly understanding the model formulae underlying a complex 

spreadsheet is an exercise in detective work. 

-  Multiple dimensions are easily represented. A spreadsheet handles two dimensions very well, 

three dimensions somewhat well, and four or more dimensions not very well. 

-  Separation of model equations from the data. In a spreadsheet, a careless user, when 

modifying the data, may unintentionally modify a formula of the model. 
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 One can get most of the benefits of both by using LINGO in conjunction with spreadsheets. One 

can place "hooks" in a LINGO model, so it automatically retrieves and inserts data from/to spreadsheets, 

databases, and ordinary files. Under Microsoft Windows, the hooks used are the OLE (Object Linking 

and Embedding) and ODBC (Open Database Connectivity) interfaces provided as part of Windows. 

Using the OLE capability to connect an Excel spreadsheet to a LINGO model requires two steps: 

a)  In the spreadsheet, each data area that is to be either a supplier to or a receiver of data from 

the LINGO model must be given an appropriate range name. This is done in the 

spreadsheet by highlighting the area of interest with the mouse, and then using the Insert | 

Name | Define command. The most convenient name to give to a range is the same name 

by which the data are referenced in the LINGO model. 

b)  In the LINGO model, each attribute (vector) (e.g., plant capacities) that is to be retrieved 

from a spreadsheet, must appear in a LINGO DATA section in a statement of the form: 

CAPACITY = @OLE('C:\MYDATA.XLS'); 

 Each attribute (e.g., amount to ship) to be sent to a spreadsheet must appear in a LINGO DATA 

section in a statement of the form: 

@OLE('C:\MYDATA.XLS') = AMT_SHIPPED; 

If only one spreadsheet is open in Excel, this connection can be simplified. You need only write: 

CAPACITY = @OLE(); 

LINGO will look in the only open spreadsheet for the range called CAPACITY. This “unspecified 

spreadsheet” feature is very handy if you want to apply the same LINGO model to several different 

spreadsheet data sets. 
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 This spreadsheet connection can be pushed even further by embedding the LINGO model in the 

spreadsheet for which it has a data connection. This is handy because the associated LINGO model will 

always be obviously and immediately available when the spreadsheet is opened. The screen shot below 

shows a transportation model embedded in a spreadsheet. To the casual user, it looks like a standard 

spreadsheet with a special solve button. 
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The data and results are stored on the first tab/sheet of the spreadsheet file. Not so obvious is the LINGO 

model that is stored on another tab in the same spreadsheet (see below). Completely hidden is a small 

VBA program in the spreadsheet that causes the LINGO model on the second tab to be solved whenever 

the Solve button is clicked on the first tab. The complete example can be found in the file xlingtran.xls. 

 

Just as @OLE() is used to connect a LINGO model to a spreadsheet and @ODBC() is used to connect a 

LINGO model to most databases that support the SQL interface, the @TEXT() statement is available to 

connect a LINGO model to a simple text file. You can send the value(s) of attribute X to a file called 

"myfile.out" with: 

DATA: 

  @TEXT( 'MYFILE.OUT') = X; 

ENDDATA 

The following will send the value of X to the screen, along with an explanatory message: 

@TEXT() = 'The value of X=',  X; 

Still one more way that LINGO can be incorporated into an application is by way of a subroutine call. 

A regular computer program, say in C/C++ or Visual Basic, can make a regular call to the LINGO 

DLL(Dynamic Link Library). The model is passed as a string variable to the LINGO DLL. See the 

LINGO manual for more details. 
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5.8 Programming in LINGO 
LINGO also has a programming capability(in the sense of computer programming) or looping capability.  

The main benefits of this are the ability to a) do preprocessing of data to be used in the model, e.g. to do 

complicated calculations of profit contribution coefficients, b) do postprocessing of solutions to produce 

customized output rather than the standard LINGO solution report, c) solve 2 or more related models in 

a single run.   The ability to solve multiple models with “one click” makes it easier to do things like  i) 

parametric analysis to show how profit changes as a function of some critical parameter,  ii) solve goal 

programming problems where there is a hierarchy of goals,  and iii) build models incrementally by 

adding variables and/or constraints in an iterative, column-generation fashion. 

5.8.1 Building Blocks for Programming  
Executable statements are identified by a CALC section: 
 
          CALC: 

                    ! Executable statements; 
          ENDCALC 

 

Calculations occur sequentially, from top to bottom in a CALC section except when one of four different 

“flow control statements: @IFC, @FOR, @WHILE, or @BREAK are encountered.  The format of an 

“If Condition” statement is: 
 
          @IFC(condition: 

                       ! Executable Statements; 
              @ELSE 

                      ! Executable Statements; 
               ); 

 

There are two loop control statements, @FOR for looping over a set of known size,  

 
        @FOR( set | condition: 

          ! Executable Statements; 
           ); 

 

   and @WHILE, for looping an initially unknown number of times: 

 
         @WHILE( condition: 

          ! Executable Statements; 
          ); 

 

One can break out of a loop with: 
 
     @BREAK 

 

An output string can be written with a statement of the form: 
 

     @WRITE( output_list); 

 

where the output_list can be an explicit string, a variable, a variable in a specified format, @FORMAT(), 

or an end of line character, @NEWLINE(n). 
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The syntax of the @FORMAT function is: 

 
         @FORMAT( math_expression, field_description), 

where  a field_description is something like  “6.2f” for numbers or “7s” for a name. 

 

A model that we want to reference and solve in a CALC section is indicated with the SUBMODEL 

declaration, e.g. 

 
      SUBMODEL mymodel: 

         ! Model Statements; 
      ENDSUBMODEL 

 

We can solve a previously defined submodel in a CALC section with an @SOLVE statement, e.g. : 

 
            @SOLVE( mymodel); 

 

We illustrate programming in LINGO with the computation of  an “efficient frontier” for the Astro-

Cosmo problem. 

 
! Model to compute efficient frontier; 

SUBMODEL ASTROCOSMO: 

 MAX = OBJ; 

  OBJ= 20*A + 30*C; 

          A        <= 60; 

                 C <= 50; 

          A  + 2*C <= LABORAV; 

ENDSUBMODEL 

 

       DATA: 

        ! Number of points to compute in efficient frontier; 

        NPTS = 11; 

        ! Upper limit on labor(lower limit is 0); 

        UPLIM = 200; 

       ENDDATA 

 

       CALC: 

        ! Set output level to super terse; 

        @SET( 'TERSEO', 2); 

        @WRITE('     Labor     Profit',@NEWLINE(1)); 

        ! Loop over points on efficient frontier; 

        i = 0; !Standard 3 statement loop control construct; 

        @WHILE( i #LT# NPTS:  

          i = i + 1; 

          LABORAV = UPLIM*(i-1)/(NPTS-1); 

 

          ! Solve model with new labor availability; 

          @SOLVE(ASTROCOSMO); 

 

          ! Write the objective value, OBJ, in a field of 

           8 characters with 2 digits to the right of decimal point; 
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          @WRITE("  ", @FORMAT(LABORAV, "8.0f"), 

            '   ', @FORMAT(OBJ,"8.2f"), @NEWLINE(1)); 

         ); ! End @WHILE loop; 

       ENDCALC 

 

This produces the output: 

 
     Labor     Profit 

         0       0.00 

        20     400.00 

        40     800.00 

        60    1200.00 

        80    1500.00 

       100    1800.00 

       120    2100.00 

       140    2400.00 

       160    2700.00 

       180    2700.00 

       200    2700.00 

 

5.8.2 Generating Graphs and Charts 
LINGO can generate about a dozen different chart or graph types such as histograms, pie charts, 

scatter plots, two dimensional curves, and surface charts.  The previous example can be modified to 

generate a two dimensional curve by adding a small SETS section and modifying the CALC  section 

as follows. 
   
      SETS: 

       ! Define a grid; 

       S /1..NPTS/: CX, CY; 

      ENDSETS 

 

       CALC: 

        ! Set output level to super terse; 

        @SET( 'TERSEO', 2); 

        ! Loop over points on efficient frontier; 

        i = 0; !Standard 3 statement loop control construct; 

        @WHILE( i #LT# NPTS:  

          i = i + 1; 

          LABORAV = UPLIM*(i-1)/(NPTS-1); 

 

          ! Solve model with new labor availability; 

          @SOLVE(ASTROCOSMO); 

 

          ! Fill the grid with values at current point; 

         CX( i) = LABORAV ; 

         CY( i) = OBJ;  

             

         ); ! End @WHILE loop; 

 

    ! Generate the chart; 

       @CHART( 
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        'CX CY',   ! Data series;  

        'CURVE',   ! Use CURVE chart type; 

        'Profit vs. Labor Available', ! Chart title; 

        'Y = Profit',     ! Label for Y axis; 

        'Labor Available' ! Label for X axis; 

             ); 

       ENDCALC 

 

 

The following graph results. 

 

 
 

All the different chart types can be listed by clicking on: 
   Edit -> Paste Function -> Charting. 

 

For more details on programming in LINGO, see the online documentation or the LINGO manual. 



Product Mix Problems Chapter 6    101  

5.9 Problems 
1. You wish to represent the status of an academic institution during a specific teaching term. The 

major features to be represented are that instructors teach courses and students are registered for 

courses. You want to keep track of who is teaching which course, who is registered for each course, 

and which courses a given student is taking. What sets would you recommend if each course is 

taught by exactly one instructor? 

2. Suppose we take into account the additional complication of team teaching. That is, two or more 

instructors teach some courses. How would you modify your answer to the previous question? 

3. In some schools there may be some people, e.g., graduate students, who are a student in one course 

and  an instructor for another course. How would you generalize your answer to the previous 

question? 
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6 
 

Product Mix Problems 
 
 
 

6.1 Introduction 
Product mix problems are conceptually the easiest constrained optimization problems to comprehend. 

The Astro/Cosmo problem considered earlier is an example. Although product mix problems are seldom 

encountered in their simple textbook form in practice, they very frequently constitute important 

components of larger problems such as multiperiod planning models. 

 The features of a product mix problem are that there is a collection of products competing for a 

finite set of resources. If there are m resources and n products, then the so-called “technology” is 

characterized by a table with m rows and n columns of technologic coefficients. The coefficient in row 

i, column j, is the number of units of resource i used by each unit of product j. The numbers in a row of 

the table are simply the coefficients of a constraint in the LP. In simple product mix problems, these 

coefficients are nonnegative. Additionally, associated with each product is a profit contribution per unit 

and associated with each resource is an availability. The objective is to find how much to produce of 

each product (i.e., the mix) to maximize profits subject to not using more of each resource than is 

available. 

 The following product mix example will illustrate not only product mix LP formulations, but also: 

1) representation of nonlinear profit functions and 2) the fact that most problems have alternative correct 

formulations. Two people may develop different formulations of the same problem, but both may be 

correct. 
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6.2 Example 
A certain plant can manufacture five different products in any combination. Each product requires time 

on each of three machines in the following manner (figures in minutes/unit): 

 Machine 

Product 1 2 3 

A 12 8 5 

B 7 9 10 

C 8 4 7 

D 10 0 3 

E 7 11 2 

Each machine is available 128 hours per week. 

 Products A, B, and C are purely competitive and any amounts made may be sold at respective prices 

of $5, $4, and $5. The first 20 units of D and E produced per week can be sold at $4 each, but all made 

in excess of 20 can only be sold at $3 each. Variable labor costs are $4 per hour for machines 1 and 2, 

while machine 3 labor costs $3 per hour. Material costs are $2 for products A and C, while products B, 

D, and E only cost $1. You wish to maximize profit to the firm. 

 The principal complication is that the profit contributions of products D and E are not linear. You 

may find the following device useful for eliminating this complication. Define two additional products 

D2 and E2, which sell for $3 per unit. What upper limits must then be placed on the sale of the original 

products D and E? The decision variables and their profit contributions are as follows: 

 
Decision 
Variables 

 

Definition 

Profit 
Contribution 

per Unit 

A Number of units of A produced per week 5 − 2 = $3 

B Number of units of B produced per week 4 − 1 = $3 

C Number of units of C produced per week 5 − 2 = $3 

D Number of units of D not in excess of 20 

produced/week 

            $3 

D2 Number of units of D produced in excess of 20 

per week* 

            $2 

E Number of units of E not in excess of 20 

produced/week 

            $3 

E2 Number of units of E produced in excess of 20             $2 

M1 Hours of machine 1 used per week           −$4 

M2 Hours of machine 2 used per week           −$4 

M3 Hours of machine 3 used per week            −$3 
*Total production of product D is D + D2. 
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 We will not worry about issues of sequencing the various products on each machine. This is 

reasonable if the due-dates for the products are far enough in the future. Our problem in this case is to: 

Maximize     Revenues minus costs 

Subject to 

         Minutes used equals minutes run on each machine, 

         At most 20 units each can be produced of products D and E, 

         Each machine can be run at most 128 hours. 

More precisely, the formulation in LINGO is: 

! Maximize revenue minus costs; 

MAX = 3 * A + 3 * B + 3 * C + 3 * D + 2 * D2 + 3 * E 

     + 2 * E2 - 4 * M1 - 4 * M2 - 3 * M3; 

! Machine time used = machine time made available; 

12*A + 7*B + 8*C + 10*D + 10*D2 + 7*E +  7*E2 - 60*M1 = 0; 

8*A + 9*B + 4*C + 11*E + 11*E2 - 60*M2 = 0; 

5*A + 10*B + 7*C + 3*D + 3*D2 + 2*E + 2*E2 - 60*M3=0; 

   D <= 20;  ! Max sellable at high price; 

   E <= 20; 

!Machine availability; 

   M1 <= 128; 

   M2 <= 128; 

   M3 <= 128; 

END 

 The first three constraints have the units of “minutes” and specify the hours of machine time as a 

function of the number of units produced. The next two constraints place upper limits on the number of 

high profit units of D and E that may be sold. The final three constraints put upper limits on the amount 

of machine time that may be used and have the units of “hours”. 

 Constraint 2 can be first written as: 

12A + 7B + 8C + 10D + 10D2 + 7E + 7E2 
=M1 

60 

Multiplying by 60 and bringing M1 to the left gives the second constraint. The solution is: 

Optimal solution found at step:         4 

Objective value:                 1777.625 

Variable           Value        Reduced Cost 

       A       0.0000000            1.358334 

       B       0.0000000           0.1854168 

       C        942.5000           0.0000000 

       D       0.0000000           0.1291668 

      D2       0.0000000            1.129167 

       E        20.00000           0.0000000 

      E2       0.0000000           0.9187501 

      M1        128.0000           0.0000000 

      M2        66.50000           0.0000000 

      M3        110.6250           0.0000000 
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     Row    Slack or Surplus      Dual Price 

       1        1777.625            1.000000 

       2       0.0000000           0.2979167 

       3       0.0000000           0.6666667E-01 

       4       0.0000000           0.5000000E-01 

       5        20.00000           0.0000000 

       6       0.0000000           0.8125000E-01 

       7       0.0000000            13.87500 

       8        61.50000           0.0000000 

       9        17.37500           0.0000000 

 The form of the solution is quite simple to state: make as many of E as possible (20). After that, 

make as much of product C as possible until we run out of capacity on machine 1.  

 This problem is a good example of one for which it is very easy to develop alternative formulations 

of the same problem. These alternative formulations are all correct, but may have more or less constraints 

and variables. For example, the constraint: 

8A + 9B + 4C + 11E + 11E2 − 60M2 = 0 

can be rewritten as: 

M2 = (8A + 9B + 4C + 11E + 11E2)/60. 

 The expression on the right-hand side can be substituted for M2 wherever M2 appears in the 

formulation. Because the expression on the right-hand side will always be nonnegative, the 

nonnegativity constraint on M2 will automatically be satisfied. Thus, M2 and the above constraint can be 

eliminated from the problem if we are willing to do a bit of arithmetic. When similar arguments are 

applied to M1 and M3 and the implied divisions are performed, one obtains the formulation: 

MAX = 1.416667*A + 1.433333*B + 1.85*C + 2.183334*D + 1.183333*D2 + 

1.7*E + .7*E2; 

! Machine time used = machine time made available; 

12*A + 7*B + 8*C + 10*D + 10*D2 + 7*E + 7*E2 <= 7680; 

8*A + 9*B + 4*C + 11*E + 11*E2 <= 7680; 

5*A + 10*B + 7*C + 3*D + 3*D2 + 2*E + 2*E2 <= 7680; 

! Product limits; 

D < 20; 

E < 20; 
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 This looks more like a standard product mix formulation. All the constraints are capacity constraints 

of some sort. Notice the solution to this formulation is really the same as the previous formulation: 

Optimal solution found at step:         6 

Objective value:                 1777.625 

Variable           Value        Reduced Cost 

       A       0.0000000            1.358333 

       B       0.0000000           0.1854170 

       C        942.5000           0.0000000 

       D       0.0000000           0.1291660 

      D2       0.0000000            1.129167 

       E        20.00000           0.0000000 

      E2       0.0000000           0.9187500 

     Row    Slack or Surplus      Dual Price 

       1        1777.625            1.000000 

       2       0.0000000           0.2312500 

       3        3690.000           0.0000000 

       4        1042.500           0.0000000 

       5        20.00000           0.0000000 

       6       0.0000000           0.8125000E-01 

 The lazy formulator might give the first formulation, whereas the second formulation might be given 

by the person who enjoys doing arithmetic. 

6.3 Process Selection Product Mix Problems  
A not uncommon feature of product mix models is two or more distinct variables in the LP formulation 

may actually correspond to alternate methods for producing the same product. In this case, the LP is 

being used not only to discover how much should be produced of a product, but also to select the best 

process for producing each product. 

 A second feature that usually appears with product mix problems is a requirement that a certain 

amount of a product be produced. This condition takes the problem out of the realm of simple product 

mix. Nevertheless, let us consider a problem with the above two features. 

 The American Metal Fabricating Company (AMFC) produces various products from steel bars. One 

of the initial steps is a shaping operation performed by rolling machines. There are three machines 

available for this purpose, the B3, B4, and B5. The following table gives their features: 

  
Speed 

 
Allowable 

 
Available 

Labor 
Cost 

 in Feet Raw Material Hours Per Hour 
Machine per Minute Thickness in Inches per Week Operating 

B3 150 3/16 to 3/8 35 $10 

B4 100 5/16 to 1/2 35 $15 

B5 75 3/8 to 3/4 35 $17 

 This kind of combination of capabilities is not uncommon. That is, machines that process larger 

material operate at slower speed. 

 This week, three products must be produced. AMFC must produce at least 218,000 feet of 1
4 " 

material, 114,000 feet of 3
8 " material, and 111,000 feet of 1

2 " material. The profit contributions per 

foot excluding labor for these three products are 0.017, 0.019, and 0.02. These prices apply to all 
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production (e.g., any in excess of the required production). The shipping department has a capacity limit 

of 600,000 feet per week, regardless of the thickness. 

 What are the decision variables and constraints for this problem? The decision variables require 

some thought. There is only one way of producing 1
4 " material, three ways of producing 3

8 ", and two 

ways of producing 1
2 ". Thus, you will want to have at least the following decision variables. For 

numerical convenience, we measure length in thousands of feet: 

B34 = 1,000’s of feet of 1
4 " produced on B3, 

B38 = 1,000’s of feet of 3
8 " produced on B3, 

B48 = 1,000’s of feet of 3
8 " produced on B4, 

B58 = 1,000’s of feet of 3
8 " produced on B5, 

B42 = 1,000’s of feet of 1
2 " produced on B4, 

B52 = 1,000’s of feet of 1
2 " produced on B5. 

 For the objective function, we must have the profit contribution including labor costs. When this is 

done, we obtain: 

 Profit Contribution 
Variable per Foot 

B34 0.01589 

B38 0.01789 

B48 0.01650 

B58 0.01522 

B42 0.01750 

B52 0.01622 

 Clearly, there will be four constraints corresponding to AMFC’s three scarce machine resources and 

its shipping department capacity. There should be three more constraints due to the production 

requirements in the three products. For the machine capacity constraints, we want the number of hours 

required for 1,000 feet processed. For machine B3, this figure is 1,000/(60 min./hr.)  (150 ft./min.) = 

0.111111 hours per 1,000 ft. Similar figures for B4 and B5 are 0.16667 hours per 1,000 ft. and 0.22222 

hours per 1,000 feet. 

 The formulation can now be written: 

Maximize=15.89B34+17.89B38+16.5B48+15.22B58+17.5B42+16.22B52 

subject to  

     0.11111B34 + 0.11111B38  35   Machine 

     0.16667B48 + 0.16667B42  35   capacities 

     0.22222B58 + 0.22222B52  35   in hours 

     B34+B38+B48+B58+B42+B52  600  Shipping capacity in 1,000’s of feet 

                                         B34  218  Production 

                        B38 + B48 + B58  114  requirements 

                                 B42 + B52  111  in 1,000’s of feet 

Without the last three constraints, the problem is a simple product mix problem. 
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 It is a worthwhile exercise to attempt to deduce the optimal solution just from cost arguments. The 
1

4 " product can be produced on only machine B3, so we know B34 is at least 218. The 3
8 " product is 

more profitable than the 1
4 " on machine B3. Therefore, we can conclude that B34 = 218 and B38 will take 

up the slack. The 1
2 " and the 3

8 " product can be produced on either B4 or B5. In either case, the 1
2 " is 

more profitable per foot, so we know B48 and B58 will be no greater than absolutely necessary. The 

question is: What is “absolutely necessary”? The 3
8 " is more profitably run on B3 than on B4 or B5. 

Therefore, it follows that we will satisfy the 3
8 " demand from B3 and, if sufficient, the remainder from 

B4 and then from B5. Specifically, we proceed as follows: 

Set B34 = 218. 

 This leaves a slack of 35 − 218  0.11111 = 10.78 hours on B3. This is sufficient to produce 97,000 

feet of 3
8 ", so we conclude that: 

B38 = 97. 

 The remainder of the 3
8 " demand must be made up from either machine B4 or B5. It would appear 

that it should be done on machine B4 because the profit contribution for 3
8 " is higher on B4 than B5. 

Note, however, that 1
2 " is also more profitable on B4 than B5 by exactly the same amount. Thus, we are 

indifferent. Let us arbitrarily use machine B4 to fill the rest of 3
8 " demand. Thus: 

B48 = 17. 

 Now, any remaining capacity will be used to produce 1
2 " product. There are 35 − 17  0.16667 = 

32.16667 hours of capacity on B4. At this point, we should worry about shipping capacity. We still have 

capacity for 600 − 218 − 97 − 17 = 268 in 1,000’s of feet. B42 is more profitable than B52, so we will 

make it as large as possible. Namely, 32.16667/0.16667 = 193, so: 

B42 = 193. 

The remaining shipping capacity is 268 − 193 = 75, so: 

B52 = 75. 



Product Mix Problems Chapter 6    109  

 Any LP is in theory solvable by similar manual economic arguments, but the calculations could be 

very tedious and prone to errors of both arithmetic and logic. If we take the lazy route and solve it with 

LINGO, we get the same solution as our manual one: 

Optimal solution found at step:         2 

Objective value:                 10073.85 

Variable           Value        Reduced Cost 

     B34        218.00000         0.000000 

     B38         97.00315         0.000000 

     B48         16.99685         0.000000 

     B58          0.00000         0.000000 

     B42        192.99900         0.000000 

     B52         75.00105         0.000000 

     Row    Slack or Surplus      Dual Price 

       1         10073.85         1.000000 

       2         0.000000        24.030240 

       3         0.000000         7.679846 

       4        18.333270         0.000000 

       5         0.000000        16.220000 

       6         0.000000        -3.000000 

       7         0.000000        -1.000000 

       8       157.000000         0.000000 

Ranges in which the basis is unchanged: 

                     Objective Coefficient Ranges 

               Current      Allowable      Allowable 

Variable   Coefficient       Increase       Decrease 

     B34      15.89000       3.000000       INFINITY 

     B38      17.89000       INFINITY       2.670000 

     B48      16.50000       1.000000            0.0 

     B58      15.22000       0.000000       INFINITY 

     B42      17.50000            0.0       1.000000 

     B52      16.22000       1.280000            0.0 

                          Right-hand Side Ranges 

     Row       Current      Allowable      Allowable 

                   RHS       Increase       Decrease 

       2      35.00000       1.888520       9.166634 

       3      35.00000       12.50043       13.75036 

       4      35.00000       INFINITY       18.33327 

       5      600.0000       82.50053       75.00105 

       6      218.0000       97.00315       16.99685 

       7      114.0000       157.0000       16.99685 

       8      111.0000       157.0000       INFINITY 

 Notice B58 is zero, but its reduced cost is also zero. This means B58 could be increased (and B48 

decreased) without affecting profits. This is consistent with our earlier statement that we were indifferent 

between using B48 and B58 to satisfy the 3
8 " demand. 
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 Below is a sets version of the problem: 

!This is a sets version of the previous example; 

MODEL: 

SETS: 

   MACHINE / B3, B4, B5 / : HPERWK, TIME; 

!This is the coefficient for the time per day constraint; 

   THICKNESS / FOURTH, EIGHT, HALF / : NEED; 

!This is the amount of each thickness needed 

to be produced; 

   METHOD ( MACHINE, THICKNESS ) : VOLUME, PROFIT, POSSIBLE; 

!VOLUME is the variable, PROFIT the objective coefficients, and POSSIBLE 

is a Boolean representing whether it is possible to produce the given 

thickness; 

ENDSETS 

DATA:  

!  Hours/week available on each machine; 

    HPERWK =   35,   35,   35; 

! Hours per 1000 feet for each machine; 

      TIME = .11111 .16667 .22222; 

! Amount needed of each product; 

      NEED = 218    114    111; 

! Profit by product and machine; 

    PROFIT = 15.89, 17.89,  0, 

              0,    16.5,  17.5, 

              0,    15.22, 16.22; 

! Which products can be made on which machine; 

  POSSIBLE =  1,     1,     0, 

              0,     1,     1, 

              0,     1,     1; 

! Shipping capacity per day; 

  SHPERDAY = 600; 

ENDDATA 

!--------------------------------------------------; 

!Objective function; 

MAX = @SUM( METHOD(I,J): VOLUME(I,J) * PROFIT(I,J)); 

@SUM( METHOD( K, L): VOLUME( K, L)) <= SHPERDAY; 

!This is the max amount that can be made each day; 

@FOR( MACHINE( N):  

 ! Maximum time each machine can be used/week.; 

 @SUM( THICKNESS( M): 

   POSSIBLE(N,M) * VOLUME(N,M) * TIME(N))<=HPERWK(N);); 

 @FOR( THICKNESS( Q) :  

 !Must meet demand for each thickness; 

 @SUM( MACHINE(P): POSSIBLE(P,Q)*VOLUME(P,Q))>=NEED(Q)); 

END 
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6.4 Problems 
1. Consider a manufacturer that produces two products, Widgets and Frisbees. Each product is made 

from the two raw materials, polyester and polypropylene. The following table gives the amounts 

required of each of the two products: 

Widgets Frisbees Raw Material 

3 5 Polyester 

6 2 Polypropylene 

 Because of import quotas, the company is able to obtain only 12 units and 10 units of polyester 

and polypropylene, respectively, this month. The company is interested in planning its production 

for the next month. For this purpose, it is important to know the profit contribution of each product. 

These contributions have been found to be $3 and $4 for Widgets and Frisbees, respectively. What 

should be the amounts of Widgets and Frisbees produced next month? 

2. The Otto Maddick Machine Tool Company produces two products, muffler bearings and torque 

amplifiers. One muffler bearing requires 1
8  hour of assembly labor, 0.25 hours in the stamping 

department, and 9 square feet of sheet steel. Each torque amplifier requires 1
3  hour in both assembly 

and stamping and uses 6 square feet of sheet steel. Current weekly capacities in the two departments 

are 400 hours of assembly labor and 350 hours of stamping capacity. Sheet steel costs 15 cents per 

square foot. Muffler bearings can be sold for $8 each. Torque amplifiers can be sold for $7 each. 

Unused capacity in either department cannot be laid off or otherwise fruitfully used. 

a) Formulate the LP useful in maximizing the weekly profit contribution. 

b) It has just been discovered that two important considerations were not included. 

i. Up to 100 hours of overtime assembly labor can be scheduled at a cost of $5 per hour. 

ii. The sheet metal supplier only charges 12 cents per square foot for weekly usage in 

excess of 5000 square feet. 

 Which of the above considerations could easily be incorporated in the LP model and how? If 

one or both cannot be easily incorporated, indicate how you might nevertheless solve the problem. 

3. Review the solution to the 5-product, 3-machine product mix problem introduced at the beginning 

of the chapter. 

a) What is the marginal value of an additional hour of capacity on each of the machines? 

b) The current selling price of product A is $5. What would the price have to be before we 

would produce any A? 

c) It would be profitable to sell more of product E at $4 if you could, but it is not profitable 

to sell E at $3 per unit even though you can. What is the breakeven price at which you 

would be indifferent about selling any more E? 

d) It is possible to gain additional capacity by renting by the hour automatic versions of each 

of the three machines. That is, they require no labor. What is the maximum hourly rate you 

would be willing to pay to rent each of the three types of automatic machines? 
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4. The Aviston Electronics Company manufactures motors for toys and small appliances. The 

marketing department is predicting sales of 6,100 units of the Dynamonster motor in the next 

quarter. This is a new high and meeting this demand will test Aviston’s production capacities. A 

Dynamonster is assembled from three components: a shaft, base, and cage. It is clear that some of 

these components will have to be purchased from outside suppliers because of limited in-house 

capacity. The variable in-house production cost per unit is compared with the outside purchase cost 

in the following table. 

Component Outside Cost Inside Cost 

Shaft 1.21 0.81 

Base 2.50 2.30 

Cage 1.95 1.45 

Aviston’s plant consists of three departments. The time requirements in hours of each component 

in each department if manufactured in-house are summarized in the following table. The hours 

available for Dynamonster production are listed in the last row. 

 Cutting Shaping Fabrication 
Component Department Department Department 

Shaft 0.04 0.06 0.04 

Base 0.08 0.02 0.05 

Cage 0.07 0.09 0.06 

Capacity 820 820 820 

a) What are the decision variables? 

b) Formulate the appropriate LP. 

c) How many units of each component should be purchased outside? 

5. Buster Sod’s younger brother, Marky Dee, operates three ranches in Texas. The acreage and 

irrigation water available for the three farms are shown below: 

  Water Available 
Farm Acreage (acre feet) 

1 400 1500 

2 600 2000 

3 300  900 

Three crops can be grown. However, the maximum acreage that can be grown of each crop is limited 

by the amount of appropriate harvesting equipment available. The three crops are described below: 

 Total 
Harvesting 

Water Expected 

 Capacity Requirements Profit 
Crop (in acres) (in acre-feet/acre) (in $/acre) 

Milo 700 6 400 

Cotton 800 4 300 

Wheat 300 2 100 
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Any combination of crops may be grown on a farm. 

a) What are the decision variables? 

b) Formulate the LP. 

6. Review the formulation and solution of the American Metal Fabricating process selection/product 

mix problem in this chapter. Based on the solution report: 

a) What is the value of an additional hour of capacity on the B4 machine? 

b) What is the value of an additional 2 hours of capacity on the B3 machine? 

c) By how much would one have to raise the profit contribution/1,000 ft. of 1
4 " material 

before it would be worth producing more of it? 

d) If the speed of machine B5 could be doubled without changing the labor cost, what would 

it be worth per week? (Note labor on B5 is $17/hour.) 

7. A coupon recently appeared in an advertisement in the weekend edition of a newspaper. The coupon 

provided $1 off the price of any size jar of Ocean Spray cranberry juice. The cost of the weekend 

paper was more than $1. 

Upon checking at a local store, we found two sizes available as follows: 

 
Size in oz. 

 
Price 

Price/oz. w/o 
Coupon  

Price/oz. with 
Coupon 

32 2.09  .0653125 .0340625 

48  2.89  .0602083 .039375 

 What questions, if any, should we ask in deciding which size to purchase? What should be our 

overall objective in analyzing a purchasing decision such as this?
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7 
 

Covering, Staffing & Cutting 
Stock Models 

 
 

7.1 Introduction 
Covering problems tend to arise in service industries. The crucial feature is that there is a set of 

requirements to be covered. We have available to us various activities, each of which helps cover some, 

but not all, the requirements. The qualitative form of a covering problem is: 

Choose a minimum cost set of activities 

Subject to 

The chosen activities cover all of our requirements. 

Some examples of activities and requirement types for various problems are listed below: 

Problem Requirements Activities 

Staff scheduling Number of people 

required on duty 

each period of the 

day or week. 

Work or shift patterns. Each 

pattern covers some, but not all, 

periods. 

Routing Each customer 

must be visited. 

Various feasible trips, each of 

which covers some, but not all, 

customers. 

Cutting of bulk 

raw material 

stock (e.g., paper, 

wood, steel, 

textiles) 

Units required of 

each finished 

good size. 

Cutting patterns for cutting raw 

material into various finished 

good sizes. Each pattern 

produces some, but not every, 

finished good. 

In the next sections, we look at several of these problems in more detail. 
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7.1.1 Staffing Problems 
One part of the management of most service facilities is the scheduling or staffing of personnel. That is, 

deciding how many people to use on what shifts. This problem exists in staffing the information 

operators department of a telephone company, a toll plaza, a large hospital, and, in general, any facility 

that must provide service to the public. 

 The solution process consists of at least three parts: (1) Develop good forecasts of the number of 

personnel required during each hour of the day or each day of the week during the scheduling period. 

(2) Identify the possible shift patterns, which can be worked based on the personnel available and work 

agreements and regulations. A particular shift pattern might be to work Tuesday through Saturday and 

then be off two days. (3) Determine how many people should work each shift pattern, so costs are 

minimized and the total number of people on duty during each time period satisfies the requirements 

determined in (1). All three of these steps are difficult. LP can help in solving step 3. 

 One of the first published accounts of using optimization for staff scheduling was by Edie (1954). 

He developed a method for staffing tollbooths for the New York Port Authority. Though old, Edie’s 

discussion is still very pertinent and thorough. His thoroughness is illustrated by his summary (p. 138): 

“A trial was conducted at the Lincoln Tunnel...Each toll collector was given a slip showing his booth 

assignments and relief periods and instructed to follow the schedule strictly...At no times did excessive 

backups occur...The movement of collectors and the opening and closing of booths took place without 

the attention of the toll sergeant. At times, the number of booths were slightly excessive, but not to the 

extent previously... Needless to say, there is a good deal of satisfaction...” 

7.1.2 Example: Northeast Tollway Staffing Problems 
The Northeast Tollway out of Chicago has a toll plaza with the following staffing demands during each 

24-hour period: 

 
Hours 

Collectors 
Needed 

12 A.M. to 6 A.M. 2 

6 A.M. to 10 A.M. 8 

10 A.M. to Noon 4 

Noon to 4 P.M. 3 

4 P.M. to 6 P.M. 6 

6 P.M. to 10 P.M. 5 

10 P.M. to 12 Midnight 3 

 Each collector works four hours, is off one hour, and then works another four hours. A collector can 

be started at any hour. Assuming the objective is to minimize the number of collectors hired, how many 

collectors should start work each hour? 

Formulation and Solution 
Define the decision variables: 

x1 = number of collectors to start work at 12 midnight, 

x2 = number of collectors to start work at 1 A.M., 
. 

. 

. 
x24 = number of collectors to start work at 11 P.M. 
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 There will be one constraint for each hour of the day, which states the number of collectors on at 

that hour be the number required for that hour. The objective will be to minimize the number of collectors 

hired for the 24-hour period. More formally: 

Minimize   x1 + x2 + x3 + ... + x24 

subject to 

x1 + x24 + x23 + x22 + x20 + x19 + x18 + x17  2 (12 midnight to 1 A.M.). 

x2 + x1 + x24 + x23 + x21 + x20 + x19 + x18  2 (1 A.M. to 2 A.M.) 
. 

. 

. 

x7 + x6 + x5 + x4 + x2 + x1 + x24 + x23  8 (6 A.M. to 7 A.M.) 
. 

. 

. 

x24 + x23 + x22 + x21 + x19 + x18 + x17 + x16  3 (11 P.M. to 12 midnight) 

 It may help to see the effect of the one hour off in the middle of the shift by looking at the 

“PICTURE” of equation coefficients: 

Constraint Row x1 x2 x3 x4 x5 x6 x7 x8 x9 ... x17 x18 x19 x20 x21 x22 x23 x24 RHS 

12 A.M. to 1 A.M.   1                                                      1 1 1 1  1 1 1 2 

1 A.M. to 2 A.M.   1  1                                            1          1 1 1 1  1 1 2 

2 A.M. to 3 A.M.   1 1 1          1 1 1 1  1 2 

3 A.M. to 4 A.M.   1 1 1 1          1 1 1 1  2 

4 A.M. to 5 A.M.    1 1 1 1          1 1 1 1 2 

5 A.M. to 6 A.M.   1  1 1 1 1          1 1 1 2 

6 A. M. to 7 A.M.  1 1  1 1 1 1          1 1 8 

7 A.M. to 8 A.M.  1 1 1  1 1 1 1          1 8 

8 A.M. to 9 A.M.  1 1 1 1  1 1 1 1          8 

9 A.M. to 10 A.M.   1 1 1 1  1 1 1          8 

10 A.M. to 11 A.M.   1 1 1 1  1 1          4 

11 A.M. to 12 P.M.     1 1 1 1  1          4 

12 P.M. to 1 P.M.     1 1 1 1           3 

1 P.M. to 2 P.M.      1 1 1 1          3 

2 P.M. to 3 P.M.       1 1 1          3 

   etc.             etc.  
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Sets Based Formulation 

A “sets” based formulation for this problem in LINGO is quite compact. There are two sets, one for the 

24-hour day and the other for the nine-hour shift. Note the use of the @WRAP function to modulate the 

index for the X variable: 

MODEL: ! 24 hour shift scheduling; 

 SETS: !Each shift is4 hours on, 1 hour off, 4 hours on; 

  HOUR/1..24/: X, NEED; 

 ENDSETS 

 DATA: 

  NEED=2 2 2 2 2 2 8 8 8 8 4 4 3 3 3 3 6 6 5 5 5 5 3 3; 

 ENDDATA 

 MIN = @SUM( HOUR(I): X(I)); 

 @FOR( HOUR( I): ! People on duty in hour I are those who 

      started 9 or less hours earlier, but not 5; 

 @SUM(HOUR(J)|(J#LE#9)#AND#(J#NE#5): X(@WRAP((I-J+1),24)))>= NEED(I));  

END  

When solved as an LP, we get an objective value of 15.75 with the following variables nonzero: 

x2 = 5 x5 = 0.75 x11 = 1 x16 = 1 

x3 = 0.75 x6 = 0.75 x14 = 1 x17 = 1 

x4 = 0.75 x7 = 0.75 x15 = 2 x18 = 1 

 The answer is not directly useful because some of the numbers are fractional. To enforce the 

integrality restriction, use the @GIN function as in the following line: 

@FOR( HOUR(I): @GIN( X(I))); 

When it is solved, we get an objective value of 16 with the following variables nonzero: 

x2 = 4 x5 = 1 x14 = 1 x17 = 2 

x3 = 1 x6 = 1 x15 = 1 x18 = 1 

x4 = 1 x7 = 1 x16 = 2  

 One of the biggest current instances of this kind of staffing problem is in telephone call centers. 

Examples are telephone order takers for catalog retailers and credit checkers at credit card service 

centers. A significant fraction of the population of Omaha, Nebraska works in telephone call centers. A 

typical shift pattern at a call center consists of 8 hours of work split by a 15 minute break, a half hour 

lunch break, and another 15 minute break. 

7.1.3 Additional Staff Scheduling Features 
In a complete implementation there may be a fourth step,  rostering,  in addition to the first three steps 

of forecasting,  work pattern identification, and work pattern selection.  In rostering,  specific individuals 

by name are assigned to specific work patterns.  In some industries,  e.g., airlines,  individuals(e.g., 

pilots) are allowed to bid on the work patterns that have been selected. 

 In some staffing situations,  there may be multiple skill requirements that need to be covered,  e.g. 

during the first hour there must be at least 3 Spanish speakers on duty and at least 4 English speakers.  

Different employees may have different sets of skills,  e.g., some may speak only English,  some are 

conversant in both English and Spanish,  etc. 
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 In some situations,  e.g.,  mail processing,  demand may be postponeable by one or two periods, so 

that we are allowed to be understaffed,  say during a peak period,  if the carryover demand can be 

processed in the next period. 

 In almost all situations,  demand is somewhat random so that staff requirements are somewhat soft.  

We might say that we need at least ten people on duty during a certain period,  however, if we have 

eleven on duty,  the extra person will probably not be standing around idle during the full period.  There 

is a good chance that by chance demand will be higher than the point forecast so that we can use the 

extra person.  The queueing theory methods of chapter 18 are frequently used to provide estimates of 

the marginal benefit of each unit of overstaffing. 

7.2 Cutting Stock and Pattern Selection 
In industries such as paper, plastic food wrap, metal bars, and textiles, products are manufactured in 

large economically produced sizes at the outset. These sizes are cut into a variety of smaller, more usable 

sizes as the product nears the consumer. The determination of how to cut the larger sizes into smaller 

sizes at minimal cost is known as the cutting stock problem. As an example of the so-called 

one-dimensional cutting stock problem, suppose machine design dictates material is manufactured in 

72-inch widths. There are a variety of ways of cutting these smaller widths from the 72-inch width, two 

of which are shown in Figure 7.1. 

Figure 7.1 Example Cutting Patterns 

Pattern  1 Pattern  2

35

18

35

18

35

 

 Pattern 1 has 2 inches of edge waste (72 − 2  35 = 2), whereas there is only 1 inch of edge waste 

(72 − 2  18 − 35 = 1) with pattern 2. Pattern 2, however, is not very useful unless the number of linear 

feet of 18-inch material required is about twice the number of linear feet of 35-inch material required. 

Thus, a compromise must be struck between edge waste and end waste. 

 The solution of a cutting stock problem can be partitioned into the 3-step procedure discussed earlier: 

(1) Forecast the needs for the final widths. (2) Construct a large collection of possible patterns for cutting 

the large manufactured width(s) into the smaller widths. (3) Determine how much of each pattern should 

be run of each pattern in (2), so the requirements in (1) are satisfied at minimum cost. Optimization can be 

used in performing step (3). 
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 Many large paper manufacturing firms have LP-based procedures for solving the cutting stock 

problem. Actual cutting stock problems may involve a variety of cost factors in addition to the edge 

waste/end waste compromise. The usefulness of the LP-based procedure depends upon the importance of 

these other factors. The following example illustrates the fundamental features of the cutting stock problem 

with no complicating cost factors. 

7.2.1 Example: Cooldot Cutting Stock Problem 
The Cooldot Appliance Company produces a wide range of large household appliances such as 

refrigerators and stoves. A significant portion of the raw material cost is due to the purchase of sheet 

steel. Currently, sheet steel is purchased in coils in three different widths: 72 inches, 48 inches, and 36 

inches. In the manufacturing process, eight different widths of sheet steel are required: 60, 56, 42, 38, 

34, 24, 15, and 10 inches. All uses require the same quality and thickness of steel. 

 A continuing problem is trim waste. For example, one way of cutting a 72-inch width coil is to slit 

it into one 38-inch width coil and two 15-inch width coils. There will then be a 4-inch coil of trim waste 

that must be scrapped. 

 The prices per linear foot of the three different raw material widths are 15 cents for the 36-inch 

width, 19 cents for the 48-inch width, and 28 cents for the 72-inch width. Simple arithmetic reveals the 

costs per inch  foot of the three widths are 15/36 = 0.416667 cents/(inch  foot), 0.395833 cents/(inch 

 foot), and 0.388889 cents/(inch  foot) for the 36", 48", and 72" widths, respectively. 

 The coils may be slit in any feasible solution. The possible cutting patterns for efficiently slitting 

the three raw material widths are tabulated below. 

 For example, pattern C4 corresponds to cutting a 72-inch width coil into one 24-inch width and four 

10-inch widths with 8 inches left over as trim waste. 

 The lengths of the various widths required in this planning period are: 

Width 60” 56” 42” 38” 34” 24” 15” 10” 

Number of feet 

required 
500 400 300 450 350 100 800 1000 

 The raw material availabilities this planning period are 1600 ft. of the 72-inch coils and 10,000 ft. 

each of the 48-inch and 36-inch widths. 

 How many feet of each pattern should be cut to minimize costs while satisfying the requirements of 

the various widths? Can you predict beforehand the amount of 36-inch material used? 
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7.2.2 Formulation and Solution of Cooldot 
Let the symbols A1, A2, . . . , E4 appearing in the following table denote the number of feet to cut of the 

corresponding pattern:  

Cutting Patterns for Raw Material 

 Number to Cut of the Required Width  

Pattern 60” 56” 42” 38” 34” 24” 15” 10” Waste in 

Designation 72-Inch Raw Material Inches 

A1 1 0 0 0 0 0 0 1 2 

A2 0 1 0 0 0 0 1 0 1 

A3 0 1 0 0 0 0 0 1 6 

A4 0 0 1 0 0 1 0 0 6 

A5 0 0 1 0 0 0 2 0 0 

A6 0 0 1 0 0 0 1 1 5 

A7 0 0 1 0 0 0 0 3 0 

A8 0 0 0 1 1 0 0 0 0 

A9 0 0 0 1 0 1 0 1 0 

B0 0 0 0 1 0 0 2 0 4 

B1 0 0 0 1 0 0 1 1 9 

B2 0 0 0 1 0 0 0 3 4 

B3 0 0 0 0 2 0 0 0 4 

B4 0 0 0 0 1 1 0 1 4 

B5 0 0 0 0 1 0 2 0 8 

B6 0 0 0 0 1 0 1 2 3 

B7 0 0 0 0 1 0 0 3 8 

B8 0 0 0 0 0 3 0 0 0 

B9 0 0 0 0 0 2 1 0 9 

C0 0 0 0 0 0 2 0 2 4 

C1 0 0 0 0 0 1 3 0 3 

C2 0 0 0 0 0 1 2 1 8 

C3 0 0 0 0 0 1 1 3 3 

C4 0 0 0 0 0 1 0 4 8 

C5 0 0 0 0 0 0 4 1 2 

C6 0 0 0 0 0 0 3 2 7 

C7 0 0 0 0 0 0 2 4 2 

C8 0 0 0 0 0 0 1 5 7 

C9 0 0 0 0 0 0 0 7 2 
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48-Inch Raw Material 

D0 0 0 1 0 0 0 0 0 6 

D1 0 0 0 1 0 0 0 1 0 

D2 0 0 0 0 1 0 0 1 4 

D3 0 0 0 0 0 2 0 0 0 

D4 0 0 0 0 0 1 1 0 9 

D5 0 0 0 0 0 1 0 2 4 

D6 0 0 0 0 0 0 3 0 3 

D7 0 0 0 0 0 0 2 1 8 

D8 0 0 0 0 0 0 1 3 3 

D9 0 0 0 0 0 0 0 4 8 

36-Inch Raw Material 

E0 0 0 0 0 1 0 0 0 2 

E1 0 0 0 0 0 1 0 1 2 

E2 0 0 0 0 0 0 2 0 6 

E3 0 0 0 0 0 0 1 2 1 

E4 0 0 0 0 0 0 0 3 6 

For accounting purposes, it is useful to additionally define: 

T1 = number of feet cut of 72-inch patterns, 

T2 = number of feet cut of 48-inch patterns, 

T3 = number of feet cut of 36-inch patterns, 

W1 = inch  feet of trim waste from 72-inch patterns, 

W2 = inch  feet of trim waste from 48-inch patterns, 

W3 = inch  feet of trim waste from 36-inch patterns, 

X1 = number of excess feet cut of the 60-inch width, 

X2 = number of excess feet cut of the 56-inch width, 
 . 

 . 

 . 

X8 = number of excess feet cut of the 10-inch width. 

 It may not be immediately clear what the objective function should be. One might be tempted to 

calculate a cost of trim waste per foot for each pattern cut and then minimize the total trim waste cost. 

For example: 

MIN = 0.3888891W1 + 0.395833W2 + 0.416667W3; 

 However, such an objective can easily lead to solutions with very little trim waste, but very high 

cost. This is possible in particular when the cost per square inch is not the same for all raw material 

widths. A more reasonable objective is to minimize the total cost. That is:  

MIN = 28 * T1 + 19 * T2 + 15 * T3; 
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Incorporating this objective into the model, we have: 

MODEL: 

 SETS: 

! Each raw material has a Raw material width, Total used,  

   Waste total, Cost per unit, Waste cost, and Supply available; 

 RM: RWDTH,T, W, C, WCOST, S; 

! Each Finished good has a Width, units Required. eXtra produced; 

 FG: FWDTH, REQ, X; 

 PATTERN: USERM, WASTE, AMT; 

 PXF( PATTERN, FG): NUM; 

 ENDSETS 

 DATA: 

! The raw material widths; 

   RM =    R72       R48       R36; 

 RWDTH=     72        48        36; 

    C =    .28       .19       .15; 

 WCOST= .00388889 .00395833 .00416667; 

    S =    1600    10000     10000; 

! The finished good widths; 

   FG = F60 F56 F42 F38 F34 F24 F15 F10; 

 FWDTH=  60  56  42  38  34  24  15  10; 

   REQ= 500 400 300 450 350 100 800 1000; 

! Index of R.M. that each pattern uses; 

 USERM = 1 1 1 1 1 1 1 1 1 1 

         1 1 1 1 1 1 1 1 1 1 

         1 1 1 1 1 1 1 1 1 

         2 2 2 2 2 2 2 2 2 2 

         3 3 3 3 3; 

! How many of each F.G. are in each R.M. pattern; 

 NUM=   1 0 0 0 0 0 0 1 

        0 1 0 0 0 0 1 0 

        0 1 0 0 0 0 0 1 

        0 0 1 0 0 1 0 0 

        0 0 1 0 0 0 2 0 

        0 0 1 0 0 0 1 1 

        0 0 1 0 0 0 0 3 

        0 0 0 1 1 0 0 0 

        0 0 0 1 0 1 0 1 

        0 0 0 1 0 0 2 0 

        0 0 0 1 0 0 1 1 

        0 0 0 1 0 0 0 3 

        0 0 0 0 2 0 0 0 

        0 0 0 0 1 1 0 1 

        0 0 0 0 1 0 2 0 

        0 0 0 0 1 0 1 2 

        0 0 0 0 1 0 0 3 

        0 0 0 0 0 3 0 0 

        0 0 0 0 0 2 1 0 

        0 0 0 0 0 2 0 2 

        0 0 0 0 0 1 3 0 

        0 0 0 0 0 1 2 1 

        0 0 0 0 0 1 1 3 

        0 0 0 0 0 1 0 4 
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        0 0 0 0 0 0 4 1 

        0 0 0 0 0 0 3 2 

        0 0 0 0 0 0 2 4 

        0 0 0 0 0 0 1 5 

        0 0 0 0 0 0 0 7 

        0 0 1 0 0 0 0 0 

        0 0 0 1 0 0 0 1 

        0 0 0 0 1 0 0 1 

        0 0 0 0 0 2 0 0 

        0 0 0 0 0 1 1 0 

        0 0 0 0 0 1 0 2 

        0 0 0 0 0 0 3 0 

        0 0 0 0 0 0 2 1 

        0 0 0 0 0 0 1 3 

        0 0 0 0 0 0 0 4 

        0 0 0 0 1 0 0 0 

        0 0 0 0 0 1 0 1 

        0 0 0 0 0 0 2 0 

        0 0 0 0 0 0 1 2 

        0 0 0 0 0 0 0 3; 

ENDDATA 

! Minimize cost of raw material used; 

MIN = TCOST; 

 TCOST = @SUM(RM(I): C(I)*T(I) ); 

 

! Compute total cost of waste; 

 TOTWASTE = @SUM( RM(I): WCOST(I)*W(I) ); 

@FOR( RM( I):  

   T( I) = @SUM( PATTERN( K)| USERM(K) #EQ# I: AMT( K)); 

! Raw material supply constraints; 

     T(I) <= S(I); 

     ); 

 

! Must produce at least amount required of each F.G.; 

@FOR( FG(J):  

   @SUM(PATTERN(K): NUM(K,J)*AMT(K)) = REQ(J) + X(J); 

    ); 

 

 ! Turn this on to get integer solutions; 

 !@FOR( PATTERN(K): @GIN(AMT(K))); 

 

! Waste related computations; 

!  Compute waste associated with each pattern; 

 @FOR( PATTERN(K): 

   WASTE(K) = RWDTH(USERM(K)) - @SUM(FG(J): FWDTH(J)*NUM(K,J)); 

     ); 

! Waste for each R.M. in this solution; 

 @FOR( RM( I):  

    W(I) = @SUM( PATTERN( K)| USERM(K) #EQ# I: WASTE(K)*AMT( K)); 

     ); 

 

END 
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 If you minimize cost of waste, then you will get a different solution than if you minimize total cost 

of raw materials. Two different solutions obtained under the two different objectives are compared in 

the following table: 

Cutting Stock Solutions 

 
 

Nonzero Patterns 

Trim Waste 
Minimizing Solution 

Feet to Cut 

Total Cost 
Minimizing Solution 

Feet to Cut 

A1 500 500 

A2 400 400 

A5 200 171.4286 

A7 100 128.5714 

A8 350 350 

A9 50 3.571429 

B8 0 32.14286 

C9 0 14.28571 

D1 150 96.42857 

D3 25 0 

   

Trim Waste Cost              $5.44 $5.55 

         Total Cost         $2348.00 $466.32 

X4 100.000 0 

X6 19650 0 

T1 1600 1600 

T2 10000 96.429 

T3 0 0 

 The key difference in the solutions is the “Min trim waste” solution uses more of the 48" width raw 

material, patterns D1 and D3, and cuts in a way so the edge waste is minimized. The “Min trim waste” 

solution produces more of the 38” width, 550 units, than is needed, 450 units, because the objective 

function does not count this as waste.   The “Min trim waste” formulation has a number of alternate 

optimal solutions, some having a raw material cost less than $2348.  A key observation from this 

example is that you should always remember your overall objective, e.g., minimize total cost or 

maximize total profit, and not get distracted by optimizing secondary criteria. 

 Both solutions involve fractional answers.  By turning on the @GIN declaration you can get an 

integer answer.  The cost of the “cost minimizing” solution increases to $466.34.  

7.2.3 Generalizations of the Cutting Stock Problem 
In large cutting stock problems, it may be unrealistic to generate all possible patterns. There is an 

efficient method for generating only the patterns that have a very high probability of appearing in the 

optimal solution. It is beyond the scope of this section to discuss this procedure. However, it does become 

important in large problems. See Chapter 18 for details. Dyckhoff (1981) describes another formulation 
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that avoids the need to generate patterns. However, that formulation may have a very large number of 

rows. 

Complications 

In complex cutting stock problems, the following additional cost considerations may be important: 

1. Fixed cost of setting up a particular pattern. This cost consists of lost machine time, labor, 

etc. This motivates solutions with few patterns. 

2. Value of overage or end waste. For example, there may be some demand next period for 

the excess cut this period. 

3. Underage cost. In some industries, you may supply plus or minus, say 5%, of a specified 

quantity. The cost of producing the least allowable amount is measured in foregone profits. 

4. Machine usage cost. The cost of operating a machine is usually fairly independent of the 

material being run. This motivates solutions that cut up wide raw material widths. 

5. Material specific products. It may be impossible to run two different products in the same 

pattern if they require different materials (e.g., different thickness, quality, surface finish 

or type). 

6. Upgrading costs. It may be possible to reduce setup, edge-waste, and end-waste costs by 

substituting a higher-grade material than required for a particular demand width. 

7. Order splitting costs. If a demand width is produced from several patterns, then there will 

be consolidation costs due to bringing the different lots of the output together for shipment. 

8. Stock width change costs. A setup involving only a pattern change usually takes less time 

than one involving both a pattern change and a raw material width change. This motivates 

solutions that use few raw material widths. 

9. Minimum and maximum allowable edge waste. For some materials, a very narrow ribbon 

of edge waste may be very difficult to handle. Therefore, one may wish to restrict attention 

to patterns that have either zero edge waste or edge waste that exceeds some minimum, 

such as two centimeters. On the other hand, one may also wish to specify a maximum 

allowable edge waste. For example, in the paper industry, edge waste may be blown down 

a recycling chute. Edge waste wider than a certain minimum may be too difficult to blow 

down this chute. 

10. Due dates and sequencing. Some of the demands need to be satisfied immediately, whereas 

others are less urgent. The patterns containing the urgent or high priority products should 

be run first. If the urgent demands appear in the same patterns as low priority demands, 

then it is more difficult to satisfy the high priority demands quickly. 

11. Inventory restrictions. Typically, a customer’s order will not be shipped until all the 

demands for the customer can be shipped. Thus, one is motivated to distribute a given 

customer’s demands over as few patterns as possible. If every customer has product in 

every pattern, then no customer’s order can be shipped until every pattern has been run. 

Thus, there will be substantial work in process inventory until all patterns have been run. 

12. Limit on 1-set patterns. In some industries, such as paper, there is no explicit cost 

associated with setting up a pattern, but there is a limit on the rate at which pattern changes 

can be made. It may take about 15 minutes to do a pattern change, much of this work being 

done off-line without shutting down the main machine. The run time to produce one roll 

set might take 10 minutes. Thus, if too many 1-set patterns are run, the main machine will 

have to wait for pattern changes to be completed. 
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13. Pattern restrictions. In some applications, there may be a limit on the total number of final 

product widths that may appear in a pattern, and/or a limit on the number of “small” widths 

in a pattern. The first restriction would apply, for example, if there were a limited number 

of take-up reels for winding the slit goods. The second restriction might occur in the paper 

industry where rolls of narrow product width have a tendency to fall over, so one does not 

want to have too many of them to handle in a single pattern. Some demanding customers 

may request their product be cut from a particular position (e.g., the center) of a pattern, 

because they feel the quality of the material is higher in that position. 

14. Pattern pairing. In some plastic wrap manufacturing, the production process, by its nature, 

produces two widths of raw material simultaneously, an upper output and a lower output. 

Thus, it is essentially unavoidable that one must run the same number of feet of whatever 

pattern is being used on the upper output as on the lower output. A similar situation 

sometimes happens by accident in paper manufacturing. If a defect develops on the 

“production belt”, a small width of paper in the interior of the width is unusable. Thus, the 

machine effectively produces two output widths, one to the left of the defect, the other to 

the right of the defect. 

15. Bundle size and/or minimum purchase quantity. In some markets you may be forced to buy 

product in bundles of a given size, e.g., 10 pieces per bundle. Further, you may be forced 

to make cuts in bundles rather than in individual pieces. Thus, even though you have a 

demand of 15 units for some finished good, you are forced to cut at least 20 units because 

the bundle size is 10. 

16. Saw thickness/kerf. If the material is sawed rather than sheared, each saw cut may remove 

a small amount of material, sometimes called the kerf. Precise solution of a cutting stock 

problem should take into account material lost to the kerf. Suppose the kerf is 2 mm. You 

can represent the effect of kerf by adding 2 mm to each final product width and 2 mm to 

each raw material width. 

17. Max “smalls’ per pattern. There may be a limit on the number of  “small” widths in a 

pattern.  This restriction might be encountered in the paper industry where rolls of narrow 

product width have a tendency to tip over, so one does not want to have too many of them 

to handle in a single pattern. 

 

  

 Most of the above complications can be incorporated by making modest changes to the pattern 

generating procedure. The most troublesome complications are high fixed setup costs, order-splitting 

costs, and stock width change costs. If they are important, then one will usually be forced to use some 

ad hoc, manual solution procedure. An LP solution may provide some insight into which solutions are 

likely to be good, but other methods must be used to determine a final workable solution. 

7.2.4 Two-Dimensional Cutting Stock Problems 
The one-dimensional cutting stock problem is concerned with the cutting of a raw material that is in 

coils. The basic idea still applies if the raw material comes in sheets and the problem is to cut these 

sheets into smaller sheets. For example, suppose plywood is supplied in 48- by 96-inch rectangular 

sheets and the end product demand is for sheets with dimensions in inches of 36  50, 24  36, 20  60, 

and 18  30. Once you have enumerated all possible patterns for cutting a 48  96 sheet into 

combinations of the four smaller sheets, then the problem is exactly as before. 

 Enumerating all possible two-dimensional patterns may be complicated. Two features of practical 

two-dimensional cutting problems affect the difficulty of this task: (a) orientation requirements, and (b) 
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“guillotine” cut requirements. Applications in which (a) is important are in the cutting of wood and 

fabric. For reasons of strength or appearance, a demand unit may be limited in how it is positioned on 

the raw material (Imagine a plaid suit for which the manufacturer randomly oriented the pattern on the 

raw material). Any good baseball player knows the grain of the bat must face the ball when hitting. 

Attention must be paid to the grain of the wood if the resulting wood product is to be used for structural 

or aesthetic purposes. Glass is an example of a raw material for which orientation is not important.  

     A pattern is said to be cuttable with guillotine cuts if each cut must be made by a shear across the full 

width of the item being cut. As an example, suppose you wish to cut as many 4x5 rectangles as possible 

from a 9x9 square. If you are allowed to make any kind of cut and rotation is allowed, then you can cut 

4 such rectangles.  If only guillotine cuts are allowed, then at most three pieces can be cut.  Figure 7.2 

illustrates. 

 

Figure 7.2 Guillotine and Non-Guillotine Cuts of 4x5 from 9x9 

                       Non-Guillotine                                          Guillotine 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.5 Paper Converting: A Rectangle Cutting Problem 
A particular form of cutting rectangles is found in the paper industry. Paper is produced in long rolls 

several thousand meters long and from one to ten meters wide. There are two major steps in cutting such 

a roll into rectangles: 1) The original roll is run through a “slitter” to cut the roll into two or more 

narrower final rolls,  2) A final roll is run through a “sheeter” that cuts the roll into sheets of an arbitrary 

specified length, and width equal to the width of the input roll.  This general process, plus related steps 

is sometimes known as “paper converting.”  

 

Example:  We need the following two sets of rectangles:  a) 10,000 rectangles, each 40 x 60 cm, b) 

12,000 rectangles, each 35 x 65 cm.  Raw paper rolls are of width 110 cm, unlimited length.  What is 

the minimum amount of raw paper needed to cut these 22,000 rectangles? A useful observation is that a 

rectangle can be oriented in either of two ways across the width of the raw roll.  The possible patterns 

are: 
   Copies of various widths across the raw roll: 

   65 cm   60 cm   40 cm   35 cm   Waste    Copies/meter of each  

                                               40 x 60    35 x 65       
P1:  1               1               5         100/60      100/35 

P2   1                       1      10                  100/35+100/65 
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P3           1       1              10    100/40+100/60 

P4           1               1      15         100/40      100/65 

P5                   2              30        2*100/60 

P6                   1       2       0          100/60   2*100/65 

P7                           3       5                   3*100/65 

 

For example, pattern P1 has 1) a 35 x 65 rectangle arranged so that the 65 cm dimension is across the 

width of the roll, and 2) a 40 x 60 rectangle arranged so that the 40 cm dimension is across the width. 

The two together use a total of 65 + 40 = 105 cm, leaving an edge waste of 5 cm.  

If we define Pi = number of meters that we slit from the raw roll using pattern Pi, then a relevant LP is: 
 

min = P1 + P2 + P3 + P4 + P5 + P6 + P7;   ! Minimize total meters used; 

! Satisfy total units needed of each of the two rectangles; 

[R4060]   (10/6)*P1 + 100*(1/40 + 1/60)*P3 + (100/40)*P4 +   

      2*(100/60)*P5 + (100/60)*P6                     >= 10000; 

[R3565] (100/35)*P1 + 100*(1/35+1/65)*P2 + (100/65)*P4                 

    + 2*(100/65)*P6      + 3*(100/65)*P7              >= 12000; 

With solution: 
  Global optimal solution found. 

  Objective value:                  4740.0000 

 

                      Variable           Value 

                            P1         0.0000 

                            P2         0.0000 

                            P3       840.0000 

                            P4         0.0000 

                            P5         0.0000 

                            P6      3900.0000 

                            P7         0.0000 

 

In words the solution is: 1a) Run 840 meters through the slitter producing: 1 final roll of width 60 cm 

and 1 final roll of width 40 cm, and a waste roll of width 10 cm. 1b) Run the 60 cm roll through the 

sheeter producing 840*100/40 =2100 sheets of 40 x 60. 1c) Run the 40 cm roll through the sheeter, 

producing 840*100/60 = 1400 sheets of 40 x 60. 2a) Run 3900 meters through the slitter producing: 1 

final roll of width 40 cm, 2 final rolls of width 35 cm, and no waste.  2b) Run the 40 cm roll through the 

sheeter producing 3900*100/60 = 6500 sheets of 40 x 60. 2c) Run the 2 rolls of width 35 cm through 

the sheeter producing 2*3900*100/65 = 12,000 sheets of 35 x 65.  The total production is 2100 + 1400 

+ 6500 = 10,000 sheets of 40 x 60, and 12,000 sheets of 35 x 60.  The efficiency, in terms of square cm 

needed divided by square cm used, is [10000*40*60 + 12000*35*65] / [(840+3900)*100*110] =  

0.9839. 

7.3 Crew Scheduling Problems 
A major component of the operating cost of an airline is the labor cost of its crews. Managing the aircraft 

and crews of a large airline is a complex scheduling problem. Paying special attention to these scheduling 

problems can be rewarding. The yearly cost of a crew member far exceeds the one-time cost of a typical 

computer, so devoting some computing resources to make more efficient use of crews and airplanes is 

attractive. One small part of an airline’s scheduling problems is discussed below. 

 Large airlines face a staffing problem known as the crew-scheduling problem. The requirements to 

be covered are the crew requirements of the flights that the airline is committed to fly during the next 

scheduling period (e.g., one month). During its working day, a specific crew typically, but not 



130     Chapter 7  Covering, Staffing & Cutting Stock 

 

necessarily, flies a number of flights on the same aircraft. The problem is to determine which flights 

should comprise the day’s work of a crew. 

 The approach taken by many airlines is similar to the approach described for general staffing 

problems: (1) Identify the demand requirements (i.e., the flights to be covered). (2) Generate a large 

number of feasible sequences of flights one crew could cover in a work period. (3) Select a minimum 

cost subset of the collections generated in (2), so the cost is minimized and every flight is contained in 

exactly one of the selected collections. 

 Integer programming (IP) can be used for step (3). Until 1985, most large airlines used computerized 

ad hoc or heuristic procedures for solving (3) because the resulting IP tends to be large and difficult to 

solve. Marsten, Muller, and Killion (1979), however, described an IP-based solution procedure that was 

used very successfully by Flying Tiger Airlines. Flying Tiger had a smaller fleet than the big passenger 

carriers, so the resulting IP could be economically solved and gave markedly lower cost solutions than 

the ad hoc, heuristic methods. These optimizing methods are now being extended to large airlines. 

 A drastically simplified version of the crew-scheduling problem is given in the following example. 

This example has only ten flights to be covered. By contrast, a typical major airline has over 2000 flights 

per day to be covered. 

7.3.1 Example: Sayre-Priors Crew Scheduling 
The Sayre-Priors Airline and Stormdoor Company is a small diversified company that operates the 

following set of scheduled flights: 

 
Flights 

Flight 
Number 

 
Origin 

 
Destination 

 
Time of Day 

101 Chicago Los Angeles Afternoon 

410 New York Chicago Afternoon 

220 New York Miami Night 

  17 Miami Chicago Morning 

    7 Los Angeles Chicago Afternoon 

  13 Chicago New York Night 

  11 Miami New York Morning 

  19 Chicago Miami Night 

  23 Los Angeles Miami Night 

    3 Miami Los Angeles Afternoon 
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The flight schedule is illustrated graphically in the figure below: 

Figure 7.3: Flight Schedule 

Afternoon
Night

Morning
 

 The Flight Operations Staff would like to set up a low-cost crew assignment schedule. The basic 

problem is to determine the next flight, if any, a crew operates after it completes one flight. A basic 

concept needed in understanding this problem is that of a tour. The characteristics of a tour are as 

follows: 

• A tour consists of from one to three connecting flights. 

• A tour has a cost of $2,000 if it terminates in its city of origin. 

• A tour that requires “deadheading” (i.e., terminates in a city other than the origin city) costs 

$3,000. 

 In airline parlance, a tour is frequently called a “pairing” or a “rotation” because a tour consist of a 

pair of duty periods, an outbound one, and a return one. The following are examples of acceptable tours: 

Tour Cost 

17, 101, 23 $2,000 

220, 17, 101 $3,000 

410, 13 $2,000 

 In practice, the calculation of the cost of a tour is substantially more complicated than above.  There 

might be a minimum fixed payment, cf, to a crewmember simply for being on duty,  a guaranteed rate 

per hour, cd , while in the airplane,  and a guaranteed rate per hour, ce , for total elapsed time away from 

home so that the we might have: pairing_cost(i) = max{ cf, cd *flying_time(i), ce *elapsed_time(i)}). 
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7.3.2 Solving the Sayre/Priors Crew Scheduling Problem 
The first thing to do for this small problem is to enumerate all feasible tours. We do not consider a 

collection of flights that involve an intermediate layover a tour. There are 10 one-flight tours, 14 

two-flight tours, and either 37 or 41 three-flight tours depending upon whether one distinguishes the 

origin city on a non-deadheading tour. These tours are indicated in the following table: 

List of Tours 

One-Flight 
Tours 

 
Cost 

Two-Flight 
Tours 

 
Cost 

Three-Flight 
Tours 

 
Cost 

  1.   101 $3,000 11.   101, 23 $3,000 25.   101, 23, 17 $2,000 

  2.   410 $3,000 12.   410, 13 $2,000 26.   101, 23, 11 $3,000 

  3.   220 $3,000 13.   410, 19 $3,000 27.   410, 19, 17 $3,000 

  4.   17 $3,000 14.   220, 17 $3,000 28.   410, 19, 11 $2,000 

  5.   7 $3,000 15.   220, 11 $2,000 29.   220, 17, 101 $3,000 

  6.   13 $3,000 16.   17, 101 $3,000 30.   220, 11, 410 $3,000 

  7.   11 $3,000 17.   7, 13 $3,000 25.   17, 101, 23 $2,000 

  8.   19 $3,000 18.   7, 19 $3,000 31.   7, 19, 17 $3,000 

  9.   23 $3,000 19.   11, 410 $3,000 32.   7, 19, 11 $3,000 

10.   3 $3,000 20.   19, 17 $2,000 33.   11, 410, 13 $3,000 

  21.   19, 11 $3,000 28.   11, 410, 19 $2,000 

  22.   23, 17 $3,000 34.   19, 17, 101 $3,000 

  23.   23, 11 $3,000 28.   19, 11, 410 $2,000 

  24.   3, 23 $2,000 25.   23, 17, 101 $2,000 

    35.   23, 11, 410 $3,000 

    36.   3, 23, 17 $3,000 

    37.   3, 23, 11 $3,000 

Define the decision variables: 

Ti =  
1 if tour i is used 

 0 if tour i is not used, for i = 1, 2, . . . , 37. 

We do not distinguish the city of origin on non-deadheading three-flight tours. The formulation,in 

words, is: 

  Minimize the cost of the tours selected; 

      Subject to, 

    For each flight leg i: 

      The number of tours selected must include exactly one that covers 

flight i. 
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In LINGO scalar format, a model is: 

MODEL: 

   [_1] MIN=  3 * T_1 + 3 * T_2 + 3 * T_3 + 3 * T_4 + 3 * T_5  

      + 3 * T_6 + 3 * T_7 + 3 * T_8 + 3 * T_9 + 3 * T_10  

      + 3 * T_11 + 2 * T_12 + 3 * T_13 + 3 * T_14 + 2 * T_15 

      + 3 * T_16 + 3 * T_17 + 3 * T_18 + 3 * T_19 + 2 * T_20  

      + 3 * T_21 + 3 * T_22 + 3 * T_23 + 2 * T_24 + 2 * T_25 

      + 3 * T_26 + 3 * T_27 + 2 * T_28 + 3 * T_29 + 3 * T_30  

      + 3 * T_31 + 3 * T_32 + 3 * T_33 + 3 * T_34 + 3 * T_35  

      + 3 * T_36 + 3 * T_37 ; 

   [COV_F101]  T_1 + T_11 + T_16 + T_25 + T_26 + T_29 + T_34 = 1 ; 

   [COV_F410] T_2 + T_12 + T_13 + T_19 + T_27 + T_28 +  T_30 

           + T_33 + T_35 = 1 ; 

   [COV_F220]T_3 + T_14 + T_15 + T_29 + T_30 = 1 ; 

   [COV_F17] T_4 + T_14 + T_16 + T_20 + T_22 + T_25 + T_27 

           + T_29 + T_31 + T_34 + T_36 = 1 ; 

   [COV_F7] T_5 + T_17 + T_18 + T_31 + T_32 = 1 ; 

   [COV_F13] T_6 + T_12 + T_17 + T_26 = 1 ; 

   [COV_F11] T_7 + T_15 + T_19 + T_21 + T_23 + T_26 + T_28 

           + T_30 + T_32 + T_33 + T_35 + T_37 = 1 ; 

   [COV_F19] T_8 + T_13 + T_18 + T_20 + T_21 + T_27 + T_28 

           + T_31 + T_32 + T_34 = 1 ; 

   [COV_F23] T_9 + T_11 + T_22 + T_23 + T_24 + T_25 + T_35 

           + T_36 + T_37 = 1 ; 

   [COV_F3] T_10 + T_24 + T_36 + T_37 = 1 ; 

    @BIN( T_1);  @BIN( T_2);  @BIN( T_3);  @BIN( T_4);  @BIN( T_5);  

    @BIN( T_6);  @BIN( T_7);  @BIN( T_8);  @BIN( T_9);  @BIN( T_10); 

    @BIN( T_11); @BIN( T_12); @BIN( T_13); @BIN( T_14); @BIN( T_15); 

    @BIN( T_16); @BIN( T_17); @BIN( T_18); @BIN( T_19); @BIN( T_20); 

    @BIN( T_21); @BIN( T_22); @BIN( T_23); @BIN( T_24); @BIN( T_25); 

    @BIN( T_26); @BIN( T_27); @BIN( T_28); @BIN( T_29); @BIN( T_30); 

    @BIN( T_31); @BIN( T_32); @BIN( T_33); @BIN( T_34); @BIN( T_35); 

    @BIN( T_36); @BIN( T_37);              

 END 

The tabular “Picture” below of the coefficients may give a better feel for the structure of the 

problem. The first constraint, for example, forces exactly one of the tours including flight 101, to be 

chosen: 

                       T T T T T T T T T T T T T T T T T T T T T T T T T T T T  

     T T T T T T T T T 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3  

     1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

 

 1:  3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 2 3 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 MIN 

 2:  1                   1         1                 1 1     1         1       = 1 

 3:    1                   1 1           1               1 1   1     1   1     = 1 

 4:      1                     1 1                           1 1               = 1 

 5:        1                       1       1   1     1   1   1   1     1   1   = 1 

 6:          1                       1 1                         1 1           = 1 

 7:            1           1         1                               1         = 1 

 8:              1               1       1   1   1     1   1   1   1 1   1   1 = 1 

 9:                1         1         1   1 1           1 1     1 1   1       = 1 

10:                  1   1                     1 1 1 1 1                 1 1 1 = 1 

11:                    1                           1                       1 1 = 1 
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When solved simply as an LP, the solution is naturally integer, with the tours selected being: 

Tour Flights 

T17 7, 13 

T24 3, 23 

T28 410, 19, 11 

T29 220, 17, 101 

The cost of this solution is $10,000.  

It can be shown, e.g., by adding the constraint: T_17 + T_24 + T_28 + T_29 <= 3, that 

there is one other solution with a cost of $10,000, namely: 

Tour Flights 

T12 410, 13 

T24 3, 23 

T29 220, 17, 101 

T32 7, 11, 19 

 The kind of IP’s that result from the crew scheduling problem with more than 500 constraints have 

proven somewhat difficult to solve.  A general formulation of the Sayre/Priors problem is given in 

section 7.4. 

7.3.3 Additional Practical Details 
An additional detail sometimes added to the above formulation in practice is crew-basing constraints. 

Associated with each tour is a home base. Given the number of pilots living near each home base, one 

may wish to add a constraint for each home base that puts an upper limit on the number of tours selected 

for that home base.  

A simplification in practice is that a given pilot is typically qualified for only one type of aircraft. 

Thus, a separate crew-scheduling problem can be solved for each aircraft fleet (e.g., Boeing 747, Airbus 

320, etc.). Similarly, cabin attendant crews can be scheduled independently of flight (pilot) crews. 

After crew schedules have been selected,  there still remains the rostering problem of assigning 

specifice crew schedules to specific pilots.  In the U.S., perhaps by union agreement, many of the major 

airlines allow pilots to select schedules by a bidding process.  In some smaller airlines and in non-U.S.  

airlines schedules may be assigned to specific pilots by a central planning process.  The bidding process 

may make some of the crew members more happy, at least the ones with high seniority,  however, the 

centralized assignment process may be more efficient because it eliminates inefficient gaming of the 

system. 

Uncertainties due to bad weather and equipment breakdowns are an unfortunate fact of airline life.  

Thus,  one wishes to have crew schedules that are robust or insensitive to disruptions.  A crew schedule 

tends to be disruption sensitive if the schedule requires crews to change planes frequently and if the 

connection times between these changes are short.   Suppose that a plane is delayed a half hour by a 

need to get some equipment repaired.  If the crew of this plane is scheduled to change planes at the next 

stop,  then at the next stop the airline may need or wish to delay up to three flights:  a) the flight that is 

scheduled to use this plane,  b) the flight which is scheduled to use this flight crew, and c) the flight to 

which a significant number of passengers on this flight are transferring.  In our little example we saw 

that there were alternate optima.  Thus,  in addition to minimizing total crew costs, we might wish to 

secondarily minimize expected delays by avoiding tours that involve crews changing planes  a)  such 
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that there is short change-over time,  b) different from the plane to which most of the passengers are 

changing(thus two flights must be delayed),  c) at an airport where there are few backup crews available 

to take over for the delayed crew. 

7.4 A Generic Covering/Partitioning/Packing Model 
The model given for the crew-scheduling problem was very specific to that particular problem. The 

following is a fairly general one for any standard, so-called covering, partitioning or packing problem. 

This model takes the viewpoint of facilities and customers. Each facility or pattern, if opened, serves a 

specified set of customers or demands. Specialized to our crew-scheduling example, a tour is a facility, 

and a flight is a customer. The main data to be entered are the "2-tuples" describing which facilities serve 

which customers. This model allows considerable flexibility in specifying whether customers are over 

served or under served. If the parameter BUDU is set to 0, this means that every customer (or flight) 

must be served by at least one open facility (or tour). This is sometimes called a set covering problem. 

Alternatively, if BUDV is set to 0, then each flight can appear in at most one selected tour. This is 

sometimes called a set packing problem. If both BUDV and BUDU are set to zero, then each flight must 

appear in exactly one selected tour. This is sometimes called a set partitioning problem. It is called set 

partition because any feasible solution in fact partitions the set of customers into subsets, one subset for 

each chosen open facility (or tour). 

 
      ! The set covering/partitioning/packing/ problem (COVERPAK); 

       SETS: 

       ! Given a set of demands, a set of candidate patterns,  

         and which demands are covered by each pattern, 

         which patterns should be used?; 

       PATTERN: COST, Y; ! The patterns or tours; 

       DMND: CU, CV, U, V; 

      ! The "which PATTERN serves which demand" 2-tuples; 

       PXD( PATTERN, DMND); 

      ENDSETS 

      DATA: 

      ! Data for a simple crew scheduling problem; 

       PATTERN = 1..37; 

      !  Cost of each PATTERN; 

       COST = 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 2 

              3 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3; 

      ! Names of the demands; 

       DMND= F101 F410 F220 F17 F7 F13 F11 F19 F23 F3; 

      ! Cost/unit under at each demand; 

        CU =   1; 

      ! Cost/unit over at each demand; 

        CV =   1; 

 

      ! Max allowed to spend on patterns or facilities facilities; 

       BUDGET = 9999; 

      ! Max allowed underage at each demand,  

           0 makes a covering or partitioning problem; 

        BUDU = 0; 

      ! Max allowed overage at each demand,  

           0 makes it a packing or partitioning problem; 

        BUDV = 0; 
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     ! Both = 0 makes it a partitioning problem; 

     PXD = 

     1,F101  2,F410  3,F220  4,F17  5,F7    6,F13  7,F11  8,F19 9,F23  10,F3 

    11,F101 11,F23 12,F410 12,F13 13,F410 13,F19 14,F220 14,F17 

    15,F220 15,F11  16,F17 16,F101 17,F7 17,F13 18,F7 18,F19  

    19,F11  19,F410 20,F19 20,F17 21,F19  21,F11 22,F23 22,F17 

    23,F23  23,F11  24,F3  24,F23 25,F101 25,F23 25,F17  

    26,F101 26,F13  26,F11 27,F410 27,F19 27,F17 

    28,F410 28,F19 28,F11 29,F220 29,F17 29,F101 30,F220 30,F11 30,F410 

    31,F7   31,F19 31,F17 32,F7 32,F19 32,F11 33,F11 33,F410  

    34,F19  34,F17 34,F101 35,F23 35,F11 35,F410 36,F3 36,F23 36,F17 

    37,F3   37,F23 37,F11; 

   ENDDATA 

   !--------------------------------------------------------; 

   ! Minimize cost of facilities opened, demands under or over served,; 

   MIN = @SUM( PATTERN( I): COST( I) * Y(I))  

       + @SUM( DMND( J): CU( J) * U( J) + CV( J) * V( J)); 

 

    ! For each demand,  

       sum of patterns serving it + under variable - over variable= 1; 

      @FOR( DMND( J): 

       [COV] @SUM( PXD( I, J): Y( I)) + U( J) - V( J) = 1; 

          ); 

 

   ! Stay within budget on facilities cost; 

      @SUM( PATTERN: COST * Y) <= BUDGET; 

 

   ! and demand under and overage costs; 

      @SUM( DMND: CU * U) <= BUDU; 

      @SUM( DMND: CV * V) <= BUDV; 

 

   ! A PATTERN is either open or it is not, no halfsies; 

      @FOR( PATTERN( I): @BIN( Y( I));); 

 

A solution obtained from this model is: 

Variable           Value       

  Y( 12)        1.000000      

  Y( 24)        1.000000      

  Y( 29)        1.000000      

  Y( 32)        1.000000     

 Notice that it is different from our previous solution. It, however, also has a cost of 10(000), so it is 

an alternate optimum.  
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7.5 Problems 
1. Certain types of facilities operate seven days each week and face the problem of allocating person 

power during the week as staffing requirements change as a function of the day of the week. This 

kind of problem is commonly encountered in public service and transportation organizations. 

Perhaps the most fundamental staffing problem involves the assignment of days off to full-time 

employees. In particular, it is regularly the case that each employee is entitled to two consecutive 

days off per week. If the number of employees required on each of the seven days of the week is 

given, then the problem is to find the minimum workforce size that will allow these demands to be 

met and then to determine the days off for the people in this workforce. 

 To be specific, let us study the problem faced by the Festus City Bus Company. The number of 

drivers required for each day of the week is as follows: 

Mon Tues Wed Thurs Fri Sat Sun 

18 16 15 16 19 14 12 

 How many drivers should be scheduled to start a five-day stint on each day of the week? 

Formulate this problem as a linear program. What is the optimal solution? 

2. Completely unintentionally, several important details were omitted from the Festus City Staffing 

Problem (see previous question): 

a) Daily pay is $50 per person on weekdays, $75 on Saturday, and $90 on Sunday. 

b) There are up to three people that can be hired who will work part-time, specifically, a 3-day 

week consisting of Friday, Sunday, and Monday. Their pay for this 3-day stint is $200. 

Modify the formulation appropriately. Is it obvious whether the part-time people will be used? 

3. A political organization, Uncommon Result, wants to make a mass mailing to solicit funds. It has 

identified six “audiences” it wishes to reach. There are eight mailing lists it can purchase in order 

to get the names of the people in each audience. Each mailing list covers only a portion of the 

audiences. This coverage is indicated in the table below: 

 Audiences  

Mailing 
List 

 
M.D. 

 
LL.D. 

 
D.D.S. 

Business 
Executive 

Brick 
Layers 

 
Plumbers 

 
Cost 

1 Y N N Y N N $5000 

2 N Y Y N N N $4000 

3 N Y N N N Y $6000 

4 Y N N N N Y $4750 

5 N N N Y N Y $5500 

6 N N Y N N N $3000 

7 N Y N N Y N $5750 

8 Y N N N Y N $5250 
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 A “Y” indicates the mailing list contains essentially all the names in the audience. An “N” 

indicates that essentially no names in the audience are contained in the mailing list. The costs 

associated with purchasing and processing a mailing list are given in the far right column. No change 

in total costs is incurred if an audience is contained in several mailing lists. 

 Formulate a model that will minimize total costs while ensuring all audiences are reached. 

Which mailing lists should be purchased? 

4. The Pap-Iris Company prints various types of advertising brochures for a wide range of customers. 

The raw material for these brochures is a special finish paper that comes in 50-inch width rolls. The 

50-inch width costs $10 per inch-roll (i.e., $500/roll). A roll is 1,000 feet long. Currently, Pap-Iris 

has three orders. Order number 1 is a brochure that is 16 inches wide with a run length of 400,000 

feet. Order number 2 is a brochure that is 30 inches wide and has a run length of 80,000 feet. Order 

number 3 is a brochure that is 24 inches wide and has a run length of 120,000 feet. The major 

question is how to slit the larger raw material rolls into widths suitable for the brochures. With the 

paper and energy shortages, Pap-Iris wants to be as efficient as possible in its use of paper. 

Formulate an appropriate LP. 

5. Postal Optimality Analysis (Due to Gene Moore). As part of a modernization effort, the U.S. Postal 

Service decided to improve the handling and distribution of bulk mail (second-, third- and 

fourth-class non-preferential) in the Chicago area. As part of this goal, a new processing facility 

was proposed for the Chicago area. One part of this proposal was development of a low-cost 

operational plan for the staffing of this facility. The plan would recognize the widely fluctuating 

hourly volume characteristic of such a facility and would suggest a staffing pattern or patterns that 

would accomplish the dual objectives of processing all mail received in a day while having no idle 

time. 

 A bulk mail processing facility, as the name implies, performs the function of receiving, 

unpacking, weighing, sorting by destination, and shipping of mail designated as non-preferential, 

including second class (bulk rate), third class (parcel post), and fourth class (books). It is frequently 

designed as a single purpose structure and is typically located in or adjacent to the large metropolitan 

areas, which produce this type of mail in significant volume. Although the trend in such facilities 

has been increased utilization of automated equipment (including highly sophisticated handling and 

sorting devices), paid manpower continues to account for a substantial portion of total operating 

expense. 

 Mail is received by the facility in mailbags and in containers. Both of which are shipped in 

trucks. It is also received in tied and wrapped packages, which are sent directly to the facility on 

railroad flatcars. Receipts of mail by the facility tend to be cyclical on a predictable basis throughout 

the 24-hour working day, resulting in the build-up of an “inventory” of mail during busy hours, 

which must be processed during less busy hours. A policy decision to have “no idle time” imposes 

a constraint on the optimal level of staffing. 
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 Once the facility is ready for operations, it will be necessary to implement an operating plan 

that includes staffing requirements. A number of assumptions regarding such a plan are necessary 

at the outset. Some of them are based upon existing Postal Service policy, whereas others evolve 

from functional constraints. These assumptions are as follows: 

i. Pieces of mail are homogeneous in terms of processing effort. 

ii. Each employee can process 1800 pieces per hour. 

iii. Only full shifts are worked (i.e., it is impossible to introduce additional labor inputs or 

reduce existing labor inputs at times other than shift changes). 

iv. Shift changes occur at midnight, 8:00 A.M. and 4:00 P.M. (i.e., at the ends of the first, second 

and third shifts, respectively). 

v. All mail arrivals occur on the hour. 

vi. All mail must be processed the same day it is received (i.e., there may be no “inventory” 

carryover from the third shift to the following day’s first shift). 

vii. Labor rates, including shift differential, are given in the following table: 

 
Shift 

 
$/Hour 

Daily 
Rate 

1st (Midnight-8 A.M.) 7.80 62.40 

2nd (8 A.M. -4 P.M). 7.20 57.60 

3rd (4 P.M. -Midnight) 7.60 60.80 

viii. Hourly mail arrival is predictable and is given in the following table. 

Cumulative Mail Arrival 

1st Shift 2nd Shift 3rd Shift 
Hour Pieces Hour Pieces Hour Pieces 

0100 56,350 0900 242,550 1700 578,100 

0200 83,300 1000 245,000 1800 592,800 

0300 147,000 1100 249,900 1900 597,700 

0400 171,500 1200 259,700 2000 901,500 

0500 188,650 1300 323,400 2100 908,850 

0600 193,550 1400 369,950 2200 928,450 

0700 210,700 1500 421,400 2300 950,500 

0800 220,500 1600 485,100 2400 974,000 

a) Formulate the appropriate LP under the no idle time requirement. Can you predict 

beforehand the number to staff on the first shift? Will there always be a feasible solution 

to this problem for arbitrary arrival patterns? 

b) Suppose we allow idle time to occur. What is the appropriate formulation? Do you expect 

this solution to incur higher cost because it has idle time? 
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6. In the famous Northeast Tollway staffing problem, it was implied that at least a certain specified 

number of collectors were needed each period of the day. No extra benefit was assumed from having 

more collectors on duty than specified. You may recall that, because of the fluctuations in 

requirements over the course of the day, the optimal solution did have more collectors than required 

on duty during certain periods. 

 In reality, if more collectors are on duty than specified, the extra collectors are not completely 

valueless. The presence of the extra collectors results in less waiting for the motorists (boaters?). 

Similarly, if less than the specified number of collectors is on duty, the situation is not necessarily 

intolerable. Motorists will still be processed, but they may have to wait longer. 

 After much soul searching and economic analysis, you have concluded that one full-time 

collector costs $100 per shift. An extra collector on duty for one hour results in $10 worth of benefits 

to motorists. Further, having one less collector on duty than required during an one-hour period 

results in a waiting cost to motorists of $50. 

 Assuming you wish to minimize total costs (motorists and collectors), show how you would 

modify the LP formulation. You only need illustrate for one constraint. 

7. Some cities have analyzed their street cleaning and snow removal scheduling by methods somewhat 

analogous to those described for the Sayre-Priors airline problem. After a snowfall, each of specified 

streets must be swept by at least one truck. 

a) What are the analogs of the flight legs in Sayre-Priors? 

b) What might be the decision variables corresponding to the tours in Sayre-Priors? 

c) Should the constraints be equality or inequality in this case and why? 

8. The St. Libory Quarry Company (SLQC) sells the rock that it quarries in four grades: limestone, 

chat, Redi-Mix-Grade, and coarse. A situation it regularly encounters is one in which it has large 

inventories of the grades it does not need and very little inventory in the grades needed at the 

moment. Large rocks removed from the earth are processed through a crusher to produce the four 

grades. For example, this week it appears the demand is for 50 tons of limestone, 60 tons of chat, 

70 tons of Redi-Mix, and 30 tons of coarse. Its on-hand inventories for these same grades are 

respectively: 5, 40, 30, and 40 tons. For practical purposes, one can think of the crusher as having 

three operating modes: close, medium, and coarse. SLQC has gathered some data and has concluded 

one ton of quarried rock gets converted into the following output grades according to the crusher 

setting as follows: 

 Tons Output per Ton Input  

Crusher 
Operating 

Mode 

 
 

Limestone 

 
 

Chat 

 
 

Redi-Mix 

 
 

Coarse 

 
Operating 
Cost/Ton 

Close 0.50 0.30 0.20 0.00 $8 

Medium 0.20 0.40 0.30 0.10 $5 

Coarse 0.05 0.20 0.35 0.40 $3 

 SLQC would like to know how to operate its crusher to bring inventories up to the equivalent 

of at least two weeks worth of demand. Provide whatever help your current circumstances permit. 
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9. A certain optical instrument is being designed to selectively provide radiation over the spectrum 

from about 3500 to 6400 Angstrom units. To cover this optical range, a range of chemicals must be 

incorporated into the design. Each chemical provides coverage of a certain range. A list of the 

available chemicals, the range each covers, and its relative cost is provided below. 

 Range Covered in Angstroms  

 
Chemical 

 
Lower Limit 

 
Upper Limit 

Relative 
Cost 

PBD 3500 3655 4 

PPO 3520 3905 3 

PPF 3600 3658 1 

PBO 3650 4075 4 

PPD 3660 3915 1 

POPOP 3900 4449 6 

A-NPO 3910 4095 2 

NASAL 3950 4160 3 

AMINOB 3995 4065 1 

BBO 4000 4195 2 

D-STILB 4000 4200 2 

D-POPOP 4210 4405 2 

A-NOPON 4320 4451 2 

D-ANTH 4350 4500 2 

4-METHYL-V 4420 5400 9 

7-D-4-M 4450 4800 3 

ESCULIN 4450 4570 1 

NA-FLUOR 5200 6000 9 

RHODAMINE-6G 5600 6200 8 

RHODAMINE-B 6010 6400 8 

ACRIDINE-RED 6015 6250 2 

 What subset of the available chemicals should be chosen to provide uninterrupted coverage 

from 3500 to 6400 Angstroms? 

10. A manufacturer has the following orders in hand: 

Order X Y Z 

Units 60,000 90,000 300,000 

Selling 
Price/unit 

.45 .24 .16 
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 Each order is for a single distinct type of product. The manufacturer has four different 

production processes available for satisfying these orders. Each process produces a different 

combination of the three products. Each process costs $0.50 per unit. The manufacturer must satisfy 

the volumes specified in the above table. The manufacturer formulated the following LP: 

Min  .5 A + .5 B + .5 C  + .5 D 

s.t. 

        A                        >= 60000 

             2 B +    C          >= 90000 

        A        +    C  +  3 D  >= 300000 

a) Which products are produced by process C? 

b) Suppose the agreements with customers are such that, for each product, the manufacturer 

is said to have filled the order if the manufacturer delivers an amount within + or − 10% 

of the “nominal” volume in the above table. The customer pays for whatever is delivered. 

Modify the formulation to incorporate this more flexible arrangement. 

11. The formulation and solution of a certain staff-scheduling problem are shown below: 

MIN M + T + W + R + F + S + N 

          T + W + R + F + S        >= 14 

              W + R + F + S + N    >= 9 

      M         + R + F + S + N    >= 8 

      M + T         + F + S + N    >= 6 

      M + T + W         + S + N    >= 17 

      M + T + W + R         + N    >= 15 

      M + T + W + R + F            >= 18 

END 

Optimal solution found at step:           4 

Objective value:                 19.0000000     

     Variable         Value         Reduced Cost 

           M        5.000000            .0000000 

           T        .0000000            .0000000 

           W        11.00000            .0000000 

           R        .0000000            .0000000 

           F        2.000000            .0000000 

           S        1.000000            .0000000 

           N        .0000000            .3333333 

         Row    Slack or Surplus      Dual Price 

           2        .0000000           -.3333333 

           3        5.000000            .0000000 

           4        .0000000           -.3333333 

           5        2.000000            .0000000 

           6        .0000000           -.3333333 

           7        1.000000            .0000000 

           8        .0000000           -.3333333 
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 where, M, T, W, R, F, S, N is the number of people starting their five-day work week on Monday, 

Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday respectively. 

a) How many people are required on duty on Thursday? 

b) Suppose that part-time helpers are available who will work the three-day pattern, Thursday, 

Friday, and Saturday. That is, if you hire one of them, they will work all three days. These 

people cost 20% more per day than the ordinary folk who work a five-day week. Let P 

denote the number of part-timers to hire. Show how to modify the formulation to 

incorporate this option. 

c) Using information from the solution report, what can you say about the (economic) 

attractiveness of the part-time help? 

12. Acie Knielson runs a small survey research company out of a little office on the Northwest side. He 

has recently been contracted to do a telephone survey of the head-of-household of at least 220 

households. The demographics of the survey must satisfy the following profile: 

Age of head-of-household 18-25 26-35 36-60 61 

Households in survey (min): 30 50 100 40 

 When Acie makes a phone call, he knows only on average what kind of head-of-household he 

will find (if any). Acie can make either daytime or nighttime phone calls. Calls at night have a higher 

probability of success. However, they cost more because a higher wage must be paid. Being a 

surveyor, Acie has good statistics on all this. Specifically, from past experience, he knows he can 

expect: 

Percent of calls finding head-of-household of given type 
 
Call Type 

 
18-25 

 
26-35 

 
36-60 

61 or 
more 

Not at 
home 

 
Cost/call 

Day 2% 2% 8% 15% 73% $2.50 

Night 4% 14% 28% 18% 36% $5.50 

 In words, what are the decision variables? What are the constraints? What is your 

recommendation? How much do you estimate this project will cost Acie? 
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13. A political candidate wants to make a mass mailing of some literature to counteract some nasty 

remarks his opponent has recently made. Five mailing lists have been identified that contain names 

and addresses of voters our candidate might like to reach. Each list may be purchased for a price. A 

partial list cannot be purchased. The numbers of names each list contains in each of four professions 

are listed below. 

Names on Each List (in 1000’s) by Profession 
Mailing 

List 
 

Law 
 

Health 
Business 

Executives 
Craft 

Professionals 
Cost of 

List 

1 28 4 7 2 41,000 

2 9 29 11 3 52,000 

3 6 3 34 18 61,000 

4 2 4 6 20 32,000 

5 8 9 12 14 43,000 

Desired 

Coverage 
20 18 22 20  

 Our candidate has estimated how many voters he wants to reach in each profession. This is 

listed in the row “Desired Coverage”. Having a more limited budget than the opponent, our 

candidate does not want to spend any more than he has to in order to “do the job”. 

a) How many decision variables would you need to model this problem? 

b) How many constraints would you need to model this problem? 

c) Define the decision variables you would use and write the objective function. 

d) Write a complete model formulation. 

14. Your agency provides telephone consultation to the public from 7 a.m. to 8 p.m., five days a week. 

The telephone load on your agency is heaviest in the months around April 15 of each year. You 

would like to set up staffing procedures for handling this load during these busy months. Each 

telephone consultant you hire starts work each day at either 7, 8, 9, 10, or 11 a.m., works for four 

hours, is off for one hour, and then works for another four hours. A complication that has become 

more noteworthy in recent years is that an increasing fraction of the calls handled by your agency 

is from Spanish-speaking clients. Therefore, you must have some consultants who speak Spanish. 

You are able to hire two kinds of consultants: English-speaking only, and bilingual (i.e., both 

English- and Spanish-speaking). A bilingual consultant can handle English and Spanish calls 

equally well. It should not be surprising that a bilingual consultant costs 1.1 times as much as an 

English-only consultant. You have collected some data on the call load by hour of the day and 

language type, measured in consultants required, for one of your more important offices. These data 

are summarized below: 

Hour of the day: 7 8 9 10 11 12 1 2 3 4 5 6 7 

English load: 4 4 5 6 6 8 5 4 4 5 5 5 3 

Spanish load: 5 5 4 3 2 3 4 3 2 1 3 4 4 

 For example, during the hour from 10 a.m. to 11a.m., you must have working at least three 

Spanish-speaking consultants plus at least six more who can speak English. 

How many consultants of each type would you start at each hour of the day? 
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15. The well-known mail order company R. R. Bean staffs its order-taking phone lines seven days per 

week. Each staffer costs $100 per day and can work five consecutive days per week. An important 

question is: Which five-day interval should each staffer work? One of the staffers is pursuing an 

MBA degree part-time and, as part of her coursework, developed the following model specific to 

R. R. Bean’s staffing requirements. 

MIN=500 * M + 500 * T + 500 * W + 500 * R + 500 * F  

     + 500 * S + 500 * N; 

  [R1] M               + R   + F   + S   + N >= 6 ; 

  [R2] M   + T               + F   + S   + N >= 7 ; 

  [R3] M   + T   + W               + S   + N >= 11; 

  [R4] M   + T   + W   + R               + N >= 9 ; 

  [R5] M   + T   + W   + R   + F             >= 11; 

  [R6]       T   + W   + R   + F   + S       >= 9;  

  [R7]             W   + R   + F   + S   + N >= 10; 

END 

 Note that M denotes the number of staffers starting on Monday, T the number starting on 

Tuesday, etc. R1, R2, etc., simply serve as row identifiers. 

a) What is the required staffing level on Wednesday (not the number to hire starting on 

Wednesday, which is a harder question)? 

b) Suppose you can hire people on a 3-day-per-week part-time schedule to work the pattern 

consisting of the three consecutive days, Wednesday, Thursday, Friday. Because of 

training, turnover, and productivity considerations of part-timers, you figure the daily cost 

of these part-timers will be $105 per day. Show how this additional option would be added 

to the model above. 

c) Do you think the part-time option above might be worth using? 

d) When the above staffing requirements are met, there will nevertheless be some customer 

calls that are lost, because of the chance all staffers may be busy when a prospective 

customer calls. A fellow from marketing who is an expert on customer behavior and knows 

a bit of queuing theory estimates having an additional staffer on duty on any given day 

beyond the minimum specified in the model above is worth $75. More than one above the 

minimum is of no additional value. For example, if the minimum number of staffers 

required on a day is 8, but there are actually 10 on duty, then the better service will generate 

$75 of additional revenue. A third fellow, who is working on an economics degree 

part-time at Freeport Community College, argues that, because the $75 per day benefit is 

less than the $100 per day cost of a staffer, the solution will be unaffected by the $75 

consideration. Is this fellow’s argument correct? 

e) To double check your answer to (b), you decide to generalize the formulation to incorporate 

the $75 benefit of one-person overstaffing. Define any additional decision variables needed 

and show (i) any modifications to the objective function and to existing constraints and (ii) 

any additional constraints. You need only illustrate for one day of the week. 
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16. In a typical state lottery, a player submits an entry by choosing six numbers without replacement 

(i.e., no duplicates) from the set of numbers {1, 2, 3, ..., 44}. After all entries have been submitted, 

the state randomly chooses six numbers without replacement from the set {1, 2, 3,..., 44}. If all of 

your six numbers match those of the state, then you win a big prize. If only five out of six of your 

numbers match those of the state, then you win a medium size prize. If only four out of six of your 

numbers match those of the state, then you win a small prize. If several winners chose the same 

set of numbers, then the prize is split equally among them. You are thinking of submitting two 

entries to the next state lottery. A mathematician friend suggests the two entries: {2, 7, 1, 8, 28, 

18} and {3, 1, 4, 15, 9, 2}. Another friend suggests simply {1, 2, 3, 4, 5, 6} and {7, 8, 9, 10, 11, 

12}. Which pair of entries has the higher probability of winning some prize? 

 

17. For most cutting stock problems,  the continous LP solution is close to the IP solution.  In 

particular, you may notice that many cutting stock problems possess the “integer round-up” 

feature.  For example, if the LP solution requires 11.6 sets,  then that is a good indication that 

there is an IP solution that requires exactly 12 sets.  Does this round-up feature hold in general?  

Consider for example a problem in which there is a single raw material of width 600 cm.  There 

are three finished good widths: 300 cm,  200 cm, and 120 cm,  with requirements respectively of  

3,  5,  and 9 units. 
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Networks, Distribution and 
PERT/CPM 

 
 

8.1 What’s Special About Network Models 
A subclass of models called network LPs warrants special attention for three reasons: 

1. They can be completely described by simple, easily understood graphical figures. 

2. Under typical conditions, they have naturally integer answers, and one may find a network 

LP a useful device for describing and analyzing the various shipment strategies. 

3. They are frequently easier to solve than general LPs. 

 Physical examples that come to mind are pipeline or electrical transmission line networks. Any 

enterprise producing a product at several locations and distributing it to many warehouses and/or 

customers may find a network LP a useful device for describing and analyzing shipment strategies. 

 Although not essential, efficient specialized solution procedures may be used to solve network LPs. 

These procedures may be as much as 100 times faster than the general simplex method. Bradley, Brown, 

and Graves (1977) give a detailed description. Some of these specialized procedures were developed 

several years before the simplex method was developed for general LPs. 

 Figure 8.1 illustrates the network representing the distribution system of a firm using intermediate 

warehouses to distribute a product. The firm has two plants (denoted by A and B), three warehouses 

(denoted by X, Y, and Z), and four customer areas (denoted by 1, 2, 3, 4). The numbers adjacent to each 

node denote the availability of material at that node. Plant A, for example, has nine units available to be 

shipped. Customer 3, on the other hand, has −4 units meaning it needs to receive a shipment of four 

units. 

 The number above each arc is the cost per unit shipped along that arc. For example, if five of plant 

A’s nine units are shipped to warehouse Y, then a cost of 5  2 = 10 will be incurred as a direct result. 

The problem is to determine the amount shipped along each arc, so total costs are minimized and every 

customer has his requirements satisfied. 
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Figure 8.1 Three-Level Distribution Network 
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 The essential condition on an LP for it to be a network problem is that it be representable as a 

network. There can be more than three levels of nodes, any number of arcs between any two nodes, and 

upper and lower limits on the amount shipped along a given arc. 

 With variables defined in an obvious way, the general LP describing this problem is: 

[COST] MIN = AX + 2 * AY + 3 * BX + BY + 2 * BZ + 5 * X1  

   + 7 * X2 + 9 * Y1 + 6 * Y2 + 7 * Y3 + 8 * Z2 + 7 * Z3  

   + 4 * Z4; 

[A] AX + AY <= 9; 

[B] BX + BY + BZ <= 8; 

[X] - AX - BX + X1 + X2 = 0; 

[Y] - AY - BY + Y1 + Y2 + Y3 = 0; 

[Z] - BZ + Z2 + Z3 + Z4 = 0; 

[C1] - X1 - Y1 = -3; 

[C2] - X2 - Y2 - Z2 = -5; 

[C3] - Y3 - Z3 = -4; 

[C4] - Z4 = -2;  

 There is one constraint for each node that is of a “sources = uses” form. Constraint 5, for example, 

is associated with warehouse Y and states that the amount shipped out minus the amount shipped in must 

equal 0. 

 A different view of the structure of a network problem is possible by displaying just the coefficients 

of the above constraints arranged by column and row. In the picture below, note that the apostrophes are 

placed every third row and column just to help see the regular patterns: 

  A  A  B  B  B  X  X  Y  Y  Y  Z  Z  Z  

  X  Y  X  Y  Z  1  2  1  2  3  2  3  4  

COST:  1  2  3  1  2  5  7  9  6  7  8  7  4 MIN 

A:  1  1 '   '   '   '  =  9 

B: ' '  1  1  1 ' ' ' ' ' ' ' ' =  8 

X: −1  −1    1  1  '   '  = 

Y:  −1  −1  '   1  1  1  '  = 

Z: ' ' ' ' −1 ' ' ' ' '  1  1  1 = 

C1:   '   −1  −1 '   '  = −3 
C2:   '   ' −1  −1  −1 '  = -5 

C3: ' ' ' ' ' ' ' ' ' −1 ' −1 ' = -4 

C4:   '   '   '   ' −1 = −2 
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 You should notice the key feature of the constraint matrix of a network problem. That is, without 

regard to any bound constraints on individual variables, each column has exactly two nonzeroes in the 

constraint matrix. One of these nonzeroes is a +1, whereas the other is a −1. According to the convention 

we have adopted, the +1 appears in the row of the node from which the arc takes material, whereas the 

row of the node to which the arc delivers material is a −1. On a problem of this size, you should be able 

to deduce the optimal solution manually simply from examining Figure 8.1. You may check it with the 

computer solution below: 

Variable           Value        Reduced Cost 

      AX        3.000000           0.000000 

      AY        3.000000           0.000000 

      BX        0.000000           3.000000 

      BY        6.000000           0.000000 

      BZ        2.000000           0.000000 

      X1        3.000000           0.000000 

      X2        0.000000           0.000000 

      Y1        0.000000           5.000000 

      Y2        5.000000           0.000000 

      Y3        4.000000           0.000000 

      Z2        0.000000           3.000000 

      Z3        0.000000           1.000000 

      Z4        2.000000           0.000000 

     Row    Slack or Surplus      Dual Price 

    COST      100.000000          -1.000000 

       A        3.000000           0.000000 

       B        0.000000           1.000000 

       X        0.000000           1.000000 

       Y        0.000000           2.000000 

       Z        0.000000           3.000000 

      C1        0.000000           6.000000 

      C2        0.000000           8.000000 

      C3        0.000000           9.000000 

      C4        0.000000           7.000000 

This solution exhibits two pleasing features found in the solution to any network problem: 

1. If the right-hand side coefficients (the capacities and requirements) are integer, then the 

variables will also be integer. 

2. If the objective coefficients are integer, then the dual prices will also be integer. 

We can summarize network LPs as follows: 

1. Associated with each node is a number that specifies the amount of commodity available 

at that node (negative implies that commodity is required.) 

2. Associated with each arc are: 

a) a cost per unit shipped (which may be negative) over the arc, 

b) a lower bound on the amount shipped over the arc (typically zero), and 

c) an upper bound on the amount shipped over the arc (infinity in our example). 

 The problem is to determine the flows that minimize total cost subject to satisfying all the supply, 

demand, and flow constraints. 
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8.1.1 Special Cases 
There are a number of common applications of LP models that are special cases of the standard network 

LP. The ones worthy of mention are: 

1. Transportation or distribution problems. A two-level network problem, where all the 

nodes at the first level are suppliers, all the nodes at the second level are users, and the only 

arcs are from suppliers to users, is called a transportation, or distribution model. 

2. Shortest and longest path problems. Suppose one is given the road network of the United 

States and wishes to find the shortest route from Bangor to San Diego. This is equivalent 

to a special case of a network or transshipment problem in which one unit of material is 

available at Bangor and one unit is required at San Diego. The cost of shipping over an arc 

is the length of the arc. Simple, fast procedures exist for solving this problem. An important 

first cousin of this problem, the longest route problem, arises in the analysis of PERT/CPM 

projects. 

3. The assignment problem. A transportation problem in which the number of suppliers equals 

the number of customers, each supplier has one unit available, and each customer requires 

one unit, is called an assignment problem. An efficient, specialized procedure exists for its 

solution. 

4. Maximal flow. Given a directed network with an upper bound on the flow on each arc, one 

wants to find the maximum that can be shipped through the network from some specified 

origin, or source node, to some other destination, or sink node. Applications might be to 

determine the rate at which a building can be evacuated or military material can be shipped 

to a distant trouble spot. 

 

8.1.2 Fitting into Network Structure: Roads with No Left Turns  
The parcel delivery service, UPS got publicity a number of years ago when it claimed that its drivers did 

not make left turns. The argument is that at a busy intersection, making a left turn requires the left turning 

vehicle to wait for a gap in oncoming traffic. We illustrate here that it sometimes requires a bit of thought 

to precisely describe a problem as a network problem. How do we represent restrictions on turns at an 

intersection, left turns and U turns in particular?  One way of representing turn restrictions in a standard 

directed network is to add arcs and nodes to an intersection to represent the valid possibilities.  Figure 

8.2 illustrates what one can do to represent a 4-way intersection where left turns and U turns are 

prohibited. One node is replaced by 8 nodes and 8 additional arcs. Observe that for a Roundabout, 

however, no additional nodes and arcs are required. Some UPS drivers have admitted that left turns are 

sometimes made, usually only on streets with low traffic.  

 

 

 

 

 

 

 

 

 

 

 



Networks, Distribution & PERT/CPM  Chapter 8     151 

 

 

Figure 8.2 Network for a 4-Way Intersection with No Left or U Turns 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2 PERT/CPM Networks and LP 
Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM) are two closely 

related techniques for monitoring the progress of a large project. A key part of PERT/CPM is calculating 

the critical path. That is, identifying the subset of the activities that must be performed exactly as planned 

in order for the project to finish on time. 

 We will show that the calculation of the critical path is a very simple network LP problem, 

specifically, a longest path problem. You do not need this fact to efficiently calculate the critical path, 

but it is an interesting observation that becomes useful if you wish to examine a multitude of “crashing” 

options for accelerating a tardy project. 
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 In the table below, we list the activities involved in the simple, but nontrivial, project of building a 

house. An activity cannot be started until all of its predecessors are finished: 

  Activity Predecessors 
Activity Mnemonic Time (Mnemonic) 

Dig Basement DIG 3 ⎯ 

Pour Foundation FOUND 4 DIG 

Pour Basement Floor POURB 2 FOUND 

Install Floor Joists JOISTS 3 FOUND 

Install Walls WALLS 5 FOUND 

Install Rafters RAFTERS 3 WALLS, POURB 

Install Flooring FLOOR 4 JOISTS 

Rough Interior ROUGH 6 FLOOR 

Install Roof ROOF 7 RAFTERS 

Finish Interior FINISH 5 ROUGH, ROOF 

Landscape SCAPE 2 POURB, WALLS 

 In Figure 8.3, we show the so-called PERT (or activity-on-arrow) network for this project. We 

would like to calculate the minimum elapsed time to complete this project. Relative to this figure, the 

number of interest is simply the longest path from left to right in this figure. The project can be completed 

no sooner than the sum of the times of the successive activities on this path. Verify for yourself that the 

critical path consists of activities DIG, FOUND, WALLS, RAFTERS, ROOF, and FINISH and has length 

27. 

 Even though this example can be worked out by hand, almost without pencil and paper, let us derive 

an LP formulation for solving this problem. Most people attempting this derivation will come up with 

one of two seemingly unrelated formulations. 

 The first formulation is motivated as follows. Let variables DIG, FOUND, etc. be either 1 or 0 

depending upon whether activities DIG, FOUND, etc. are on or not on the critica1 path. The variables 

equa1 to one will define the critical path. The objective function will be related to the fact that we want 

to find the maximum length path in the PERT diagram. 

 Our objective is in fact: 

MAX = 3 * DIG + 4 * FOUND + 2 * POURB + 3 * JOISTS +  

      5 * WALLS + 3 * RAFTERS + 4 * FLOOR + 6 *  

      ROUGH + 7 * ROOF + 5 * FINISH + 2 * SCAPE; 
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 Figure 8.3 Activity-on-Arc PERT/CPM Network 
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 By itself, this objective seems to take the wrong point of view. We do not want to maximize the 

project length. However, if we specify the proper constraints, we shall see this objective will seek out 

the maximum length path in the PERT network. We want to use the constraints to enforce the following: 

1. DIG must be on the critical path. 

2. An activity can be on the critical path only if one of its predecessors is on the critical path. 

Further, if an activity is on a critical path, exactly one of its successors must be on the 

critical path, if it has successors. 

3. Exactly one of SCAPE or FINISH must be on the critical path. 

Convince yourself the following set of constraints will enforce the above: 

− DIG = −1; 

− FOUND + DIG = 0; 

− JOISTS — POURB — WALLS + FOUND = 0; 

− FLOOR + JOISTS = 0; 

− RAFTERS − SCAPE + POURB + WALLS = 0; 

− ROUGH + FLOOR = 0; 

− ROOF + RAFTERS = 0; 

− FINISH + ROUGH + ROOF = 0; 
+ FINISH + SCAPE = +1; 

 If you interpret the length of each arc in the network as the scenic beauty of the arc, then the 

formulation corresponds to finding the most scenic route by which to ship one unit from A to I.  
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 The solution of the problem is: 

Optimal solution found at step:         2 

Objective value:                 27.00000 

Variable           Value        Reduced Cost 

     DIG        1.000000           0.0000000 

   FOUND        1.000000           0.0000000 

   POURB       0.0000000            3.000000 

  JOISTS       0.0000000           0.0000000 

   WALLS        1.000000           0.0000000 

 RAFTERS        1.000000           0.0000000 

   FLOOR       0.0000000           0.0000000 

   ROUGH       0.0000000            2.000000 

    ROOF        1.000000           0.0000000 

  FINISH        1.000000           0.0000000 

   SCAPE       0.0000000            13.00000 

     Row    Slack or Surplus      Dual Price 

       1        27.00000            1.000000 

       2       0.0000000            6.000000 

       3       0.0000000           -9.000000 

       4       0.0000000           -5.000000 

       5       0.0000000           -2.000000 

       6       0.0000000           0.0000000 

       7       0.0000000            2.000000 

       8       0.0000000            3.000000 

       9       0.0000000            10.00000 

      10       0.0000000            15.00000 

 Notice the variables corresponding to the activities on the critical path have a value of 1. What is 

the solution if the first constraint, −DIG = −1, is deleted? 

 It is instructive to look at the PICTURE of this problem in the following figure: 

       R       

     J   A     F   

   F  P  O  W  F  F  R   I  S  

   O  O  I  A  T  L  O  R  N  C  

  D  U  U  S  L  E  O  U  O  I  A  

  I  N  R  T  L  R  O  G  O  S  P  

  G  D  B  S  S  S  R  H  F  H  E  

             

1:  3  4  2  3  5  3  4  6  7  5  2 MAX 

2: −1    '    '    '  = −1 
3:  1 −1 '  '  '  '  '  '  '  '  ' = 

4:   1 −1 −1 −1   '    '  = 

5:     1   −1    '  = 

6:  '  '  1  '  1 −1  '  '  '  ' −1 = 

7:     '    1 −1   '  = 

8:     '   1  '  −1  '  = 

9:  '  ' '  '  '  '  ' 1  1 −1  ' = 

10:     '    '    1  1 = 1 

 Notice that each variable has at most two coefficients in the constraints. When two, they are +1 and 

−1. This is the distinguishing feature of a network LP. 
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 Now, let us look at the second possible formulation. The motivation for this formulation is to 

minimize the elapsed time of the project. To do this, realize that each node in the PERT network 

represents an event (e.g., as follows: A, start digging the basement; C, complete the foundation; and I, 

complete landscaping and finish interior). 

 Define variables A, B, C, …, H, I as the time at which these events occur. Our objective function is 

then: 

MIN = I − A; 

 These event times are constrained by the fact that each event has to occur later than each of its 

preceding events, at least by the amount of any intervening activity. Thus, we get one constraint for each 

activity: 

B − A >=  3;      ! DIG; 

C − B >=  4;      ! FOUND; 

E − C >=  2;           

D − C >=  3;           

E − C >=  5;           

F − D >=  4; 

G − E >=  3; 

H − F >=  6; 

H − G >=  7; 

I − H >=  5; 

I − E >=  2; 

The solution to this problem is: 

Optimal solution found at step:         0 

Objective value:                 27.00000 

Variable           Value        Reduced Cost 

       I        27.00000           0.0000000 

       A       0.0000000           0.0000000 

       B        3.000000           0.0000000 

       C        7.000000           0.0000000 

       E        12.00000           0.0000000 

       D        10.00000           0.0000000 

       F        14.00000           0.0000000 

       G        15.00000           0.0000000 

       H        22.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        27.00000            1.000000 

       2       0.0000000           -1.000000 

       3       0.0000000           -1.000000 

       4        3.000000           0.0000000 

       5       0.0000000           0.0000000 

       6       0.0000000           -1.000000 

       7       0.0000000           0.0000000 

       8       0.0000000           -1.000000 

       9        2.000000           0.0000000 

      10       0.0000000           -1.000000 

      11       0.0000000           -1.000000 

      12        13.00000           0.0000000 
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 Notice that the objective function value equals the critical path length. We can indirectly identify 

the activities on the critical path by noting the constraints with nonzero dual prices. The activities 

corresponding to these constraints are on the critical path. This correspondence makes sense. The 

right-hand side of a constraint is the activity time. If we increase the time of an activity on the critical 

path, it should increase the project length and thus should have a nonzero dual price. What is the solution 

if the first variable, A, is deleted? 

 The PICTURE of the coefficient matrix for this problem follows: 

    A  B  C  D  E  F  G  H  I 

 1:—1        '        '     1 MIN 

 2:−1  1     '        '        3 

 3: ' −1 '1  '    '   '    '   4 

 4:      −1  '  1     '        2 

 5:      −1  1        '       > 3 

 6: '    −1  '  1 '   '    '   5 

 7:         −1     1  '       > 4 

 8:          ' −1     1        3 

 9: '    '   '    −1  '  1 '   6 

10:          '       −1  1    > 7 

11:          '        ' −1  1  5 

12: '    '   ' −1 '   '    '1  2 

 Notice the PICTURE of this formulation is essentially the PICTURE of the previous formulation 

rotated ninety degrees. Even though these two formulations originally were seemingly unrelated, there 

is really an incestuous relationship between the two, a relationship that mathematicians politely refer to 

as duality. 

8.3 Activity-on-Arc vs. Activity-on-Node Network Diagrams 
Two conventions are used in practice for displaying project networks: (1) Activity-on-Arc (AOA) and 

(2) Activity-on-Node (AON). Our previous example used the AOA convention. The characteristics of 

the two are: 

AON 

• Each activity is represented by a node in the network. 

• A precedence relationship between two activities is represented by an arc or link between 

the two. 

• AON may be less error prone because it does not need dummy activities or arcs. 

AOA 

• Each activity is represented by an arc in the network. 

• If activity X must precede activity Y, there are X leads into arc Y. The nodes thus represent 

events or “milestones” (e.g., “finished activity X”). Dummy activities of zero length may 

be required to properly represent precedence relationships. 

• AOA historically has been more popular, perhaps because of its similarity to Gantt charts 

used in scheduling. 

 An AON project with six activities is shown in Figure 8.4. The number next to each node is the 

duration of the activity. Activities A and B are the sources or start of the project. Activity F is the final 

activity. By inspection, you can discover that the longest path consists of activities A, C, E, and F. It has 
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a length of 29. The corresponding AOA network for the same project is shown in Figure 8.5. In the AOA 

network, we have enclosed the activity letters in circles above the associated arc. The unenclosed 

numbers below each arc are the durations of the activities. We have given the nodes, or milestones, 

arbitrary number designations enclosed in squares. Notice the dummy activity (the dotted arc) between 

nodes 3 and 4. This is because a dummy activity will be required in an AOA diagram anytime that two 

activities (e.g., A and B) share some (e.g., activity D), but not all (e.g., activity C), successor activities. 

Figure 8.4 An Activity-on-Node Representation 
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Figure 8.5 An Activity-on-Arc Representation  
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8.4 Crashing of Project Networks 
Once the critical path length for a project has been identified, the next question invariably asked is: can 

we shorten the project? The process of decreasing the duration of a project or activity is commonly called 

crashing. For many construction projects, it is common for the customer to pay an incentive to the 

contractor for finishing the project in a shorter length of time. For example, in highway repair projects, 

it is not unusual to have incentives from $5,000 to $25,000 per day that the project is finished before a 

target date. 
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8.4.1 The Cost and Value of Crashing 
There is value in crashing a project. In order to crash a project, we must crash one or more activities. 

Crashing an activity costs money. Deciding to crash an activity requires us to compare the cost of 

crashing that activity with the value of the resulting reduction in project length. This decision is 

frequently complicated by the fact that some negotiation may be required between the party that incurs 

the cost of crashing the activity (e.g., the contractor) and the party that enjoys the value of the crashed 

project (e.g., the customer). 

8.4.2 The Cost of Crashing an Activity 
An activity is typically crashed by applying more labor to it (e g., overtime or a second shift). We might 

typically expect that using second-shift labor could cost 1.5 times as much per hour as first-shift labor. 

We might expect third-shift labor to cost twice as much as first-shift labor. 

 Consider an activity that can be done in six days if only first-shift labor is used and has a labor cost 

of $6,000. If we allow the use of second-shift labor and thus work two shifts per day, the activity can be 

done in three days for a cost of 3  1000 + 3  l000  1.5 = 7,500. If third-shift labor is allowed, then 

the project can be done in two days by working three shifts per day and incurring a total of: 

2  1000 + 2  1000  1.5 + 2  1000  2 = $9,000. 

Thus, we get a crashing cost curve for the activity as shown in Figure 8.6: 

Figure 8.6 Activity Crash Cost Curve 
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8.4.3 The Value of Crashing a Project 
There are two approaches to deciding upon the amount of project crashing: (a) we simply specify a 

project duration time and crash enough to achieve this duration, or (b) we estimate the value of crashing 

it for various days. As an example of (a), in 1987 a new stadium was being built for the Montreal Expos 

baseball team. The obvious completion target was the first home game of the season. 

 As an example of (b), consider an urban expressway repair. What is the value per day of completing 

it early? Suppose that 6,000 motorists are affected by the repair project and each is delayed by 10 minutes 
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each day because of the repair work (e.g., by taking alternate routes or by slower traffic). The total daily 

delay is 6,000  10 = 60,000 minutes = 1000 hours. If we assign an hourly cost of $5/person  hours, 

the social value of reducing the repair project by one day is $5,000. 

8.4.4 Formulation of the Crashing Problem 
Suppose we have investigated the crashing possibilities for each activity or task in our previous project 

example. These estimates are summarized in the following table: 

   Minimum duration  
  Normal duration if crashed  

Activity Predecessor (Days) (Days) $/Day 

A — 9 5 5000 

B — 7 3 6000 

C A 5 3 4000 

D A,B 8 4 2000 

E C 6 3 3000 

F D,E 9 5 9000 

 For example, activity A could be done in five days rather than nine. However, this would cost us an 

extra (9 − 5)  5000 = $20,000. 

 First, consider the simple case where we have a hard due date by which the project must be done. 

Let us say 22 days in this case. How would we decide which activities to crash? Activity D is the cheapest 

to crash per day. However, it is not on the critical path, so its low cost is at best just interesting. 

 Let us define: 

EFi = earliest finish time of activity i, taking into account any crashing that is done; 

Ci  = number of days by which activity i is crashed. 

In words, the LP model will be: 

Minimize     Cost of crashing 

subject to 

For each activity j and each predecessor i: 

   earliest finish of j  earliest finish of predecessor i + actual duration of j; 

For each activity j: 

   minimum duration for j if crashed  actual duration of j  normal duration for j. 

A LINGO formulation is: 

! Find optimal crashing for a project with a due date; 

SETS: 

 TASK: NORMAL, FAST, COST, EF, ACTUAL; 

 PRED( TASK, TASK):; 

ENDSETS 
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DATA: 

  TASK, NORMAL, FAST, COST = 

   A       9     5    5000 

   B       7     3    6000 

   C       5     3    4000 

   D       8     4    2000 

   E       6     3    3000 

   F       9     5    9000; 

  PRED = 

   A, C 

   A, D 

   B, D 

   C, E 

   D, F 

   E, F; 

 DUEDATE = 22; 

ENDDATA 

!-------------------------------------; 

! Minimize the cost of crashing; 

 [OBJ] MIN = @SUM( TASK( I): COST( I)*( NORMAL( I) - ACTUAL( I))); 

! For tasks with no predecessors...; 

 @FOR( TASK( J): EF( J) >= ACTUAL( J);); 

!   and for those with predecessors; 

 @FOR( PRED( I, J): 

    EF( J) >= EF( I) + ACTUAL( J); 

     ); 

! Bound the actual time; 

 @FOR( TASK( I):  

     @BND( FAST(I), ACTUAL( I), NORMAL( I)); 

     ); 

! Last task is assumed to be last in project; 

  EF( @SIZE( TASK)) <= DUEDATE; 

Part of the solution is: 

Global optimal solution found at step:            24 

 Objective value:                            31000.00 

        Variable           Value        Reduced Cost 

          EF( A)        7.000000           0.0000000 

          EF( B)        7.000000           0.0000000 

          EF( C)        10.00000           0.0000000 

          EF( D)        13.00000           0.0000000 

          EF( E)        13.00000           0.0000000 

          EF( F)        22.00000           0.0000000 

      ACTUAL( A)        7.000000           0.0000000 

      ACTUAL( B)        7.000000           -4000.000 

      ACTUAL( C)        3.000000            1000.000 

      ACTUAL( D)        6.000000           0.0000000 

      ACTUAL( E)        3.000000            2000.000 

      ACTUAL( F)        9.000000           -2000.000 

Thus, for an additional cost of $31,000, we can meet the 22-day deadline.  
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 Now, suppose there is no hard project due date, but we do receive an incentive payment of $5000 

for each day we reduce the project length. Define PCRASH = number of days the project is finished 

before the twenty-ninth day. Now, the formulation is: 

! Find optimal crashing for a project with 

   a due date and incentive for early completion; 

SETS: 

 TASK: NORMAL, FAST, COST, EF, ACTUAL; 

 PRED( TASK, TASK):; 

ENDSETS 

DATA: 

  TASK, NORMAL, FAST, COST = 

   A       9     5    5000 

   B       7     3    6000 

   C       5     3    4000 

   D       8     4    2000 

   E       6     3    3000 

   F       9     5    9000; 

  PRED = 

   A, C 

   A, D 

   B, D 

   C, E 

   D, F 

   E, F; 

! Incentive for each day we beat the due date; 

 INCENT = 5000; 

 DUEDATE = 29; 

ENDDATA 

!-------------------------------------; 

! Minimize the cost of crashing  

     less early completion incentive payment; 

  [OBJ] MIN = @SUM( TASK( I): COST( I)*( NORMAL( I) - ACTUAL( I))) 

            - INCENT * PCRASH; 

! For tasks with no predecessors...; 

 @FOR( TASK( J): EF( J) >= ACTUAL( J);); 

!   and for those with predecessors; 

 @FOR( PRED( I, J): 

    EF( J) >= EF( I) + ACTUAL( J); 

     ); 

! Bound the actual time; 

 @FOR( TASK( I):  

     @BND( FAST(I), ACTUAL( I), NORMAL( I)); 

     ); 

! Last task is assumed to be last in project; 

  EF( @SIZE( TASK)) + PCRASH = DUEDATE; 
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 From the solution, we see we should crash it by five days to give a total project length of twenty-four 

days: 

Global optimal solution found at step:            21 

 Objective value:                           -6000.000 

        Variable           Value        Reduced Cost 

          PCRASH        5.000000           0.0000000 

          EF( A)        7.000000           0.0000000 

          EF( B)        7.000000           0.0000000 

          EF( C)        12.00000           0.0000000 

          EF( D)        15.00000           0.0000000 

          EF( E)        15.00000           0.0000000 

          EF( F)        24.00000           0.0000000 

      ACTUAL( A)        7.000000           0.0000000 

      ACTUAL( B)        7.000000           -6000.000 

      ACTUAL( C)        5.000000           -1000.000 

      ACTUAL( D)        8.000000           0.0000000 

      ACTUAL( E)        3.000000           0.0000000 

      ACTUAL( F)        9.000000           -4000.000 

The excess of the incentive payments over crash costs is $6,000. 

8.5 Resource Constraints in Project Scheduling 
For many projects, a major complication is that there are a limited number of resources. The limited 

resources require you to do tasks individually that otherwise might be done simultaneously. Pritzker, 

Watters, and Wolfe (1969) gave a formulation representing resource constraints in project and jobshop 

scheduling problems. The formulation is based on the following key ideas: a) time is discrete rather than 

continuous (e.g., each period is a day), b) for every activity and every discrete period there is a 0/1 

variable that is one if that activity starts in that period, and c) for every resource and period there is a 

constraint that enforces the requirement that the amount of resource required in that period does not 

exceed the amount available.  

 To illustrate, we take the example considered previously with shorter activity times, so the total 

number of periods is smaller: 

 

     MODEL: 

     ! PERT/CPM project scheduling with resource constraints(PERTRSRC); 

     ! There is a limited number of each resource/machine. 

     ! An activity cannot be started until: 1) all its predecessors have                

completed, and  2) resources/machines required are available.; 

  

        SETS: 

     ! There is a set of tasks with a given duration, and 

         a start time to be determined; 

        TASK: TIME, START, ES; 

     ! The precedence relations, the first task in the 

         precedence relationship needs to be completed before the 

         second task can be started; 

        PRED( TASK, TASK); 

     ! There are a set of periods; 

        PERIOD; 
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        RESOURCE: CAP; 

     ! Some operations need capacity in some department; 

        TXR( TASK, RESOURCE): NEED; 

     ! SX( I, T) = 1 if task I starts in period T; 

        TXP( TASK, PERIOD): SX; 

        RXP( RESOURCE, PERIOD);          

       ENDSETS 

  

      DATA:  

      ! Upper limit on number of periods required to complete the project; 

        PERIOD = 1..20; 

      ! Task names and duration; 

        TASK  TIME =  

        FIRST    0 

        FCAST    7 

        SURVEY   2 

        PRICE    1 

        SCHED    3 

        COSTOUT  2 

        FINAL    4;  

 

     ! The predecessor/successor combinations; 

       PRED=  FIRST,FCAST,    FIRST,SURVEY, 

              FCAST,PRICE,    FCAST,SCHED,    SURVEY,PRICE, 

              SCHED,COSTOUT,  PRICE,FINAL,    COSTOUT,FINAL; 

     ! There are 2 departments, accounting and operations, 

        with capacities...; 

        RESOURCE = ACDEPT, OPNDEPT;  

             CAP =   1,      1; 

     ! How much each task needs of each resource; 

               TXR,       NEED =  

          FCAST,  OPNDEPT,  1 

          SURVEY, OPNDEPT,  1 

          SCHED,  OPNDEPT,  1 

          PRICE,   ACDEPT,  1 

          COSTOUT, ACDEPT,  1;  

      ENDDATA 

     !----------------------------------------------------------; 

     ! Minimize start time of last task; 

      MIN = START( @SIZE( TASK)); 

     ! Start time for each task; 

      @FOR( TASK( I): 

        [DEFSTRT] START( I) = @SUM( PERIOD( T): T * SX( I, T)); 

          ); 

      @FOR( TASK( I): 

     !  Each task must be started in some period; 

        [MUSTDO]  @SUM( PERIOD( T): SX( I, T)) = 1; 

     ! The SX vars are binary, i.e., 0 or 1; 

        @FOR( PERIOD( T): @BIN( SX( I, T));); 

           ); 

     ! Precedence constraints; 

       @FOR( PRED( I, J): 

         [PRECD]  START( J) >= START( I) + TIME( I); 
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           ); 

     ! Resource usage, For each resource R and period T; 

       @FOR( RXP( R, T): 

     ! Sum over all tasks I that use resource R in period T; 

         [RSRUSE] @SUM( TXR( I, R): 

            @SUM( PERIOD( S)| S #GE# ( T - ( TIME( I) - 1)) #AND# S #LE# T: 

                    NEED( I, R) * SX( I, S))) <= CAP( R); 

                ); 

     ! The following makes the formulation tighter; 

     ! Compute earliest start disregarding resource constraints; 

        @FOR( TASK( J): 

          ES( J) = @SMAX( 0, @MAX( PRED( I, J): ES( I) + TIME(I))); 

        ! Task cannot start earlier than unconstrained early start; 

          @SUM( PERIOD(T) | T #LE# ES( J): SX( J, T)) = 0; 

            ); 

       END 

 

 When solved, we get a project length of 14. If there were no resource constraints, then the project 

length would be 13: 

Global optimal solution found 

 Objective value:      14.00000 

       Variable           Value 

  START( FIRST)        1.000000 

  START( FCAST)        1.000000 

 START( SURVEY)        11.00000 

  START( PRICE)        13.00000 

  START( SCHED)        8.000000 

START( COSTOUT)        11.00000 

  START( FINAL)        14.00000 

8.6 Path Formulations 
In many network problems, it is natural to think of a solution in terms of paths that material takes as it 

flows through the network. For example, in Figure 8.1, there are thirteen possible paths. Namely: 

A → X → 1, A → X → 2, A → Y → 1, A → Y → 2, A → Y → 3, B→ X → 1, B→ X → 2, 

B → Y → 1, B → Y → 2, B → Y → 3, B → Z → 2, B → Z → 3, 

B → Z → 4 

 One can, in fact, formulate decision variables in terms of complete paths rather than just simple 

links, where the path decision variable corresponds to using a combination of links. This is a form of 

what is sometimes called a composite variable approach. The motivations for using the path approach 

are: 

1. More complicated cost structures can be represented. For example, Geoffrion and Graves 

(1974) use the path formulation to represent “milling in transit” discount fare structures in 

shipping food and feed products. 
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2. Path-related restrictions can be incorporated. For example, regulations allow a truck driver 

to be on duty for at most 10 hours. Thus, in a truck routing network one would not consider 

paths longer than 10 hours. In a supply chain network, a path that is long may be prohibited 

because it may cause lead times to be too long. 

3. The number of rows (constraints) in the model may be substantially less. 

4. In integer programs where some, but not all, of the problem has a network structure, the 

path formulation may be easier to solve. 

8.6.1 Example 
Let us reconsider the first problem (Figure 8.1, page 148). Suppose shipments from A to X are made by 

the same carrier as shipments from X to 2. This carrier will give a $1 per unit “milling-in-transit” discount 

for each unit it handles from both A to X and X to 2. Further, the product is somewhat fragile and cannot 

tolerate a lot of transportation. In particular, it cannot be shipped both over link B→X and X→2 or both 

over links A→Y and Y→1. 

 Using the notation AX1 = number of units shipped from A to X to 1, etc., the path formulation is: 

MIN =  6 * PAX1 + 7 * PAX2  + 8 * PAY2 

     + 9 * PAY3 + 8 * PBX1 + 10 * PBY1 

     + 7 * PBY2 + 8 * PBY3 + 10 * PBZ2 

     + 9 * PBZ3 + 6 * PBZ4; 

  [A]  PAX1 + PAX2 + PAY2 + PAY3 <= 9; 

  [B]  PBX1 + PBY1 + PBY2 + PBY3 

     + PBZ2 + PBZ3 + PBZ4 <= 8; 

 [C1]  PAX1 + PBX1 + PBY1 = 3; 

 [C2]  PAX2 + PAY2 + PBY2 + PBZ2 = 5; 

 [C3]  PAY3 + PBY3 + PBZ3 = 4; 

 [C4]  PBZ4 = 2; 

 Notice the cost of path AX2 = 1 + 7 − 1 = 7. In addition, paths BX2 and AY1 do not appear. This 

model has only six constraints as opposed to nine in the original formulation. The reduction in constraints 

arises from the fact that, in path formulations, one does not need the “sources = uses” constraints for 

intermediate nodes. 

 In general, the path formulation will have fewer rows, but more decision variables than the 

corresponding network LP model. 

 When we solve, we get: 

Objective value=  97.0000 

   Variable           Value        

       PAX1        3.000000        

       PAX2        3.000000           

       PBY2        2.000000      

       PBY3        4.000000         

       PBZ4        2.000000       

 This is cheaper than the previous solution, because the three units shipped over path AX2 go for $1 

per unit less. 

 A path formulation need not have a naturally integer solution. If the path formulation, however, is 

equivalent to a network LP, then it will have a naturally integer solution. 

 The path formulation is popular in long-range forest planning. See, for example, Davis and Johnson 

(1986), where it is known as the “Model I” approach. The standard network LP based formulation is 
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known as the “Model II” approach. In a forest planning Model II, a link in the network represents a 

decision to plant an acre of a particular kind of tree in some specified year and harvest it in some future 

specified year. A node represents a specific harvest and replant decision. A decision variable in Model I 

is a complete prescription of how to manage (i.e., harvest and replant) a given piece of land over time. 

Some Model I formulations in forest planning may have just a few hundred constraints, but over a million 

decision variables or paths. 

 There is a generalization of the path formulation to arbitrary linear programs, known as 

Fourier/Motzkin/Dines elimination, see for example Martin (1999) and Dantzig (1963). The 

transformation of a network LP to the path formulation involves eliminating a particular node 

(constraint), by generating a new variable for every combination of input arc and output arc incident to 

the node. A constraint in an arbitrary LP can be eliminated if it is first converted to a constraint with a 

right-hand side of zero and then a new variable is generated for every combination of positive and 

negative coefficient in the constraint. The disadvantage of this approach is that even though the number 

of constraints is reduced to one, the number of variables may grow exponentially with the number of 

original constraints. 

 A variable corresponding to a path in a network is an example of a composite variable, a general 

approach that is sometimes useful for representing complicated/ing constraints. A composite variable is 

one that represents a feasible combination of two or more original variables. The complicating 

constraints are represented implicitly by generating only those composite variables that correspond to 

feasible combinations and values of the original variables. 

8.7 Path Formulations of Undirected Networks 
In many communications networks, the arcs have capacity, but are undirected. For example, when you 

are carrying on a phone conversation with someone in a distant city, the conversation uses capacity on 

all the links in your connection. However, you cannot speak of a direction of flow of the connection. 

 A major concern for a long distance communications company is the management of its 

communications network. This becomes particularly important during certain holidays, such as Mother’s 

Day. Not only does the volume of calls increase on these days, but also the pattern of calls changes 

dramatically from the business-oriented traffic during weekdays in the rest of the year. A 

communications company faces two problems: (a) the design problem. That is, what capacity should be 

installed on each link? As well as, (b) the operations problem. That is, given the installed capacity, how 

are demands best routed? The path formulation is an obvious format for modeling an undirected network. 

The following illustrates the operational problem. 



Networks, Distribution & PERT/CPM  Chapter 8     167 

 Consider the case of a phone company with the network structure shown in Figure 8.7: 

Figure 8.7 Phone Company Network Structure 
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 The number next to each arc is the number of calls that can be in progress simultaneously along that 

arc. If someone in MIA tries to call his mother in SEA, the phone company must first find a path from 

MIA to SEA such that each arc on that path is not at capacity. It is quite easy to inefficiently use the 

capacity. Suppose there is a demand for 110 calls between CHI and DNV and 90 calls between ATL and 

SEA. Further, suppose all of these calls were routed over the ATL, DNV link. Now, suppose we wish to 

make a call between MIA and SEA. Such a connection is impossible because every path between the two 

contains a saturated link (i.e., either ATL, DNV or CHI, ATL). However, if some of the 110 calls between 

CHI and DNV were routed over the CHI, SEA, DNV links, then one could make calls between MIA and 

SEA. In conventional voice networks, a call cannot be rerouted once it has started. In packet switched 

data networks and, to some extent, in cellular phone networks, some rerouting is possible. 

8.7.1 Example 
Suppose during a certain time period the demands in the table below occur for connections between pairs 

of cities: 

 DNV CHI ATL MIA 

SEA 10 20 38 33 

DNV  42 48 23 

CHI   90 36 

ATL    26 

 Which demands should be satisfied and via what routes to maximize the number of connections 

satisfied? 
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 Solution. If we use the path formulation, there will be two paths between every pair of cities except 

ATL and MIA. We will use the notation P1ij for number of calls using the shorter or more northerly path 

between cities i and j, and P2ij for the other path, if any. There will be two kinds of constraints: 

1) a capacity constraint for each link, and 

2) an upper limit on the calls between each pair of cities, based on available demand. 

A formulation is: 

! Maximize calls carried; 

MAX = P1MIAATL + P1MIADNV + P2MIADNV 

    + P1MIASEA + P2MIASEA + P1MIACHI 

    + P2MIACHI + P1ATLDNV + P2ATLDNV 

    + P1ATLSEA + P2ATLSEA + P1ATLCHI 

    + P2ATLCHI + P1DNVSEA + P2DNVSEA 

    + P1DNVCHI + P2DNVCHI + P1SEACHI 

    + P2SEACHI; 

! Capacity constraint for each link; 

[KATLMIA]  P1MIAATL + P1MIADNV + P2MIADNV 

     + P1MIASEA + P2MIASEA + P1MIACHI 

     + P2MIACHI <= 105; 

[KATLDNV]  P1MIADNV + P1MIASEA + P1MIACHI 

     + P1ATLDNV + P1ATLSEA + P1ATLCHI 

     + P2DNVSEA + P2DNVCHI + P2SEACHI <= 200; 

[KDNVSEA]  P2MIADNV + P1MIASEA + P1MIACHI 

     + P2ATLDNV + P1ATLSEA + P1ATLCHI 

     + P1DNVSEA + P1DNVCHI + P2SEACHI <=  95; 

[KSEACHI]  P2MIADNV + P2MIASEA + P1MIACHI 

     + P2ATLDNV + P2ATLSEA + P1ATLCHI 

     + P2DNVSEA + P1DNVCHI + P1SEACHI <=  80; 

[KATLCHI]  P2MIADNV + P2MIASEA + P2MIACHI 

     + P2ATLDNV + P2ATLSEA + P2ATLCHI 

     + P2DNVSEA + P2DNVCHI + P2SEACHI <= 110; 

! Demand constraints for each city pair; 

[DMIAATL]             P1MIAATL <= 26; 

[DMIADNV]  P1MIADNV + P2MIADNV <= 23; 

[DMIASEA]  P1MIASEA + P2MIASEA <= 33; 

[DMIACHI]  P1MIACHI + P2MIACHI <= 36; 

[DATLDNV]  P1ATLDNV + P2ATLDNV <= 48; 

[DATLSEA]  P1ATLSEA + P2ATLSEA <= 38; 

[DATLCHI]  P1ATLCHI + P2ATLCHI <= 90; 

[DDNVSEA]  P1DNVSEA + P2DNVSEA <= 10; 

[DDNVCHI]  P1DNVCHI + P2DNVCHI <= 42; 

[DSEACHI]  P1SEACHI + P2SEACHI <= 20; 
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When this formulation is solved, we see we can handle 322 out of the total demand of 366 calls: 

Optimal solution found at step:        11 

Objective value:                 322.0000 

Variable           Value        Reduced Cost 

P1MIAATL        26.00000           0.000000 

P1MIADNV        23.00000           0.000000 

P2MIADNV         0.00000           2.000000 

P1MIASEA         0.00000           0.000000 

P2MIASEA         0.00000           0.000000 

P1MIACHI        25.00000           0.000000 

P2MIACHI         0.00000           0.000000 

P1ATLDNV        48.00000           0.000000 

P2ATLDNV         0.00000           2.000000 

P1ATLSEA        38.00000           0.000000 

P2ATLSEA         0.00000           0.000000 

P1ATLCHI        23.00000           0.000000 

P2ATLCHI        67.00000           0.000000 

P1DNVSEA         3.50000           0.000000 

P2DNVSEA         6.50000           0.000000 

P1DNVCHI         5.50000           0.000000 

P2DNVCHI        36.50000           0.000000 

P1SEACHI        20.00000           0.000000 

P2SEACHI         0.00000           2.000000 

     Row    Slack or Surplus      Dual Price 

       1       322.00000           1.000000 

 KATLMIA        31.00000           0.000000 

 KATLDNV         0.00000           0.000000 

 KDNVSEA         0.00000           1.000000 

 KSEACHI         0.00000           0.000000 

 KATLCHI         0.00000           1.000000 

 DMIAATL         0.00000           1.000000 

 DMIADNV         0.00000           1.000000 

 DMIASEA        33.00000           0.000000 

 DMIACHI        11.00000           0.000000 

 DATLDNV         0.00000           1.000000 

 DATLSEA         0.00000           0.000000 

 DATLCHI         0.00000           0.000000 

 DDNVSEA         0.00000           0.000000 

 DDNVCHI         0.00000           0.000000 

 DSEACHI         0.00000           1.000000 

 Verify that the demand not carried is MIA-CHI: 11 and MIA-SEA: 33. Apparently, there are a number 

of alternate optima. 

8.8 Double Entry Bookkeeping: A Network Model of the Firm 
Authors frequently like to identify who was the first to use a given methodology. A contender for the 

distinction of formulating the first network model is Fra Luca Pacioli. In 1594, while director of a 

Franciscan monastery in Italy, he published a description of the accounting convention that has come to 

be known as double entry bookkeeping. From the perspective of networks, each double entry is an arc 

in a network. 
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 To illustrate, suppose you start up a small dry goods business. During the first two weeks, the 

following transactions occur: 

CAP 1) You invest $50,000 of capital in cash to start the business. 

UR 2) You purchase $27,000 of product on credit from supplier S. 

PAY 3) You pay $13,000 of your accounts payable to supplier S. 

SEL 4) You sell $5,000 of product to customer C for $8,000 on credit. 

REC 5) Customer C pays you $2,500 of his debt to you. 

 In our convention, liabilities and equities will typically have negative balances. For example, the 

initial infusion of cash corresponds to a transfer (an arc) from the equity account (node) to the cash 

account, with a flow of $50,000. The purchase of product on credit corresponds to an arc from the 

accounts payable account node to the raw materials inventory account, with a flow of $27,000. Paying 

$13,000 to the supplier corresponds to an arc from the cash account to the accounts payable account, 

with a flow of $13,000. Figure 8.8 illustrates. 

Figure 8.8 Double Entry Bookkeeping as a Network Model 
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8.9 Extensions of Network LP Models 
There are several generalizations of network models that are important in practice. These extensions 

share two features in common with true network LP models, namely: 

• They can be represented graphically. 

• Specialized, fast solution procedures exist for several of these generalizations. 

The one feature typically not found with these generalizations is: 

• Solutions are usually not naturally integer, even if the input data are integers. 



Networks, Distribution & PERT/CPM  Chapter 8     171 

The important generalizations we will consider are: 

1. Networks with Gains. Sometimes called generalized networks, this generalization allows a 

specified gain or loss of material as it is shipped from one node to another. Structurally, 

these problems are such that every column has at most two nonzeroes in the constraint 

matrix. However, the requirement that these coefficients be +1 and −1 is relaxed. 

Specialized procedures, which may be twenty times faster than the regular simplex method, 

exist for solving these problems. 

 Examples of “shipments” with such gains or losses are: investment in an 

interest-bearing account, electrical transmission with loss, natural gas pipeline shipments 

where the pipeline pumps burn natural gas from the pipeline, and work force attrition. 

Stroup and Wollmer (1992) show how a network with gains model is useful in the airline 

industry for deciding where to purchase fuel and where to ferry fuel from one stop to 

another. Truemper (1976) points out, if the network with gains has no circuits when 

considered as an undirected network, then it can be converted to a pure network model by 

appropriate scaling. 

2. Undirected Networks. In communications networks, there is typically no direction of 

shipment. The arcs are undirected. 

3. Multicommodity Networks. In many distribution situations, there are multiple commodities 

moving through the network, all competing for scarce network capacity. Each source may 

produce only one of the commodities and each destination, or sink, may accept only one 

specific commodity. 

4. Leontief Flow. In a so-called Leontief input-output model (see Leontief, 1951), each 

activity uses several commodities although it produces only one commodity. For example, 

one unit of automotive production may use a half ton of steel, 300 pounds of plastic, and 

100 pounds of glass. Material Requirements Planning (MRP) models have the same 

feature. If each output required only one input, then we would simply have a network with 

gains. Special purpose algorithms exist for solving Leontief Flow and MRP models. See, 

for example, Jeroslow, Martin, Rardin, and Wang (1992). 

5. Activity/Resource Diagrams. If Leontief flow models are extended, so each activity can 

have not only several inputs, but also several outputs, then one can in fact represent 

arbitrary LPs. We call the obvious extension of the network diagrams to this case an 

activity/resource diagram. 

8.9.1 Multicommodity Network Flows 
In a network LP, one assumption is a customer is indifferent, except perhaps for cost, to the source from 

which his product was obtained. Another assumption is that there is a single commodity flowing through 

the network. In many network-like situations, there are multiple distinct commodities flowing through 

the network. If each link has infinite capacity, then an independent network flow LP could be solved for 

each commodity. However, if a link has a finite capacity that applies to the sum of all commodities 

flowing over that link, then we have a multicommodity network problem. 

 The most common setting for multicommodity network problems is in shipping. The network might 

be a natural gas pipeline network and the commodities might be different fuels shipped over the network. 

In other shipping problems, such as traffic assignment or overnight package delivery, each 

origin/destination pair constitutes a commodity. 

 The crucial feature is identity of the commodities must be maintained throughout the network. That is, 

customers care which commodity gets delivered. An example is a metals supply company that ships 
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aluminum bars, stainless steel rings, steel beams, etc., all around the country, using a single limited capacity 

fleet of trucks. 

 In general form, the multicommodity network problem is defined as: 

Dik = demand for commodity k at node i, with negative values denoting supply; 

Cijk = cost per unit of shipping commodity k from node i to node j; 

Uij = capacity of the link from node i to node j. 

We want to find: 

Xijk = amount of commodity k shipped from node i to node j, so as to: 

min          cijk xijk 

subject to: 

For each commodity k and node t : 

xitk = Dtk + xtjk 

For each link i, j: 

xijk  Uij 

8.9.2 Reducing the Size of Multicommodity Problems 
If the multiple commodities correspond to origin destination pairs and the cost of shipping a unit over a 

link is independent of the final destination, then you can aggregate commodities over destinations. That 

is, you need identify a commodity only by its origin, not by both origin and destination. Thus, you have 

as many commodities as there are origins, rather than (number of origins)  (number of destinations). 

For example, in a 100-city problem, using this observation, you would have only 100 commodities, 

rather than 10,000 commodities. 

 One of the biggest examples of multicommodity network problems in existence are the Patient 

Distribution System models developed by the United States Air Force for planning for transport of sick 

or wounded personnel. 

8.9.3 Multicommodity Flow Example 
You have decided to compete with Federal Express by offering “point to point” shipment of materials. 

Starting small, you have identified six cities as the ones you will first serve. The matrix below represents 

the average number of tons potential customers need to move between each origin/destination pair per 

day. For example, people in city 2 need to move four tons per day to city 3: 

  Demand in tons, 
D(i, j), 

by O/D pair 

Cost/ton shipped, 
 C(i, j), 
by link 

Capacity in tons, 
 U(i, j), 
By link 

 To: 1  2   3   4  5   6    1  2   3  4   5   6 1  2   3   4  5   6 

 

 

From 

1 0   5   9   7   0   4    0   4   5   8   9   9 0   2   3   2   1   20 

2 0   0   4   0   1   0    3   0   3   2   4   6 0   0   2   8   3   9 

3 0   0   0   0   0   0    5   3   0   2   3   5 3   0   0   1   3   9 

4 0   0   0   0   0   0    7   3   3   0   5   6 5   4   6   0   5   9 

5 0   4   0   2   0   8    8   5   3   6   0   3 1   0   2   7   0   9 

6 0   0   0   0   0   0    9   7   4   5   5   0 9   9   9   9   9   0 

kji



i


j



k
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 Rather than use a hub system as Federal Express does, you will ship the materials over a regular 

directed network. The cost per ton of shipping from any node i to any other node j is denoted by C(i, j). 

There is an upper limit on the number of tons shipped per day over any link in the network of U(i, j). 

This capacity restriction applies to the total amount of all goods shipped over that link, regardless of 

origin or destination. Note U(i, j) and C(i, j) apply to links in the network, whereas D(i, j) applies to 

origin/destination pairs. This capacity restriction applies only to the directed flow. That is, U(i, j) need 

not equal U(j, i). It may be that none of the goods shipped from origin i to destination j moves over link 

(i, j). It is important goods maintain their identity as they move through the network. Notice city 6 looks 

like a hub. It has high capacity to and from all other cities. 

 In order to get a compact formulation, we note only three cities, 1, 2, and 5, are suppliers. Thus, we 

need keep track of only three commodities in the network, corresponding to the city of origin for the 

commodity. Define: 

Xijk = tons shipped from city i to city j of commodity k. 

The resulting formulation is: 

MODEL: 

! Keywords: multi-commodity, network flow, routing; 

! Multi-commodity network flow problem; 

SETS: 

! The nodes in the network; 

   NODES/1..6/:; 

! The set of nodes that are origins; 

   COMMO(NODES)/1, 2, 5/:; 

   EDGES(NODES, NODES): D, C, U, V; 

   NET(EDGES, COMMO): X; 

ENDSETS 

DATA: 

! Demand: amount to be shipped from 

   origin(row) to destination(col); 

D = 0 5 9 7 0 4       

    0 0 4 0 1 0        

    0 0 0 0 0 0        

    0 0 0 0 0 0        

    0 4 0 2 0 8        

    0 0 0 0 0 0;        

! Cost per unit shipped over a arc/link; 

C = 0 4 5 8 9 9          

    3 0 3 2 4 6          

    5 3 0 2 3 5          

    7 3 3 0 5 6          

    8 5 3 6 0 3          

    9 7 4 5 5 0; 

! Upper limit on amount shipped on each link; 

U = 0 2 3 2 1 20 

    0 0 2 8 3 9 

    3 0 0 1 3 9 

    5 4 6 0 5 9 

    1 0 2 7 0 9 

    9 9 9 9 9 0; 
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! Whether an arc/link exists or not; 

! V = 0 if U = 0; 

! V = 1 otherwise; 

V = 0 1 1 1 1 1 

    0 0 1 1 1 1  

    1 0 0 1 1 1 

    1 1 1 0 1 1 

    1 0 1 1 0 1 

    1 1 1 1 1 0; 

ENDDATA 

! Minimize shipping cost over all links; 

MIN = @SUM( NET(I, J, K): C(I, J) * X(I, J, K)); 

! This is the balance constraint. There are two cases:  

 Either the node that needs to be balanced is not a supply,  

 in which case the sum of incoming amounts 

 minus the sum of outgoing amounts must equal 

 the demand for that commodity for that city; 

!or where the node is a supply,  

 the sum of incoming minus outgoing amounts must equal 

 the negative of the sum of the demand for the commodity  

 that the node supplies; 

   @FOR(COMMO(K): @FOR(NODES(J)|J #NE# K: 

      @SUM(NODES(I): V(I, J) * X(I, J, K) - V(J, I) * X(J, I, K))  

        = D(K, J); 

       ); 

   @FOR(NODES(J)|J #EQ# K:  

     @SUM(NODES(I): V(I, J) * X(I, J, K) - V(J, I) * X(J, I, K))  

      = -@SUM( NODES(L): D(K, L)));); 

! This is a capacity constraint; 

   @FOR(EDGES(I, J)|I #NE# J:  

      @SUM(COMMO(K): X(I, J, K)) <= U(I, J); 

        ); 

END 

 Notice there are 3 (commodities)  6 (cities) = 18 balance constraints. If we instead identified goods 

by origin/destination combination rather than just origin, there would be 9  6 = 54 balance constraints. 

Solving, we get: 

Optimal solution found at step:        56 

Objective value:                 361.0000 

   Variable           Value        Reduced Cost 

X( 1, 2, 1)        2.000000           0.0000000 

X( 1, 3, 1)        3.000000           0.0000000 

X( 1, 4, 1)        2.000000           0.0000000 

X( 1, 5, 1)        1.000000           0.0000000 

X( 1, 6, 1)        17.00000           0.0000000 

X( 2, 3, 2)        2.000000           0.0000000 

X( 2, 4, 2)        2.000000           0.0000000 

X( 2, 5, 2)        1.000000           0.0000000 

X( 3, 4, 5)        1.000000           0.0000000 

X( 4, 2, 5)        4.000000           0.0000000 

X( 4, 3, 2)        2.000000           0.0000000 
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X( 5, 3, 1)        1.000000           0.0000000  

X( 5, 3, 5)        1.000000           0.0000000 

X( 5, 4, 5)        5.000000           0.0000000 

X( 5, 6, 5)        8.000000           0.0000000 

X( 6, 2, 1)        3.000000           0.0000000 

X( 6, 3, 1)        5.000000           0.0000000 

X( 6, 4, 1)        5.000000           0.0000000 

 Notice, because of capacity limitations on other links, the depot city (6) is used for many of the 

shipments. 

8.9.4 Fleet Routing and Assignment 
An important problem in the airline and trucking industry is fleet routing and assignment. Given a set of 

shipments or flights to be made, the routing part is concerned with the path each vehicle takes. This is 

sometimes called the FTL(Full Truck Load) routing problem. The assignment part is of interest if the 

firm has several different fleets of vehicles available. Then the question is what type of vehicle is 

assigned to each flight or shipment. We will describe a simplified version of the approach used by 

Subramanian et al. (1994) to do fleet assignment at Delta Airlines. A similar approach has been used at 

US Airways by Kontogiorgis and Acharya (1999). 

 To motivate things, consider the following set of flights serving Chicago (ORD), Denver (DEN), 

and Los Angeles (LAX) that United Airlines once offered on a typical weekday: 

Daily Flight Schedule 

  City Time 

 Flight Depart Arrive Depart Arrive 

1 221 ORD DEN 0800 0934 

2 223 ORD DEN 0900 1039 

3 274 LAX DEN 0800 1116 

4 105 ORD LAX 1100 1314 

5 228 DEN ORD 1100 1423 

6 230 DEN ORD 1200 1521 

7 259 ORD LAX 1400 1609 

8 293 DEN LAX 1400 1510 

9 412 LAX ORD 1400 1959 

10 766 LAX DEN 1600 1912 

11 238 DEN ORD 1800 2121 

 This schedule can be represented by the network in Figure 8.9. The diagonal lines from upper left 

to lower right represent flight arrivals. The diagonal lines from lower left to upper right represent 

departures. To complete the diagram, we need to add the lines connecting each flight departure to each 

flight arrival. The thin line connecting the departure of Flight 274 from LAX to the arrival of Flight 274 

in Denver illustrates one of the missing lines. If the schedule repeats every day, it is reasonable to have 

the network have a backloop for each city, as illustrated for LAX. To avoid clutter, these lines have not 

been added. 
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Figure 8.9 A Fleet Routing Network 

 

Perhaps the obvious way of interpreting this as a network problem is as follows: 

a) Each diagonal line (with the connection to its partner) constitutes a variable, corresponding 

to a flight; 

b) each horizontal line or backloop corresponds to a decision variable representing the number 

of aircraft on the ground; 

c) each point of either an arrival or a departure constitutes a node, and the model will have a 

constraint saying, in words: 

(no. of aircraft on the ground at this city at this instant) + (arrivals at this instant)  

 = (no. of departures from this city at this instant) + (no. of aircraft on the ground after 

this instant). 

 With this convention, there would be 22 constraints (8 at ORD, 8 at DEN, and 6 at LAX), and 33 

variables (11 flight variables and 22 ground variables). The number of constraints and variables can be 

reduced substantially if we make the observation that the feasibility of a solution is not affected if, for 

each city: 

a) Each arrival is delayed until the first departure after that arrival. 

b) Each departure is advanced (made earlier) to the most recent departure just after an arrival. 

Thus, the only nodes required are when a departure immediately follows an arrival. 

 If we have a fleet of just one type of aircraft, we probably want to know what is the minimum 

number of aircrafts needed to fly this schedule. In words, our model is: 

Minimize number of aircraft on the ground overnight  

(That is the only place they can be, given the flight schedule) 

subject to 

source of aircraft = use of aircraft at each node of the network 

and each flight must be covered. 
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 Taking all the above observations into account gives the following formulation of a network LP. 

Note the G variables represent the number of aircraft on the ground at a given city just after a specified 

instant: 

! Fleet routing with a single plane type; 

!  Minimize number of planes on ground overnight; 

MIN = GC2400 + GD2400 + GL2400; 

! The plane(old) conservation constraints; 

! Chicago at 8 am, sources - uses = 0; 

GC2400 - F221 - F223 - F105 - F259 - GC1400 = 0; 

! Chicago at midnight; 

GC1400 + F228 + F230 + F412 + F238 - GC2400 = 0; 

! Denver at 11 am; 

GD2400 + F221 + F223 - F228 - GD1100 = 0; 

! Denver at high noon; 

GD1100 + F274 - F230 - F293 - F238 - GD1800 = 0; 

! Denver at midnight; 

GD1800 + F766 - GD2400 = 0; 

! LA at 8 am; 

GL2400 - F274 - GL0800 = 0; 

! LA at 1400; 

GL0800 + F105 - F412 - GL1400 = 0; 

! LA at 1600; 

GL1400 + F293 - F766 - GL1600 = 0; 

! LA at midnight; 

GL1600 + F259 - GL2400 = 0; 

! Cover our flight's constraints; 

 F221 = 1; 

 F223 = 1; 

 F274 = 1; 

 F105 = 1; 

 F228 = 1; 

 F230 = 1; 

 F259 = 1; 

 F293 = 1; 

 F412 = 1; 

 F766 = 1; 

 F238 = 1; 
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 This model assumes no deadheading is used. That is, no plane is flown empty from one city to 

another in order to position it for the next day. The reader probably figured out by simple intuitive 

arguments that six aircraft are needed. The following solution gives the details: 

Optimal solution found at step:         0 

Objective value:                 6.000000 

Variable           Value        Reduced Cost 

  GC2400        4.000000           0.0000000 

  GD2400        1.000000           0.0000000 

  GL2400        1.000000           0.0000000 

    F221        1.000000           0.0000000 

    F223        1.000000           0.0000000 

    F105        1.000000           0.0000000 

    F259        1.000000           0.0000000 

  GC1400       0.0000000            1.000000 

    F228        1.000000           0.0000000 

    F230        1.000000           0.0000000 

    F412        1.000000           0.0000000 

    F238        1.000000           0.0000000 

  GD1100        2.000000           0.0000000 

    F274        1.000000           0.0000000 

    F293        1.000000           0.0000000 

  GD1800       0.0000000            1.000000 

    F766        1.000000           0.0000000 

  GL0800       0.0000000           0.0000000 

  GL1400       0.0000000           0.0000000 

  GL1600       0.0000000            1.000000 

 Thus, there are four aircraft on the ground overnight at Chicago, one overnight at Denver, and one 

overnight at Los Angeles. 

8.9.5 Fleet Assignment 
If we have two or more aircraft types, then we have the additional decision of specifying the type of 

aircraft assigned to each flight. The typical setting is we have a limited number of new aircraft that are 

more efficient than previous aircraft. Let us extend our previous example by assuming we have two 

aircraft of type B. They are more fuel-efficient than our original type A aircraft. However, the capacity 

of type B is slightly less than A. We now probably want to maximize the profit contribution. The profit 

contribution from assigning an aircraft of type i to flight j is: 

+ (revenue from satisfying all demand on flight j) 

− (“spill” cost of not being able to serve all demand on j because of the limited capacity of 

aircraft type i) 

− (the operating cost of flying aircraft type i on flight j) 

+ (revenue from demand spilled from previous flights captured on this flight). 

The spill costs and recoveries are probably the most difficult to estimate. 

 The previous model easily generalizes with the two modifications: 

a) Conservation of flow constraints is needed for each aircraft type. 

b) The flight coverage constraints become more flexible, because there are now two ways of 

covering a flight. 
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 After carefully calculating the profit contribution for each combination of aircraft type and flight, 

we get the following model: 

! Fleet routing and assignment with two plane types; 

! Maximize profit contribution from flights covered; 

MAX = 105 * F221A + 121 * F221B + 109 * F223A + 108  

      * F223B + 110 * F274A + 115 * F274B + 130 *  

      F105A + 140 * F105B + 106 * F228A + 122 *  

      F228B + 112 * F230A + 115 * F230B + 132 *  

      F259A + 129 * F259B + 115 * F293A + 123 *  

      F293B + 133 * F412A + 135 * F412B + 108 *  

      F766A + 117 * F766B + 116 * F238A + 124 *  

      F238B; 

! Conservation of flow constraints; 

! for type A aircraft; 

! Chicago at 8 am, sources - uses = 0; 

F221A - F223A - F105A - F259A - GC1400A + GC2400A=0; 

! Chicago at midnight; 

F228A + F230A + F412A + F238A + GC1400A - GC2400A=0; 

! Denver at 11 am; 

   F221A + F223A - F228A - GD1100A + GD2400A = 0; 

! Denver at high noon; 

F274A - F230A - F293A - F238A + GD1100A - GD1800A=0; 

! Denver at midnight; 

   F766A - GD2400A + GD1800A = 0; 

! LA at 8 am; 

   - F274A - GL0800A + GL2400A = 0; 

! LA at 1400; 

   F105A - F412A + GL0800A - GL1400A = 0; 

! LA at 1600; 

   F293A - F766A + GL1400A - GL1600A = 0; 

! LA at midnight; 

   F259A - GL2400A + GL1600A = 0; 

! Aircraft type B, conservation of flow; 

! Chicago at 8 am; 

-F221B - F223B - F105B - F259B - GC1400B +GC2400B=0; 

! Chicago at midnight; 

F228B + F230B + F412B + F238B + GC1400B - GC2400B=0; 

! Denver at 11 am; 

   F221B + F223B - F228B - GD1100B + GD2400B = 0; 

! Denver at high noon; 

F274B - F230B - F293B - F238B + GD1100B - GD1800B=0; 

! Denver at midnight; 

   F766B - GD2400B + GD1800B = 0; 

! LA at 8 am; 

   - F274B - GL0800B + GL2400B = 0; 

! LA at 1400; 

   F105B - F412B + GL0800B - GL1400B = 0; 

! LA at 1600; 

   F293B - F766B + GL1400B - GL1600B = 0; 

! LA at midnight; 

   F259B - GL2400B + GL1600B = 0; 

! Can put at most one plane on each flight; 
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   F221A + F221B <= 1; 

   F223A + F223B <= 1; 

   F274A + F274B <= 1; 

   F105A + F105B <= 1; 

   F228A + F228B <= 1; 

   F230A + F230B <= 1; 

   F259A + F259B <= 1; 

   F293A + F293B <= 1; 

   F412A + F412B <= 1; 

   F766A + F766B <= 1; 

   F238A + F238B <= 1; 

! Fleet size of type B; 

   GC2400B + GD2400B + GL2400B <= 2; 

The not so obvious solution is: 

Optimal solution found at step:        37 

Objective value:                 1325.000 

Variable           Value        Reduced Cost 

   F221B        1.000000           0.0000000 

   F223A        1.000000           0.0000000 

   F274A        1.000000           0.0000000 

   F105A        1.000000           0.0000000 

   F228B        1.000000           0.0000000 

   F230A        1.000000           0.0000000 

   F259A        1.000000           0.0000000 

   F293B        1.000000           0.0000000 

   F412A        1.000000           0.0000000 

   F766B        1.000000           0.0000000 

   F238A        1.000000           0.0000000 

 GC2400A        3.000000           0.0000000 

 GD1100A        1.000000           0.0000000 

 GL2400A        1.000000           0.0000000 

 GC2400B        1.000000           0.0000000 

 GD1100B        1.000000           0.0000000 

 GD2400B        1.000000           0.0000000 

 Six aircraft are still used. The newer type B aircraft cover flights 221, 228, 293, and 766. Since there 

are two vehicle types, this model is a multicommodity network flow model rather than a pure network 

flow model. Thus, we are not guaranteed to be able to find a naturally integer optimal solution to the LP. 

Nevertheless, such was the case for the example above. 
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 Generating an explicit model as above would be tedious. The following is a set-based version of the 

above model. With the set based version, adding a flight or an aircraft type is a fairly simple clerical 

operation: 

MODEL: 

SETS:  ! Fleet routing and assignment (FLEETRAV); 

 CITY :;  ! The cities involved; 

 ACRFT:   ! Aircraft types; 

  FCOST,  !  Fixed cost per day of this type; 

  FSIZE;  !  Max fleet size of this type; 

 FLIGHT:;   

 FXCXC( FLIGHT, CITY, CITY) : 

  DEPAT,  ! Flight departure time; 

  ARVAT;  ! arrival time at dest.; 

 AXC( ACRFT, CITY):  

  OVNITE; ! Number staying overnite by type,city; 

 AXF( ACRFT, FXCXC):  

  X,      ! Number aircraft used by type,flight; 

  PC;     ! Profit contribution by type,flight; 

ENDSETS 

DATA: 

 CITY = ORD  DEN  LAX; 

 ACRFT, FCOST, FSIZE = 

  MD90     0    7 

  B737     0    2; 

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238; 

 FXCXC, DEPAT, ARVAT =  

!     Flight  Origin Dest. Depart Arrive; 

         F221   ORD   DEN    800    934 

         F223   ORD   DEN    900   1039 

         F274   LAX   DEN    800   1116   

         F105   ORD   LAX   1100   1314 

         F228   DEN   ORD   1100   1423 

         F230   DEN   ORD   1200   1521 

         F259   ORD   LAX   1400   1609 

         F293   DEN   LAX   1400   1510 

         F412   LAX   ORD   1400   1959 

         F766   LAX   DEN   1600   1912 

         F238   DEN   ORD   1800   2121; 

 PC =   ! Profit contribution of each vehicle*flight combo; 

   105        109        110         130         106          112 

   132        115        133         108         116 

   121        108        115         140         122          115 

   129        123        135         117         124; 

ENDDATA 

!-------------------------------------------------------------------; 

! Maximize profit contribution from flights minus 

   overhead cost of aircraft in fleet; 

 MAX = @SUM( AXF( I, N, J, K): PC( I, N, J, K) * X( I, N, J, K)) 

     - @SUM( AXC( I, J): FCOST( I) * OVNITE( I, J)); 
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! At any instant, departures in particular, the number of  

 cumulative arrivals must be >= number of cumulative departures;  

! For each flight of each aircraft type; 

 @FOR( ACRFT( I): 

  @FOR( FXCXC( N, J, K): 

! Aircraft on ground in morning + 

   number aircraft arrived thus far >= 

   number aircraft departed thus far; 

   OVNITE( I, J) +  

   @SUM( FXCXC( N1, J1, K1)| K1 #EQ# J #AND#  

                             ARVAT( N1, J1, K1) #LT# DEPAT( N, J, K): 

               X( I, N1, J1, J)) >=  

   @SUM( FXCXC( N1, J1, K1)| J1 #EQ# J #AND# 

                             DEPAT( N1, J1, K1) #LE# DEPAT( N, J, K): 

               X( I, N1, J, K1)); 

         );); 

! This model does not allow deadheading, so at the end of the day, 

   arrivals must equal departures; 

 @FOR( ACRFT( I): 

   @FOR( CITY( J): 

    @SUM( AXF( I, N, J1, J): X( I, N, J1, J)) = 

    @SUM( AXF( I, N, J, K): X( I, N, J, K)); 

       ); 

     ); 

!  Each flight must be covered; 

    @FOR( FXCXC( N, J, K): 

       @SUM( AXF( I, N, J, K): X( I, N, J, K)) = 1; 

        ); 

! Fleet size limits; 

   @FOR( ACRFT( I):  

     @SUM( AXC( I, J): OVNITE( I, J)) <= FSIZE( I); 

       );  

! Fractional planes are not allowed; 

   @FOR( AXF: @GIN( X); ); 

END 

 Sometimes, especially in trucking, one has the option of using rented vehicles to cover only selected 

trips. With regard to the model, the major modification is that rented vehicles do not have to honor the 

conservation of flow constraints. Other details that are sometimes included relate to maintenance. With 

aircraft, for example, a specific aircraft must be taken out of service for maintenance after a specified 

number of landings, or after a specified number of flying hours, or after a certain elapsed time, whichever 

occurs first. It is not too difficult to incorporate such details, although the model becomes substantially 

larger. 

8.9.6 Leontief Flow Models 
In a Leontief flow model, each activity produces one output. However, it may use zero or more inputs. 

The following example illustrates. 

Example: Islandia Input-Output Model 

The country of Islandia has four major export industries: steel, automotive, electronics, and plastics. The 

economic minister of Islandia would like to maximize exports-imports. The unit of exchange in Islandia 

is the klutz. The prices in klutzes on the world market per unit of steel, automotive, electronics, and 
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plastics are, respectively: 500, 1500, 300, and 1200. Production of one unit of steel requires 0.02 units 

of automotive production, 0.01 units of plastics, 250 klutzes of raw material purchased on the world 

market, plus one-half man-year of labor. Production of one automotive unit requires 0.8 units of steel, 

0.15 units of electronics, 0.11 units of plastic, one man-year of labor, and 300 klutzes of imported 

material. Production of one unit of electronic equipment requires 0.01 units of steel, 0.01 units of 

automotive, 0.05 units of plastic, half a man-year of labor, and 50 klutzes of imported material. 

Automotive production is limited at 650,000 units. Production of one unit of plastic requires 0.03 units 

of automotive production, 0.2 units of steel, 0.05 units of electronics, 2 man-years of labor, plus 300 

klutzes of imported materials. The upper limit on plastic is 60,000 units. The total manpower available 

in Islandia is 830,000 men per year. No steel, automotive, electronics, or plastic products may be 

imported. 

 How much should be produced and exported of the various products? 

Formulation and Solution of the Islandia Problem 

The formulation of an input-output model should follow the same two-step procedure for formulating 

any LP model. Namely, (1) identify the decision variables and (2) identify the constraints. The key to 

identifying the decision variables for this problem is to make the distinction between the amount of 

commodity produced and the amount exported. Once this is done, the decision variables can be 

represented as: 

PROD(STEEL) = units of steel produced, 

PROD(AUTO) = units of automotive produced, 

PROD(PLASTIC) = units of plastic produced, 

PROD(ELECT) = units of electronics produced, 

EXP(STEEL) = units of steel exported, 

EXP(AUTO) = units of automotive exported, 

EXP(PLASTIC) = units of plastic exported, 

EXP(ELECT) = units of electronics exported. 

 The commodities can be straightforwardly identified as steel, automotive, electronics, plastics, 

manpower, automotive capacity, and plastics capacity. Thus, there will be seven constraints. 
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 The sets formulation and solution are: 

MODEL: ! Islandia Input/output model; 

SETS: 

 COMMO:  

   PROD, EXP, REV, COST, MANLAB, CAP; 

 CXC(COMMO, COMMO): USERATE; 

ENDSETS 

DATA: 

  COMMO = STEEL, AUTO, PLASTIC, ELECT; 

   COST =   250   300    300     50; 

   REV  =   500  1500   1200    300; 

 MANLAB =   .5    1      2       .5; 

! Amount used of the column commodity per unit 

   of the row commodity; 

 USERATE=   -1   .02    .01       0 

        .8    -1    .11      .15 

        .2   .03     -1      .05 

        .01  .01    .05       -1; 

  MANPOWER = 830000; 

  CAP =   999999 650000  60000 999999; 

ENDDATA 

[PROFIT] MAX = @SUM( COMMO: REV * EXP - PROD * COST); 

 @FOR( COMMO( I): 

   [ NETUSE] ! Net use must equal = 0; 

     EXP(I) + @SUM(COMMO(J): USERATE(J,I)* PROD(J)) 

     = 0; 

   [CAPLIM] PROD( I) <= CAP( I); 

     ); 

 [MANLIM] @SUM(COMMO:PROD * MANLAB) < MANPOWER; 

END 

 

 

 Notice this model has the Leontief flow feature. Namely, each decision variable has at most one 

negative constraint coefficient. 

 The solution is: 

               Global optimal solution found. 

               Objective value:    0.4354312E+09 

 

                       Variable           Value        Reduced Cost 

                       MANPOWER        830000.0            0.000000 

                   PROD( STEEL)        393958.3            0.000000 

                    PROD( AUTO)        475833.3            0.000000 

                 PROD( PLASTIC)        60000.00            0.000000 

                   PROD( ELECT)        74375.00            0.000000 

                    EXP( STEEL)        547.9167            0.000000 

                     EXP( AUTO)        465410.4            0.000000 

                  EXP( PLASTIC)        0.000000            2096.875 

                    EXP( ELECT)        0.000000            121.8750 

                    REV( STEEL)        500.0000            0.000000 

                     REV( AUTO)        1500.000            0.000000 

                  REV( PLASTIC)        1200.000            0.000000 
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                    REV( ELECT)        300.0000            0.000000 

                   COST( STEEL)        250.0000            0.000000 

                    COST( AUTO)        300.0000            0.000000 

                 COST( PLASTIC)        300.0000            0.000000 

                   COST( ELECT)        50.00000            0.000000 

                 MANLAB( STEEL)       0.5000000            0.000000 

                  MANLAB( AUTO)        1.000000            0.000000 

               MANLAB( PLASTIC)        2.000000            0.000000 

                 MANLAB( ELECT)       0.5000000            0.000000 

                    CAP( STEEL)        999999.0            0.000000 

                     CAP( AUTO)        650000.0            0.000000 

                  CAP( PLASTIC)        60000.00            0.000000 

                    CAP( ELECT)        999999.0            0.000000 

         USERATE( STEEL, STEEL)       -1.000000            0.000000 

          USERATE( STEEL, AUTO)       0.2000000E-01        0.000000 

       USERATE( STEEL, PLASTIC)       0.1000000E-01        0.000000 

         USERATE( STEEL, ELECT)        0.000000            0.000000 

          USERATE( AUTO, STEEL)       0.8000000            0.000000 

           USERATE( AUTO, AUTO)       -1.000000            0.000000 

        USERATE( AUTO, PLASTIC)       0.1100000            0.000000 

          USERATE( AUTO, ELECT)       0.1500000            0.000000 

       USERATE( PLASTIC, STEEL)       0.2000000            0.000000 

        USERATE( PLASTIC, AUTO)       0.3000000E-01        0.000000 

     USERATE( PLASTIC, PLASTIC)       -1.000000            0.000000 

       USERATE( PLASTIC, ELECT)       0.5000000E-01        0.000000 

         USERATE( ELECT, STEEL)       0.1000000E-01        0.000000 

          USERATE( ELECT, AUTO)       0.1000000E-01        0.000000 

       USERATE( ELECT, PLASTIC)       0.5000000E-01        0.000000 

         USERATE( ELECT, ELECT)       -1.000000            0.000000 

 

                            Row    Slack or Surplus      Dual Price 

                         PROFIT       0.4354312E+09        1.000000 

                 NETUSE( STEEL)        0.000000            500.0000 

                 CAPLIM( STEEL)        606040.7            0.000000 

                  NETUSE( AUTO)        0.000000            1500.000 

                  CAPLIM( AUTO)        174166.7            0.000000 

               NETUSE( PLASTIC)        0.000000            3296.875 

               CAPLIM( PLASTIC)        0.000000            2082.656 

                 NETUSE( ELECT)        0.000000            421.8750 

                 CAPLIM( ELECT)        925624.0            0.000000 

                         MANLIM        0.000000            374.0625 

 

 The solution indicates the best way of selling Islandia’s steel, automotive, electronics, plastics, and 

manpower resources is in the form of automobiles. 

 This problem would fit the classical input-output model format of Leontief if, instead of maximizing 

profits, target levels were set for the export (or consumption) of steel, automotive, and plastics. The 

problem would then be to determine the production levels necessary to support the specified 

export/consumption levels. In this case, the objective function is irrelevant. 

 A natural generalization is to allow alternative technologies for producing various commodities. 

These various technologies may correspond to the degree of mechanization or the form of energy 

consumed (e.g., gas, coal, or hydroelectric). 
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8.9.7 Activity/Resource Diagrams 
The graphical approach for depicting a model can be extended to arbitrary LP models. The price one 

must pay to represent a general LP graphically is one must introduce an additional component type into 

the network. There are two component types in such a diagram: (1) activities, which correspond to 

variables and are denoted by a square, and (2) resources, which correspond to constraints and are denoted 

by a circle. Each constraint can be thought of as corresponding to some commodity and, in words, as 

saying “uses of commodity  sources of commodity”. The arrows incident to a square correspond to the 

resources, commodities, or constraints with which that variable has an interaction. The arrows incident 

to a circle must obviously then correspond to the activities or decision variables with which the constraint 

has an interaction. 

Example: The Vertically Integrated Farmer 

A farmer has 120 acres that can be used for growing wheat or corn. The yield is 55 bushels of wheat or 

95 bushels of corn per acre per year. Any fraction of the 120 acres can be devoted to growing wheat or 

corn. Labor requirements are 4 hours per acre per year, plus 0.15 hours per bushel of wheat, and 0.70 

hours per bushel of corn. Cost of seed, fertilizer, etc., is 20 cents per bushel of wheat produced and 12 

cents per bushel of corn produced. Wheat can be sold for $1.75 per bushel and corn for $0.95 per bushel. 

Wheat can be bought for $2.50 per bushel and corn for $1.50 per bushel. 

 In addition, the farmer may raise pigs and/or poultry. The farmer sells the pigs or poultry when they 

reach the age of one year. A pig sells for $40. He measures the poultry in terms of coops. One coop 

brings in $40 at the time of sale. One pig requires 25 bushels of wheat or 20 bushels of corn, plus 25 

hours of labor and 25 square feet of floor space. One coop of poultry requires 25 bushels of corn or 10 

bushels of wheat, plus 40 hours of labor and 15 square feet of floor space. 

 The farmer has 10,000 square feet of floor space. He has available per year 2,000 hours of his own 

time and another 2,000 hours from his family. He can hire labor at $1.50 per hour. However, for each 

hour of hired labor, 0.15 hour of the farmer’s time is required for supervision. How much land should 

be devoted to corn and to wheat, and how many pigs and/or poultry should be raised to maximize the 

farmer’s profits? This problem is based on an example in chapter 12 of Hadley (1962). 
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 You may find it convenient to use the following variables for this problem: 

WR Wheat raised (in bushels) 

CR Corn harvested (in bushels) 

PS Pigs raised and sold 

HS Hens raised and sold (number of coops) 

LB Labor hired (in hours) 

WS Wheat marketed or sold (in bushels) 

CS Corn marketed or sold (in bushels) 

CH Corn used to feed hens (in bushels) 

WH Wheat used to feed hens (in bushels) 

CP Corn used to feed pigs (in bushels) 

WP Wheat used to feed pigs (in bushels) 

CB Corn bought (in bushels) 

WB Wheat bought ( in bushels) 

The activity-resource diagram for the preceding problem is shown in Figure 8.10: 

Figure 8.10 An Activity-Resource Diagram 

 

Some things to note about an activity-resource diagram are: 

• Each rectangle in the diagram corresponds to a decision variable in the formulation. 

• Each circle in the diagram corresponds to a constraint or the objective. 

• Each arrow in the diagram corresponds to a coefficient in the formulation. 

• Associated with each circle or rectangle is a unit of measure (e.g., hours or bushels). 

• The units or dimension of each arrow is: 

     “Units of the circle” per “unit of the rectangle.” 

 

1.5 

 .12 
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Below is the formulation corresponding to the above diagram. 
 

 ! All constraints are in Uses <= Sources form; 

 [PROFIT] MAX= 1.75*WS +.95*CS  +40*PS +40*HS -1.5*LB -.2*WR -.12*CR -1.5*CB -2.5*WB;  

 [LAND]   (1/55)*WR + (1/95)*CR <= 120 ;                                  ! Acres; 

 [LABOR]  (.15+4/55)*WR + (.7+4/95)*CR + 40*HS + 25*PS <= .85*LB + 4000 ; ! Hours; 

 [HRDLABOR] LB <= 2000/.15;              ! Hours; 

 [WHEAT]   WS + WH + WP <= WB + WR;      ! Bushels); 

 [CORN]    CS + CH + CP <= CB + CR;      ! Bushels; 

 [HENFEED]  HS <= (1/25)*CH + (1/10)*WH; ! Coops; 

 [PIGFEED]  PS <= (1/20)*CP + (1/25)*WP; ! Pigs; 

 [FLOORSP]  25*PS + 15*HS  <= 10000;     ! Square feet; 

 

Notice that there is a one-to-one correspondence between the rows of the formulation and the round 

nodes of the diagram, and a one-to-one correspondence between the variables of the formulation and the 

square “hyper-arcs” of the diagram.  The solution is: 
 

 

      Variable           Value        Reduced Cost 

            WS        5967.500           0.000000 

            CS        0.000000           0.4122697 

            PS        0.000000           0.000000 

            HS        63.25000           0.000000 

            LB        0.000000           1.021875 

            WR        6600.000           0.000000 

            CR        0.000000           0.000000 

            CB        0.000000           0.1377303 

            WB        0.000000           0.7500000 

            WH        632.5000           0.000000 

            WP        0.000000           0.7125000 

            CH        0.000000           0.6622697 

            CP        0.000000           0.0653947 

 

           Row    Slack or Surplus      Dual Price 

        PROFIT        11653.12            1.000000 

          LAND        0.000000            78.35938 

         LABOR        0.000000           0.5625000 

      HRDLABOR        13333.33            0.000000 

         WHEAT        0.000000            1.750000 

          CORN        0.000000            1.362270 

       HENFEED        0.000000            17.50000 

       PIGFEED        0.000000            25.93750 

       FLOORSP        9051.250            0.000000 

 

Notice that the most profitable use of land is to raise wheat. The most profitable use of the farmer’s own 

labor and floor space is to use it, plus some wheat, to raise hens. 

8.9.8 Spanning Trees 
Another simple yet important network-related problem is the spanning tree problem. It arises, for 

example, in the installation of utilities such as cable, power lines, roads, and sewers to provide services 

to homes in newly developed regions. Given a set of homes to be connected, we want to find a minimum 

cost network, so every home is connected to the network. A reasonable approximation to the cost of the 

network is the sum of the costs of the arcs in the network. If the arcs have positive costs, then a little 

reflection should convince you the minimum cost network contains no loops (i.e., for any two nodes (or 
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homes) on the network, there is exactly one path connecting them). Such a network is called a spanning 

tree. 

 A simple algorithm is available for finding a minimal cost spanning tree, see Kruskal (1956): 

1. Set Y = {2, 3, 4 ... n} (i.e., the set of nodes yet to be connected). 

A = {1} (i.e., the set of already connected nodes). We may arbitrarily define node 1 as the 

root of the tree. 

2. If Y is empty, then we are done, 

3. else find the shortest arc (i,j) such that i is in A and j is in Y. 

4. Add arc (i, j) to the network and 

set A = A + j, 

      Y = Y − j. 

5. Go to (2). 

 Because of the above simple and efficient algorithm, LP is not needed to solve the minimum 

spanning tree problem. In fact, formulating the minimum spanning tree problem as an LP is a bit tedious. 

 The following illustrates a LINGO model for a spanning tree. This model does not explicitly solve 

it as above, but just solves it as a straightforward integer program: 

MODEL:    !  (MNSPTREE); 

!Given a set of nodes and the distance between each pair, find 

the shortest total distance of links on the network to connect 

all the nodes. This is the classic minimal spanning tree (MST) 

problem; 

SETS: 

    CITY: LVL; 

        ! LVL( I) = level of city I in tree. LVL( 1) = 0; 

    LINK( CITY, CITY): 

         DIST,  ! The distance matrix; 

          X;    ! X( I,J) = 1 if we use link I, J; 

ENDSETS 

 ! This model finds the minimum cost network connecting Atlanta, 

  Chicago, Cincinnati, Houston, LA, and Montreal so that  

  messages can be sent from Atlanta (base) to all other cities; 

DATA:   

 CITY= ATL  CHI  CIN  HOU  LAX  MON;   

  ! Distance matrix need not be symmetric. City 1 is base; 

 DIST =  0  702  454  842 2396 1196 !from Atlanta; 

       702    0  324 1093 2136  764 !from Chicago; 

       454  324    0 1137 2180  798 !from Cinci; 

       842 1093 1137    0 1616 1857 !from Houston; 

      2396 2136 2180 1616    0 2900 !from LA; 

      1196  764  798 1857 2900    0;!from Montreal; 

ENDDATA 

!----------------------------------------------; 

!The model size: Warning, may be slow for N > 8; 

N = @SIZE( CITY); 

!The objective is to minimize total dist. of links; 

MIN = @SUM( LINK: DIST * X); 

!For city K, except the base, ... ; 

@FOR( CITY( K)| K #GT# 1: ! It must be entered; 

   @SUM( CITY( I)| I #NE# K: X( I, K)) = 1; 
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!If there is a link from J-K, then LVL(K)=LVL(J)+1. 

  Note:These are not very powerful for large problems; 

   @FOR( CITY( J)| J #NE# K: 

      LVL( K) >= LVL( J) + X( J, K) 

        - ( N - 2) * ( 1 - X( J, K)) 

        + ( N - 3) * X( K, J); ); ); 

  LVL( 1) = 0;  ! City 1 has level 0; 

!There must be an arc out of city 1; 

@SUM( CITY( J)| J #GT# 1: X( 1, J)) >= 1; 

!Make the X's 0/1; 

@FOR( LINK: @BIN( X); ); 

!The level of a city except the base is at least 1 but no more than N-

1, and is 1 if link to the base; 

@FOR( CITY( K)| K #GT# 1: 

   @BND( 1, LVL( K), 999999); 

   LVL( K) <= N - 1 - ( N - 2) * X( 1, K);  ); 

END 

The solution is: 

Optimal solution found at step:        16 

Objective value:                 4000.000 

   Variable           Value        Reduced Cost 

          N        6.000000           0.0000000 

   LVL( CHI)        2.000000           0.0000000 

   LVL( CIN)        1.000000           0.0000000 

   LVL( HOU)        1.000000           0.0000000 

   LVL( LAX)        2.000000           0.0000000 

   LVL( MON)        3.000000           0.0000000 

X( ATL, CIN)        1.000000            454.0000 

X( ATL, HOU)        1.000000            842.0000 

X( CHI, MON)        1.000000            764.0000 

X( CIN, CHI)        1.000000            324.0000 

X( HOU, LAX)        1.000000            1616.000 

 The solution indicates Atlanta should connect to Cincinnati and Houston. Houston, in turn connects 

to LA. Cincinnati connects to Chicago, and Chicago connects to Montreal. 

8.9.9 Steiner Trees 
A Steiner tree is a generalization of a minimal spanning tree. The difference is, for a given network, only 

a specified subset of the nodes need be connected in a Steiner tree. Providing network services in a new 

housing development is a simple example, such as communication cable, sewer lines, water lines, and 

roads.  Each house must be connected to the network,  but not all possible nodes or junctions in the 

candidate network need be included. 

Example 

The first computer, an IBM RS6000, to beat a grandmaster, Gary Kasparov, at the game of chess, 

contained electronic chips designed with the help of Steiner-tree-like optimization methods. A typical 

VLSI (Very Large Scale Integrated) chip on this computer was less than 2 millimeters on a side. 

Nevertheless, it might contain over 120 meters of connecting pathways for connecting the various 

devices on the chip. An important part of increasing the speed of a chip is reducing the length of the 

paths on the chip. Figure 8.11 shows a chip on which five devices must be connected on a common tree. 
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Because of previous placement of various devices, the only available links are the ones indicated in the 

figure. The square nodes, A, B, C, D, and E, must be connected. The round nodes, F, G, etc., may be 

used, but need not be connected. What set of links should be used to minimize the total distance of links?  

Figure 8.11 Steiner Tree Problem 

A

B
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D

E

F G H

I J

K  

 Finding a minimal length Steiner tree is considerably harder than finding a minimal length spanning 

tree. For small problems, the following LINGO model will find minimal length Steiner trees. The data 

correspond to the network in Figure 8.11: 

MODEL:    !  (STEINERT); 

!Given a set of nodes, the distance between them, and a specified 

subset of the nodes, find the set of links so that the total distance 

is minimized, and there is a (unique) path between every pair of 

nodes in the specified subset. This is called a Steiner tree problem; 

SETS: 

 ALLNODE : U; 

  ! U( I) = level of node I in the tree; 

                     ! U( 1) = 0; 

 MUSTNOD( ALLNODE); ! The subset of nodes that must be connected; 

 LINK( ALLNODE, ALLNODE): 

         DIST,  ! The distance matrix; 

          X;    ! X( I, J) = 1 if we use link I, J; 

ENDSETS 
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DATA:  

 ALLNODE=  ! Distance matrix need not be symmetric; 

       A   B   C   D   E   F   G   H   I   J   K; 

 DIST =0  14 999 999 999   4 999 999 999 999 999 

      14   0 999 999 999 999 999   3 999 999 999 

     999 999   0   9 999 999 999 999   2 999 999 

     999 999   9   0 999 999 999 999 999   3   6 

     999 999 999 999   0 999 999   5 999 999   3 

       4 999 999 999 999   0 999 999   3 999 999      

     999 999 999 999 999 999   0   2 999   3 999 

     999   3 999 999   5 999   2   0 999 999 999 

     999 999   2 999 999   3 999 999   0   8 999 

     999 999 999   3 999 999   3 999   8   0 999 

     999 999 999   6   3 999 999 999 999 999   0; 

! The subset of nodes that must be connected.  

  The first node must be a must-do node; 

MUSTNOD =  A B C D E; 

ENDDATA 

!-----------------------------------------------; 

! The model size: Warning, may be slow for N > 8; 

N = @SIZE( ALLNODE); 

! Objective is minimize total distance of links; 

MIN = @SUM( LINK: DIST * X); 

! For each must-do node K, except the base, ... ; 

@FOR( MUSTNOD( K)| K #GT# 1: 

! It must be entered; 

  @SUM( ALLNODE( I)| I #NE# K: X( I, K)) = 1; 

! Force U(J)=number arcs between node J and node 1. Note: This is not 

very strong for large problems; 

@FOR( ALLNODE( J)| J #GT# 1 #AND# J #NE# K: 

   U( J) >= U( K) + X ( K, J) - 

    ( N - 2) * ( 1 - X( K, J)) + 

    ( N - 3) * X( J, K); ); 

  ); 

! There must be an arc out of node 1; 

@SUM( ALLNODE( J)| J #GT# 1: X( 1, J)) >= 1; 

!If an arc out of node J, there must be an arc in; 

@FOR( ALLNODE( J)| J #GT# 1: 

 @FOR( ALLNODE( K)| K #NE# J: 

  @SUM( ALLNODE( I)| I #NE# K #AND# I #NE# J: 

                  X( I, J)) >= X( J, K); 

     ); ); 

! Make the X's 0/1; 

@FOR( LINK: @BIN( X); ); 

! Level of a node except the base is at least 1, no more than N-1, and 

is 1 if link to the base; 

@FOR( ALLNODE( K)| K #GT# 1: 

 @BND( 1, U( K), 999999); 

 U( K) < N - 1 - ( N - 2) * X( 1, K);   ); 

END 
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The solution has a cost of 33. The list of links used is: 

Optimal solution found at step:        30 

Objective value:                 33.00000 

Branch count:                           0 

Variable           Value        Reduced Cost 

X( A, F)        1.000000            4.000000 

X( F, I)        1.000000            3.000000 

X( G, H)        1.000000            2.000000 

X( H, B)        1.000000            3.000000 

X( H, E)        1.000000            5.000000 

X( I, C)        1.000000            2.000000 

X( I, J)        1.000000            8.000000 

X( J, D)        1.000000            3.000000 

X( J, G)        1.000000            3.000000 
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The corresponding minimal length Steiner tree appears in Figure 8.12: 

Figure 8.12 Minimal Length Steiner Tree 
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 Notice node K is not in the tree. This example is missing two important features of real chip design:  

a) It shows only two-dimensional paths. In fact, three-dimensional paths are possible (and typically 

needed) by adding vertical layers to the chip.  b) It only shows one tree; whereas, in fact, there may 

be many distinct trees to be constructed (e.g., some devices need to be connected to electrical “ground”, 

others need to be connected to the clock signal, etc.). This might be handled by solving the trees 

sequentially, the more complicated trees first. 

8.10 Nonlinear Networks 
There are a number of important problems where the constraints describe a network problem. However, 

either the objective is nonlinear, or there are additional conditions on the network that are nonlinear. The 

first example describes a transportation problem where the value of shipping or assigning an item to a 

destination depends upon (a) how many items have already been shipped to that destination, and (b) the 

type of item and type of destination. In the military, this kind of problem is known as a weapons or target 

assignment problem. If we define: 

x(i,j) = number of units of type j assigned to task i; 

p(i,j) = Prob{ a unit of type j will not successfully complete task i}. 

Then, assuming independence, the probability task i will not be completed is:  

                 p(i, 1)x(i, 1) p(i, 2)x(i, 2) … p(i, n)x(i, n).   

The log of the proability that task i will not be completed is:   

                x(i, 1) *log[p(i, 1)]+ x(i, 2) *log[p(i, 2)]+ …+ x(i, n) *log[p(i, n)]. 

 A reasonable objective is to maximize the expected value of successfully completed tasks. The 

following model illustrates this idea, using data from Bracken and McCormick (1968): 

MODEL: 

!     (TARGET)  Bracken and McCormick; 

SETS: 

DESTN/1..20/: VALUE, DEM, LFAILP; 
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SOURCE/1..5/: AVAIL; 

DXS( DESTN, SOURCE): PROB, VOL; 

ENDSETS 

DATA: 

! Probability that a unit from source J will NOT do the job at 

destination I; 

PROB= 

1.00       .84       .96      1.00       .92 

 .95       .83       .95      1.00       .94 

1.00       .85       .96      1.00       .92 

1.00       .84       .96      1.00       .95 

1.00       .85       .96      1.00       .95 

 .85       .81       .90      1.00       .98 

 .90       .81       .92      1.00       .98 

 .85       .82       .91      1.00      1.00 

 .80       .80       .92      1.00      1.00 

1.00       .86       .95       .96       .90 

1.00      1.00       .99       .91       .95 

1.00       .98       .98       .92       .96 

1.00      1.00       .99       .91       .91 

1.00       .88       .98       .92       .98 

1.00       .87       .97       .98       .99 

1.00       .88       .98       .93       .99 

1.00       .85       .95      1.00      1.00 

 .95       .84       .92      1.00      1.00 

1.00       .85       .93      1.00      1.00 

1.00       .85       .92      1.00      1.00; 

! Units available at each source; 

AVAIL= 200       100       300       150       250; 

! Min units required at each destination; 

DEM= 

 30   0   0   0   0 100   0   0   0  40 

  0   0   0  50  70  35   0   0   0  10; 

! Value of satisfying destination J; 

VALUE= 

 60  50  50  75  40  60  35  30  25 150 

 30  45 125 200 200 130 100 100 100 150; 

ENDDATA 

!Max sum over I:(value of destn I) 

     *Prob{success at I}; 

    MAX = @SUM( DESTN( I): VALUE( I) * 

            ( 1 - @EXP( LFAILP( I)))); 

! The supply constraints;@FOR( SOURCE( J): 

   @SUM( DESTN( I): VOL( I, J)) <= AVAIL( J)); 

@FOR( DESTN( I): 

!The demand constraints; 

@SUM( SOURCE( J): VOL( I, J)) > DEM( I); 

!Compute log of destination I failure probability; 

@FREE( LFAILP( I)); 

 LFAILP( I) = 

 @SUM(SOURCE(J): @LOG(PROB(I,J)) * VOL(I,J));); 

END 
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 Observe the model could be “simplified” slightly by using the equation computing LFAILP ( I) to 

substitute out LFAILP ( I) in the objective. The time required to solve the model would probably increase 

substantially, however, if this substitution were made. The reason is the number of variables appearing 

nonlinearly in the objective increases dramatically. A general rule for nonlinear programs is: 

If you can reduce the number of variables that appear nonlinearly in the objective or a constraint 

by using linear constraints to define intermediate variables, then it is probably worth doing. 

Verify the constraint defining LFAILP (I) is linear in both LFAILP (I) and VOL ( I, J). 

 Notice the solution involves fractional assignments. A simple generalization of the model is to 

require the VOL () variables to be general integers: 

Optimal solution found at step:       152 

Objective value:                 1735.570 

   Variable           Value        Reduced Cost 

 VOL( 1, 5)        50.81594           0.0000000 

 VOL( 2, 1)        13.51739           0.0000000 

 VOL( 2, 2)        1.360311           0.2176940 

 VOL( 2, 5)        45.40872           0.0000000 

 VOL( 3, 5)        48.62891           0.0000000 

 VOL( 4, 2)        23.48955           0.0000000 

 VOL( 5, 2)        20.89957           0.0000000 

 VOL( 6, 1)        100.0000           0.0000000 

 VOL( 7, 1)        39.10010           0.0000000 

 VOL( 8, 1)        27.06643           0.0000000 

 VOL( 8, 5)       0.4547474E-12       0.0000000 

 VOL( 9, 1)        20.31608           0.0000000 

VOL( 10, 5)        51.13144           0.0000000 

VOL( 11, 4)        33.19754           0.0000000 

VOL( 12, 4)        40.93452           0.0000000 

VOL( 13, 5)        54.01499           0.0000000 

VOL( 14, 4)        58.82350           0.0000000 

VOL( 14, 5)       0.5684342E-13       0.0000000 

VOL( 15, 2)        26.21095           0.0000000 

VOL( 15, 3)        43.78905           0.0000000 

VOL( 16, 2)        24.23657           0.2176940 

VOL( 16, 4)        17.04444           0.0000000 

VOL( 17, 2)        3.803054           0.0000000 

VOL( 17, 3)        72.03255          -0.4182476E-05 

VOL( 18, 2)       0.8881784E-15       0.1489908 

VOL( 18, 3)        57.55117           0.0000000 

VOL( 19, 3)        64.21183           0.0000000 

VOL( 20, 3)        62.41540           0.0000000 
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8.11 Problems 
1. The Slick Oil Company is preparing to make next month’s pipeline shipment decisions. The Los 

Angeles terminal will require 200,000 barrels of oil. This oil can be supplied from either Houston 

or Casper, Wyoming. Houston can supply oil to L.A. at a transportation cost of $.25 per barrel. 

Casper can supply L.A. at a transportation cost of $.28 per barrel. The St. Louis terminal will require 

120,000 barrels. St. Louis can be supplied from Houston at a cost of $.18 per barrel and from Casper 

at a cost of $.22 per barrel. The terminal at Freshair, Indiana requires 230,000 barrels. Oil can be 

shipped to Freshair from Casper at a cost of $.21 per barrel, from Houston at a cost of $.19 per 

barrel, and from Titusville, Pa. at a cost of $.17 per barrel. Casper will have a total of 250,000 barrels 

available to be shipped. Houston will have 350,000 barrels available to be shipped. Because of 

limited pipeline capacity, no more than 180,000 barrels can be shipped from Casper to L.A. next 

month and no more than 150,000 barrels from Houston to L.A. The Newark, N.J. terminal will 

require 190,000 barrels next month. It can be supplied only from Titusville at a cost of $.14 per 

barrel. The Atlanta terminal will require 150,000 barrels next month. Atlanta can be supplied from 

Titusville at a cost of $.16 per barrel or from Houston at a cost of $.20 per barrel. Titusville will 

have a total of 300,000 barrels available to be shipped. 

  Formulate the problem of finding the minimum transportation cost distribution plan as a linear 

program. 

2. Louis Szathjoseph, proprietor of the Boulangerie Restaurant, knows he will need 40, 70, and 60 

tablecloths on Thursday, Friday, and Saturday, respectively, for scheduled banquets. He can rent 

tablecloths for three days for $2 each. A tablecloth must be laundered before it can be reused. He 

can have them cleaned overnight for $1.50 each. He can have them laundered by regular one-day 

service (e.g., one used on Thursday could be reused on Saturday) for $.80 each. There are currently 

20 clean tablecloths on hand with none dirty or at the laundry. Rented tablecloths need not be cleaned 

before returning. 

a) What are the decision variables? 

b) Formulate the LP appropriate for minimizing the total cost of renting and laundering the 

tablecloths. For each day, you will probably have a constraint requiring the number of clean 

tablecloths available to at least equal that day’s demand. For each of the first two days, you 

will probably want a constraint requiring the number of tablecloths sent to the laundry not 

to exceed those that have been made dirty. Is it a network LP? 

3. The Millersburg Supply Company uses a large fleet of vehicles it leases from manufacturers. The 

following pattern of vehicle requirements is forecast for the next 8 months: 

Month Jan Feb Mar Apr May Jun Jul Aug 

Vehicles 
Required 

430 410 440 390 425 450 465 470 

 Vehicles can be leased from various manufacturers at various costs and for various lengths of 

time. The best plans available are: three-month lease, $1,700; four-month lease, $2,000; five-month 

lease, $2,600. A lease can be started in any month. On January 1, there are 200 cars on lease, all of 

which go off lease at the end of February. 

a) Formulate an approach for minimizing Millersburg’s leasing costs over the 8 months. 

b) Show that this problem is a network problem. 



198     Chapter 8  Networks, Distribution & PERT/CPM 

 

4. Several years ago, a university in the Westwood section of Los Angeles introduced a bidding system 

for assigning professors to teach courses in its business school. The table below describes a small, 

slightly simplified three-professor/two-course version. For the upcoming year, each professor 

submits a bid for each course and places limits on how many courses he or she wants to teach in 

each of the school’s two semesters. Each professor, however, is expected to teach four courses total 

per year (at most three per semester). 

 Prof. X Prof. Y Prof. Z   

Fall Courses  1  3  1   

Spring Courses  3  2  3 Sections Needed 
    in the Year 

    Min Max 

Course A bids 6 3 8 3 7 

Course B bids 4 7 2 2 8 

 From the table, note that: professor Z strongly prefers to teach course A; whereas, professor X 

has a slight preference for A. Professor Y does not want to teach more than two course sections in 

the Spring. Over both semesters, at least three sections of Course A must be taught. Can you 

formulate this problem as a network problem? 

5. Aircraft Fuel Ferrying Problem. Fuel cost is one of the major components of variable operating cost 

for an airline. Some cities collect a tax on aircraft fuel sold at their airports. Thus, the cost per liter 

of fuel may vary noticeably from one airport to another. A standard problem with any airliner is the 

determination of how much fuel to take on at each stop. Fuel consumption is minimized if just 

sufficient fuel is taken on at each stop to fly the plane to the next stop. This policy, however, 

disregards the fact that fuel prices may differ from one airport to the next. Buying all the fuel at the 

cheapest stop may not be the cheapest policy either. This might require carrying large fuel loads that 

would in turn cause large amounts of fuel to be burned in ferrying the fuel. The refueling 

considerations at a given stop on a route are summarized by the following three numbers: (a) the 

minimum amount of fuel that must be on board at takeoff to make it to the next stop, (b) the cost 

per liter of fuel purchased at this stop, and (c) the amount of additional fuel above the minimum that 

is burned per liter of fuel delivered to the next stop. These figures are given below for an airplane 

that starts at Dallas, goes to Atlanta, then Chicago, Des Moines, St. Louis, and back to Dallas. 

 Dallas Atlanta Chicago Des Moines St. Louis 

a) 3100 2700 1330 1350 2500 

b) .29 .34 .35 .31 .33 

c) .04 .03 .02 .01 .04 

 For example to fly from Dallas to Atlanta, the plane must take off with at least 3100 liters of 

fuel. Any fuel purchased in Dallas costs $0.29 per liter. For each liter of fuel delivered to Atlanta 

(i.e., still in the tank), an additional .04 liters had to be put in at Dallas. Alternatively, each additional 

1.04 liters loaded at Dallas, results in an additional liter delivered to Atlanta. The plane has a 

maximum fuel carrying capacity of 6000 liters, which we will assume is independent of airport. 

Also, assume the minimum amount of reserve fuel that must be on board for safety reasons is fixed 

independent of airport, so we can act as if no reserve is required. 
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 Formulate and solve a model for deciding how much fuel to buy at each airport. Is this problem 

any form of a network LP? 

6. Show that any LP can be converted to an equivalent LP in which every column (variable) has at 

most three nonzero constraint coefficients. What does this suggest about the fundamental 

complexity of a network LP vs. a general LP? 

7. Figure 8.12 is the activity-on-arc diagram showing the precedence relations among the five activities 

involved in repairing a refinery. The three numbers above each arc represent (from left to right, 

respectively) the normal time for performing the activity in days, the time to perform the activity if 

crashed to the maximum extent, and the additional cost in $1000s for each day the activity is 

shortened. An activity can be partially crashed. It is desired the project be completed in 15 days. 

Write an LP formulation for determining how much each activity should be crashed.  

Figure 8.12 PERT Diagram with Crashing Allowed 
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8. Given n currencies, the one-period currency exchange problem is characterized by a beginning 

inventory vector, an exchange rate matrix, and an ending inventory requirement vector defined as 

follows: 

ni = amount of cash on hand in currency i, at the beginning of the period measured in units of 

currency i, for i = 1, 2, ..., n; 

rij = units of currency j obtainable per unit of currency i for i = 1, 2, ..., n, j = 1, 2, ..., n. Note 

that rii = 1 and, in general, we can expect rij < 1/rji, for i  j. 

ei = minimum ending inventory requirement for currency i, for i = 1, 2, ..., n. That is, at the 

end of the period, we must have at least ei units of currency i on hand. 

The decision variables are: 

Xij = amount of currency i converted into currency j, for i = 1, 2, ..., n; j = 1, 2, ..., n. 
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 Formulate a model for determining an efficient set of values for the Xij. The formulation should 

have the following features: 

a) If there is a “money pump” kind of arbitrage opportunity, the model will find it. 

b) It should not be biased against any particular currency (i.e., the solution should be 

independent of which currency is called 1). 

c) If a currency is worthless, you should buy no more of it than sufficient to meet the minimum 

requirement. A currency i is worthless if rij = 0, for all j  i. 

9. The following linear program happens to be a network LP. Draw the corresponding network. Label 

the nodes and links. 

MIN = 4 * T + 2 * U + 3 * V + 5 * W  + 6 * X + 7 * Y + 9 * Z; 

   [A] T + Y + Z >= 4; 

   [B] U - W - X - Z = 0; 

   [C] - T + W = 1; 

   [D] V + X - Y = 2; 

   [E] U + V <= 7; 

END 

10. Consider a set of three flights provided by an airline to serve four cities, A, B, C, and H. The airline 

uses a two-fare pricing structure. The decision of how many seats or capacity to allocate to each 

price class is sometimes called yield or revenue management. We would like to decide upon how 

many seats to allocate to each fare class on each flight. Node H is a hub for changing planes. The 

three flights are: from A to H, H to B, and H to C. The respective flight capacities are 120, 100, and 110. 

Customer demand has the following characteristics: 

 
Itinerary 

Class 1  
Demand 

At a Price 
of 

Class 2 
Demand 

At a Price 
of 

AH 33 190 56 90 

AB (via H) 24 244 43 193 

AC (via H) 12 261 67 199 

HB 44 140 69 80 

HC 16 186 17 103 

 How many seats should be allocated to each class on each of the three flights? An obvious 

solution, if it is feasible, is to set aside enough class 1 seats on every flight, so all class 1 travelers 

can be accommodated. Thus, the leg AH would get 33 + 24 + 12 = 69 class 1 seats, leg HB would 

get 24 + 44 = 68 class 1 seats and leg HC would get 12 + 16 = 28 class 1 seats. The total revenue of 

this solution is $38,854. Is this the most profitable solution? 



Networks, Distribution & PERT/CPM  Chapter 8     201 

11. A common distribution system structure in many parts of the world is the three-level system 

composed of plants, distribution centers (DC), and outlets. A cost minimization model for a system 

composed of two plants (A & B), three DC’s (X, Y, and Z), and four outlets (1, 2, 3, and 4) is shown 

below: 

MIN = AX + 2 * AY + 3 * BX + BY + 2 * BZ + 5 * X1 +  

      7 * X2 + 9 * Y1 + 6 * Y2 + 7 * Y3 + 8 * Z2 + 7  

      * Z3 + 4 * Z4; 

  AX + AY = 9; 

  BX + BY + BZ = 8; 

- AX - BX + X1 + X2 = 0; 

- AY - BY + Y1 + Y2 + Y3 = 0; 

- BZ + Z2 + Z3 + Z4 = 0; 

- X1 - Y1 = - 3; 

- X2 - Y2 - Z2 = - 5; 

- Y3 - Z3 = - 4; 

- Z4 = - 5; 

END 

Part of the solution is shown below: 

Objective value:                 121.0000 

Variable           Value        Reduced Cost 

      AX        3.000000           0.0000000 

      AY        6.000000           0.0000000 

      BX       0.0000000            3.000000 

      BY        3.000000           0.0000000 

      BZ        5.000000           0.0000000 

      X1        3.000000           0.0000000 

      X2       0.0000000           0.0000000 

      Y1       0.0000000            5.000000 

      Y2        5.000000           0.0000000 

      Y3        4.000000           0.0000000 

      Z2       0.0000000            3.000000 

      Z3       0.0000000            1.000000 

      Z4        5.000000           0.0000000 

a) Is there an alternate optimal solution to this distribution problem? 

b) A trucking firm that offers services from city Y to city 1 would like to get more of your business. 

At what price per unit might you be willing to give them more business according to the above 

solution?  

c) The demand at city 2 has been decreased to 3 units. Show how the model is changed. 

d) The capacity of plant B has been increased to 13 units. Show how the model is changed. 

e) Distribution center Y is actually in a large city where there is an untapped demand of 3 units 

that could be served directly from the DC at Y. Show how to include this additional demand at 

Y. 
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12. Labor on the first shift of a day (8 a.m. to 4 p.m.) costs $15 per person  hour. Labor on the second 

(4 p.m. to midnight) and third (midnight to 8 a.m.) shifts cost $20 per person  hour and $25 per 

person  hour, respectively. A certain task requires 18 days if done with just first shift labor and 

costs $8640. Second and third shift labor has the same efficiency as first shift labor. The only way 

of accelerating or crashing the task is to add additional shifts for one or more additional days. The 

total cost of the task consists solely of labor costs. 

Complete the following crash cost table for this task. 

Task 
time in 
whole 
days 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 

Total 
cost 

8640               

13. You are on a camping trip and wish to prepare a recipe for a certain food delight that calls for 4 cups 

of water. The only containers in your possession are two ungraduated steel vessels, one of 3-cup 

capacity, the other of 5-cup capacity. Show how you can solve this problem by drawing a certain 

two-dimensional network, where each node represents a specific combination of contents in your 

two containers. 

14. Following is part of the schedule for an airline: 

  City Time Difference 

 Flight Depart Arrive Depart Arrive in Profit 

1 221 ORD DEN 0800 0934 +$3000 

2 223 ORD DEN 0900 1039 −$4000 

3 274 LAX DEN 0800 1116 −$3000 

4 105 ORD LAX 1100 1314 +$10000 

5 228 DEN ORD 1100 1423 −$2000 

6 230 DEN ORD 1200 1521 −$3000 

7 259 ORD LAX 1400 1609 +$4000 

8 293 DEN LAX 1400 1510 +$1000 

9 412 LAX ORD 1400 1959 +$7000 

10 766 LAX DEN 1600 1912 +$2000 

11 238 DEN ORD 1800 2121 −$4000 

 The airline currently flies the above schedule using standard Boeing 737 aircraft. Boeing is 

trying to convince the airline to use a new aircraft, the 737-XX, known affectionately as the Dos 

Equis. The 737-XX consumes more fuel per kilometer. However, it is sufficiently larger such that, 

if it carries enough passengers, it is more efficient per passenger kilometer. The “Difference in 

Profit” column above shows the relative profitability of using the 737-XX instead of the standard 

737 on each flight. The airline is considering using at most one 737-XX. 

 Based on the available information, analyze the wisdom of using the 737-XX in place of one 

of the standard 737’s. 
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15. The following linear program happens to be a network LP: 

MIN = 9 * S + 4 * T + 2 * U + 3 * V + 5 * W + 6 * X + 7 * Y; 

   [A] - T + W = 1; 

   [B] S + T + Y  >= 4; 

   [C] U - W - X - S = 0; 

   [D] U + V <= 7; 

   [E] V + X - Y = 2; 

END 

a) Draw the corresponding network.  

b) Label the nodes and links. 

16. A small, but growing, long-distance phone company, SBG Inc., is trying to decide in which markets 

it should try to expand. It has used the following model to decide how to maximize the calls it carries 

per hour: 

MAX = P1SEADNV + P2SEADNV + P1SEACHI + P2SEACHI 

      + P1SEAATL + P2SEAATL + P1SEAMIA + P2SEAMIA 

      + P1DNVCHI + P2DNVCHI + P1DNVATL + P2DNVATL 

      + P1DNVMIA + P2DNVMIA + P1CHIATL + P2CHIATL 

      + P1CHIMIA + P2CHIMIA + P1ATLMIA; 

 [LSEADNV] P1SEADNV + P2SEACHI + P2SEAATL + P2SEAMIA  

   + P1DNVCHI + P2DNVATL + P2DNVMIA + P2CHIATL +  

   P2CHIMIA <= 95; 

 [LSEACHI] P2SEADNV + P1SEACHI + P1SEAATL + P1SEAMIA  

   + P1DNVCHI + P2DNVATL + P2DNVMIA + P2CHIATL +   

   P2CHIMIA <= 80; 

 [LDNVATL] P2SEADNV + P2SEACHI + P2SEAATL + P2SEAMIA  

   + P2DNVCHI + P1DNVATL + P1DNVMIA + P2CHIATL +  

   P2CHIMIA <= 200; 

 [LCHIATL] P2SEADNV + P2SEACHI + P1SEAATL + P1SEAMIA  

   + P2DNVCHI + P2DNVALT + P2DNVMIA + P1CHIATL +  

   P1CHIMIA <= 110; 

 [LATLMIA] P1SEAMIA + P2SEAMIA + P1DNVMIA + P2DNVMIA  

   + P1CHIMIA + P2CHIMIA + P1ATLMIA <= 105; 

 [DSEADNV] P1SEADNV + P2SEADNV <= 10; 

 [DSEACHI] P1SEACHI + P2SEACHI <= 20; 

 [DSEAATL] P1SEAATL + P2SEAATL <= 38; 

 [DSEAMIA] P1SEAMIA + P2SEAMIA <= 33; 

 [DDNVCHI] P1DNVCHI + P2DNVCHI <= 42; 

 [DDNVATL] P1DNVATL + P2DNVATL <= 48; 

 [DDNVMIA] P1DNVMIA + P2DNVMIA <= 23; 

 [DCHIATL] P1CHIATL + P2CHIATL <= 90; 

 [DCHIMIA] P1CHIMIA + P2CHIMIA <= 36; 

 [DATLMIA] P1ATLMIA            <= 26; 
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 Now, it would like to refine the model, so it takes into account not only revenue per call, but 

also modest variable costs associated with each link for carrying a call. The variable cost per typical 

call according to link used is shown in the table below: 

 Variable Cost/Call 

 DNV CHI ATL MIA 

SEA .11 .16 X X 

DNV  X .15 X 

CHI   .06 X 

ATL    .07 

 An X means there is no direct link between the two cities. SBG would like to find the 

combination of calls to accept to maximize profit contribution. Suppose the typical revenue per call 

between ATL and SEA is $1.20. Show how to modify the model just to represent the revenue and 

cost information for the demand between SEA and ATL. 

17. Below is a four-activity project network presented in activity-on-node form, along with information 

on crashing opportunities for each activity: 

 

Activity Normal 
Time 

(days) 

Crash 
Cost Per 

Day 

Minimum 
Possible Time 

(days) 

A 8 3 4 

B 7 4 5 

C 6 6 3 

D 9 2 5 

Complete the following tabulation of crashing cost vs. project length: 

Step Project 
Length 

Incremental 
Crashing 
Cost/Day 

Total 
Crashing 

Cost 

Activities 
to Crash 

0 16 0 0 — 

1     

2     

3     

4     
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9 
 

Multi-period Planning 
Problems 

 
 

9.1 Introduction 
One of the most important uses of optimization is in multi-period planning. Most of the problems we 

have considered thus far have been essentially one-period problems. The formulations acted as if 

decisions this period were decoupled from decisions in future periods. Typically, however, if we produce 

more of a certain product this period than required by a constraint, that extra production will not be 

worthless, but can probably be used next period. 

 These interactions between periods can be represented very easily within optimization models. In 

fact, most large linear programs encountered in practice are multi-period models. A common synonym 

for “multi-period” is “dynamic” (e.g., a multi-period LP may be referred to as a dynamic model). 

 In some applications, the need to represent the multi-period aspects is quite obvious. One setting in 

which multi-period LP has been used for a number of years is in the manufacture of cheese. Production 

decisions must be made monthly or even weekly. The production time for many cheeses, however, may 

be months. For example, Parmesan cheese may need to be stored in inventory for up to ten months. What 

Americans call Swiss cheese may take from two to four months. The various grades of cheddar obtained 

depend upon the number of weeks held in storage. Sharp cheddar may be aged up to a year in storage. 

Clearly, in such applications, the multi-period aspect of the model is the important feature. 

 Models for planning over time represent the real world by partitioning time into a number of periods. 

The portion of the model corresponding to a single period might be some combination of product mix, 

blending, and other models. These single-period or static models are linked by: 

1. A link or inventory variable for each commodity and period. The linking variable 

represents the amount of commodity transferred from one period to the next. 

2. A “material balance” or “sources = uses” constraint for each commodity and period. The 

simplest form of this constraint is “beginning inventory + production = ending inventory + 

goods sold”. 

 Multi-period models are usually used in a rolling or sliding format. In this format, the model is 

solved at the beginning of each period. The recommendations of the solution for the first period are 

implemented. As one period elapses and better data and forecasts become available, the model is slid 

forward one period. The period that had been number 2 becomes number 1, etc., and the whole process 
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is repeated. When using a model in this sliding fashion, a practical problem is that, as the new information 

becomes available, this period’s “optimal” solution may be drastically different from the previous 

period’s “optimal” solution. The people who have to implement the solution may find this disconcerting. 

The scheduling system is said to suffer from nervousness. An approach that has been used successfully 

in scheduling ships, scheduling plant closings/openings, and scheduling production of breakfast cereal, 

see Brown, Dell, and Wood (1997), is to specify a “reference” solution (e.g., the previous period’s 

solution). One then defines a secondary objective of minimizing the deviation of the current solution 

from the reference solution. If one puts zero weight on the secondary objective, then one gets the 

theoretically optimal solution. If one puts an extremely high weight on the secondary objective, then one 

simply gets the reference solution returned. If a modest weight is placed on the secondary objective, then 

one gets a solution that is a good compromise between low cost as measured by standard accounting, 

but is also close to the reference solution. 

 There is nothing sacred about having all periods of the same length. For example, when a petroleum 

company plans production for the coming year, it is sensible to have the periods correspond to the 

seasons of the year. One possible partition is to have the winter period extend from December 1 to March 

15, the spring period extend from March 16 to May 15, the summer period extend from May 16 to 

September 15, and the autumn period extend from September 16 to November 30. 

 Some companies, such as forest product or mineral resource based companies, plan as much as 50 

years into the future. In such a case, one might have the first two periods be one year each, the next 

period be two years, the next two periods three years each, the next two periods five years each, and the 

final three periods ten years each. 

 Inter-period interactions are usually accounted for in models by the introduction of inventory 

decision variables. These variables “link” adjacent periods. As an example, suppose we have a single 

explicit decision to make each period. Namely, how much to produce of a single product. Call this 

decision variable for period j, Pj. Further, suppose we have contracts to sell known amounts of this 

product, dj, in period j. Define the decision variable Ij as the amount of inventory left over at the end of 

period j. By this convention, the beginning inventory in period j is Ij-1. The LP formulation will then 

contain one “sources of product = uses of product” constraint for each period. For period 2, the sources 

of product are beginning inventory, I1, and production in the period, P2. The uses of product are demand, 

d2, and end of period inventory, I2. For example, if d2 = 60 and d3 = 40, then the constraint for period 2 

is: 

I1 + P2 = 60 + I2    or    I1 + P2 − I2 = 60. 

The constraint for period 3 is: 

I2 + P3 − I3 = 40. 

Notice how I2 “links” (i.e., appears in both the constraints for periods 2 and 3). 

 In some problems, the net outflow need not exactly equal the net inflow into the next period. For 

example, if the product is cash, then one of the linking variables may be short-term borrowing or lending. 

For each dollar carried over from period 2 by lending, we will enter period 3 with $1.05 if the interest 

rate is 5% per period. 

 On the other hand, if the “product” is workforce and there is a predictable attrition rate of 10% per 

period, then the above two constraints would be modified to: 

.90I1 + P2 − I2 = 60 

.90I2 + P3 − I3 = 40. 

In this case, Pi is the number hired in period i. 
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 The following example provides a simplified illustration of a single-product, multi-period planning 

situation. 

9.2 A Dynamic Production Problem 
A company produces one product for which the demand for the next four quarters is predicted to be: 

Spring Summer Autumn Winter 

20 30 50 60 

Assuming all the demand is to be met, there are two extreme policies that might be followed: 

1. “Track” demand with production and carry no inventory. 

2. Produce at a constant rate of 40 units per quarter and allow inventory to absorb the 

fluctuations in demand. 

 There are costs associated with carrying inventory and costs associated with varying the production 

level, so one would expect the least-cost policy is probably a combination of (1) and (2) (i.e., carry some 

inventory, but also vary the production level somewhat). 

 For costing purposes, the company estimates changing the production level from one period to the 

next costs $600 per unit. These costs are often called “hiring and firing” costs. It is estimated that 

charging $700 for each unit of inventory at the end of the period can accurately approximate inventory 

costs. The initial inventory is zero and the initial production level is 40 units per quarter. We require 

these same levels be achieved or returned to at the end of the winter quarter. 

 We can now calculate the production change costs associated with the no-inventory policy as: 

$600  (20 + 10 + 20 + 10 + 20) = $48,000. 

On the other hand, the inventory costs associated with the constant production policy is: 

$700  (20 + 30 + 20 + 0) = $49,000. 

 The least cost policy is probably a mix of these two pure policies. We can find the least-cost policy 

by formulating a linear program. 

9.2.1 Formulation 
The following definitions of variables will be useful: 

Pi  = number of units produced in period i, for i = 1, 2, 3, and 4; 

Ii  = units in inventory at the end of period i; 

Ui  = increase in production level between period i − 1 and i; 

Di  = decrease in production level between i − 1 and i. 

 The Pi variables are the obvious decision variables. It is useful to define the Ii, Ui, and Di variables, 

so we can conveniently compute the costs each period. 

 To minimize the cost per year, we want to minimize the sum of inventory costs: 

$700 I1 + $700 I2 + $700 I3 + $700 I4 

plus production change costs: 

  $600 U1 + $600 U2 + $600 U3 + $600 U4 + $600 U5 

+ $600 D1 + $600 D2 + $600 D3 + $600 D4 + $600 D5. 
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 We have added a U5 and a D5 in order to charge for the production level change back to 40, if needed 

at the end of the 4th period. 

9.2.2 Constraints 
Every multi-period problem will have a “material balance” or “sources = uses” constraint for each 

product per period. The usual form of these constraints in words is: 

beginning inventory + production − ending inventory = demand.  

Algebraically, these constraints for the problem at hand are: 

P1 − I1 = 20 

I1 + P2 − I2 = 30 

I2 + P3 − I3 = 50 

I3 + P4 = 60 

 Notice I4 and I0 do not appear in the first and last constraints, because initial and ending inventories 

are required to be zero. 

 If the formulation is solved as is, there is nothing to force U1, D1, etc., to be greater than zero. 

Therefore, the solution will be the pure production policy. Namely, P1 = 20, P2 = 30, P3 = 50, P4 = 60. 

This policy implies a production increase at the end of every period, except the last. This suggests a way 

of forcing U1, U2, U3, and U4 to take the proper values is to append the constraints: 

U1  P1 − 40 

U2  P2 − P1 

U3  P3 − P2 

U4  P4 − P3. 

 Production decreases are still not properly measured. An analogous set of four constraints should 

take care of this problem, specifically: 

D1  40 − P1 

D2  P1 − P2 

D3  P2 − P3 

D4  P3 − P4. 

 To incorporate the requirement that the production level be returned to 40 at the end of the winter 

quarter, we add the variables U5 and D5 to measure changes at the end of the last quarter. U5 and D5 are 

forced to take on the right values with the constraints: 

U5  40 − P4 

D5  P4 − 40. 

 Before moving on, we will note the production-change constraints can be reduced to 5 constraints 

from the 10 implied by the above form. The key observation is two constraints such as: 

U2  P2 − P1 

D2  P1 − P2 

can be replaced by the single constraint: 

U2 − D2 = P2 − P1. 
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 The argument is more economic than algebraic. The purpose with either formulation is to force 

U2 = P2 − P1 if P2 − P1  0 and D2 = P1 − P2 if P1 − P2  0. From economics, you can argue that, at the 

optimal solution, you will find at most one of U2 and D2 are greater than 0 under either formulation. If 

both U2 and D2 are greater than 0 under the second formulation, then both can be reduced by an equal 

amount. Thus, reducing costs without violating any constraints. 

 The complete formulation is: 

MODEL: 

!Minimize inventory + workforce change costs; 

MIN = 700 * I1 + 700 * I2 + 700 * I3 + 700 * I4 

    + 600 * U1 + 600 * U2 + 600 * U3 + 600 * U4 

    + 600 * D1 + 600 * D2 + 600 * D3 + 600 * D4  

    + 600 * U5 + 600 * D5; 

!Initial conditions on inventory & production; 

[CNDBI] I0 = 0; 

[CNDBP] P0 = 40; 

!Beginning inventory + production = demand + ending inventory; 

[INV1] I0 + P1 = 20 + I1; 

[INV2] I1 + P2 = 30 + I2; 

[INV3] I2 + P3 = 50 + I3; 

[INV4] I3 + P4 = 60 + I4;  

!Change up - change down = prod. this period - prod. prev. period; 

[CHG1] U1 - D1 = P1 - P0; 

[CHG2] U2 - D2 = P2 - P1; 

[CHG3] U3 - D3 = P3 - P2; 

[CHG4] U4 - D4 = P4 - P3; 

[CHG5] U5 - D5 = P5 - P4; 

!Ending conditions; 

[CNDEI] I4 = 0; 

[CNDEP] P5 = 40; 

END 

The solution is: 

Optimal solution found at step:         7 

Objective value:                 43000.00 

Variable           Value        Reduced Cost 

      I1        5.000000           0.0000000 

      I2       0.0000000            200.0000 

      I3        5.000000           0.0000000 

      I4       0.0000000           0.0000000 

      U1       0.0000000            1200.000 

      U2       0.0000000            250.0000 

      U3        30.00000           0.0000000 

      U4       0.0000000            250.0000 

      D1        15.00000           0.0000000 

      D2       0.0000000            950.0000 

      D3       0.0000000            1200.000 

      D4       0.0000000            950.0000 

      U5       0.0000000            1200.000 
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      D5        15.00000           0.0000000 

      I0       0.0000000           0.0000000 

      P0        40.00000           0.0000000 

      P1        25.00000           0.0000000 

      P2        25.00000           0.0000000 

      P3        55.00000           0.0000000 

      P4        55.00000           0.0000000 

      P5        40.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        43000.00           -1.000000 

   CNDBI       0.0000000           -950.0000 

   CNDBP       0.0000000           -600.0000 

    INV1       0.0000000            950.0000 

    INV2       0.0000000            250.0000 

    INV3       0.0000000           -250.0000 

    INV4       0.0000000           -950.0000 

    CHG1       0.0000000            600.0000 

    CHG2       0.0000000           -350.0000 

    CHG3       0.0000000           -600.0000 

    CHG4       0.0000000           -350.0000 

    CHG5       0.0000000            600.0000 

   CNDEI       0.0000000           -1650.000 

   CNDEP       0.0000000            600.0000 

We see the solution is a mixed policy: 

P1 = P2 = 25;         P3 = P4 = 55. 

The mixed policy found by LP is $5,000 cheaper than the best pure policy.  

9.2.3 Representing Absolute Values 
You may be tempted to represent the production-change costs in the above model by the expression: 

600 *( @ABS( P1 – P0) + @ABS( P2 – P1) + …+@ABS(P5 – P4)); 

 This is mathematically correct, but computationally unwise, because it converts a linear program 

into a nonlinear program. Nonlinear programs are always more time consuming to solve. We have 

exploited the following result to obtain a linear program from an apparently nonlinear program. Subject 

to a certain condition, any appearance in a model of a term of the form:  

@ABS ( expression) 

can be replaced by the term U + D, if we add the constraint: 

U – D = expression. 

 The “certain condition” is that the model must be such that a small value of @ABS (expression) is 

preferred to a large value for @ABS (expression). The result is, if expression is positive, then U will be 

equal to expression, whereas, if expression is negative, then D will equal the negative of expression. 

9.3 Multi-period Financial Models 
In most multi-period planning problems, the management of liquid or cash-like assets is an important 

consideration. If you are willing to consider cash holdings as an inventory just like an inventory of any 
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other commodity, then it is a small step to incorporate financial management decisions into a 

multi-period model. The key feature is, for every period, there is a constraint that effectively says, 

“sources of cash − uses of cash = 0”. The following simple, but realistic, example illustrates the major 

features of such models. 

9.3.1 Example: Cash Flow Matching 
Suppose, as a result of a careful planning exercise, you have concluded that you will need the following 

amounts of cash for the current plus next 14 years to meet certain commitments: 

Year: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Cash (in 
$1,000s) 

10 11 12 14 15 17 19 20 22 24 26 29 31 33 36 

 A common example where such a projection is made is in a personal injury lawsuit. Both parties 

may reach an agreement that the injured party should receive a stream of payments such as above or its 

equivalent. Other examples where the above approach has been used is in designing bond portfolios to 

satisfy cash needs for a pension fund, or for so-called balance sheet defeasance where one kind of debt 

is replaced by another having the same cash flow stream. 

 For administrative simplicity in the personal injury example, both parties prefer an immediate single 

lump sum payment that is “equivalent” to the above stream of 15 payments. The party receiving the 

lump sum will argue that the lump sum payment should equal the present value of the stream using a 

low interest rate such as that obtained in a very low risk investment (i.e., a government guaranteed 

savings account). For example, if an interest rate of 4% is used, the present value of the stream of 

payments is $230,437. The party that must pay the lump sum, however, would like to argue for a much 

higher interest rate. To be successful, such an argument must include evidence that such higher interest 

rate investments are available and are no riskier than savings accounts. The investments usually offered 

are government securities. Generally, a broad spectrum of such investments is available on a given day. 

For simplicity, assume there are just two such investments available with the following features: 

 
 

Security 

 
Current 

Cost 

 
Yearly 
Return 

 
Years to 
Maturity 

Principal 
Repayment at 

Maturity 

1 $980 $60    5 $1000 

2 $965 $65 12 $1000 

 The paying party will offer a lump sum now with a recommendation of how much should be invested 

in securities 1 and 2 and in savings accounts, such that the yearly cash requirements are met with the 

minimum lump sum payment. 

 The following decision variables are useful in solving this problem: 

B1 = amount invested now in security 1, measured in “face value amount”, 

B2 = amount invested now in security 2, measured in “face value amount”, 

S i = amount invested into a savings account in year i, and 

L = initial lump sum. 
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 The objective function will be to minimize the initial lump sum. There will be a constraint for each 

year that forces the cash flows to net to zero. If we assume idle cash is invested at 4 percent in a savings 

account and all amounts are measured in $1000’s, then the formulation is: 

MIN = L; 

L - 0.98 * B1 - 0.965 * B2 - S0 = 10; 

0.06 * B1 + 0.065 * B2 + 1.04 * S0 - S1 = 11; 

0.06 * B1 + 0.065 * B2 + 1.04 * S1 - S2 = 12; 

0.06 * B1 + 0.065 * B2 + 1.04 * S2 - S3 = 14; 

0.06 * B1 + 0.065 * B2 + 1.04 * S3 - S4 = 15; 

1.06 * B1 + 0.065 * B2 + 1.04 * S4 - S5 = 17; 

0.065 * B2 + 1.04 * S5 - S6 = 19; 

0.065 * B2 + 1.04 * S6 - S7 = 20; 

0.065 * B2 + 1.04 * S7 - S8 = 22; 

0.065 * B2 + 1.04 * S8 - S9 = 24; 

0.065 * B2 + 1.04 * S9 - S10 = 26; 

0.065 * B2 + 1.04 * S10 - S11 = 29; 

1.065 * B2 + 1.04 * S11 - S12 = 31; 

1.04 * S12 - S13 = 33; 

1.04 * S13 - S14 = 36; 

 The PICTURE of the constraint coefficients gives a better appreciation of the structure of the 

problem. An A represents numbers bigger than 1.0, but less than 10.0. Numbers 10 or larger, but less 

than 100.0, are represented by a B. Numbers less than 1.0, but at least 0.1, are represented by a T. 

Numbers less than 0.1, but at least 0.01, are represented by a U: 

                              S S S S S 

      B B S S S S S S S S S S 1 1 1 1 1 

    L 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 

 1: 1                                   MIN 

 2: 1-T-T-1                             = A 

 3:   U U A-1                           = B 

 4:   U U   A-1                         = B 

 5:   U U     A-1                       = B 

 6:   U U       A-1                     = B 

 7:   A U         A-1                   = B 

 8:     U           A-1                 = B 

 9:     U             A-1               = B 

10:     U               A-1             = B 

11:     U                 A-1           = B 

12:     U                   A-1         = B 

13:     U                     A-1       = B 

14:     A                       A-1     = B 

15:                               A-1   = B 

16:                                 A-1 = B 
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 Notice in row 7, B1 has a coefficient of 1.06. This represents the principal repayment of $1000 plus 

the interest payment of $60 measured in $1000’s. Variable S14 (investment of funds in a savings account 

after the final payment is made) appears in the problem even though at first you might think it useless to 

allow such an option. S14 is effectively a surplus cash variable in the final period. Nevertheless, it is not 

unusual for the solution that minimizes the lump sum payment to have cash left over at the end of the 

period. This is because a bond may be the most economical way of delivering funds to intermediate 

periods. This may cause the big principal repayment at the end of a bond’s life to “overpay” the most 

distant periods. The solution is: 

Optimal solution found at step:        14 

Objective value:                 195.6837 

Variable           Value        Reduced Cost 

       L        195.6837           0.0000000 

      B1        95.79577           0.0000000 

      B2        90.15474           0.0000000 

      S0        4.804497           0.0000000 

      S1        5.604481           0.0000000 

      S2        5.436464           0.0000000 

      S3        3.261727           0.0000000 

      S4       0.0000000           0.1069792 

      S5        90.40358           0.0000000 

      S6        80.87978           0.0000000 

      S7        69.97503           0.0000000 

      S8        56.63409           0.0000000 

      S9        40.75951           0.0000000 

     S10        22.24994           0.0000000 

     S11       0.0000000           0.1412458 

     S12        65.01479           0.0000000 

     S13        34.61538           0.0000000 

     S14       0.0000000           0.3796368 

 Of the $195,683.70 lump sum payment, $10,000 goes to immediate requirements, $4,804.50 goes 

into a savings account, and 0.98  95,795.77 + 0.965  90,154.74 = $180,879.20 goes into longer-term 

securities. Considering a wide range of investments rather than just savings accounts has reduced the 

amount of the lump sum payment by about $34,750, or 15%. 

 In actual solutions, one may find a major fraction of the lump sum is invested in a single security. 

For example, appending the following constraint limits the amount invested in security 1 to half the 

initial lump sum: 

0.98 B1 − 0.5 L  0. 

 An additional complication may arise due to integrality requirements on the B1 and B2 investments. 

For example, bonds can be bought only in $1000 increments. Generally, with a modest amount of 

judgment, the fractional values can be rounded to neighboring integer values with no great increase in 

lump sum payment. For example, if B1 and B2 are set to 96 and 90 in the previous example, the total cost 

increases to $195,726.50 from $195,683.70. When this is done, S14 becomes nonzero. Specifically, the 

last period is overpaid by about $40. 
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 A sets version that places an integrality requirement on the bond purchase variables is: 

MODEL: 

! Name= PBOND, Bond portfolio/ cash matching problem: Given cash needs 

in each future period, what collection of bonds should we buy to cover 

these needs?; 

SETS: 

BOND/1..2/ : MATAT, ! Matures at period; 

             PRICE, ! Purchase price; 

             CAMNT, ! Coupon payout each period; 

              BUY;  ! Amount to buy of each bond; 

PERIOD/1..15/: 

     NEED,    ! Cash needed each period; 

SINVEST; ! Short term investment each period; 

ENDSETS 

DATA: 

STRTE = .04;         ! Short term interest rate; 

MATAT = 6,   13;     ! Years to maturity; 

PRICE = .980, .965;! Purchase price in thousands; 

CAMNT = .060, .065; ! Coupon amount in thousands; 

NEED = 10, 11, 12, 14, 15, 17, 19, 20, 22, 24, 

       26, 29, 31, 33, 36; ! Cash needed in  

       thousands; 

ENDDATA 

!-----------------------------------------------; 

MIN = LUMP; 

! First period is slightly special; 

LUMP =  

NEED(1) + SINVEST( 1) + @SUM( BOND: PRICE * BUY); 

! For subsequent periods; 

@FOR( PERIOD( I)| I #GT# 1: 

 @SUM( BOND( J)| MATAT( J) #GE# I: 

     CAMNT( J) * BUY( J)) + 

  @SUM( BOND( J)| MATAT( J) #EQ# I:  BUY( J)) + 

   ( 1 + STRTE) * SINVEST( I - 1) = 

   NEED( I) + SINVEST( I); 

   ); 

! Can only buy integer bonds; 

@FOR( BOND( J): @GIN( BUY( J));); 

END 

Optimal solution found at step:        28 

Objective value:                 195.7265 

Branch count:                           3 

    Variable           Value        Reduced Cost 

       STRTE       0.4000000E-01       0.0000000 

        LUMP        195.7265           0.0000000 

   MATAT( 1)        6.000000           0.0000000 

   MATAT( 2)        13.00000           0.0000000 

   PRICE( 1)       0.9800000           0.0000000 

   PRICE( 2)       0.9650000           0.0000000 

   CAMNT( 1)       0.6000000E-01       0.0000000 

   CAMNT( 2)       0.6500000E-01       0.0000000 

     BUY( 1)        96.00000           0.7622063 
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     BUY( 2)        90.00000           0.7290568 

    NEED( 1)        10.00000           0.0000000 

    NEED( 2)        11.00000           0.0000000 

    NEED( 3)        12.00000           0.0000000 

    NEED( 4)        14.00000           0.0000000 

    NEED( 5)        15.00000           0.0000000 

    NEED( 6)        17.00000           0.0000000 

    NEED( 7)        19.00000           0.0000000 

    NEED( 8)        20.00000           0.0000000 

    NEED( 9)        22.00000           0.0000000 

   NEED( 10)        24.00000           0.0000000 

   NEED( 11)        26.00000           0.0000000 

   NEED( 12)        29.00000           0.0000000 

   NEED( 13)        31.00000           0.0000000 

   NEED( 14)        33.00000           0.0000000 

   NEED( 15)        36.00000           0.0000000 

 SINVEST( 1)        4.796526           0.0000000 

 SINVEST( 2)        5.598387           0.0000000 

 SINVEST( 3)        5.432322           0.0000000 

 SINVEST( 4)        3.259615           0.0000000 

 SINVEST( 5)       0.0000000           0.8548042 

 SINVEST( 6)        90.61000           0.0000000 

 SINVEST( 7)        81.08440           0.0000000 

 SINVEST( 8)        70.17778           0.0000000 

 SINVEST( 9)        56.83489           0.0000000 

SINVEST( 10)        40.95828           0.0000000 

SINVEST( 11)        22.44661           0.0000000 

SINVEST( 12)       0.1944784           0.0000000 

SINVEST( 13)        65.05226           0.0000000 

SINVEST( 14)        34.65435           0.0000000 

SINVEST( 15)       0.4052172E-01       0.0000000 

9.4 Financial Planning Models with Tax Considerations 
The next example treats a slightly more complicated version of the portfolio selection problem and then 

illustrates how to include and examine the effect of taxes. Winston-Salem Development Management 

(WSDM) is trying to complete its investment plans for the next three years. Currently, WSDM has two 

million dollars available for investment. At six-month intervals over the next three years, WSDM expects 

the following income stream from previous investments: $500,000 (six months from now); $400,000; 

$380,000; $360,000; $340,000; and $300,000 (at the end of third year). There are three development 

projects in which WSDM is considering participating. The Foster City Development would, if WSDM 

participated fully, have the following cash flow stream (projected) at six-month intervals over the next 

three years (negative numbers represent investments, positive numbers represent income): 

−$3,000,000; -$1,000,000; −$1,800,000; $400,000; $1,800,000; $1,800,000; $5,500,000. The last figure 

is its estimated value at the end of three years. A second project involves taking over the operation of 

some old lower-middle-income housing on the condition that certain initial repairs to it be made and that 

it be demolished at the end of three years. The cash flow stream for this project, if participated in fully, 

would be: −$2,000,000; −$500,000; $1,500,000; $1,500,000; $1,500,000; $200,000; -$1,000,000. 

 The third project, the Disney-Universe Hotel, would have the following cash flow stream (six-month 

intervals) if WSDM participated fully. Again, the last figure is the estimated value at the end of the three 

years: −$2,000,000; −$2,000,000; −$1,800,000; $1,000,000; $1,000,000; $1,000,000; $6,000,000. 
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WSDM can borrow money for half-year intervals at 3.5 percent interest per half year. At most, 2 million 

dollars can be borrowed at one time (i.e., the total outstanding principal can never exceed 2 million). 

WSDM can invest surplus funds at 3 percent per half year. 

 Initially, we will disregard taxes. We will formulate the problem of maximizing WSDM’s net worth 

at the end of three years as a linear program. If WSDM participates in a project at less than 100 percent, 

all the cash flows of that project are reduced proportionately. 

9.4.1 Formulation and Solution of the WSDM Problem 
Define: 

F  = fractional participation in the Foster City problem; 

M  = fractional participation in Lower-Middle; 

D  = participation in Disney; 

Bi  = amount borrowed in period i in 1000’s of dollars, i = 1, …, 6; 

Li  = amount lent in period i in 1000’s of dollars, i = 1, …, 6; 

Z  = net worth after the six periods in 1000’s of dollars. 

The problem formally is then (all numbers will be measured in units of 1000): 

MODEL: 

MAX = Z; ! Max worth at end of final period; 

! Uses - sources = supply of cash in each period; 

 3000 * F + 2000 * M + 2000 * D - B1 + L1 = 2000; 

 1000 * F +  500 * M + 2000 * D + 1.035 * B1 - 1.03 * L1 - B2 + L2=500; 

 1800 * F - 1500 * M + 1800 * D + 1.035 * B2 - 1.03 * L2 - B3 + L3=400; 

 -400 * F - 1500 * M - 1000 * D + 1.035 * B3 - 1.03 * L3 - B4 + L4=380; 

-1800 * F - 1500 * M - 1000 * D + 1.035 * B4 - 1.03 * L4 - B5 + L5=360; 

-1800 * F -  200 * M - 1000 * D + 1.035 * B5 - 1.03 * L5 - B6 + L6=340; 

Z - 5500 * F + 1000 * M - 6000 * D + 1.035 * B6 - 1.03 * L6=300; 

! Borrowing limits; 

B1 <= 2000; 

B2 <= 2000; 

B3 <= 2000; 

B4 <= 2000; 

B5 <= 2000; 

B6 <= 2000; 

! We can invest at most 100% in a project; 

F <= 1; 

M <= 1; 

D <= 1; 

END 

 Rows 4 through 17 are the cash flow constraints for each of the periods. They enforce the 

requirement that uses of cash − sources of cash = 0 for each period. In the initial period, for example, L1 

uses cash, whereas B1 is a source of cash. 
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 The solution is: 

Optimal solution found at step:        11 

Objective value:                 7665.179 

Variable           Value        Reduced Cost 

       Z        7665.179           0.0000000 

       F       0.7143414           0.0000000 

       M       0.6372096           0.0000000 

       D       0.0000000            452.3816 

      B1        1417.443           0.0000000 

      L1       0.0000000           0.8788487E-02 

      B2        2000.000           0.0000000 

      L2       0.0000000           0.3343139 

      B3        2000.000           0.0000000 

      L3       0.0000000           0.2509563 

      B4        448.4490           0.0000000 

      L4       0.0000000           0.5304549E-02 

      B5       0.0000000           0.5149997E-02 

      L5        2137.484           0.0000000 

      B6       0.0000000           0.5000029E-02 

      L6        3954.865           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        7665.179            1.000000 

       2       0.0000000            1.819220 

       3       0.0000000            1.757701 

       4       0.0000000            1.381929 

       5       0.0000000            1.098032 

       6       0.0000000            1.060900 

       7       0.0000000            1.030000 

       8       0.0000000            1.000000 

       9        582.5567           0.0000000 

      10       0.0000000           0.3274043 

      11       0.0000000           0.2454662 

      12        1551.551           0.0000000 

      13        2000.000           0.0000000 

      14        2000.000           0.0000000 

      15       0.2856586           0.0000000 

      16       0.3627904           0.0000000 

      17        1.000000           0.0000000 

 Thus, we should try to invest or buy 0.7143414 of the Foster City project, 0.6372096 of the 

Middle-income project, and invest nothing in the Disney Universe project. At the end of the planning 

horizon, our net worth should have grown to 7,665,179. 

9.4.2 Interpretation of the Dual Prices 
The dual price on each of the first seven constraints is the increase in net worth in the last period resulting 

from an extra dollar made available in the earliest period. For example, the 1.81922 indicates an extra 

dollar available at the start of period 1 would increase the net worth in the last period by about $1.82. 

 An extra dollar in period 5 is worth $1.0609 at the end, because all we will do with it is invest it for 

two periods at three percent. Thus, it will grow to 1.03  1.03 = 1.0609 at the end. 
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 An extra dollar in period 4 will save us from borrowing a dollar that period. Thus, we will be $1.035 

richer in period 5. We have already seen the value per extra dollar in period 5, so the value of an extra 

dollar in period 4 is $1.035  1.0609 = $1.09803. 

 The dual prices on the borrowing constraints can be reconciled with the rest of the dual prices as 

follows. Having an additional dollar in period 2 is worth $1.7577. If this dollar were borrowed, then we 

would have to pay out $1.035 in period 3, which would have an effective cost of 1.035  1.38193. Thus, 

the net value in the last period of borrowing an extra dollar in period 2 is 1.7577 − 1.035  1.38193 = 

0.3274, which agrees with the dual price on the borrowing constraint for period 2. 

 The effective interest rate or cost of capital, i, in any period t, can be found from the dual prices by 

deriving the rate at which one would be willing to borrow. Borrowing one dollar in period t would give 

us $1 more in period t, but would require us to pay out 1 + i dollars in period t + 1. We must balance 

these two considerations. Consider period 1. An extra dollar is worth $1.81922 at the end of period 6. 

Paying back 1 + i in period 2 would cost (1 + i) $1.7577 at the end of period 6. Balancing these two: 

1.81922 = (1 + i)1.7577. 

Solving: 

i = 0.035. 

 This is not surprising because we are already borrowing at that rate in period 1, but not to the limit. 

 Applying a similar analysis to the other periods, we get the following effective rates: 

Period i Period i 

1 0.03500 4 0.035 

2 0.27190 5 0.030 

3 0.25855 6 0.030 

9.5 Present Value vs. LP Analysis 
A standard method for evaluating the attractiveness of a project is by computing the present value of its 

cash flow stream. LP analysis, as we have just illustrated, is a generalization of present value (PV) 

analysis. The assumptions underlying PV analysis are that money can be: a) borrowed or lent at the same 

rate, b) without limit, c) at the same rate in every period. An LP model, such as that just considered, 

gives exactly the same recommendation as PV analysis if the same assumptions are made. LP analysis, 

however, allows one to have a borrowing rate different from a lending rate; a borrowing rate or lending 

rate that varies from period to period; a rate that depends upon the term of the loan(longer term usually 

means a higher rate/year); and/or an upper limit on the amount borrowed or lent at a given rate. 

 Like PV analysis, LP analysis avoids the ambiguity of multiple rates of return that can occur when 

the internal rate of return is used to evaluate a project. Consider a project that requires an initial 

investment of $1 million, pays back $2.5 million after one year, and incurs a termination cost after two 

years of $1.55 million. This project has two internal rates of return. One is about 13.82% per year. The 

other is about 36.18% per year. Is the project attractive if our cost of capital is 11% per year? Both PV 

and LP analysis will (correctly) reject this project if our cost of capital is 12% per year, accept the project 

if our cost of capital is 24% per year, and reject the project if our cost of capital is 38% per year. 

9.6 Accounting for Income Taxes 
Suppose we take taxes into account. Let us consider the following simplified situation. There is a tax 

rate of fifty percent on profit for any period. If there is a loss in a period, eighty percent can be carried 
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forward to the next period. (Typically, tax laws put a limit on how many years a loss can be carried 

forward, but eighty percent may be a good approximation.) 

 Taxable income for each of the prospective projects as well as all existing projects is given in the 

table below. Note that because of factors such as depreciation, actual net cash flow may be rather 

different from taxable income in a period: 

 Project 

 
Period 

Foster 
City 

Lower-Middle 
Housing 

Disney 
Universe 

 
Existing 

1 −100,000 −200,000 −150,000 0 

2 −300,000 −400,000 −200,000 100,000 

3 −600,000 −200,000 −300,000 80,000 

4 −100,000 500,000 −200,000 76,000 

5 500,000 1,000,000 500,000 72,000 

6 1,000,000 100,000 800,000 68,000 

7 4,000,000 −1,000,000 5,000,000 60,000 

To formulate a model, in this case, we need to additionally define: 

Pi = profit in period i, and 

Ci = loss in period i. 

 The formulation is affected in two ways. First, we must append some equations that force the Pi's 

and Ci's to be computed properly, and, secondly, terms must be added to the cash flow constraints to 

account for the cash expended in the payment of tax. 

 In words, one of the tax computation equations is: 

Profit − loss = revenue − expense − 0.8  (last period’s loss). 

Algebraically, this equation for period 2 is: 

P2 − C2 = 100 + 0.03L1 − 300F − 400M − 200D − 0.035B1 − 0.8C1, 

or in standard form: 

P2 − C2 − 0.03L1 + 300F + 400M + 200D + 0.035B1 + 0.8C1 = 100. 
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The entire formulation is: 

MAX = Z; 

!Cash flow constraints, uses-sources= 0, including the 50% tax usage; 

3000*F +2000*M + 2000*D - B1 + L1 + 0.5*P1=2000; 

1000*F + 500*M + 2000*D+1.035*B1-1.03*L1-B2+L2+0.5*P2= 500; 

1800*F -1500*M + 1800*D+1.035*B2-1.03*L2-B3+L3+0.5*P3= 400; 

-400*F -1500*M - 1000*D+1.035*B3-1.03*L3-B4+L4+0.5*P4= 380; 

-1800*F -1500*M - 1000*D+1.035*B4-1.03*L4-B5+L5+0.5*P5= 360; 

-1800*F - 200*M - 1000*D+1.035*B5-1.03*L5-B6+L6+0.5*P6= 340; 

Z-5500*F+1000*M - 6000*D+1.035*B6-1.03*L6 +0.5*P7= 300; 

! The borrowing limits; 

B1 <= 2000; 

B2 <= 2000; 

B3 <= 2000; 

B4 <= 2000; 

B5 <= 2000; 

B6 <= 2000; 

! The investing limits;  

F <= 1; 

M <= 1; 

D <= 1; 

! Taxable Profit-Loss for each period; 

100*F+ 200*M+ 150*D                 +P1    -C1   = 0; 

300*F+ 400*M+ 200*D+0.035*B1-0.03*L1+P2+0.8*C1-C2=100; 

600*F+ 200*M+ 300*D+0.035*B2-0.03*L2+P3+0.8*C2-C3= 80; 

100*F- 500*M+ 200*D+0.035*B3-0.03*L3+P4+0.8*C3-C4= 76; 

-500*F-1000*M- 500*D+0.035*B4-0.03*L4+P5+0.8*C4-C5= 72; 

-1000*F- 100*M- 800*D+0.035*B5-0.03*L5+P6+0.8*C5-C6= 68; 

-4000*F+1000*M-5000*D+0.035*B6-0.03*L6+P7+0.8*C6-C7= 60; 

The solution is: 

Objective value:                 5899.975 

Variable           Value        Reduced Cost 

       Z       5899.9750           0.0000000     

       F       0.4872107           0.0000000     

       M       1.0000000           0.0000000     

       D       0.0000000           945.00740 

      B1       1461.6320           0.0000000     

      L1       0.0000000           0.5111823E-02 

      P1       0.0000000           0.4499472 

      B2       2000.0000           0.0000000     

      L2       0.0000000           0.1960928 

      P2       0.0000000           0.3793084 

      B3       1046.9790           0.0000000     

      L3       0.0000000           0.3167932E-02 

      P3       0.0000000           0.2042549 

      B4       0.0000000           0.2575563E-02 

      L4       991.26070           0.0000000     

      P4       0.0000000           0.1107492 

      B5       0.0000000           0.2537532E-02 

      L5       3221.6490           0.0000000     

      P5       1072.6580           0.0000000     
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      B6       0.0000000           0.2499981E-02 

      L6       4359.3480           0.0000000     

      P6       751.86020           0.0000000     

      P7       1139.6230           0.0000000     

      C1       248.72110           0.0000000     

      C2       696.29720           0.0000000     

      C3       1039.3640           0.0000000     

      C4       340.85670           0.0000000     

      C5       0.0000000           0.1091125 

      C6       0.0000000           0.1075000 

      C7       0.0000000           0.5000000 

     Row    Slack or Surplus      Dual Price 

       1       5899.9750           1.0000000 

       2       0.0000000           1.3218740 

       3       0.0000000           1.2860920 

       4       0.0000000           1.0678540 

       5       0.0000000           1.0456780 

       6       0.0000000           1.0302250 

       7       0.0000000           1.0150000 

       8       0.0000000           1.0000000 

       9       538.36780           0.0000000 

      10       0.0000000           0.1924019 

      11       953.02070           0.0000000 

      12       2000.0000           0.0000000 

      13       2000.0000           0.0000000 

      14       2000.0000           0.0000000 

      15       0.5127893           0.0000000 

      16       0.0000000           573.56060 

      17       1.0000000           0.0000000 

      18       0.0000000          -0.2109901 

      19       0.0000000          -0.2637376 

      20       0.0000000          -0.3296720 

      21       0.0000000          -0.4120900 

      22       0.0000000          -0.5151125 

      23       0.0000000          -0.5075000 

      24       0.0000000          -0.5000000 

 Notice tax considerations cause a substantial change in the solution. More funds are placed into the 

lower-middle income housing project, M, and fewer funds are invested in the Foster City project, F. 

Project M has cash flows, which help to smooth out the stream of yearly profits. 
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9.7 Dynamic or Multi-period Networks 
Thus far we have viewed network problems mainly as either a steady state or a one period problem.  For 

example, in a pipeline network model,  the solution can be interpreted as either the flow of material that 

occurs continuously day after day, or as a flow that occurs for one period and then stops.  In many real 

systems, however,  we are interested in a flow that varies from period to period,  i.e., we are interested 

in multi-period or dynamic solutions.  In these multi-period flows we also want to take into account that 

it may take several periods for flow to travel over an arc.  Example dynamic networks are: a) river 

systems with various dams where we are interested in the amount of water to be spilled over the dam 

each period so as to satisfy various criteria regarding lake and river levels, river flows, and hydroelectric 

generation needs.  A period might be a day,  an arc might be the river section from one dam to the next,  

and it may take several periods for water to flow from one dam to the next.  b) evacuation of a threatened 

facility or region as part of disaster planning, where we are interested in what routes people should take 

so that a large number of people escape in a short amount of time.  For a building evacuation, a period 

might be 10 seconds,  an arc may be a hallway,  or a stairwell from one door to the next.  Each arc may 

have a capacity limit of how many people can enter it per period,  c) fleet routing of airplanes or trucks,  

where each arc in the network is a movement that must be made by either a truck or an airplane.  The 

lead time of an arc is the length of time that it takes a vehicle to traverse the arc. 

To represent a dynamic network algebraically,  we need to define: 

Parameters: 

L(i,j) = lead time, in periods, for flow to travel from node i to node j in the arc  

              from i to j, 

Variables: 

xijt = flow entering arc ij at i in period t,  and therefore exiting at j in period t+L(i,j), 

Vjt = inventory remaining at node j at the end of period t, 

 

The basic node balance equation says that (inventory at node k at the end of period t ) = (ending inventory 

at k in the preceding period) + (arriving shipments) – (shipments out of k in t), or algebraically: 

Vkt = Vkt-1 + i xik(t-L(i,k)) - j xkjt 

 

Example: 

     We will illustrate the main ideas with an evacuation problem for a building.  Complete details can be 

found in the set based LINGO model: evacu8.lng in the Applications Library at www.lindo.com.   

Figure 9.1 gives the numeric details of a building for which we want to plan evacuation routes.  The 

nodes are places where people are or can congregate.  The arcs correspond to hallways, stairwells, etc.  

The number of people to be evacuated from each node in the network appears in italicized font below 

each node.  A period is a 10 second interval.  The italicized number appearing below each arc is the 

number of periods it takes to traverse the arc.  The number appearing above each arc is the upper limit 

on the number of people that can enter an arc per period.  The number appearing above each node is the 

upper limit on the number of people that can be waiting at a node. 

http://www.lindo.com/
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Node F corresponds to the outside world.  For example,  the fastest that one of the 50 people at node 

A can get to the safety of the outside world is in 2 periods by taking the path A, C, D, F.  Not all the 

people at A can make it this fast, however, because the arc from C to D can handle only 12 people per 

period.  Also,  people from B may also try to use arc C, D.  Arc (C,E) with its long lead time of three 

periods but relatively high capacity of 17 might correspond to a long, wide corridor,  whereas arc (A,C) 

with its short lead time but low capacity might correspond to a short narrow stairwell. 

What should be our objective?  An obvious one is to minimize the number of periods that it takes 

to evacuate all people.  An interesting challenge is to see if you can do it in at most 70 seconds for the 

above problem.  Perhaps a more refined objective is to maximize the number of people who get out 

quickly.  If  X_i_j_t is the number of people moving from i to j starting in period t, and realizing that 

node F is the outside world,  we would like  X_D_F_1 + X_E_F_1 to be large, and  X_D_F_9 + 

X_E_F_9 to be much smaller.  The objective that we will in fact use is: 

 

Max =  10*(X_D_F_1 + X_E_F_1) + 9*(X_D_F_2 + X_E_F_2)  

+8*(X_D_F_3 + X_E_F_3) 7*(X_D_F_4 + X_E_F_4)+ etc. 

 

That is, we attach a desirable weight of 10 to getting people out in period 1,  a weight of 9 to getting 

them out in period 2, etc.  The model evacu8.lng is written in very general SETS form.  If you want 

to see what the actual objective (as shown above) or constraints look like for the given data set,  click on  

LINGO | Generate | Display model.  
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    Suppose you allow 10 periods for our model.  We do not draw the corresponding multiperiod network,  

but you can think of drawing it as follows.  Get yourself a very wide sheet of paper and make 10 copies, 

side by side of the above network.  Then unhook the arrow end of each arc (i, j) and reconnect it L(i,j) 

subnetworks later. The main,  nontrivial constraints in this network model are the flow balance 

constraints at each node each period.  For example,  the constraint for node E in period 5 is: 

[BAL_E_5] - X_B_E_3 - X_C_E_2 + X_E_F_5 - V_E_4 + V_E_5 = 0 ; 

This is equivalent to: 

V_E_5 = V_E_4 + X_B_E_3 + X_C_E_2 - X_E_F_5; 

In words,  this says that at the end of period 5, the number of people at node E equals the number 

there at the end of period 4, plus people that left node B for E two periods ago, plus the number of people 

that left node C for E three periods ago,  minus the number of people that left node E in period 5 for 

node F. 

In general SETS form in  evacu8.lng, this constraint is written as:  
   ! For every node k and time period t; 

    @FOR( NXT( k,t)| t #GT# 1: 

     [BAL] V(k,t) = V(k,t-1) - @SUM(NXN(k,j): X(k,j,t)) 

                 +@SUM(NXN(i,k)|t-LT(i,k) #GT# 0: X(i,k,t-LT(i,k)));  

         ); 

where the set NXT(,) is the set of all node k, time period t combinations, and the set NXN(,) is 

the set of all from-to arcs k,j that exist in the network. 

The model is completed by adding the upper bound constraints on the number of people at each 

node each period,  and the upper bound constraints on the number of people traveling on each arc each 

period.  For example, the flow upper bound on the arc from B to E in period 4 is: 

[UFLO_B_E_4] X_B_E_4 <= 16 ; 

The upper bound on the number of people at node D at the end period 6 is: 

[USTOR_D_6] V_D_6 <= 10 ; 

If you solve evacu8.lng,  you will see that you can in fact evacuate the building in 70 seconds.  

For simplicity and ease of direction, e.g. in terms of placement of “Exit This Way” signs,  it might be 

desirable that the solution have all people at a given node evacuate over the same route.  You may wish 

to check whether the solution satisfies this additional “administrative” constraint.  Another example of 

a dynamic network,  this time for a hydroelectric river system can be found in the model 

dampoold.lng. For a production example,  see mrpcap.lng. 

9.8 End Effects 
Most multi-period planning models “chop” off the analysis at some finite time in the future. The manner 

in which this chopping off is done can be important. In general, we care about the state in which things 

are left at the end of a planning model (e.g., inventory levels and capital investment). If we arbitrarily 

terminate our planning model at year five in the future, then an optimal solution to our model may, in 

reality, be an optimal solution to how to go out of business in five years. Grinold (1983) provides a 

comprehensive discussion of various methods for mitigating end-of-horizon effects. Some of the options 

for handling the end effect are: 
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a) Truncation. Simply drop from the model all periods beyond a chosen cutoff point. 

b) Primal limits. Place reasonable limits on things such as inventory level at the end of the 

final period. 

c) Salvage values/ dual prices. Place reasonable salvage values on things such as inventory 

level at the end of the final period. 

d) Infinite final period. Let the final period of the model represent an infinite number of 

periods for which the same decisions are made in every period. So, for example, ending 

inventories = beginning inventories in this final period. Net present value discounting is 

used in the objective function to make the final period comparable to the earlier finite 

periods. This is the approach used by Carino et al. (1994) in their model of the Yasuda 

Kasai Company, Peiser and Andrus (1983) in their model of Texas real estate development, 

and by Eppen, Martin, and Schrage (1988) in their model of General Motors. 

9.8.1 Perishability/Shelf Life Constraints 
Many products, food products in particular, are perishable. It is important to take into account the fact 

the product can be stored in inventory for only a modest length of time. For example, blood for blood 

transfusions can be stored for at most 21 days. If there is a single level of production, then this 

consideration is easy to represent. Define: dt = demand in period t (given), and the variables: 

Pt = production in period t, and It = inventory at the end of period t. Then, the standard inventory balance 

constraint is: 

It-1 + Pt = dt +It    

 If product can be carried for one period before it is discarded, then it is clear that we should add the 

constraint: It  dt+1. In general, if product can be carried in inventory for at most k periods, then we add 

the constraint: It  dt+1 + dt+2 …+ dt+k . 

9.8.2 Startup and Shutdown Costs 
In the electric power generation industry, there is a decision problem known as the unit commitment 

problem. As the power demanded over the course of a day varies, the power generation company must 

decide which power units to start up as the demand increases and which to shutdown as demand 

decreases. A major concern is that there may be a significant cost to startup a generator, regardless of 

how long it runs. It is usually the case that the unit that is more efficient at producing power (e.g., a coal-

fired unit) may, however, cost more to startup than say a gas-fired unit. Thus, if an extra burst of power 

is needed for only a short interval of time, it may be more cost effective to start up and run the gas-fired 

unit. A similar cost structure was encountered by Eppen, Martin, and Schrage(1988) in planning startup 

and shutdown of automotive plants. The typical way of representing startup costs, as well as shutdown 

costs, is with the following three sets of variables: yit = 1 if unit i is operating in period t, else 0; zit = 1 if 

unit i is started in period t, else 0; qit = 1 if unit i is stops in period t, else 0. 

 The crucial constraints are then: 

zit - qit = yit - yit-1 . 

 Thus, if yit = 1, but yit-1 = 0, then zit is forced to be 1. If yit = 0, but yit-1 = 1, then qit is forced to be 1. 

For completeness, you may also need zit +  qit ≤ 1, and zit ,  qit restricted to 0 or 1. 
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9.9 Non-optimality of Cyclic Solutions to Cyclic Problems 
In some situations, such as when modeling the end of the planning horizon as above, it is reasonable to 

assume demand is cyclic (e.g., it repeats forever in a weekly cycle). A natural question to ask is whether 

an optimal policy will have the same cycle length. We shall see that the answer may be 'no'. That is, even 

though demand has the same pattern, week-in and week-out, the most profitable policy need not have a 

weekly cycle. It may be optimal to behave differently from week to week. 

 In order to illustrate, let us reconsider the fleet routing and assignment problem introduced in chapter 

8. We augment the original data with data on the profitability of two aircraft types for each flight: 

                                  Profit contribution($100) 

Flight  Origin Dest. Depart Arrive    MD90    B737 

 F221    ORD   DEN    800    934      115     111 

 F223    ORD   DEN    900   1039      109     128 

 F274    LAX   DEN    800   1116      129     104 

 F105    ORD   LAX   1100   1314      135     100 

 F228    DEN   ORD   1100   1423      125     102 

 F230    DEN   ORD   1200   1521      132     105 

 F259    ORD   LAX   1400   1609      112     129 

 F293    DEN   LAX   1400   1510      105     131 

 F412    LAX   ORD   1400   1959      103     135 

 F766    LAX   DEN   1600   1912      128     105 

 F238    DEN   ORD   1800   2121      128     101  

 For example, on flight pattern 221 an MD90 aircraft is more profitable than a B737 ($11,500 vs. 

$11,100), whereas a B737 is substantially more profitable ($12,900 vs. $11,200) on flight pattern 259. 

The above pattern of flights is to be covered every day. Suppose that we have seven MD90's available, 

but only one B737 available to cover these flights. As before, we assume no deadheading. First, we 

assume that we will use a solution with a cycle of one day. An appropriately modified model from 

chapter 8 is: 

MODEL: 

SETS:  ! Fleet routing and assignment (FLEETRAT); 

 CITY :;  ! The cities involved; 

 ACRFT:   ! Aircraft types; 

  FCOST,  !  Fixed cost per day of this type; 

  FSIZE;  !  Max fleet size of this type; 

 FLIGHT:;   

 FXCXC( FLIGHT, CITY, CITY) : 

  DEPAT,  ! Flight departure time; 

  ARVAT;  ! arrival time at dest.; 

 AXC( ACRFT, CITY):  

  OVNITE; ! Number staying overnight by type, city; 

 AXF( ACRFT, FXCXC):  

  X,      ! Number aircraft used by type, flight; 

  PC;     ! Profit contribution by type, flight; 

ENDSETS 

DATA: 

 CITY = ORD  DEN  LAX; 

 ACRFT, FCOST, FSIZE = 

  MD90   .01    7 

  B737   .01    1; 

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238; 
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 FXCXC, DEPAT, ARVAT =  

!     Flight  Origin Dest. Depart Arrive; 

         F221   ORD   DEN    800    934 

         F223   ORD   DEN    900   1039 

         F274   LAX   DEN    800   1116   

         F105   ORD   LAX   1100   1314 

         F228   DEN   ORD   1100   1423 

         F230   DEN   ORD   1200   1521 

         F259   ORD   LAX   1400   1609 

         F293   DEN   LAX   1400   1510 

         F412   LAX   ORD   1400   1959 

         F766   LAX   DEN   1600   1912 

         F238   DEN   ORD   1800   2121; 

 PC =   ! Profit contribution of each vehicle*flight combo; 

   115        109        129         135         125          132 

   112        105        103         128         128 

   111        128        104         100         102          105 

   129        131        135         105         101; 

ENDDATA 

!-------------------------------------------------------------------; 

! Maximize profit contribution from flights minus 

   overhead cost of aircraft in fleet; 

 MAX = @SUM( AXF( I, N, J, K): PC( I, N, J, K) * X( I, N, J, K)) 

     - @SUM( AXC( I, J): FCOST( I) * OVNITE( I, J)); 

! At any instant, departures in particular, the number of  

 cumulative arrivals must be >= number of cumulative departures;  

! For each flight of each aircraft type; 

 @FOR( ACRFT( I): 

  @FOR( FXCXC( N, J, K): 

! Aircraft on ground in morning + 

   number aircraft arrived thus far >= 

   number aircraft departed thus far; 

   OVNITE( I, J) +  

   @SUM( FXCXC( N1, J1, K1)| K1 #EQ# J #AND#  

                             ARVAT( N1, J1, K1) #LT# DEPAT( N, J, K): 

               X( I, N1, J1, J)) >=  

   @SUM( FXCXC( N1, J1, K1)| J1 #EQ# J #AND# 

                             DEPAT( N1, J1, K1) #LE# DEPAT( N, J, K): 

               X( I, N1, J, K1)); 

         );); 

! This model does not allow deadheading, so at the end of the day, 

   arrivals must equal departures; 

 @FOR( ACRFT( I): 

   @FOR( CITY( J): 

    @SUM( AXF( I, N, J1, J): X( I, N, J1, J)) = 

    @SUM( AXF( I, N, J, K): X( I, N, J, K)); 

       ); 

     ); 

!  Each flight must be covered; 

    @FOR( FXCXC( N, J, K): 

       @SUM( AXF( I, N, J, K): X( I, N, J, K)) = 1; 

        ); 
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! Fleet size limits; 

   @FOR( ACRFT( I):  

     @SUM( AXC( I, J): OVNITE( I, J)) <= FSIZE( I); 

       );  

! Fractional planes are not allowed; 

   @FOR( AXF: @GIN( X); ); 

END 

It has the solution: 

Global optimal solution found at step:           106 

Objective value:                            1323.940 

                     Variable           Value        

     X( MD90, F221, ORD, DEN)        1.000000       

     X( MD90, F223, ORD, DEN)        1.000000       

     X( MD90, F274, LAX, DEN)        1.000000       

     X( MD90, F105, ORD, LAX)        1.000000       

     X( MD90, F228, DEN, ORD)        1.000000       

     X( MD90, F230, DEN, ORD)        1.000000       

     X( MD90, F259, ORD, LAX)        1.000000       

     X( MD90, F412, LAX, ORD)        1.000000       

     X( MD90, F238, DEN, ORD)        1.000000       

     X( B737, F293, DEN, LAX)        1.000000       

     X( B737, F766, LAX, DEN)        1.000000       

 The daily profit contribution of this solution is 1323.94 * 100 = $132,394 per day. Notice that our 

single B737 flies from DEN at 2 pm to LAX as flight 293, and then departs LAX at 4 pm for DEN as 

flight 766. The above model requires that at the beginning of each day we must have the same number 

of MD90's and B737's at a given airport as on every other day. Just for reference, if you solve the above 

model with no B737's available, the profit contribution is $132,094. So, the B737 seems to be worth only 

$200 per day. 

 Can we do better if we allow a two-day cycle in the solution? We can try by changing the input to 

the model as in the model below. Effectively, we have given two days worth of demand, denoting the 

second day's flights by an S, vs. the F denoting the flights on the first day. Otherwise, the model is 

identical. The profit of this two day solution should be at least 2 * 132,394 = $264,788: 

MODEL: 

SETS:  ! Fleet routing and assignment (FLEETRAT); 

 CITY :;  ! The cities involved; 

 ACRFT:   ! Aircraft types; 

  FCOST,  !  Fixed cost per day of this type; 

  FSIZE;  !  Max fleet size of this type; 

 FLIGHT:;   

 FXCXC( FLIGHT, CITY, CITY) : 

  DEPAT,  ! Flight departure time; 

  ARVAT;  ! arrival time at dest.; 

 AXC( ACRFT, CITY):  

  OVNITE; ! Number staying overnight by type, city; 

 AXF( ACRFT, FXCXC):  

  X,      ! Number aircraft used by type, flight; 

  PC;     ! Profit contribution by type, flight; 

ENDSETS 
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DATA: 

 CITY = ORD  DEN  LAX; 

 ACRFT, FCOST, FSIZE = 

  MD90   .01    7 

  B737   .01    1; 

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238 

          S221 S223 S274 S105 S228 S230 S259 S293 S412 S766 S238; 

 FXCXC, DEPAT, ARVAT =  

!     Flight  Origin Dest. Depart Arrive; 

         F221   ORD   DEN    800    934 

         F223   ORD   DEN    900   1039 

         F274   LAX   DEN    800   1116   

         F105   ORD   LAX   1100   1314 

         F228   DEN   ORD   1100   1423 

         F230   DEN   ORD   1200   1521 

         F259   ORD   LAX   1400   1609 

         F293   DEN   LAX   1400   1510 

         F412   LAX   ORD   1400   1959 

         F766   LAX   DEN   1600   1912 

         F238   DEN   ORD   1800   2121 

         S221   ORD   DEN   3200   3334 

         S223   ORD   DEN   3300   3439 

         S274   LAX   DEN   3200   3516   

         S105   ORD   LAX   3500   3714 

         S228   DEN   ORD   3500   3823 

         S230   DEN   ORD   3600   3921 

         S259   ORD   LAX   3800   4009 

         S293   DEN   LAX   3800   3910 

         S412   LAX   ORD   3800   4359 

         S766   LAX   DEN   4000   4312 

         S238   DEN   ORD   4000   4521; 

 PC =   ! Profit contribution of each vehicle*flight combo; 

   115        109        129         135         125          132 

   112        105        103         128         128 

   115        109        129         135         125          132 

   112        105        103         128         128 

   111        128        104         100         102          105 

   129        131        135         105         101 

   111        128        104         100         102          105 

   129        131        135         105         101;    

ENDDATA 
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Now, the solution is: 

Global optimal solution found at step:           103 

Objective value:                            2718.930 

                     Variable           Value        

     X( MD90, F221, ORD, DEN)        1.000000            

     X( MD90, F223, ORD, DEN)        1.000000            

     X( MD90, F274, LAX, DEN)        1.000000            

     X( MD90, F105, ORD, LAX)        1.000000            

     X( MD90, F228, DEN, ORD)        1.000000            

     X( MD90, F230, DEN, ORD)        1.000000            

     X( MD90, F259, ORD, LAX)        1.000000            

     X( MD90, F293, DEN, LAX)        1.000000            

     X( MD90, F766, LAX, DEN)        1.000000            

     X( MD90, F238, DEN, ORD)        1.000000            

     X( MD90, S221, ORD, DEN)        1.000000            

     X( MD90, S274, LAX, DEN)        1.000000            

     X( MD90, S105, ORD, LAX)        1.000000            

     X( MD90, S228, DEN, ORD)        1.000000            

     X( MD90, S230, DEN, ORD)        1.000000            

     X( MD90, S259, ORD, LAX)        1.000000            

     X( MD90, S412, LAX, ORD)        1.000000            

     X( MD90, S766, LAX, DEN)        1.000000            

     X( MD90, S238, DEN, ORD)        1.000000            

     X( B737, F412, LAX, ORD)        1.000000            

     X( B737, S223, ORD, DEN)        1.000000            

     X( B737, S293, DEN, LAX)        1.000000            

 Notice that our profit, 2718.93 * 100 = $271,893 is more than twice the profit of the one day solution, 

2 * 132,394 = $264,788. How did we arrive at this happy situation? Notice how the B737 is used. On 

the first day, it flies from LAX to ORD via flight 412. On the second day, it flies from ORD to DEN via 

flight 223 and then from DEN back to LAX via flight 293. It is only on the second day that it is back 

where it started, LAX. All three flights are very profitable for the B737 relative to the MD90. By allowing 

a two-day cycle, the B737 is able to cover these very profitable flights at least half of the time. Thus, 

even though the demand pattern has a one day cycle, it is profitable to allow the solution to have a two 

day cycle. 

 A good discussion of how to avoid the temptation to restrict solutions can be found in the book on 

“conceptual blockbusting” by Adams (1986). Orlin (1982) gives a more detailed analysis of the cyclic 

vehicle routing problem. 
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9.10 Problems 
1. The Izza Steel Company of Tokyo has predicted delivery requirements of 3,000, 6,000, 5,000, and 

2,000 tons of steel in the next four periods. Current workforce is at the 4,000 tons per period level. 

At the moment, there is 500 tons of steel in stock. At the end of the four periods, Izza would like its 

inventory position to be back at 500 tons. Regular time workforce has a variable cost of $100 per 

ton. Overtime can be hired in any period at a cost of $140 per ton. Regular time workforce size can 

be increased from one period to the next at a cost of $300 per ton of change in capacity. It can be 

decreased at a cost of $80 per ton. There is a charge of $5 per ton for inventory at the end of each 

period. Izza would like the regular time workforce to be at the 3,000-ton level at the end of the four 

periods. 

a) Formulate Izza’s problem as a linear program. 

b) What assumption does your model make about idle workforce? 

2. An airline predicts the following pilot requirements for the next five quarters: 80, 90, 110, 120, 110. 

Current staff is 90 pilots. The question of major concern is the number of pilots to hire in each of 

the next five quarters. A pilot must spend the quarter in which she is hired in training. The line’s 

training facilities limit the number of pilots in training to at most 15. Further, the training of pilots 

requires the services of experienced pilots at the ratio of 5 to 1 (e.g., five pilots in training require 

one experienced pilot). An experienced pilot so assigned cannot be used to satisfy regular 

requirements. The cost of hiring and training a pilot is estimated at $20,000 exclusive of the 

experienced pilot time required. Experienced pilots cost $25,000 per quarter. Company policy does 

not include firing pilots. 

a) What are the variables? 

b) Formulate a model for determining how many pilots to hire in each period. 

3. The Toute de Suite Candy Company includes in its product line a number of different mixed nut 

products. The Chalet nut mix is required to have no more than 25 percent peanuts and no less than 

40 percent almonds. 

The nuts available, their prices, and their availabilities this month are as follows: 

Nut Price Availability 

Peanuts 20¢/lb. 400 lbs. 

Walnuts 35¢/lb. No limit 

Almonds 50¢/lb. 200 lbs. 

 The Chalet mix sells for 80 cents per pound. At most, 700 pounds can be mixed per month in 

questions (a), (b), and (c). 

a) Formulate the appropriate model for this problem. 

b) Toute de Suite would like to incorporate into the analysis its second major mixed nut line, 

the Hovel line. The Hovel mix can contain no more than 60 percent peanuts and no less 

than 20 percent almonds. Hovel sells for 40 cents per pound. Modify your model 

appropriately. 
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c) Toute de Suite would like to incorporate next month’s requirements into the analysis. The 

expected situation next month is: 

 
Nut 

 
Price 

Requirement  
(Availability) 

Peanuts 19¢/lb. 500 lbs 

Walnuts 36¢/lb. No limit 

Almonds 52¢/lb. 180 lbs. 

Chalet 81¢/lb.  

Hovel 39¢/lb.  

 It cost 2 cents per pound to store nuts (plain or mixed) for one month. Because of a contract 

commitment, at least 200 pounds of Chalet mix must be sold next month. Modify your model 

appropriately. 

4. If two parties to a financial agreement, A and B, want the agreement to be treated as a lease for tax 

purposes, the payment schedule typically must satisfy certain conditions specified by the taxing 

agency. Suppose Pi is the payment A is scheduled to make to B in year i of a seven-year agreement. 

Parties A and B want to choose at the outset a set of Pi’s to satisfy a tax regulation that no payment 

in any given period can be less than two-thirds of the payment in any later period. Show the 

constraints for period i to enforce this lower bound on Pi. Use as few constraints per period as 

possible. 

5. One of the options available to a natural gas utility is the renting of a storage facility, so it can buy 

gas at a cheap rate in the summer and store it until possibly needed in the winter. There is a yearly 

fee of $80,000 for each year the facility is rented. There is an additional requirement that, if the 

utility starts renting the facility in year t, it must also rent it for at least the next three years. The gas 

utility has a long range planning model with a variable xt = 1 if the utility rents the storage facility 

in year t, 0 otherwise; yt = 1 if the utility starts renting in period t; and zt = 1 if the utility stops renting 

after period t, for t = 1 to 25. It is not clear whether or not this facility should be rented. Show how 

to represent this fee structure in an LP/IP model. 

6. Below is the formulation of a cash flow matching problem, where the B variables represent 

investments in bonds and the S variables represent investment in savings for one period. The 

right-hand sides are the cash requirements for the various years. 

MIN = L; 

[P0]L -.98 * B1 - .965 * B2              - S0 = 10; 

[P01]  .06 * B1 + .065 * B2 + 1.04 * S0  - S1 = 11; 

[P02]  .06 * B1 + .065 * B2 + 1.04 * S1  - S2 = 12; 

[P03]  .06 * B1 + .065 * B2 + 1.04 * S2  - S3 = 14; 

[P04]  .06 * B1 + .065 * B2 + 1.04 * S3  - S4 = 15; 

[P05] 1.06 * B1 + .065 * B2 + 1.04 * S4  - S5 = 17; 

[P06]             .065 * B2 + 1.04 * S5  - S6 = 19; 

[P07]             .065 * B2 + 1.04 * S6  - S7 = 20; 

[P08]             .065 * B2 + 1.04 * S7  - S8 = 22; 

[P09]             .065 * B2 + 1.04 * S8  - S9 = 24; 

[P10]             .065 * B2 + 1.04 * S9  - S10 = 26; 

[P11]             .065 * B2 + 1.04 * S10 - S11 = 29; 

[P12]            1.065 * B2 + 1.04 * S11 - S12 = 31; 

END 
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a) The option to borrow at seven percent per period for a term of one period has become 

available in every period. Show the modification in the above model for the periods with 

right-hand sides of 15, 17, and 19. Denote the borrowing variables by M0, M1, etc. 

b) Would this option in fact be attractive in the above model in any period? 

c) Almost all the parties involved were happy with this model until the Internal Revenue 

Service (IRS) suddenly became interested. The IRS has made the judgment that the initial 

endowment in the very first period may be tax-free. However, thereafter, the regular tax 

laws apply. Upon further inquiry, the IRS responded that regular income is taxed at 37 

percent and capital gains at 15 percent.  

 We now want to find the initial lump sum such that, after taxes have been paid each period, we 

can still cover the right-hand side requirements. For simplicity, assume taxes are paid in the same 

period as the income being taxed. Show how rows P04 and P05 are altered by this unpleasant new 

reality (Disregard (a) and (b) above in answering.). 
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10 
 

Blending of Input Materials 
 
 

10.1 Introduction 
In a blending problem, there are: 

1) Two or more input raw material commodities; 

2) One or more qualities associated with each input commodity; 

3) One or more output products to be produced by blending the input commodities, so certain 

output quality requirements are satisfied. 

Blending models are used most frequently in three industries: 

1) Feed and food (e.g., the blending of cattle feed, hotdogs, etc.); 

2) Metals industry (e.g., the blending of specialty steels and nonferrous alloys, especially 

where recycled or scrap materials are used); 

3) Petroleum industry (e.g., the blending of gasolines of specified octanes and volatility). 

 The market price of a typical raw material commodity may change significantly over the period of 

a month or even a week. The smart buyer will want to buy corn, for example, from the cheapest supplier. 

The even smarter buyer will want to exploit the fact that, as the price of corn drops relative to soybeans, 

the buyer may be able to save some money by switching to a blend that uses more corn. 

 A first approximation is that the quality of the finished product is the weighted average of the 

qualities of the products going into the blend.  A listing of blending applications according important 

quality measures and typical input ingredients is given below: 
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Output 
Commodity 

 
Qualities 

 
Raw Materials 

Feed Moisture, density, fraction 

foreign material, fraction 

damaged. 

Various types of feeds, e.g., by 

source. 

Food Protein, carbohydrate, fat content. Corn, oats, soybeans, meat types. 

Gasoline Octane, volatility, vapor pressure. Types of crude oil refinery 

products. 

Metals Carbon, manganese, chrome 

content. 

Metal ore, scrap metals. 

Grain for 

export 

%Moisture, %foreign matter, 

%damaged. 

Grain from various suppliers. 

Coal for sale %Sulfur, %BTU, %ash, 

%moisture. 

Coal from Illinois, Wyoming, 

Pennsylvania. 

Wine Vintage, variety, region. Pure wines of various vintage, 

variety, region. 

Concrete %CaO, %SiO2, %Al2O3, 

%Fe2O3, %MgO, Strength, 

permeability to water, Cure time, 

workability, freeze resistance. 

Portland cement, Slag, Fly ash, 

sand, stone/rocks of various size, 

water. 

Natural gas Heat content, Density. Methane, Ethane, Propane, 

Nitrogen, Carbon dioxide. 

Bank balance 

sheet 

Proportion of loans of various 

types, average duration of loans 

and investment portfolios. 

 

 

Types of loans and investments 

available. 

   

 Fields and McGee (1978) describe a feed blending LP for constructing low cost rations for cattle in 

a feedlot. Feedlot managers used this particular model at the rate of over 1,000 times per month. Schuster 

and Allen (1998) discuss the blending of grape juice at Welch's, Inc. The qualities of concern in grape 

juice are sweetness, acidity, and color. A blending problem must be solved at least once each season 

based upon how much of each type of grape is harvested by Welch's suppliers. Long term contracts 

require Welch’s to take all of each supplier's harvest. 

 A recent success story in the steel industry has been the mini-mill. These small mills use mostly 

recyclable scrap steels to be charged into an electric furnace. The blending problem, in this case, is to 

decide what combination of scrap types to use to satisfy output quality requirements for specified 

products such as reinforcing bars, etc. 

 The first general LP to appear in print was a blending or diet problem formulated by George Stigler 

(1945). The problem was to construct a “recipe” from about 80 foods, so the mix satisfied about a dozen 

nutritional requirements. For example, percent protein greater than 5 percent, percent cellulose less than 

40 percent, etc. When Stigler formulated this problem, the Simplex method for solving LPs did not exist. 

Therefore, it was not widely realized that this “diet problem” was just a special case of this wider class 

of problems. Stigler, realizing its generality, stated: “...there does not appear to be any direct method of 

finding the minimum of a linear function subject to linear conditions.” The solution he obtained to his 
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specific problem by ingenious arguments was within a few cents of the least cost solution determined 

later when the Simplex method was invented. Both the least cost solution and Stigler’s solution were not 

exactly haute cuisine. Both consisted largely of cabbage, flour and dried navy beans with a touch of 

spinach for excitement. It is not clear that anyone would want to exist on this diet or even live with 

someone who was on it. These solutions illustrate the importance of explicitly including constraints that 

are so obvious they can be forgotten. In this case, they are palatability constraints. 

10.2 The Structure of Blending Problems 
Let us consider a simple feed blending problem. We must produce a batch of cattle feed having a protein 

content of at least 15%. Mixing corn (which is 6% protein) and soybean meal (which is 35% protein) 

produces this feed. 

 In words, the protein constraint is: 

bushels of protein in mix  

          bushels in mix
 

 

 0.15 

 If C is the number of bushels of corn in the mix and S is the number of bushels of soybean meal, 

then we have: 

0.06 C + 0.35 S 

          C + S
 

 

 0.15 

 At first glance, it looks like we have trouble. This constraint is not linear. If, however, we multiply 

both sides by C + S, we get: 

0.06 C + 0.35 S  0.15 (C + S) 

or, in standard form, finally: 

−0.09 C + 0.20 S  0. 

 Constraints on additional characteristics (i.e., fat, carbohydrates and even such slightly nonlinear 

things as color, taste, and texture) can be handled in similar fashion. 

 The distinctive feature of a blending problem is that the crucial constraints, when written in intuitive 

form, are ratios of linear expressions. They can be converted to linear form by multiplying through by 

the denominator. Ratio constraints may also be found in “balance sheet” financial planning models 

where a financial institution may have ratio constraints on the types of loans it makes or on the average 

duration of its investments. 

 The formulation is slightly more complicated if the blending aspect is just a small portion of a larger 

problem in which the batch size is a decision variable. The second example in this section will consider 

this complication. The first example will consider the situation where the batch size is specified 

beforehand. 
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10.2.1 Example: The Pittsburgh Steel Company Blending Problem 
The Pittsburgh Steel (PS) Co. has been contracted to produce a new type of very high carbon steel which 

has the following tight quality requirements: 

 At Least Not More Than 

Carbon Content 3.00% 3.50% 

Chrome Content 0.30% 0.45% 

Manganese Content 1.35% 1.65% 

Silicon Content 2.70% 3.00% 

PS has the following materials available for mixing up a batch: 

 Cost per 
Pound 

Percent 
Carbon 

Percent 
Chrome 

Percent 
Manganese 

Percent 
Silicon 

Amount 
Available 

Pig Iron 1 0.0300 4.0 0.0 0.9 2.25 unlimited 

Pig Iron 2 0.0645 0.0 10.0 4.5 15.00 unlimited 

Ferro-
Silicon 1 

0.0650 0.0 0.0 0.0 45.00 unlimited 

Ferro-
Silicon 2 

0.0610 0.0 0.0 0.0 42.00 unlimited 

Alloy 1 0.1000 0.0 0.0 60.0 18.00 unlimited 

Alloy 2 0.1300 0.0 20.0 9.0 30.00 unlimited 

Alloy 3 0.1190 0.0 8.0 33.0 25.00 unlimited 

Carbide 
(Silicon) 

0.0800 15.0 0.0 0.0 30.00 20 lb. 

Steel 1 0.0210 0.4 0.0 0.9 0.00 200 lb. 

Steel 2 0.0200 0.1 0.0 0.3 0.00 200 lb. 

Steel 3 0.0195 0.1 0.0 0.3 0.00 200 lb. 

 An one-ton (2000-lb.) batch must be blended, which satisfies the quality requirements stated earlier. 

The problem now is what amounts of each of the eleven materials should be blended together to 

minimize the cost, but satisfy the quality requirements. An experienced steel man claims the least cost 

mix will not use any more than nine of the eleven available raw materials. What is a good blend? Most 

of the eleven prices and four quality control requirements are negotiable. Which prices and requirements 

are worth negotiating? 

 Note the chemical content of a blend is simply the weighted average of the chemical content of its 

components. Thus, for example, if we make a blend of 40% Alloy 1 and 60% Alloy 2, the manganese 

content is (0.40) × 60 + (0.60) × 9 = 29.4. 

10.2.2 Formulation and Solution of the Pittsburgh Steel Blending Problem 
The PS blending problem can be formulated as an LP with 11 variables and 13 constraints. The 11 

variables correspond to the 11 raw materials from which we can choose. Four constraints are from the 

upper usage limits on silicon carbide and steels. Four of the constraints are from the lower quality limits. 

Another four constraints are from the upper quality limits. The thirteenth constraint is the requirement 

that the weight of all materials used must sum to 2000 pounds. 
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 If we let P1 be the number of pounds of Pig Iron 1 to be used and use similar notation for the 

remaining materials, the problem of minimizing the cost per ton can be stated as: 

MIN =    0.03 * P1 + 0.0645 * P2 + 0.065 * F1 + 0.061 * F2 + 0.1 * A1 

+ 0.13 * A2 + 0.119 * A3 + 0.08 * CB + 0.021 * S1 + 0.02 * S2 + 0.0195 

* S3; 

! Raw material availabilities; 

CB <= 20; 

S1 <= 200; 

S2 <= 200; 

S3 <= 200; 

! Quality requirements on; 

! Carbon content; 

.04 * P1 + 0.15 * CB + 0.004 * S1 + 0.001 * S2 + 0.001 * S3 >= 60; 

.04 * P1 + 0.15 * CB + 0.004 * S1 + 0.001 * S2 + 0.001 * S3 <= 70; 

! Chrome content; 

0.1 * P2 + 0.2 * A2 + 0.08 * A3 >=  6; 

0.1 * P2 + 0.2 * A2 + 0.08 * A3 <=  9; 

! Manganese content; 

0.009 * P1 + 0.045 * P2 + 0.6 * A1 + 0.09 * A2 + 0.33 * A3 + 0.009 * 

S1 + 0.003 * S2 + 0.003 * S3 >= 27; 

0.009 * P1 + 0.045 * P2 + 0.6 * A1 + 0.09 * A2 + 0.33 * A3 + 0.009 * 

S1 + 0.003 * S2 + 0.003 * S3 <= 33; 

! Silicon content; 

0.0225 * P1 + 0.15 * P2 + 0.45 * F1 + 0.42 * F2 + 0.18 * A1 + 0.3 * A2 

+ 0.25 * A3 + 0.3 * CB >=  54; 

0.0225 * P1 + 0.15 * P2 + 0.45 * F1 + 0.42 * F2 + 0.18 * A1 + 0.3 * A2 

+ 0.25 * A3 + 0.3 * CB <=  60; 

! Finish good requirements; 

P1 + P2 + F1 + F2 + A1 + A2 + A3 + CB + S1 + S2 + S3 = 2000; 

In words, the general form of this model is: 

Minimize cost of raw materials 

subject to 

(a) Raw material availabilities (rows 2-5) 

(b) Quality requirements (rows 6-13) 

(c) Finish good requirements (row 14) 

It is generally good practice to be consistent and group constraints in this fashion. 

 For this particular example, when writing the quality constraints, we have exploited the knowledge 

that the batch size is 2000. For example, 3% of 2000 is 60, 3.5% of 2000 is 70, etc.  
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 When solved, we get the solution: 

Optimal solution found at step:        11 

Objective value:                 59.55629 

Variable           Value        Reduced Cost 

      P1        1474.264           0.0000000 

      P2        60.00000           0.0000000 

      F1       0.0000000           0.1035937E-02 

      F2        22.06205           0.0000000 

      A1        14.23886           0.0000000 

      A2       0.0000000           0.2050311E-01 

      A3       0.0000000           0.1992597E-01 

      CB       0.0000000           0.3356920E-02 

      S1        200.0000           0.0000000 

      S2        29.43496           0.0000000 

      S3        200.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        59.55629            1.000000 

       2        20.00000           0.0000000 

       3       0.0000000           0.1771118E-03 

       4        170.5650           0.0000000 

       5       0.0000000           0.5000000E-03 

       6       0.0000000          -0.1833289 

       7        10.00000           0.0000000 

       8       0.0000000          -0.2547314 

       9        3.000000           0.0000000 

      10       0.0000000          -0.1045208 

      11        6.000000           0.0000000 

      12       0.0000000          -0.9880212E-01 

      13        6.000000           0.0000000 

      14       0.0000000          -0.1950311E-01 

Notice only 7 of the 11 raw materials were used. 

 In actual practice, this type of LP was solved on a twice-monthly basis by Pittsburgh Steel. The 

purchasing agent used the first solution, including the reduced cost and dual prices, as a guide in buying 

materials. The second solution later in the month was mainly for the metallurgist’s benefit in making up 

a blend from the raw materials actually on hand. 

 Suppose we can pump oxygen into the furnace. This oxygen combines completely with carbon to 

produce the gas CO2, which escapes. The oxygen will burn off carbon at the rate of 12 pounds of carbon 

burned off for each 32 pounds of oxygen. Oxygen costs two cents a pound. If you reformulated the 

problem to include this additional option, would it change the decisions? The oxygen injection option to 

burn off carbon is clearly uninteresting because, in the current solution, it is the lower bound constraint 

rather than the upper bound on carbon that is binding. Thus, burning off carbon by itself, even if it could 

be done at no expense, would increase the total cost of the solution. 

10.3 A Blending Problem within a Product Mix Problem 
One additional aspect of blending problem formulation will be illustrated with an example in which the 

batch size is a decision variable. In the previous example, the batch size was specified. In the following 

example, the amount of product to be blended depends upon how cheaply the product can be blended. 

Thus, it appears the blending decision and the batch size decision must be made simultaneously. 
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 This example is suggestive of gasoline blending problems faced in a petroleum refinery. We wish 

to blend gasoline from three ingredients: butane, heavy naphtha, and catalytic reformate. Four 

characteristics of the resultant gasoline and its inputs are important: cost, octane number, vapor pressure, 

and volatility. These characteristics are summarized in the following table: 

 Commodity   

 
 
Feature 

 
Butane 
(BUT) 

Catalytic 
Reformate 

(CAT) 

Heavy 
Naphtha 

(NAP) 

Regular 
Gasoline (REG) 

Premium 
Gasoline (PRM) 

Cost/Unit 7.3 18.2 12.5 -18.4 -22 

Octane 120.0 100.0 74.0  89  oct  110 94  oct  110 

Vapor Pressure 60.0 2.6 4.1 8  vp  11 8  vp  11 

Volatility 105.0 3.0 12.0  17  vo  25 17  vo  25 

Availability 1000.0 4000.0 5000.0 4000  sell 8000 2000  sell 6000 

 The cost per unit for REG and PRM are listed as negative, meaning we can sell them. That is, a 

negative cost is a revenue. 

 The octane rating is a measure of the gasoline’s resistance to “knocking” or “pinging”. Vapor 

pressure and volatility are closely related. Vapor pressure is a measure of susceptibility to stalling, 

particularly on an unusually warm spring day. Volatility is a measure of how easily the engine starts in 

cold weather. 

 From the table, we see in this planning period, for example, there are only 1,000 units of butane 

available. The profit contribution of regular gasoline is $18.40 per unit exclusive of the cost of its 

ingredients. 

 A slight simplification assumed in this example is that the interaction between ingredients is linear. 

For example, if a “fifty/fifty” mixture of BUT and CAT is made, then its octane will be 

0.5 × 120 + 0.5 × 100 = 110 and its volatility will be 0.5 × 105 + 0.5 × 3 = 54. In reality, this linearity 

is violated slightly, especially with regard to octane rating. 

10.3.1 Formulation 
The quality constraints require a bit of thought. The fractions of a batch of REG gasoline consisting of 

Butane, Catalytic Reformate, and Heavy Naphtha are BUT/REG, CAT/REG, and NAP/REG, 

respectively. Thus, if the god of linearity smiles upon us, the octane constraint of the blend for REG 

should be the expression: 

(BUT/REG) × 120 + (CAT/REG) × 100 + (NAP/REG) × 74  89. 

 Your expression, however, may be a frown because a ratio of variables like BUT/REG is definitely 

not linear. Multiplying through by REG, however, produces the linear constraint: 

120 BUT + 100 CAT + 74 NAP  89 REG 

or in standard form: 

120 BUT + 100 CAT + 74 NAP − 89 REG  0. 
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10.3.2 Representing Two-sided Quality Constraints  
All the quality requirements are two sided. That is, they have both an upper limit and a lower limit. The 

upper limit constraint on octane is clearly: 

120 BUT + 100 CAT + 74 NAP − 110 REG  0. 

We can write it in equality form by adding an explicit slack: 

120 BUT + 100 CAT + 74 NAP − 110 REG + SOCT = 0. 

 When SOCT = 0, the upper limit is binding. You can verify that, when SOCT = 110 REG – 89 REG 

= 21 REG, the lower limit is binding. Thus, a compact way of writing both the upper and lower limits is 

with the two constraints: 

1) 120 BUT + 100 CAT + 74 NAP − 110 REG + SOCT = 0, 

2) SOCT  21 REG. 

 Notice, even though there may be many ingredients, the second constraint involves only two 

variables. This is a compact way of representing two-sided constraints. 

 Similar arguments can be used to develop the vapor and volatility constraints. Finally, a constraint 

must be appended, which states the whole equals the sum of its raw material parts, specifically: 

REG = BUT + NAP + CAT. 

 When all constraints are converted to standard form and the expression for profit contribution is 

written, we obtain the formulation:  

MODEL: 

MAX = 22 * B_PRM + 18.4 * B_REG - 7.3 * XBUT_PRM - 7.3 * XBUT_REG  

 - 12.5 * XNAP_PRM - 12.5 * XNAP_REG 

 - 18.2 * XCAT_PRM - 18.2 * XCAT_REG; 

  ! Subject to raw material availabilities;  

[RMLIMBUT] XBUT_PRM + XBUT_REG <=  1000; 

[RMLIMCAT] XCAT_PRM + XCAT_REG <=  4000; 

[RMLIMNAP] XNAP_PRM + XNAP_REG <=  5000; 

!For each finished good, batch size computation; 

[BDEF_REG]B_REG - XNAP_REG - XCAT_REG - XBUT_REG=0; 

[BDEF_PRM]B_PRM - XNAP_PRM - XCAT_PRM - XBUT_PRM=0; 

  ! Batch size limits; 

[BLO_REG] B_REG >=  4000; 

[BHI_REG] B_REG <=  8000; 

[BLO_PRM] B_PRM >=  2000; 

[BHI_PRM] B_PRM <=  6000; 

  ! Upper(UP) and Lower(DN) quality restrictions for each product; 

[QUPREGOC] - 110 * B_REG  

   + SOCT_REG + 74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG = 0; 

[QDNREGOC] - 21 * B_REG + SOCT_REG <=  0; 

[QUPREGVA] - 11 * B_REG  

   + SVAP_REG + 4.1 * XNAP_REG + 2.6 * XCAT_REG + 60 * XBUT_REG = 0; 

[QDNREGVA] - 3 * B_REG + SVAP_REG <= 0; 

[QUPREGVO] - 25 * B_REG  

     + SVOL_REG + 12 * XNAP_REG + 3 * XCAT_REG + 105 * XBUT_REG = 0; 

[QDNREGVO] - 8 * B_REG + SVOL_REG <=  0; 
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[QUPPRMOC] - 110 * B_PRM  

   + SOCT_PRM + 74 * XNAP_PRM + 100 * XCAT_PRM + 120 * XBUT_PRM = 0; 

[QDNPRMOC] - 16 * B_PRM + SOCT_PRM <=  0; 

[QUPPRMVA] - 11 * B_PRM  

   + SVAP_PRM + 4.1 * XNAP_PRM + 2.6 * XCAT_PRM + 60 * XBUT_PRM = 0; 

[QDNPRMVA] - 3 * B_PRM + SVAP_PRM <=  0; 

[QUPPRMVO] - 25 * B_PRM  

     + SVOL_PRM + 12 * XNAP_PRM + 3 * XCAT_PRM + 105 * XBUT_PRM = 0; 

[QDNPRMVO] - 8 * B_PRM + SVOL_PRM <=  0; 

END 

The following is the same problem, set in a general, set-based blending formulation: 

MODEL: 

  ! General Blending Model(BLEND) in LINGO; 

 SETS: 

!Each raw material has availability & cost/unit; 

   RM/ BUT, CAT, NAP/: A, C; 

! Each f. g. has min & max sellable, profit 

contr./unit and batch size to be determined; 

   FG/ REG, PRM/: D, E, P, B; 

   ! There are a set of quality measures; 

   QM/ OCT, VAP, VOL/; 

!Each RM & QM combo has a quality level; 

   RQ( RM, QM): Q; 

 !For each combo QM, FG there are upper & 

lower limits on quality, slack on quality 

 to be determined; 

   QF( QM, FG): U, L, S; 

!Each combination of RM and FG has an amount 

    used, to be determined; 

   RF( RM, FG): X; 

 ENDSETS 

 DATA:  

  A=  1000, 4000, 5000;!Raw material availabilities; 

  C =  7.3, 18.2, 12.5;    ! R. M. costs; 

  Q =  120,   60, 105, !Quality parameters...; 

       100,  2.6,   3,    ! R. M. by quality; 

        74,  4.1,  12; 

  D = 4000, 2000; ! Min needed of each F.G.; 

  E = 8000, 6000; !Max sellable of each F.G; 

  P = 18.4,   22; !Selling price of each F.G.; 

  U =  110,  110, ! Upper limits on quality; 

        11,   11, ! Quality by F.G.; 

        25,   25; 

  L =   89,   94, !Lower limits on quality...; 

         8,    8,      ! Quality by F.G.; 

        17,   17; 

 ENDDATA 
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!------------------------------------------; 

! The model; 

! For each raw material, the availabilities; 

    @FOR( RM( I): 

    [RMLIM] @SUM( FG( K): X( I, K)) < A( I); 

        ); 

    @FOR( FG( K): 

!For each finished good, compute batch size; 

     [BDEF] B( K) = @SUM( RM( I): X( I, K)); 

     ! Batch size limits; 

          [BLO] B( K) > D( K); 

          [BHI] B( K) < E( K); 

   ! Quality restrictions for each quality; 

   @FOR( QM( J): 

[QUP]@SUM( RM(I): Q(I, J) * X(I, K)) + S( J,  

          K) = U( J, K) * B( K); 

[QDN] S(J, K) < (U(J, K) - L(J, K)) * B(K); 

           ); ); 

!We want to maximize profit contribution; 

[PROFIT] MAX = @SUM( FG: P * B)  

            - @SUM( RM( I): C( I) * @SUM( FG( K): X( I, K))); 

END 

 As with all of our set based models, the data are well separated from the model equations. Thus, 

when the data change, the user need not be concerned with the model equations when updating the 

model. 

 The interesting part of the solution is:  

Objective value:                 48750.00 

      Variable           Value        Reduced Cost 

       B( REG)        4000.000           0.0000000 

       B( PRM)        4500.000           0.0000000 

  S( OCT, REG)        84000.00           0.0000000 

  S( OCT, PRM)        72000.00           0.0000000 

  S( VAP, REG)        1350.424           0.0000000 

  S( VAP, PRM)        7399.576           0.0000000 

  S( VOL, REG)        17500.00           0.0000000 

  S( VOL, PRM)        36000.00           0.0000000 

  X( BUT, REG)        507.4153           0.0000000 

  X( BUT, PRM)        492.5847           0.0000000 

  X( CAT, REG)        1409.958           0.0000000 

  X( CAT, PRM)        2590.042           0.0000000 

  X( NAP, REG)        2082.627           0.0000000 

  X( NAP, PRM)        1417.373           0.0000000 

           Row    Slack or Surplus      Dual Price 

   RMLIM( BUT)       0.0000000            27.05000 

   RMLIM( CAT)       0.0000000            6.650000 

   RMLIM( NAP)        1500.000           0.0000000 

    BDEF( REG)       0.0000000           -22.65000 

     BLO( REG)       0.0000000           -1.225000 

     BHI( REG)        4000.000           0.0000000 

QUP( REG, OCT)       0.0000000          -0.4750000 

QDN( REG, OCT)       0.0000000           0.4750000 
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QUP( REG, VAP)       0.0000000           0.0000000 

QDN( REG, VAP)        10649.58           0.0000000 

QUP( REG, VOL)       0.0000000           0.0000000 

QDN( REG, VOL)        14500.00           0.0000000 

    BDEF( PRM)       0.0000000           -22.65000 

     BLO( PRM)        2500.000           0.0000000 

     BHI( PRM)        1500.000           0.0000000 

QUP( PRM, OCT)       0.0000000          -0.4750000 

QDN( PRM, OCT)       0.0000000           0.4750000 

QUP( PRM, VAP)       0.0000000           0.0000000 

QDN( PRM, VAP)        6100.424           0.0000000 

QUP( PRM, VOL)       0.0000000           0.0000000 

QDN( PRM, VOL)       0.0000000           0.0000000 

        PROFIT        48750.00            1.000000 

 The solution suggests that Premium is the more profitable product,  so we sell the minimum amount 

of Regular required and then sell as much Premium as scarce resources, BUT and CAT, allow. 

 LP blending models have been a standard operating tool in refineries for years. Recently, there have 

been some instances where these LP models have been replaced by more sophisticated nonlinear models, 

which more accurately approximate the nonlinearities in the blending process. See Rigby, Lasdon, and 

Waren (1995), for a discussion of how Texaco does it. For example, volatility may be represented by a 

logarithmic expression and octane may be represented with a polynomial like a1*x+ a2*x2+ a3*x3+ a4*x4, 

see Rardin(1998). 

 There is a variety of complications as gasoline blending models are made more detailed. For 

example, in high quality gasoline, the vendor may want the octane to be constant across volatility ranges 

in the ingredients. The reason is, if you “floor” the accelerator on a non-fuel injected automobile, a shot 

of raw gas is squirted into the intake. The highly volatile components of the blend will reach the 

combustion chamber first. If these components have low octane, you will have knocking, even though 

the “average” octane rating of the gasoline is high. This may be more important in a station selling gas 

for city driving than in a station on a cross country highway in Kansas where most driving is at a constant 

speed. 

 

10.3.3 Representing Soft Target Quality Constraints  
Recall that in the above gasoline blending problem we required the octane rating of Regular gasoline to 

be in the range:  89  octane  110.  Now suppose that ideally, the octane target is 91. If we required the 

octane of Regular to be exactly 91, we could write:   

 
    74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG = 91* B_REG; 

 

But if we allow deviations above and below, we could add deviation/slack/surplus variables:  

 
    74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG  

        + SLOCT_REG – SUOCT_REG = 91* B_REG; 

    SLOCT_REG <= (91-89) * B_ REG; 

    SUOCT_REG <= (110-91) * B_REG; 

 

In the (maximize) objective we could add terms:  

 

          - ALPHAL * SLOCT_REG – ALPHAU * SUOCT_REG; 
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Setting constants ALPHAL, ALPHAU > 0 would encourage the blended octane to closely match the 

target of 91. Setting  ALPHAL, ALPHAU = 0 would only restrict octane to the interval [89, 110]. 

 

10.3.4 Discrete Blending/All-or-Nothing Usage  
Error! Bookmark not defined.There are some blending applications in which it makes sense to use 

only discrete quantities of certain ingredients. For example, if you are doing menu planning for a school 

or some other institution, you would not recommend that a meal consist of 0.75 apples and 1.2 bananas. 

You would recommend only a whole number. In the processing of scrap metal, the scrap tends come in 

compressed bundles. If you are melting scrap in a furnace, you would use all or nothing of a bundle, not 

a fraction. If you are blending coal at a port facility, you would tend to use either all or none of a barge 

of coal, or a railcar of coal. This all-or-nothing feature can be handled straightforwardly by introducing 

binary variables.  In our previous gasoline blending example, suppose there is a naptha supply of 4100, 

and it is of an all or nothing nature, i.e., if you use any of it you must use all of it.  This can be represented 

by introducing a binary variable: ZNAP = 1 if any (and all) or the naptha is used, = 0 if none is used.  

The additional constraints would be: 

 
   @BIN( ZNAP);  ! ZNAP is a 0/1, binary variable.; 

    

   [RMLIMNAP] XNAP_PRM + XNAP_REG = 4100 * ZNAP; ! Naptha used = 0 or 4100; 

 

When the model is solved with this constraint replacing: 
     [RMLIMNAP] XNAP_PRM + XNAP_REG = 5000; 

 

 we get a solution which in part is: 

 
     Global optimal solution found. 
  Objective value:    45810.00 

 

      Variable           Value 

         B_PRM        2700.000 

         B_REG        6400.000 

      XBUT_PRM        295.5508 

      XBUT_REG        704.4492 

      XNAP_PRM        850.4237 

      XNAP_REG        3249.576 

      XCAT_PRM        1554.025 

      XCAT_REG        2445.975 

          ZNAP        1.000000 

 

10.3.5 Treatments vs. Ingredients in Blending Problems  
Error! Bookmark not defined. In some blending problems, you can apply treatments that can 

significantly change the quality directly without having much effect on the volume of the blend. 

Examples are: a) in gasoline blending, the octane rating can be increased by adding small amounts of 

tetraethyl lead (TEL), methyl tertiary-butyl ether (MTBE), or ferrocene. Note, however, that regulatory 

authorities in many countries may have restrictions on the use of these additives because of pollution 
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issues.  b) in the manufacture of steel, one can remove  C (carbon)  and S (sulfur) by treating with O 

(oxygen) and CaO (lime). 

 

A simplified representation of (b) is that C can be removed by injecting O  to produce CO, which is 

easily separated out. Atomic weights of C and O are 12 and 16. So each ton of O injected might 

remove up to 12/16 = 0.75 tons of C. Another simplified representation is that S can be removed by 

adding CaO, which produces CaS + O, both of which are easily separated out, e.g. as slag floating on 

the top of the blending vessel. Atomic weights of Ca and S are 40 and 32. So each ton of CaO applied 

might remove up to 32/(40+16) = 0.57 tons of S. 

 

We can represent treatments as a generalization of raw material ingredients if we introduce an 

additional parameter vector: 

    vc(i) = volume contribution per unit of treatment i applied. 

 

We also use the notation: 

  Parameters: 

    q(i, j) = contribution of treatment i to quality j. 

    U( j)  = upper limit on quality j per volume, e.g., the fraction of sulfur allowed, 

  Variables: 

     B = batch size, to be determined, 

     x(i) = amount of treatment or raw material i to be used, 

      

For a typical ingredient, vc(i) = 1, e.g., if we add a ton of Wyoming coal to a batch of blends of various 

coals, the batch size increases by 1 ton.  Now consider in contrast that we add a ton of lime to a steel 

batch.  The purpose of the lime is, among other things, to remove sulfur. The lime combines with the 

sulfur which is then removed as slag from the top of the blending vessel.  Let us suppose that each ton 

of lime removes 0.57 tons of sulfur. In this case, we would set vc(lime) = -0.57, i.e., adding lime leads 

to a net decrease in the final batch size. Further,  q( lime, sulfur) = -0.57, i.e., each ton of lime added, 

decreases the amount of sulfur in the final batch by 0.57 tons. 

     The constraints in general are then: 

     B = Σi vc(i) * x(i);   Compute the batch size; 

 

  For each quality j: 

      ( Σi q(i,j) * x(i)) / B  ≤ U( j)  ;   Quality constraint in ratio form.  

 

 or in linear form: 

        Σi q(i, j) * x( i) ≤ U( j)* B; 

 

10.4 Choice of Alternate Interpretations of Quality Requirements 
Some quality features can be stated according to some measure of either goodness or, alternatively, 

undesirability. An example is the efficiency of an automobile. It could be stated in miles per gallon or 

alternatively in gallons per mile. In considering the quality of a blend of ingredients (e.g., the efficiency 

of a fleet of cars), it is important to identify whether it is the goodness or the badness measure which is 

additive over the components of the blend. The next example illustrates. 

 A federal regulation required the average of the miles per gallon computed over all automobiles 

sold by an automobile company in a specific year be at least 18 miles per gallon.  
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 Let us consider a hypothetical case for the Ford Motor Company. Assume Ford sold only the four 

car types: Mark V, Ford, Granada, and Fiesta. Various parameters of these cars are listed below: 

Car Miles per 
Gallon 

Marginal Prod. Cost Selling Price 

Fiesta 30 13,500 14,000 

Granada 18 14,100 15,700 

Ford 16 14,500 15,300 

Mark V 14 15,700 20,000 

 There is some flexibility in the production facilities, so capacities may apply to pairs of car types. 

These limitations are: 

Yearly Capacity in Units Car Types Limited 

250,000 Fiestas 

2,000,000 Granadas plus Fords 

1,500,000 Fords plus Mark V’s 

 There is a sale capacity limit of 3,000,000 on the total of all cars sold. How many of each car type 

should Ford plan to sell? 

 Interpreting the mileage constraint literally results in the following formulation: 

   MAX = 500*FIESTA + 1600*GRANADA + 4300*MARKV + 800*FORD; 

        12 * FIESTA                 - 4 * MARKV - 2 * FORD >= 0; 

      FIESTA                                        <= 250; 

                           GRANADA                  + FORD <= 2000; 

                                          MARKV     + FORD <= 1500; 

             FIESTA      + GRANADA      + MARKV     + FORD <= 3000; 

Automobiles and dollars are measured in 1000s. Note row 2 is equivalent to: 

30 Fiesta + 18 Granada + 16 Ford + 14 Mark V  

      Fiesta + Granada + Ford + Mark V
 

 

 18. 

The solution is: 

Optimal solution found at step:         1 

Objective value:                 6550000. 

Variable           Value        Reduced Cost 

  FIESTA        250.0000           0.0000000 

 GRANADA        2000.000           0.0000000 

   MARKV        750.0000           0.0000000 

    FORD       0.0000000            2950.000 

     Row    Slack or Surplus      Dual Price 

       1        6550000.            1.000000 

       2       0.0000000           -1075.000 

       3       0.0000000            13400.00 

       4       0.0000000            1600.000 

       5        750.0000           0.0000000 

       6       0.0000000           0.0000000 
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 Let’s look more closely at this solution. Suppose each car is driven the same number of miles per 

year regardless of type. An interesting question is whether the ratio of the total miles driven by the above 

fleet divided by the number of gallons of gasoline used is at least equal to 18. Without loss, suppose 

each car is driven one mile. The gasoline used by a car driven one mile is 1/(miles per gallon). Thus, if 

all the cars are driven the same distance, then the ratio of miles to gallons of fuel of the above fleet is 

(250 + 2000 + 750)/[(250/30) + (2000/18) + (750/14)] = 17.3 miles per gallon—which is considerably 

below the mpg we thought we were getting. 

 The first formulation is equivalent to allotting each automobile the same number of gallons and each 

automobile then being driven until it exhausts its allotment. Thus, the 18 mpg average is attained by 

having less efficient cars drive fewer miles. A more sensible way of phrasing things is in terms of gallons 

per mile. In this case, the mileage constraint is written: 

Fiesta/30 + Granada/18 + Ford/16 + MarkV/14  1/18 

Fiesta + Granada + Ford + MarkV  

Converted to standard form this becomes: 

−0.022222222 * FIESTA + 0.0069444444 * FORD + 0.015873016 * MARKV =0; 

When this problem is solved with this constraint, we get the solution: 

Optimal solution found at step:         0 

Objective value:                 4830000. 

Variable           Value        Reduced Cost 

  FIESTA        250.0000           0.0000000 

    FORD       0.0000000            2681.250 

   MARKV        350.0000           0.0000000 

 GRANADA        2000.000           0.0000000 

 Notice the profit contribution drops noticeably under this second interpretation. The federal 

regulations could very easily be interpreted to be consistent with the first formulation. Automotive 

companies, however, wisely implemented the second way of computing fleet mileage rather than leave 

themselves open to later criticism of having implemented what Uncle Sam said rather than what he 

meant. 

 For reference, in 2010, the U.S. "light truck" (so-called sport utility vehicles) fleet mileage 

requirement was 23.4 miles per gallon, and the passenger car fleet requirement was 27.5 miles per gallon. 

For each tenth of a mile per gallon that a fleet falls short of the requirement, the U.S. Federal government 

sets a fine of $5 per vehicle. The requirements are based on a "model year" basis. This gives a car 

manufacturer some flexibility if it looks like it might miss the target in a given year. For example, the 

manufacturer could "stop production" of a vehicle that has poor mileage, such as the big Chevy 

Suburban, and declare that all subsequent copies sold belong to the next model year. This may achieve 

the target in the current model year, but postpone the problem to the next model year. 
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10.5 How to Compute Blended Quality 
The general conclusion is one should think carefully when one needs to compute an average performance 

measure for some blend or collection of things. There are several ways of computing averages or means 

when one has a collection of N quantities, x1, x2, . . . .xN : 

 

                 Type                  Formula                                         Average of (5, 9) 

Arithmetic:     ( x1 + x2 . . . + xN )/N ,                                  7.000 

Logarithmic:   (x1 - x2)/ LN(x1 / x2),  for N = 2                   6.805 

Geometric:     (x1  x2 . . .  xN )^(1/N)                              6.708 

Harmonic:      1/[( 1/x1 + 1/x2 . . . + 1/xN )/N]                    6.429 

 

 The arithmetic mean is appropriate for computing the mean return of the assets in a portfolio. If, 

however, we are interested in the average growth of a portfolio over time, we would probably want to 

use the geometric mean of the yearly growths. Consider, for example, an investment that has a growth 

factor of 1.5 in the first year and 0.67 in the second year (e.g., a rate of return of 50% in the first year 

and −33% in the second year). Most people would not consider the average growth to be (1.5 + 0.67)/2 

= 1.085.  

      The harmonic mean tends to be appropriate when computing an average rate of something, as in 

average miles/gallon in the example above, or for computing the average density of blend of ingredients. 

Density is usually measured in weight per volume (e.g., grams per cubic centimeter). If the decision 

variables are measured in weight units rather than volume units, then the harmonic mean is appropriate. 

The harmonic mean is also appropriate for computing the average price earnings ratio for a collection of 

companies. 

     The logarithmic mean is used in computing the average temperature difference in a heat exchanger, 

based on the temperature difference at the two ends, e.g., as used in a petroleum refinery. 

10.5.1 Example  
We have two ingredients, one with a density of 0.7 g/cc and the other with a density of 0.9 g/cc. If we 

mix together one gram of each, what is the density of the mix? Clearly, the mix has a weight of 2 grams. 

Its volume in cc’s is 1/0.7 + 1/0.9. Thus, its density is 2/(1/0.7 + 1/0.9) = 0.7875 g/cc. This is less than 

the 0.8 we would predict if we took the arithmetic average. If we define: 

Xi = grams of ingredient i in the mix, 

 t = target lower limit on density desired. 

Then, we can write the density constraint for our little example as: 

( X1 + X2 )/( X1/0.7 + X2 /0.9) ≥ t, 

    or 

( X1 + X2)/t  ≥ X1/0.7 + X2/0.9, 
    or 

(1/t – 1/0.7) X1 + (1/t – 1/0.9) X2 ≥ 0, 

(i.e., a harmonic mean constraint). 
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10.5.2 Generalized Mean 
One can generalize the idea just discussed by introducing a transformation f (q). The interpretation is 

that the function f () “linearizes” the quality. The basic idea is that many of the quality measures used in 

practice were chosen somewhat arbitrarily (e.g., why is the freezing point of water 32 degrees on the 

Fahrenheit scale?). So, even though a standardly used quality measure does not “blend linearly”, perhaps 

we can find a transformation that does. Such linearizations are common in industry. Some examples 

follow: 

 

1. The American Petroleum Institute likes to measure the lightness of a material in “API 

gravity”, see Dantzig and Thapa (1997). Water has an API gravity of 10. API gravity does 

not blend linearly. However, the specific gravity, defined by: 

 sg = 141.5/(API gravity + 131.5) 

does blend linearly. Note, the specific gravity of a material is the weight in grams of one 

cubic centimeter of material. For example, if component 1 has an API gravity of 35, 

component 2 has a API gravity of 55, xi is the amount used of component i, and we want a 

blend with an API gravity of at most 45, the constraint could be written: 

          (141.5/(35 + 131.5)) x1 +  (141.5/(55 + 131.5)) x2   141.5/(45 + 131.5) (x1 + x2).  

       Note, if we want the API gravity to be low, then we want the specific gravity high. 

 

2. In the transmissivity of light through a glass fiber of length xi, or the financial growth of 

an investment over a period of length xi, or in the probability of no failures in a number of 

trials xi, one may have constraints of the form: a1
x1 a2

x2 …an
xn  a0. This can be linearized 

by taking logarithms (e.g., ln(a1) * x1 + ln(a2) * x2 +… ln(an) * xn  ln(a0)). 

  For example, if we expect stocks to have a long term growth rate of 10% per year, we 

expect less risky bonds to have a long term growth rate of 6% per year, we want an overall 

growth of 40% over five years, and x1 and x2 are the number of years we invest in stocks 

and bonds respectively over a five year period, then we want the constraint: 

 (1.10) x1(1.06) x2 1.40. 

 Linearizing, this becomes: 

 ln(1.10) x1 + ln(1.06) x2  ln(1.40), or 

 .09531 x1 + .05827 x2  .3364, 

             x1 + x2 = 5. 

3. Rigby, Lasdon, and Waren (1995) use this idea when approximating the Reid vapor 

pressure (RVP) of a blended gasoline at Texaco. Note, the RVP of a liquid is the pressure  

in a closed container having a small amount of the liquid at 100 degrees F.  If ri is the RVP 

of component i of the blend, they use the transformation: 

 f (ri) = ri 1.25 
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For example, if component 1 has an RVP of 80, component 2 has an RVP of 100, xi is the 

amount used of component i, and we want a blend with an RVP of at least 90, the constraint 

could be written: 

 80 1.25  x1 + 100 1.25  x2  90 1.25  (x1 + x2),  

 or 

 239.26  x1 + 316.23 x2  277.21 (x1 + x2). 

4. The flashpoint of a chemical is the lowest temperature at which it will catch fire. Typical 

jet fuel has a flashpoint of around 100 degrees F. Typical heating oil has a flashpoint of at 

least 130 degrees F. The jet fuel used in the supersonic SR-71 jet aircraft had a flashpoint 

of several hundred degrees F. If pi is the flashpoint of component i in degrees F, then the 

transformation, the so-called blending index is:  

 f (pi) = 51708*exp(((LOG(pi) - 2.6287)^2/(-0.91725)))  

where LOG is the natural logarithm, will approximately linearize the flashpoint. See Fahim 

et al. (2010) or Kaiser et al. (2020). For example, if component 1 has a flashpoint of 100, 

and component 2 has a flashpoint of 140, then f (100) = 731.073, and f ( 140) = 151.569. 

Notice that f (pi) is a decreasing function of pi, so a higher flashpoint means a lower 

blending index f (pi)  value. 

 Suppose we want a blend with a flashpoint of at least 130. Now  f (130) = 218.939, so 

the flash point constraint, were xj is the amount by weight of component j of  the above 

two components is:  

 731.073  x1 + 151.569  x2  218.939  (x1 + x2). 

5. The viscosity of a liquid is a measure, in units of centistokes, of the time it takes a standard 

cup volume of liquid, at 122 degrees Fahrenheit, to flow through a hole of a certain 

diameter. The higher the viscosity, the less quickly the liquid flows. If vi is the viscosity of 

component i, then the transformation: 

 f (vi) = ln (ln (vi + .08)) 

will approximately linearize the viscosity. 

 For example, if component 1 has a viscosity of 5, component 2 has a viscosity of 25, 

xi is the amount used of component i, and we want a blend with a viscosity of at most 20, 

the constraint would be written: 

 ln (ln (5 + .08))  x1 + ln (ln (25+ .08)) x2  
 ln (ln (20 + .08))  (x1 + x2), 

 or 

 .4857 x1 + 1.17 x2  1.0985(x1 + x2). 

 The preceding examples apply the transformation to each quality individually. One could extend 

the idea even further by allowing a “matrix” transformation to several qualities together. 
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10.6 Interpretation of Dual Prices for Blending Constraints 
The dual price for a blending constraint usually requires a slight reinterpretation in order to be useful. 

As an example, consider the minimum octane constraint for Premium gasoline in the model considered 

earlier.  The constraint was effectively: 

−94 B_PRM + 120 XBUT_PRM + 74 XNAP_PRM + 100 XCAT_PRM  0. 

 The dual price of this constraint is the rate of increase in profit if the right-hand side of this constraint 

is increased from 0 to 1. Unfortunately, this is not a change we would ordinarily consider. More typical 

changes that might be entertained would be changing the octane rating from 94 to either 93 or 95. A 

very approximate rule for estimating the effect of changing the coefficient in row i of variable B_PRM 

is to compute the product of the dual price in row i and the value of variable B_PRM. For variable 

B_PRM and the octane constraint, this value is  -.475*4500 = −2137.5. This suggests, if the octane 

requirement is reduced to 93 (or increased to 95) from 94, the total profit will increase by about 2137.5 

to 48750 + 2137.5 = $50887.5 (or decrease to 48750-2137.5= $46,612.5). If the LP is actually re-solved 

with an octane requirement of 93 (or 95), the actual profit contribution changes to $51,000 (or 

$46,714.29).  

 This approximation can be summarized generally as follows:  

If we wish to change a certain quality requirement of blend by a small amount , the effect on 

profit of this change is approximately of the magnitude   (dual price of the constraint)  
(batch size). For small changes, the approximation tends to understate profit after the change. 

For large changes, the approximation may err in either direction. 

 

10.7 Fractional or Hyperbolic Programming 
 In blending problems, we have seen ratio constraints of the form: 

j i j

j j

q X

X
q






0

 

can be converted to linear form, by rewriting: 

j qj Xj  q0  Xj    or     (qj − q0) xj  0 

 Can we handle a similar feature in the objective? That is, can a problem of the following form be 

converted to linear form? 

(1) Maximize       
o j j j

o j j j

u + u X

v + v X




 

(2) subject to:    j aij Xj = bi ,  for i = 1, 2, . . .    

 The ai,j, u0, uj, v0, and vj are given constants. For example, we might wish to maximize the fraction 

of protein in a blend subject to constraints on availability of materials and other quality specifications. 
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 We can make it linear with the following transformations: 

Define:    

 r = 1/(v0 + j vj Xj) 

and        

 yj = Xj r                                    

We assume r > 0. 

 Then our objective is: 

(1') Maximize        u0 r + juj yj 

     subject to: 

r = 1/(v0 + j vj X j ), or 

(1.1')   r v0 + j vj yj = 1 

Any other constraint i of the form: 

(2) j aij Xj = bi 

can be written as: 

j aij  Xj r = bi  r 

 

or linear in terms of the new variables, 

(2') j aij  yi − bi r = 0 

10.8 Multi-Level Blending: Pooling Problems 
A complicating factor in some blending problems is that not all raw ingredients can be stored separately. 

Such a situation can arise in a number of ways. Two ingredients may be produced at the same location, 

but for economic reasons, are transported together (e.g., in one tank car or via one pipeline). Another 

possibility is two ingredients are delivered separately, but only a single holding facility is available at 

the blending site. In general, many facilities that blend ingredients have only a modest number of storage 

facilities. For example, a grain storage facility may have only a half dozen bins. A petroleum refinery 

may have only a half dozen tanks. If there are more than a half dozen different sources of raw materials, 

then not all raw materials can be stored separately. In the petroleum industry, this leads to what is called 

a pooling problem. 

 This pooling of raw materials within a blending problem leads to a nonlinear program. The pooling 

problem discussed here is taken from Haverly (1978). A, B, and C are ingredients containing 3%, 1%, 

and 2% sulfur as an impurity, respectively. These chemicals are to be blended to provide two output 

products, X and Y, which must meet sulfur content upper limits of 2.5% and 1.5%, respectively. At the 

given prices of $9 per unit of X and $15 per unit of Y, customers will buy all of X and Y produced up to 

a maximum of 100 units of X and 200 units of Y. The costs per unit for ingredients A, B, and C are $6, 

$16, and $10, respectively. The problem is to operate the process in order to maximize profit. 

 A complicating factor in this blending process is the fact that products A and B must be stored in 

the same tank, or “pool”. So, until the amounts of A and B are determined, the pool sulfur content is 

unknown. Figure 10.1 illustrates. However, it is the pool sulfur content together with the amounts of 

pool material and of chemical C used in blending X and Y that determine the X and Y sulfur contents. 
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The sulfur constraints on X and Y affect the amounts of A and B needed, and it is this “circularity” that 

causes a nonlinearity. 

Figure 10.1 A Pooling Problem 

Pool

Y

X

C

A

B

 

 The constraint equations defining this system involve material balances and sulfur constraints for 

the output products. Consider the material balance equations first. 

 We have the following mass balance for the pool, assuming all of the pool material is to be used up: 

Amount A + Amount B = Pool to X + Pool to Y. 

For the output products, the balance equations are: 

Pool to X + C to X = Amount X 

and: 

Pool to Y + C to Y = Amount Y. 

For the total amount of C, the equation is: 

C to X + C to Y = Amount C. 

 Introducing the pool sulfur percent, Pool S, as a new variable, makes it easy to write the X and Y 

sulfur constraints. If we let Pool S have a value between 0 and 100 and express all other percentages on 

the same scale, these constraints are: 

Pool S  Pool to X + 2  C to X  2.5  Amount X 

Pool S  Pool to Y + 2  C to Y  1.5  Amount Y 

 The left-hand side of each inequality represents the actual sulfur content of the appropriate product 

and the right-hand side is the maximum amount of sulfur permitted in that product. The pool sulfur 

balance equation is: 

3  Amount A + 1 Amount B = Pool S  (Amount A + Amount B). 

 This defines Pool S as the amount of sulfur in the pool divided by the total amount of material in 

the pool. 
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 As mentioned earlier, product demand sets upper bounds on production as: 

Amount X  100 

Amount Y  200 

and physical considerations restrict all variables to be nonnegative quantities. Clearly, the pool sulfur 

can never be less than 1% or more than 3%. Thus: 

1  Pool S  3. 

 Finally, the profit function must be formulated. If Cost A, Cost B, Cost C, Cost X, and Cost Y are 

the appropriate cost coefficients, the profit can be written as: 

Cost X  Amount X + Cost Y  Amount Y − Cost A  Amount A 

− Cost B  Amount B − Cost C  Amount C 

A LINGO formulation follows: 

MODEL:  

   COSTA = 6; 

   COSTB = 16; 

   COSTC = 10; 

   COSTX = 9; 

   COSTY = 15; 

 MAX = COSTX * AMOUNTX + COSTY * AMOUNTY - COSTA * AMOUNTA - COSTB * 

AMOUNTB - COSTC * AMOUNTC; 

   ! Sources = uses for the pool; 

   AMOUNTA + AMOUNTB = POOLTOX + POOLTOY; 

   ! Sources for final products; 

   POOLTOX + CTOX = AMOUNTX; 

   POOLTOY + CTOY = AMOUNTY; 

   ! Uses of C; 

   AMOUNTC = CTOX + CTOY; 

   ! Blending constraints for final products; 

   POOLS * POOLTOX + 2 * CTOX <= 2.5 * AMOUNTX; 

   POOLS * POOLTOY + 2 * CTOY <= 1.5 * AMOUNTY; 

   ! Blending constraint for the pool product; 

   3*AMOUNTA + AMOUNTB=POOLS*(AMOUNTA + AMOUNTB); 

   ! Demand upper limits; 

   AMOUNTX <= 100; 

   AMOUNTY <= 200; 

END 
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 This problem is tricky in that it has (as we shall see) several local optima. LINGO, left to its own 

devices, may find the following solution: 

Optimal solution found at step:        16 

Objective value:                 400.0000 

Variable           Value        Reduced Cost 

   COSTA        6.000000           0.0000000 

   COSTB        16.00000           0.0000000 

   COSTC        10.00000           0.0000000 

   COSTX        9.000000           0.0000000 

   COSTY        15.00000           0.0000000 

 AMOUNTX       0.0000000           0.0000000 

 AMOUNTY        200.0000           0.0000000 

 AMOUNTA       0.0000000            2.000003 

 AMOUNTB        100.0000           0.0000000 

 AMOUNTC       100.00000           0.0000000 

 POOLTOX       0.0000000            4.000026 

 POOLTOY        100.0000           0.0000000 

    CTOX       0.0000000           0.0000000 

    CTOY       100.00000           0.0000000 

   POOLS       0.9999932           0.0000000 

 Examination of the solution shows the optimal operation produces only product Y using equal 

amounts of B and C. The cost per unit of output is $(16 + 10) / 2 = $13 and the sale price is $15, giving 

a profit of $2 per unit. Since all 200 units are produced and sold, the profit is $400. 

 Nonlinear problems, such as this pooling model, have the curious feature that the solution you get 

may depend upon where the solver starts its solution search. You can set the starting point by inserting 

an "INIT" initialization section in your model such as the following: 

 INIT: 

AMOUNTX = 0; 

AMOUNTY = 0; 

AMOUNTA = 0; 

AMOUNTB = 0; 

AMOUNTC = 0; 

POOLTOX = 0; 

POOLTOY = 0; 

   CTOX = 0; 

   CTOY = 0; 

  POOLS = 3; 

 ENDINIT 
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 The INIT section allows you to provide the solver with an initial guess at the solution. Starting at 

the point provided in the INIT section, LINGO may find the solution: 

Optimal solution found at step:         4 

Objective value:                 100.0000 

Variable           Value        Reduced Cost 

 AMOUNTX        100.0000           0.0000000 

 AMOUNTY       0.0000000           0.0000000 

 AMOUNTA        50.00000           0.0000000 

 AMOUNTB       0.0000000            2.000005 

 AMOUNTC        50.00000           0.0000000 

 POOLTOX        50.00000           0.0000000 

 POOLTOY       0.0000000            6.000000 

    CTOX        50.00000           0.0000000 

    CTOY       0.0000000           0.0000000 

   POOLS        3.000000           0.0000000 

   COSTA        6.000000           0.0000000 

   COSTB        16.00000           0.0000000 

   COSTC        10.00000           0.0000000 

   COSTX        9.000000           0.0000000 

   COSTY        15.00000           0.0000000 

 In this solution, only product X is produced and sold. It is made using an equal blend of chemicals 

A and C. The net cost of production is $8 per unit, yielding a profit of $1 per unit of X sold. Since only 

100 units are called for, the final profit is $100. This solution is locally optimal. That is, small changes 

from this operating point reduce the profit. There are no feasible operating conditions close to this one 

that yield a better solution. 

 Our earlier solution, yielding a profit of $400, is also a local optimum. However, there is no other 

feasible point with a larger profit, so we call the $400 solution a global optimum. The reader is invited 

to find other local optima, for example, by increasing the use of A and decreasing B and C. 

 Generally speaking, an initial guess should not set variable values to zero. Since zero multiplied by 

any quantity is still zero, such values can lead to unusual behavior of the optimization algorithm. For 

example, if we take our previous initial guess, except set POOLS = 2, the solver may get stuck at this 

point and gives the solution:  

Optimal solution found at step:         1 

Objective value:                0.0000000E+00 

Variable           Value        Reduced Cost 

 AMOUNTX       0.0000000           0.0000000 

 AMOUNTY       0.0000000           0.0000000 

 AMOUNTA       0.0000000            6.000000 

 AMOUNTB       0.0000000            16.00000 

 AMOUNTC       0.0000000           0.0000000 

 POOLTOX       0.0000000           -10.00000 

 POOLTOY       0.0000000           -10.00000 

    CTOX       0.0000000           0.0000000 

    CTOY       0.0000000           0.0000000 

   POOLS        2.000000           0.0000000 

   COSTA        6.000000           0.0000000 

   COSTB        16.00000           0.0000000 

   COSTC        10.00000           0.0000000 

   COSTX        9.000000           0.0000000 
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   COSTY        15.00000           0.0000000 

 As this output shows, LINGO finds the starting point to be optimal. Actually, this point is not even 

a local optimum, but rather a stationary point (i.e., very small changes do not provide any significant 

improvement, within the tolerances used in the algorithm, in the objective). The point satisfies the 

so-called first-order necessary conditions for an optimum. If, however, the starting point is perturbed by 

some small amount, the solver should find an actual local optimum and perhaps the global one. In fact, 

setting all variables previously at zero to 0.1 does lead to the global maximum solution with profit of 

$400.  

 This model is an example of where a global solver is helpful.  If the “Global solver” option is 

selected in LINGO, then the global optimal solution with value 400 is found without fail. For this 

problem, all solutions obtained have the property that many constraints are active. In other words, they 

hold as equalities. Of course, the five equality constraints (rows 2 through 5 and row 8) are always active. 

In addition, in the globally optimal solution, the sulfur content of Y is at its upper limit, and six variables 

are either at lower or upper limits (POOLS, CTOX, POOLTOX, AMOUNTA, AMOUNTY, and 

AMOUNTX). Hence, there are twelve active constraints, but only ten variables. When there are at least 

as many active constraints as there are variables, this is called a vertex solution. In linear programming, 

any LP having an optimal solution has a vertex solution. This is not true in NLP, but vertex optima are 

not uncommon and seem to occur frequently in models involving blending and processing. 

 When there are more active constraints than variables, the vertex is called degenerate. In the global 

solution to this problem, there are two “extra” active constraints. One could be removed by dropping the 

upper and lower limits on POOLS. These are redundant because they are implied by constraint 8 and the 

nonnegativity of the variables. The lower limits on AMOUNTX and AMOUNTY could also be dropped, 

since they are implied by rows 3 and 4 and the lower limits on CTOX, CTOY, POOLTOX, and 

POOLTOY. Doing this would lead to the same vertex solution, but with exactly as many active 

constraints as variables. Some other constraints are redundant too. The reader is invited to find them. 

10.9 Problems 
1. The Exxoff Company must decide upon the blends to be used for this week’s gasoline production. 

Two gasoline products must be blended and their characteristics are listed below: 

 
Gasoline 

Vapor 
Pressure 

Octane 
Number 

Selling Price (in 
$/barrel) 

Lo-lead  7   80 $ 9.80 

Premium  6  100 $12.00 

The characteristics of the components from which the gasoline can be blended are shown below: 

 
Component 

Vapor 
Pressure 

Octane 
Number 

Available this 
Week (in barrels) 

Cat-Cracked Gas 8 83 2700 

Isopentane 20 109 1350 

Straight Gas 4 74 4100 
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 The vapor pressure and octane number of a blend is simply the weighted average of the 

corresponding characteristics of its components. Components not used can be sold to 

“independents” for $9 per barrel. 

a) What are the decision variables? 

b) Give the LP formulation. 

c) How much Premium should be blended? 

2. The Blendex Oil Company blends a regular and a premium product from two ingredients, Heptane 

and Octane. Each liter of regular is composed of exactly 50% Heptane and 50% Octane. Each liter 

of premium is composed of exactly 40% Heptane and 60% Octane. During this planning period, 

there are exactly 200,000 liters of Heptane and 310,000 liters of Octane available. The profit 

contributions per liter of the regular and premium product this period are $0.03 and $0.04 per liter 

respectively. 

a) Formulate the problem of determining the amounts of the regular and premium products 

to produce as an LP. 

b) Determine the optimal amounts to produce without the use of a computer. 

3. Hackensack Blended Whiskey Company imports three grades of whiskey: Prime, Choice, and 

Premium. These unblended grades can be used to make up the following two brands of whiskey 

with associated characteristics: 

 
Brand 

 
Specifications 

Selling price per 
liter 

Scottish Club Not less than 60% Prime. 

Not more than 20% Premium. 

$6.80 

Johnny Gold Not more than 60% Premium. 

Not less than 15% Prime. 

$5.70 

The costs and availabilities of the three raw whiskeys are: 

 
Whiskey 

Available This Week (Number of 
Liters) 

Cost per 
Liter 

Prime 2,000 $7.00 

Choice 2,500 $5.00 

Premium 1,200 $4.00 

 Hackensack wishes to maximize this week’s profit contribution and feels it can use linear 

programming to do so. How much should be made of each of the two brands? How should the three 

raw whiskeys be blended into each of the two brands? 
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4. The Sebastopol Refinery processes two different kinds of crude oil, Venezuelan and Saudi, to 

produce two general classes of products, Light and Heavy. Either crude oil can be processed by 

either of two modes of processing, Short or Regular. The processing cost and amounts of Heavy 

and Light produced depend upon the mode of processing used and the type of crude oil used. Costs 

vary, both across crude oils and across processing modes. The relevant characteristics are 

summarized in the table below. For example, the short process converts each unit of Venezuelan 

crude to 0.45 units of Light product, 0.52 units of Heavy product, and 0.03 units of waste. 

 Short Process Regular Process 

 Venezuela
n 

Saud
i 

Venezuela
n 

Saud
i 

Light product fraction 0.45 0.60 0.49 0.68 

Heavy product fraction 0.52 0.36 0.50 0.32 

Unusable product fraction 0.03 0.04 0.01 0.00 

 Saudi crude costs $20 per unit, whereas Venezuelan crude is only $19 per unit. The short 

process costs $2.50 per unit processed, while the regular process costs $2.10 per unit. Sebastopol 

can process 10,000 units of crude per week at the regular rate. When the refinery is running the 

Short process for the full week, it can process 13,000 units per week. 

The refinery may run any combination of short and regular processes in a given week. 

 The respective market values of Light and Heavy products are $27 and $25 per unit. Formulate 

the problem of deciding how much of which crudes to buy and which processes to run as an LP. 

What are the optimal purchasing and operating decisions? 

5. There has been a lot of soul searching recently at your company, the Beansoul Coal Company 

(BCC). Some of its better coal mines have been exhausted and it is having more difficulty selling 

its coal from remaining mines. One of BCC’s most important customers is the electrical utility, 

Power to the People Company (PPC). BCC sells coal from its best mine, the Becky mine, to PPC. 

The Becky mine is currently running at capacity, selling all its 5000 tons/day of output to PPC. 

Delivered to PPC, the Becky coal costs BCC $81/ton and PPC pays BCC $86/ton. BCC has four 

other mines, but you have been unable to get PPC to buy coal from these mines. PPC says that coal 

from these mines does not satisfy its quality requirements. Upon pressing PPC for details, it has 

agreed it would consider buying a mix of coal as long as it satisfies the following quality 

requirements: sulfur < 0.6%; ash < 5.9%; BTU > 13000 per ton; and moisture < 7%. You note your 

Becky mine satisfies this in that its quality according to the above four measures is: 0.57%, 5.56%, 

13029 BTU, and 6.2%. Your four other mines have the following characteristics: 

 
 

Mine 

 
BTU Per 

Ton 

 
Sulfur 

Percent 

 
Ash 

Percent 

 
Moisture 
Percent 

Cost Per Ton 
Delivered to 

PPC 

Lex 14,201 0.88 6.76 5.1 73 

Casper 10,630 0.11 4.36 4.6 90 

Donora 13,200 0.71 6.66 7.6 74 

Rocky 11,990 0.39 4.41 4.5 89 
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 The daily capacities of your Lex, Casper, Donora, and Rocky mines are 4000, 3500, 3000, and 

7000 tons respectively. PPC uses an average of about 13,000 tons per day. 

 BCC’s director of sales was ecstatic upon hearing of your conversation with PPC. His response 

was “Great! Now, we will be able sell PPC all of the 13,000 tons per day it needs”. Your stock with 

BCC’s newly appointed director of productivity is similarly high. Her reaction to your discussion 

with PCC was: “Let’s see, right now we are making a profit contribution of only $5/ton of coal sold 

to PPC. I have figured out we can make a profit contribution of $7/ton if we can sell them a mix. 

Wow! You are an ingenious negotiator!” What do you recommend to BCC? 

6. The McClendon Company manufactures two products, bird food and dog food. The company has 

two departments, blending and packaging. The requirements in each department for manufacturing 

a ton of either product are as follows: 

 Time per Unit in Tons 

 Blending Packaging 

Bird food 0.25 0.10 

Dog food 0.15 0.30 

Each department has 8 hours available per day. 

 Dog food is made from the three ingredients: meat, fishmeal, and cereal. Bird food is made 

from the three ingredients: seeds, ground stones, and cereal. Descriptions of these five materials are 

as follows. 

 Descriptions of Materials in Percents 

  
Protein 

 
Carbohydrates 

Trace 
Minerals 

 
Abrasives 

Cost  
(in $/ton) 

Meat 12 10 1 0 600 

Fishmeal 20 8 2 2 900 

Cereal 3 30 0 0 200 

Seeds 10 10 2 1 700 

Stones 0 0 3 100 100 

The composition requirements of the two products are as follows: 

 Composition Requirements of the Products in Percents 

  
Protein 

 
Carbohydrates 

Trace 
Minerals 

 
Abrasive

s 

 
Seeds 

Bird food 5 18 1 2 10 

Dog food 11 15 1 0 0 

 Bird food sells for $750 per ton while dog food sells for $980 per ton. What should be the 

composition of bird food and dog food and how much of each should be manufactured each day? 
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7. Recent federal regulations strongly encourage the assignment of students to schools in a city, so the 

racial composition of any school approximates the racial composition of the entire city. Consider 

the case of the Greenville city schools. The city can be considered as composed of five areas with 

the following characteristics: 

Area Fraction Minority Number of students 

1 0.20 1,200 

2 0.10 900 

3 0.85 1,700 

4 0.60 2,000 

5 0.90 2,500 

 The ruling handed down for Greenville is that a school can have neither more than 75 percent 

nor less than 30 percent minority enrollment. There are three schools in Greenville with the 

following capacities: 

School Capacity 

Bond 3,900 

Pocahontas 3,100 

Pierron 2,100 

 The objective is to design an assignment of students to schools, so as to stay within the capacity 

of each school and satisfy the composition constraints while minimizing the distance traveled by 

students. The distances in kilometers between areas and schools are: 

 Area 

School 1 2 3 4 5 

Bond 2.7 1.4 2.4 1.1 0.5 

Pocahontas 0.5 0.7 2.9 0.8 1.9 

Pierron 1.6 2.0 0.1 1.3 2.2 

 There is an additional condition that no student can be transported more than 2.6 kilometers. 

Find the number of students that should be assigned to each school from each area. Assume any 

group of students from an area has the same ethnic mix as the whole area. 

8. A farmer is raising pigs for market and wishes to determine the quantity of the available types of 

feed that should be given to each pig to meet certain nutritional requirements at minimum cost. The 

units of each type of basic nutritional ingredient contained in a pound of each feed type is given in 

the following table along with the daily nutritional requirement and feed costs. 

Nutritional 
Ingredient 

Pound 
of Corn 

Pound of 
Tankage 

Pound of 
Alfalfa 

Units Required 
per day 

Carbohydrates 9 2 4 20 

Proteins 3 8 6 18 

Vitamins 1 2 6 15 

Cost (cents)/lb. 7 6 5  
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9. Rico-AG is a German fertilizer company, which has just received a contract to supply 10,000 tons 

of 3-12-12 fertilizer. The guaranteed composition of this fertilizer is (by weight) at least 3% 

nitrogen, 12% phosphorous, and 12% potash. This fertilizer can be mixed from any combination of 

the raw materials described in the table below. 

Raw Material 
% 

Nitrogen 
% 

Phosphorous 
% 

Potash 
Current World 

Price/Ton 

AN 50 0 0 190 Dm 

SP 1 40 5 180 Dm 

CP 2 4 35 196 Dm 

BG 1 15 17 215 Dm  

 Rico-AG has in stock 500 tons of SP that was bought earlier for 220 Dm/ton. Rico-AG has a 

long-term agreement with Fledermausguano, S.A. This agreement allows it to buy already mixed 

3-12-12 at 195 Dm/ton. 

a) Formulate a model for Rico-AG that will allow it to decide how much to buy and how to 

mix. State what assumptions you make with regard to goods in inventory. 

b) Can you conclude in advance that no CP and BG will be used because they cost more than 

195 Dm/ton? 

10. The Albers Milling Company buys corn and wheat and then grinds and blends them into two final 

products, Fast-Gro and Quick-Gro. Fast-Gro is required to have at least 2.5% protein while 

Quick-Gro must have at least 3.2% protein. Corn contains 1.9% protein while wheat contains 3.8% 

protein. The firm can do the buying and blending at either the Albers (A) plant or the Bartelso (B) 

plant. The blended products must then be shipped to the firm’s two warehouse outlets, one at Carlyle 

(C) and the other at Damiansville (D). Current costs per bushel at the two plants are: 

 A B 

Corn 10.0 14.0 

Wheat 12.0 11.0 

Transportation costs per bushel between the plants and warehouses are: 

Fast-Gro: To Quik-Gro: To 

  C D   C D 

 
From 

A 1.00 2.00 
 

  From 
A 3.00 3.50 

 B 3.00 0.75  B 4.00 1.90 

The firm must satisfy the following demands in bushels at the warehouse outlets: 

 Product 

Warehouse Fast-Gro Quik-Gro 

C 1,000 3,000 

D 4,000 6,000 

Formulate an LP useful in determining the purchasing, blending, and shipping decisions. 
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11. A high quality wine is typically identified by three attributes: (a) its vintage, (b) its variety, and (c) 

its region. For example, the Optima Winery of Santa Rosa, California produced a wine with a label 

that stated: 1984, Cabernet Sauvignon, Sonoma County. The wine in the bottle may be a blend of 

wines, not all of which need be of the vintage, variety, and region specified on the label. In this case, 

the state of California and the U.S. Department of Alcohol, Tobacco, and Firearms strictly enforce 

the following limits. To receive the label 1984, Cabernet Sauvignon, Sonoma County, at least 95% 

of the contents must be of 1984 vintage, at least 75% of the contents must be Cabernet Sauvignon, 

and at least 85% must be from Sonoma County. How small might be the fraction of the wine in the 

bottle that is of 1984 vintage and of the Cabernet Sauvignon variety and from grapes grown in 

Sonoma County? 

12. Rogers Foods of Turlock, California (see Rosenthal and Riefel (1994)) is a producer of high quality 

dried foods, such as dried onions, garlic, etc. It has regularly received “Supplier of the Year” awards 

from its customers, retail packaged food manufacturers such as Pillsbury. A reason for Rogers’ 

quality reputation is it tries to supply product to its customers with quality characteristics that closely 

match customer specifications. This is difficult to do because Rogers does not have complete control 

over its input. Each food is harvested once per year from a variety of farms, one “lot” per farm. The 

quality of the crop from each farm is somewhat of a random variable. At harvest time, the crop is 

dried and each lot placed in the warehouse. Orders throughout the year are then filled from product 

in the warehouse. 

 Two of the main quality features of product are its density and its moisture content. Different 

customers may have different requirements for each quality attribute. If a product is too dense, then 

a jar that contains five ounces may appear only half full. If a product is not sufficiently dense, it 

may be impossible to get five ounces into a jar labelled as a five-ounce jar. 

To illustrate the problem, suppose you have five lots of product with the following characteristics: 

Lot Fraction Moisture Density Kg. Available 

1 0.03 0.80 1000 

2 0.02 0.75 2500 

3 0.04 0.60 3100 

4 0.01 0.60 1500 

5 0.02 0.65 4500 

You currently have two prospective customers with the following requirements: 

 Fraction 
Moisture Density 

  

 
Customer 

 
Min 

 
Max 

 
Min 

 
Max 

Max Kg. 
Desired 

Selling Price 
per Kg. 

P 0.035 0.045 0.70 0.75 3,000 $5.25 

G 0.01 0.03 0.60 0.65 15,000 $4.25 

What should you do? 
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13. The Lexus automobile gets 26 miles per gallon (mpg), the Corolla gets 31 mpg, and the Tercel gets 

35 mpg. Let L, C, and T represent the number of automobiles of each type in some fleet. Let F 

represent the total number in the fleet. We require, in some sense, the mpg of the fleet to be at least 

32 mpg. Fleet mpg is measured by (total miles driven by the fleet)/(total gallons of fuel consumed 

by fleet). 

a) Suppose the sense in which mpg is measured is each auto is given one gallon of fuel, then 

driven until the fuel is exhausted. Write appropriate constraints to enforce the 32 mpg 

requirement. 

b) Suppose the sense in which mpg is measured is each auto is driven one mile and then 

stopped. Write appropriate constraints to enforce the 32 mpg requirement. 

14. In the financial industry, one is often concerned with the “duration” of one’s portfolio of various 

financial instruments. The duration of a portfolio is simply the weighted average of the duration of 

the instruments in the portfolio, where the weight is simply the number of dollars invested in the 

instrument. Suppose the Second National Bank is considering revising its portfolio and has denoted 

by X1, X2, and X3, the number of dollars invested (in millions) in each of three different instruments. 

The durations of the three instruments are respectively: 2 years, 4 years, and 5 years. The following 

constraint appeared in their planning model: 

 + X1 − X2 − 2  X3  0 

In words, this constraint is: 

a) duration of the portfolio must be at most 10 years; 

b) duration of the portfolio must be at least 3 years; 

c) duration of the portfolio must be at least 2 years; 

d) duration of the portfolio must be at most 3 years; 

e) none of the above. 

15. You are manager of a team of ditch diggers, each member of the team is characterized by a 

productivity measure with units of cubic feet per hour. An average productivity measure for the 

entire team should be based on which of the following: 

a) the arithmetic mean; 

b) the geometric mean; 

c) the harmonic mean. 

16. Generic Foods has three different batches of cashews in its warehouse. The percentage moisture 

content for batches 1, 2, and 3 respectively are 8%, 11%, and 13%. In blending a batch of cashews 

for a particular customer, the following constraint appeared: 

+ 2  X1 − X2 − 3  X3  0 
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In words, this constraint is: 

a) percent moisture must be at most 10%; 

b) percent moisture must be at least 3%; 

c) percent moisture must be at least 10%; 

d) percent moisture must be at most 2%; 

e) none of the above. 

17. The Beanbody Company buys various types of raw coal on the open market and then pulverizes the 

coal and mixes it to satisfy customer specifications. Last week Beanbody bought 1500 tons of type 

M coal for $78 per ton that was intended for an order that was canceled at the last minute. Beanbody 

had to pay an additional $1 per ton to have the coal shipped to its processing facility. Beanbody has 

no other coal in stock. Type M coal has a BTU content of 13,000 BTU per ton. This week type M 

coal can be bought (or sold) on the open market for $74 per ton. Type W coal, which has a BTU 

content of 10,000 BTU/ton, can be bought this week for $68 per ton. Type K coal, which has a BTU 

content of 12,000 BTU/ton, can be bought this week for $71 per ton. All require an additional $1/ton 

to be shipped into Beanbody's facility. In fact, Beanbody occasionally sells raw coal on the open 

market and then Beanbody also has to pay $1/ton outbound shipping. Beanbody expects coal prices 

to continue to drop next week. Right now Beanbody has an order for 2700 tons of pulverized product 

having a BTU content of at least 11,000 BTU per ton. Clearly, some additional coal must be bought. 

The president of Beanbody sketched out the following incomplete model for deciding how much of 

what coal to purchase to just satisfy this order.; 

MODEL: 

! MH = tons of on-hand type M coal used; 

! MP = tons of type M coal purchased; 

! WP = tons of type W coal purchased; 

! KP = tons of type K coal purchased; 

 

 MIN = __ * MH  + __ * MP + __ * WP + __ * KP; 

 MH + MP + WP + KP = 2700; 

 MH <= 1500; 

 2000 * MH + ____ * MP - 1000 * WP + ____ * KP >= 0; 

END  

What numbers would you place in the ______ places? 

18. A local high school is considering using an outside supplier to provide meals. The big question is: 

How much will it cost to provide a nutritious meal to a student? Exhibit A reproduces the 

recommended daily minima for an adult as recommended by the noted dietitian, George Stigler 

(1945). Because our high school need provide only one meal per day, albeit the main one, it should 

be sufficient for our meal to satisfy one-half of the minimum daily requirements. 

 With regard to nutritive content of foods, Exhibit B displays the nutritional content of various 

foods available from one of the prospective vendors recommended by a student committee at the 

high school. See Bosch (1993) for a comprehensive discussion of these data. 
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 For preliminary analysis, it is adequate to consider only calories, protein, calcium, iron, 

vitamins A, B1, and B2. 

a) Using only the candidate foods and prices in Exhibit B, and allowing fractional portions, 

what is the minimum cost needed to give a satisfactory meal at our high school? 

b) Suppose we require only integer portions be served in a meal (e.g., .75 of a Big Mac is not 

allowed). How is the cost per meal affected? 

c) Suppose in addition to (b), for meal simplicity, we put a limit of at most three food items 

from Exhibit B in a meal. For example, a meal of hamburger, fries, chicken McNuggets, 

and a garden salad has one too many items. How is the cost per meal affected? 

d) Suppose instead of (c), we require at most one unit per serving of a particular food type be 

used. How is the cost per meal affected? 

e) Suppose we modify (a) with the condition that the number of grams of fat in the meal must 

be less-than-or-equal-to 1/20th of the total calories in the meal. How is the cost per meal 

affected? 

f) How is the answer to (a) affected if you use current prices from your neighborhood 

McDonald's? For reference, Stigler claimed to be able to feed an adult in 1944 for $59.88 

for a full year. 

Exhibit A 

Nutrient Allowance 

Calories 3,000 calories 

Protein 70 grams 

Calcium .8 grams 

Iron 12 milligrams 

Vitamin A 5,000 International Units 

Thiamine (B1) 1.8 milligrams 

Riboflavin (B2 or G) 2.7 milligrams 

Niacin (Nicotinic Acid) 18 milligrams 

Ascorbic Acid (C) 75 milligrams 
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Exhibit B 

Menu Item Price Cal. Protein Fat Sodium Vit A Vit 
C 

Vit 
B1 

Vit 
B2 

Niacin Calcium Iron 

Hamburger 0.59 255 12 9 490 4 4 20 10 20 10 15 

McLean 
Deluxe 

1.79 320 22 10 670 10 10 25 20 35 15 20 

Big Mac 1.65 500 25 26 890 6 2 30 25 35 25 20 

Small Fr. 
Fries 

0.68 220 3 12 110 0 15 10 0 10 0 2 

Ch. 
McNuggets 

1.56 270 20 15 580 0 0 8 8 40 0 6 

Chef Salad 2.69 170 17 9 400 100 35 20 15 20 15 8 

Garden 
Salad 

1.96 50 4 2 70 90 35 6 6 2 4 8 

Egg 
McMuffin 

1.36 280 18 11 710 10 0 30 20 20 25 15 

Wheaties 1.09 90 2 1 220 20 20 20 20 20 2 20 

Van. Cone 0.63 105 4 1 80 2 0 2 10 2 10 0 

Milk 0.56 110 9 2 130 10 4 8 30 0 30 0 

Orange Juice 0.88 80 1 0 0 0 120 10 0 0 0 0 

Grapefruit 
Juice 

0.68 80 1 0 0 0 100 4 2 2 0 0 

Apple Juice 0.68 90 0 0 5 0 2 2 0 0 0 4 

19. Your firm has just developed two new ingredients code named A and B. They seem to have great 

potential in the automotive aftermarket. These ingredients are blended in various combinations to 

produce a variety of products. For these products (and for the ingredients themselves), there are 

three qualities of interest: 1) opacity, 2) friction coefficient, and 3) adhesiveness. The research lab 

has provided the following table describing the qualities of various combinations of A and B: 

 Fraction of Quality of this Combination 

Combination A B Opacity Friction coef. Adhesiveness 

1 0.00 1.00 10.0 400.0 .100 

2 0.50 0.50 25.0 480.0 .430 

3 .75 .25 32.5 533.3 .522 

4 1.00 0.00 40.0 600.0 .600 

For example, the opacity of B by itself is 10, while the friction coefficient of A by itself is 600. 

a) For which qualities do the two ingredients appear to interact in a linear fashion? 

b) You wish to prepare a product that, among other considerations, has opacity of at least 17, 

a friction coefficient of at least 430, and adhesiveness of no more than .35. Denote by T, 

A, and B the amount of total product produced, amount of A used, and the amount of B 

used. Write the constraints relating T, A, and B to achieve these qualities. 
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20. Indiana Flange Inc. produces a wide variety of formed steel products it ships to customers all over 

the country. It uses several different shipping companies to ship these products. The products are 

shipped in standard size boxes. A shipping company has typically two constraints it has to worry 

about in assembling a load: a weight constraint and a volume constraint. One of the shippers, 

Amarillo Freight, handles this issue by putting a density constraint (kilograms/cubic meter) on all 

shipments it receives from Indiana Flange. If the shipment has a density greater than a certain 

threshold (110 kg/m3), Amarillo imposes a surcharge. Currently, Indiana Flange wants to ship the 

following products to Los Angeles: 

Product Long Tons Density 

A 100 130 

B 85 95 

Note, there are 1000 kilograms per long ton.  

 Let AY and BY be the number of tons shipped via Amarillo Freight. Although the densities of 

products A and B do not change from week to week, the number of tons Indiana Flange needs to 

ship varies considerably from week to week. Indiana Flange does not want to incur the surcharge. 

Write a constraint enforcing the Amarillo density constraint that is general (i.e., need not be changed 

from week to week). 

21.  The growth of the World Wide Web has dramatically increased the demand for glass fiber optic 

cable,  the main medium used for high capacity data transfer.  A major measure of quality of an 

optical fiber is its transmissivity, the fraction of the light transmitted into the fiber that is emitted 

out the other end.   Suppose you are a fiber optics vendor,  with an order in hand for a single 10 km 

strand of optic fiber,  with a required transmissivity of at least .9875 per kilometer at a certain 

specified wave length of light.   You have in stock two types of optic fiber,  a) a very expensive one 

with a transmissivity of  .992,  and  b) a relatively cheap one with a transmissivity of  .982.  It has 

occurred to you that you could sell more of your  fiber optic production if you could "blend" some 

of the lower quality fiber with the high quality.   This is in fact possible by splicing a segment of 

one to the other,  e.g., 8 km of the .992 fiber spliced onto 2 km of the .982 fiber.  Suppose these 

splices are very high quality, i.e., no transmission loss across the splice.  Let XH and XL be the 

length of high quality and low quality fiber you propose to use for the above request for 10 km of 

fiber.  Write a constraint to ensure satisfaction of the customer's transmissivity requirement. 
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11 
 

Formulating and Solving 
Integer Programs 

 

“To be or not to be” is true. 

-G. Boole 

11.1 Introduction 
In many applications of optimization, one would really like the decision variables to be restricted to 

integer values. One is likely to tolerate a solution recommending GM produce 1,524,328.37 Chevrolets. 

No one will mind if this recommendation is rounded up or down. If, however, a different study 

recommends the optimum number of aircraft carriers to build is 1.37, then a lot of people around the 

world will be very interested in how this number is rounded. It is clear the validity and value of many 

optimization models could be improved markedly if one could restrict selected decision variables to 

integer values. 

 All good commercial optimization modeling systems are augmented with a capability that allows 

the user to restrict certain decision variables to integer values. The manner in which the user informs the 

program of this requirement varies from program to program. In LINGO, for example, one way of 

indicating variable X is to be restricted to integer values is to put it in the model the declaration as: 

@GIN(X). The important point is it is straightforward to specify this restriction. We shall see later that, 

even though easy to specify, sometimes it may be difficult to solve problems with this restriction. The 

methods for formulating and solving problems with integrality requirements are called integer 

programming. 

11.1.1 Types of Variables 
One general classification is according to types of variables: 

Pure vs. mixed. In a pure integer program, all variables are restricted to integer values. In a 

mixed formulation, only certain of the variables are integer; whereas, the rest are allowed 

to be continuous. 

0/1 vs. general. In many applications, the only integer values allowed are 0/1. Therefore, some 

integer programming codes assume integer variables are restricted to the values 0 or 1. 

 The integrality enforcing capability is perhaps more powerful than the reader at first realizes. A 

frequent use of integer variables in a model is as a zero/one variable to represent a go/no-go decision. It 

is probably true that the majority of real-world integer programs are of the zero/one variety. 
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11.2 Exploiting the IP Capability: Standard Applications 
You will frequently encounter LP problems with the exception of just a few combinatorial 

complications. Many of these complications are fairly standard. The next several sections describe many 

of the standard complications along with the methods for incorporating them into an IP formulation. 

Most of these complications only require the 0/1 capability rather than the general integer capability. 

Binary variables can be used to represent a wide variety of go/no-go, or make-or-buy decisions. In the 

latter use, they are sometimes referred to as “Hamlet” variables as in: “To buy or not to buy, that is the 

question”. Binary variables are sometimes also called Boolean variables in honor of the logician George 

Boole. He developed the rules of the special algebra, now known as Boolean algebra, for manipulating 

variables that can take on only two values. In Boole’s case, the values were “True” and “False”. 

However, it is a minor conceptual leap to represent “True” by the value 1 and “False” by the value 0. 

The power of these methods developed by Boole is undoubtedly the genesis of the modern compliment: 

“Strong, like Boole.” 

11.2.1 Binary Representation of General Integer Variables 
Some algorithms apply to problems with only 0/1 integer variables. Conceptually, this is no limitation, 

as any general integer variable with a finite range can be represented by a set of 0/1 variables. For 

example, suppose X is restricted to the set [0, 1, 2,...,15]. Introduce the four 0/1 variables: y1, y2, y3, and 

y4. Replace every occurrence of X by y1 + 2  y2 + 4  y3 + 8  y4. Note every possible integer in [0, 1, 

2, ..., 15] can be represented by some setting of the values of y1, y2, y3, and y4. Verify that, if the maximum 

value X can take on is 31, you will need 5 0/1 variables. If the maximum value is 63, you will need 6 0/1 

variables. In fact, if you use k 0/1 variables, the maximum value that can be represented is 2k-1. You can 

write: VMAX = 2k-1. Taking logs, you can observe that the number of 0/1 variables required in this 

so-called binary expansion is approximately proportional to the log of the maximum value X can take 

on. 

 Although this substitution is valid, it should be avoided if possible. Most integer programming 

algorithms are not very efficient when applied to models containing this substitution. 

11.2.2 Minimum Batch Size Constraints 
When there are substantial economies of scale in undertaking an activity regardless of its level, many 

decision makers will specify a minimum “batch” size for the activity. For example, a large brokerage 

firm may require that, if you buy any bonds from the firm, you must buy at least 100. A zero/one variable 

can enforce this restriction as follows. Let: 

x  = activity level to be determined (e.g., no. of bonds purchased), 

y = a zero/one variable = 1, if and only if x > 0, 

B = minimum batch size for x (e.g., 100), and 

U = known upper limit on the value of x. 

The following two constraints enforce the minimum batch size condition: 

x  Uy 

By  x. 

 If y = 0, then the first constraint forces x = 0. While, if y = 1, the second constraint forces x to be at 

least B. Thus, y acts as a switch, which forces x to be either 0 or greater than B. The constant U should 

be chosen with care. For reasons of computational efficiency, it should be as small as validly possible. 



Formulating & Solving Integer Problems  Chapter 11     273 

 Some IP packages allow the user to directly represent minimum batch size requirements by way of 

so-called semi-continuous variables. A variable x is semi-continuous if it is either 0 or in the range 

B  x  . No binary variable need be explicitly introduced. 

11.2.3 Fixed Charge Problems 
A situation closely related to the minimum batch size situation is one where the cost function for an 

activity is of the fixed plus linear type indicated in Figure 11.1: 

Figure 11.1 A Fixed Plus Linear Cost Curve 

 
 Define x, y, and U as before, and let K be the fixed cost incurred if x > 0. Then, the following 

components should appear in the formulation: 

Minimize     Ky + cx + . . . 

subject to 

      x  Uy 
          . 

          . 

          . 

 The constraint and the term Ky in the objective imply x cannot be greater than 0 unless a cost K is 

incurred. Again, for computational efficiency, U should be as small as validly possible. 

11.2.4 The Simple Plant Location Problem 
The Simple Plant Location Problem (SPL) is a commonly encountered form of fixed charge problem. It 

is specified as follows: 

n  = the number of sites at which a plant may be located or opened, 

m = the number of customer or demand points, each of which must be assigned to a plant, 

k  = the number of plants which may be opened, 

fi = the fixed cost (e.g., per year) of having a plant at site i, for i = 1, 2, . . . , n, 

cij = cost (e.g., per year) of assigning customer j to a plant at site i, for i = 1, 2, . . . , n and 

j = 1, 2, ..., m. 

Figure  11.1  A FIxed Plus Linear Cost Curve

Slope  c

x
U

K

0
0

Cost
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 The goal is to determine the set of sites at which plants should be located and which site should 

service each customer. 

 A situation giving rise to the SPL problem is the lockbox location problem encountered by a firm 

with customers scattered over a wide area. The plant sites, in this case, correspond to sites at which the 

firm might locate a postal lockbox that is managed by a bank at the site. The customer points would 

correspond to the, 100 say, largest metropolitan areas in the firm’s market. A customer would mail his 

or her monthly payments to the closest lockbox. The reason for resorting to multiple lockboxes rather 

than having all payments mailed to a single site is several days of mail time may be saved. Suppose a 

firm receives $60 million per year through the mail. The yearly cost of capital to the firm is 10% per 

year, and it could reduce the mail time by two days. This reduction has a yearly value of about $30,000. 

 The fi for a particular site would equal the yearly cost of having a lockbox at site i regardless of the 

volume processed through the site. The cost term cij would approximately equal the product: (daily cost 

of capital)  (mail time in days between i and j)  (yearly dollar volume mailed from area j). 

 Define the decision variables: 

 yi = 1 if a plant is located at site i, else 0, 

xij = 1 if the customer j is assigned to a plant site i, else 0. 

A compact formulation of this problem as an IP is: 

Minimize fi yi + cij xij 
(1) 

subject to xij = 1 for j = 1 to m, (2) 

 xij  myi 
for i = 1 to n, (3) 

 yi = k,  (4) 

  yi = 0 or 1 for i = 1 to n, (5) 

 xij = 0 or 1 for i = 1 to n, j = 1 to m. (6) 

 The constraints in (2) force each customer j to be assigned to exactly one site. The constraints in (3) 

force a plant to be located at site i if any customer is assigned to site i. 

 The reader should be cautioned against trying to solve a problem formulated in this fashion because 

the solution process may require embarrassingly much computer time for all, but the smallest problem. 

The difficulty arises because, when the problem is solved as an LP (i.e., with the conditions in (5) and 

(6) deleted), the solution tends to be highly fractional and with little similarity to the optimal IP solution. 

 A “tighter” formulation, which frequently produces an integer solution naturally when solved as an 

LP, is obtained by replacing (3) by the formula: 

xij  yi for i = 1 to n, j = 1 to m.    (3') 

 At first glance, replacing (3) by (3') may seem counterproductive. If there are 20 possible plant sites 

and 60 customers, then the set (3) would contain 20 constraints, whereas set (3') would contain 

20  60 = 1,200 constraints. Empirically, however, it appears to be the rule rather than the exception 

that, when the problem is solved as an LP with (3') rather than (3), the solution is naturally integer. 

i
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m
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i
n
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11.2.5 The Capacitated Plant Location Problem (CPL) 
The CPL problem arises from the SPL problem if the volume of demand processed through a particular 

plant is an important consideration. In particular, the CPL problem assumes each customer has a known 

volume and each plant site has a known volume limit on total volume assigned to it. The additional 

parameters to be defined are: 

Dj  = volume or demand associated with customer j, 

Ki  = capacity of a plant located at i 

The IP formulation is: 

Minimize fi yi + cij xij 
(7) 

subject to xij = 1 for j = 1 to m (8) 

 Djxij  Kiyi 
for i = 1 to n (9) 

 xij  yi for i = 1 to n, j = 1 to m. (10) 

 yi = 0 or 1 for i = 1 to n (11) 

 xij = 0 or 1 for i = 1 to n, j = 1 to m. (12) 

 This is the “single-sourcing” version of the problem. Because the variables xi j  are restricted to 0 or 

1, each customer must have all of its volume assigned to a single plant. If “split-sourcing” is allowed, 

then the variables xi j  are allowed to be fractional with the interpretation that xi j  is the fraction of customer 

j’s volume assigned to plant site i. In this case, condition (12) is dropped. Split sourcing, considered 

alone, is usually undesirable. An example is the assignment of elementary schools to high schools. 

Students who went to the same elementary school prefer to be assigned to the same high school. 

Example: Capacitated Plant Location 

Some of the points just mentioned will be illustrated with the following example. 

 The Zzyzx Company of Zzyzx, California currently has a warehouse in each of the following cities: 

(A) Baltimore, (B) Cheyenne, (C) Salt Lake City, (D) Memphis, and (E) Wichita. These warehouses 

supply customer regions throughout the U.S. It is convenient to aggregate customer areas and consider 

the customers to be located in the following cities: (1) Atlanta, (2) Boston, (3) Chicago, (4) Denver, (5) 

Omaha, and (6) Portland, Oregon. There is some feeling that Zzyzx is “overwarehoused”. That is, it may 

be able to save substantial fixed costs by closing some warehouses without unduly increasing 

transportation and service costs. Relevant data has been collected and assembled on a “per month” basis 

and is displayed below: 

Cost per Ton-Month Matrix 

 
 
 
Warehouse 

Demand City Monthly 
Supply 

Capacity 
in Tons 

Monthly 
Fixed 
Cost 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

A $1675 $400 $685 $1630 $1160 $2800 18 $7,650 
B 1460 1940 970 100 495 1200 24 3,500 
C 1925 2400 1425 500 950 800 27 3,500 
D 380 1355 543 1045 665 2321 22 4,100 
E 922 1646 700 508 311 1797 31 2,200 

Monthly Demand in Tons 10 8 12 6 7 11   

i
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 For example, closing the warehouse at A (Baltimore) would result in a monthly fixed cost saving of 

$7,650. If 5 (Omaha) gets all of its monthly demand from E (Wichita), then the associated transportation 

cost for supplying Omaha is 7  311 = $2,177 per month. A customer need not get all of its supply from 

a single source. Such “multiple sourcing” may result from the limited capacity of each warehouse 

(e.g., Cheyenne can only process 24 tons per month. Should Zzyzx close any warehouses and, if so, 

which ones?) 

 We will compare the performance of four different methods for solving, or approximately solving, 

this problem: 

1) Loose formulation of the IP. 

2) Tight formulation of the IP. 

3) Greedy open heuristic: start with no plants open and sequentially open the plant giving the 

greatest reduction in cost until it is worthless to open further plants. 

4) Greedy close heuristic: start with all plants open and sequentially close the plant saving the 

most money until it is worthless to close further plants. 

 The advantage of heuristics 3 and 4 is they are easy to apply. The performance of the four methods 

is as follows: 

 
 

Method 

Objective 
value: Best 

Solution 

Computing 
Time in 

Seconds 

 
Plants 
Open 

Objective 
value: LP 
Solution 

Loose IP 46,031 3.38 A,B,D 35,662 

Tight IP 46,031 1.67 A,B,D 46,031 

Greedy Open Heuristic 46,943 nil A,B,D,E — 

Greedy Close Heuristic 46,443 nil A,C,D,E — 

 Notice, even though the loose IP finds the same optimum as the tight formulation (as it must), it 

takes about twice as much computing time. For large problems, the difference becomes much more 

dramatic. Notice for the tight formulation, however, the objective function value for the LP solution is 

the same as for the IP solution. When the tight formulation was solved as an LP, the solution was 

naturally integer. 

 The single product dynamic lotsizing problem is described by the following parameters: 

n  = number of periods for which production is to be planned for a product; 

Dj  = predicted demand in period j, for j = 1, 2, . . . , n; 

fi  = fixed cost of making a production run in period i; 

hi  = cost per unit of product carried from period i to i + 1. 

This problem can be cast as a simple plant location problem if we define: 

ci j = Dj t i

j

=

−


1

ht. 

 That is, cij is the cost of supplying period j’s demand from period i production. Each period can be 

thought of as both a potential plant site (period for a production run) and a customer. 

 If, further, there is a finite production capacity, Ki, in period i, then this capacitated dynamic lotsizing 

problem is a special case of the capacitated plant location problem. 
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Dual Prices and Reduced Costs in Integer Programs 

Dual prices and reduced costs in solution reports for integer programs have a restricted interpretation. 

For first time users of IP, it is best to simply disregard the reduced cost and dual price column in the 

solution report. For the more curious, the dual prices and reduced costs in a solution report are obtained 

from the linear program that remains after all integer variables have been fixed at their optimal values 

and removed from the model. Thus, for a pure integer program (i.e., all variables are required to be 

integer), you will generally find:  

• all dual prices are zero, and  

• the reduced cost of a variable is simply its objective function coefficient (with sign reversed 

if the objective is MAX). 

 For mixed integer programs, the dual prices may be of interest. For example, for a plant location 

problem where the location variables are required to be integer, but the quantity-shipped variables are 

continuous, the dual prices reported are those from the continuous problem where the locations of plants 

have been specified beforehand (at the optimal locations). 

11.2.6 Modeling Alternatives with the Scenario Approach 
We may be confronted by alternatives in two different ways: a) we have to choose among two or more 

alternatives and we want to figure out which is best, or b) nature or the market place will choose one of 

two or more alternatives,  and we are not sure which alternative nature will choose,  so we want to 

analyze all alternatives so we will be prepared to react optimally once we learn which alternative was 

chosen by nature.  Here we consider only situation (a).  We call the approach the scenario approach or 

the disjunctive formulation,  see for example Balas(1979) or section 16.2.3 of Martin(1999). 

Suppose that if we disregard the alternatives, our variables are simply called  x1,  x2, …, xn.  We call 

the conditions that must hold if alternative s is chosen, scenario  s.  Without too much loss of generality,  

we assume all variables are non-negative.  The scenario/disjunctive approach to formulating a discrete 

decision problem proceeds as follows: 

 

    For each scenario s: 

          1) Write all the constraints that must hold if scenario s is chosen. 

          2) For all variables in these constraints add a subscript s,  to distinguish them from  

               equivalent variables in other scenarios.  So xj in scenario s becomes xsj. 

          3) Add a 0/1 variable, ys, to the model with the interpretation that ys = 1 if scenario 

                s is chosen,  else 0.  

          4) Multiply the RHS constant term of each constraint in scenario s by ys. 

          5) For each variable xsj that appears in any of the scenario s constraints,  

               add the constraint: 

                        xsj  M* ys  ,  where M is a large positive constant.  The purpose of this  

               step is to force all variables in scenario s to be 0 if scenario s is not chosen. 

 

    Finally,  we tie all the scenarios together with: 

                        s ys   = 1,   i.e.,  we must choose one scenario; 

         For each variable xj, add the constraint: 

                           xj = s xsj ,  so xj takes on the value appropriate to which scenario was 

                                              chosen. 

 

For example, if just after step 1 we had a constraint of the form: 
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           j asj*xj  as0, 

then steps 2-4 would convert it to:  

           j asj*xsj  as0*ys,  

 

The forcing constraints in step 5 are not needed if ys = 0 implies xsj = 0, e.g., if all the asj are nonnegative 

and the xj are constrained to be nonnegative. 

 

A somewhat similar approach to the disjunctive/scenario approach is the RLT approach developed by 

Adams and Sherali(2005).  The next section illustrates the scenario approach for representing a decision 

problem. 

 

11.2.7 Linearizing a Piecewise Linear Function, Discontinuous Case 
If you ask a vendor to provide a quote for selling you some quantity of material,  the vendor will typically 

offer a quantity discount function that looks something like that shown in Figure 11.2 

 

Figure 11.2 Quantity Discount Piecewise Linear Discontinuous Cost Curve 

 
                h1                  h2                                                          h3                                                                            h4  

                                                         quantity 

 
Define:  

        cs = slope of  piecewise linear segment s, 

   hs, vs = horizontal and vertical coordinates of the rightmost point of segment s.  

v2 

v1 

v3 

v4 
c4 

c3 

c2 
cost 
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Note that segment 1 is the degenerate segment of buying nothing.  This example illustrates that we do 

not require that a piecewise linear function be continuous. 

 

Let us consider the following situation:  

      We pay $50 if we buy anything in a period,  plus 

                      $2.00/unit if quantity < 100, 

                      $1.90/unit if quantity  100 but < 1000, 

                      $1.80/unit if 1000 but  5000.  

We assume hs, vs, cs are constants,  and  hs  hs+1  .  It then follows that: 

          h          v        c = 

          0          0        0 

      100      250        2 

    1000    1950        1.90 

    5000    9050        1.80;  

 

We will describe two ways of representing picecewise linear functions: first the disjunctive method, and 

then the convex weighting or lambda method. Let x denote the amount we decide to purchase.  Using 

step 1 of the scenario or disjunctive formulation approach, 

   if segment/scenario 1 is chosen, then 

              cost = 0; 

                   x = 0; 

    If segment/scenario 2 is chosen, then 

              cost = v2 – c2*( h2 - x);     [or 250 – 2*(100 - x)],  

         x  h2;            [or x  100], 

         x  h1;                     [or x  0], 
 

Similar constraints apply for scenario/segments 3 and 4.  We assume that fractional values, such as x = 

99.44 are allowed,  else we would write x  99 rather than x  100 above. 

 

If we apply steps 2-4 of the scenario formulation method, then we get:  

   For segment/scenario 1 is chosen, then 

              cost1 = 0; 

                   x1 = 0; 

    If segment/scenario 2 is chosen, then 

              cost2 = v2*y2 – c2*h2*y2 + c2*x2; [ or cost2 = 50*y2 + 2*x2], 

                   x2  h2*y2;                                [ or x2  100*y2], 

                   x2  h1*y2;                                [ or x2  0*y2 ], 

 

    If segment/scenario 3 is chosen, then 

              cost3 = v3*y3 – c3*h3*y3 + c3*x3; [ or cost3 = 50*y3 + 1.9*x3], 

       x3  h3*y3;                                 [ or  x3  1000*y3], 

       x3  h2*y3;                                [ or  x3     100*y3], 

 

    If segment/scenario 4 is chosen, then 
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              cost4 = v4*y4 – c4*h4*y4 + c4*x4; [or cost4 = 50*y3 + 1.8*x4 ] 

          x4  h4*y4;                    [ or x3  5000*y4], 

          x4  h3*y4;                [ or x3   1000*y4], 

   We must choose one of the four segments, so: 

       y1 + y2 + y3 + y4 = 1;  

       y1, y2, y3, y4 = 0 or 1; 

 

   and the true quantity and cost are found with:  

         x1+ x2+ x3+ x4  = x; 

   cost1 + cost2 +cost3 + cost4 = cost;  
 

11.2.8 Linearizing a Piecewise Linear Function, Continuous Case  
The previous quantity discount example illustrated what is called an “all units discount”.  Sometimes, a 

vendor will instead quote an incremental units discount, in which the discount applies only to the units 

above a threshold.  The following example illustrates. The first 1,000 liters of the product can be 

purchased for $2 per liter. The price drops to $1.90 per liter for units beyond 1000, $1.80 for units above 

3500, and $1.75 for units beyond 5000.  At most 7000 liters can be purchased.  

 

Figure 11.3 Continuous Piecewise Linear Cost Curve 

 
                    h0                  h1                                                         h2                                              h3                                            h4  

                                                quantity 
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v3 

v4 

cost 



Formulating & Solving Integer Problems  Chapter 11     281 

 

Verify that the corresponding values for the hi and vi are: 

   i          h            v        

   0          0            0     

   1    1000      2000     

   2    3500      6750 

   3    5000      9450 

   4    7000    12950 

 

Such continuous piecewise linear functions are found not only in purchasing but also are frequently used 

in the modeling of energy conversion processes such as the generation of electricity. The amount of 

electrical energy produced by a hydro-electric or fossil fuel burning generator may be a nonlinear 

function of the input volume of water or fuel. 

 

Define the variables: 

        wi = nonnegative weight to be applied to point i, for i  = 0, 1, 2, 3, 4. 

        x = amount purchased,   

        cost = total cost of the purchase. 

 

   We can cause x and cost to almost be calculated correctly by writing the constraints: 

           x = w0h0 + w1h1 + w2h2 + w3h3 + w4h4; 

      cost = w0v0 + w1v1 + w2v2  + w3v3 + w4v4;  

          1 = w0     + w1     + w2      + w3      + w4v4; 

 

Any point on the line segment connecting the two points (hi, vi) and (hi+1, vi+1) can be represented by 

choosing appropriate values for wi and wi+1 so that  wi + wi+1 = 1, and wi, wi+1 ≥ 0. This method is 

sometimes called the lambda method because the Greek symbol lambda was used originally to represent 

the weights. To ensure that the point corresponding to a particular set of values for the wi lies on the 

curve, we need to require that if two or more of the wi are > 0, they must be adjacent.  We said “almost” 

in the earlier sentence because there is nothing in the three constraints above that enforce this adjacency 

condition. There are two ways of enforcing this adjacency condition:  a) declare the wi to be members of 

an SOS2 set in LINGO, or b) add a number of binary variables to enforce the condition. 

  The following code fragment illustrates how to use the SOS2 feature in LINGO. 
   

  ! Representing a continuous piecewise linear 

     function in LINGO using the SOS2 feature; 

            

           x = w0*0 + w1*1000 + w2*3500 + w3*5000 + w4* 7000; 

        cost = w0*0 + w1*2000 + w2*6750 + w3*9450 + w4*12950;  

           1 = w0   + w1      + w2      + w3      + w4; 

   ! The ordering/adjacency of the variables in the SOS2 set 

     is determined by the order of declarations. The SOS2 feature  

     restricts the number of nonzero values in the set to be at 

     most 2, and if 2, they must be adjacent; 

      @SOS2('MySOS2',w0); @SOS2('MySOS2',w1); @SOS2('MySOS2',w2); 

      @SOS2('MySOS2',w3); @SOS2('MySOS2',w4); 
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If you arbitrarily add the constraint, X = 6000, and solve, you get the solution: 
 

                  Variable           Value 

                         X        6000.000 

                        W0        0.000000 

                        W1        0.000000 

                        W2        0.000000 

                        W3       0.5000000 

                        W4       0.5000000 

                      COST        11200.00 

 

If for some reason you do not want to use the SOS2 feature, you can introduce 4 binary variables: 

      yi = 1 if x is in the interval with endpoints hi-1 and hi, for i = 1, 2, 3, 4.  We would replace the SOS2 

declarations by the constraints: 
 
    ! The y's must be binary; 

        @BIN(y1); @BIN(y2); @BIN(y3); @BIN(y4); 

    ! Some interval must be chosen; 

                y1 + y2 + y3 + y4 = 1; 

    ! If point i has any weight, then one of the adjacent 

       intervals must be chosen; 

            w0 <= y1; 

            w1 <= y1 + y2; 

            w2 <= y2 + y3; 

            w3 <= y3 + y4; 

            w4 <= y4; 

 

11.2.9 An n Interval Piecewise Linear Function Using Log(n) Binaries 
 
   The previous example used n binary variables to enforce the choosing of one alternative out of n. With 

a little ingenuity this “choose one out of n” requirement can be enforced with only order of log2(n) binary 

variables. We illustrate for the case of eight intervals, for which we need three binary variables, y1, y2, 

y3. Denote the 8 intervals by 0, 1, …,7, with point vi being the left boundary of interval i.  We will assign 

binary variables to intervals thus: 

       If the interval is one of  4, 5, 6, 7, then y3 = 1 , else 0,  

       If the interval is one of  2, 3, 4, 5, then y2 = 1 , else 0,  

       If the interval is one of  1, 2, 5, 6, then y1 = 1 , else 0; 

 

Thus, we also need the constraints: 

             w0+w1+w2+w3 ≤ 1- y3; 

             w5+w6+w7+w8 ≤  y3;  

             w0+w1+w7+w8 ≤ 1- y2; 

                   w3+w4+w5 ≤  y2; 

                   w0+w4+w8 ≤ 1- y1;  

                        w2+ w6 ≤  y1; 

                       y1, y2, y3 = 0 or 1; 
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Notice that if: 

       y1 = y2 = y3= 0,  then  w2 + w3 + w4 + w5 + w6 + w7 + w8 = 0, i.e., the interval is 0,  

       y1 = 1, y2 = y3 = 0, then  w0 + w3 + w4 + w5 + w6 + w7 + w8 = 0, i.e., the interval is 1, etc.  

It may be of interest to note that this is a “Gray” binary coding of 0, 1, …,7, in that exactly 1 “bit” of y1, 

y2, y3 changes in the binary representation as one moves from i to i+1. 

 

Piecewise Linear Approximations to Multivariate Functions 
   Suppose we have a function of two variables: 

          cost = f (x,y). 

 We can construct a  piecewise linear approximation to this function if we  

          choose n points, (xbari,ybari) for i = 1, 2, …, n,  

                e.g., corner points of the triangles in Figure 11.4, and, 

          introduce the n nonnegative variables, wi, and 

          add the constraints: 

                Σi wi  = 1,  

                cost = Σi wi f (xbari,ybari),  

                x = Σi wi xbari,  

                y = Σi wi ybari, 

 

    If we are lucky, e.g., f (x,y) is convex in the appropriate way then: a) at most three of the wi will be 

nonzero, and b) the nonzero wi will correspond to adjacent points, that is, corner points of a triangle 

containing no other points. 

 

Figure 11.4 Triangulation of x,y Space 

 

 

 

 

                 y 

 

 

 

                                                         x 
 

    If we are unlucky,  then we have to introduce 0/1 variables.  If we are lazy and are willing to restrict 

the solution to one of the n sampled points, then all we have to do is declare the wi  variables to be 0/1. 

   If we want to allow any possible combination of x and y, then we have to make sure the n points 

describe a triangulation of the x,y space, as in Figure 11.4, introduce a 0/1 variable zj for each triangle, 

and then force exactly one triangle to be chosen with the constraint: 

      Σi zi  = 1; 

We must also add constraints that say that if any weight is applied to point i,  then the chosen (x,y) must 

be in one of the triangles for which point i is a corner.  More formally: 

      wi ≤ Σj in T(i) zj , for each point i,  where T(i)  is the  

               set of triangles(there should be at most 6) for which point i is a corner point. 
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11.2.10 Converting Multivariate Functions to Separable Functions 
The previous methods are applicable only to piecewise linear functions. There are some standard 

methods available for transforming certain functions of several variables, so a function is obtained that 

is additively separable in the transformed variables. The most common such transformation is for 

converting a product of two variables into separable form. For example, given the function: 

x1 * x2 , 

add the linear constraints: 

y1 = (x1 + x2)/2 

y2 = (x1 − x2)/2. 

Then, replace every instance of x1 * x2 by the term y1
2 − y2

2. That is, the claim is: 

x1 * x2 = y1
2 − y2

2. 

The justification is observed by noting: 

y1
2 − y2

2 = (x1
2+ 2 * x1 * x2 + x2

2)/4 

− (x1
2 − 2 * x1 * x2 + x2

2)/4 

= 4 * x1 * x2 /4 = x1 * x2 

 This example suggests that, any time you have a product of two variables, you can add two new 

variables to the model and replace the product term by a sum of two squared variables. If you have n 

original variables, you could have up to n(n−1)/2 cross product terms. This suggests that you might need 

up to n(n−1) new variables to get rid of all cross product terms. In fact, the above ideas can be 

generalized, using various factorization techniques such as Cholesky and others, so only n new variables 

are needed. 

11.3 Outline of Integer Programming Methods 
The time a computer requires to solve an IP may depend dramatically on how you formulated it. It is, 

therefore, worthwhile to know a little about how IPs are solved. There are two general approaches for 

solving IPs: “cutting plane” methods and “branch-and-bound” (B & B) method. For a comprehensive 

introduction to integer programming solution methods, see Nemhauser and Wolsey (1988), and Wolsey 

(1998). Most commercial IP programs use the B & B method, but aided by some cutting plane features. 

We will first describe the B & B method. In most general terms, B & B is a form of intelligent 

enumeration. 

 More specifically, B & B first solves the problem as an LP. If the LP solution is integer valued in 

the integer variables, then no more work is required. Otherwise, B & B resorts to an intelligent search 

of all possible ways of rounding the fractional variables. 

 We shall illustrate the application of the branch-and-bound method with the following problem: 

 MAX= 75 * X1  + 6 * X2   + 3 * X3 + 33 * X4; 

     774 * X1 + 76 * X2  + 22 * X3 + 42 * X4 <= 875; 

      67 * X1 + 27 * X2 + 794 * X3 + 53 * X4 <= 875; 

     @BIN( X1); @BIN( X2); @BIN( X3); @BIN( X4); 
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 The search process a computer might follow in finding an integer optimum is illustrated in 

Figure 11.5. First, the problem is solved as an LP with the constraints X1, X2, X3, X4  1. This solution 

is summarized in the box labeled 1. The solution has fractional values for X2 and X3 and is, therefore, 

unacceptable. At this point, X2 is arbitrarily selected and the following reasoning is applied. At the 

integer optimum, X2 must equal either 0 or 1. 

Figure 11.5 Branch-and-Bound Search Tree 

 

 Therefore, replace the original problem by two new subproblems. One with X2 constrained to equal 

1 (box or node 2) and the other with X2 constrained to equal 0 (node 8). If we solve both of these new 

IPs, then the better solution must be the best solution to the original problem. This reasoning is the 

motivation for using the term “branch”. Each subproblem created corresponds to a branch in an 

enumeration tree. 

 The numbers to the upper left of each node indicate the order in which the nodes (or equivalently, 

subproblems) are examined. The variable Z is the objective function value. When the subproblem with 

X2 constrained to 1 (node 2) is solved as an LP, we find X1 and X3 take fractional values. If we argue 

as before, but now with variable X1, two new subproblems are created:  

Node 7) one with X1 constrained to 0 , and  

Node 3) one with X1 constrained to 1. 

 This process is repeated with X4 and X3 until node 5. At this point, an integer solution with Z = 81 

is found. We do not know this is the optimum integer solution, however, because we must still look at 

subproblems 6 through 10. Subproblem 6 need not be pursued further because there are no feasible 

solutions having all of X2, X1, and X4 equal to 1. Subproblem 7 need not be pursued further because it 

has a Z of 42, which is worse than an integer solution already in hand. 
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 At node 9, a new and better integer solution with Z = 108 is found when X3 is set to 0. Node 10 

illustrates the source for the “bound” part of “branch-and-bound”. The solution is fractional. However, 

it is not examined further because the Z-value of 86.72 is less than the 108 associated with an integer 

solution already in hand. The Z-value at any node is a bound on the Z-value at any offspring node. This 

is true because an offspring node or subproblem is obtained by appending a constraint to the parent 

problem. Appending a constraint can only hurt. Interpreted in another light, this means the Z-values 

cannot improve as one moves down the tree. The tree presented in the preceding figure was only one 

illustration of how the tree might be searched. Other trees could be developed for the same problem by 

playing with the following two degrees of freedom: 

(a) Choice of next node to examine, and 

(b) Choice of how the chosen node is split into two or more subnodes. 

 For example, if nodes 8 and then 9 were examined immediately after node 1, then the solution with 

Z = 108 would have been found quickly. Further, nodes 4, 5, and 6 could then have been skipped because 

the Z-value at node 3 (100.64) is worse than a known integer solution (108), and, therefore, no offspring 

of node 3 would need examination. 

 In the example tree, the first node is split by branching on the possible values for X2. One could 

have just as well chosen X3 or even X1 as the first branching variable. 

 The efficiency of the search is closely related to how wisely the choices are made in (a) and (b) 

above. Typically, in (b) the split is made by branching on a single variable. For example, if, in the 

continuous solution, x = 1.6, then the obvious split is to create two subproblems. One with the constraint 

x  1, and the other with the constraint x  2. The split need not be made on a single variable. It could 

be based on an arbitrary constraint. For example, the first subproblem might be based on the constraint 

x1 + x2 + x3  0, while the second is obtained by appending the constraint x1 + x2 + x3  1. Also, the split 

need not be binary. For example, if the model contains the constraint y1 + y2 + y3 = 1, then one could 

create three subproblems corresponding to either y1 = 1, or y2 = 1, or y3 = 1. 

 If the split is based on a single variable, then one wants to choose variables that are “decisive.” In 

general, the computer will make intelligent choices and the user need not be aware of the details of the 

search process. The user should, however, keep the general B & B process in mind when formulating a 

model. If the user has a priori knowledge that an integer variable x is decisive, then for the LINGO 

program it is useful to place x early in the formulation to indicate its importance. This general 

understanding should drive home the importance of a “tight” LP formulation. A tight LP formulation is 

one which, when solved, has an objective function value close to the IP optimum. The LP solutions at 

the subproblems are used as bounds to curtail the search. If the bounds are poor, many early nodes in 

the tree may be explicitly examined because their bounds look good even though, in fact, these nodes 

have no good offspring. 

 Cutting planes are very important for solving certain classes of IP’s. Some of these difficult IP’s 

would take prohibitively long to solve with just B&B, without the use of cutting planes.  A cutting plane 

is an additional constraint that is added to the formulation to remove fractional points from the LP 

relaxation. Thus, if some good cuts have been added, the chance is much higher that when the LP 

relaxation is solved, a much higher fraction of the integer variables will take on naturally integer values. 

 There is a wide variety of cuts that are implemented in commercial IP solvers, an even wider variety 

of cuts that have been described in the optimization literature. One of the most general types of cuts is 

the Mixed Integer Rounding, or MIR, cut. A very similar cut described in the literature is the Gomory 

Mixed Integer cut. We will illustrate the MIR cut with a little example.  Suppose we want to solve the 

little mixed integer program: 
           MIN = 5*y + 3*u + 4*v; 
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           8*y + u - v = 13; 

       @GIN( y) 

 

As usual, by default, all variables are restricted to be ≥ 0. If you delete the requirement that y be integer 

and solve the resulting LP, you get the fractional solution  y = 1.625, u = v = 0. Now we reason that in 

any feasible integer solution, either : 

          Case 1:  y ≤ 1 and u ≥ 5, or 

          Case 2:  y ≥ 2 and v ≥ 3. 

So, in any integer feasible solution, we must have either: 

          u ≥ 5, or 

          v ≥ 3. 

Multiplying by either 3 or 5, we must have either:  

          3*u ≥ 3*5, or 

          5*v ≥ 3*5. 

Because v, u  ≥ 0, we can add 5*v to the first constraint, and 3*u to the second constraint without 

destroying their validity, so we must have either:  

          3*u + 5*v ≥ 3*5, or 

          3*u + 5*v ≥ 3*5, 

so the single constraint or cut is justified: 

          3*u + 5*v ≥ 3*5. 

Notice that this cut cuts off the fractional solution y = 1.625, u = v = 0.  With this cut added, when we 

solve the LP: 
           MIN = 5*y + 3*u + 4*v; 
           8*y + u - v = 13; 

           3*u + 5*v ≥ 15; 

 

We get the naturally integer solution;  
 

    Global optimal solution found. 

      Objective value:          20.000000 

 

                 Variable           Value 

                        Y        1.000000 

                        U        5.000000 

                        V        0.000000 

 

With a little bit of imagination, e.g., by replacing y by a sum of integer variables with integer coefficients, 

and replacing u and v by positive weighted sums of nonnegative variables, a wide variety of MIR type 

cuts are possible. 

11.4 Computational Difficulty of Integer Programs 
Integer programs can be very difficult to solve. This is in marked contrast to LP problems. The solution 

time for an LP is fairly predictable. For an LP, the time increases approximately proportionally with the 

number of variables and approximately with the square of the number of constraints. For a given IP 

problem, the time may in fact decrease as the number of constraints is increased. As the number of 

integer variables is increased, the solution time may increase dramatically. Some small IPs (e.g., 6 

constraints, 60 variables) are extremely difficult to solve. 
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 Just as with LPs, there may be alternate IP formulations of a given problem. With IPs, however, the 

solution time generally depends critically upon the formulation. Producing a good IP formulation 

requires skill. For many of the problems in the remainder of this chapter, the difference between a good 

formulation and a poor formulation may be the difference between whether the problem is solvable or 

not. 

11.4.1 NP-Complete Problems 
Integer programs belong to a class of problems known as NP-hard. We may somewhat loosely think of 

NP as meaning "not polynomial". This means that there is no known algorithm of solving these problems 

such that the computational effort at worst increases as a polynomial in the problem size. For our 

purposes, we will say that the computational complexity of an algorithm is polynomial if there is a 

positive constant k, such that the time to solve a problem of size n is proportional to nk. For example, 

sorting a set of n numbers can easily be done in (polynomial) time proportional to n2,(n log(n) if one is 

careful), whereas solving an integer program in n zero/one variables may, in the worst case, take 

(exponential) time proportional to 2n. There may be a faster way, but no one has published an algorithm 

for integer programs that is guaranteed to take polynomial time on every problem presented to it. The 

terms NP-complete and P-complete apply to problems that can be stated as "yes/no" or feasibility 

problems. The yes/no variation of an optimization problem would be a problem of the form: Is there a 

feasible solution to this problem with cost less-than-or-equal-to 1250. In an optimization problem, we 

want a feasible solution with minimum cost. Khachian (1979) showed that the feasibility version of LP 

is solvable in polynomial time. So, we say LP is in P. Integer programming stated in feasibility form, 

and a wide range of similar problems, belong to a class of problems called NP-complete. These problems 

have the feature that it is possible to convert any one of these problems into any other NP-complete 

problem in time that is polynomial in the problem size. Thus, if we can convert problem A into problem 

B in polynomial time, then solve B in polynomial time, and then convert the solution to B to a valid 

solution to A in polynomial time, we then have a way of solving A in polynomial time.  

 The notable thing about NP-complete problems is that, if someone develops a guaranteed fast 

(e.g., polynomial worst case) time method for solving one of these problems, then that someone also has 

a polynomial time algorithm for every other NP-complete problem. An important point to remember is 

that the NP-completeness classification is defined in terms of worst-case behavior, not average case 

behavior. For practical purposes, one is interested mainly in average case behavior. The current situation 

is that the average time to solve many important practical integer programming problems is quite short. 

The fact that someone may occasionally present us with an extremely difficult integer programming 

problem does not prevent us from profiting from the fact that a large number of practical integer 

programs can be solved rapidly. Perhaps the biggest open problem in modern mathematics is whether 

the problems in the NP-complete class are inherently difficult. This question is cryptically phrased as is: 

P = NP? Are these problems really difficult, or is it that we are just not smart enough to discover the 

universally fast algorithm? In fact, a “Millenium prize” of $1,000,000 is offered by the Clay Mathematics 

Institute, www.claymath.org, for an answer to this question. For a more comprehensive discussion of 

the NP-complete classification, see Martin (1999). 

11.5 Problems with Naturally Integer Solutions and the Prayer 
Algorithm 

The solution algorithms for IP are generally based on first solving the IP as an LP by disregarding the 

integrality requirements and praying the solution is naturally integer. For example, if x is required to be 

0 or 1, the problem is first solved by replacing this requirement by the requirement that simply 0  x  1. 
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When initiating the analysis of a problem in which integer answers are important, it is useful to know 

beforehand whether the resulting IP will be easy to solve. After the fact, one generally observes the IP 

was easy to solve if the objective function values for the LP optimum and the IP optimum were close. 

About the only way we can predict beforehand the objective function values of the LP and IP will be 

close is if we know beforehand the LP solution will be almost completely integer valued. Thus, we are 

interested in knowing what kinds of LPs have naturally integer solutions. 

 The classes of LP problems for which we know beforehand there is a naturally integer optimum 

have integer right-hand sides and are in one of the classes: 

(a) Network LPs, 

(b) MRP or Integral Leontief LPs, 

(c) Problems that can be transformed to (a) or (b) by either row operations or taking the dual. 

We first review the distinguishing features of network and MRP LPs. 

11.5.1 Network LPs Revisited 
A LP is said to be a network LP if: 1) disregarding simple upper and lower bound constraints (such as 

x  3), each variable appears in at most two constraints, and 2) if each variable appears in two constraints, 

its coefficients in the two are +1 and -1. If the variable appears in one constraint, its coefficient is either 

+1 or -1. 

 Result: If the right-hand side is integer, then there is an integer optimum. If the objective coefficients 

are all integer, then there is an optimum with integral dual prices. 

11.5.2 Integral Leontief Constraints 
A constraint set is said to be integral Leontief or MRP (for Material Requirements Planning) if (see 

Jeroslow, Martin, et al. (1992)): 

• Each constraint is an equality, 

• Every column has exactly one positive coefficient and it is a +1, 

• Each column has 0 or more negative coefficients, every one of which is integer, 

• Each RHS coefficient is a nonnegative integer. 

 Result: An LP whose complete constraint set is an MRP set has an optimal solution that is integer. 

Further, if the objective coefficients are all integer, then there is an optimal solution with integral dual 

prices. 
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11.5.3 Example: A One-Period MRP Problem 
The Schwindle Cycle Company makes three products: Unicycles (U), Regular Bicycles (R), and 

Twinbikes (T). Each product is assembled from a variety of components including: seats (S), wheels 

(W), hubs (H), spokes (P), chains (C), and links (L). The full bills of materials for each product are 

shown below. The numbers in parentheses specify how many units of the child are required per parent: 

Figure 11.6 MRP Structure for Bicycles 

U

  
 

 

 Current inventories are zero. Schwindle needs to supply 100 Unicycles, 500 Regular bicycles, and 

200 Twinbikes. Finished products and complete sub-assemblies can be either manufactured or bought 

at the following prices: 

Item: U R T S W C H P L 

Bought Price: 2.60 5.2 3.10 0.25 1.40 0.96 0.19 0.07 0.05 

Assembly Cost: 1.04 1.16 1.90 0.20 0.22 0.26 0.16 0.04 0.03 

 Note the assembly cost is the immediate cost at the level of assembly. It does not include the cost 

of the components going into the assembly. How many units of each item should be made or bought to 

satisfy demand at minimum price? 
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 An LP formulation is: 

MODEL: 

SETS: 

TYPES/U, R, T/:M, B, MP, BP, NEED; 

MATERIALS/S, W, C/:MM, MB, MMP, MBP; 

SUBMATS/H, P, L/:SMM, SMB, SMP, SBP; 

REQ(TYPES, MATERIALS): MATREQ; 

MREQ(MATERIALS, SUBMATS): SMATREQ; 

ENDSETS 

DATA: 

NEED    =  100  500  200; 

MP      = 1.04 1.16  1.9; 

BP      =  2.6  5.2  3.1; 

MMP     =   .2  .22  .26; 

MBP     =  .25  1.4  .96; 

SMP     =  .16  .04  .03; 

SBP     =  .19  .07  .05; 

MATREQ  =    1    1    0  

             1    2    1  

             2    2    2; 

SMATREQ =    0    0    0 

             1   36    0 

             0    0   84; 

ENDDATA 

MIN = @SUM(TYPES : M * MP + B * BP)  

     + @SUM(MATERIALS : MM * MMP + MB * MBP) 

     + @SUM(SUBMATS: SMM * SMP + SMB * SBP); 

@FOR(TYPES: M + B = NEED); 

@FOR(MATERIALS(I): MM(I) + MB(I) = 

    @SUM(TYPES(J): M(J) * MATREQ(J, I))); 

@FOR(SUBMATS(I): SMM(I) + SMB(I) = 

    @SUM(MATERIALS(J): MM(J) * SMATREQ(J, I))); 

END 

 In the PICTURE of the formulation below, notice it has the MRP structure: 

          U U R R T T S S W W C C H H P P L L 

          M B M B M B M B M B M B M B M B M B 

       1: A A A A A A T T T A T T T T U U U U MIN 

UNICYCLE: 1 1   '     '     '     '     '     = B 

 REGULAR: '  '1 1  '  '  '  '  '  '  '  '  '  = C 

TWINBIKE:       ' 1 1 '     '                 = C 

   SEATS:-1  -1 '-2   1 1   '     '     '     = 

  WHEELS:-1  -2 '-2'  '  '1 1  '  '  '  '  '  = 

  CHAINS:    -1 '-2   '     ' 1 1 '     '     = 

    HUBS:       '     '  -1 '     1 1   '     = 

  SPOKES: '  '  '  '  '  -B '  '  '  '1 1  '  = 

   LINKS:       '     '     '-B   '     ' 1 1 = 
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The solution is: 

Optimal solution found at step:         0 

Objective value:                 3440.000 

Variable           Value        Reduced Cost 

   M( R)        500.0000           0.0000000 

   B( U)        100.0000           0.0000000 

   B( T)        200.0000           0.0000000 

  MM( S)        500.0000           0.0000000 

  MB( W)        1000.000           0.0000000 

  MB( C)        500.0000           0.0000000 

 Notice it is naturally integer. Thus, we should buy all the unicycles and twin bikes (and paste our 

own brand name on them). We assemble our own regular bicycles. They are assembled from 

manufactured seats and bought wheels and chains. 

 If we put an upper limit of 300 on the number of links manufactured by adding the constraint 

LM  300, we will get a fractional solution because this constraint violates the MRP structure. 

11.5.4 Transformations to Naturally Integer Formulations 
A row operation consists of either of the following: 

• multiplication through an equation by some non-zero constant, 

• adding a finite multiple of one equation to another. 

 A row operation changes neither the feasible region nor the set of optimal solutions to a problem. 

Thus, if we can show a model can be transformed to either a network LP or an MRP LP by row 

operations, then we know there is an integer optimum. We do not actually need to do the transformation 

to get the solution. 

 Similarly, if we have a model with an integer right-hand side and we can show it is the dual of either 

a network LP or an MRP LP, then we know the model has an integer optimum. 

Example 

Consider the following LP that arose in planning how much to produce in each of four periods: 

    P P P P P P P P P P 

    1 1 1 1 2 2 2 3 3 4 

    4 3 2 1 4 3 2 4 3 4 

1:  9 6 4 3 6 4 3 4 3 3 MIN 

2:  1 1 1 1             = 1 

3:  1 1 1   1 1 1       = 1 

4:  1 1     1 1   1 1   = 1 

5:  1       1     1   1 = 1 

When solved as an LP, we obtained the following naturally integer solution: 

P12 = P34 = 1; all others 0. 
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 Could we have predicted a naturally integer solution beforehand? If we perform the row operations: 

(5') = (5) − (4); (4') = (4) − (3); (3') = (3) − (2), we obtain the equivalent LP: 

    P P P P P P P P P P 

    1 1 1 1 2 2 2 3 3 4 

    4 3 2 1 4 3 2 4 3 4 

 1: 9 6 4 3 6 4 3 4 3 3 MIN 

 2: 1 1 1 1             = 1 

3':      -1 1 1 1       = 0 

4':    -1      -1 1 1   = 0 

5':  -1      -1    -1 1 = 0 

This is a network LP, so it has a naturally integer solution. 

Example 

In trying to find the minimum elapsed time for a certain project composed of seven activities, the 

following LP was constructed (in PICTURE form): 

    A B C D E F 

 1:-1     '   1 MIN 

AB:-1 1   '     >= 3 

AC:-1  '1 '  '  >= 2 

BD:  -1   1     >= 5 

BE:  -1   ' 1   >= 6 

CF: '  -1 '  '1 >= 4 

DF:      -1   1 >= 7 

EF:       '-1 1 >= 6 

 This is neither a network LP (e.g., consider columns A, B, or F) nor an MRP LP (e.g., consider 

columns A or F). Nevertheless, when solved, we get the naturally integer solution: 

Optimal solution found at step:         0 

Objective value:                 15.00000 

Variable           Value        Reduced Cost 

       A       0.0000000           0.0000000 

       B        3.000000           0.0000000 

       C        2.000000           0.0000000 

       D        8.000000           0.0000000 

       E        9.000000           0.0000000 

       F        15.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        15.00000            1.000000 

      AB       0.0000000           -1.000000 

      AC       0.0000000           0.0000000 

      BD       0.0000000           -1.000000 

      BE       0.0000000           0.0000000 

      CF        9.000000           0.0000000 

      DF       0.0000000           -1.000000 

      EF       0.0000000           0.0000000 

 Could we have predicted a naturally integer solution beforehand? If we look at the PICTURE of the 

model, we see each constraint has exactly one +1 and one −1. Thus, its dual model is a network LP and 

expectation of integer answers is justified. 
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11.6 The Assignment Problem and Related Sequencing and 
Routing Problems 

The assignment problem is a simple LP problem, which is frequently encountered as a major component 

in more complicated practical problems. 

 The assignment problem is: 

Given a matrix of costs: 

cij = cost of assigning object i to person j, 

and variables: 

xij = 1 if object i is assigned to person j. 

Then, we want to: 

Minimize   cijxij 

subject to 

i xij = 1  for each object i, 

j xij = 1  for each person i, 

xij > 0. 

This problem is easy to solve as an LP and the xij will be naturally integer. 

 There are a number of problems in routing and sequencing that are closely related to the assignment 

problem. 

11.6.1 Example: The Assignment Problem 
Large airlines tend to base their route structure around the hub concept. An airline will try to have a large 

number of flights arrive at the hub airport during a certain short interval of time (e.g., 9 A.M. to 10 A.M.) 

and then have a large number of flights depart the hub shortly thereafter (e.g., 10 A.M. to 11 A.M.). This 

allows customers of that airline to travel between a large combination of origin/destination cities with 

one stop and at most one change of planes. For example, United Airlines uses Chicago as a hub, Delta 

Airlines uses Atlanta, and American uses Dallas/Fort Worth. 

 A desirable goal in using a hub structure is to minimize the amount of changing of planes (and the 

resulting moving of baggage) at the hub. The following little example illustrates how the assignment 

model applies to this problem. 

 A certain airline has six flights arriving at O’Hare airport between 9:00 and 9:30 A.M. The same six 

airplanes depart on different flights between 9:40 and 10:20 A.M. The average numbers of people 

transferring between incoming and leaving flights appear below: 

 L01 L02 L03 L04 L05 L06  

I01 20 15 16 5 4 7  

I02 17 15 33 12 8 6  

I03 9 12 18 16 30 13  

I04 12 8 11 27 19 14 Flight I05 arrives too late to 

I05 0 7 10 21 10 32 connect with L01. Similarly I06 is 

I06 0 0 0 6 11 13 too late for flights L01, L02, and L03. 

ji
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 All the planes are identical. A decision problem is which incoming flight should be assigned to 

which outgoing flight. For example, if incoming flight I02 is assigned to leaving flight L03, then 33 

people (and their baggage) will be able to remain on their plane at the stop at O’Hare. How should 

incoming flights be assigned to leaving flights, so a minimum number of people need to change planes 

at the O’Hare stop? 

 This problem can be formulated as an assignment problem if we define: 

xij = 1 if incoming flight i is assigned to outgoing flight j, 

 0 otherwise. 

The objective is to maximize the number of people not having to change planes. A formulation is: 

MODEL:   !  Assignment model(ASSIGNMX); 

SETS: 

 FLIGHT; 

 ASSIGN( FLIGHT, FLIGHT): X, CHANGE; 

ENDSETS 

DATA: 

 FLIGHT = 1..6; 

! The value of assigning i to j; 

 CHANGE = 20   15   16   5   4   7 

          17   15   33  12   8   6 

           9   12   18  16  30  13 

          12    8   11  27  19  14 

        -999    7   10  21  10  32 

        -999 -999 -999   6  11  13; 

ENDDATA 

!---------------------------------; 

! Maximize value of assignments; 

MAX = @SUM(ASSIGN: X * CHANGE); 

@FOR( FLIGHT( I): 

!  Each I must be assigned to some J; 

    @SUM( FLIGHT( J): X( I, J)) = 1; 

!  Each I must receive an assignment;  

    @SUM( FLIGHT( J): X( J, I)) = 1;  

     ); 

END 

Notice, we have made the connections that are impossible prohibitively unattractive. A solution is: 

Optimal solution found at step:         9 

Objective value:                 135.0000 

Variable           Value        Reduced Cost 

X( 1, 1)        1.000000           0.0000000 

X( 2, 3)        1.000000           0.0000000 

X( 3, 2)        1.000000           0.0000000 

X( 4, 4)        1.000000           0.0000000 

X( 5, 6)        1.000000           0.0000000 

X( 6, 5)        1.000000           0.0000000 

 Notice, each incoming flight except I03 is able to be assigned to its most attractive outgoing flight. 

The solution is naturally integer even though we did not declare any of the variables to be integer. 
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11.6.2 The Traveling Salesperson Problem 
One of the more famous optimization problems is the traveling salesperson problem (TSP). It is an 

assignment problem with the additional condition that the assignments chosen must constitute a tour. 

The objective is to minimize the total distance traveled. Lawler et al. (1985) presents a tour-de-force on 

this fascinating problem. One example of a TSP occurs in the manufacture of electronic circuit boards. 

Danusaputro, Lee, and Martin-Vega (1990) discuss the problem of how to optimally sequence the 

drilling of holes in a circuit board, so the total time spent moving the drill head between holes is 

minimized. A similar TSP occurs in circuit board manufacturing in determining the sequence in which 

components should be inserted onto the board by an automatic insertion machine. Another example is 

the sequencing of cars on a production line for painting: each time there is a change in color, a setup cost 

and time is incurred.  

 A TSP is described by the data: 

            cij = cost of traveling directly from city i to city j, e.g., the distance. 

A solution is described by the variables: 

            yij = 1 if we travel directly from i to j, else 0. 

The objective is: 

             Min ij cij yij ; 

 

We will describe several different ways of specifying the constraints. 

 

Subtour Elimination Formulation:   
(1) We must enter each city j exactly once: 

  i j
n
 yij = 1        for j = 1 to n, 

(2) We must exit each city i  exactly once: 

                        
yij = 1       for i = 1 to n,  

               (3)      yij    = 0 or 1,  for i = 1, 2, …, n,   j = 1, 2, …, n,   i j: 

               (4)   No subtours are allowed for any subset of cities S not including city 1: 

  

yij < |S| − 1     for every subset S, 

            where |S| is the size of S.  

The above formulation is usually attributed to Dantzig, Fulkerson, and Johnson(1954). An unattractive 

feature of the Subtour Elimination formulation is that if there are n cities, then there are approximately 

2n constraints. 

 

Cumulative Load Formulation: 

   We can reduce the number of constraints substantially if we define: uj = the sequence number of 

city j on the trip.  Equivalently, if each city requires one unit of something to be picked up(or delivered), 

then uj = cumulative number of units picked up(or delivered) after the stop at j. We replace constraint 

set (4) by: 

j i
n


i j S, 
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(5) uj > ui + 1 − (1 − yij)n   for i = 1, 2, ...,  j = 2, 3, 4, . . . ; j  i. 

 

 The approach of constraint set (5) is due to Miller, Tucker, and Zemlin(1960).  There are only 

approximately n2 constraints of type (5),  however, constraint set (4) is much tighter than (5). Large 

problems may be computationally intractable if (4) is not used. Even though there are a huge number of 

constraints in (4), only a few of them may be binding at the optimum. Thus, an iterative approach that 

adds violated constraints of type (4) as needed works surprisingly well. Padberg and Rinaldi (1987) used 

essentially this iterative approach and were able to solve to optimality problems with over 2000 cities. 

The solution time was several hours on a large computer. 

 

Multi-commodity Flow Formulation: 

 Similar to the previous formulation, imagine that each city needs one unit of some commodity 

distinct to that city.  Define:   

           xijk = units of commodity carried from i to j, destined for ultimate delivery to k. 

If we assume that we start at city 1 and there are n cities, then we replace constraint set (4) by: 

           For k = 1, 2, 3, …, n: 

                   j >1 x1jk = 1;   ( Each unit must be shipped out of the origin.)    

                   i k xikk = 1;    ( Each city k must get its unit.) 

           For j = 2, 3, …, n,  k =1, 2, 3, …, n,  j  k: 

                   i xijk = t j xjtk
  ( Units entering j, but not destined for j, must depart j to some city t.)  

           A unit cannot return to 1, except if its final destination is 1: 

                   i k > 1 xi1k   = 0, 

           For i = 1, 2, …, n,   j = 1, 2, …, n,  k = 1, 2,  …, n,  i j: 

                     xijk   yij     ( If anything shipped from i to j, then turn on yij.) 

The drawback of this formulation is that it has approximately n3 constraints and variables.  A remarkable 

feature of the multicommodity flow formulation is that it is just as tight as the Subtour Elimination 

formulation.  The multi-commodity formulation is due to Claus(1984). 

Heuristics 
 For practical problems, it may be important to get good, but not necessarily optimal, answers in just 

a few seconds or minutes rather than hours. The most commonly used heuristic for the TSP is due to Lin 

and Kernighan (1973). This heuristic tries to improve a given solution by clever re-orderings of cities in 

the tour. For practical problems (e.g., in operation sequencing on computer controlled machines), the 

heuristic seems always to find solutions no more than 2% more costly than the optimum. Bland and 

Shallcross (1989) describe problems with up to 14,464 “cities” arising from the sequencing of operations 

on a computer-controlled machine. In no case was the Lin-Kernighan heuristic more than 1.7% from the 

optimal for these problems. 
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Example of a Traveling Salesperson Problem 
P. Rose, currently unemployed, has hit upon the following scheme for making some money. He will 

guide a group of 18 people on a tour of all the baseball parks in the National League. He is betting his 

life savings on this scheme, so he wants to keep the cost of the tour as low as possible. The tour will start 

and end in Cincinnati. The following distance matrix has been constructed: 

 Atl Chi Cin Hou Lax Mon NYk Phi Pit StL SnD SnF 

Atlanta 0 702 454 842 2396 1196 864 772 714 554 2363 2679 

Chicago 702 0 324 1093 2136 764 845 764 459 294 2184 2187 

Cinci. 454 324 0 1137 2180 798 664 572 284 338 2228 2463 

Houston 842 1093 1137 0 1616 1857 1706 1614 1421 799 1521 2021 

L.A. 2396 2136 2180 1616 0 2900 2844 2752 2464 1842 95 405 

Montreal 1196 764 798 1857 2900 0 396 424 514 1058 2948 2951 

New York 864 845 664 1706 2844 396 0 92 386 1002 2892 3032 

Phildpha. 772 764 572 1614 2752 424 92 0 305 910 2800 2951 

Pittsbrg. 714 459 284 1421 2464 514 386 305 0 622 2512 2646 

St. Louis 554 294 338 799 1842 1058 1002 910 622 0 1890 2125 

San Diego 2363 2184 2228 1521 95 2948 2892 2800 2512 1890 0 500 

San Fran. 2679 2187 2463 2021 405 2951 3032 2951 2646 2125 500 0 

Solution 

We will illustrate the subtour elimination approach, exploiting the fact that the distance matrix is 

symmetric. Define the decision variables: 

Yij = 1 if the link between cities i and j is used, regardless of the direction of travel; 0 

otherwise. 

 Thus, Y(CHI, ATL) = 1 if the link between Chicago and Atlanta is used. Each city or node must be 

connected to two links. In words, the formulation is: 

Minimize     the cost of links selected 

subject to: 

For each city, the number of links connected to it that are selected = 2 

Each link can be selected at most once. 
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The LINGO formulation is shown below: 

MODEL: 

SETS: 

CITY; 

ROUTE(CITY, CITY)|&1 #GT# &2:COST, Y; 

ENDSETS 

DATA: 

 CITY= 

  ATL  CHI  CIN HOU   LA  MON   NY  PHI  PIT  STL  SD  SF; 

COST= 

  702 

  454  324 

  842 1093 1137  

 2396 2136 2180 1617 

 1196  764  798 1857 2900 

  864  845  664 1706 2844  396 

  772  764  572 1614 2752  424   92 

  714  459  284 1421 2464  514  386  305 

  554  294  338  799 1842 1058 1002  910  622 

 2363 2184 2228 1521   95 2948 2892 2800 2512 1890 

 2679 2187 2463 2021  405 2951 3032 2951 2646 2125 500; 

ENDDATA 

MIN = @SUM( ROUTE: Y * COST); 

@SUM( CITY( I)|I #GE# 2: Y(I, 1)) = 2; 

@FOR( CITY( J)|J #GE# 2: @SUM(CITY(I)| I #GT# J: 

  Y(I, J)) + @SUM(CITY(K)|K #LT# J: Y(J, K))=2); 

@FOR( ROUTE: Y <= 1); 

        END 

When this model is solved as an LP, we get the solution: 

Optimal solution found at step:       105 

Objective value:                 5020.000 

    Variable           Value       

Y( CIN, ATL)        1.000000       

Y( CIN, CHI)        1.000000       

Y( HOU, ATL)        1.000000       

Y( NYK, MON)        1.000000       

Y( PHI, NYK)        1.000000       

Y( PIT, MON)        1.000000       

Y( PIT, PHI)        1.000000       

Y( STL, CHI)        1.000000       

Y( STL, HOU)        1.000000       

Y( SND, LAX)        1.000000       

Y( SNF, LAX)        1.000000       

Y( SNF, SND)        1.000000       

This has a cost of 5020 miles. Graphically, it corresponds to Figure 11.7. 
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Figure 11.7 
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 Unfortunately, the solution has three subtours. We would like to cut off the smallest subtour by 

adding the constraint that looks like: 

!SUBTOUR ELIMINATION;  

      Y( SNF, LAX) + Y( SND, LAX) + Y( SNF, SND) <= 2;  

 

LINGO, however,  works only with numeric subscripts, so if we want to use subscripts like SNF and 

LAX, we have to first tell LINGO their index values.  The follow statements in the LINGO model 

equations will do this. 
 

   ! A Trick: To make it easier to add problem specific cuts, give ourselves   

     some constants equal to index number of city with same name; 

       ATL=1; CHI=2; CIN=3; HOU=4;  LAX=5;  MON=6;  

       NYK=7; PHI=8; PIT=9; STL=10; SND=11; SNF=12;  

   ! A longer, less clever approach uses the @INDEX() function. 

     E.g., LAX = @INDEX(LAX) would achieve the same effect. 

      Now we can add cuts, using names directly.; 
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Now, when we solve it as an LP, we get a solution with cost 6975, corresponding to Figure 11.8: 

Figure 11.8 
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We cut off the subtour in the southwest by appending the constraint that says at most 3 arcs can be used 

involving the cities HOU, LAX, SND, and SNF: 

       Y(LAX, HOU) + Y(SND, HOU) + Y(SNF, HOU)  

     + Y(SND, LAX) + Y(SNF, LAX) + Y(SNF, SND)<= 3; 

 

We continue in this fashion appending subtour elimination cuts: 

       Y(NYK, MON) + Y(PHI, MON) + Y(PIT, MON) +  

       Y(PHI, NYK) + Y(PIT, NYK) + Y(PIT, PHI) <= 3; 

       Y(NYK, MON) + Y(PHI, MON) + Y(PHI, NYK) <= 2; 
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 After the above are all appended, we get the solution shown in Figure 11.9. It is a complete tour 

with cost $7,577. 

Figure 11.9 
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Note only LPs were solved. No branch-and-bound was required, although in general branching may be 

required. 

 Could P. Rose have done as well by trial and error? The most obvious heuristic is the “closest 

unvisited city” heuristic. If one starts in Cincinnati and next goes to the closest unvisited city at each 

step and finally returns to Cincinnati, the total distance is 8015 miles, about 6% worse than the optimum. 

The Optional Stop TSP 

If we drop the requirement that every stop must be visited, we then get the optional stop TSP. This might 

correspond to a job sequencing problem where vj is the profit from job j if we do it and cij is the cost of 

switching from job i to job j. Let: 

yj = 1 if city j is visited, 0 otherwise. 

If vj is the value of visiting city j, then the objective is: 

Minimize  
i


j
 cij xij − vj yj . 

The constraint sets are: 

(1) Each city j can be visited at most once 

i j
 xij = yj 
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(2) If we enter city j, then we must exit it: 

k j
 xjk = yj 

(3) No subtours allowed for each subset, S, of cities not including the home base 1. 

i j S, 
 xij < |S| − 1, where |S| is the size of S. 

For example, if there are n cities, including the home base, then there are 

(n − 1) (n − 2)/(3  2) subsets of size 3. 

(4) Alternatively, (3) may be replaced by 

uj > ui + 1 − (1 − xij)n     for j = 2, 3, . . . , n. 

 Effectively, uj is the sequence number of city j in its tour. Constraint set (3) is much tighter than (4). 

11.6.3 Capacitated Multiple TSP/Vehicle Routing Problems 
An important practical problem is the routing of vehicles from a central depot, the so-called Vehicle 

Routing Problem (VRP). An example is the routing of delivery trucks for a parcel delivery service. You 

can think of this as a multiple traveling salesperson problem with finite capacity for each salesperson. 

This problem is sometimes called the LTL(Less than TruckLoad) routing problem because a typical 

recipient receives less than a truck load of goods. A formulation is: 

 Given: 

V = capacity of a vehicle 

dj = demand of city or stop j 

Each city, j, must be visited once for j > 1: 

j
 xij = 1 

Each city i > 1, must be exited once: 

i
 xij = 1 

No subtours: 

i j s, 
 xij < |S| − 1, 

No overloads: For each set of cities T, including 1, which constitute more than a truckload: 

i j T, 
 xij < |T| −k,  

where k = minimum number of cities that must be dropped from T to reduce it to one load. 

 This formulation can solve to optimality modest-sized problems of say, 25 cities. For larger or more 

complicated practical problems, the heuristic method of Clarke and Wright (1964) is a standard starting 

point for quickly finding good, but not necessarily optimal, solutions. 

 The following is a generic LINGO model for vehicle routing problems: 

MODEL:   ! (VROUTE); 
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! The Vehicle Routing Problem (VRP) occurs in many service  

systems such as delivery, customer pick-up, repair and  

maintenance. A fleet of vehicles, each with fixed  

capacity, starts at a common depot and returns to the  

depot after visiting locations where service is demanded. 

Problems with more than a dozen cities can take lots of 

time. 

This instance involves delivering the required amount of 

goods to 9 cities from a depot at city 1; 

SETS: 

CITY/ Chi Den Frsn Hous KC LA Oakl Anah Peor Phnx/: Q, U; 

! Q(I) = amount required at city I(given), 

must be delivered by just 1 vehicle. 

U(I) = accumulated deliveries at city I ; 

CXC( CITY, CITY): DIST, X; 

! DIST(I,J) = distance from city I to city J 

X(I,J) is 0-1 variable,  

= 1 if some vehicle travels from city I to J, 

else 0 ; 

ENDSETS 

DATA: 

! city 1 represents the common depot, i.e. Q( 1) = 0; 

Q= 0    6    3    7    7   18    4    5    2    6; 

! distance from city I to city J is same from J to I, 

distance from city I to the depot is 0, 

because vehicle need not return to the depot ; 

DIST=  ! To City; 

!Chi  Den Frsn Hous   KC  LA Oakl Anah  Peor Phnx  From; 

0  996 2162 1067  499 2054 2134 2050  151 1713!  Chicago; 

0    0 1167 1019  596 1059 1227 1055  904  792!  Denver; 

0 1167    0 1747 1723  214  168  250 2070  598!  Fresno; 

0 1019 1747    0  710 1538 1904 1528  948 1149!  Houston; 

0  596 1723  710    0 1589 1827 1579  354 1214!  K. City; 

0 1059  214 1538 1589    0  371   36 1943  389!  L. A.; 

0 1227  168 1904 1827  371    0  407 2043  755!  Oakland; 

0 1055  250 1528 1579   36  407    0 1933  379!  Anaheim; 

0  904 2070  948  354 1943 2043 1933    0 1568!  Peoria; 

0  792  598 1149 1214  389  755  379 1568    0;! Phoenix; 

! VCAP is the capacity of a vehicle ; 

VCAP = 18; 

ENDDATA 

!----------------------------------------------------------; 

! The objective is to minimize total travel distance; 

MIN = @SUM( CXC: DIST * X); 

! for each city, except depot....; 

@FOR( CITY( K)| K #GT# 1: 

! a vehicle does not travel inside itself,...; 

X( K, K) = 0; 

! a vehicle must enter it,... ; 

@SUM( CITY( I)| I #NE# K #AND# ( I #EQ# 1 #OR# 

Q( I) + Q( K) #LE# VCAP): X( I, K)) = 1; 
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! a vehicle must leave it after service ; 

@SUM( CITY( J)| J #NE# K #AND# ( J #EQ# 1 #OR# 

Q( J) + Q( K) #LE# VCAP): X( K, J)) = 1; 

! U( K) = amount delivered on trip up to city K 

>= amount needed at K but <= vehicle capacity; 

@BND( Q( K), U( K), VCAP); 

! If K follows I, then can bound U( K) - U( I); 

@FOR( CITY( I)| I #NE# K #AND# I #NE# 1: U( K) >= 

U( I) + Q( K) - VCAP + VCAP*( X( K, I) + X( I, K)) 

- ( Q( K) + Q( I)) * X( K, I); 

); 

! If K is 1st stop, then U( K) = Q( K); 

U( K) <= VCAP - ( VCAP - Q( K)) * X( 1, K); 

! If K is not 1st stop...; 

U( K) >=  

Q( K)+ @SUM( CITY( I)| I #GT# 1: Q( I) * X( I, K)); 

); 

! Make the X's binary; 

@FOR( CXC( I, J): @BIN( X( I, J)) ;); 

! Must send enough vehicles out of depot; 

@SUM( CITY( J)| J #GT# 1: X( 1, J)) >=  

@FLOOR((@SUM( CITY( I)| I #GT# 1: Q( I))/ VCAP) + .999); 

END 

 Optimal solution found at step:       973 

 Objective value:                 6732.000 

                 Variable           Value      

            X( CHI, HOUS)        1.000000        

              X( CHI, LA)        1.000000          

            X( CHI, PEOR)        1.000000          

            X( CHI, PHNX)        1.000000        

             X( DEN, CHI)        1.000000          

           X( FRSN, OAKL)        1.000000          

            X( HOUS, CHI)        1.000000          

              X( KC, DEN)        1.000000          

              X( LA, CHI)        1.000000         

            X( OAKL, CHI)        1.000000        

           X( ANAH, FRSN)        1.000000     

             X( PEOR, KC)        1.000000          

           X( PHNX, ANAH)        1.000000        

By following the links, you can observe that the trips are: 

Chicago - Houston; 

Chicago - LA; 

Chicago - Peoria - KC - Denver; 

Chicago - Phoenix - Anaheim - Fresno - Oakland. 
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The solvability of  practical VRP’s depends upon a variety of typical complications: a) average 

number of stops per vehicle: 2 or 3 stops/vehicle is easily solved. Unlimited stops is essentially the 

Traveling Sales Person problem, which is moderately easy to solve; b) number of vehicle types and 

limits on the number of each. All identical vehicles is the easier; c) number of dimensions to capacity. 

Just 1, e.g., just a weight limit, is easier, but in practice there may also be constraints on volume 

(cube), total drive time, etc.; d) time windows. If there are limits on when each customer can be 

visited, then the problem may be a lot more difficult; e) sparsity of the distance matrix. If many of the 

possible arcs are prohibited, this tends to make the problem easier; f) static distance matrix.  If the 

travel time on an arc depends upon the time of day, this makes the problem more difficult; g) split 

deliveries. If the demand at a customer is greater than vehicle capacity, then a split delivery is 

unavoidable. If split deliveries are optional, then this may reduce the total distance in some instances; 

h) symmetric distance matrix. If it is symmetric, this may make the problem slightly easier; i) 

geometry of the region. VRP's in Chile are much easier to solve than VRP's  in the U.S.; j) number of 

depots. It is typically 1, but if there is additionally the choice of which depot serves which customer, 

that may make the problem harder. 

Combined DC Location/Vehicle Routing 

Frequently, there is a vehicle routing problem associated with opening a new plant or distribution center 

(DC). Specifically, given the customers to be served from the DC, what trips are made, so as to serve 

the customers at minimum cost. A “complete” solution to the problem would solve the location and 

routing problems simultaneously. The following IP formulation illustrates one approach: 

Parameters 

Fi  = fixed cost of having a DC at location i, 

Cj = cost of using route j, 

aijk = 1 if route j originates at DC i and serves customer k. There is exactly one DC associated 

with each route. 

Decision variables 

yi = 1 if we use DC i, else 0, 

xj = 1 if we use route j, else 0 

The Model 

Minimize 
i
 Fi yi + 

j
 cj xj 

subject to 

(Demand constraints)  

For each customer k: 

ji
 aijk xj = 1 

(Forcing constraints)  

For each DC i and customer k: 

j
 aijk xj  yi 

11.6.4 Minimum Spanning Tree  
A spanning tree of n nodes is a collection of n − 1 arcs, so there is exactly one path between every pair 

of nodes. A minimum cost spanning tree might be of interest, for example, in designing a 

communications network. 



Formulating & Solving Integer Problems  Chapter 11     307 

 Assume node 1 is the root of the tree. Let xij = 1 if the path from 1 to j goes through node i 

immediately before node j, else xij = 0. 

 A formulation is: 

Minimize    
i


j
 cijxij 

subject to 

 

(1)
ji
 xij = n − 1, 

(2) 
i j S, 
 xij < |S| − 1 for every strict subset S of {1, 2,…,n}, 

xij = 0 or 1. 

 An alternative to (1) and (2) is the following set of constraints based on assigning a unique sequence 

number uj to each node: 

              1,ij

i j

x


=  for j = 2, 3, 4,…,n, 

uj > ui + xij − (n –2) (1 − xij)+(n-3)xji,   for j = 2, 3, 4, . . . , n. 

uj > 0. 

 In this case, uj is the number of arcs between node j and node 1. A numeric example of the sequence 

numbering formulation is in section 8.9.8. 

 If one has a pure spanning tree problem, then the “greedy” algorithm of Kruskal (1956) is a fast way 

of finding optimal solutions.  

11.6.5 The Linear Ordering Problem 
A problem superficially similar to the TSP is the linear ordering problem. One wants to find a strict 

ordering of n objects. Applications are to ranking in sports tournaments, product preference ordering in 

marketing, job sequencing on one machine, ordering of industries in an input-output matrix, ordering of 

historical objects in archeology, and others. See Grötschel et al. (1985) for a further discussion. The linear 

ordering problem is similar to the approach of conjoint analysis sometimes used in marketing. The 

crucial input data are cost entries cij. If object i appears anywhere before object j in the proposed ordering, 

then cij is the resulting cost. The decision variables are: 

xij = 1 if object i precedes object j, either directly or indirectly for all i  j. 

The problem is: 

Minimize  
ji
 cij xij 

subject to 

(1) xij + xji = 1 for all i  j 

 If i precedes j and j precedes k, then we want to imply that i precedes k. This is enforced with the 

constraints: 

(2) xij + xjk + xki < 2 for all i, j, k with i  j, i  k, j  k. 
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 The size of the formulation can be cut in two by noting that xji = 1 − xij. Thus, we substitute out xji 

for j > i. Constraint set (1) becomes simply 0 < xij < 1. Constraint set (2) becomes: 

(2') xij + xjk − xik + sijk = 1 for all i < j < k 

0 < sijk < 1 

 There are n!/((n − 3)! 3!) = n  (n − 1)  (n − 2)/6 ways of choosing 3 objects from n, so the number 

of constraints is approximately n3/6. 

Example 

Ten Czech, German, and North American beverages were subject to taste tests by unbiased German 

testers. Each of the 10  9/2 = 45 possible pairs was subject to a taste test by six judges. The element C( 

I, J) in the C matrix in the model below is the number of times out of six beverage I was preferred to 

beverage J. If we want to have a complete ranking for the beverages, a reasonable objective is to 

maximize the number of pairwise comparisons for which our ranking agrees with the pairwise ranking 

of the judges: 

MODEL: 

! Linear ordering of objects or products, 

   based on pairwise comparisons(LINERORD);  

SETS: 

 PROD: RANK; ! Each product will get a rank; 

 PXP( PROD, PROD): C; 

ENDSETS 

DATA: 

 PROD = KONIG, FURST, PILSURQ, GUNZB, RIEGELE, 

        PAULA, JEVER, BECKS,   WARST, BUD; 

! Some data on German beverages; 

 C= ! Times that object I was preferred over J; 

0    2    2    3    3    5    5    5    4    4 

4    0    3    3    4    3    2    3    2    2 

4    3    0    3    5    4    3    2    4    4 

3    3    3    0    5    6    3    4    4    3 

3    2    1    1    0    1    4    4    5    3 

1    3    2    0    5    0    5    4    1    4 

1    4    3    3    2    1    0    2    1    3 

1    3    4    2    2    2    4    0    4    2 

2    4    2    2    1    5    5    2    0    4 

2    4    2    3    3    2    3    4    2    0; 

ENDDATA 

!---------------------------------------------; 

SETS: 

PIP( PROD, PROD)| &1 #LT# &2: 

   X; ! X(I,J) = 1 if I precedes J in our ranking;  

PIPIP( PROD, PROD, PROD) 

            | &1 #LT# &2 #AND# &2 #LT# &3: S; 

ENDSETS 

! Maximize the number of times our pairwise 

  ordering matches that of our testers; 

MAX = 

@SUM( PIP( I, J): C( I, J) * X( I, J) 

      + C( J, I) *(1 - X( I, J))); 
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! The rankings must be transitive, that is, 

  If I->J and J->K, then I->K; 

@FOR( PIPIP( I, J, K):  

!   Note N*(N-1)*(N-2)/6 of these!; 

X( I, J) + X ( J, K) - X( I, K)  

                     + S( I, J, K) = 1; 

    @BND( 0, S( I, J, K), 1); 

   ); 

@FOR( PIP: @BIN( X);); ! Make X's 0 or 1; 

 

! Count number products before product I( + 1); 

@FOR( PROD( I): 

 RANK( I) = 1 + @SUM( PIP( K, I): X( K, I)) 

              + @SUM( PIP( I, K): 1 - X( I, K)); 

   );  

END 

 When solved, we get an optimal objective value of 168. This means out of the (10 * 9/2)* 6 = 270 

pairwise comparisons, the pairwise rankings agreed with LINGO's complete ranking 168 times: 

Optimal solution found at step:        50 

Objective value:                 168.0000 

Branch count:                           0 

      Variable           Value        Reduced Cost 

  RANK( KONIG)        3.000000           0.0000000 

  RANK( FURST)        10.00000           0.0000000 

RANK( PILSURQ)        2.000000           0.0000000 

  RANK( GUNZB)        1.000000           0.0000000 

RANK( RIEGELE)        7.000000           0.0000000 

  RANK( PAULA)        5.000000           0.0000000 

  RANK( JEVER)        9.000000           0.0000000 

  RANK( BECKS)        8.000000           0.0000000 

  RANK( WARST)        4.000000           0.0000000 

    RANK( BUD)        6.000000           0.0000000 

 According to this ranking, GUNZB comes out number 1 (most preferred), while FURST comes out 

tenth (least preferred). It is important to note that there may be alternate optima. This means there may 

be alternate orderings, all of which match the input pairings 168 times out of 270. In fact, you can show 

that there is another ordering with a value of 168 in which PILSURQ is ranked first.  
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11.6.6 Quadratic Assignment Problem 
The quadratic assignment problem has the same constraint set as the linear assignment problem. 

However, the objective function contains products of two variables. Notationally, it is: 

Min     
lkji
 ci j k l xi j xk l 

subject to: 

For each j: 

i
 xi j = 1 

For each i: 

j
 xi j = 1 

Some examples of this problem are: 

(a) Facility layout. If djl is the physical distance between room j and room l; sik is the 

communication traffic between department i and k; and xij = 1 if department i is assigned 

to room j, then we want to minimize: 

lkji
 xij xkl djl sik 

(b) Vehicle to gate assignment at a terminal. If djl is the distance between gate j and gate l at an 

airline terminal, passenger train station, or at a truck terminal; sik is the number of passengers 

or tons of cargo that needs to be transferred between vehicle i and vehicle k; and xij = 1 if 

vehicle i (incoming or outgoing) is assigned to gate j, then we again want to minimize: 

lkji
 xij xkl djl sik 

(c) Radio frequency assignment. If dij is the physical distance between transmitters i and j; skl 

is the distance in frequency between k and l; and pi is the power of transmitter i, then we 

want cijkl = max{pi, pj} (1/dij)(1/skl) to be small if transmitter i is assigned frequency k and 

transmitter j is assigned frequency l. 

(d) VLSI chip layout. The initial step in the design of a VLSI (very large scale integrated) chip 

is typically to assign various required components to various areas on the chip. See 

Sarrafzadeh and Wong (1996) for additional details. Steinberg (1961) describes the case of 

assigning electronic components to a circuit board, so as to minimize the total interconnection 

wire length. For the chip design case, typically the chip area is partitioned into 2 to 6 areas. If 

djl is the physical distance between area j and area l; sik is the number of connections 

required between components i and k; and xij = 1 if component i is assigned to area j, then 

we again want to minimize: 

lkji
 xij xkl djl sik 

 (e) Disk file allocation. If wij is the interference if files i and j are assigned to the same disk, 

we want to assign files to disks, so total interference is minimized.  

(f) Type wheel design. Arrange letters and numbers on a type wheel, so (a) most frequently 

used ones appear together and (b) characters that tend to get typed together (e.g., q u) 

appear close together on the wheel. 
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 The quadratic assignment problem is a notoriously difficult problem. If someone asks you to solve 

such a problem, you should make every effort to show the problem is not really a quadratic assignment 

problem. One indication of its difficulty is the solution is not naturally integer. 

 One of the first descriptions of quadratic assignment problems was by Koopmans and Beckmann 

(1957). For this reason, this problem is sometimes known as the Koopmans-Beckmann problem. They 

illustrated the use of this model to locate interacting facilities in a large country. Elshafei (1977) 

illustrates the use of this model to lay out a hospital. Specifically, 19 departments are assigned to 19 

different physical regions in the hospital. The objective of Elshafei was to minimize the total distance 

patients had to walk between departments. The original assignment used in the hospital required a 

distance of 13,973,298 meters per year. An optimal assignment required a total distance of 8,606,274 

meters. This is a reduction in patient travel of over 38%. 

 Small quadratic assignment problems can be converted to linear integer programs by the 

transformation: 

 Replace the product xij xkl by the single variable zijkl. The objective is then: 

Min     
lkji
 ci j k l zi jk l 

 Notice if there are N departments and N locations, then there are NN variables of type xij, and 

NNNN variables of type zijkl variables. This formulation can get large quickly. Several reductions are 

possible: 

1) The terms cijkl xij xkl and c klij xkl xij can be combined into the term: 

(cijkl + c klij ) xkl xij  

to reduce the number of z variables and associated constraints needed by a factor of 2. 

2) Certain assignments can be eliminated beforehand (e.g., a large facility to a small location). 

Many of the cross terms, cijkl , are zero (e.g., if there is no traffic between facility i and facility 

k), so the associated z variables need not be introduced. 

 The non-obvious thing to do now is to ensure that zijkl = 1 if and only if both xij and xkl = 1. Sherali 

and Adams(1999) point out that constraints of the following type will enforce this requirement: 

 For a given i, k, l: 

      

,

kl ijkl

j j l

x z


=   

 In words, if object k is assigned to location l, then for any other object i, i  k, there must be some 

other location j, j  l, to which i is assigned. 
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 The following is a LINGO implementation of the above for deciding which planes should be 

assigned to which gates at an airport, so that the distance weighted cost of changing planes for the 

passengers is minimized: 

MODEL: 

! Quadratic assignment problem(QAP006); 

!  Given number of transfers between flights,  

   distance between gates, 

   assign flights to gates to minimize total transfer cost; 

 SETS:   

  FLIGHT/1..6/; 

  GATE/ E3 E4 E5 F3 F4 F5/;! Gates at terminal 2 of O'Hare; 

  GXG( GATE, GATE)| &1 #LT# &2: T; ! Inter gate times(symmetric); 

  FXF( FLIGHT, FLIGHT)| &1 #LT# &2: N; ! Transfers between flights; 

  FXG( FLIGHT, GATE):   X; ! Flight to gate assignment variable; 

 ENDSETS 

 DATA: 

  T =  70  40  60  90  90  ! Time between gates; 

           50 100  80 110 

              100  90 130 

                   60  40 

                        30; 

  N =  12   0  12   0   5 

           30  35  20  13  ! No. units between flights; 

               40  20  10 

                     0  6 

                       14; 

 ENDDATA 

!--------------------------------------------------------; 

! Warning: may be very slow for no. objects > 7; 

  SETS:  ! Warning: this set gets big fast!; 

   TGTG( FLIGHT, GATE, FLIGHT, GATE)| &1 #LT# &3: Z; 

  ENDSETS 

! Min the cost of transfers * distance; 

   MIN = @SUM( TGTG( B, J, C, K)| J #LT# K: 

            Z( B, J, C, K) * N( B, C) * T( J, K)) 

       + @SUM( TGTG( B, J, C, K)| J #GT# K: 

            Z( B, J, C, K) * N( B, C) * T( K, J)); 

! Each flight, B, must be assigned to a gate; 

    @FOR( FLIGHT( B): 

      @SUM( GATE( J): X( B, J)) = 1;  

         ); 

! Each gate, J, must receive one flight; 

    @FOR( GATE( J): 

      @SUM( FLIGHT( B): X( B, J)) = 1;  

         ); 

! Make the X's binary; 

    @FOR( FXG: @BIN( X); 

        ); 
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! Force the Z() to take the correct value relative to the X(); 

  @FOR( FXG( C, K): 

    @FOR( GATE( J)| J #NE# K: 

! If C is assigned to K,  some B must be assigned to J...; 

     X( C, K) = @SUM( TGTG( B, J, C, K)| B #NE# C : Z( B, J, C, K)) 

              + @SUM( TGTG( C, K, B, J)| B #NE# C : Z( C, K, B, J)); 

        ); 

    @FOR( FLIGHT( B)| B #NE# C: 

!  and B must be assigned to some J; 

     X( C, K) = @SUM( TGTG( B, J, C, K)| J #NE# K : Z( B, J, C, K)) 

              + @SUM( TGTG( C, K, B, J)| J #NE# K : Z( C, K, B, J)); 

        ); 

      ); 

 END 

The solution is: 

 Global optimal solution found at step:          1258 

 Objective value:                            13490.00 

 Branch count:                                      0 

                Variable           Value     

               X( 1, E4)        1.000000          

               X( 2, F4)        1.000000          

               X( 3, F3)        1.000000          

               X( 4, F5)        1.000000          

               X( 5, E3)        1.000000          

               X( 6, E5)        1.000000          

 Thus, flight 1 should be assigned to gate E4, flight 2 to gate F4, etc. The total passenger travel time 

in making the connections will be 13,490. Notice that this formulation was fairly tight. No branches 

were required to get an integer solution from the LP solution. 

11.7 Problems of Grouping, Matching, Covering, Partitioning, and 
Packing 

 

There is a class of problems that have the following essential structure: 

1) There is a set of m objects, and 

2) They are to be grouped into subsets, so some criterion is optimized. 
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Some example situations are: 

  Objects  Group  Criteria for a Group 

(a)  Dormitory 

inhabitants 

 Roommates  At most two to a room; no smokers with nonsmokers. 

(b)  Deliveries to 

customers 

 Trip  Total weight assigned to trip is less-than-or-equal-to 

vehicle capacity. Customers in same trip are close 

together. 

(c)  Sessions at a 

scientific 

meeting 

 Sessions scheduled 

for same time slot 

 No two sessions on same general topic. Enough 

rooms of sufficient size. 

(d)  Exams to be 

scheduled 

 Exams scheduled  

for same time slot 

 No student has more than one exam in a given time 

slot. 

(e)  Sportsmen  Foursome (e.g., in 

golf or tennis 

doubles). 

 Members are of comparable ability, appropriate 

combination of sexes as in tennis mixed doubles. 

(f)  States on 

map to be 

colored. 

 All states of a given 

color 

 States in same group/color cannot be adjacent. 

(g)  Finished 

good widths 

needed in a 

paper plant 

 Widths cut from a 

single raw paper 

roll. 

 Sum of finished good widths must not exceed raw 

material width. 

  (h)  Pairs of 

points to 

connect on a 

circuit board 

 

 Connection layers 

underneath the 

circuit board 

 Connection paths in a layer should not intersect. 

Total lengths of paths are small. 

  (i)  Financial 

instruments, 

e.g., 

mortgages 

 Package of 

instruments, e.g., 

mortgage backed 

securities 

 Package must be approximately of a target size, 

target credit worthiness, target interest rate. 

If each object can belong to at most one group, it is called a packing problem. For example, in a delivery 

problem, as in (ii) above, it may be acceptable that a low priority customer not be included in any trip 

today if we are confident the customer could be almost as well served by a delivery tomorrow. If each 

object must belong to exactly one group, it is called a partitioning problem. For example, in circuit board 

routing as in (vii) above, if a certain pair of points must be connected, then that pair of points must be 

assigned to exactly one connection layer underneath the board. If each object must belong to at least one 

group, it is called a covering problem. A packing or partitioning problem with group sizes limited to two 

or less is called a matching problem. Specialized and fast algorithms exist for matching problems. A 

problem closely related to covering problems is the cutting stock problem. It arises in paper, printing, 

textile, and steel industries. In this problem, we want to determine cutting patterns to be used in cutting 

up large pieces of raw material into finished-good-size pieces. 

 Although grouping problems may be very easy to state, it may be very difficult to find a provably 

optimal solution if we take an inappropriate approach.  There are two common approaches to formulating 
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grouping problems: (1) assignment style, or (2) the partition method. The former is convenient for small 

problems, but it quickly becomes useless as the number of objects gets large. 

11.7.1 Formulation as an Assignment Problem 
The most obvious formulation for the general grouping problem is based around the following definition 

0/1 decision variables: 

Xij = 1 if object j is assigned to group i, 0 otherwise. 

 A drawback of this formulation is that it has a lot of symmetry. There are many alternate optimal 

solutions. All of which essentially are identical. For example, assigning golfers A, B, C, and D to group 

1 and golfers E, F, G, and H to group 2 is essentially the same as assigning golfers E, F, G, and H to 

group 1 and golfers A, B, C and D to group 2. These alternate optima make the typical integer 

programming algorithm take much longer than necessary. 

 We can eliminate this symmetry and the associated alternate optima with no loss of optimality if we 

agree to the following restrictions: (a) object 1 can only be assigned to group 1; (b) object 2 can only be 

assigned to groups 1 or 2 and only to 1 if object 1 is also assigned to 1; (c) and in general, object j can 

be assigned to group i < j, only if object i is also assigned to group i. This implies in particular that: 

Xii = 1, if and only if object i is the lowest indexed object in its group, and 

Xij is defined only for i  j.  

Now we will look at several examples of grouping problems and show how to solve them. 

11.7.2 Matching Problems, Groups of Size Two 
The roommate assignment problem is a simple example of a grouping problem where the group size is 

two.  An example of this is a problem solved at many universities at the start of the school year before 

the first-year or freshman students arrive.  The rooms in a freshman dormitory typically take exactly two 

students.  How should new incoming students be paired up?  One approach that has been used is that for 

every possible pair of students,  a score is calculated which is a measure of how well the school thinks 

this particular pair of students would fare as roommates.  Considerations that enter into a score are things 

such as:  a smoker should not be matched with a nonsmoker,  a person who likes to study late at night 

should not be paired with a student who likes to get up early and study in the morning.  Let us suppose 

we have computed the scores for all possible pairs of the six students: Joe, Bob, Chuck, Ed, Evan, and 

Sean.  A scaler model for this problem might be: 

! Maximize total score of pairs selected; 

 MAX= 9*X_JOE_BOB  + 7*X_JOE_CHUCK  + 4*X_JOE_ED 

    + 6*X_JOE_EVAN + 3*X_JOE_SEAN   + 2*X_BOB_CHUCK 

    + 8*X_BOB_ED     + X_BOB_EVAN   + 7*X_BOB_SEAN 

    + 3*X_CHUCK_ED + 4*X_CHUCK_EVAN + 9*X_CHUCK_SEAN 

    + 5*X_ED_EVAN  + 5*X_ED_SEAN    + 6*X_EVAN_SEAN; 

  

 ! Each student must be in exactly one pair; 

 [JOE]  X_JOE_BOB  + X_JOE_CHUCK + X_JOE_ED  

      + X_JOE_EVAN + X_JOE_SEAN = 1; 

 [BOB]  X_JOE_BOB + X_BOB_CHUCK + X_BOB_ED  

      + X_BOB_EVAN+ X_BOB_SEAN = 1; 

 [CHUCK]  X_JOE_CHUCK + X_BOB_CHUCK + X_CHUCK_ED  
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        + X_CHUCK_EVAN+ X_CHUCK_SEAN = 1; 

 [ED]  X_JOE_ED + X_BOB_ED + X_CHUCK_ED + X_ED_EVAN 

      + X_ED_SEAN =    1; 

 [EVAN]  X_JOE_EVAN + X_BOB_EVAN + X_CHUCK_EVAN + X_ED_EVAN 

      + X_EVAN_SEAN =    1; 

 [SEAN]  X_JOE_SEAN + X_BOB_SEAN + X_CHUCK_SEAN  

       + X_ED_SEAN + X_EVAN_SEAN =    1; 

 

 ! Assignments must be binary, not fractional; 

  @BIN( X_JOE_BOB);   @BIN( X_JOE_CHUCK);   @BIN( X_JOE_ED); 

  @BIN( X_JOE_EVAN);  @BIN( X_JOE_SEAN);    @BIN( X_BOB_CHUCK); 

  @BIN( X_BOB_ED);   @BIN( X_BOB_EVAN);    @BIN( X_BOB_SEAN); 

  @BIN( X_CHUCK_ED); @BIN( X_CHUCK_EVAN); @BIN( X_CHUCK_SEAN); 

  @BIN( X_ED_EVAN);  @BIN( X_ED_SEAN);    @BIN( X_EVAN_SEAN); 

 

Notice that there is a variable X_JOE_BOB,  but not a variable X_BOB_JOE.  This is because we do not 

care whose name is listed first on the door.  We only care about which two are paired together.  We say 

we are interested in unordered pairs. 

 

A typical dormitory may have 60,  or 600,  rather than 6 students,  so a general, set based formulation 

would be useful.  The following formulation shows how to do this in LINGO.  One thing we want to do 

in the model is to tell LINGO that we do not care about the order of persons in a pair.  LINGO 

conveniently allows us to put conditions on which of all possible members (pairs in this case) of a set 

are to be used in a specific model.  The key statement in the model is: 
 

  PXP( PERSON, PERSON)| &1 #LT# &2: VALUE, X; 

 

The fragment, PXP( PERSON, PERSON), by itself, tells LINGO that the set PXP should consist of  

all possible combinations, 6*6 for this example, of two persons.  The conditional phrase, | &1 #LT# 

&2 , however,  tells LINGO to restrict the combinations to those in which the index number, &1, of the 

first person in a pair should be strictly less than the index number,  &2,  of the second person. 

 

MODEL: ! (roomates.lng); 

 SETS: 

  PERSON; 

! Joe rooms with Bob means the same as 

  Bob rooms with Joe, so we need only the 

   upper triangle; 

  PXP( PERSON, PERSON)| &1 #LT# &2: VALUE, X; 

 ENDSETS 

 DATA: 

  PERSON = Joe  Bob  Chuck  Ed  Evan Sean; 

   Value =       9     7    4     6    3   ! Joe; 

                       2    8     1    7   ! Bob; 

                            3     4    9   ! Chuck; 

                                  5    5   ! Ed; 

                                       6 ; ! Evan; 
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  ENDDATA 

 

! Maximize the value of the matchings; 

  MAX = @SUM( PXP(I,J): Value(i,j)* X(I,J)); 

 

! Each person appears in exactly one match; 

   @FOR( PERSON( K):  

       @SUM( PXP(K,J): X(K,J)) + @SUM( PXP(I,K): X(I,K)) = 1; 

       ); 

! No timesharing; 

  @FOR( PXP(I,J): @BIN(X(I,J))); 

END 

 

The constraint, @SUM( PXP(K,J): X(K,J)) + @SUM( PXP(I,K): X(I,K))= 1   has two 

terms,  the first where student K is the first person in the pair,  the second summation is over the 

variables where student K is the second person in the pair.  For example, in the scaler formulation,  

notice that ED is the first person in two of the pairs,  and the second person of three of the pairs. 

 

The following solution, with value 23, is found. 
 

                       Variable           Value 

                  X( JOE, EVAN)        1.000000 

                    X( BOB, ED)        1.000000 

                X( CHUCK, SEAN)        1.000000 

 

So Joe is to be paired with Evan,  Bob with Ed,  and Chuck with Sean.  This model scales up well in that 

it can be easily solved for large numbers of objects,  e.g., many hundreds. 

 For a different perspective on matching, see the later section on “stable matching”. 

 

11.7.3 Groups with More Than Two Members 
 The following example illustrates a problem recently encountered by an electricity generating firm 

and its coal supplier.  You are a coal supplier and you have a nonexclusive contract with a consumer 

owned and managed electric utility, Power to the People (PTTP). You supply PTTP by barge. Your 

contract with PTTP stipulates that the coal you deliver must have at least 13000 BTU’s per ton, no more 

than 0.63% sulfur, no more than 6.5% ash, and no more than 7% moisture. Historically, PTTP would 

not accept a barge if it did not meet the above requirements.  
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 You currently have the following barge loads available.  

Barge BTU/ton Sulfur% Ash% Moisture% 

1 13029 0.57 5.56 6.2 

2 14201 0.88 6.76 5.1 

3 10630 0.11 4.36 4.6 

4 13200 0.71 6.66 7.6 

5 13029 0.57 5.56 6.2 

6 14201 0.88 6.76 5.1 

7 13200 0.71 6.66 7.6 

8 10630 0.11 4.36 4.6 

9 14201 0.88 6.76 5.1 

10 13029 0.57 5.56 6.2 

11 13200 0.71 6.66 7.6 

12 14201 0.88 6.76 5.1 

 

This does not look good. Only barges 1, 5,  and 10 satisfy PTTP’s requirement.  What can we do? 

Suppose that after reading the fine print of your PTTP contract carefully, you initiate some discussions 

with PTTP about how to interpret the above requirements.  There might be some benefits if you could 

get PTTP to reinterpret the wording of the contract so that the above requirements apply to collections 

of up to three barges. That is, if the average quality taken over a set of N barges, N less than four, meets 

the above quality requirements, then that set of N barges is acceptable. You may specify how the sets of 

barges are assembled. Each barge can be in at most one set. All the barges in a set must be in the same 

shipment. 

  

Looking at the original data, we see, even though there are twelve barges, there are only four distinct 

barge types represented by the original first four barges. In reality, you would expect this: each barge 

type corresponding to a specific mine with associated coal type. 
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 Modeling the barge grouping problem as an assignment problem is relatively straightforward. The 

essential decision variable is defined as X (I, J) = number of barges of type I assigned to group J. Note 

we have retained the convention of not distinguishing between barges of the same type. Knowing there 

are twelve barges, we can restrict ourselves to at most six groups without looking further at the data. The 

reasoning is: Suppose there are seven nonempty groups. Then, at least two of the groups must be 

singletons. If two singletons are feasible, then so is the group obtained by combining them. Thus, we 

can write the following LINGO model: 

MODEL: 

SETS: 

  MINE: BAVAIL; 

  GROUP; 

  QUALITY: QTARG; 

!  Composition of each type of MINE load; 

  MXQ( MINE, QUALITY): QACT; 

!assignment of which MINE to which group; 

!no distinction between types; 

  MXG( MINE, GROUP):X; 

ENDSETS 

DATA: 

  MINE =   1..4;  

      ! Barges available of each type(or mine); 

  BAVAIL = 3 4 2 3; 

  QUALITY =  BTU,  SULF, ASH, MOIST; 

      ! Quality targets as upper limits; 

  QTARG = - 13000  0.63  6.5   7; 

      ! Actual qualities of each mine; 

  QACT =   -13029  0.57  5.56 6.2  

           -14201  0.88  6.76 5.1 

           -10630  0.11  4.36 4.6 

           -13200  0.71  6.66 7.6; 

! We need at most six groups; 

  GROUP = 1..6; 

  GRPSIZ = 3; 

ENDDATA 

! Maximize no. of barges assigned; 

MAX = @SUM( MXG: X); 

! Upper limit on group size; 

 @FOR( GROUP(J): @SUM( MINE( I): X(I, J)) 

      <= GRPSIZ;); 

! Assign no more of a type than are available; 

 @FOR( MINE(I): @SUM( GROUP( J): X( I, J)) 

      <= BAVAIL( I)); 

! The blending constraints for each group; 

 @FOR( GROUP(J): 

  @FOR( QUALITY ( H): 

   @SUM( MINE( I): X( I, J) * QACT( I, H)) <= 

   @SUM( MINE( I): X( I, J) * QTARG( H)); 

      )); 

! barges must be integers; 

@FOR( MXG: @GIN( X)); 

END 
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 The following solution shows that you can now sell ten barges,  rather than three, to PTTP. 

Objective value:                 10.00000 

Variable           Value        

X( 1, 1)        1.000000           

X( 2, 2)        2.000000           

X( 3, 2)        1.000000           

X( 1, 4)        2.000000           

X( 4, 4)        1.000000           

X( 2, 5)        2.000000           

X( 3, 5)        1.000000           

For example, group 1 is simply one barge of type 1.  Group 2 consists two barges of type 2 and one 

barge of type 3.  The above formulation may not scale well.  The actual application typically had about 

60 barges in a candidate set.  The above formulation may be slow to solve problems of that size.  The 

next section discusses how the partitioning approach can be efficiently used for such problems. 

 

Solving with a Partitioning Formulation 

Modest-sized integer programs can nevertheless be very difficult to solve. There are a number of rules 

that are useful when facing such problems. Two useful rules for difficult integer programs are: 

 1) Do Not Distinguish the Indistinguishable; 

 2) Presolve subproblems. 

 The barge matching example can be solved almost “by hand” with the matching or grouping (as 

opposed to the assignment) approach. Applying the rule “Presolve subproblems,” we can enumerate all 

feasible combinations of three or less barges selected from the four types. Applying the “Don’t 

distinguish” rule again, we do not have to consider combinations such as (1,1) and (2,2,2), because such 

sets are feasible if and only if the singleton sets (e.g., (1) and (2)) are also feasible. Thus, disregarding 

quality, there are four singleton sets, six doubleton sets, four distinct triplets (e.g., (1,2,3)) and twelve 

paired triplets (e.g., (1,1,2)) for a total of 26 combinations. It is not hard to show, even manually, that 

the only feasible combinations are (1), (1,1,4), and (2,2,3). Thus, the matching-like IP we want to solve 

to maximize the number of barges sold is: 

Max = S001 + 3 * S114 + 3 * S223; 

 S001 + 2 * S114        <= 3 ; 

      !(No. of type 1 barges); 

                2 * S223  <= 4 ; 

      !(No. of type 2 barges); 

                    S223  <= 2 ; 

      !(No. of type 3 barges); 

              S114        <= 3 ; 

      !(No. of type 4 barges); 

This is easily solved to give S001 = 1, S114 = 1, and S223 = 2, with an objective value of 10. 
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 For the given data, we can ship at most ten barges. One such way of matching them, so each set 

satisfies the quality requirements is as follows: 

 Average Quality of the Set 

Barges in set BTU% Sulfur% Ash% Moisture% 

1 13029 0.57 5.56 6.2 

4, 5, 10 13086 0.6167 5.927 6.667 

2, 3, 6 13010 0.6233 5.96 4.933 

8, 9, 12 13010 0.6233 5.96 4.933 

This matches our LINGO derived solution. 

11.7.4 Groups with a Variable Number of Members, Assignment Version 
In many applications of the grouping idea,  the group size may be variable.  The following example from 

the financial industry illustrates.  A financial services firm has financial objects (e.g., mortgages) it wants 

to “package” and sell. One of the features of a package is that it must contain a combination of objects 

whose values total at least one million dollars. For our purposes, we will assume this is the only 

qualification in synthesizing a package. We want to maximize the number of packages we form.  We 

first give an assignment formulation.  The key declaration in this formulation is:  

    OXO( OBJECT, OBJECT)| &1 #LE# &2: X; 

This implies there will be a variable of the form X(I,J) with always the index I  J.  Our 

interpretation of this variable will be: 

     X(I,J) = 1 means object J is assigned to the same group as object I, and further, 

     X(I,I) = 1 means object I is the lowest indexed object in that group. 

 

MODEL: 

! Object bundling model. (OBJBUNDL); 

!A broker has a number of loans of size from $55,000 to $946,000.  

 The broker would like to group the loans into packages  

 so that each package has at least $1M in it,  

 and the number of packages is maximized; 

! Keywords: bundling, financial, set packing; 

 SETS:   OBJECT: VALUE, OVER; 

   OXO( OBJECT, OBJECT)| &1 #LE# &2: X; 

 ENDSETS 

 DATA: 

  OBJECT= A   B   C   D   E   F   G  H   I   J   K  L   M   N   P   Q   R; 

   VALUE=910 870 810 640 550 250 120 95 55 200 321 492 567 837 193 364 946; 

! The value in each bundle must be >= PKSIZE; 

    PKSIZE = 1000; 

 ENDDATA 

!----------------------------------------------; 

! Definition of variables; 

!  X( I, I) = 1 if object I is lowest numbered 

              object in its package; 

!  X( I, J) = 1 if object j is assigned to package I; 

! Maximize number of packages assembled; 

  MAX = @SUM( OBJECT( I): X( I, I)); 
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  @FOR( OBJECT( K): 

! Each object can be assigned to at most one package; 

    @SUM( OXO( I, K): X( I, K)) <= 1; 

! A package must be at least PSIZE in size; 

    @SUM( OXO( K, J): VALUE( J) * X( K, J))  

         - OVER( K) = PKSIZE * X( K, K); 

      ); 

! The X( I, J) must = 0 or 1; 

  @FOR( OXO( I, J): @BIN( X( I, J));); 

END 

A solution is: 

Variable           Value 

X( A, A)        1.000000 

X( A, H)        1.000000 

X( B, B)        1.000000 

X( B, F)        1.000000 

X( C, C)        1.000000 

X( C, J)        1.000000 

X( D, D)        1.000000 

X( D, Q)        1.000000 

X( E, E)        1.000000 

X( E, L)        1.000000 

X( G, G)        1.000000 

X( G, K)        1.000000 

X( G, M)        1.000000 

X( I, I)        1.000000 

X( I, R)        1.000000 

X( N, N)        1.000000 

X( N, P)        1.000000 

 Thus, eight packages are constructed. Namely: AH, BF, CJ, DQ, EL, IR, JN, GKM, and NP. It 

happens that every object appears in some package.  There are alternate packings of all the objects into 

eight groups. Thus, one may wish to consider secondary criteria for choosing one alternate optimum 

over another (e.g., the largest package should be as close as possible to one million in size).  The worst 

package in the fairness sense in the above solution is BF.  It is over the target of 1,000,000 by 120,000. 

 

11.7.5 Groups with A Variable Number of Members, Packing Version 
An alternative approach is first to enumerate either all possible or all interesting feasible groups and then 

solve an optimization problem of the form: 

Maximize value of the groups selected 

subject to: 

Each object is in at most one of the selected groups. 

 The advantage of this formulation is, when it can be used, it typically can be solved more easily 

than the assignment formulation. The disadvantages are it may have a huge number of decision variables, 

especially if the typical group size is more than three.  If there are n distinct objects,  and all groups are 

of size k, then there are n!/(k! (n-k)!) distinct groups.  For example, if n = 50 and k = 3, then there are 

19,600 candidate groups. 
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 This formulation uses the idea of composite variables. This is frequently a useful approach for a 

problem for which the original or “natural” formulation is difficult to solve. Setting a particular 

composite variable to 1 represents setting a particular combination of the original variables to 1. We 

generate only those composite variables that correspond to feasible combinations of the original 

variables. This effectively eliminates many of the fractional solutions that would appear if one solved 

the LP relaxation of the original formulation. The composite variable idea is a form of what is sometimes 

called column generation. The path formulation in network models is also an example of the use of 

composite variables. 

 

Example: Packing Financial Instruments, revisited. 

The packing approach to formulating a model for this problem constructs all possible packages or groups 

that just satisfy the one million minimum. The general form of the LP/IP is: 

Maximize value of packages selected 

subject to: 

Each object appears in at most one selected package. 

 In the formulation below, we will use sparse sets to represent our packages. We assume that we 

need not consider packages of more than four objects. An attractive feature of the packing/partitioning 

formulation is that we can easily attach an essentially arbitrary score to each possible group.  In 

particular,  the following formulation applies a squared penalty to the extent to which a package of loans 

exceeds the target of $1M. 

MODEL: 

! Object bundling model.  (OBJBUNDH); 

! A broker has a number of loans of size from $55,000 to 

$946,000.  

 The broker would like to group the loans into packages  

 so that each package has at least $1M in it, preferably 

 not much more,  

 and the number of packages is maximized; 

! Keywords: bundling, financial, set packing; 

 SETS:   

 OBJECT: VALUE; 

 ENDSETS 

 DATA: 
   OBJECT =  A   B   C   D   E   F   G   H   I   J   K  L   M   N   P   Q   R; 

    VALUE = 910 870 810 640 550 250 120  95 55 200 321 492 567 837 193 364 

946; 

! The value in each bundle must be >= PKSIZE; 

    PKSIZE = 1000; 

 ENDDATA 

 SETS: 

 !Enumerate all 2,3, and 4 object unordered sets  package 
size;  

  BNDL2( OBJECT, OBJECT) | &1 #LT# &2  

      #AND# (VALUE(&1) + VALUE(&2)) #GE# PKSIZE:  X2, OVER2; 

  BNDL3( OBJECT, OBJECT, OBJECT) | &1 #LT# &2 #AND#  &2 #LT# 

&3 
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    #AND# ( VALUE(&1) + VALUE(&2) + VALUE(&3) #GE# PKSIZE): 

      X3, OVER3; 

  BNDL4( OBJECT, OBJECT, OBJECT, OBJECT) | &1 #LT# &2  

    #AND#  &2 #LT# &3 #AND# &3 #LT# &4 #AND# (( VALUE(&1) +  

    VALUE(&2) + VALUE(&3) + VALUE( &4)) #GE# PKSIZE):  X4, 

OVER4; 

 ENDSETS 

!----------------------------------------------; 

!Compute the overage of each bundle; 

  @FOR( BNDL2( I,J): 

    OVER2(I,J) = VALUE(I) + VALUE(J) - PKSIZE; 

      ); 

  @FOR( BNDL3( I,J,K):  

    OVER3(I,J,K) = VALUE(I)+VALUE(J)+VALUE(K) - PKSIZE 

      ); 

  @FOR( BNDL4( I,J,K,L):  

    OVER4(I,J,K,L) = VALUE(I)+VALUE(J)+VALUE(K)+VALUE(L)- 

PKSIZE; 

      ); 

 

! Maximize score of packages assembled. Penalize a package 

that 

  is over the minimum package size; 

  MAX= @SUM( BNDL2( I,J): X2(I,J) * (1-(OVER2(I,J)/PKSIZE)^2)) 

      +@SUM( BNDL3( I,J,K): 

                     X3(I, J,K) * (1-(OVER3(I,J,K)/PKSIZE)^2)) 

     + @SUM( BNDL4( I,J,K,L): 

                  X4(I,J,K,L) * (1-

(OVER4(I,J,K,L)/PKSIZE)^2)); 

 

  @FOR( OBJECT( M): 

! Each object M can be in at most one of the selected bundles; 

    @SUM( BNDL2( I, J)| I #EQ# M #OR# J #EQ# M: X2( I, J)) 

  + @SUM( BNDL3( I, J, K)| I #EQ# M #OR# J #EQ# M #OR# K #EQ# 

M: 

         X3( I, J, K)) 

  + @SUM( BNDL4( I, J, K, L)| 

       I #EQ# M #OR# J #EQ# M #OR# K #EQ# M #OR# L #EQ# M: 

         X4( I, J, K, L)) <= 1; 

       ); 

 

! The X's must = 0 or 1; 

  @FOR( BNDL2( I, J): @BIN( X2( I, J));); 

  @FOR( BNDL3( I, J, K): @BIN( X3( I, J, K));); 

  @FOR( BNDL4( I, J, K, L): @BIN( X4( I, J, K, L));); 

END 
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  Global optimal solution found at iteration:            19 

  Objective value:                7.989192 

                  Variable           Value 

                 X2( A, H)        1.000000 

              OVER2( A, H)        5.000000 

                 X2( B, P)        1.000000 

              OVER2( B, P)        63.00000 

                 X2( C, F)        1.000000 

              OVER2( C, F)        60.00000 

                 X2( D, Q)        1.000000 

              OVER2( D, Q)        4.000000 

                 X2( E, L)        1.000000 

              OVER2( E, L)        42.00000 

                 X2( I, R)        1.000000 

              OVER2( I, R)        1.000000 

                 X2( J, N)        1.000000 

              OVER2( J, N)        37.00000 

              X3( G, K, M)        1.000000 

           OVER3( G, K, M)        8.000000 

 

 Notice that this allocation is slightly more balanced than the previous solution based on the 

assignment formulation.  The largest “overage” is 63,000 rather than 120,000.  This is because the 

grouping formulation provided an easy way to penalize large packages. 

11.7.6 Groups with A Variable Number of Members, Cutting Stock Problem 
Another application in which the partitioning or packing approach has worked well is the cutting stock 

problem in the paper and steel industry.  We revisit the example introduced in chapter 7.  There we 

manually enumerated all possible patterns or packings drawn from 8 different finished good widths into 

each of three different raw material widths.  The formulation below automatically enumerates all 

possible patterns.  For each raw material width, the formulation automatically enumerates all possible 

groupings of 1, 2, …,7  finished good widths so that the sum of the finished good widths is less than or 

equal to the raw material width. 

 One notable feature of this formulation is that it introduces a shortcut that may be important in 

keeping computation time low when there are many,  e.g., more than 20, objects.  To illustrate the 

shortcut,  consider the three declarations: 
 

! Enumerate all possible cutting patterns with 1 fg; 

  rxf(rm,fg)| lenf(&2) #le# lenr(&1): x1; 

! Enumerate all possible patterns with 2 fg; 

  rxf2( rxf, fg) |  

     &2 #le# &3 #and# (lenf(&2) + lenf(&3) #le# lenr(&1)): x2; 

! Enumerate all possible patterns with 3 fg; 

  rxf3( rxf2, fg)| &3 #le# &4  

      #and# (lenf(&2) + lenf(&3)+ lenf(&4) #le# lenr(&1)): x3; 

 

 The declaration rxf(rm,fg), by itself, tells LINGO to generate all combinations of one raw 

material and one finished good.  The condition  | lenf(&2) #le# lenr(&1) , however, tells 
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LINGO to not generate a combination of a raw material(the index &1) and finished good(index &2) for 

which the length(or width depending upon your orientation) of the finished good is greater than that of 

the raw material.  So, for example,  the combination  (R36, F38) will not be a member of rxf.  There 

will be four elements in rxf for which the first item of the pair is R36, namely ( R36, F34),  (R36, 

F24),  ( R36, F15),  and ( R36, F10). 

 Now consider how to generate all feasible combinations containing two finished good widths.  

The obvious declaration would be: rxf2( rm, fg, fg) | &2 #le# &3 #and# 
(lenf(&2) + lenf(&3) #le# lenr(&1)) 

The condition  &2 #le# &3 says we do not care about the order of the finished goods in the 

pattern, so we might as well restrict ourselves to listing the finished goods in the pattern in sorted 

order.   The condition lenf(&2) + lenf(&3) #le# lenr(&1)  restricts the elements of set 

rxf2 to feasible ones.  This declaration would be valid,  but we did not do it.  Why?  Instead we used 

the declaration  rxf2( rxf, fg).  The latter was used mainly for computational reasons.  With the 

latter, LINGO considers every combination of the elements of the set rxf and each finished good.  

Consider the case when the raw material is r36.  If the declaration rxf2( rm, fg, fg) is used, 

then  LINGO would look at 8 * 8 = 64 combinations of two finished goods and keep only the four 

combinations (r36, f24, f10 ), (r36, f15, f15 ),  (r36, f15, f10 ),  and (r36, f10, 

f10 ).  If on the other hand,  the declaration rxf2( rxf, fg)  is used,  then when the raw material 

is R36,  LINGO will only consider 4*8 = 32 combinations.  The 4 arises because set rxf contains 

only 4 elements for which the first member of the pair is R36.  For sets rxf3, and higher, the 

computational savings can be even higher. 

 
! Cutting stock solver(cutgent); 

! Keywords: cutting stock; 

SETS: 

! Each raw material has a size(length) and quantity; 

  rm: lenr, qr; 

! Ditto for each finished good; 

  fg: lenf, qf; 

ENDSETS 

DATA: 

! Describe the raw materials available; 

  rm, lenr, qr = 

  R72  72   9999 

  R45  48   9999 

  R36  36   9999; 

! Describe the finished goods needed; 

  fg, lenf, qf = 

  F60  60   500 

  F56  56   400 

  F42  42   300 

  F38  38   450 

  F34  34   350 

  F24  24   100 

  F15  15   800 

  F10  10  1000; 

ENDDATA 
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SETS: 

! Enumerate all possible cutting patterns with 1 fg; 

  rxf(rm,fg)| lenf(&2) #le# lenr(&1): x1; 

! Enumerate all possible patterns with 2 fg; 

  rxf2( rxf, fg) | 

        &2 #le# &3 #and# (lenf(&2) + lenf(&3) #le# lenr(&1)): 

x2; 

! Enumerate all possible patterns with 3 fg; 

  rxf3( rxf2, fg)| &3 #le# &4 #and#  

               (lenf(&2) + lenf(&3)+ lenf(&4) #le# lenr(&1)): 

x3; 

! Enumerate all possible patterns with 4 fg; 

  rxf4( rxf3, fg)| &4 #le# &5 #and#  

     (lenf(&2) + lenf(&3) + lenf(&4)+lenf(&5) #le# lenr(&1)): 

x4; 

! Enumerate all possible patterns with 5 fg; 

  rxf5( rxf4, fg)| &5 #le# &6 #and# (lenf(&2) + lenf(&3)+ 

lenf(&4)+lenf(&5)+lenf(&6) 

          #le# lenr(&1)): x5; 

! Enumerate all possible patterns with 6 fg; 

  rxf6( rxf5, fg)| &6 #le# &7 #and# (lenf(&2) + lenf(&3)+ 

lenf(&4)+lenf(&5) 

      +lenf(&6)+lenf(&7) #le# lenr(&1)): x6; 

 

ENDSETS 

! Minimize length of material used; 

 

  MIN = @SUM( rxf(r,f1): lenr(r)*x1(r,f1)) 

      + @SUM( rxf2(r,f1,f2): lenr(r)*x2(r,f1,f2)) 

      + @SUM( rxf3(r,f1,f2,f3): lenr(r)*x3(r,f1,f2,f3)) 

      + @SUM( rxf4(r,f1,f2,f3,f4): lenr(r)*x4(r,f1,f2,f3,f4)) 

      + @SUM( rxf5(r,f1,f2,f3,f4,f5): 

lenr(r)*x5(r,f1,f2,f3,f4,f5)) 

      + @SUM( rxf6(r,f1,f2,f3,f4,f5,f6): 

lenr(r)*x6(r,f1,f2,f3,f4,f5,f6)); 

 

! We have to satisfy each finished good demand; 

  @FOR( fg(f): 

     @SUM(rxf(r,f): x1(r,f)) 

   + @SUM(rxf2(r,f1,f2)| f #eq# f1: x2(r,f1,f2)) 

   + @SUM(rxf2(r,f1,f2)| f #eq# f2: x2(r,f1,f2)) 

   + @SUM(rxf3(r,f1,f2,f3)| f #eq# f1: x3(r,f1,f2,f3)) 

   + @SUM(rxf3(r,f1,f2,f3)| f #eq# f2: x3(r,f1,f2,f3)) 

   + @SUM(rxf3(r,f1,f2,f3)| f #eq# f3: x3(r,f1,f2,f3)) 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f1: x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f2: x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f3: x4(r,f1,f2,f3,f4)) 
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   + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f4: x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f1: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f2: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f3: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f4: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f5: 

x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f1:            

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f2:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f3:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f4:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f5:  

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f6: 

                                 x6(r,f1,f2,f3,f4,f5,f6)) 

    >= qf(f); 

      ); 

 

! We cannot use more raw material than is available; 

  @FOR( rm( r): 

     @SUM(rxf(r,f): x1(r,f)) 

   + @SUM(rxf2(r,f1,f2): x2(r,f1,f2)) 

   + @SUM(rxf3(r,f1,f2,f3): x3(r,f1,f2,f3)) 

   + @SUM(rxf4(r,f1,f2,f3,f4): x4(r,f1,f2,f3,f4)) 

   + @SUM(rxf5(r,f1,f2,f3,f4,f5): x5(r,f1,f2,f3,f4,f5)) 

   + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6): x6(r,f1,f2,f3,f4,f5,f6)) 

        <= qr(r); 

      ); 

 

 ! Can only run integer quantities of each pattern; 

     @FOR(rxf:  @GIN(x1)); 

     @FOR(rxf2: @GIN(x2)); 

     @FOR(rxf3: @GIN(x3)); 

     @FOR(rxf4: @GIN(x4)); 

     @FOR(rxf5: @GIN(x5)); 

     @FOR(rxf6: @GIN(x6)); 

 

If you click on  LINGO | Generate  menu item,  to display the scaler version of the model, you can see 

that the constraint for the 56 inch width is(hopefully reassuringly): 
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   X2_R72_F56_F15 + X2_R72_F56_F10 + X1_R72_F56 >= 400 ; 

 

When we click on the Solve icon we get the solution: 

  
Global optimal solution found at iteration:      31 

   Objective value:                          119832.0 

 

                                Variable           Value 

                      X2( R72, F60, F10)        500.0000 

                      X2( R72, F56, F15)        400.0000 

                      X2( R72, F38, F34)        350.0000 

                 X3( R72, F42, F15, F15)        186.0000 

                 X3( R72, F38, F24, F10)        100.0000 

            X4( R72, F42, F10, F10, F10)        114.0000 

            X4( R45, F15, F10, F10, F10)        2.000000 

  X6( R72, F15, F15, F10, F10, F10, F10)        13.00000 

11.7.7 Groups with A Variable Number of Members, Vehicle Routing 
The following vehicle routing example demonstrates that you can in fact perform a little optimization 

computation as part of the column or group generation.  The example we use is a variation of the vehicle 

routing problem considered in section  11.6.3.   The first and major part of this model is devoted to 

enumerating all minimal feasible trips with at most seven stops.  By feasible trip, we mean that the 

amount of material to be delivered to the stops in the trip does not exceed the vehicle capacity of 18 

pallets.  By minimal we mean that for a trip that visits a given set of stops,  the trip visits the stops in a 

sequence that minimizes the distance traveled.   

 Given that all minimal feasible trips have been generated,  the following simple integer program is 

solved: 

          Minimize  Cost of trips selected; 

              Subject to: 

             For each stop: 

                       Exactly one trip includes this stop. 

This little example has 15 stops,  so the integer program has 15 constraints, and a large number of 0/1 

variables(about 7300 in fact) ,  equal in number to the number of minimal feasible trips. 

The tricky part is how we generate the sets of minimal feasible trips, PSET2, PSET3, etc. and 

the assocated minimal distances,  D2( ), D3( ), etc.  To start understanding ideas, consider the variable  

D4(I,J,K,L).  It has the following definition. 

D4(I,J,K,L) = minimum distance required to start at the depot,  visit stops I, J, and K in 

any order and then visit stop L.  If DIST(I,J) is the distance matrix,  then Held and Karp(1962) 

observed that if D3 is defined in similar fashion,  then D4 can be computed by the dynamic 

programming recursion: 
    D4(I,J,K,L) = min[D3(I,J,K)+DIST(K,L), 

                      D3(I,K,J)+DIST(J,L), 

                      D3(J,K,I)+DIST(I,L)]       

The complete formulation follows. 

 
MODEL:   ! (vrgenext); 
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! The Vehicle Routing Problem (VRP) occurs in many service  

systems such as delivery, customer pick-up, repair and  

maintenance. A fleet of vehicles, each with fixed  

capacity, starts at a common depot and returns to the  

depot after visiting locations where service is demanded. 

This LINGO model generates all feasible one vehicle routes 

and then chooses the least cost feasible multi-vehicle 

combination; 

SETS: 

 CITY: Q; 

 ! Q(I) = amount required at city I(given), 

       must be delivered by just 1 vehicle; 

 CXC( CITY, CITY): DIST; 

 ! DIST(I,J) = distance from city I to city J; 

ENDSETS 

DATA:  
CITY= Chi Den Frsn Hous  KC  LA Oakl Anah Peor Phnx Prtl Rvrs Sacr SLC Sntn SBrn; 

! Amount to be delivered to each customer; 

    Q= 0    6    3    7   7  18    4    5    2    6    7    2   4   3    3    2 ; 

! city 1 represents the common depot, i.e. Q( 1) = 0; 

! Distance from city I to city J is same(but need not be) from J to I; 

DIST=  ! To City; 

!Chi  Den Frsn Hous   KC   LA Oakl Anah Peor Phnx Prtl Rvrs Sacr  SLC Sntn SBrn From; 

   0  996 2162 1067  499 2054 2134 2050  151 1713 2083 2005 2049 1390 1187 1996 ! Chcago; 

 996    0 1167 1019  596 1059 1227 1055  904  792 1238 1010 1142  504  939 1001 ! Denver; 

2162 1167    0 1747 1723  214  168  250 2070  598  745  268  162  814 1572  265 ! Fresno; 

1067 1019 1747    0  710 1538 1904 1528  948 1149 2205 1484 1909 1438  197 1533 ! Huston; 

 499  596 1723  710    0 1589 1827 1579  354 1214 1809 1535 1742 1086  759 1482 ! K-City; 

2054 1059  214 1538 1589    0  371   36 1943  389  959   54  376  715 1363   59 ! L. A.; 

2134 1227  168 1904 1827  371    0  407 2043  755  628  425   85  744 1729  422 ! Oaklnd; 

2050 1055  250 1528 1579   36  407    0 1933  379  995   45  412  711 1353   55 ! Anahm; 

 151  904 2070  948  354 1943 2043 1933    0 1568 2022 1889 1958 1299 1066 1887 ! Peoria; 

1713  792  598 1149 1214  389  755  379 1568    0 1266  335  760  648  974  333 ! Phnix; 

2083 1238  745 2205 1809  959  628  995 2022 1266    0 1001  583  767 2086  992 ! Prtlnd; 

2005 1010  268 1484 1535   54  425   45 1889  335 1001    0  430  666 1309   10 ! Rvrsde; 

2049 1142  162 1909 1742  376   85  412 1958  760  583  430    0  659 1734  427 ! Scrmto; 

1390  504  814 1438 1086  715  744  711 1299  648  767  666  659    0 1319  657 ! SLC; 

1187  939 1572  197  759 1363 1729 1353 1066  974 2086 1309 1734 1319    0 1307 ! SAnt; 

1996 1001  265 1482 1533   59  422   55 1887  333  992   10  427  657 1307    0 ! SBrn;; 

! VCAP is the capacity of a vehicle in 40”x48” pallets; 

VCAP = 18; 

ENDDATA 

SETS: 

! Enumerate all sets of various sizes of cities that are load 

feasible; 

 SET2(CITY,CITY)|&1 #GT# 1  #AND# &1 #LT# &2  

              #AND# (Q(&1)+Q(&2)#LE# VCAP):; 

 SET3(SET2,CITY)|&2 #LT# &3  

              #AND# (Q(&1)+Q(&2)+Q(&3)#LE# VCAP):; 

 SET4(SET3,CITY)|&3 #LT# &4  

              #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)#LE# VCAP):; 

 SET5(SET4,CITY)|&4 #LT# &5  

              #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)#LE# VCAP):; 

 SET6(SET5,CITY)|&5 #LT# &6 

              #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)#LE# VCAP):; 

 SET7(SET6,CITY)|&6 #LT# &7  

        #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)+Q(&7)#LE# VCAP):; 
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! Enumerate all partially ordered sets with a  

       specific city as the last one; 

 PSET2(CITY,CITY)| &1 #GT# 1 #AND# &1#NE#&2 

                     #AND# (Q(&1)+Q(&2)#LE# VCAP): D2,X2;     

 PSET3(SET2,CITY)| &1#NE#&3 #AND# &2#NE#&3 

                     #AND# (Q(&1)+Q(&2)+Q(&3)#LE# VCAP): D3,X3;    

 PSET4(SET3,CITY)| &1#NE#&4 #AND# &2#NE#&4 #AND# &3 #NE# &4 

                  #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)#LE# VCAP): D4,X4;   

 PSET5(SET4,CITY)| &1#NE#&5 #AND# &2#NE#&5 #AND# &3 #NE# &5  

              #AND# &4 #NE# &5 

            #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)#LE# VCAP): D5,X5;   

 PSET6(SET5,CITY)| &1#NE#&6 #AND# 

        &2#NE#&6 #AND# &3 #NE# &6 #AND# &4 #NE# &6 #AND# &5 #NE# &6 

        #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)#LE# VCAP): D6,X6; 

 PSET7(SET6,CITY)| &1#NE#&7 #AND# &2#NE#&7 #AND# &3#NE#&7 #AND#  

     &4#NE#&7 #AND# &5#NE#&7 #AND# &6#NE#&7  

  #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)+Q(&7)#LE# VCAP): D7,X7;   

ENDSETS 

 

! Compute shortest distance to visit all cities in PSET, and 

   ending up at last city in each 

   partially ordered set, using Held&Karp DP. 

 Essential idea: 

   DS( S,t) = minimum distance to visit all cities in 

    S and then end up at t.  The recursion is: 

   DS( S, t) = min{k in S: DS(S-k,k) + DIST(k,t)}; 

@FOR(PSET2(I,J): 

  D2(I,J) = DIST(1,I) + DIST(I,J); 

  @BIN(X2); 

    ); 

@FOR(PSET3(I,J,K): 

 ! @SMIN is the min of a list of scalers. D3(I,J,K) = min cost of 

  starting at 1, visiting I and J in some order, and then K; 

  D3(I,J,K) = @SMIN( D2(I,J) + DIST(J,K), D2(J,I) + DIST(I,K)); 

  @BIN(X3); 

    ); 

@FOR(PSET4(I,J,K,L): 

 !D4(I,J,K,L) = min cost of starting at 1, visiting I, J, & K  

  in some order, and then L; 

  D4(I,J,K,L) =  

    @SMIN( D3(I,J,K)+DIST(K,L), 

           D3(I,K,J)+DIST(J,L), 

           D3(J,K,I)+DIST(I,L)); 

   @BIN( X4); 

    ); 

 

@FOR(PSET5(I,J,K,L,M): 

  D5(I,J,K,L,M) =  

   @SMIN( D4(I,J,K,L)+DIST(L,M), 

          D4(I,J,L,K)+DIST(K,M), 

          D4(I,K,L,J)+DIST(J,M), 

          D4(J,K,L,I)+DIST(I,M)); 
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    @BIN(X5); 

    ); 

 

@FOR(PSET6(I,J,K,L,M,N): 

  D6(I,J,K,L,M,N) =  

    @SMIN( D5(I,J,K,L,M)+DIST(M,N), 

           D5(I,J,K,M,L)+DIST(L,N), 

           D5(I,J,L,M,K)+DIST(K,N), 

           D5(I,K,L,M,J)+DIST(J,N), 

           D5(J,K,L,M,I)+DIST(I,N)); 

  @BIN(X6); 

    ); 

 

@FOR(PSET7(I,J,K,L,M,N,P): 

  D7(I,J,K,L,M,N,P) =  

     @SMIN( D6(I,J,K,L,M,N)+DIST(N,P), 

            D6(I,J,K,L,N,M)+DIST(M,P), 

            D6(I,J,K,M,N,L)+DIST(L,P), 

            D6(I,J,L,M,N,K)+DIST(K,P), 

            D6(I,K,L,M,N,J)+DIST(J,P), 

            D6(J,K,L,M,N,I)+DIST(I,P)); 

  @BIN(X7); 

    ); 

 

! and finally, the optimization model... 

 Min cost of routes chosen, over complete routes ending back at 1; 

   Min = 

    + @SUM( PSET2(I,J)| J #EQ# 1: D2(I,J)*X2(I,J)) 

    + @SUM( PSET3(I,J,K)| K #EQ# 1: D3(I,J,K)*X3(I,J,K)) 

    + @SUM( PSET4(I,J,K,L)| L #EQ# 1: D4(I,J,K,L)*X4(I,J,K,L)) 

    + @SUM( PSET5(I,J,K,L,M)| M #EQ# 1: D5(I,J,K,L,M)*X5(I,J,K,L,M)) 

    + @SUM( PSET6(I,J,K,L,M,N)| N #EQ# 1:  

                               D6(I,J,K,L,M,N)*X6(I,J,K,L,M,N)) 

    + @SUM( PSET7(I,J,K,L,M,N,P)| P #EQ# 1:        

                               D7(I,J,K,L,M,N,P)*X7(I,J,K,L,M,N,P)); 

 

! Each city must be on exactly one complete route; 

 @FOR( CITY(I1)| I1 #GT# 1: 

   + @SUM( PSET2(I,J) | J #EQ# 1 #AND# ( I #EQ# I1): X2(I,J)) 

   + @SUM( PSET3(I,J,K) |K #EQ# 1 #AND# (I#EQ#I1 #OR# J#EQ# I1):  

             X3(I,J,K)) 

    + @SUM( PSET4(I,J,K,L) |L #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1): X4(I,J,K,L)) 

    + @SUM( PSET5(I,J,K,L,M) |M #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1 #OR# L#EQ#I1): 

              X5(I,J,K,L,M)) 

    + @SUM( PSET6(I,J,K,L,M,N) |N #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1 #OR# L#EQ#I1  

         #OR# M#EQ#I1): X6(I,J,K,L,M,N)) 

    + @SUM( PSET7(I,J,K,L,M,N,P) |P #EQ# 1 #AND#  

         (I#EQ#I1 #OR# J#EQ#I1 #OR# K#EQ#I1 #OR# L#EQ#I1  

         #OR# M#EQ#I1 #OR# N#EQ#I1) 

       :  X7(I,J,K,L,M,N,P))  = 1; 
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      ); 

 

 It takes about 4 seconds to get the following solution 

 
Global optimal solution found at iteration:           134 

   Objective value:                                 17586.00 

                                            

                                    Variable           Value 

                                X2( LA, CHI)        1.000000 

                          X3( KC, PEOR, CHI)        1.000000 

                   X4( DEN, HOUS, SNTN, CHI)        1.000000 

            X5( FRSN, OAKL, PRTL, SACR, CHI)        1.000000 

       X6( ANAH, PHNX, RVRS, SLC, SBRN, CHI)        1.000000 

 

 

The obvious question is, how well does this formulation scale up?  The final set partitioning integer 

program is not too challenging.  The big challenge is generating and storing the possibly huge number 

of trips.  A crucial consideration is the number of stops per trip.  If this is small,  e.g., three,  then the 

number of trips will be manageable.  A typical vehicle routing problem may have around 100 stops.  

The number of possible minimal distance trips, each of which visit three out of 100 stops,  is 

100!/[3!97!] = 161,700.  This is a manageable number of variables for an efficient IP solver.   

11.8 Linearizing Products of Variables 
We have previously seen products of 0/1 variables, such as y1  y2 and y1

2 can be represented by linear 

expressions by means of a simple transformation. This transformation generalizes to the case of the 

product of a 0/1 variable and a continuous variable. 

 To illustrate, suppose the product x  y appears in a model, where y is 0/1 while x is nonnegative 

continuous. We want to replace this nonlinear component by a (somewhat bigger) linear component. If 

we have an upper bound (Mx) on the value of x, an upper bound (My) on the product x  y, and we define 

P = x  y, then the following linear constraints will cause P to take on the correct value: 

P  x 

P  My  y 

P  x − Mx  (1 − y) 

 Hanson and Martin (1990) show how this approach is useful in setting prices for products when we 

allow bundling of products. Bundle pricing is a form of quantity discounting. Examples of products that 

might be bundled are (a) airfare, hotel, rental car, tours, and meals or (b) computer, monitor, printer, and 

hard disk. Stigler (1963) showed how a movie distributor might improve profits by leasing bundles of 

movies rather than leasing individual movies. Bundling assumes it is easy for the seller to assemble the 

bundle and difficult for a buyer to unbundle. Otherwise, a reseller could buy the bundle at a discount 

and then sell the individual components at a markup. 
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11.8.1 Example: Bundling of Products 
Microland Software has recently acquired an excellent word processing product to complement its own 

recently developed spreadsheet product. Microland is contemplating offering the combination of the two 

products for a discount. After demonstrating the products at a number of diverse professional meetings, 

Microland developed the following characterization of the market: 

  Maximum Price Market Segment is Willing  
To Pay for Various Bundles 

Market 
Segment 

Size in 
10,000 

Spreadsheet 
Only 

Wordprocessor 
Only 

 
Both 

Business/ 

Scientific 

7 450 110 530 

Legal/ 

Administrative 

5 75 430 480 

Educational 6 290 250 410 

Home 4.5 220 380 390 

 We will refer to each market segment as simply a “customer”. Economic theory suggests a customer 

will buy the product that gives the greatest consumer surplus, where consumer surplus is defined as the 

price the customer is willing to pay for the product (the “reservation price”) minus the market price for 

the product. For example, if the prices for the three bundles, spreadsheet only, word processor only, and 

both together, were set respectively at 400, 150, and 500, then the business/scientific market would buy 

the spreadsheet alone because the consumer surplus is 50 vs. −40 and 30 for the other two bundles. 

 To give a general model of this situation, define: 

Rij = reservation price of customer i for bundle j, 

Ni  = “size of customer” i (i.e., number of individual customers in segment i), 

si  = consumer surplus achieved by customer i, 

yij = 1 if customer i buys bundle j, 0 otherwise, 

xj  = price of bundle j set by the seller. 

 We will treat the empty bundle as just another bundle, so we can say every customer buys exactly 

one bundle. 

 The seller, Microland, would like to choose the xj to: 

Maximize   
ji
 Ni yij xj 

The fact that each customer will buy exactly one bundle is enforced with: 

For each customer i: 

j
 yij = 1 

For each customer i, its achieved consumer surplus is: 

si = 
j
 (Rij − xj)yij 
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 Customer i will buy only the bundle j for which its consumer surplus, si, is the maximum. This is 

enforced by the constraints: 

For each customer i and bundle j: 

si  Rij − xj 

 A difficulty with the objective function and the consumer surplus constraints is they involve the 

product yijxj. Let us follow our previous little example and replace the product yijxj by Pij. If Mj is an 

upper bound on xj, then, proceeding as before, to enforce the definition Pij = yijxj, we need the constraints: 

Pij  xj 

Pij  Rij yij 

Pij  xj − (1 − yij)Mj. 

Making these adjustments to the model, we get: 

Maximize   
ji
 Ni Pij 

subject to: 

For each customer i 

j
 yij = 1; 

For each customer i, bundle j: 

si  Rij − xj; 

For each customer i: 

si = 
j
 (Rij yij − Pij); 

To enforce the nonlinear condition Pij = yij xj, we have for each i and j: 

Pij  xj 

Pij  Rij yij 

Pij  xj − (1 − yij)Mj. 

For all i and j: 

yij = 0 or 1 

In explicit form, the LINGO model is: 

MODEL: 

SETS: 

 MARKET/B, L, E, H/:S, N; 

 ITEM/NONE, SO, WO, BOTH/:X; 

 MXI(MARKET, ITEM):R, Y, P; 

ENDSETS 

DATA: 

 N = 7, 5, 6, 4.5;   ! Market size;   

 R =   0 450 110 530 ! Reservation; 

       0  75 430 480 !   prices; 

       0 290 250 410 

       0 220 380 390; 

 M = 600; !Max price of any bundle; 

ENDDATA 
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! Maximize our total revenue = price * market size. 

  P(i,j) = price customer i pays for product or item j, 

           if i buys j, else = 0; 

 MAX = @SUM(MXI(I, J): P(I, J) * N(I)); 

!Make the pick variables 0/1; 

 @FOR(MXI:@BIN(Y)); 

!Each customer or market i picks or buys exactly one bundle; 

 @FOR(MARKET(I): @SUM(ITEM(J): Y(I, J)) = 1); 

! Each customer i's  achieved surplus, S(i), must be at 

 least as good as from every possible bundle; 

 @FOR(ITEM(I): @FOR(MARKET(J): 

      S(I) >= R(I,J) - X(J))); 

!Customer i's achieved surplus = reservations price 

  of item purchased - its price; 

 @FOR(MARKET(I): 

   S(I) =  @SUM(ITEM(J): R(I, J) * Y(I, J)- P(I, J)) 

    ) ; 

! Each price variable Pij must be.. ; 

!   <= Xj , (the published price); 

!   <= Rij * Yij (less than reservation price if bought); 

!   >= Xj - M + M * Yij ; 

 @FOR(MXI(I, J): P(I, J) <= X(J); 

            P(I, J) <= Y(I, J) * R(I, J); 

            R(I, J) >= X(J) - M + M * Y(I, J);); 

! Price of bundle should be <= sum of component prices; 

 X( @INDEX(BOTH)) <= X(@INDEX(SO)) + X(@INDEX(WO)); 

! Price of bundle should be >= any one component; 

 X(@INDEX(BOTH)) >= X(@INDEX(SO)); X(@INDEX(BOTH)) >= X(@INDEX(WO)); 

END   

 

For the Microland problem, the solution is to set the following prices: 

 Spreadsheet Only Word Processing Only Both 

Bundle Price: 410 380 410 

 Thus, the business, legal and educational markets will buy the bundle of both products. The home 

market will buy only the word processor. Total revenues obtained by Microland are 90,900,000. The 

interested reader may show that, if bundling is not possible, then the highest revenue that Microland can 

achieve is only 67,150,000. 

11.9 Representing Logical Conditions 
For some applications, it may be convenient, perhaps even logical, to state requirements using logical 

expressions. A logical variable can take on only the values TRUE or FALSE. Likewise, a logical 

expression involving logical variables can take on only the values TRUE or FALSE. There are two major 

logical operators, #AND# and #OR#, that are useful in logical expressions. 

 The logical expression: 

A #AND# B  

is TRUE if and only if both A and B are true. 
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 The logical expression: 

A #OR# B  

is TRUE if and only if at least one of A and B is true. 

 It is sometimes useful also to have the logical operator implication () written as follows: 

A  B  

with the meaning that if A is true, then B must be true. 

 Logical variables are trivially representable by binary variables with: 

TRUE being represented by 1, and 

FALSE being represented by 0. 

 If A, B, and C are 0/1 variables, then the following constraint combinations can be used to represent 

the various fundamental logical expressions: 

Logical Expression Mathematical Constraints 

C = A #AND# B C  A 

C  B 

C  A + B − 1 

C = A #OR# B C  A 

C  B 

C  A + B 

A  C A  C 

11.10 Problems 
1. The following problem is known as a segregated storage problem. A feed processor has various 

amounts of four different commodities, which must be stored in seven different silos. Each silo can 

contain at most one commodity. Associated with each commodity and silo combination is a loading 

cost. Each silo has a finite capacity, so some commodities may have to be split over several silos. 

For a similar problem arising in the loading of fuel tank trucks at Mobil Oil Company, see Brown, 

Ellis, Graves, and Ronen (1987). The following table contains the data for this problem. 

Loading Cost per Ton 

  
Silo 

Amount of 
Commodity 

 
Commodity 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

To Be 
Stored 

A $1 $2 $2 $3 $4 $5 $5 75 tons 

B 2 3 3 3 1 5 5 50 tons 

C 4 4 3 2 1 5 5 25 tons 

D 1 1 2 2 3 5 5 80 tons 

Silo Capacity 

in Tons 
 

25 

 

25 

 

40 

 

60 

 

80 

 

100 

 

100 
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a) Present a formulation for solving this class of problems. 

b) Find the minimum cost solution for this particular example. 

c) How would your formulation change if additionally there was a fixed cost associated with 

each silo that is incurred if anything is stored in the silo? 

2. You are the scheduling coordinator for a small, growing airline. You must schedule exactly one 

flight out of Chicago to each of the following cities: Atlanta, Los Angeles, New York, and Peoria. 

The available departure slots are 8 A.M., 10 A.M., and 12 noon. Your airline has only two departure 

lounges, so at most two flights can be scheduled per slot. Demand data suggest the following 

expected profit contribution per flight as a function of departure time: 

Expected Profit Contribution in $1000’s 
 Time 

Destination 8 10 12 

Atlanta 10 9 8.5 

Los Angeles 11 10.5 9.5 

New York 17 16 15 

Peoria 6.4 2.5 −1 

Formulate a model for solving this problem. 

3. A problem faced by an electrical utility each day is that of deciding which generators to start up at 

which hour based on the forecast demand for electricity each hour. This problem is also known as 

the unit commitment problem. The utility in question has three generators with the following 

characteristics: 

 
 
Generator 

Fixed 
Startup 

Cost 

Fixed Cost 
per Period 

of Operation 

Cost per Period 
per Megawatt 

Used 

Maximum Capacity 
in Megawatts Each 

Period 

A 3000 700 5 2100 

B 2000 800 4 1800 

C 1000 900 7 3000 

 There are two periods in a day and the number of megawatts needed in the first period is 2900. 

The second period requires 3900 megawatts. A generator started in the first period may be used in 

the second period without incurring an additional startup cost. All major generators (e.g., A, B, and 

C above) are turned off at the end of each day. 

a) First, assume fixed costs are zero and thus can be disregarded. What are the decision 

variables? 

b) Give the LP formulation for the case where fixed costs are zero. 

c) Now, take into account the fixed costs. What are the additional (zero/one) variables to 

define? 

d) What additional terms should be added to the objective function? What additional 

constraints should be added? 
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4. Crude Integer Programming. Recently, the U.S. Government began to sell crude oil from its Naval 

Petroleum Reserve in sealed bid auctions. There are typically six commodities or products to be 

sold in the auction, corresponding to the crude oil at the six major production and shipping points. 

A “bid package” from a potential buyer consists of (a) a number indicating an upper limit on how 

many barrels (bbl.) the buyer is willing to buy overall in this auction and (b) any number of “product 

bids”. Each product bid consists of a product name and three numbers representing, respectively, 

the bid price per barrel of this product, the minimum acceptable quantity of this product at this price, 

and the maximum acceptable quantity of this product at this price. Not all product bids of a buyer 

need be successful. The government usually places an arbitrary upper limit (e.g., 20%) on the 

percentage of the total number of barrels over all six products one firm is allowed to purchase. 

 To illustrate the principal ideas, let us simplify slightly and suppose there are only two supply 

sources/products, which are denoted by A and B. There are 17,000 bbls. available at A while B has 

13,000. Also, there are only two bidders, the Mobon and the Exxil companies. The government 

arbitrarily decides either one can purchase at most 65% of the total available crude. The two bid 

packages are as follows: 

Mobon:     
Maximum desired = 16,000 bbls. total.  

  
 

Product 

 
Bid per 
Barrel 

Minimum 
Barrels 

Accepted 

Maximum 
Barrels 
Wanted 

 A 43 9000 16,000 

 B 51 6000 12,000 

Exxil:     
Maximum desired = No limit.  

  
 

Product 

 
Bid per 
Barrel 

Minimum 
Barrels 

Accepted 

Maximum 
Barrels 
Wanted 

 A 47 5000 10,000 

 B 50 5000 10,000 

Formulate and solve an appropriate IP for the seller. 
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5. A certain state allows a restricted form of branch banking. Specifically, a bank can do business in 

county i if the bank has a “principal place of business” in county i or in a county sharing a 

nonzero-length border with county i. Figure 11.10 is a map of the state in question: 

Figure 11.10 Districts in a State 

 

 Formulate the problem of locating a minimum number of principal places of business in the 

state, so a bank can do business in every county in the state. If the problem is formulated as a 

covering problem, how many rows and columns will it have? What is an optimal solution? Which 

formulation is tighter: set covering or simple plant location? 

6. Data Set Allocation Problem. There are 10 datasets or files, each of which is to be allocated to 1 of 

3 identical disk storage devices. A disk storage device has 885 cylinders of capacity. Within a 

storage device, a dataset will be assigned to a contiguous set of cylinders. Dataset sizes and 

interactions between datasets are shown in the table below. Two datasets with high interaction rates 

should not be assigned to the same device. For example, if datasets C and E are assigned to the same 

disk, then an interaction cost of 46 is incurred. If they are assigned to different disks, there is no 

interaction cost between C and E. 
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Dataset for Interaction (Seek Transition) Rates 
  

 
A 

 
 

B 

 
 

C 

 
 

D 

 
 

E 

 
 

F 

 
 

G 

 
 

H 

 
 
I 

 
 

J 

Dataset 
Size in 

Cylinders 

A           110 

B 43          238 

C 120 10         425 

D 57 111 188        338 

E 96 78 46 88       55 

F 83 58 421 60 63      391 

G 77 198 207 109 73 74     267 

H 31 50 43 47 51 21 88    105 

I 38 69 55 21 36 391 47 96   256 

J 212 91 84 53 71 40 37 35 221  64 

           2249 

 Find an assignment of datasets to disks, so total interaction cost is minimized and no disk 

capacity is exceeded. 

7. The game or puzzle of mastermind pits two players, a “coder” and a “decoder”, against each other. 

The game is played with a pegboard and a large number of colored pegs. The pegboard has an array 

of 4  12 holes. For our purposes, we assume there are only six colors: red, blue, clear, purple, gold, 

and green. Each peg has only one color. The coder starts the game by selecting four pegs and 

arranging them in a fixed order, all out of sight of the decoder. This ordering remains fixed 

throughout the game and is appropriately called the code. At each play of the game, the decoder 

tries to match the coder’s ordering by placing four pegs in a row on the board. The coder then 

provides two pieces of information about how close the decoder’s latest guess is to the coder’s order: 

1) The number of pegs in the correct position (i.e., color matching the coder’s peg in that 

position), and 

2) The maximum number of pegs that would be in correct position if the decoder were 

allowed to permute the ordering of the decoder’s latest guess. 

 Call these two numbers m and n. The object of the decoder is to discover the code in a minimum 

number of plays. 
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The decoder may find the following IP of interest. 

MAX  = XRED1; 

  XRED1 + XBLUE1 + XCLEAR1 + XPURP1 + XGOLD1 

      + XGREEN1 = 1; 

  XRED2 + XBLUE2 + XCLEAR2 + XPURP2 + XGOLD2 

      + XGREEN2 = 1; 

  XRED3 + XBLUE3 + XCLEAR3 + XPURP3 + XGOLD3 

      + XGREEN3 = 1; 

  XRED4 + XBLUE4 + XCLEAR4 + XPURP4 + XGOLD4 

      + XGREEN4 = 1; 

 XRED1 + XRED2  + XRED3 + XRED4 - RED = 0; 

 XBLUE1 + XBLUE2  + XBLUE3 + XBLUE4 - BLUE = 0;   

 XCLEAR1 + XCLEAR2 + XCLEAR3 + XCLEAR4 - CLEAR = 0; 

 XPURP1 + XPURP2 + XPURP3 + XPURP4 - PURP = 0; 

 XGOLD1 + XGOLD2 + XGOLD3 + XGOLD4 - GOLD = 0; 

 XGREEN1 + XGREEN2 + XGREEN3 + XGREEN4 - GREEN = 0; 

END 

 All variables are required to be integer. The interpretation of the variables is as follows. 

XRED1 = 1 if a red peg is in position 1, otherwise 0, etc.; XGREEN4 = 1 if a green peg is in position 

4, otherwise 0. Rows 2 through 5 enforce the requirement that exactly one peg be placed in each 

position. Rows 6 through 11 are simply accounting constraints, which count the number of pegs of 

each color. For example, RED = the number of red pegs in any position 1 through 4. The objective 

is unimportant. All variables are (implicitly) required to be nonnegative. 

 At each play of the game, the decoder can add new constraints to this IP to record the 

information gained. Any feasible solution to the current formulation is a reasonable guess for the 

next play. An interesting question is what constraints can be added at each play. 

 To illustrate, suppose the decoder guesses the solution 

XBLUE1 = XBLUE2 = XBLUE3 = XRED4 = 1, and the coder responds with the information that 

m = 1 and m − n = 1. That is, one peg is in the correct position and, if permutations were allowed, 

at most two pegs would be in the correct position. What constraints can be added to the IP to 

incorporate the new information? 

8. The Mathematical Football League (MFL) is composed of M teams (M is even). In a season of 2(M 

− 1) consecutive Sundays, each team will play (2M − 1) games. Each team must play each other 

team twice, once at home and once at the other team’s home stadium. Each Sunday, k games from 

the MFL are televised. We are given a matrix {vij} where vij is the viewing audience on a given 

Sunday if a game between teams i and j playing at team j’s stadium is televised. 

a) Formulate a model for generating a schedule for the MFL that maximizes the viewing 

audience over the entire season. Assume viewing audiences are additive. 

b) Are some values of k easier to accommodate than others? How? 
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9. The typical automobile has close to two dozen electric motors. However, if you examine these 

motors, you will see that only about a half dozen distinct motor types are used. For inventory and 

maintenance reasons, the automobile manufacturer would like to use as few distinct types as 

possible. For cost, quality, and weight reasons, one would like to use as many distinct motor types 

as possible, so the most appropriate motor can be applied to each application. The table below 

describes the design possibilities for a certain automobile: 

24-Month Failure Probability 

 Number 
Required 

Motor type 

Application  A B C D E 

Head lamps 2 0.002 0.01  0.01 0.007 

Radiator fan 2  0.01 0.002  0.004 

Wipers 2    0.007  

Seat 4 0.003   0.006 0.008 

Mirrors 2   0.004 0.001  

Heater fan 1  0.006 0.001   

Sun roof 1 0.002   0.003 0.009 

Windows 4 0.004 0.008 0.005   

Antenna 1 0.003  0.003 0.002  

 Weight 2 3 1.5 1 4 

 Cost per 

Motor 
24 20 36 28 39 

 For example, two motors are required to operate the headlamps. If type D motors are used for 

headlamps, then the estimated probability of a headlamp motor failure in two years is about 0.01. If 

no entry appears for a particular combination of motor type and application, it means the motor type 

is inappropriate for that application (e.g., because of size). 

 Formulate a solvable linear integer program for deciding which motor type to use for each 

application, so at most 3 motor types are used, the total weight of the motors used is at most 36, 

total cost of motors used is at most 585, and probability of any failure in two years is approximately 

minimized. 

10. We have a rectangular three-dimensional container that is 30  50  50. We want to pack in it 

rectangular three-dimensional boxes of the three different sizes: (a) 5  5  10, (b) 5  10  10, and 

(c) 5  15  25. 

 A particular packing of boxes into the container is undominated if there is no other packing that 

contains at least as many of each of the three box types and strictly more of one of the box types. 

Show there are no more than 3101 undominated packings. 
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11. Given the following: 

Checkerboard and domino 

               
              
              
              
              
              
              
              

 If two opposite corners of the checkerboard are made unavailable, prove there is no way of 

exactly covering the remaining grid with 31 dominoes. 

12. Which of the following requirements could be represented exactly with linear constraints? (You are 

allowed to use transformations if you wish.) 

(a)  (3  x + 4  y)/(2  x + 3  y)  12; 

(b) MAX (x, y) < 8; 

(c) 3  x + 4  y  y  11;     where y is 0 or 1; 

(d) ABS (10 − x)  7 (Note ABS means absolute value); 

(e) MIN (x, y) < 12. 

13. A common way of controlling access in many systems, such as information systems or the military, 

is with priority levels. Each user i is assigned a clearance level Ui. Each object j is assigned a security 

level Lj. A user i does not have access to object j if the security level of j is higher than the clearance 

level of i. Given a set of users; and, for each user, a list of objects to which that user does not to 

have access; and a list of objects to which the user should have access, can we assign Ui’s and Lj’s, 

so these access rights and denials are satisfied? Formulate as an integer program. 

14. One of the big consumption items in the U.S. is automotive fuel. Any petroleum distributor who 

can deliver this fuel reliably and efficiently to the hundreds of filling stations in a typical distribution 

region has a competitive advantage. This distribution problem is complicated by the fact that a 

typical customer (i.e., filling station) requires three major products: premium gasoline, an 

intermediate octane grade (e.g., “Silver”), and regular gasoline. A typical situation is described 

below. A delivery tank truck has four compartments with capacities in liters of 13,600, 11,200, 

10,800, and 4400. We would like to load the truck according to the following limits:  

 Liters of 

 Premium Intermediate Regular 

At least: 8,800 12,000 12,800 

At most: 13,200 17,200 16,400 

 Only one gasoline type can be stored per compartment in the delivery vehicle. Subject to the 

previous considerations, we would like to maximize the amount of fuel loaded on the truck. 

(a) Define the decision variables you would use in formulating this problem as an IP. 

(b) Give a formulation of this problem. 

(c) What allocation do you recommend? 
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15. Most lotteries are of the form:  

Choose n numbers (e.g., n = 6) from the set of numbers {1, 2, ..., m} (e.g., m = 54). 

 You win the grand prize if you buy a ticket and choose a set of n numbers identical to the n 

numbers eventually chosen by lottery management. Smaller prizes are awarded to people who match 

k of the n numbers. For n = 6, typical values for k are 4 and 5. Consider a modest little lottery with 

m = 7, n = 3, and k = 2. How many tickets would you have to buy to guarantee winning a prize? 

Can you set this up as a grouping/covering problem? 

16. A recent marketing phenomenon is the apparent oxymoron, “mass customization”. The basic idea 

is to allow each customer to design his/her own product, and yet do it on an efficient, high-volume 

scale. A crucial component of the process is to automate the final design step involving the 

customer. As an example, IBM and Blockbuster recently announced a plan to offer “on-demand” 

production of customized music products at retail stores. Each store would carry an electronic 

“master” for every music piece a customer might want. The physical copy for the customer would 

then be produced for the customer while they wait. This opens up all manners of opportunities for 

highly customized musical products. Each customer might provide a list of songs to be placed on 

an audiocassette. A design issue when placing songs on a two-sided medium such as a cassette is 

how to allocate songs to sides. A reasonable rule is to distribute the songs, so the playing times on 

the two sides are as close to equal as possible. For an automatic tape player, this will minimize the 

“dead time” when switching from one side to another. As an example, we mention that Willie 

Nelson has recorded the following ten songs in duets with other performers: 

Song Time (min:secs) Other Performer 

1) Pancho and Lefty 4:45 Merle Haggard 

2) Slow Movin Outlaw  3:35 Lacy J. Dalton 

3) Are There any More Real 

Cowboys 

3:03 Neil Young 

4) I Told a Lie to My Heart 2:52 Hank Williams 

5) Texas on a Saturday Night 2:42 Mel Tillis 

6) Seven Spanish Angels 3:50 Ray Charles 

7) To All the Girls I’ve Loved 

Before 

3:30 Julio Iglesias 

8) They All Went to Mexico 4:45 Carlos Santana 

9) Honky Tonk Women 3:30 Leon Russell 

10) Half a Man 3:02 George Jones 

You want to collect these songs on a two-sided tape cassette album to be called “Half Nelson.”  

(a) Formulate and solve an integer program for minimizing the dead time on the shorter side.  

(b) What are some of the marketing issues of allowing the customer to decide which song goes 

on which side? 
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17. Bill Bolt is hosting a party for his daughter Lydia on the occasion of her becoming of college age. 

He has reserved a banquet room with 18 tables at the Racquet Club on Saturday night. Each table 

can accommodate at most 8 people. A total of 140 young people are coming, 76 young men and 64 

young ladies. Lydia and her mother, Jane, would like to have the sexes as evenly distributed as 

possible at the tables. They want to have at least 4 men and at least 3 women at each table. 

(a) Is it possible to have an allocation satisfying the above as well as the restriction there be at 

most 4 men at each table? 

(b) Provide a good allocation of the sexes to the tables. 

18. The game or puzzle of Clue is played with a deck of 21 cards. At the beginning of a game, three of 

the cards are randomly selected and placed face down in the center of the table. The remaining cards 

are distributed face down as evenly as possible to the players. Each player may look at his or her 

own cards. The object of the game is to correctly guess the three cards in the center. At each player’s 

turn, the player is allowed to either guess the identity of the three cards in the center or ask any other 

player a question of the form: “Do you have any of the following three cards?” (The asking player 

then publicly lists the three cards.) If the asked player has one of the three identified cards, then the 

asked player must show one of the cards to the asking player (and only to the asking player). 

Otherwise, the asked player simply responds “No”. If a player correctly guesses the three cards in 

the center, then that player wins. If a player incorrectly guesses the three cards in the center, the 

player is out of the game.  

Deductions about the identity of various cards can be made if we define: 

X (i, j) = 1 if player i has card j, else 0. 

 Arbitrarily define the three cards in the center as player 1. Thus, we can initially start with the 

constraints: 

X j
j

( , )1
1

21

=
  = 3. 

For each card, j = 1, 2, …, 21: 

X i j
i

( , )  = 1. 

(a) Suppose player 3 is asked: “Do you have either card 4, 8, or 17?” and player 3 responds 

“No.” What constraint can be added? 

(b) Suppose in response to your question in (a), player 3 shows you card 17. What constraint 

can be added? 

(c) What LP would you solve in order to determine whether card 4 must be one of the cards 

in the center? 

 Note, in the “implementation” of the game marketed in North America, the 21 cards are actually 

divided into three types: (i) six suspect cards with names like “Miss Scarlet,” (ii) six weapons cards 

with names like “Revolver,” and (c) nine room cards with names like “Kitchen.” This has essentially 

no effect on our analysis above. 
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12 
 

Decision making Under 
Uncertainty and Stochastic 

Programs 
 

If you come to a fork in the road, take it. 

-Y. Berra 

 

12.1 Introduction 
A big reason multiperiod planning is difficult is because of uncertainty about the future. For example, 

next year, if the demand for your new product proves to be large and the cost of raw material increases 

markedly, then buying a lot of raw material today would win you a lot of respect next year as a wise and 

perceptive manager. On the other hand, if the market disappears for both your product and your raw 

material, the company stockholders would probably not be so kind as to call your purchase of lots of 

raw material bad luck.  

We apply the term stochastic program or scenario planning (SP) to any optimization problems (linear, 

nonlinear or mixed-integer) in which some of the model parameters are not known with certainty, and 

the uncertainty can be expressed with known probability distributions.  Applications arise in a variety 

of industries:   

 Financial portfolio planning over multiple periods for insurance and other financial 

companies, in face of uncertain prices, interest rates, and exchange rates, 

 Exploration planning for petroleum companies, 

 Fuel purchasing when facing uncertain future fuel demand, 

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand, 

 Electricity generator unit commitment in face of uncertain demand, 

 Hydro management and flood control in face of uncertain rainfall, 

 Optimal time to exercise for options in face of uncertain prices,     

 Capacity and Production planning in face of uncertain future demands and prices, 

 Foundry metal blending in face of uncertain input scrap qualities, 

 Product planning in face of future technology uncertainty, 

 Revenue management in the hospitality and transport industries. 
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12.1.1 Identifying Sources of Uncertainty 
In a discussion with the author, the chief financial officer of a large petroleum company made the 

comment: “The trouble with you academics is that you assume the probabilities add up to one. In the 

real world, they do not. You may think the possible outcomes are: ‘hit oil’, ‘hit gas’, or ‘dry hole’. In 

reality, the drilling rig catches fire and causes a major disaster.” The point of the comment is that an 

important part of managing uncertainty is identifying as many sources of uncertainty as possible. The 

following is a typical list with which to start: 

1. Weather related: 

• decisions about how much and where to stockpile supplies of fuel and road salt in 

preparation for the winter; 

• water release decisions in the spring for a river and dam system, taking into account 

hydroelectric, navigation, and flooding considerations. 

2. Financial uncertainty: 

• market price movements (e.g., stock price, interest rate, and foreign exchange rate 

movements); 

• defaults by business partner (e.g., bankruptcy of a major customer). 

3. Political events: 

• changes of government; 

• outbreaks of hostilities. 

4. Technology related: 

• whether a new technology is useable by the time the next version of a product is 

scheduled to be released. 

5. Market related: 

• shifts or fads in tastes; 

• population shifts. 

6. Competition: 

• incomplete knowledge of the kinds of strategies used by the competition next year.  

7. Acts of God: 

• hurricane, tornado, earthquake, or fire;  

• equipment failure. 

 In an analysis of a decision under uncertainty, we would proceed through a list such as the above 

and identify those items that might interact with our decision. Weather, in particular, can be a big source 

of uncertainty. Hidroeléctrica Española, for example (see Dembo et al. (1990)), reports available power 

output per year from one of its hydroelectric facilities varied from 8,350 Gwh (Giga-watt-hours) to 2,100 

Gwh over a three-year period simply because of rainfall variation. 

 Methods very similar to those described here have been used in the automotive industry to make 

plant opening and closing decisions in the face of uncertainty about future demand. These methods have 

also been used in the utilities industry to make fuel purchase decisions in the face of uncertainties about 

weather in the next few years. 
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12.2 The Scenario Planning (SP)Approach 
We will start by considering planning problems with two periods. These situations consist of the 

following sequence of events: 

1) We make a first-period decision. 

2) Nature (frequently known as the marketplace) makes a random decision. 

3) We make a second-period decision that attempts to repair the havoc wrought by nature in 

(2). 

 The scenario approach assumes there are a finite number of decisions nature can make. We call each 

of these possible states of nature a “scenario”. For example, in practice, most people are satisfied with 

classifying demand for a product as being low, medium, or high; or classifying a winter as being severe, 

normal, or mild, rather than requiring a statement of the average daily temperature and total snowfall 

measured to six decimal places. General Motors has historically used low, medium, and high scenarios 

to represent demand uncertainty. The type of model we will describe for representing uncertainty in the 

context of LPs is called a “stochastic program”. For a survey of applications and methodology, see Birge 

(1997). For an extensive introduction to stochastic programming ideas, see Kall and Wallace (1994). 

For a good discussion of some of the issues in applying stochastic programming to financial decisions, 

see Infanger (1994). 

12.2.1 Formulation and Structure of an SP Problem 
In decisionmaking under uncertainty, it is important to take into account the sequence in which 

information becomes available and we make decisions. We use the term stage to described the sequence 

pair: [1) new information becomes available, 2) we make a decision].  Usually, one can think of a stage 

as a ‘time period’, however there are situations where a stage may consist of several time periods. A 

stage: a) begins with one or more random events, e.g., some demands occur, and b) ends with our making 

one or more decisions, e.g., sell some excess product or order some more product. 

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon 

before uncertain events (random parameters) are revealed while trying to protect against unfavorable 

outcomes that could be observed in the future.  

In its most general form, a multistage decision process with T+1 stages follows an alternating sequence 

of random events and decisions.  Slightly more explicitly: 

0.1) in stage 0,  we make some initial decision, e.g., how much to order,  taking into 

account that… 

 

1.0) at the beginning of stage 1,  “Nature” takes a set of random decisions, e.g., how 

much customers want to buy, leading to realizations of all random events in stage 1, 

and… 

 

1.1) at the end of stage 1, having seen nature’s decision, as well as our previous 

decision, we make a recourse decision, e.g., sell off excess product or order even 

more, taking into account that … 

 

2.0)  at the beginning of stage 2, “Nature” takes a set of random decisions, leading 

to realizations of all random events in stage-2, and… 
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2.1) at the end of stage 2, having seen nature’s decision, as well as our previous 

decisions, we make another recourse decision taking into account that … 

  . 

  . 

  . 

T.0) At the beginning of stage T,  “Nature” takes a random decision, leading to 

realizations of all random events in stage T, and… 

 

T.1) at the end of stage T, having seen all of nature’s T previous decisions, as well 

as all our previous decisions, we make the final recourse decision.  
 

The decision taken in stage 0 is called the initial decision, whereas decisions taken 

in succeeding stages are sometimes called recourse decisions. Recourse decisions 

are interpreted as corrective actions that are based on the actual values the random 

parameters realized so far, as well as the past decisions taken thus far. 

 

The essential steps in formulating an SP in LINGO are: 

   1) Write a standard deterministic model (the core model) as if the random variables 

are variables or parameters.  

   2) Identify the random variables, and decision variables,and their staging.  This is 

done using a statement like @SPSTGVAR( 0, Q) to declare that Q is a stage 0 

decision variable, and a statement like  @SPSTGRNDV( 1, DEMAND) to declare that 

DEMAND is a random variable in stage 1. 

   3) Provide the distributions describing the random variables. Distribution 

specification is specific using a function of the form @SPDIST*( parameters, 

randomvariable). For example, @SPDISTPOIS( 60, DEMAND) means that 

DEMAND is a random variable from a Poisson distribution with mean 60.      

  4) Specify manner of sampling from the distributions,  (mainly the sample size).         

This information is provided via a statement like:  @SPSAMPSIZE( 1, 200), 

meaning that in stage 1 a sample size of 200 should be used. 

   5) List the variables for which we want a scenario by scenario report or a 

histogram:     WBSP_REP(cell_list)  for scenario list of values, or 
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              WBSP_HIST(bins, cell) for histograms. 

 

12.3 Single Stage Decisions Under Uncertainty 
The simplest problems of decision making under uncertainty involve the case where there is but a single 

stage with randomness. 

12.3.1 The News Vendor Problem 

The simplest problem of decision making under uncertainty is the News Vendor problem, i.e., we must 

decide how much to stock in anticipation of demand, before knowing exactly what the demand will be.  

Below we see how the Newsvendor problem is set up as a LINGO model. 

MODEL:                  !(SP_NBsimpleL.lg4); 

 ! Newsvendor problem as a stochastic program in LINGO. 

   How much should we stock, Q,   

   in anticipation of uncertain DEMAND?  

  Parameters: 

    10 = cost/unit purchased and stocked, 

    15 = revenue/unit sold; 

 

! Step 1: Core model definition--------------------------------+; 

   [R_OBJ] MAX = PROFIT; 

   ! (Expected) Profit =  

       sales - purchase cost; 

   PROFIT = 15 * SALES - 10 * Q; 

   @FREE( PROFIT);  ! Allow negative PROFIT because 

                     might have a loss in some scenarios; 

 

   ! Set excess inventory or shortage ; 

   EXCESS - SHORT = Q - DEMAND;  

   SALES = DEMAND - SHORT;   

 

! SP related declarations --------------------------------------+; 

! Step 2: staging info; 

   @SPSTGVAR( 0, Q); ! Amount to purchase, Q, is a stage 0 decision; 

   @SPSTGRNDV( 1, DEMAND); ! Demand is a random variable observed 

                              in stage 1, at the beginning; 

 

! Step 3: Distribution info; 

   @SPDISTPOIS( 60, DEMAND); ! Demand has a Poisson distribution;  

  ! @SPDISTNORM( 60, 12, DEMAND); ! Demand has Normal distribution;  

 

! Step 4: Sampling structure; 

   @SPSAMPSIZE( 1, 200);  ! Specify the stage 1 sample size; 

END 

 

Part of the solution report is shown below. 

 
  Global optimal solution found. 
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  Objective value:                              257.8500 

  Infeasibilities:                              0.000000 

  Total solver iterations:                           134 

  Elapsed runtime seconds:                          0.49 

 

  Expected value of: 

     Objective (EV):                             257.8500 

     Wait-and-see model's objective (WS):        299.8000 

     Perfect information (EVPI = |EV - WS|):     41.95000 

     Policy based on mean outcome (EM):          253.5880 

     Modeling uncertainty (EVMU = |EM - EV|):    4.262000 

 

 

  Stage 0 Solution 

  ---------------- 

          Variable        Value 

                 Q     57.00000 

 

  Staging Report 

  -------------- 

   Random Variable        Stage 

            DEMAND        1 

 

          Variable        Stage 

            PROFIT   1* 

             SALES   1* 

                 Q   0 

            EXCESS   1* 

             SHORT   1* 

 

      (*) Stage was inferred 

 

  Random Variable Distribution Report 

  ----------------------------------- 

                                   Sample        Sample 

  Random Variable          Mean    StdDev      Distribution 

           DEMAND      59.96000    7.740052      POISSON,60 

 

  Scenario: 1   Probability: 0.5000000E-02   Objective: -45.00000 

  --------------------------------------------------------------- 

  Random Variable         Value 

           DEMAND      35.00000 

 

         Variable         Value 

           PROFIT     -45.00000 

            SALES      35.00000 

                Q      57.00000 

           EXCESS      22.00000 

            SHORT      0.000000 

           

 

  Scenario: 2   Probability: 0.5000000E-02   Objective: 285.0000 

  -------------------------------------------------------------- 
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  Random Variable         Value 

           DEMAND      66.00000 

 

         Variable         Value 

           PROFIT      285.0000 

            SALES      57.00000 

                Q      57.00000 

           EXCESS      0.000000 

            SHORT      9.000000 

                  .  .  . 

 

12.3.2 Multi-product Inventory with Repositioning 
This is example is a very simplified illustration of an inventory management approach used by some 

apparel retailers. The general sequence of events is: 

    Stage 0) Before the selling season starts 

                 the retailer commits inventory to a number of locations and/or  products. 

    Stage 1, beginning) Demands at the various locations or products are observed. 

    Stage 1, end) Product can be repositioned to some extent, at some additional cost, among the various  

                 locations/products, generally moving inventory to the locations/products with higher than  

                 expected demand. 

   This is a very crude simplified representation of an inventory allocation system with reallocation used 

at the clothing retailers Sport Obermeyer, see Fisher and Raman(1996) and at the Spanish firm Zara, see 

Caro and Gallien (2010). Our example below is closer to that of Sport Obermeyer, where the secondary 

reallocation is over products, whereas at Zara, the reallocation is over locations. In the example below, 

in stage 0 we need to decide what initial quantities should be produced to inventory of three types of 

parkas, the “Anita”, “Daphne”, and “Electra”.  After this initial production run, we observe the demands 

for the three parkas. Once we see the demands, we have access to a fast backup production facility of 

limited capacity that can produce any of the three products. Although this backup facility is fast, it is 

also very expensive per unit produced, and it has limited capacity, so if we had perfectly accurate 

forecasts, we would not use the backup facility.  We would produce just the right amount of each product 

from the outset.  In the real world where perfect forecasts are the exception, the main question is: How 

much should we produce of each product initially, taking into account that we can use the somewhat 

expensive backup facility to partially compensate for our forecast errors. 

    In the previous example, we sampled from a standard distribution, e.g., the Poisson. In this example, 

we illustrate using a table of demand scenarios. There are four possible scenarios with associated 

probabilities. 

 
! Capacity Planning with Re-positioning Under Uncertainty (SP_Cap_Plan_Gen); 

!  Stage 0: We decide what inventories or capacities  

           to place at various origins. 

   Stage 1 beginning: Demands at various demand points observed. 

   Stage 1       end: We satisfy demands from available quantities 

                     (by solving a transportation problem.); 

SETS: 

 ORIGIN: CPERU, ULCAP, Q; 

 DESTN: DEMAND; 

 OXD( ORIGIN, DESTN): PROFC, X; 

 SCENE: PROB; 
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 SXD( SCENE, DESTN): RDEM; 

ENDSETS 

DATA: 

! These data are based very loosely on the Sport Obermeyer apparel 

problem studied by Fisher and Raman, Operations Research, vol. 44, no. 1; 

 ORIGIN = OANITA, ODAPHNE, OELECTRA, OGENRIC; ! Sources of production; 

  CPERU =     80       90        65        5; ! Cost per unit to commit; 

  ULCAP =   9999     9999      9999      150; ! Upper limit on production; 

 DESTN = DANITA, DDAPHNE, DELECTRA; ! Demand points; 

 PROFC = 180      0        0     ! Incremental profit from satisfying a ; 

           0    160        0     ! particular demand point from a ; 

           0      0      140     ! particular supply point; 

          90     50,      60;    ! Generic is a quick response source; 

 ! E.g., OANITA can satisfy only DANITA, ODAPHNE only DDAPHNE, etc., 

         OGENERIC can satisfy any demand but is not as profitable and 

         has limited capacity; 

 PROB = 0.2 0.3 0.4 0.1;  ! Probabilities of various scenarios; 

 RDEM = 300 400 400       ! The demand scenarios; 

        320 370 433 

        333 383 460 

        500 320 610; 

ENDDATA 

! Decision variables: 

   Q(i) = amount of initial inventory or capacity we put at or in 

          source i before seeing demand. 

   X(i,j) = amount we reposition from source i to destinantion j 

          after seeing demand. Some destinations may also be sources; 

 

! 1) Define core model; 

  !   Maximize revenue from sales minus cost of producing inventory; 

    MAX = @SUM( OXD(i,j): PROFC(i,j)*X(i,j))  

        - @SUM( ORIGIN(i): CPERU(i)* Q(i)); 

 

  ! Cannot install/produce more than upper limit; 

   @FOR( ORIGIN(i): 

      Q(i) <= ULCAP(i); 

       ); 

  ! Cannot sell more than we stock; 

   @FOR( ORIGIN(i): 

     @SUM( DESTN(j): X(i,j)) <= Q(i); 

        ); 

  ! Cannot sell more than demand; 

   @FOR( DESTN(j): 

     @SUM( ORIGIN(i): X(i,j)) <= DEMAND(j);  

       ); 

 

 ! 2) Specify staging of decisions. Click on 

         Edit | Paste function | Stochastic Programming 

      to see choices and syntax; 

   @FOR( ORIGIN(i):  

      @SPSTGVAR( 0, Q(i)); ! The Q's are a stage 0 decision; 

        ); 

   ! ... and demands (stage 1); 
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   @FOR( DESTN(j): 

      @SPSTGRNDV( 1, DEMAND(j));  ! Demands observed in stage 1 beginning; 

       ); 

 

  ! 3) Specify distribution of demands. 

      Demand scenarios come from a table;  

      @SPDISTTABLE( RDEM, DEMAND, PROB); 

 

  ! 4) Number of scenarios; 

       @SPSAMPSIZE( 1, 10); 

 

A portion of the solution report appears below. Notice that all of the available generic capacity is committed. 

 
  Global optimal solution found. 

  Objective value:                              90207.00 

 

  Stage 0 Solution 

  ---------------- 

 

              Variable           Value 

            Q( OANITA)        320.0000 

           Q( ODAPHNE)        370.0000 

          Q( OELECTRA)        433.0000 

           Q( OGENRIC)        150.0000 

 

  Scenario: 1   Probability: 0.1000000   Objective: 82905.00 

  ---------------------------------------------------------- 

 

       Random Variable           Value 

       DEMAND( DANITA)        300.0000 

      DEMAND( DDAPHNE)        400.0000 

     DEMAND( DELECTRA)        400.0000 

 

              Variable           Value 

  X( OGENRIC, DDAPHNE)        30.00000 

 

  Scenario: 2   Probability: 0.1000000   Objective: 93065.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        333.0000 

        DEMAND( DDAPHNE)        383.0000 

       DEMAND( DELECTRA)        460.0000 

 

                Variable           Value 

     X( OGENRIC, DANITA)        13.00000 

    X( OGENRIC, DDAPHNE)        13.00000 

   X( OGENRIC, DELECTRA)        27.00000 

 

  Scenario: 3   Probability: 0.1000000   Objective: 89625.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 
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         DEMAND( DANITA)        320.0000 

        DEMAND( DDAPHNE)        370.0000 

       DEMAND( DELECTRA)        433.0000 

 

                Variable           Value 

 

 

  Scenario: 4   Probability: 0.1000000   Objective: 93065.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        333.0000 

        DEMAND( DDAPHNE)        383.0000 

       DEMAND( DELECTRA)        460.0000 

 

                Variable           Value 

     X( OGENRIC, DANITA)        13.00000 

    X( OGENRIC, DDAPHNE)        13.00000 

   X( OGENRIC, DELECTRA)        27.00000 

 

 

  Scenario: 8   Probability: 0.1000000   Objective: 95125.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        500.0000 

        DEMAND( DDAPHNE)        320.0000 

       DEMAND( DELECTRA)        610.0000 

 

                Variable           Value 

     X( OGENRIC, DANITA)        150.0000 

 

 

12.4 Multi-Stage Decisions Under Uncertainty 
    Our examples thus far have been at most two stages. In stage 0, we make a decision, and then in stage 

1 at the beginning there is one occurrence of a random event, and then finally we make one recourse 

decision. A slightly more complicated class of problems is the set of problems in which there are two or 

more separate random stages, with an intervening set of decisions. Perhaps the simplest multi-stage 

problems of decision making under risk are “stopping “ problems, examined next. 
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12.4.1 Stopping Rule and Option to Exercise Problems 
    Some sequential decision problems are of the form: a) Each period we have to make an accept or 

reject decision; b) once we accept, the “game is over”. We then have to live with that decision. Our 

next example is the simplest example of a problem known variously as a stopping problem, the college 

acceptance problem, the secretary problem, or the dating game. The general situation is as follows. 

Each period we are offered an object of known quality.  We have a choice of either a) accept the object 

and end the game, or b) reject the object and continue in the hope that a better object will become 

available in a future period. The problem is nontrivial because we do not know the qualities in 

advance. The following illustrates. Each period we will see either a 2, a 7, or a 10, where 10 is the best 

possible, and 2 is the worst. It is clear that once we see a 10, we might as well accept.  We can never 

do better.  If we see a 2, we should never accept unless it is the last period. Whether we should accept 

or reject a 7 in intermediate periods is at the moment a puzzle,  depending upon the probabilities of the 

various outcomes. There are four periods, i.e., we have 4 chances. The completely deterministic “core”  

model is quite simple, namely: 

      Maximize v1*y1 + v2*y2 + v3*y3+ v4*y4; 

          subject to: 

                       y1 + y2 + y3+ y4 ≤ 1; 

                         yj = 0 or 1, for j = 1, 2, 3, 4; 

 

The complication is that we do not know the vj in advance. In particular, we must choose the value for 

yj immediately after seeing vj, without knowing the future vj ‘s. If we follow the simple rule of 

accepting the first candidate, i.e., setting = 1, then the expected value of the objective function is 

(2+7+10)/3 = 6.3333.  To check our understanding, we might ask ourselves several questions. How 

much better than 6.3333 can we do by being more thoughtful?  What will the optimal policy look like?  

We can deduce certain features of it, such as: 1) If we see a 10, then accept it immediately. We can do 

no better; 2) If we see a 2, reject it, except if it is the last period, then accept. The big question is what 

to do when we see a 7 in any period before the last. The model formulated in LINGO appears below. 

! The  Dating Game      (SP_DatinGame) 

    

  We interview one prospect per stage or period. 

 The quality of a prospect is a random variable.    

       

 After interviewing a prospect we must make an Accept or Reject decision. 

          

 Once we Accept, the game is over. 

 We want to maximize the expected quality of the accepted prospect; 

 

SETS: 

  PERIOD: QUALITY, Y, SAMP_SZ; 

  QPOSS: QOFP; 

ENDSETS 

 

DATA: 

  PERIOD =  P1 P2 P3 P4; ! The view and accept/reject periods); 

  SAMP_SZ=   3  3  3  3; ! Sample size for each period; 

  QOFP = 2  7  10;  ! Possible qualities of prospects; 
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ENDDATA 

 

! 1) Core Model -------------------------------------------+; 

 ! Y(p) = 1 if we accept the prospect we see in stage p; 

! Maximize the quality of the accepted prospect; 

   MAX = @SUM( PERIOD(p): QUALITY(p)*Y(p)); 

 

! We can accept only once; 

   @SUM( PERIOD( P): Y( P)) <= 1; 

 

! We either accept or reject, no halfsies; 

   @FOR( PERIOD(p): @BIN( Y(p)) ); 

 

!LS*** These redundant constraints are added just to make the solver happy; 

  @SPSTGVAR( 0, Y0); ! In case LINGO wants a decision variable in stage 0; 

   Y0 + Y(1) <= 1; 

   Y0 + Y(2) <= 1; 

   Y0 + Y(3) <= 1; 

 

! SP Related Declarations -----------------------------+; 

!  2) Staging information; 

!   QUALITY is a random variable; 

@FOR( PERIOD( p):  

   @SPSTGRNDV( p, QUALITY( p)); 

! The decision variables;  

   @SPSTGVAR( p, Y( p)); 

    ); 

 

! 3) Declare a table distribution; 

@FOR( PERIOD( P) : 

   ! Quality is chosen randomly from table QOFP; 

   @SPDISTTABLE( QOFP, QUALITY( p)); 

    ); 

 

 ! 4) Declare sample size for each stage/period; 

@FOR( PERIOD( P): 

   ! Set the sample size for the stage; 

   @SPSAMPSIZE( P, SAMP_SZ( P)); 

    ); 

 

 

When solved, we see that the expected objective value is 9.012346, quite a bit better than the 5.333333 

we would get by taking the first offer.   

 

With regard to the policy, in particular, what to do when we are offered a “7”, we can look Scenario 51  

below.  

  Global optimal solution found. 

  Objective value:                              9.012346 

 

  Scenario: 61   Probability: 0.1234568E-01   Objective: 7.000000 
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  --------------------------------------------------------------- 

 

         Random Variable           Value 

            QUALITY( P1)        7.000000 

            QUALITY( P2)        7.000000 

            QUALITY( P3)        7.000000 

            QUALITY( P4)        10.00000 

 

                Variable           Value 

                Y( P3)        1.000000 
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Notice from the highlighted row, for the given probabilities,  if we see a 7 in stage 1 or 2, we do not 

accept (0) it, however, when we see a 7 in stage 3, whe accept (1). 

 

12.4.2. An Option Exercise Stopping Problem  
In financial markets it is frequently possible to buy options to buy or sell some financial instrument at 

an agreed upon “strike” price. This is a type of stopping problem. Once we have exercised the option, 

the game is over. The option exercise problem differs from our previous stopping problem example 

only in the manner in which the random variables, in this case the price of the financial instrument, is 

determined. In this particular example we will have five periods/stages/decision points, so the core 

model is similar to before: 

          Maximize v1y1 + v2y2 + v3y3+ v3y3 +v5y5; 

          subject to: 

                       y1 + y2 + y3+ y4 + y5 ≤ 1; 

                         yj = 0 or 1, for j = 1, 2, 3, 4, 5; 

The difference is the manner in which the vj are determined. In this particular example, we assume that 

with equal probability the financial instrument, say a stock, changes each period by either 1) increasing 

by 6%, or 2) increases, by 1%, or 3) decreases by 4%.  Further, we have to pay for the option up front, 

however, if and when we exercise the option, we get paid ( difference between the strike price minus 

the then current price) only later at the point of exercise.  Therefore, we want to discount the future 

cash inflow back to the point in time that we purchase the option.  Figure 5.8 shows the setup in 

What’sBest!. 

When solved, from the WB! Status tab, we see that the expected value of the objective is 1.669324.  

This means, that we would be we  be willing to pay up to about 1.67 for this option. One of the 

attractive features of using stochastic programming is that you get to see the distribution of the profit. 

If we look on the WB!_Histogram tab, we see the histogram in Figure 5.9. The interesting message 

from this histogram is that even though the expected profit contribution from exercising the option is 

about 1.67, we should expect a profit contribution of zero about 70% of the time.  

With regard the policy of when to sell, recall that the strike price was 99, so we would never sell if the 

price > 99.  From looking at the WB_Stochastic tab in Figure 5.10, we see that the policy is: 

                       Sell at Strike Price  

               Stage    if Market Price ≤ 

                  1        never 

                  2        92.16 

                  3        93.08 

                  4        94.01 

                  5        99. 
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12.5 Expected Value of Perfect Information (EVPI) 
Uncertainty has its costs. Therefore, it may be worthwhile to invest in research to reduce the uncertainty. 

This investment might be in better weather forecasts for problems like the one just considered or it might 

be in test markets or market surveys for problems relating to new product investment. A bound on the 

value of better forecasts is obtainable by considering the possibility of getting perfect forecasts, so-called 

perfect information. 

 We have sufficient information on the snow removal problem to calculate the value of perfect 

information. For example, if we knew beforehand the winter would be warm, then we saw from the 

solution of the warm winter model the total cost would be $583,333.3. On the other hand, if we knew 

beforehand that the winter would be cold, we saw the total cost would be $970,000. Having perfect 

forecasts will not change the frequency of warm and cold winters. They will presumably still occur with 

respective probabilities 0.4 and 0.6. Thus, if we had perfect forecasts, the expected cost per season would 

be: 

0.4  583,333.3 + 0.6  970,000 = 815,333.3 

 From the solution of the complete model, we see the expected cost per season without any additional 

information is $819,888.3. Thus, the expected value of perfect information is 

819,888.3 − 815,333.3 = $4,555.0. Therefore, if a well-dressed weather forecaster claims prior 

knowledge of the severity of the coming winter, then an offer of at most $4,555 should be made to learn 

his forecast. We say the expected value of perfect information in this case is $4,555. In reality, his 

forecast is probably worth considerably less because it is probably not a perfect forecast. 

12.6 Expected Value of Modeling Uncertainty 
Suppose the EVPI is high. Does this mean it is important to use stochastic programming, or the scenario 

approach? Definitely not. Even though the EVPI may be high, it may be a very simple deterministic 

model does just as well (e.g., recommends the same decision as a sophisticated stochastic model). The 

Expected Value of Modeling Uncertainty (EVMU) measures the additional profit possible by using a 

“correct” stochastic model. EVMU is always measured relative to some simpler deterministic model. 

12.6.1 Certainty Equivalence 
An interesting question is: are there some situations in which we know in advance EVMU = 0?. A 

roughly equivalent question is: “Under what conditions can we replace a random variable in a model by 

its expected value without changing the action recommended by the model?” If we can justify such a 

replacement, then we have a priori determined that the EVMU is zero for that random variable. The 

following gives a sufficient condition: 

Certainty Equivalence Theorem: If the randomness or unpredictability in problem data 

exists solely in the objective function coefficients of a linear objective function, then 
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it is correct to solve the model in regular form after simply using the expected values 

for the random coefficients in the objective. 

 If the randomness exists in a right-hand side or a constraint coefficient, then it is generally not 

correct to simply replace the random element by its average or expected value. We can be slightly more 

precise if we define: 

X  = the set of decision variables, 

Yi  = some random variable in the model, 

i = all other random variables in the model, except Yi, 

i = all other random variables that are independent of Yi. 

 We are justified in replacing Yi by its expected value, E(Yi), if Yi appears only in the objective 

function, and each term containing Yi either: 

is not a function of X, or 

is linear in Yi and contains no random variables dependent upon Yi. 

Equivalently, we must be able to write the objective as: 

Min F1(X, i) + F2(X, i) * Yi + F3( i,Yi). 

If we take expected values: 

E[F1(X,Yi) + F2(X, i) * Yi + F3( i,Yi)] 

= E[F1(X, i)] + E[F2(X, I)] * E(Yi) + E[F3( i,Yi)]. 

The third term is a constant with respect to the decision variables, so it can be dropped. 

 Thus, any X that minimizes E[F1(X i) + F2(X, i) * Yi] also minimizes: 

E[F1(X, i) + F2(X, i) * E(Yi)]. 

 As an example, consider a farmer who must decide how much corn, beans, and milo to plant in the 

face of random yields and random prices for the crops. Further, suppose the farmer receives a 

government subsidy that is a complicated function of current crop prices and the farmer’s total land 

holdings, but not a function of current yield or planting decisions. Suppose the price for corn at harvest 

time is independent of the yield. The farmer’s income can be written (income from beans and milo) + 

(acreage devoted to corn)  (corn yield)  (price of corn) + (subsidy based on prices). 

 The third term is independent of this year’s decision, so it can be disregarded. In the middle term, 

the random variable, “price of corn”, can be replaced by its expected value because it is independent of 

the two other components of the middle term. 

12.7 Risk Aversion 
Thus far, we have assumed the decision maker is strictly an expected profit maximizer and is neither 

risk averse nor risk preferring. Casino gamblers who play games such as roulette must be risk preferring 
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if the roulette wheel is not defective, because their expected profits are negative. A person is risk averse 

if he or she attaches more weight to a large loss than expected profits maximization would dictate. 

 In the context of the snow removal problem, the Streets Manager might be embarrassed by a high 

cost of snow removal in a cold winter even though long run expected cost minimization would imply an 

occasional big loss. From the optimal policy for the snow removal problem, we can see the sum of 

first-period plus second-period costs if the winter is cold is: 

70*BF1 + 20*BS1 + KC = 977591. 

 On the other hand, if it is known beforehand the winter will be cold, then we have seen this cost can 

be reduced to $970,000. 

 For fear of attracting the attention of a political opponent, the Streets Manager might wish to prevent 

the possibility of a cost more than $5,000 greater than the minimum possible for the cold winter outcome. 

 The Manager can incorporate his risk aversion into the LP by adding the constraint: 

70 * BF1 + 20 * BS1 + KC  975000. 

When this is done, the solution is: 

Optimal solution found at step:        11 

Objective value:                 820061.1 

Variable           Value        Reduced Cost 

     BF1        3780.556           0.0000000 

     BS1        2916.667           0.0000000 

      KW        264680.6           0.0000000 

      KC        652027.8           0.0000000 

     BFW       0.0000000            3.200000 

     XFW        863.8889           0.0000000 

      PW       0.0000000            4.611115 

      SW        2916.667           0.0000000 

     BSW       0.0000000            3.533334 

     XSW       0.0000000            8.466666 

     BFC        1027.778           0.0000000 

     XFC       0.0000000            5.333333 

      PC        1891.667           0.0000000 

      SC        2916.667           0.0000000 

     BSC       0.0000000            8.466667 

     XSC       0.0000000            2.866666 

 The expected cost has increased by about 820,061 − 819,888 = 173 dollars. A politician might 

consider this a price worth paying to reduce his worst case (cold winter) cost almost $2,600. Notice, 

however, performance in the event of a warm winter does not look as good. The value of XFW indicates 

there will be almost 864 units of fuel to be disposed of at the end of a warm winter. 

12.7.1 Downside Risk 
There is a variety of ways of measuring risk. Variance is probably the most common measure of risk. 

The variance measure gives equal weight to deviations above the mean as well as below. For a symmetric 

distribution, this is fine, but for nonsymmetrical distributions, this is not attractive. Most people worry 

a lot more about returns that are below average than ones above average. 
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 Downside risk is a reasonably intuitive way of quantifying risk that looks only at returns lower than 

some threshold. In words, downside risk is the expected amount by which return falls short of a specified 

target. To explain it more carefully, define: 

 Ps  = probability that scenario s occurs 

 T  = a target return threshold that we specify 

 Rs  = the return achieved if scenario s occurs 

 Ds  = the down side if scenario s occurs 

      =  max {0, T − Rs} 

ER  = expected downside risk 

       = p1D1 + p2D2 + ... 

12.7.2 Example 
Suppose the farmer of our earlier acquaintance has made two changes in his assessment of things: (a) he 

assesses the probability of a wet season as 0.7 and (b) he has eliminated beans as a possible crop, so he 

has only two choices (corn and sorghum). A reformulation of his model is: 

MAX = 0.7 * RW + 0.3 * RD; 

RW - 100 * C - 70 * S = 0; 

RD + 10 * C - 40 * S = 0; 

C + S = 1; 

@FREE(RW); 

@FREE(RD); 

 The variables RW and RD are the return (i.e., profit) if the season is wet or dry, respectively. Notice 

both RW and RD were declared as FREE, because RD in particular could be negative. 

 When solved, the recommendation is to plant 100% corn with a resulting expected profit of 67: 

Optimal solution found at step:         0 

Objective value:                 67.00000 

Variable           Value        Reduced Cost 

      RW        100.0000           0.0000000 

      RD       -10.00000           0.0000000 

       C        1.000000           0.0000000 

       S       0.0000000            6.000000 

     Row    Slack or Surplus      Dual Price 

       1        67.00000            1.000000 

       2       0.0000000           0.7000000 

       3       0.0000000           0.3000000 

       4       0.0000000            67.00000 

 The solution makes it explicit that, if the season is dry, our profits (RD) will be negative. Let us 

compute the expected downside risk for a solution to this problem. We must choose a target threshold. 

A plausible value for this target is one such that the most conservative decision available to us just barely 

has an expected downside risk of zero. For our farmer, the most conservative decision is sorghum. A 

target value of 40 would give sorghum a downside risk of zero. To compute the expected downside risk 

for our problem, we want to add the following constraints: 

DW > 40 − RW 

DD > 40 − RD 
ER = .7 DW + .3 DD 
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The constraint DW > 40 − RW effectively sets DW = max (0, 40 − RW). 

 When converted to standard form and appended to our model, we get: 

MAX = 0.7 * RW + 0.3 * RD; 

RW - 100 * C - 70 * S = 0; 

RD + 10 * C - 40 * S = 0; 

C + S = 1; 

RW + DW > 40; 

RD + DD > 40; 

- 0.7 * DW - 0.3 * DD + ER = 0; 

@FREE(ER); 

@FREE(RW); 

@FREE(RD); 

The solution is: 

Optimal solution found at step:         2 

Objective value:                 67.00000 

Variable           Value        Reduced Cost 

      RW        100.0000           0.0000000 

      RD       -10.00000           0.0000000 

       C        1.000000           0.0000000 

       S       0.0000000            6.000000 

      DW       0.0000000           0.0000000 

      DD        50.00000           0.0000000 

      ER        15.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        67.00000            1.000000 

       2       0.0000000           0.7000000 

       3       0.0000000           0.3000000 

       4       0.0000000            67.00000 

       5        60.00000           0.0000000 

       6       0.0000000           0.0000000 

       7       0.0000000           0.0000000 

 Because we put no constraint on expected downside risk, we get the same solution as before, but 

with the additional information that the expected downside risk is 15. 

 What happens as we become more risk averse? Suppose we add the constraint ER < 10. We then 

get the solution: 

Optimal solution found at step:         2 

Objective value:                 65.00000 

Variable           Value        Reduced Cost 

      RW        90.00000           0.0000000 

      RD        6.666667           0.0000000 

       C       0.6666667           0.0000000 

       S       0.3333333           0.0000000 

      DW       0.0000000           0.2800000 

      DD        33.33333           0.0000000 

      ER        10.00000           0.0000000 
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 Notice the recommendation is now to put 1/3 of the land into sorghum. The profit drops modestly 

to 65 from 67. If the season is dry, the profit is now 6.67 rather than −10 as before. Finally, let’s constrain 

the expected downside risk to zero with ER < 0. Then the solution is: 

Optimal solution found at step:         2 

Objective value:                 61.00000 

Variable           Value        Reduced Cost 

      RW        70.00000           0.0000000 

      RD        40.00000           0.0000000 

       C       0.0000000           0.0000000 

       S        1.000000           0.0000000 

      DW       0.0000000           0.2800000 

      DD       0.0000000           0.0000000 

      ER       0.0000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        61.00000            1.000000 

       2       0.0000000           0.7000000 

       3       0.0000000           0.4200000 

       4       0.0000000            65.80000 

       5        30.00000           0.0000000 

       6       0.0000000          -0.1200000 

       7       0.0000000          -0.4000000 

       8       0.0000000           0.4000000 

Now, all the land is planted with sorghum and expected profit drops to 61. 
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12.8 Dynamic Programming and Financial Option Models 
The term dynamic programming is frequently applied to the solution method described above. We 

illustrate it with three examples in the area of financial options. One in the stock market, one in the bond 

market, and the third in foreign exchange. A stock option is a right to buy a specified stock at a specified 

price (the so-called strike price) either on a specified date (a so-called European option) or over a 

specified interval of time (a so-called American option). An interesting problem in finance is the 

determination of the proper price for such an option. This problem was “solved” by Black and Scholes 

(1973). Below is a LINGO implementation of the “binomial pricing” version of the Black/Scholes 

model: 

MODEL: 

SETS:                             !(OPTONB); 

! Binomial option pricing model: We assume that 

a stock can either go up in value from one period 

to the next with probability PUP, or down with 

probability (1 - PUP). Under this assumption, 

a stock's return will be binomially distributed. 

  We can then build a 

dynamic programming recursion to 

determine the option's value; 

! No. of periods, e.g., weeks; 

   PERIOD /1..20/:; 

ENDSETS 

DATA: 

! Current price of the stock; 

   PNOW   = 40.75; 

! Exercise price at option expiration; 

   STRIKE = 40; 

! Yearly interest rate; 

   IRATE  = .163; 

! Weekly variance in log of price; 

   WVAR   = .005216191 ; 

ENDDATA 

SETS: 

!Generate our state matrix for the DP.STATE(S,T) may 

be entered from STATE(S,T-1)if the stock lost value, 

or it may be entered from STATE(S-1,T-1) if stock 

 gained; 

   STATE( PERIOD, PERIOD)| &1 #LE# &2: 

      PRICE,   ! There is a stock price, and   ; 

      VAL;     ! a value of the option; 

ENDSETS 

! Compute number of periods; 

   LASTP = @SIZE( PERIOD); 

! Get the weekly interest rate; 

   ( 1 + WRATE) ^ 52 = ( 1 + IRATE); 

! The weekly discount factor; 

   DISF = 1/( 1 + WRATE); 

! Use the fact that if LOG( P) is normal with 

  mean LOGM and variance WVAR, then P has 

  mean EXP( LOGM + WVAR/2), solving for LOGM...; 

   LOGM = @LOG( 1 + WRATE) - WVAR/ 2; 
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! Get the log of the up factor; 

   LUPF = ( LOGM * LOGM + WVAR) ^ .5; 

! The actual up move factor; 

   UPF = @EXP( LUPF); 

! and the down move factor; 

   DNF = 1/ UPF; 

! Probability of an up move; 

   PUP =  .5 * ( 1 + LOGM/ LUPF); 

! Initialize the price table; 

   PRICE( 1, 1) = PNOW; 

! First the states where it goes down every period; 

   @FOR( PERIOD( T) | T #GT# 1: 

      PRICE( 1, T) = PRICE( 1, T - 1) * DNF); 

! Now compute for all other states S, period T; 

   @FOR( STATE( S, T)| T #GT# 1 #AND# S #GT# 1: 

      PRICE( S, T) = PRICE( S - 1, T - 1) * UPF); 

! Set values in the final period; 

    @FOR( PERIOD( S): 

    VAL( S, LASTP)= @SMAX( PRICE( S, LASTP) - STRIKE,0) 

         ); 

! Do the dynamic programming; 

   @FOR( STATE( S, T) | T #LT# LASTP: 

      VAL( S, T) = @SMAX( PRICE( S, T) - STRIKE, 

             DISF * ( PUP * VAL( S + 1, T + 1) + 

               ( 1 - PUP) * VAL( S, T + 1)))); 

! Finally, the value of the option now; 

 VALUE = VAL( 1, 1); 

END 

 The @SMAX function in the dynamic programming section corresponds to the decision in period T 

to either exercise the option and make an immediate profit of PRICE( S, T) – STRIKE, or wait (at least) 

until next period. If we wait until next period, the price can go up with probability PUP or down with 

probability 1- PUP. In either case, to convert next period’s value to this period’s value, we must multiply 

by the discount factor, DISF. The interesting part of the solution to this model gives: 

Variable             Value 

   VALUE          6.549348 

 The actual price of this option in the Wall Street Journal when there were 19 weeks until expiration 

was $6.625. So, it looks like this option is not a good buy if we are confident in our input data. 

12.8.1 Binomial Tree Models of Interest Rates 
Financial options based on interest rates are becoming widely available, just as options on stock prices 

have become widely available. In order to evaluate an interest rate option properly, we need a model of 

the random behavior of interest rates. 

 Interest rates behave differently than stock prices. Most notably, interest rates tend to hover in a 

finite interval (e.g., 2% to 20% per year); whereas, stock prices continue to increase year after year. Not 

surprisingly, a different model must be used to model interest rates. One of the simpler, yet realistic, 

methods for evaluating interest rate based options was developed by Black, Derman, and Toy (1990). 

Heath, Jarrow, and Morton (1992) present another popular model of interest rate movements.  

 The Black/Derman/Toy (BDT) model tries to fit two sets of data: a) the yield curve for bonds, and b) 

the volatility in the yield to maturity (YTM) for bonds. For a T period problem, the random variable of 
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interest is the forward interest rate in each period 1, 2, …, T. For period 1, the forward rate is known. For 

periods t = 2, 3, …, T, the BDT model chooses t forward rates, so these rates are consistent with: a) the 

YTM curve, and b) the observed volatility in YTM. The BDT model assumes the probability of an increase 

in the interest rate in a period = probability of a decrease = .5. The possible rates in a period for the BDT 

model are determined by two numbers: a) a base rate, which can be thought of as chosen to match the mean 

YTM, and b) a rate ratio chosen to match the volatility in the YTM. Specifically, the BDT model assumes 

ri+1,t / ri,t = ri,t / ri-1,t for the ith forward rate in period t. Thus, if r1,t and r2,t are specified in period t, then all 

the other rates for period t are determined. 

 Below is a LINGO implementation of the BDT model: 

MODEL: 

SETS: 

! Black/Derman/Toy binomial interest rate model(BDTCALB); 

! Calibrate it to a given yield curve and volatilities; 

 PORM/1..5/:   ! (INPUTS:)For each maturity; 

   YTM,   ! Yield To Maturity of Zero Coupon Bond; 

   VOL;   ! Volatility of Yield To Maturity of ZCB; 

 STATE( PORM, PORM)| &1 #GE# &2: 

   FSRATE; ! (OUTPUT:)Future short rate in period j, state k; 

ENDSETS 

DATA: 

 YTM = .08, .0812, .0816, .0818, .0814; 

 VOL =   0, .1651, .1658, .1688, .1686; 

! Write the forward rates to a file; 

 @TEXT( 'forwrdr.dat') = FSRATE; 

ENDDATA 

!-------------------------------------------------; 

SETS: 

 TWO/1..2/:; 

 VYTM( PORM, TWO): YTM2; ! Period 2 YTM's; 

 MXS( PORM, PORM, PORM)|&1#GE# &2 #AND# &2 #GE# &3: 

   PRICE; ! Price of a ZCB of maturity i, in period j,  state k; 

ENDSETS 

! Short rate ratios must be constant   

      (Note: C/B=B/A <=> C=BB/A); 

 @FOR( STATE( J, K)| K #GT# 2: 

   FSRATE( J, K) = 

FSRATE( J, K -1) * FSRATE( J, K-1)/ FSRATE( J, K-2); 

    @FREE( FSRATE( J, K)); 

    ); 

! Compute prices for each maturity in each period and state; 

@FOR( MXS( I, J, K)| J #EQ# I: 

    @FREE( PRICE( I, I, K)); 

    PRICE( I, I, K) = 1/( 1 + FSRATE( I, K)); ); 

@FOR( MXS( I, J, K) | J #LT# I: 

    @FREE( PRICE( I, J, K)); 

    PRICE( I, J, K) = .5 * ( PRICE(I, J + 1, K) + PRICE(I, J + 1, K + 

1))/( 1 + FSRATE( J, K)); 

    ); 

!For each maturity, price in period 1 must be consistent with its YTM; 

@FOR( PORM( I): 

  PRICE( I, 1, 1)*( 1 + YTM( I))^I = 1; 

  ); 
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 ! Compute period 2 YTM's for each maturity; 

@FOR( VYTM( I, K)| I #GT# 1: 

  YTM2( I, K) = (1/ PRICE( I, 2, K)^(1/( I-1))) - 1; 

   ); 

  ! Match the volatilities for each maturity; 

@FOR( PORM( I)| I #GT# 1: 

  .5 * @LOG( YTM2( I, 2)/ YTM2( I, 1)) = VOL( I); 

    ); 

END 

When solved, we get the following forward interest rates: 

     Variable           Value 

FSRATE( 1, 1)       0.8000000E-01 

FSRATE( 2, 1)       0.6906015E-01 

FSRATE( 2, 2)       0.9607968E-01 

FSRATE( 3, 1)       0.5777419E-01 

FSRATE( 3, 2)       0.8065491E-01 

FSRATE( 3, 3)       0.1125973 

FSRATE( 4, 1)       0.4706528E-01 

FSRATE( 4, 2)       0.6690677E-01 

FSRATE( 4, 3)       0.9511292E-01 

FSRATE( 4, 4)       0.1352100 

FSRATE( 5, 1)       0.3900926E-01 

FSRATE( 5, 2)       0.5481167E-01 

FSRATE( 5, 3)       0.7701470E-01 

FSRATE( 5, 4)       0.1082116 

FSRATE( 5, 5)       0.1520465 

We can display these forward rates in a more intuitive tree form: 

                       Period     

   1          2           3         4           5   

                                             0.1520482 

                                  0.1352100  0.1082116 

                       0.1125973  0.0951129  0.0770147 

            0.0960797  0.0806549  0.0669068  0.0548117 

 0.0800000  0.0690602  0.0577742  0.0470653  0.0390093 

 Thus, the BDT model implies that, at the start of period 1, the interest rate is .08. At the start of 

period 2 (end of period 1), the interest rate will be with equal probability, either .0690602 or .0960797, 

etc. 



Decision Making Under Uncert. & Stoch. Programs Chapter 12     371 

 Now, let us suppose we want to compute the value of an interest rate cap of 10% in period 5. That 

is, we would like to buy insurance against the interest rate being greater than .10 in period 5. We see 

there are two possible interest rates, .1520482 and .1082116, that would cause the insurance to “kick 

in”. Assuming interest is paid at the end of each period, it should be clear such a cap is worth either 0, 

.0082116, or .0520482 at the end of period 5. We can calculate the expected value in earlier periods with 

the following dynamic programming value tree: 

                       Period     

   1          2           3         4           5   

                                              .0520482 

                                  .026294     .008212 

                        .013273   .003705      0 

            .006747     .001692     0          0 

 .003440    .000783      0          0          0 

 These values apply to the end of each year. At the beginning of the first year, we would be willing 

to pay .003440/ 1.08 = .003189 per dollar of principal for this cap on interest rate at the end of year five. 

The following LINGO model will read in the FSRATE data computed by the previous model and 

compute the above table of values. Note the FSRATE’s need be computed only once. It can then be used 

to evaluate or price various CAP’s, or caplets as they are sometimes known: 

MODEL: 

SETS: 

! Black/Derman/Toy binomial interest rate model.  

 Compute value of a cap.(BDTCMP); 

 PORM/1..5/:  ; 

 STATE( PORM, PORM)| &1 #GE# &2: 

 FSRATE, 

 !(OUTPUT:)Future short rate in period j,state k; 

 VALUE;  !  Value of the option in this state; 

ENDSETS 

DATA: 

  CAP = .10; 

  FSRATE = @TEXT( forwrdr.dat); 

ENDDATA 

!-------------------------------------------------; 

 LASTP = @SIZE( PORM); 

 @FOR( PORM( K): 

VALUE(LASTP, K) = @SMAX(0, FSRATE(LASTP, K) - CAP); 

  ); 

 @FOR( STATE( J, K) | J #LT# LASTP: 

   VALUE( J, K) = 

.5 * (VALUE(J + 1, K + 1)/(1 + FSRATE(J + 1, K + 1)) 

      + VALUE( J + 1, K)/(1 + FSRATE( J + 1, K))); 

     ); 

!  The value at the beginning of period 1; 

  VALUE0 = VALUE( 1, 1)/( 1 + FSRATE( 1, 1)); 

END 
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12.8.2 Binomial Tree Models of Foreign Exchange Rates 
DeRosa (1992) describes a simple binomial tree model of foreign exchange rates. The following LINGO 

model illustrates the valuation of an option on the German Mark when there were 36 days until its 

expiration. This model illustrates the case of an American style option. That is, the option may be 

exercised any time before its expiration. It is a simple matter to simplify the model to the case of a 

European style option, which can be exercised only at maturity. 

MODEL: 

SETS:      !(OPTONFX); 

! Binomial option pricing model on foreign exchange: 

 What is the value in $ of an option to buy one unit 

 Of a foreign currency at specified/strike exchange  

 rate?  The binomial model assumes the exchange rate 

  can either go up from one period to the next by a  

  fixed factor,  or down by another fixed factor; 

! No. of discrete periods to use, including time now 

  ( 6 means 5 future periods); 

   PERIOD /1..6/:; 

ENDSETS 

DATA: 

! Current exchange rate, $ per foreign unit; 

   XCURR = .5893; 

! Strike exchange rate, i.e., right to exchange 

   $1 for one foreign unit at this rate; 

   XSTRK =.58; 

! Yearly interest rate in $ country; 

   IRD = .0581; 

! Yearly interest rate in foreign country; 

   IRF = .0881; 

! Years to maturity for the option; 

   MATRT = .098630137; !( = 36/365); 

! Yearly variance in exchange rate; 

   SIG = .13; 

ENDDATA 

!--------------------------------------------------; 

SETS: 

!Generate state matrix for the DP. STATE( S, T) may 

be entered from STATE(S, T-1) if FX rate went down, 

or from STATE( S - 1, T - 1) if FX rate went up; 

 STATE( PERIOD, PERIOD)| &1 #LE# &2: 

         FXRATE,  ! There is an FX rate, and...; 

         VAL;     ! a value of the option; 

ENDSETS 

! Compute number of periods; 

   LASTP = @SIZE( PERIOD); 

! Initialize the FXRATE table; 

   FXRATE( 1, 1) = XCURR; 

! Compute some constants; 

!   To avoid warning messages when IRDIFM < 0; 

   @FREE( IRDIFM); 

   IRDIFM = ( IRD - IRF) * MATRT/( LASTP - 1); 

   SIGMSR = SIG * (( MATRT/( LASTP - 1))^.5); 

   DISF = @EXP( - IRD * MATRT/( LASTP - 1)); 
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! The up factor; 

   UPF = @EXP( IRDIFM + SIGMSR); 

! The down factor; 

   DNF = @EXP( IRDIFM - SIGMSR); 

! Probability of an up move( assumes SIG > 0); 

   PUP =  (@EXP( IRDIFM)- DNF)/( UPF - DNF); 

   PDN = 1 - PUP; 

! First the states where it goes down every period; 

   @FOR( PERIOD( T) | T #GT# 1: 

      FXRATE( 1, T) = FXRATE( 1, T - 1) * DNF); 

! Now compute for all other states S, period T; 

   @FOR( STATE( S, T)| T #GT# 1 #AND# S #GT# 1: 

      FXRATE( S, T) = FXRATE( S - 1, T - 1) * UPF); 

! Do the dynamic programming; 

! Set values in the final period; 

   @FOR( PERIOD( S): 

     VAL( S, LASTP) =  

             @SMAX( FXRATE( S, LASTP) - XSTRK, 0)); 

! and for the earlier periods; 

   @FOR( STATE( S, T) | T #LT# LASTP: 

      VAL( S, T) = @SMAX( FXRATE( S, T) - XSTRK, 

                DISF * ( PUP * VAL( S + 1, T + 1) + 

                           PDN * VAL( S, T + 1)))); 

! Finally, the value of the option now; 

 VALUE = VAL( 1, 1); 

END 

It is of interest to look at all of the states computed by the model: 

     Variable           Value 

        XCURR       0.5893000 

        XSTRK       0.5800000 

          IRD       0.5810000E-01 

          IRF       0.8810000E-01 

        MATRT       0.9863014E-01 

          SIG       0.1300000 

        LASTP        6.000000 

       IRDIFM      -0.5917808E-03 

       SIGMSR       0.1825842E-01 

         DISF       0.9988546 

          UPF        1.017824 

          DNF       0.9813264 

          PUP       0.4954355 

          PDN       0.5045645 

        VALUE       0.1393443E-01 

FXRATE( 1, 1)       0.5893000 

FXRATE( 1, 2)       0.5782956 

FXRATE( 1, 3)       0.5674967 

FXRATE( 1, 4)       0.5568995 

FXRATE( 1, 5)       0.5465002 

FXRATE( 1, 6)       0.5362950 

FXRATE( 2, 2)       0.5998035 

FXRATE( 2, 3)       0.5886029 

FXRATE( 2, 4)       0.5776116 
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FXRATE( 2, 5)       0.5668255 

FXRATE( 2, 6)       0.5562408 

FXRATE( 3, 3)       0.6104941 

FXRATE( 3, 4)       0.5990940 

FXRATE( 3, 5)       0.5879067 

FXRATE( 3, 6)       0.5769283 

FXRATE( 4, 4)       0.6213753 

FXRATE( 4, 5)       0.6097720 

FXRATE( 4, 6)       0.5983853 

FXRATE( 5, 5)       0.6324505 

FXRATE( 5, 6)       0.6206403 

FXRATE( 6, 6)       0.6437230 

   VAL( 1, 1)       0.1393443E-01 

   VAL( 1, 2)       0.6976915E-02 

   VAL( 1, 3)       0.2228125E-02 

   VAL( 1, 4)       0.0000000 

   VAL( 1, 5)       0.0000000 

   VAL( 1, 6)       0.0000000 

   VAL( 2, 2)       0.2105240E-01 

   VAL( 2, 3)       0.1182936E-01 

   VAL( 2, 4)       0.4502463E-02 

   VAL( 2, 5)       0.0000000 

   VAL( 2, 6)       0.0000000 

   VAL( 3, 3)       0.3049412E-01 

   VAL( 3, 4)       0.1931863E-01 

   VAL( 3, 5)       0.9098311E-02 

   VAL( 3, 6)       0.0000000 

   VAL( 4, 4)       0.4137534E-01 

   VAL( 4, 5)       0.2977199E-01 

   VAL( 4, 6)       0.1838533E-01 

   VAL( 5, 5)       0.5245049E-01 

   VAL( 5, 6)       0.4064034E-01 

   VAL( 6, 6)       0.6372305E-01 

 Thus, the value of this option is VAL (1, 1) = $0.01393443. For example, the option to buy 100 

Marks for $58 any time during the next 36 days is worth $1.393443. The actual option on which the 

above was based had a price of $1.368 per 100 Marks. The actual option also happened to be a European 

style option, rather than American. An American option can be exercised at any point during its life. A 

European option can be exercised only at its maturity. Thus, it is not surprising the above model should 

attribute a higher value to the option. 

12.9 Decisions Under Uncertainty with an Infinite Number of 
Periods 

We can consider the case of an infinite number of periods if we have a system where: 

a) we can represent the state of the system as one of a finite number of possible states, 

b) we can represent our possible actions as a finite set, 

c) given that we find the system in state s and take action x in a period, nature moves the 

system to state j the next period with probability p( x, j), 

d) a cost c(s,x) is incurred when we take action x from state s. 
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 Such a system is called a Markov decision process and is, in fact, quite general. Our goal is to find 

the best action to take for each state to minimize the average cost per period. Puterman (1994) provides 

an excellent introduction to applications of Markov Decision Processes, as well as a thorough 

presentation of the theory. Manne (1960) showed how to formulate the problem of determining the best 

action for each state as a linear program. He defined: 

w(s,x) = probability that in the steady state the state is s and we take action x.  

 This implicitly allows for randomized policies. That is, the decision maker could flip a coin to 

determine his decision. It turns out, however, that there is always an optimal policy that is deterministic. 

Allowing randomized policies is simply a convenient computational approach. 

 Manne’s LP is then: 

min = 
s, x
c(s, x) w( s, x) 

subject to: 

s, x
 w(s, x) = 1, 

For each state s: 

 x
w(s, x) = 

r, x
w(r, x) p( x, s). 

 Notice the probability of going to state s depends only upon the action taken, x. Some descriptions 

of Markov Decision Processes give an apparently more general definition of the state transition process 

by letting the probability of state s depend not only upon the decision x, but also the previous state r. 

Thus, the transition matrix would be a three dimensional array, p(r, x,s). By giving a suitably general 

definition of “decision”, however, the format where the next state depends only upon the current decision 

can represent any situation representable with the three dimensional notation. For many practical 

problems, the p(x,s) notation is more natural. For example, in an inventory system, if we decide to raise 

the inventory level to 15, the probability that the next state is 7 is usually independent of whether we 

raised the inventory level to 15 from an inventory level of 5 or of 6. Similarly, in a maintenance system, 

if we completely overhaul the system, the probability of the next state should be independent of the state 

before the overhaul. Another way of thinking about a decision is that it chooses the probability 

distribution from which nature chooses the next state. 

 Wang and Zaniewski (1996) describe a system based on a Markov decision process model for 

scheduling maintenance on highways in Arizona and a number of other states. It has been in use since 

1982. A state in this application corresponds to a particular condition of a section of roadway. Transition 

probabilities describe the statistical manner in which a road deteriorates. Actions correspond to possible 

road repairs, such as patch, resurface, or completely replace. Electrical distribution companies have 

similar maintenance problems. With time, tree branches near power lines get longer and equipment 

deteriorates. The actions available to the electrical distribution company are things like tree trimming, 

installing squirrel guards, replacing old equipment, etc. 
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12.9.1 Example: Cash Balance Management 
Suppose we are managing a cash account for which each evening there is a random input or output of 

cash as revenue arrives and/or bills get paid. Each morning, we observe the account level. If the cash 

level gets too high, we want to transfer some of the cash to a longer term investment account that pays 

a higher interest rate. However, if the cash account gets too low, we want to transfer funds from a longer 

term account into the cash account, so we always have sufficient cash on hand. Because we require 

discrete scenarios, let us represent the cash-on-hand status as multiples of $1000. In order to avoid 

negative subscripts, let us make the following correspondence between cash on hand and state: 

Cash on 
hand: 

 

−2000 

 

−1000 

 
0 

 
1000 

 
2000 

 
3000 

 
4000 

 
5000 

State: 1 2 3 4 5 6 7 8 

Cost: 14 7 0 2 4 6 8 10 

Given a state, we can move to any other state by transferring funds if we incur: 

1) a fixed cost of $3 for making any transfer, and 

2) a variable cost of $5 per thousand dollars transferred. 

 Further, suppose that over night only three transitions are possible: go down one state, stay put, or 

go up one state. Their probabilities are: Prob{down one state} = .4; Prob{no change} = .1; Prob{up one 

state} = .5. 

 In state 1, we assume the probability of no change is .5; whereas, in state 8, the probability of no 

change is .6. We can think of the sequence of events each day as:  

i. we observe the cash level in the morning, 

ii. we make any transfers deemed appropriate, 

iii. overnight the cash level either increases by $1000, stays the same, or decreases by $1000. 

A "scalar" model is: 

MIN = 10 * W88 + 18 * W87 + 23 * W86 + 28 * W85  

+ 33 * W84 + 38 * W83 + 43 * W82 + 48 * W81 + 16 * W78  

+  8 * W77 + 16 * W76 + 21 * W75 + 26 * W74 + 31 * W73  

+ 36 * W72 + 41 * W71 + 19 * W68 + 14 * W67 +  6 * W66  

+ 14 * W65 + 19 * W64 + 24 * W63 + 29 * W62 + 34 * W61  

+ 22 * W58 + 17 * W57 + 12 * W56 +  4 * W55 + 12 * W54  

+ 17 * W53 + 22 * W52 + 27 * W51 + 25 * W48 + 20 * W47  

+ 15 * W46 + 10 * W45 +  2 * W44 + 10 * W43 + 15 * W42  

+ 20 * W41 + 28 * W38 + 23 * W37 + 18 * W36 + 13 * W35  

+  8 * W34 +  8 * W32 + 13 * W31 + 40 * W28 + 35 * W27  

+ 30 * W26 + 25 * W25 + 20 * W24 + 15 * W23 +  7 * W22  

+ 15 * W21 + 52 * W18 + 47 * W17 + 42 * W16 + 37 * W15  

+ 32 * W14 + 27 * W13 + 22 * W12 + 14 * W11; 

! Probabilities sum to 1; 

    W88 + W87 + W86 + W85 + W84 + W83  + W82 + W81 

  + W78  + W77  + W76  + W75  + W74  + W73  + W72  + W71 

  + W68  + W67  + W66  + W65  + W64  + W63  + W62  + W61 

  + W58  + W57  + W56  + W55  + W54  + W53  + W52  + W51 

  + W48  + W47  + W46  + W45  + W44  + W43  + W42  + W41 
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  + W38  + W37  + W36  + W35  + W34  + W33  + W32  + W31 

  + W28  + W27  + W26  + W25  + W24  + W23  + W22  + W21 

  + W18  + W17  + W16  + W15  + W14  + W13  + W12  + W11 = 1;  

! Prob{out of state 1}- Prob{ into state 1} = 0; 

- .4 * W82 - .5 * W81 - .4 * W72 - .5 * W71 - .4 * W62  

- .5 * W61 - .4 * W52 - .5 * W51 - .4 * W42 - .5 * W41  

- .4 * W32 - .5 * W31 - .4 * W22 - .5 * W21 + W18 + W17  

+ W16 + W15 + W14 + W13 + .6 * W12 + .5 * W11 = 0; 

! Into state 2; 

- .4 * W83 - .1 * W82 - .5 * W81 - .4 * W73 - .1 * W72  

- .5 * W71 - .4 * W63 - .1 * W62 - .5 * W61 - .4 * W53  

- .1 * W52 - .5 * W51 - .4 * W43 - .1 * W42 - .5 * W41  

- .4 * W33 - .1 * W32 - .5 * W31 + W28 + W27 + W26 + W25 + W24 + .6 * 

W23 + .9 * W22 + .5 * W21 - .4 * W13 - .1 * W12 - .5 * W11 = 0; 

! Into state 3; 

- .4 * W84 - .1 * W83 - .5 * W82 - .4 * W74 - .1 * W73  

- .5 * W72 - .4 * W64 - .1 * W63 - .5 * W62 - .4 * W54  

- .1 * W53 - .5 * W52 - .4 * W44 - .1 * W43 - .5 * W42 + W38 + W37 + 

W36 + W35 + .6 * W34 + .9 * W33 + .5 * W32 + W31 - .4 * W24 - .1 * W23 

- .5 * W22 - .4 * W14 - .1 * W13 - .5 * W12 = 0; 

! Into state 4; 

- .4 * W85 - .1 * W84 - .5 * W83 - .4 * W75 - .1 * W74  

- .5 * W73 - .4 * W65 - .1 * W64 - .5 * W63 - .4 * W55  

- .1 * W54 - .5 * W53 + W48 + W47 + W46 + .6 * W45 + .9 * W44 + .5 * 

W43 + W42 + W41 - .4 * W35 - .1 * W34 - .5 * W33 - .4 * W25 - .1 * W24 

- .5 * W23 - .4 * W15 - .1 * W14 - .5 * W13 = 0; 

! Into state 5; 

- .4 * W86 - .1 * W85 - .5 * W84 - .4 * W76 - .1 * W75  

- .5 * W74 - .4 * W66 - .1 * W65 - .5 * W64 + W58 + W57  

+ .6 * W56 + .9 * W55 + .5 * W54 + W53 + W52 + W51 - .4 * W46 - .1 * 

W45 - .5 * W44 - .4 * W36 - .1 * W35 - .5 * W34 - .4 * W26 - .1 * W25 

- .5 * W24 - .4 * W16 - .1 * W15 - .5 * W14 =0; 

! Into state 6; 

- .4 * W87 - .1 * W86 - .5 * W85 - .4 * W77 - .1 * W76  

- .5 * W75 + W68 + .6 * W67 + .9 * W66 + .5 * W65 + W64 + W63 + W62  + 

W61 - .4 * W57 - .1 * W56 - .5 * W55 - .4 * W47 - .1 * W46 - .5 * W45 

- .4 * W37 - .1 * W36 - .5 * W35 - .4 * W27 - .1 * W26 - .5 * W25 - .4 

* W17 - .1 * W16 - .5 * W15 = 0; 

! Into state 7; 

- .4 * W88 - .1 * W87 - .5 * W86 + .6 * W78 + .9 * W77 + .5 * W76 + W75 

+ W74 + W73 + W72 + W71 - .4 * W68 - .1 * W67 - .5 * W66 - .4 * W58 - 

.1 * W57 - .5 * W56 - .4 * W48 - .1 * W47 - .5 * W46 - .4 * W38 - .1 * 

W37 - .5 * W36 - .4 * W28 - .1 * W27 - .5 * W26 - .4 * W18 - .1 * W17 

- .5 * W16 = 0; 

! Into state 8; 

.4 * W88 + .5 * W87 + W86 + W85 + W84 + W83 + W82 + W81 - .6 * W78 - 

.5 * W77 - .6 * W68 - .5 * W67 - .6 * W58 - .5 * W57 - .6 * W48 - .5 * 

W47 - .6 * W38 - .5 * W37 - .6 * W28 - .5 * W27 - .6 * W18 - .5 * W17 

= 0; 

END 

 Note in the objective, the term 23 * W86 can be thought of as (10 + 3 + 5 * 2)*W86. Similarly, the 

term + .6 * W12 in the "into state 1" constraint, comes from the fact that the probability there is a change 
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out of state 1 in the morning is W12. At the same time, there is also a probability of changing into state 

1 from state 1 the previous morning of W12 * Prob{down transition over night} = W12*.4. The net is 

W12 - .4*W12 = .6*W12. 

 Part of the solution report is reproduced below: 

Obj. value=    5.633607 

Variable           Value        Reduced Cost 

     W64       0.1024590           0.0000000 

     W55       0.2049180           0.0000000 

     W44       0.2663934           0.0000000 

     W22       0.1311475           0.0000000 

     W13       0.5245902E-01       0.0000000 

     W33       0.2426230           0.0000000 

 For example, variable W64 = 0.1024590 means that, in a fraction 0.1024590 of the periods, we will 

find the system in state 6 and we will (or should) take action 4. Note, there is no other positive variable 

involving state 6. So, this implies, if the system is in state 6, we should always take action 4. The expected 

cost per day of this policy is 5.633607. 

Summarizing: 

If the state is 1 or less, we should raise it to state 3. 

If the state is 6 or more, we should drop it to state 4. 

If the state is 2, 3, 4, or 5, we should stay put. 

 Here is a general purpose sets formulation of a Markov decision problem, with data specific to our 

cash balance problem: 

SETS: ! Markov decision process model(MARKOVDP); 

 STATE: H;  

 DCSN:; 

 SXD( STATE, DCSN): C, W; 

 DXS( DCSN, STATE): P; 

ENDSETS 

DATA: 

! Data for the cash balance problem; 

! The states ....;  

STATE= SN2K SN1K S000 SP1K SP2K SP3K SP4K SP5K; 

! The cost of finding system in a given state; 

   H =  14   7    0    2    4    6    8   10; 

! Possible decisions; 

 DCSN= DN2K DN1K D000 DP1K DP2K DP3K DP4K DP5K; 

! The cost of explicitly changing to any other state; 

   C =  0    8   13   18   23   28   33   38 

        8    0    8   13   18   23   28   33 

       13    8    0    8   13   18   23   28 

       18   13    8    0    8   13   18   23 

       23   18   13    8    0    8   13   18 

       28   23   18   13    8    0    8   13 

       33   28   23   18   13    8    0    8 

       38   33   28   23   18   13    8    0; 
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! Prob{ nature moves system to state j| we made decision i}; 

   P = .5   .5    0    0    0    0    0    0 

       .4   .1   .5    0    0    0    0    0 

       0    .4   .1   .5    0    0    0    0 

       0     0   .4   .1   .5    0    0    0 

       0     0    0   .4   .1   .5    0    0 

       0     0    0    0   .4   .1   .5    0 

       0     0    0    0    0   .4   .1   .5 

       0     0    0    0    0    0   .4   .6; 

ENDDATA 

!--------------------------------------------------; 

!Minimize the average cost per period; 

MIN=@SUM(SXD( S, X): ( H( S) + C( S, X))* W( S, X)); 

!The probabilities must sum to 1; 

  @SUM( SXD( S, X): W( S, X)) = 1; 

!Rate at which we exit state S = rate of entry to S. 

 Note, W( S, X) = Prob{ state is S and we make decision X}; 

  @FOR( STATE( S): 

   @SUM( DCSN( X): W( S, X))=  

    @SUM( SXD( R, K): W( R, K)* P( K, S)); 

            ); 

 In the above example, the number of decision alternatives equaled the number of states, so the 

transition matrix was square. In general, the number of decisions might be more or less than the number 

of states, so the transition matrix need not be square. 

 The above model minimizes the average cost per period in the long run. If discounted present value, 

rather than average cost per period, is of concern, then see d’Epenoux (1963) for a linear programming 

model, similar to the above, that does discounting. 

12.10 Chance-Constrained Programs 
A drawback of the methods just discussed is problem size can grow very large if the number of possible 

states of nature is large. Chance-constrained programs do not apply to exactly the same problem and, as 

a result, do not become large as the number of possible states of nature gets large. The stochastic 

programs discussed thus far had the feature that every constraint had to be satisfied by some combination 

of first- and second-period decisions. Chance-constrained programs, however, allow each constraint to 

be violated with a certain specified probability. An advantage to this approach for tolerating uncertainty 

is the chance-constrained model has essentially the same size as the LP for a corresponding problem 

with no random elements. 
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 We will illustrate the idea with the snow removal problem. Under the chance-constrained approach, 

there are no second-stage decision variables, and we would have to specify a probability allowance for 

each constraint. For example, we might specify that with probability at least 0.75 we must be able to 

provide the snow removal capacity required by the severity of the winter. For our problem, it is very 

easy to see that this means we must provide 5,100 truck-days of snow removal capacity. For example, 

if only 4,400 truck-days of capacity were provided, then the probability of sufficient capacity would 

only be 0.4. Let us assume one truck-day of operation costs $116, and one truck-day of salting equals 

1.14 truck-days of plowing. Then, the appropriate chance-constrained LP is the simple model: 

Min=70*BF1 + 20*BS1 + 116*P    + 116*S; 

      −BF1              + P        + S =    0; 

              −BS1                 + S =    0; 
                          P        + S >= 5000; 

                          P + 1.14 * S >= 5100; 

12.11 Problems 
1. What is the expected value of perfect information in the corn/soybean/sorghum planting problem? 

2. The farmer in the corn/soybean/sorghum problem is reluctant to plant all soybeans because, if the 

season is wet, he will make $20 less per acre than he would if he had planted all corn. Can you react 

to his risk aversion and recommend a planting mix where the profit per acre is never more than $15 

from the planting mix that in retrospect would have been best for the particular outcome? 

3. Analyze the snow removal problem of this chapter for the situation where the cost of fuel in a cold 

winter is $80 per truck-day rather than $73, and the cost of salt in a cold winter is $35 rather than 

$32. Include in your analysis the derivation of the expected value of perfect information. 

4. A farmer has 1000 acres available for planting to either corn, sorghum, or soybeans. The yields of 

the three crops, in bushels per acre, as a function of the two possible kinds of season are: 

 Corn Sorghum Beans 

Wet 100 43 45 

Dry    45 35 33 

 The probability of a wet season is 0.6. The probability of a dry season is 0.4. Corn sells for 

$2/bushel; whereas, sorghum and beans each sell for $4/bushel. The total production cost for any 

crop is $100/acre, regardless of type of season. The farmer can also raise livestock. One unit of 

livestock uses one hundred bushels of corn. The profit contribution of one unit of livestock, 

exclusive of its corn consumption, is $215. Corn can be purchased at any time on the market for 

$2.20/bushel. The decision of how much to raise of livestock and of each crop must be made before 

the type of season is known. 

a) What should the farmer do? 

b) Formulate and solve the problem by the scenario-based stochastic programming approach. 
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5. A firm serves essentially two markets, East and West, and is contemplating the location of one or 

more distribution centers (DC) to serve these markets. A complicating issue is the uncertainty in 

demand in each market. The firm has enumerated three representative scenarios to characterize the 

uncertainty. The table below gives (i) the fixed cost per year of having a DC at each of three 

candidate locations, and (ii) the profit per year in each market as a function of the scenario and 

which DC is supplying the market. Each market will be assigned to that one open DC that results in 

the most profit. This assignment can be done after we realize the scenario that holds. The DC 

location decision must be made before the scenario is known. 

Profit by Scenario/Region and Supplier DC 
  Scenario 

One 
Scenario 

Two 
Scenario 

Three 

DC 
Location 

Fixed 
Cost 

 
East 

 
West 

 
East 

 
West 

 
East 

 
West 

A 51 120 21 21 40 110 11 

B 49 110 28 32 92 70 70 

C 52 60 39 20 109 20 88 

 For example, if Scenario Three holds and we locate DC’s at A and C, East would get served 

from A, West from C, and total profits would be 110 + 88 − 51 − 52 = 95. 

a) If Scenario One holds, what is the best combination of DC’s to have open? 

b) If Scenario Two holds, what is the best combination of DC’s to have open? 

c) If Scenario Three holds, what is the best combination of DC’s to have open? 

d) If all three scenarios are equally likely, what is the best combination of DC’s to have open?
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13 
 

Portfolio Optimization  
 
 
 

13.1 Introduction 
Portfolio models are concerned with investment where there are typically two criteria: expected return 

and risk. The investor wants the former to be high and the latter to be low. There is a variety of measures of 

risk. The most popular measure of risk has been variance in return. Even though there are some problems 

with it, we will first look at it very closely.  All the nontrivial LINGO models shown here can be downloaded 

from www.lindo.com, in the MODELS library. 

13.2 The Markowitz Mean/Variance Portfolio Model 
The portfolio model introduced by Markowitz (1959), see also Roy (1952), assumes an investor has two 

considerations when constructing an investment portfolio: expected return and variance in return 

(i.e., risk). Variance measures the variability in realized return around the expected return, giving equal 

weight to realizations below the expected and above the expected return. The Markowitz model might 

be mildly criticized in this regard because the typical investor is probably concerned only with variability 

below the expected return, so-called downside risk. The Markowitz model requires two major kinds of 

information: (1) the estimated expected return for each candidate investment and (2) the covariance 

matrix of returns. The covariance matrix characterizes not only the individual variability of the return on 

each investment, but also how each investment’s return tends to move with other investments. We 

assume the reader is familiar with the concepts of variance and covariance as described in most 

intermediate statistics texts. Part of the appeal of the Markowitz model is it can be solved by efficient 

quadratic programming methods. Quadratic programming is the name applied to the class of models in 

which the objective function is a quadratic function and the constraints are linear. Thus, the objective 

function is allowed to have terms that are products of two variables such as x2 and x  y. 

 Quadratic programming is computationally appealing because the algorithms for linear programs can 

be applied to quadratic programming with only modest modifications. Loosely speaking, the reason only 

modest modification is required is the first derivative of a quadratic function is a linear function. Because 

LINGO has a general nonlinear solver, the limitation to quadratic functions is helpful, but not crucial. 

http://www.lindo.com/
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13.2.1 Example 
We will use some publicly available data from Markowitz (1959). Eppen, Gould and Schmidt (1991) 

use the same data. The following table shows the increase in price, including dividends, for three stocks 

over a twelve-year period: 

 Growth in 
Year S&P500 ATT GMC USX 

43 1.259 1.300 1.225 1.149 

44 1.198 1.103 1.290 1.260 

45 1.364 1.216 1.216 1.419 

46 0.919 0.954 0.728 0.922 

47 1.057 0.929 1.144 1.169 

48 1.055 1.056 1.107 0.965 

49 1.188 1.038 1.321 1.133 

50 1.317 1.089 1.305 1.732 

51 1.240 1.090 1.195 1.021 

52 1.184 1.083 1.390 1.131 

53 0.990 1.035 0.928 1.006 

54 1.526 1.176 1.715 1.908 

 For reference later, we have also included the change each year in the Standard and Poor’s/S&P 500 

stock index. To illustrate, in the first year, ATT appreciated in value by 30%. In the second year, GMC 

appreciated in value by 29%. Based on the twelve years of data, we can use any standard statistical 

package to calculate a covariance matrix for three stocks: ATT, GMC, and USX. The matrix is: 

 ATT GMC USX 

ATT 0.01080754 0.01240721 0.01307513 

GMC 0.01240721 0.05839170 0.05542639 

USX 0.01307513 0.05542639 0.09422681 

 From the same data, we estimate the expected return per year, including dividends, for ATT, GMC, 

and USX as 0.0890833, 0.213667, and 0.234583, respectively. 

 The correlation matrix makes it more obvious how two random variables move together. The 

correlation between two random variables equals the covariance between the two variables, divided by 

the product of the standard deviations of the two random variables. For our three investments, the 

correlation matrix is as follows: 

 ATT GMC USX 

ATT 1.0   

GMC 0.493895589 1.0  

USX 0.409727718 0.747229121 1.0 

 The correlation can be between −1 and +1 with +1 being a high correlation between the two. Notice 

GMC and USX are highly correlated. ATT tends to move with GMC and USX, but not nearly so much as 

GMC moves with USX. 
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 Let the symbols ATT, GMC, and USX represent the fraction of the portfolio devoted to each of the 

three stocks. Suppose, we desire a 15% yearly return. The entire model can be written as: 

MODEL: 

!Minimize end-of-period variance in portfolio value; 

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC + .01307513 

* ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC +.05542639 

* GMC * USX +.01307513 * USX * ATT +.05542639 * USX * GMC +.09422681 

* USX * USX; 

! Use exactly 100% of the starting budget; 

[BUD] ATT + GMC + USX = 1; 

! Required wealth at end of period; 

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15; 

END 

 Note the two constraints are effectively in the same units. The first constraint is effectively a 

“beginning inventory” constraint, while the second constraint is an “ending inventory” constraint. We 

could have stated the expected return constraint just as easily as: 

.0890833 * ATT + .213667 * GMC + .234583 * USX >= .15 

 Although perfectly correct, this latter style does not measure end-of-period state in quite the same 

way as start-of-period state. Fans of consistency may prefer the former style. 

 The equivalent sets-based formulation of the model follows: 

MODEL: 

 SETS: 

  ASSET: AMT, RET; 

  COVMAT(ASSET, ASSET): VARIANCE; 

 ENDSETS 

 DATA: 

  ASSET =      ATT      GMC       USX; 

!Covariance matrix and expected returns; 

  VARIANCE = .01080754 .01240721 .01307513 

             .01240721 .05839170 .05542639 

             .01307513 .05542639 .09422681; 

       RET = 1.0890833  1.213667  1.234583; 

    TARGET = 1.15; 

 ENDDATA 

! Minimize the end-of-period variance in portfolio value; 

[VAR] MIN = @SUM( COVMAT(I, J): AMT(I) * AMT(J) * VARIANCE(I, J)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM( ASSET: AMT) = 1; 

! Required wealth at end of period; 

[RETURN] @SUM( ASSET: AMT * RET) >= TARGET; 

END 
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When we solve the model, we get: 

Optimal solution found at step:         4 

Objective value:                0.2241375E-01 

 Variable           Value        Reduced Cost 

   TARGET        1.150000           0.0000000 

AMT( ATT)       0.5300926           0.0000000 

AMT( GMC)       0.3564106           0.0000000 

AMT( USX)       0.1134968           0.0000000 

RET( ATT)        1.089083           0.0000000 

RET( GMC)        1.213667           0.0000000 

RET( USX)        1.234583           0.0000000 

      Row    Slack or Surplus      Dual Price 

      VAR       0.2241375E-01        1.000000 

   BUDGET       0.0000000           0.3621387 

   RETURN       0.0000000          -0.3538836 

 The solution recommends about 53% of the portfolio be put in ATT, about 36% in GMC and just 

over 11% in USX. The expected return is 15%, with a variance of 0.02241381 or, equivalently, a standard 

deviation of about 0.1497123. 

 We based the model simply on straightforward statistical data based on yearly returns. In practice, 

it may be more typical to use monthly rather than yearly data as a basis for calculating a covariance. 

Also, rather than use historical data for estimating the expected return of an asset, a decision maker might 

base the expected return estimate on more current, proprietary information about expected future 

performance of the asset. One may also wish to use considerable care in estimating the covariances and the 

expected returns. For example, one could use quite recent data to estimate the standard deviations. A large 

set of data extending further back in time could be used to estimate the correlation matrix. Then, using the 

relationship between the correlation matrix and the covariance matrix, one could derive a covariance matrix. 

13.3 Dualing Objectives: Efficient Frontier and Parametric Analysis  
There is no precise way for an investor to determine the “correct” tradeoff between risk and return. Thus, 

one is frequently interested in looking at the tradeoff between the two. If an investor wants a higher 

expected return, she generally has to “pay for it” with higher risk. In finance terminology, we would like 

to trace out the efficient frontier of return and risk. If we solve for the minimum variance portfolio over 
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a range of values for the expected return, ranging from 0.0890833 to 0.234583, we get the following plot 

or tradeoff curve for our little three-asset example: 

Figure 13.1 Efficient Frontier 

 

 Notice the “knee” in the curve as the required expected return increases past 1.21894. This is the 

point where ATT drops out of the portfolio. This graph was generated using model PortEfFront12.lng 

13.3.1 Portfolios with a Risk-Free Asset 
When one of the investments available is risk free, then the optimal portfolio composition has a 

particularly simple form. Suppose the opportunity to invest money risk free (e.g., in government treasury 

bills) at 5% per year has just become available. Working with our previous example, we now have a 

fourth investment instrument that has zero variance and zero covariance. There is no limit on how much 

can be invested at 5%. We ask the question: How does the portfolio composition change as the desired 

rate of return changes from 15% to 5%? 
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 We will use the following slight generalization of the original Markowitz example model. Notice a 

fourth instrument, treasury bills (TBILL), has been added: 

MODEL: 

! Add a riskless asset, TBILL; 

! Minimize end-of-period variance in portfolio value; 

[VAR] MIN = .01080754* ATT * ATT +.01240721* ATT * GMC  +.01307513* 

ATT * USX +.01240721* GMC * ATT +.05839170* GMC * GMC +.05542639* 

GMC * USX +.01307513* USX * ATT +.05542639* USX * GMC +.09422681* 

USX * USX; 

!  Use exactly 100% of the starting budget; 

[BUD]  ATT + GMC + USX + TBILL = 1;  

! Required wealth at end of period; 

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX + 1.05 * 

TBILL >= 1.15; 

END 

Alternatively, this can be also modeled using the sets formulation: 

MODEL: 

SETS: 

 ASSET: AMT, RET; 

 COVMAT(ASSET, ASSET): VARIANCE; 

ENDSETS 

DATA: 

     ASSET=      ATT,     GMC,     USX,   TBILL; 

!Covariance matrix; 

  VARIANCE = .01080754 .01240721 .01307513   0 

             .01240721 .05839170 .05542639   0 

             .01307513 .05542639 .09422681   0 

              0         0         0          0; 

       RET = 1.0890833 1.213667 1.234583, 1.05; 

       TARGET = 1.15; 

ENDDATA 

! Minimize the end-of-period variance in portfolio value;  

[VAR] MIN= @SUM( COVMAT( I, J): AMT( I)* AMT( J) * VARIANCE( I, J)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM(ASSET: AMT) = 1; 

! Required wealth at end of period; 

[RETURN] @SUM( ASSET: AMT * RET) >= TARGET; 

END 
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When solved, we find:  
Optimal solution found at step:         8 

Objective value:                0.2080344E-01 

Variable           Value        Reduced Cost 

     ATT       0.8686550E-01      -0.2093725E-07 

     GMC       0.4285285           0.0000000 

     USX       0.1433992          -0.2218303E-07 

   TBILL       0.3412068           0.0000000 

     Row    Slack or Surplus      Dual Price 

     VAR       0.2080344E-01        1.000000 

     BUD       0.0000000           0.4368723 

     RET       0.0000000          -0.4160689 

 Notice more than 34% of the portfolio was invested in the risk-free investment, even though its 

return rate, 5%, is less than the target of 15%. Further, the variance has dropped to about 0.0208 from 

about 0.0224. 

 What happens as we decrease the target return towards 5%? Clearly, at 5%, we would put zero in 

ATT, GMC, and USX. A simple form of solution would be to keep the same proportions in ATT, GMC, 

and USX, but just change the allocation between the risk-free asset and the risky ones. Let us check an 

intermediate point. When we decrease the required return to 10%, we get the following solution: 

Optimal solution found at step:         8 

Objective value:                0.5200865E-02 

Variable           Value        Reduced Cost 

     ATT       0.4342898E-01       0.0000000 

     GMC       0.2142677           0.2857124E-06 

     USX       0.7169748E-01       0.1232479E-06 

   TBILL       0.6706058           0.0000000 

     Row    Slack or Surplus      Dual Price 

     VAR       0.5200865E-02        1.000000 

     BUD       0.0000000           0.2184348 

     RET       0.2384186E-07      -0.2080331 

This solution supports our conjecture:  

as we change our required return, the relative proportions devoted to risky 

investments do not change. Only the allocation between the risk-free asset and the 

risky assets change.  

 From the above solution, we observe that, except for round-off error, the amount invested in ATT, 

GMC, and USX is allocated in the same way for both solutions. Thus, two investors with different risk 

preferences would nevertheless both carry the same mix of risky stocks in their portfolio. Their portfolios 

would differ only in the proportion devoted to the risk-free asset. Our observation from the above 

example in fact holds in general. Thus, the decision of how to allocate funds among stocks, given the 

amount to be invested, can be separated from the questions of risk preference. Tobin received the Nobel 

Prize in 1981, largely for noticing the above feature, the so-called Separation Theorem. So, if you noticed 

it, you must be Nobel Prize caliber.  
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13.3.2 The Sharpe Ratio 
For some portfolio p, of risky assets, excluding the risk-free asset, let: 

Rp = its expected return, 

sp = its standard deviation in return, and 

r0 = the return of the risk-free asset. 

 A plausible single measure (as opposed to the two measures, risk and return) of attractiveness of 

portfolio p is the Sharpe ratio: 

(Rp - r0 ) / sp  

 In words, it measures how much additional return we achieved for the additional risk we took on, 

relative to putting all our money in the risk-free asset. 

 It happens the portfolio that maximizes this ratio has a certain well-defined appeal. Suppose: 

t = our desired target return, 

wp = fraction of our wealth we place in portfolio p (the rest placed in the risk-free asset). 

To meet our return target, we must have: 

( 1 - wp ) * r0 + wp * Rp = t. 

The standard deviation of our total investment is: 

wp * sp. 

Solving for wp in the return constraint, we get: 

wp = ( t – r0) /( Rp – r0). 

Thus, the standard deviation of the portfolio is: 

wp * sp = [( t – r0) /( Rp – r0)] * sp. 

Minimizing the portfolio standard deviation means: 

Min [( t – r0) /( Rp – r0)] * sp 

or 

Min [( t – r0) * sp /( Rp – r0)]. 

This is equivalent to: 

Max ( Rp – r0) /sp. 

 So, regardless of our risk/return preference, the money we invest in risky assets should be invested 

in the risky portfolio that maximizes the Sharpe ratio. 
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 The following illustrates for when the risk free rate is 5%: 

MODEL: 

! Maximize the Sharpe ratio; 

 MAX =  

(1.089083*ATT + 1.213667*GMC + 1.234583*USX - 1.05)/ 

 ((.01080754 * ATT * ATT   + .01240721 * ATT * GMC  

 + .01307513 * ATT * USX + .01240721 * GMC * ATT  

 + .05839170 * GMC * GMC + .05542639 * GMC * USX 

 + .01307513 * USX * ATT + .05542639 * USX * GMC  

 + .09422681 * USX * USX)^.5); 

! Use exactly 100% of the starting budget; 

 [BUD]  ATT + GMC + USX = 1; 

END 

The solution is: 

Optimal solution found at step:         7 

Objective value:                0.6933179 

Variable           Value        Reduced Cost 

     ATT       0.1319260           0.1263448E-04 

     GMC       0.6503984           0.0000000 

     USX       0.2176757           0.1250699E-04 

 Notice the relative proportions of ATT, GMC, and USX are the same as in the previous model where 

we explicitly included a risk free asset with a return of 5%. For example, notice that, except for round-off 

error: 

.1319262/ .6503983 = 0.08686515/ .4285286. 

13.4 Important Variations of the Portfolio Model 
There are several issues that may concern you when you think about applying the Markowitz model in 

its simple form: 

a) As we increase the number of assets to consider, the size of the covariance matrix becomes 

overwhelming. For example, 1000 assets implies 1,000,000 covariance terms, or at least 

500,000 if symmetry is exploited. 

b) If the model were applied every time new data become available (e.g., weekly), we would 

“rebalance” the portfolio frequently, making small, possibly unimportant adjustments in 

the portfolio. 

c) There are no upper bounds on how much can be held of each asset. In practice, there might 

be legal or regulatory reasons for restricting the amount of any one asset to no more than, 

say, 5% of the total portfolio. Some portfolio managers may set the upper limit on a stock 

to one day’s trading volume for the stock. The reasoning being, if the manager wants to 

“unload” the stock quickly, the market price would be affected significantly by selling so 

much. 

 Two approaches for simplifying the covariance structure have been proposed: the scenario approach 

and the factor approach. For the issue of portfolio “nervousness”, the incorporation of transaction costs 

is useful. 
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13.4.1 Portfolios with Transaction Costs 
The models above do not tell us much about how frequently to adjust our portfolio as new information 

becomes available (i.e., new estimates of expected return and new estimates of variance). If we applied 

the above models every time new information became available, we would be constantly adjusting our 

portfolio. This might make our broker happy because of all the commission fees, but that should be a 

secondary objective at best. The important observation is that there are costs associated with buying and 

selling. There are the obvious commission costs, and the not so obvious bid-ask spread. The bid-ask 

spread is effectively a transaction cost for buying and selling. 

 The method we will describe assumes transaction costs are paid at the beginning of the period. It is 

a straightforward exercise to modify the model to handle the case of transaction costs paid at the end of 

the period. The major modifications to the basic portfolio model are: 

a) We must introduce two additional variables for each asset, an “amount bought” variable 

and an “amount sold” variable. 

b) The budget constraint must be modified to include money spent on commissions. 

c) An additional constraint must be included for each asset to enforce the requirement:  

amount invested in asset i = (initial holding of i) + (amount bought of i) − (amount 

sold of i). 

Example 

Suppose we have to pay a 1% transaction fee on the amount bought or sold of any stock and our current 

portfolio is 50% ATT, 35% GMC, and 15% USX. This is pretty close to the optimal mix. Should we incur 

the cost of adjusting? The following is the relevant model: 

MODEL: 

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC +.01307513 * 

ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC +.05542639 

* GMC * USX +.01307513 * USX * ATT +.05542639 * USX * GMC +.09422681 

* USX * USX; 

[BUD] ATT + GMC + USX + .01 * ( BA + BG + BU + SA + SG + SU) = 1; 

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15; 

[NETA] ATT = .50 + BA - SA; 

[NETG] GMC = .35 + BG - SG; 

[NETU] USX = .15 + BU - SU; 

END 

 The BUD constraint says the total uses of funds must equal 1. Another way of interpreting the BUD 

constraint is to subtract each of the NET constraints from it. We then get: 

[BUD].01 * (BA + BG + BU + SA + SG + SU) + BA + BG + BU=SA + SG + SU; 

It says any purchases plus transaction fees must be funded by selling. 
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The solution follows: 

Optimal solution found at step:         4 

Objective value:                0.2261146E-01 

Variable           Value        Reduced Cost 

     ATT       0.5264748           0.0000000 

     GMC       0.3500000           0.0000000 

     USX       0.1229903           0.0000000       .9994651 

      BA       0.2647484E-01       0.0000000 

      BG       0.0000000           0.4824887E-02 

      BU       0.0000000           0.6370753E-02 

      SA       0.0000000           0.6370753E-02 

      SG       0.0000000           0.1545865E-02 

      SU       0.2700968E-01       0.0000000 

 The solution recommends buying a little bit more ATT, neither buy nor sell any GMC, and sell a 

little USX. 

For reference, the following is the sets formulation of the above model: 

MODEL: 

SETS: 

 ASSET: AMT, RETURN, BUY, SELL, START; 

 COVMAT( ASSET, ASSET):VARIANCE; 

ENDSETS 

DATA: 

  ASSET =     ATT,      GMC,     USX; 

 VARIANCE = .0108075 .0124072 .0130751 

            .0124072 .0583917 .0554264 

            .0130751 .0554264 .0942268; 

   RETURN = 1.089083 1.213667 1.234583; 

    START = .5  .35 .15; 

   TARGET = 1.15; 

ENDDATA 

[VAR] MIN = @SUM( COVMAT(I, J): AMT(I) * AMT(J) * VARIANCE(I, J)); 

[BUD] @SUM( ASSET(I): AMT(I) + .01 * ( BUY(I) + SELL(I))) = 1; 

[RET] @SUM( ASSET: AMT * RETURN) >= TARGET; 

@FOR( ASSET(I): [NET] AMT(I) = START(I) + BUY(I) - SELL(I);); 

END 

 

13.4.2 Nonlinear Transaction Costs 
If we look more closely at transaction costs, we will probably find that they are nonlinear. There may 

be: i) a volume-independent fixed cost of doing a transaction, and ii) a market impact cost. The latter 

corresponds to the effect that if we try to buy a lot of something it will tend to drive up the price, and if 

we try to sell a lot of something it will tend to drive down the price. In this section, we will consider only 

market impact costs. If we buy an amount Bj of stock j, one representation of the cost per dollar purchased 

of stock j is: 

 

      cj*Bj + mj*Bj p,   where 1 < p,  and 

     cj  = proportional transaction cost.  E.g., if the bid and ask prices are 99.5 and 100.5, we might state 
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             the list price as 100.  If the commission rate is 0.0025, we would then set   

              cj = 0.5/100 + 0.0025 = 0.0075. 

      mj = the market impact coefficient.  We expect this coefficient to be inversely related to the daily  

             trading volume of stock j, and directly related to the average daily price spread. E.g., if the  

             average trading volume is high, then our trade will tend to not have a big impact on price. 

 

Example: Below is an model, PortMimpact.lng, that is an extension of our previous transaction cost 

example, but with a market impact term in the transaction cost computation. 

 
MODEL: 

! Portfolio model with a market impact component in 

computeing transaction costs;         !(PortMimpact.lng); 

SETS: 

 ASSET: AMT, RETURN, STD, BUY, SELL, START, C, M, BOS; 

 TMAT( ASSET, ASSET) | &1 #GE# &2: CORR; 

ENDSETS 

DATA: 

 ASSET =   ATT         GMC        USX      TBILL; 

 RETURN= 1.089083    1.213667    1.234583  1.00; 

  START=    0.5        0.35       0.15      0.0; 

! Proportional transaction costs; 

    C  =  0.01       0.01        0.01      0.005; 

! Market impact coefficients; 

    M  =  0.008       0.009        0.001      0.0; 

   POW = 1.5;  ! Power to use in approximating market impact; 

! Standard deviation in return; 

   STD = 0.10395932  0.24164375  0.30696386  0; 

 

! Correlation matrix; 

  CORR = 1 

         0.493895589 1      

         0.409727718 0.747229121 1  

         0           0           0          1; 

  

 TARGET = 1.15; ! Target growth factor; 

ENDDATA 

! Minimize variance of portfolio; 

   MIN = (@SUM( ASSET( I): STD( I)*STD(I)*AMT( I)^2) + 

      2 * @SUM( TMAT( I, J) | I #GT# J: 

                AMT( I) * AMT( J)* CORR( I, J) *( STD( I) * STD( J)))) ; 

@FOR( ASSET(I): 

! Post transaction amount for each stock I; 

    [NET] AMT(I) = START(I) + BUY(I) - SELL(I);  

    BOS(I) = BUY(I) + SELL(I); ! Amount bought or sold; 

    ); 

 

! Overall budget constraint: Ending amount + transaction costs = Sources of 

funds; 

[BUD] @SUM( ASSET(I): AMT(I) + C(I)*BOS(I) + M(I)*BOS(I)^POW) 

    = @SUM( ASSET(i): START(I)); 

! Expected return target; 
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[RET] @SUM( ASSET(J): AMT(J) * RETURN(J)) >= TARGET*@SUM( ASSET(J): 

START(J)); 

END 

 

The interesting part of the solution is: 

 
  Global optimal solution found. 

  Objective value:         0.022633 

 

            Variable           Value 

           AMT( ATT)       0.525970 

           AMT( GMC)       0.350000 

           AMT( USX)       0.123436   .999406 

         AMT( TBILL)       0.000000 

           BUY( ATT)       0.025970 

           BUY( GMC)       0.000000 

           BUY( USX)       0.000000 

         BUY( TBILL)       0.000000 

          SELL( ATT)       0.000000 

          SELL( GMC)       0.000000 

          SELL( USX)       0.026564 

        SELL( TBILL)       0.000000 

 

Notice the effect of the market impact term. We bought slightly less of ATT (0.02597 vs. 0.026475), 

and sold a little less of USX ( 0.026564 vs. 0.027010).  In the model we treated buying and selling in the 

same way.  This seems reasonable, but it is not required.  The nonlinear transactions cost model provides 

some guidance with regard to either unloading a large quantity of a stock, or accumulating a large 

quantity of a stock.  

13.4.3 Portfolios with Taxes 
Taxes are an unpleasant complication of investment analysis that should be considered. The effect of 

taxes on a portfolio is illustrated by the following results during one year for two similar 

“growth-and-income” portfolios from the Vanguard company. Portfolio S was managed without (Sans) 

regard to taxes. Portfolio T was managed with after-tax performance in mind: 

 Distributions Initial 

Portfolio Income Gain-from-sales Share-price Return 

S $0.41 $2.31 $19.85 33.65% 

T $0.28 $0.00 $13.44 34.68% 

 The tax managed portfolio, probably just by chance, in fact had a higher before tax return. It looks 

even more attractive after taxes. If the tax rate for both dividend income and capital gains is 30%, then 

the tax paid at year end per dollar invested in portfolio S is .3  (.41 + 2.31) /19.85 = 4.1 cents; whereas, 

the tax per dollar invested in portfolio S is .3  .28/13.44 = 0.6 of a cent. 

 Below is a generalization of the Markowitz model to take into account taxes. As input, it requires 

in particular:  

a) number of shares held of each kind of asset,  

b) price per share paid for each asset held, and  

c) estimated dividends per share for each kind of asset. 
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 The results from this model will differ from a model that does not consider taxes in that this model, 

when considering equally attractive assets, will tend to:  

i. purchase the asset that does not pay dividends, so as to avoid the immediate tax on 

dividends,  

ii. sell the asset that pays dividends, and  

iii. sell the asset whose purchase cost was higher, so as to avoid more tax on capital gains.  

 This is all given that two assets are otherwise identical (presuming rates of return are computed 

including dividends). For completeness, this model also includes transaction costs and illustrates how a 

correlation matrix can be used instead of a covariance matrix to describe how assets move together: 

MODEL: 

! Generic Markowitz portfolio model that takes into account 

  bid/ask spread and taxes.  (PORTAX) 

  Keywords: Markowitz, portfolio, taxes, transaction costs; 

 SETS: 

  ASSET: RET, START, BUY, SEL, APRICE, BUYAT, SELAT, DVPS, STD, X; 

 ENDSETS 

 DATA: 

! Data based on original Markowitz example;  

 ASSET =  TBILL   ATT        GMC      USX; 

! The expected returns as growth factors; 

   RET  =  1.05  1.089083 1.21367  1.23458; 

! S. D. in return for each asset; 

   STD =   0     .103959  .241644  .306964; 

! Starting composition of the portfolio in shares; 

   START =  10     50       70       350; 

! Price per share at acquisition; 

   APRICE = 1000   80       89        21; 

! Current bid/ask price per share; 

   BUYAT  = 1000   87       89        27; 

   SELAT  = 1000   86       88        26; 

! Dividends per share(estimated); 

   DVPS =   0     .5        0         0; 

! Tax rate; 

   TAXR = .32; 

! The desired growth factor; 

   TARGET = 1.15; 

 ENDDATA 
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 SETS: 

  TMAT( ASSET, ASSET) | &1 #GE# &2: CORR; 

 ENDSETS 

 DATA: 

! Correlation matrix; 

   CORR= 1.0 

         0  1.000000   

         0  0.4938961  1.000000  

         0  0.4097276  0.7472293 1.000000 ; 

 ENDDATA 

!---------------------------------------------------------------; 

!  Min the var in portfolio return; 

 [OBJ] MIN = 

      @SUM( ASSET( I):  ( X( I)*SELAT( I)* STD( I))^2) + 

        2 * @SUM( TMAT( I, J) | I #NE# J: 

            CORR( I, J) * X( I)* SELAT( I) * STD( I)  

                        * X( J)* SELAT( J) * STD( J)) ; 

! Budget constraint, sales must cover purchases + taxes; 

 [BUDC] @SUM( ASSET( I): 

          SELAT( I) * SEL( I) - BUYAT( I) * BUY( I)) >= TAXES;  

 [TAXC]  TAXES >= TAXR * @SUM( ASSET( I): 

           DVPS( I)* X( I) + SEL( I) * ( SELAT( I) - APRICE( I))); 

! After tax return requirement.  This assumes we do not pay 

   tax on appreciation until we sell; 

 [RETC] @SUM( ASSET( I):  

         RET( I)* X(I)* SELAT( I)) - TAXES >= 

         TARGET * @SUM( ASSET(I): START( I) * SELAT( I)); 

! Inventory balance for each asset; 

  @FOR( ASSET( I): 

    [BAL] X( I) = START( I) + BUY( I) - SEL( I);  ); 

 END 

13.4.4 Factors Model for Simplifying the Covariance Structure 
Sharpe (1963) introduced a substantial simplification to the modeling of the random behavior of stock 

market prices. He proposed that there is a “market factor” that has a significant effect on the movement 

of a stock. The market factor might be the Dow-Jones Industrial average, the S&P 500 average, or the 

Nikkei index. If we define: 

M  =  the market factor, 

m0  =  E(M), 

s0
2  =  var(M), 

ei   =  random movement specific to stock i, 

si
2  =  var(ei). 

Sharpe’s approximation assumes (where E( ) denotes expected value): 

E(ei) = 0 

E(ei ej) = 0      for i  j, 

E(ei M) = 0. 
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 Then, according to the Sharpe single factor model, the return of one dollar invested in stock or asset 

i is: 

ui + bi M + ei. 

 The parameters ui and bi are obtained by regression (e.g., least squares, of the return of asset i on the 

market factor). The parameter bi is known as the “beta” of the asset. Let: 

Xi = amount invested in asset i and  

define the variance in return of the portfolio as: 

var[ Xi(ui + bi M + ei)] 

 = var( Xi bi M) + var( Xi ei) 

 = ( Xi bi)2 so
2 +  Xi

2si
2. 

Thus, our problem can be written: 

Minimize    Z 2 so
2 +  Xi

2  si
2 

subject to 

Z −  Xi bi = 0 

 Xi = 1 

 Xi ( ui + bi mo)  r. 

 So, at the expense of adding one constraint and one variable, we have reduced a dense covariance 

matrix to a diagonal covariance matrix. 

 In practice, perhaps a half dozen factors might be used to represent the “systematic risk”. That is, 

the return of an asset is assumed to be correlated with a number of indices or factors. Typical factors 

might be a market index such as the S&P 500, interest rates, inflation, defense spending, energy prices, 

gross national product, correlation with the business cycle, various industry indices, etc. For example, 

bond prices are very affected by interest rate movements. 

13.4.5 Example of the Factor Model 
The Factor Model represents the variance in return of an asset as the sum of the variances due to the 

asset’s movement with one or more factors, plus a factor-independent variance.  
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 To illustrate the factor model, we used multiple regression to regress the returns of ATT, GMC, and 

USX on the S&P 500 index for the same period. The model with solution is: 

MODEL: 

! Multi factor portfolio model; 

 SETS: 

  ASSET: ALPHA, SIGMA, X; 

  FACTOR: RETF, SIGFAC, Z; 

  AXF( ASSET, FACTOR): BETA; 

 ENDSETS 

 DATA: 

! The factor(s); 

  FACTOR = SP500; 

! Mean and s.d. of factor(s); 

   RETF = 1.191460; 

   SIGFAC = .1623019; 

! The stocks were multi-regressed on the factors; 

! i.e.:  Return(i) = Alpha(i) + Beta(i) * SP500 + error(i); 

   ASSET =    ATT        GMC      USX; 

   ALPHA = .563976   -.263502  -.580959; 

   BETA  = .4407264  1.23980   1.52384; 

   SIGMA = .075817    .125070   .173930; 

! The desired return; 

   TARGET = 1.15; 

 ENDDATA 

!----------------------------------------------------; 

!  Min the var in portfolio return; 

  [OBJ] MIN  

      = @SUM( FACTOR( J):( SIGFAC( J) * Z( J))^2)  

      + @SUM( ASSET( I): ( SIGMA( I) * X( I))^2) ; 

! Compute portfolio betas; 

  @FOR( FACTOR( J): 

    Z( J) = @SUM( ASSET( I): BETA( I, J) * X( I)); 

      ); 

! Budget constraint; 

   @SUM( ASSET: X) = 1; 

! Return requirement; 

    @SUM( ASSET(  I): X( I )* ALPHA( I)) 

  + @SUM( FACTOR( J): Z( J) * RETF( J)) >= TARGET; 

 END 

Part of the solution is: 

         Variable           Value      Reduced Cost 

           TARGET        1.150000         0.0000000 

          X( ATT)       0.5276550         0.0000000 

          X( GMC)       0.3736851         0.0000000 

          X( USX)       0.9865990E-01     0.0000000 

        Z( SP500)       0.8461882         0.0000000 

              Row    Slack or Surplus    Dual Price 

              OBJ       0.0229409         1.000000 

                2       0.0000000         0.3498846 

                3       0.0000000         0.3348567 

                4       0.0000000        -0.3310770 
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 Notice the portfolio makeup is slightly different. However, the estimated variance of the portfolio 

is very close to our original portfolio. 

13.4.6 Scenario Model for Representing Uncertainty 
The scenario approach to modeling uncertainty assumes the possible future situations can be represented 

by a small number of “scenarios”. The smallest number used is typically three (e.g., “optimistic,” “most 

likely,” and “pessimistic”). Some of the original ideas underlying the scenario approach come from the 

approach known as stochastic programming; see Madansky (1962), for example. For a discussion of the 

scenario approach for large portfolios, see Markowitz and Perold (1981) and Perold (1984). For a 

thorough discussion of the general approach of stochastic programming, see Infanger (1992). Eppen, 

Martin, and Schrage (1988) use the scenario approach for capacity planning in the automobile industry. 

 Let: 

Ps  = Probability scenario s occurs, 

uis  = return of asset i if the scenario is s, 

Xi  = investment in asset i, 

Ys  = deviation of actual return from the mean if the scenario is s; 

      = i Xi( uis − q Pq uiq ). 

Our problem in algebraic form is: 

Minimize s Ps Ys
2 

subject to 

Ys − i Xi(ui s − q Pq uiq) = 0 (deviation from mean of each scenario, s) 

i Xi = 1 (budget constraint) 

i Xi s Ps uis  r (desired return). 

If asset i has an inherent variability vi
2, the objective generalizes to: 

Min i Xi
2 vi

2 + s PsYs
2 

 The key feature is that, even though this formulation has a few more constraints, the covariance 

matrix is diagonal and, thus, very sparse. 

 You will generally also want to put upper limits on what fraction of the portfolio is invested in each 

asset. Otherwise, if there are no upper bounds or inherent variabilities specified, the optimization will 

tend to invest in only as many assets as there are scenarios. 

13.4.7 Example: Scenario Model for Representing Uncertainty 
We will use the original data from Markowitz once again. We simply treat each of the 12 years as being 

a separate scenario, independent of the other 11 years. Because of the amount of data involved, it is 

convenient to use the ‘sets’ form of LINGO in the following model: 

MODEL: 

! Scenario portfolio model; 

SETS: 

  SCENE/1..12/: PRB, R, DVU, DVL; 

  ASSET/ ATT,  GMT,  USX/:  X; 

  SXI( SCENE, ASSET): VE; 

ENDSETS 
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DATA: 

 TARGET = 1.15; 

! Data based on original Markowitz example; 

 VE = 

   1.300    1.225    1.149 

   1.103    1.290    1.260 

   1.216    1.216    1.419 

   0.954    0.728    0.922 

   0.929    1.144    1.169 

   1.056    1.107    0.965 

   1.038    1.321    1.133 

   1.089    1.305    1.732 

   1.090    1.195    1.021 

   1.083    1.390    1.131 

   1.035    0.928    1.006 

   1.176    1.715    1.908; 

! All scenarios considered to be equally likely; 

 PRB= .08333 .08333 .08333 .08333 .08333 .08333 

      .08333 .08333 .08333 .08333 .08333 .08333; 

ENDDATA 

! Target ending value; 

 [RET] AVG >= TARGET; 

! Compute expected value of ending position; 

    AVG = @SUM( SCENE: PRB * R); 

    @FOR( SCENE( S): 

! Measure deviations from average; 

      DVU( S) - DVL( S) = R(S) - AVG; 

! Compute value under each scenario; 

      R( S) = @SUM( ASSET( J): VE( S, J) * X( J))); 

! Budget; 

 [BUD] @SUM( ASSET: X) = 1; 

 [VARI] VAR = @SUM( SCENE: PRB * ( DVU + DVL)^2); 

 [SEMIVARI] SEMIVAR = @SUM( SCENE: PRB * (DVL) ^2); 

 [DOWNRISK] DNRISK = @SUM( SCENE: PRB * DVL); 

! Set objective to VAR, SEMIVAR, or DNRISK; 

 [OBJ] MIN = VAR; 

END 

When solved, (part of) the solution is: 

Optimal solution found at step:         4 

Objective value:                0.2056007E-01 

Variable           Value        Reduced Cost 

 X( ATT)       0.5297389           0.0000000 

 X( GMT)       0.3566688           0.0000000 

 X( USX)       0.1135923           0.0000000 

     Row    Slack or Surplus      Dual Price 

     RET       0.0000000          -0.3246202 

     BUD       0.0000000           0.3321931 

     OBJ       0.2056007E-01        1.000000 

 The solution should be familiar. The alert reader may have noticed the solution suggests the same 

portfolio (except for round-off error) as our original model based on the covariance matrix (based on the 
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same 12 years of data as in the above scenario model). This, in fact, is a general result. In other words, 

if the covariance matrix and expected returns are calculated directly from the original data by the 

traditional statistical formulae, then the covariance model and the scenario model, based on the same 

data, will recommend exactly the same portfolio. 

 The careful reader will have noticed the objective function from the scenario model (0.02056) is 

slightly less than that of the covariance model (.02241). The exceptionally perceptive reader may have 

noticed that except for round-off error, 12  0.02054597/11 = 0.002241. The difference in objective 

value is a result simply of the fact that standard statistics packages tend to divide by N − 1 rather than N 

when computing variances and covariances, where N is the number of observations. Thus, a slightly 

more general statement is, if the covariance matrix is computed using a divisor of N rather than N − 1, 

then the covariance model and the scenario model will give the same solution, including objective value. 

13.5 Measures of Risk other than Variance 
The most common measure of risk is variance (or its square root, the standard deviation). This is a 

reasonable measure of risk for assets that have a symmetric distribution and are traded in a so-called 

“efficient” market. If these two features do not hold, however, variance has some drawbacks. Consider 

the four possible growth distributions in Figure 13.2. 

 Investments A, B, and C are equivalent according to the variance measure because each has an 

expected growth of 1.10 (an expected return of 10%) and a variance of 0.04 (standard deviation around 

the mean of 0.20). Risk-averse investors would, however, probably not be indifferent among the three. 

Under distribution (A), you would never lose any of your original investment, and there is a 0.2 

probability of the investment growing by a factor of 1.5 (i.e., a 50% return). Distribution (C), on the 

other hand, has a 0.2 probability of an investment decreasing to 0.7 of its original value (i.e., a negative 

30% return). Risk-averse investors would tend to prefer (A) most and to prefer (C) least. This illustrates 

variance need not be a good measure of risk if the distribution of returns is not symmetric: 

Figure 13.2 Possible Growth Factor Distributions 
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 Investment (D) is an inefficient investment. It is dominated by (A). Suppose the only investments 

available are (A) and (D) and our goal is to have an expected return of at least 5% (i.e., a growth factor 



Portfolio Optimization  Chapter 13     403 

of 1.05) and the lowest possible variance. The solution is to put 50% of our investment in each of (A) 

and (D). The resulting variance is 0.01 (standard deviation = 0.1). If we invested 100% in (A), the 

standard deviation would be 0.20. Nevertheless, we would prefer to invest 100% in (A). It is true the 

return is more random. However, our profits are always at least as high under every outcome. (If the 

randomness in profits is an issue, we can always give profits to a worthy educational institution when 

our profits are high to reduce the variance.) Thus, the variance objective may cause us to choose 

inefficient investments. 

 In active and efficient markets such as major stock markets, you will tend not to find investments 

such as (D) because investors will realize (A) dominates (D). Thus, the market price of (D) will drop 

until its return approaches competing investments. In investment decisions regarding new physical 

facilities, however, there are no strong market forces making all investment candidates “efficient”, so 

the variance risk measure may be less appropriate in such situations. 

13.5.1 Value at Risk(VaR) 
In 1994, J.P. Morgan popularized the "Value at Risk" (VaR) concept with the introduction of their 

RiskMetrics™ system. To use VaR, you must specify two numbers: 1) an interval of time, typically one 

day or ten days, over which you are concerned about losing money, and 2) a probability threshold, 

typically 5% (or 1%), beyond which you care about harmful outcomes. VaR is then defined as that 

amount of loss in one day that has at most a 5% (or 1%) probability of being exceeded. A comprehensive 

survey of VaR is Jorion (2001).  Some of the popularity of VaR results from the fact that it is a method 

recommended as part of the Basel Accord for measuring the risk of the portfolios of European banks.  

Banks must hold capital reserves proportional to their risk, e.g., as measured by VaR. 

Example 

Suppose that one day from now we think that our portfolio will have appreciated in value by $12,000. 

The actual value, however, has a Normal distribution with a standard deviation of $10,000. From a 

Normal table, we can determine that a left tail probability of 5% corresponds to an outcome that is 

1.644853 standard deviations below the mean. Now: 

12000 -1.644853 * 10000 = -4448.50. 

So, we would say that the value at risk is $4448.50. 
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13.5.2 Example of VaR 
Let us apply the VaR approach to our standard example, the ATT/GMC/USC model. Suppose that our 

risk tolerance is 5% and we want to minimize the value at risk of our portfolio. This is equivalent to 

maximizing that threshold, so the probability our wealth is below this threshold is at most .05. 

Analysis: 

If the end-of-year portfolio value has a Normal distribution, then a left tail probability of 5% corresponds 

to a point that is 1.64485 standard deviations below the mean. Minimizing the value at risk corresponds 

to choosing the mean and standard deviation of the portfolio, so the ( mean – 1.64485 * (standard 

deviation)) is maximized. The following model will do this: 

MODEL: ! Markowitz Value at Risk Portfolio Model(PORTVAR); 

 SETS: 

  STOCKS:  X, RET; 

  COVMAT(STOCKS, STOCKS): VARIANCE; 

 ENDSETS 

 DATA: 

  STOCKS  =    ATT        GMC      USX; 

!Covariance matrix and expected returns; 

  VARIANCE = .01080754 .01240721 .01307513     

             .01240721 .05839170 .05542639     

             .01307513 .05542639 .09422681 ; 

       RET = 1.0890833  1.213667  1.234583 ; 

    STARTW = 1.0;  ! How much we start with; 

       RHO = .05;! Risk tolerance, must be < .5; 

 ENDDATA 

!----------------------------------------------------------; 

! Get the s.d. corresponding to this risk threshold; 

    RHO = @PSN( Z); 

  @FREE( Z); 

! Maximize value not at risk; 

[VAR] Max = ARET + Z * SD; 

  ARET = @SUM( STOCKS:  X * RET) ;  

! The variance ( or SD^2) of the portfolio must be this large; 

  SD^2 >= @SUM( COVMAT(I, J):  X(I) *  X(J) * VARIANCE(I, J)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM( STOCKS:  X) = STARTW; 

END 

With solution:  
 

  Global optimal solution found. 

  Objective value:                             0.9257590 

  Elapsed runtime seconds:                          0.16 

  Model is a second-order cone 
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 Variable           Value        Reduced Cost 

      RHO        0.050000         0.0000000 

        Z       -1.644853         0.0000000 

     ARET        1.109300         0.0000000 

       SD        0.111585         0.0000000 

 X( ATT)        0.843034         0.0000000 

 X( GMC)        0.125330         0.0000000 

 X( USX)        0.031636         0.0000000 

RET( ATT)        1.089083         0.0000000 

RET( GMC)        1.213667         0.0000000 

RET( USX)        1.234583         0.0000000 

      Row    Slack or Surplus      Dual Price 

        1      -0.4163336E-16       -1.081707 

      VAR       0.9257590            1.000000 

        3      -0.2220446E-15        1.000000 

        4       0.0000000           -1.644853 

   BUDGET       0.0000000           0.9257590 

 Note that, if we invested solely in ATT, the portfolio variance would be .01080754. So, the standard 

deviation would be .103959, and the VAR would be 1 - (1.089083 - 1.644853 * .103959) = .0818. 

 The portfolio is efficient because it is maximizing a weighted combination of the expected return 

and (a negatively weighted) standard deviation. Thus, if there is a portfolio that has both higher expected 

return and lower standard deviation, then the above solution would not maximize the objective function 

above. 

 Note, if you use a risk tolerance:  RHO = .1988, then you get essentially the original portfolio 

considered for the ATT/GMC/USX problem. 

 There are two things to note about the heading of the solution report: 1) The solution is labelled with 

the heading “Global optimal solution found” and 2) the model type is described as “second-order cone.  

The constraint  
    SD^2 >= @SUM( COVMAT(I, J):  X(I) *  X(J) * VARIANCE(I, J)); 

is a form of what is called a second-order cone constraint, or SOC for short. LINGO is able to identify 

such constraints, and if all the constraints are either linear or second-order cone constraints, then LINGO 

can solve large problems of that type fast and solve them to a global, not just local optimum. 
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13.5.3 VaR Anomalies 
If you want just a single number to describe risk, VaR is a useful, easy to understand metric.  You should 

not, however, use VaR without considering its anomalous features.  The most obvious criticism of VaR 

is that it gives attention to only one percentile point of the portfolio return distribution.  It does not pay 

attention to how really bad a low probability event might be. Two portfolios P1 and P2 may each have 

a probability of at most 5% of losing $1M or more, so the VaR is the same for them.  Suppose, however, 

that P1 has a probability of 5% of losing exactly $1M and no more, whereas P2 has a probability of 1% 

of losing exactly $1M and a probability of 4% of losing $10M.  Most people would consider P2 as the 

riskier one. This “narrow-mindedness” of VaR leads to several questionable features:  a) [Good News 

anomaly] If we change a parameter of a candidate investment for our portfolio so that the investment 

now pays off more, then a VaR objective may suggest that we invest less in that investment after the 

change; b) [Diversification is Bad anomaly] If bank 1, with portfolio X1 takes over bank 2 with its 

portfolio X2, then we may find that VaR(X1 + X2) > VaR(X1) + VaR(X2), i.e., diversification may 

appear to increase risk according to the VaR measure. 

 We first illustrate anomally (a) above. A very conservative investor might react to risk by 

maximizing the minimum return over scenarios.  This is equivalent to the VaR approach in which we 

set the risk tolerance to arbitrarily close to 0.  There are some curious implications from this. Suppose 

the only investments available are A and C above and the two scenarios are: 

Scenario Probability Payoff from A Payoff from C 

1 0.8 1.0 1.2 

2 0.2 1.5 0.7 

 If we wish to maximize the minimum possible wealth, the probability of a scenario does not matter, 

as long as the probability is positive. Thus, the following LP is appropriate: 

  MAX = WMIN; 
!  Initial budget constraint; 

               A +       C = 1; 

!  Wealth under scenario 1; 

- WMIN +       A + 1.2 * C >= 0; 

!  Wealth under scenario 2; 

- WMIN + 1.5 * A + 0.7 * C >= 0; 

 

The solution is: 

Objective value:                 1.100000 

Variable           Value        Reduced Cost 

    WMIN        1.100000           0.0000000 

       A       0.5000000           0.0000000 

       C       0.5000000           0.0000000 

 Given that both investments have an expected return of 10%, it is not surprising the expected growth 

factor is 1.10. That is, a return of 10%. The possibly surprising thing is there is no risk. Regardless of 

which scenario occurs, the $1 initial investment will grow to $1.10 if 50 cents is placed in each of A and 

C. 
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 Now, suppose an extremely reliable friend provides us with the interesting news that, “if scenario 1 

occurs, then investment C will payoff 1.3 rather than 1.2”. This is certainly good news. The expected 

return for C has just gone up, and its downside risk has certainly not gotten worse. How should we react 

to it? We make the obvious modification in our model: 

MAX = WMIN; 

!  Initial budget constraint; 

               A +       C = 1; 

!  Wealth under scenario 1; 

- WMIN +       A + 1.3 * C > 0; 

!  Wealth under scenario 2; 

- WMIN + 1.5 * A + 0.7 * C > 0; 

 

and re-solve it to find: 

Objective value:                 1.136364 

Variable           Value        Reduced Cost 

    WMIN        1.136364           0.0000000 

       A       0.5454545           0.0000000 

       C       0.4545455           0.0000000 

 This is a bit curious. We have decreased our investment in C. This is as if our friend had continued 

on: “I have this very favorable news regarding stock C. Let’s sell it before the market has a chance to 

react”. Why the anomaly? The problem is we are basing our measure of goodness on a single point 

among the possible payoffs. In this case, it is the worst possible. For a further discussion of these issues, 

see Clyman (1995). 

 Now let’s illustrate feature (b), the “Diversification is Bad anomaly”.  Suppose that both portfolios 

X1 and X2 have a beginning wealth of 100 and have independent, identically distributed distributions of 

ending wealth, w,  of Prob{w = 80} = .04, and Prob{w = 110} = .96.  Thus, at a risk tolerance of 5%, 

both portfolios have a VaR = 0,  i.e., the probability of losing 0 money or more is less than or equal to 

5%.  If the two portfolios are combined, the beginning value is 200, and the possible ending values and 

probabilities are Prob{w = 160} = .0016;  Prob{w = 190} = .0768; and Prob{w = 220} = .9216.  Now 

the VaR at the 5% level is 200 – 190 = 10.  The VaR of the merged bank is greater than the sum of the 

VaRs of the individual banks.  The amount of safety capital the two banks would have to carry would 

be greater in total after the merger according to VaR rules. 

13.5.4 Conditional Value at Risk(CVaR) 
We saw that a weakness of VaR is that it does not pay attention to how bad a low probability event can 

be.  CVaR, see Palmquist, Uryasev, and Krokhmal(2002),  corrects this deficiency.  Once again, suppose 

portfolio P1 has a probability of 5% of losing exactly $1M and no more, whereas P2 has a probability of 

1% of losing exactly $1M and a probability of 4% of losing $10M.  According to VaR, we would be 

indifferent between P1 and P2 because at the 5% risk tolerance, they both have a VaR of $1M.  

Conditional Value at Risk(CVaR) explicitly takes into account the amount by which the loss exceeds the 

VaR threshold.  Similar to VaR,  CVaR requires us to specify a risk tolerance , e.g., 5%.  Optionally, 

we may specify an expected return preference  ≥ 0.  If the random variable w is the final wealth of the 

portfolio,  then CVaR chooses a portfolio and VaR threshold, t, so as to maximize a weighted 

combination of: the final portfolio value, the VaR value, and minus the expected amount by which the 

final portfolio falls short of the VaR target.  Algebraically, the CVaR objective is:  

                Max  E(w) +   t – E(max[0, t – w]). 
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The variable t should not appear in any other constraints. It is fairly easy to show that at an optimum, t 

will have the feature that Prob{w < t}    Prob{w  t}. That is, for the optimal portfolio, its VaR will 

be:  initial wealth – t.  The following model illustrates the determination of a CVaR portfolio: 

 
MODEL: 

! Scenario portfolio model; 

! Minimize the Conditional Value at Risk; 

 SETS: 

  SCENE: PRB, W, DVU, DVL; 

  ASSET:  X; 

  SXI( SCENE, ASSET): VE; 

 ENDSETS 

DATA: 

 RHO = .1; ! Risk tolerance; 

 ALPHA = 0; 

 TARGET = 1.15; 

 SCENE = 1..12; 

 ASSET = 

    ATT     GMC      USX; 

! Data based on original Markowitz example; 

VE = 

   1.300    1.225    1.149 

   1.103    1.290    1.260 

   1.216    1.216    1.419 

   0.954    0.728    0.922 

   0.929    1.144    1.169 

   1.056    1.107    0.965 

   1.038    1.321    1.133 

   1.089    1.305    1.732 

   1.090    1.195    1.021 

   1.083    1.390    1.131 

   1.035    0.928    1.006 

   1.176    1.715    1.908; 

! All scenarios happen to be equally likely; 

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333; 

ENDDATA 

! Compute portfolio value under each scenario; 

  @FOR(SCENE(S):W(S) = @SUM(ASSET(J):VE(S,J) * X(J)); 

! Measure deviations from CVaR target T; 

     DVL( S) - DVU( S) = T - W(S) ; 

      ); 

! Budget; 

 [BUD] @SUM( ASSET(i): X(i)) = 1; 

! Compute expected value of ending position;  

 [DEFAVG] AVG = @SUM( SCENE(s): PRB(s) * W(s)); 

! Ending value >= target ; 

 [RET] AVG >= TARGET; 

! Minimize conditional value at risk; 

 [OBJ] MAX = ALPHA*AVG + RHO*T - @SUM( SCENE(s): PRB(s)* DVL(s)); 

END 
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Part of the solution is: 
 

  Objective value:    0.09534855 

 

             Variable           Value 

                  RHO       0.1000000 

                ALPHA        0.000000 

               TARGET        1.150000 

                    T        1.017901 

                  AVG        1.150000 

                W( 1)        1.236780 

                W( 2)        1.168732 

                W( 3)        1.300991 

                W( 4)        0.940602 

                W( 5)        1.029482 

                W( 6)        1.017901 

                W( 7)        1.077774 

                W( 8)        1.358208 

                W( 9)        1.061111 

               W( 10)        1.103096 

               W( 11)        1.022858 

               W( 12)        1.482470 

              X( ATT)        0.581326 

              X( GMC)        0.000000 

              X( USX)        0.418674 

 

The initial value of this portfolio was 1, so the VaR of this portfolio is 1 – T = -.017901.  There are 12 

scenarios.  Notice that in only 1 of the 12, scenario 4, is the final wealth less than T = 1.017901.  Thus, 

in 1 outcome out of 12, or less than 10% of the outcomes, would the final value be less than 1.017901. 

13.6 Scenario Model and Minimizing Downside Risk 
Minimizing the variance in return is appropriate if either:  

1) the actual return is Normal-distributed or  

2) the portfolio owner has a quadratic utility function.  

 In practice, it is difficult to show either condition holds. Thus, it may be of interest to use a more 

intuitive measure of risk. One such measure is the downside risk, which intuitively is the expected 

amount by which the return is less than a specified target return. The approach can be described if we 

define: 

T = user specified target threshold. When risk is disregarded, this is typically less than the 

maximum expected return and greater than the return under the worst scenario. 

Ys = amount by which the return under scenario s falls short of target. 

    = max{0, T −  Xi uis} 
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The model in algebraic form is then: 

Min  Ps Ys                       ! Minimize expected downside risk 

subject to 

(compute deviation below target of each scenario, s): 

Ys − T +  Xi  uis  0 

 Xi = 1                              (budget constraint) 

 Xi  Ps  uis  r                      (desired return). 

Notice this is just a linear program. 

13.6.1 Semi-variance and Downside Risk 
The most common alternative suggested to variance as a measure of risk is some form of downside risk. 

One such measure is semi-variance. It is essentially variance, except only deviations below the mean are 

counted as risk. The scenario model is well suited to such measures. The previous scenario model needs 

only a slight modification to convert it to a semi-variance model. The Y variables are redefined to 

measure the deviation below the mean only, zero otherwise. The resulting model is: 

MODEL: 

! Scenario portfolio model; 

! Minimize the semi-variance; 

 SETS: 

  SCENE/1..12/: PRB, R, DVU, DVL; 

  ASSET/ ATT,  GMT,  USX/:  X; 

  SXI( SCENE, ASSET): VE; 

 ENDSETS 

DATA: 

 TARGET = 1.15; 

! Data based on original Markowitz example; 

VE = 

   1.300    1.225    1.149 

   1.103    1.290    1.260 

   1.216    1.216    1.419 

   0.954    0.728    0.922 

   0.929    1.144    1.169 

   1.056    1.107    0.965 

   1.038    1.321    1.133 

   1.089    1.305    1.732 

   1.090    1.195    1.021 

   1.083    1.390    1.131 

   1.035    0.928    1.006 

   1.176    1.715    1.908; 

! All scenarios happen to be equally likely; 

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333; 

ENDDATA 

! Compute value under each scenario; 

  @FOR(SCENE(S):R(S) = @SUM(ASSET(J):VE(S,J) * X(J)); 

! Measure deviations from average; 

      DVU( S) - DVL( S) = R(S) - AVG;); 
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! Budget; 

 [BUD] @SUM( ASSET: X) = 1; 

! Compute expected value of ending position; 

 [DEFAVG] AVG = @SUM( SCENE: PRB * R); 

! Target ending value; 

 [RET] AVG > TARGET; 

! Minimize the  semi-variance; 

 [OBJ] MIN = @SUM( SCENE: PRB * DVL^2); 

END  

The resulting solution is: 

Optimal solution found at step:         4 

Objective value:                0.8917110E-02 

Variable           Value        Reduced Cost 

   R( 1)        1.238875           0.0000000 

   R( 2)        1.170760           0.0000000 

   R( 3)        1.294285           0.0000000 

   R( 4)       0.9329399           0.0000000 

   R( 5)        1.029848           0.0000000 

   R( 6)        1.022875           0.0000000 

   R( 7)        1.085554           0.0000000 

   R( 8)        1.345299           0.0000000 

   R( 9)        1.067442           0.0000000 

  R( 10)        1.113355           0.0000000 

  R( 11)        1.019688           0.0000000 

  R( 12)        1.479083           0.0000000 

 DVU( 1)       0.8887491E-01       0.0000000 

 DVU( 2)       0.2076016E-01       0.0000000 

 DVU( 3)       0.1442846           0.0000000 

 DVU( 4)       0.0000000           0.3617666E-01 

 DVU( 5)       0.0000000           0.2002525E-01 

 DVU( 6)       0.0000000           0.2118756E-01 

 DVU( 7)       0.0000000           0.1074092E-01 

 DVU( 8)       0.1952993           0.0000000 

 DVU( 9)       0.0000000           0.1375965E-01 

DVU( 10)       0.0000000           0.6107114E-02 

DVU( 11)       0.0000000           0.2171863E-01 

DVU( 12)       0.3290833           0.0000000 

 DVL( 1)       0.0000000           0.8673617E-09 

 DVL( 2)       0.0000000           0.8673617E-09 

 DVL( 3)       0.0000000           0.8673617E-09 

 DVL( 4)       0.2170601           0.0000000 

 DVL( 5)       0.1201515           0.0000000 

 X( ATT)       0.5757791           0.0000000 

 X( GMT)       0.3858243E-01       0.0000000 

 X( USX)       0.3856385           0.0000000 

     Row    Slack or Surplus      Dual Price 

     BUD       0.0000000           0.1198420 

  DEFAVG       0.0000000          -0.9997334E-02 

     RET       0.0000000          -0.1197184 

     OBJ       0.8917110E-02        1.000000 
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 Notice the objective value is less than half that of the variance model. We would expect it to be at 

most half, because it considers only the down (not the up) deviations. The most noticeable change in the 

portfolio is substantial funds have been moved to USX from GMC. This is not surprising if you look at 

the original data. In the years in which ATT performs poorly, USX tends to perform better than GMC. 

13.6.2 Downside Risk and MAD 
If the threshold for determining downside risk is the mean return, then minimizing the downside risk is 

equivalent to minimizing the mean absolute deviation (MAD) about the mean. This follows easily 

because the sum of deviations (not absolute) about the mean must be zero. Thus, the sum of deviations 

above the mean equals the sum of deviations below the mean. Therefore, the sum of absolute deviations 

is always twice the sum of the deviations below the mean. Thus, minimizing the downside risk below 

the mean gives exactly the same recommendation as minimizing the sum of absolute deviations below 

the mean. Konno and Yamazaki (1991) use the MAD measure to construct portfolios from stocks on the 

Tokyo stock exchange. 

13.6.3 Power and Log Utility Functions 
Downside risk and semi-variance are examples of utility functions. The basic idea is that the utility of 

having an extra dollar of wealth depends upon the amount of wealth we already have. Almost all people 

feel that: a) more wealth is better. Many people are risk averse in the sense that they feel that: b) not 

losing a dollar is more important than gaining an extra dollar. One of the simplest utility functions that 

can capture (a) and (b) is the power utility function, wherein the value of having wealth w is essentially 

proportional to w raised to the power γ. Usually the function is “normalized” by subtracting 1 and 

dividing by γ, so the utility of having wealth w is: 

       U(w) = (wγ -1)/γ; 

An investor is said to be risk averse if  0 ≤ γ < 1, risk neutral if γ = 1, and risk preferring if γ > 1. As γ 

approaches 0, the power utility function approaches the log utility: 

       U(w) = LN(w), where LN is the natural logarithm. 

 

Recalling our little four alternatives from Figure 13.2, the utilities for various γ are shown below.  

 

                      γ=1            γ =0.5                 γ =0.1                 γ =0.01      Log 
     A)   0.1    0.089898     0.082759     0.081258     0.081093 

     B)   0.1    0.088859     0.080514     0.078702     0.078502 

     C)   0.1    0.087376     0.077117     0.074782     0.074522 

     D)   0       0  

 

For example, 0.089898 = 0.8*(1^0.5 -1)/0.5 + 0.2*(1.5^0.5-1)/0.5.  Notice that when γ < 1, alternative 

A is the preferred alternative, which is consistent with what most people would choose. Also notice that 

as γ  approaches 0, the power utility approaches the Log utility. 

 

A utility function such as the power utility provides some advice for the “bet sizing” or “how much of 

our wealth should we put at risk” problem.  Suppose our current wealth is $1000 and we have two 

alternatives: i) put money in the mattress, or ii) a bet for which for every $1 invested, our investment 

either grows to $2 with probability 0.6, or we lose our entire investment with probability 0.4. Note that 

this is essentially equivalent to our offering an insurance policy where the premium is $1 and the amount 

insured is $2, and the probability we will have to pay out the insured amount is 0.4.  The expected net 

return is 0.6*2 + 0.4*0 – 1 = 0.2. This is positive, so if we are risk neutral we put all of money in the 
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risky alternative. If we lose, however, we are out of business, so we may want to rethink this. The relevant 

portfolio model if we use a power utility function is: 
 
  ! The bet sizing problem, using Power Utility; 

  GAMMA = 0.01;  ! We are rather risk averse; 

  WEALTH = 1000; ! Our current wealth; 

  PWIN = 0.6;    ! Prob(Win bet); 

  ! Some of our money goes in the Matress, 

    some goes to the Bet; 

  M + B = WEALTH; 

  ! We want to maximize our expected utility, using a Power utility; 

  MAX =    PWIN*((M+2*B)^GAMMA - 1)/GAMMA ! Bet pays off; 

     + (1-PWIN)*((M+0*B)^GAMMA - 1)/GAMMA; !Lose bet; 

 

The solution is: 
 

       Global optimal solution found. 

       Objective value:      7.173722 

        Variable           Value 

               M           798.0349 

               B           201.9651 

 

So we risk about 20% of our wealth on the bet. You can verify that if you increase your risk tolerance to 

γ = 0.63, then we would invest about $500 of our $1000 in the bet. 

13.6.4 Scenarios Based Directly Upon a Covariance Matrix 
If only a covariance matrix is available, rather than original data, then, not surprisingly, it is nevertheless 

possible to construct scenarios that match the covariance matrix. The following example uses just four 

scenarios to represent the possible returns from the three assets: ATT, GMC, and USX. These scenarios 

have been constructed, using the methods of section 12.8.2, so they mimic behavior consistent with the 

original covariance matrix: 

MODEL: 

SETS: 

! Each asset has a variable value and an average return; 

 ASSET:  X, RET; 

! the variance of return at each scenario (which can be negative), and 

the probability of it happening; 

 SCEN: Y, P; 

! Return for each asset under each scenario; 

 COVMAT( SCEN, ASSET):ENTRY; 

ENDSETS 

DATA:  

  P = .25 .25 .25 .25; ! Four equi-likely scenarios; 

 ASSET =   ATT      GMC      USX; 

 ENTRY =0.9851237 1.304437  1.097669 

        1.193042  1.543131  1.756196 

        0.9851237 0.8842088 1.119948 

        1.193042  1.122902  0.9645076; 

  RET = 1.089083  1.213667  1.234583; 
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ENDDATA 

! Minimize the variance; 

MIN = @SUM( SCEN(s): Y(s) * Y(s) * P(s)); 

!  Compute the deviation from mean under each scenario; 

@FOR(SCEN(s):Y(s) = @SUM(ASSET(J): ENTRY(s,J)* X(J)) - MEAN  

    ); 

! The Budget constraint; 

@SUM(ASSET(j):  X(j)) = 1; 

! Define or compute the mean; 

@SUM(ASSET(j):  X * RET) = MEAN; 

MEAN > 1.15;! Target return; 

! The variance of each return can be negative; 

@FOR(SCEN: @FREE(Y)); 

END 
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When solved, we get the familiar solution: 

Optimal solution found at step:         4 

Objective value:                0.2241380E-01 

      Variable           Value      Reduced Cost 

          MEAN        1.150000         0.0000000 

       X( ATT)       0.5300912         0.0000000 

       X( GMC)       0.3564126         0.0000000 

       X( USX)       0.1134962         0.0000000 

     RET( ATT)        1.089083         0.0000000 

     RET( GMC)        1.213667         0.0000000 

     RET( USX)        1.234583         0.0000000 

         Y( 1)      -0.3829557E-01     0.0000000 

         Y( 2)       0.2317340         0.0000000 

         Y( 3)      -0.1855416         0.0000000 

         Y( 4)      -0.7894565E-02     0.0000000 

         P( 1)       0.2500000         0.0000000 

         P( 2)       0.2500000         0.0000000 

         P( 3)       0.2500000         0.0000000 

         P( 4)       0.2500000         0.0000000 

ENTRY( 1, ATT)       0.9851237         0.0000000 

ENTRY( 1, GMC)        1.304437         0.0000000 

ENTRY( 1, USX)        1.097669         0.0000000 

ENTRY( 2, ATT)        1.193042         0.0000000 

ENTRY( 2, GMC)        1.543131         0.0000000 

ENTRY( 2, USX)        1.756196         0.0000000 

ENTRY( 3, ATT)       0.9851237         0.0000000 

ENTRY( 3, GMC)       0.8842088         0.0000000 

ENTRY( 3, USX)        1.119948         0.0000000 

ENTRY( 4, ATT)        1.193042         0.0000000 

ENTRY( 4, GMC)        1.122902         0.0000000 

ENTRY( 4, USX)       0.9645076         0.0000000 

           Row    Slack or Surplus    Dual Price 

             1       0.2241380E-01      1.000000 

             2       0.0000000         0.1914778E-01 

             3       0.0000000        -0.1158670 

             4       0.0000000         0.9277079E-01 

             5       0.0000000         0.3947280E-02 

             6       0.0000000         0.3621391 

             7       0.0000000        -0.3538852 

             8       0.0000000          -0.3538841 

 Notice the objective function value and the allocation of funds over ATT, GMC, and USX are 

essentially identical to our original portfolio example. 
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13.7 Hedging, Matching and Program Trading 

13.7.1 Portfolio Hedging 
Given a “benchmark” portfolio B, we say we hedge B if we construct another portfolio C such that, taken 

together, B and C have essentially the same return as B, but lower risk than B. Typically, our portfolio B 

contains certain components that cannot be removed. Thus, we want to buy some components negatively 

correlated with the existing ones. Examples are:  

a) An airline knows it will have to purchase a lot of fuel in the next three months. It would like to 

be insulated from unexpected fuel price increases.  

b) A farmer is confident his fields will yield $200,000 worth of corn in the next two months. He 

is happy with the current price for corn. Thus, would like to “lock in” the current price. 

13.7.2 Portfolio Matching, Tracking, and Program Trading 
Given a benchmark portfolio B, we say we construct a matching or tracking portfolio if we construct a 

new portfolio C that has stochastic behavior very similar to B, but excludes certain instruments in B. 

Example situations are:  

a) A portfolio manager does not wish to look bad relative to some well-known index of 

performance such as the S&P 500, but for various reasons cannot purchase certain instruments 

in the index.  

b) An arbitrageur with the ability to make fast, low-cost trades wants to exploit market 

inefficiencies (i.e., instruments mispriced by the market). If he can construct a portfolio that 

perfectly matches the future behavior of the well-defined portfolio, but costs less today, then he 

has an arbitrage profit opportunity (if he can act before this “mispricing” disappears).  

c) A retired person is concerned mainly about inflation risk. In this case, a portfolio that tracks 

inflation is desired.  

 As an example of (a), a certain so-called “green” mutual fund will not include in its portfolio 

companies that derive more than 2% of their gross revenues from the sale of military weapons, own 

directly or operate nuclear power plants, or participate in business related to the nuclear fuel cycle. 

 The following table, for example, compares the performance of six Vanguard portfolios with the 

indices the portfolios were designed to track; see Vanguard (1995): 

Total Return Six Months Ended June 30, 1995 

Vanguard Portfolio Comparative Index 
Portfolio Name Growth Growth Index Name 

500 Portfolio +20.1% +20.2% S&P500 

Growth Portfolio +21.1 +21.2 S&P500/BARRA Growth 

Value Portfolio +19.1 +19.2 S&P500/BARRA Value 

Extended Market Portfolio +17.1% +16.8% Wilshire 4500 Index 

SmallCap Portfolio +14.5 +14.4 Russell 2000 Index  

Total Stock Market 

Portfolio 

+19.2% +19.2% Wilshire 5000 Index  

 Notice, even though there is substantial difference in the performance of the portfolios, each matches 

its benchmark index quite well. 
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13.8 Methods for Constructing Benchmark Portfolios 
A variety of approaches has been used for constructing hedging and matching portfolios. For matching 

portfolios, an intuitive approach has been to generalize the Markowitz model, so the objective is to 

minimize the variance in the difference in return between the target portfolio and the tracking portfolio.  

 A useful way to think about hedging or matching of a benchmark is to think of it as our being forced 

to include the benchmark or its negative in our portfolio. Suppose the benchmark is a simple index such 

as the S&P500. If our measure of risk is variance, then proceed as follows: 

1. Include the benchmark in the covariance matrix just like any other instrument, except do 

not include it in the budget constraint. We presume we have a budget of $1 to invest in the 

controllable, non-benchmark portion of our portfolio. 

2. To get a “matching” portfolio (e.g., one that mimics the S&P 500), set the value of the 

benchmark factor to −1. The essential effect is the off diagonal covariance terms are 

negated in the row/column of the benchmark factor. Effectively, we have shorted the factor. 

If we can get the total variance to zero, we have perfectly matched the randomness of the 

benchmark. 

3. To get a “hedging” portfolio (e.g., one as negatively correlated with the S&P 500 as 

possible), set the value of the benchmark factor to +1. Thus, we will compose the rest of 

the portfolio to counteract the effect of the factor we are stuck with having in the portfolio. 

 One might even want to drop the budget constraint. The solution will then tell you how much to 

invest in the controllable portfolio to get the best possible hedge or match per $ of the benchmark. 
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 The following model illustrates the extension of the Markowitz approach to the hedging case where 

we want to “cancel out” some benchmark. In the case of GMC, it could be that our decision maker works 

for GMC and thus has his fortunes unavoidably tied to those of GMC. He might wish to find a portfolio 

negatively correlated with GMC: 

MODEL: 

!Generic Markowitz portfolio Hedging model(PORTHEDG); 

! We want to hedge the first or "benchmark" asset 

  with the remaining ones; 

 SETS: 

  ASSET/ GMC  ATT  USX/: RET, X; 

  TMAT( ASSET, ASSET) | &1 #GE# &2: COV; 

 ENDSETS 

 DATA: 

! The expected returns; 

   RET = 1.21367,   1.089083,   1.23458; 

! Covariance matrix; 

   COV = 

         .05839170 

         .01240721  .01080754 

         .05542639  .01307513  .09422681; 

 ! The desired return; 

   TARGET = 1.15; 

 ENDDATA 

!-------------------------------------------------; 

!  Min the var in portfolio return; 

 [OBJ] MIN= ( @SUM( ASSET( I): 

                   COV( I, I) * X( I)^2) + 

         2 * @SUM( TMAT( I, J) | I #NE# J: 

                COV( I, J) * X( I) * X( J))) ; 

!We are stuck with the first asset in the portfolio; 

 X( 1) = 1; 

!  Budget constraint(applies to remaining assets); 

 [BUDGET] @SUM( ASSET( I)| I #GT# 1: X( I)) = 1; 

!  Return requirement(applies to remaining assets); 

 [RETURN] @SUM( ASSET( I)| I #GT# 1: 

                 RET( I) * X( I)) >= TARGET; 

END 

The solution is: 

Optimal solution found at step:         4 

Objective value:                0.1457632 

Variable           Value        Reduced Cost 

 X( GMC)        1.000000           0.0000000 

 X( ATT)       0.5813178           0.0000000 

 X( USX)       0.4186822           0.0000000 

 Thus, our investor puts more of the portfolio in ATT than in USX (whose fortunes are more closely 

tied to those of GMC). 
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 The following model illustrates the extension of the Markowitz approach to the matching case where 

we want to construct a portfolio that mimics or matches a benchmark portfolio. In this case, we want to 

match the S&P500, but limit ourselves to investing in only ATT, GMC, and USX: 

MODEL: 

!Gen. Markowitz portfolio Matching model(PORTMTCH); 

! We want to match the first or "benchmark" asset 

  with the remaining ones; 

 SETS: 

  ASSET/ SP500 ATT GMC  USX/: RET, X; 

  TMAT( ASSET, ASSET) | &1 #GE# &2: COV; 

 ENDSETS 

 DATA: 

! The expected returns; 

   RET = 1.191458  1.089083, 1.21367, 1.23458; 

! Covariance matrix; 

   COV = 

     .02873661 

     .01266498   .01080754 

     .03562763   .01240721   .05839170 

     .04378880   .01307513   .05542639   .09422681; 

 ! The desired return; 

   TARGET = 1.191458; 

 ENDDATA 

!-------------------------------------------------; 

!  Min the var in portfolio return; 

 [OBJ] MIN = (@SUM( ASSET(I): COV(I, I) * X( I)^2) 

         + 2 * @SUM( TMAT( I, J) | I #NE# J: 

                     COV( I, J) * X( I) * X( J))) ; 

!Matching is equivalent to being short the benchmark; 

   X( 1) = -1; 

   @FREE( X( 1)); 

!  Budget constraint(applies to remaining assets); 

 [BUDGET] @SUM( ASSET( I)| I #GT# 1: X( I)) = 1; 

!  Return requirement(applies to remaining assets); 

 [RETURN] @SUM( ASSET( I)| I #GT# 1: 

                       RET( I) * X( I)) >= TARGET; 

END 

The solution is: 

Optimal solution found at step:         4 

Objective value:                0.5245968E-02 

 Variable           Value        Reduced Cost 

X( SP500)       -1.000000           0.0000000 

  X( ATT)       0.2276635           0.0000000 

  X( GMC)       0.4781277           0.0000000 

  X( USX)       0.2942089          -0.1266506E-07 
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13.8.1 Scenario Approach to Benchmark Portfolios 

If we use the scenario approach, then the hedging model looks as follows: 

MODEL:     ! (PRTSHDGE); 

! Scenario portfolio model, Hedge 1st asset; 

! Minimize the variance; 

 SETS: 

  SCENE/1..12/: PRB, R, DVU, DVL; 

  ASSET/  GMT, ATT,  USX/:  X; 

  SXA( SCENE, ASSET): VE; 

 ENDSETS 

 DATA: 

! Data based on original Markowitz example; 

 VE = 

   1.225   1.300    1.149 

   1.290   1.103    1.260 

   1.216   1.216    1.419 

   0.728   0.954    0.922 

   1.144   0.929    1.169 

   1.107   1.056    0.965 

   1.321   1.038    1.133 

   1.305   1.089    1.732 

   1.195   1.090    1.021 

   1.390   1.083    1.131 

   0.928   1.035    1.006 

   1.715   1.176    1.908; 

! All scenarios happen to be equally likely; 

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333  

      .0833333 .0833333 .0833333 .0833333 .0833333  

      .0833333 .0833333; 

! The desired return; 

   TARGET = 1.15; 

ENDDATA 

! Minimize risk; 

 [OBJ] MIN = @SUM( SCENE: PRB * ( DVL + DVU) ^ 2); 

!We are stuck with having asset 1 in the portfolio; 

  X( 1) = 1; 

!Compute hedging portfolio value under each scenario; 

  @FOR( SCENE( S): 

    R( S)= 

     @SUM( ASSET( J)| J #GT# 1: VE( S, J) * X( J)); 

! Measure deviations hedge + benchmark from target; 

      DVU( S) - DVL( S) =  

          ( R(S) + VE( S, 1))/ 2 - TARGET; 

   ); 

!  Budget constraint(applies to remaining assets); 

 [BUDGET] @SUM( ASSET( J)| J #GT# 1: X( J)) = 1; 

! Compute expected value of ending position; 

 [DEFAVG] AVG = @SUM( SCENE: PRB * R); 

! Target ending value; 

 [RET] AVG > TARGET; 

END 
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With a solution: 

Optimal solution found at step:         4 

Objective value:                0.3441714E-01 

Variable           Value        Reduced Cost 

 X( GMT)        1.000000           0.0000000 

 X( ATT)       0.5813256           0.0000000 

 X( USX)       0.4186744           0.0000000 

Notice we get the same portfolio as with the Markowitz model. 

 A scenario model for constructing a portfolio matching the S&P500 looks as follows: 

  MODEL: 
  ! Scenario  model, Match 1st asset(PRTSMTCH); 

  ! Minimize the variance; 

   SETS: 

    SCENE/1..12/: PRB, R, DVU, DVL; 

    ASSET/ SP500  ATT  GMT  USX/:  X; 

    SXA( SCENE, ASSET): VE; 

   ENDSETS 

  DATA: 

  ! Data based on original Markowitz example; 

   VE = 

  !  S&P500   ATT    GMC    USX; 

   1.258997    1.3  1.225  1.149 

   1.197526  1.103  1.29   1.26 

   1.364361  1.216  1.216  1.419 

   0.919287  0.954  0.728  0.922 

    1.05708  0.929  1.144  1.169 

   1.055012  1.056  1.107  0.965 

   1.187925  1.038  1.321  1.133 

   1.31713   1.089  1.305  1.732 

   1.240164  1.09   1.195  1.021 

   1.183675  1.083  1.39   1.131 

   0.990108  1.035  0.928  1.006 

   1.526236  1.176  1.715  1.908;  

  ! All scenarios happen to be equally likely; 

  PRB= .0833333 .0833333 .0833333 .0833333 .0833333  

       .0833333 .0833333 .0833333 .0833333 .0833333       

       .0833333 .0833333; 

  ! The desired return; 

     TARGET = 1.191458; 

  ENDDATA 

  ! Minimize risk; 

  [OBJ] MIN = @SUM( SCENE: PRB * ( DVL + DVU) ^ 2); 

  ! Compute portfolio value under each scenario; 

    @FOR( SCENE( S): 

     R( S) =  

     @SUM( ASSET( J)| J #GT# 1: VE( S, J) * X( J)); 

  ! Measure deviations of portfolio from benchmark; 

        DVU( S) - DVL( S) = ( R(S) - VE( S, 1)); 

     ); 

  ! Budget constraint(applies to remaining assets); 

   [BUDGET] @SUM( ASSET( J)| J #GT# 1: X( J)) = 1; 
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  ! Compute expected value of ending position; 

   [DEFAVG] AVG = @SUM( SCENE: PRB * R); 

  ! Target ending value; 

   [RET] AVG > TARGET; 

  END 

The solution is: 

Optimal solution found at step:         7 

Objective value:                0.4808974E-02 

 Variable           Value        Reduced Cost 

X( SP500)       0.0000000           0.0000000 

  X( ATT)       0.2276583           0.0000000 

  X( GMT)       0.4781151           0.0000000 

  X( USX)       0.2942266           0.0000000 

Notice we get the same portfolio as with the Markowitz model. 

 The two scenario models both used variance for the measure of risk relative to the benchmark. It is 

easy to modify them, so more asymmetric risk measures, such as downside risk, could be used. 

13.8.2 Efficient Benchmark Portfolios 
We say a portfolio is on the efficient frontier if there is no other portfolio that has both higher expected 

return and lower risk. 

 Let: 

ri  = expected return on asset i, 

t  = an arbitrary target return for the portfolio. 

 A portfolio, with weight mi on asset i, is efficient if there exists some target t for which the portfolio 

is a solution to the problem: 

Minimize    risk 

subject to 

i

n

=


0

mi = 1       (budget constraint) 

i

m

=


0
ri mi  t     (return target constraint). 

 Portfolio managers are frequently evaluated on their performance relative to some benchmark 

portfolio. Let bi = the weight on asset i in the benchmark portfolio. If the benchmark portfolio is not on 

the efficient frontier, then an interesting question is: What are the weights of the portfolio on the efficient 

frontier that is closest to the benchmark portfolio in the sense that the risk of the efficient portfolio 

relative to the benchmark is minimized? 
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 There is a particularly simple answer when the measure of risk is portfolio variance, there is a 

risk-free asset, borrowing is allowed at the risk-free rate, and short sales are permitted. Let m0 = the 

weight on the risk-free asset. An elegant result, in this case, is that there is a so-called “market” portfolio 

with weights mi on asset i, such that effectively only m0 varies as the return target varies. Specifically, 

there are constants mi, for i = 1, 2, . . . , n, such that the weight on asset i is simply (1 − m0)   mi. Define: 

q = 1 − m0 = weight to put on the market portfolio, 

Ri = random return on asset i. 

Then the variance of any efficient portfolio relative to the benchmark portfolio can be written as: 

var( 
i

n

=


1
Ri[qmi − bi]) 

=       
i

n

=


1

 (qmi − bi)2 var (Ri) + 2 
 j 


i
 (qmi − bi)(qm j − bj) Cov(Ri,R j). 

Setting the derivative of this expression with respect to q equal to zero gives the result: 

q =  
i

n

=


1

mi bi var (Ri) + 
 j 


i
 (mi bj mj bi) Cov (Ri, R j) 

____________________________________________________________________________________________________________________________ 

i

n

=


1

mi
2 var (Ri) + 2

 
 j 


i
mi mj Cov (Ri, Rj) 

 
 For example, if the benchmark portfolio is on the efficient frontier with weight b0 on the risk-free 

asset, then bi = (1 − b0)mi and therefore q = 1 − b0. 

 Thus, a manager who is told to outperform the benchmark portfolio {b0, b1, . . ., bn} should perhaps, 

in fact, be compensated according to his performance relative to the efficient portfolio given by q above. 

13.8.3 Efficient Formulation of Portfolio Problems 
The amount of time it takes to solve a mathematical model may depend dramatically on how the model 

is formulated. This phenomenon is well known in integer programming circles. Below, we illustrate the 

same phenomenon for nonlinear programs. We give several different, but mathematically equivalent, 

formulations of a portfolio optimization model. 

Formulation 1 

Minimize 
j

n

i

n

==


11

qij xi xj 

subject to 

 j

n

=


1
xj = 1 

 j

n

=


1
rj xj = r0 
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Formulation 2 

We can exploit the fact that the covariance matrix is symmetric to rewrite the objective as: 

Min 
i

n

=


1

xi (qii xi + 2 
 j=i+1

n

 qij xj ) 

subject to 

 j

n

=


1

xj = 1 

 j

n

=


1

rj xj = r0 

Formulation 3 

We can separately compute the term multiplying xi in the objective to get the formulation: 

Minimize 
i

n

=


1
xi wi 

subject to 

For each i; 

wi = qii xi + 2
 j=i+1

n

 qij xj,  wi a free variable 

 j

n

=


1
xj = 1 

 j

n

=


1
rj xj = r0 

 We solved a specific instance of these formulations for a data set based on the performance of 19 

stocks on the New York Stock exchange (IBM, Xerox, ATT, etc.). These models were solved as general 

nonlinear programs. The fact they were quadratic programs was not exploited. 

 The solution time in seconds for each formulation was: 

Formulation Time in seconds 

1 2.16 

2 1.5 

3 0.82 

Why the dramatic differences in solution time? 

 The advantage of formulation (2) over (1) is relatively obvious. Each function evaluation of the 

objective in (1) requires approximately 2  n  n multiplications (2 multiplications for each of 

approximately n  n terms). For (2), the equivalent figure is about n + n  n/2 multiplications. 

 Formulation (3) has essentially the same number of multiplications as (2). However, about n  n/2 

of them appear in linear constraints. The number of constraints has dramatically increased. However, 

these constraints are linear and the technology for efficiently processing linear constraints is well 

developed. 
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13.9 Cholesky Factorization for Quadratic Programs 
There is another formulation comparable to formulation (3), but even more compact. Given a covariance 

matrix {qij}, one can compute its “square root,” the so-called Cholesky factorization, to give a lower 

triangular matrix {Lij}. The new formulation is then: 

Minimize 
 j

n

=


1
wj

2 

subject to 

For each j: 

wj = 
 i=j+1

n

 Lij xj, wj a free variable 

 j

n

=


1
xj = 1 

 j

n

=


1
rj xj = r0 

 Notice it is approximately identical in structure to formulation (3) except it has only n rather than 

2n variables in the objective. 

 For the reader comfortable with matrix notation, the transformation is easy to explain. Given the 

covariance matrix Q and a lower triangular matrix L such that: 

L L' = Q, where L' denotes transpose, 

our objective is to: 

Minimize x Q x' = x L L' x' 

If we set w = x L, then our objective is simply: 

Minimize w w' 

subject to 

w = x L. 

 A LINGO model using Cholesky decomposition and applied to our three-asset example is shown 

below: 

MODEL:! Cholesky factorization Portfolio model; 

SETS: 

 ASSET: AMT, RET, CW; 

 COVMAT( ASSET, ASSET): VARIANCE; 

 MAT(ASSET,ASSET)| &1 #GE# &2: L; !Cholesky factor; 

ENDSETS 

DATA: 

   ASSET =    ATT      GMC        USX; 

!Covariance matrix and expected returns; 

VARIANCE = .01080754 .01240721 .01307513 

           .01240721 .05839170 .05542639 

           .01307513 .05542639 .09422681; 

     RET = .0890833  .213667   .234583; 

ENDDATA 
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! Minimize variance; 

[VAR] MIN = @SUM( ASSET( I): CW( I) * CW( I)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM( ASSET: AMT) = 1; 

! Required wealth at end of period; 

[RETURN] @SUM( ASSET: AMT * RET) > .15; 

! Compute contributions to variance, CW(); 

@FOR( ASSET( J): 

   @FREE( CW( J)); 

   CW( J) = @SUM( MAT( I, J): L( I, J) * AMT( I)); 

    ); 

!Compute the Cholesky factor L, so LL'= VARIANCE; 

@FOR( ASSET( I): 

 @FOR( MAT( I, J)| J #LT# I: 

L(I,J) = ( VARIANCE( I, J) - @SUM( MAT( I, K)| 

          K #LT# J: L( I, K) * L( J, K)))/ L( J, J); 

          ); 

L(I,I) = ( VARIANCE( I, I) - @SUM( MAT( I, K)| 

          K #LT# I: L( I, K) * L( I, K)))^.5; 

          ); 

END 
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Part of the solution report is shown below: 

Optimal solution found at step:         4 

Objective value:                0.2241375E-01 

           Variable       Value    Reduced Cost 

          AMT( ATT)   0.5300926       0.0000000 

          AMT( GMC)   0.3564106       0.0000000 

          AMT( USX)   0.1134968       0.4492217E-08 

          RET( ATT)   0.8908330E-01   0.0000000 

          RET( GMC)   0.2136670       0.0000000 

          RET( USX)   0.2345830       0.0000000 

           CW( ATT)   0.1119192       0.0000000 

           CW( GMC)   0.9671834E-01   0.0000000 

           CW( USX)   0.2309568E-01   0.0000000 

VARIANCE( ATT, ATT)   0.1080754E-01   0.0000000 

VARIANCE( ATT, GMC)   0.1240721E-01   0.0000000 

VARIANCE( ATT, USX)   0.1307513E-01   0.0000000 

VARIANCE( GMC, ATT)   0.1240721E-01   0.0000000 

VARIANCE( GMC, GMC)   0.5839170E-01   0.0000000 

VARIANCE( GMC, USX)   0.5542639E-01   0.0000000 

VARIANCE( USX, ATT)   0.1307513E-01   0.0000000 

VARIANCE( USX, GMC)   0.5542639E-01   0.0000000 

VARIANCE( USX, USX)   0.9422681E-01   0.0000000 

       L( ATT, ATT)   0.1039593       0.0000000 

       L( GMC, ATT)   0.1193468       0.0000000 

       L( GMC, GMC)   0.2101144       0.0000000 

       L( USX, ATT)   0.1257716       0.0000000 

       L( USX, GMC)   0.1923522       0.0000000 

       L( USX, USX)   0.2034919       0.0000000 

             Row   Slack or Surplus   Dual Price 

             VAR      0.2241375E-01  -1.000000 

          BUDGET      0.0000000       0.8255034E-02 

          RETURN      0.0000000      -0.3538836 

13.10 Positive Definiteness Constraints  
              An important feature of a valid covariance matrix is that it must be positive semi-definite. 

Loosely speaking, this means the diagonal of the matrix must be large relative to the off-diagonal 

elements.  More precisely, if Q is a square matrix, e.g., a covariance matrix, then for any vector x, we 

must have, in matrix notation,  x’Qx ≥ 0. In terms of portfolio optimization, if the x vector represents the 

amount invested in a set of assets, and Q is the covariance matrix, then x’Qx is the variance of the 

portfolio and we expect, and in fact require, that this variane be ≥ 0. Now suppose that the Q matrix is 

not given in advance, but rather the the elements of Q are decision variables, and we are constraining 

these elements of the matrix so that Q is positive semi-definite. A mathematical program in which we 

allow such constraints is called a Semi-Definite Program, or SDP for short.  LINGO has a simple 

constraint type to indicate that a matrix Q must be positive semi-definite, namely, @POSD( Q);. 

  To illustrate the usefulness of this capability, suppose that we asked three experts to estimate 

the three covariances between three stocks and we obtained the following “guesstimate” of the 

correlation matrix:  
         1.000000   0.6938961 -0.1097276      

         0.6938961  1.000000   0.7972293 
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        -0.1097276  0.7972293  1.000000 ; 

Although not immediately obvious, it happens to be the case that this matrix is not quite positive-semi-

definte, so it is not a valid correlation matrix. So a reasonable thing to try to do is to make minimal 

adjustments to the off-diagonal elements to convert this matrix to a positive semi-definite matrix. The 

following LINGO model witll do this. Notice the following: 1) Because the matrix is symmetric, 

LINGO only requires that you enter the lower triangle of the matrix. 2) The last statement in the model 

is @POSD( QFIT), i.e., we want the fitted matrix to be positive semi-definite, and 3) Our objective is 

to minimize the sum of the squared differences between the original guessed matrix and the fitted 

matrix. 

 
SETS: 

  VEC; 

  MAT( VEC,VEC) | &1 #GE# &2: QINI, QADJ, QFIT; 

ENDSETS 

DATA: 

  VEC = 1..3; 

! Our initial estimate of the correlation matrix, 

    ( May not be positive semi-definite); 

  QINI = 

         1.000000   

         0.6938961  1.000000  

        -0.1097276  0.7972293 1.000000 ; 

ENDDATA 

 

! Minimize the amount of adjustments we have 

 to make to the off-diagonal terms of  

 our initial estimated matrix...; 

  MIN = @SUM( MAT(i,j) | i #GT# j: QADJ(i,j)^2); 

 

! Fitted matrix = initial + adjustment; 

  @FOR( MAT(i,j) | i #GT# j: 

    QFIT(i,j) = QINI(i,j) + QADJ(i,j); 

! Off diagonal adjustments or fitted 

  might be  < 0; 

  @FREE( QADJ(i,j)); 

  @FREE( QFIT(i,j)); 

       ); 

 

! Diagonal terms stay at 1; 

 @FOR( VEC(i): 

   QFIT(i,i) = QINI(i,i); 

   QADJ(i,i) = 0; 

     ); 

 

! The adusted/fitted matrix must be  

  Positive semi-definite; 

 @POSD( QFIT); 

 

When solved, we get the fitted matrix: 
   
  

       1.000000 



Portfolio Optimization  Chapter 13     429 

       0.6348391       1.000000 

      -0.0640226       0.7304152        1.000000  

 

Notice that in the fitted matrix, the off-diagonal elements have been moved closer to 0. There are a 

number of other applications of the @POSD( )  or SDP capability. Look at the MODELS library at 

www.lindo.com under the keyword of @POSD. 

 

13.11 Problems 
1. You are considering three stocks, IBM, GM, and Georgia-Pacific (GP), for your stock portfolio. The 

covariance matrix of the yearly percentage returns on these stocks is estimated to be: 

 IBM GM GP 

IBM 10 2.5 1 

GM 2.5 4 1.5 

GP 1 1.5 9 

 Thus, if equal amounts were invested in each, the variance would be proportional to 10 + 4 + 9 

+ 2 (2.5 + 1 + 1.5). The predicted yearly percentage returns for IBM, GM, and GP are 9, 6 and 5, 

respectively. Find a minimum variance portfolio of these three stocks for which the yearly return is 

at least 7, at most 80% of the portfolio is invested in IBM, and at least 10% is invested in GP. 

2. Modify your formulation of problem 1 to incorporate the fact that your current portfolio is 50% IBM 

and 50% GP. Further, transaction costs on a buy/sell transaction are 1% of the amount traded. 

3. The manager of an investment fund hypothesizes that three different scenarios might characterize 

the economy one year hence. These scenarios are denoted Green, Yellow and Red and subjective 

probabilities 0.7, 0.1, and 0.2 are associated with them. The manager wishes to decide how a model 

portfolio should be allocated among stocks, bonds, real estate and gold in the face of these possible 

scenarios. His estimated returns in percent per year as a function of asset and scenario are given in 

the table below: 

 Stocks Bonds Real Estate Gold 

Green 9 7 8 -2 

Yellow −1 5 10 12 

Red 10 4 -1 15 

 Formulate and solve the asset allocation problem of minimizing the variance in return subject 

to having an expected return of at least 6.5. 

4. Consider the ATT/GMC/USX portfolio problem discussed earlier. The desired or target rate of 

return in the solved model was 15%. 

a) Suppose we desire a 16% rate of return. Using just the solution report, what can you predict 

about the standard deviation in portfolio return of the new portfolio? 

http://www.lindo.com/
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b) We illustrated the situation where the opportunity to invest money risk-free at 5% per year 

becomes available. That is, this fourth option has zero variance and zero covariance. Now, 

suppose the risk-free rate is 4% per year rather than 5%. As before, there is no limit on how 

much can be invested at 4%. Based on only the solution report available for the original 

version of the problem (where the desired rate of return is 15% per year), discuss whether 

this new option is attractive when the desired return for the portfolio is 15%. 

c) You have $100,000 to invest. What modifications would need to be made to the original 

ATT/GMC/USX model, so the answers in the solution report would come in the 

appropriate units (e.g., no multiplying of the numbers in the solution by 100,000)? 

d) What is the estimated standard deviation in the value of your end-of-period portfolio in (c) 

if invested as the solution recommends? 
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14 
 

Multiple Criteria and Goal 
Programming 

 
 

14.1 Introduction 
Until now, we have assumed a single objective or criterion. In reality, however, there may be two or 

more measures of goodness. Our life becomes more difficult, or at least more interesting, if these 

multiple criteria are incommensurate (i.e., it is difficult to combine them into a single criterion). The 

overused phrase for lamenting the difficulty of such situations is “You can’t mix apples and oranges”. 

 Some examples of incommensurate criteria are: 

• risk vs. return on investment, 

• short-term profits vs. long-term growth of a firm, 

• cost vs. service by a government agency, 

• the treatment of different individuals under some policy of an administrative agency 

(e.g., rural vs. urban citizens, residents near an airport vs. travelers using an airport, and 

fishermen vs. water transportation companies vs. farmers using irrigation near a large 

lake). 

Multi-criteria situations can be classified into several categories: 

1. Criteria are intrinsically different (e.g., risk vs. return, cost vs. service). 

a) Weights or trade-off rates can be determined; 

b) Criteria can be strictly ordered by importance. We have so-called preemptive 

objectives. 

2. Criteria are intrinsically similar (i.e., in some sense they should have equal weight). 

 A rich source of multi-criteria problems is the design and operation of public works. A specific 

example is the huge “Three Gorges” dam on the Yangtze River in China. Interested parties include: (a) 

industrial users of electricity, who would like the average water level in the dam to be high, so as to 

maximize the amount of electricity that can be generated; (b) farmers downstream from the dam, who 

would like the water level in the dam to be maintained at a low level, so unexpected large rainfalls can 

be accommodated without overflow and flooding; (c) river shipping interests, who would like the lake 

level to be allowed to fluctuate as necessary, so as to maintain a steady flow rate out of the dam, thereby 
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allowing year round river travel by large ships below the dam; (d) lake fishermen and recreational 

interests, who would like the flow rate out of the dam to be allowed to fluctuate as necessary, so as to 

maintain a steady lake level; e) irrigation water users who would like the lake level to be high and to be 

allowed to use water for irrigation than for power generation, and (f) environmental interests, who did 

not want the dam built in the first place. For the Three Gorges dam in particular, flood control interests 

have argued for having the water level behind the dam held at 459 feet above sea level just before the 

rainy season, so as to accommodate storm runoff (see, for example, Fillon (1996)). Electricity generation 

interests, however, have argued for a water level of 574 feet above sea level to generate more electricity. 

14.1.1 Alternate Optima and Multicriteria 
If you have a model with alternate optimal solutions, this is nature’s way of telling you that you have 

multiple criteria. You should probably look at your objective function more closely and add more detail. 

Users do not like alternate optima. If there are alternate optima, the typical solution method will 

essentially choose among them randomly. If people’s jobs or salaries depend upon the “flip of a coin” 

in your analysis, they are going to be unhappy. Even if careers are not at stake, alternate optima are at 

least a nuisance. People find it disconcerting if they get different answers (albeit with the same objective 

value) when they solve the same problem on different computers. 

 One resolution of alternate optima that might occur to some readers is to take the average of all 

distinct alternate optima and use this average solution as the final, unique, well-defined answer. 

Unfortunately, this is usually not practical because: 

a) it may be difficult to enumerate all alternate optima, and 

b) the average solution may be unattractive or even infeasible if the model involves integer 

variables. 

14.2 Approaches to Multi-criteria Problems 
There is a variety of approaches to dealing with multiple criteria. Some of the more practical ones are 

described below. 

14.2.1 Pareto Optimal Solutions and Multiple Criteria 
A solution to a multi-criteria problem is said to be Pareto optimal if there is no other solution that is at 

least as good according to all criteria and strictly better according to at least one criterion. A Pareto 

optimal solution is not dominated by any other solution. Clearly, we want to consider only Pareto optimal 

solutions. If we do not choose our criteria carefully, we might find ourselves recommending solutions 

that are not Pareto optimal. There are computer programs for multi-criteria linear programming that will 

generate all the undominated extreme solutions. For a small problem, a decision maker could simply 

choose the most attractive extreme solution based on subjective criteria. For large problems, the number 

of undominated extreme solutions may easily exceed 100, so this approach may be overwhelming. 

14.2.2 Utility Function Approach 
A superficially attractive solution of the multi-criteria problem is the definition of a utility function. If 

the decision variables are x1, x2, …, xn, we “simply” construct the utility function u(x1, x2, …., xn) which 

computes the value or utility of any possible combination of values for the vector x1, x2, …., xn. This is 

a very useful approach for thinking about optimization. However, it has several practical limitations: (a) 

it may take a lot of work to construct it, and (b) it will probably be highly nonlinear. Feature (b) means 

we probably cannot use LP to solve the problem. 
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14.2.3 Trade-off Curves 
If we have only two or three criteria, then the trade-off curve approach has most of the attractive features 

of the utility function approach, but is also fairly practical. We simply construct a curve, the so-called 

“efficient frontier”, which shows how we can trade off one criterion for another. One of the most well 

known settings using a trade-off curve is to describe the relationship between two criteria in a financial 

portfolio. The two criteria are expected return on investment and risk. We want return to be high and 

risk to be low. Figure 14.1 shows the typical relationship between risk and return. Each point on the 

curve is Pareto optimal. That is, for any point on the curve, there is no other point with higher expected 

return and lower risk. 

 Even though a decision maker has not gone through the trouble of constructing his utility function, 

he may be able to look at this trade-off curve and perhaps say: “Gee, I am comfortable with an expected 

return of 8% with standard deviation of 3%.” 

Figure 14.1 Trade-off Curve for Risk and Expected Return 

Expected

Return

Risk(e.g., Standard Deviation in Return)

0

0

 

14.2.4 Example: Ad Lib Marketing 
Ad Lib is a freewheeling advertising agency that wants to solve a so-called media selection problem for 

one of its clients. It is considering placing ads in five media: late night TV (TVL), prime time TV (TVP), 

billboards (BLB), newspapers (NEW), and radio (RAD). These ads are intended to reach seven different 

demographic groups. 
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 The following table gives the number of exposures obtained in each of the seven markets per dollar 

of advertising in each of five media. The second to last row of the table lists the minimum required 

number of exposures in each of the seven markets. The feeling is that we must reach this minimum 

number of readers/viewers, regardless of the cost. The last row of numbers is the saturation level for 

each market. The feeling is that exposure beyond this level is of no value. Exposures between these two 

limits will be termed useful exposures. 

Exposure Statistics for Ad Lib Marketing 
 Exposure in 1000’s per $1000 Spent 

 Market Group 
 1 2 3 4 5 6 7 

TVL  10 4 50 5  2 

TVP  10 30 5 12   

BLB 20     5 3 

NEW 8     6 10 

RAD  6 5 10 11 4  

Minimum Number of Exposures 
Needed in 1,000’s 

25 40 60 120 40 11 15 

Saturation Level in 1,000’s of 
Exposures 

60 70 120 140 80 25 55 

 How much money should be spent on advertising in each medium? There are really two criteria: (a) 

cost (which we want to be low), and (b) useful exposures (which we want to be high). At the outset, we 

arbitrarily decided we would spend no more than $11,000. 

 A useful model can be formulated if we define: 

Decision variables: 

TVL, TVP, etc. = dollars spent in 1,000’s on advertising in TVL, TVP, etc.; 

UX1, UX2, etc. = number of useful excess exposures obtained in market 1, 2, etc., beyond the 

minimum (i.e., min {saturation level, actual exposures} − minimum 

required); 

COST  = total amount spent on advertising; 

USEFULX  = total useful exposures. 

There will be two main sets of constraints. One set that says: 

exposures in a market  minimum required + useful excess exposure beyond minimum. 

The other says: 

useful excess exposures in a market  saturation level − minimum required. 
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An explicit formulation is: 

[UEXP] MAX = USEFULX ;   ! Maximize useful exposures; 

[LIMCOST] COST <= 11; !Limit (in $1,000) on cost; 

[LIMEXP]   USEFULX >=   0;! Required exposures; 

[DEFCOST] TVL + TVP + BLB + NEW + RAD =  COST; 

[DEFEXP] UX1 + UX2 + UX3 + UX4 + UX5 + UX6 + UX7 =  

         USEFULX; 

[MKT1]          20 * BLB +  8 * NEW         - UX1 >= 25; 

[MKT2] 10 * TVL + 10 * TVP          + 6 * RAD - UX2>= 40; 

[MKT3]  4 * TVL + 30 * TVP          + 5 * RAD - UX3>= 60; 

[MKT4] 50 * TVL +  5 * TVP         + 10 * RAD - UX4>= 120; 

[MKT5]  5 * TVL + 12 * TVP         + 11 * RAD-  UX5>= 40; 

[MKT6]           5 * BLB +  6 * NEW + 4 * RAD - UX6>= 11; 

[MKT7] 2 * TVL + 3 * BLB + 10 * NEW           - UX7>= 15; 

[RANGE1]  UX1 <=  35; 

[RANGE2]  UX2 <=  30; 

[RANGE3]  UX3 <=  60; 

[RANGE4]  UX4 <=  20; 

[RANGE5]  UX5 <=  40; 

[RANGE6]  UX6 <=  14; 

[RANGE7]  UX7 <=  40; 

The following is part of the solution to this model: 

Optimal solution found at step:        15 

Objective value:                 196.7626 

Variable           Value        Reduced Cost 

 USEFULX        196.7626           0.0000000 

    COST        11.00000           0.0000000 

     TVL        1.997602           0.0000000 

     TVP        3.707434           0.0000000 

     BLB        2.908873           0.0000000 

     NEW       0.2278177           0.0000000 

     RAD        2.158273           0.0000000 

     UX1        35.00000           0.0000000 

     UX2        30.00000           0.0000000 

     UX3        60.00000           0.0000000 

     UX4        20.00000           0.0000000 

     UX5        38.21823           0.0000000 

     UX6        13.54436           0.0000000 

     UX7       0.0000000           0.7194281E-02 

     Row    Slack or Surplus      Dual Price 

    UEXP        196.7626            1.000000 

 LIMCOST       0.0000000            21.43885 

  LIMEXP        196.7626           0.0000000 

 DEFCOST       0.0000000            21.43885 

  DEFEXP       0.0000000           -1.000000 

 Notice we advertise up to the saturation level in markets 1 to 4. In market 7, we advertise just enough 

to achieve the minimum required. 
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 If you change the cost limit (initially at 11) to various values ranging from 6 to 14 and plot the 

maximum possible number of useful exposures, you get a trade-off curve, or efficient frontier, shown in 

the Figure 14.2: 

Figure 14.2 Trade-off Between Exposures and Advertising 

Useful

Excess

Exposures

Advertising Expenditure

6 7 8 9 10 11 12 13 14

30

60

90

120

150

180

210

240

 

14.2.5 Computing Trade-off Curves/Pareto Optimal Points: Pitfalls 
 

Suppose we have two criteria, obj1 and obj2, to be maximized. Two methods of attempting to compute 

trade-off curves, or Pareto optimal points are: 

   a) Objective parametrics:  For a range of values for 0 ≤ α ≤ 1, solve the problem:  
      max = alpha*obj1 + (1-alpha)*obj2, 

           subject to other relevant constraints, or 

   b) Right hand side parametrics:  For a range of values for k, solve the problem:  
max = obj2, 

subject to  

  obj1 ≥ k, and 

  other relevant constraints. 

 

 For many problems, these two approaches are essentially equivalent, although method (b) is 

slightly more general. The weaknesses of (a) are: 

      * when α = 0 or 1, it may produce solutions not Pareto optimal, i.e., perhaps dominated.  

      * it may be unable to identify certain solutions that are Pareto optimal if there are integer variables.  

      * when α is close to 0 or 1, there may be numerical/computational difficulties. 

 The weaknesses of (b) are: 

      * unless performed in “double-check” mode, it may produce solutions not Pareto optimal. We 

illustrate these problems with the following little model. 
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     alpha = 0.5; 

     max = alpha*obj1 + (1-alpha)*obj2; 

     @free(obj1); @free(obj2); 

     obj1 =  0*z1 +  1*z2 +  1.00001*z3 + 5*z4 + 10*z5; 

     obj2 = 10*z1 + 10*z2 +       10*z3 + 5*z4 +  1*z5; 

          z1   +  z2   +       z3   + z4   +  z5 = 1; 

     @bin( z1); @bin( z2); @bin( z3); @bin( z4); @bin( z5); 

 

  With a little bit of inspection you can verify that there are three Pareto optimal points corresponding to 

z3 = 1, or z4 = 1, or z5 = 1. Points z1 and z2 are dominated by z3.  

 To illustrate the first weakness of (a), observe that if alpha = 0, then each of the three solutions:  z1 

= 1, or z2 = 1, or  z3 = 1,   are alternate optima. The solver will arbitrarily/randomly choose one 

of them.  

 To illustrate the second weakness of (a), observe that there is no alpha that will produce z4 as a 

solution. If we choose alpha = 0.50001, we get the solution z5 = 1.  If we choose alpha = 

.49999, we get the solution z3 = 1. The difficulty arises because method (a) chooses only solution 

that are on the convex hull of the Pareto optimal points. Under method (a), point z4 is dominated by a 

pseudo point consisting of half of point z3 and half of point z5. If the real world allows fractional 

solutions, then excluding z4 may be OK, but if only discrete allocations are allowed in the real world, 

then one wants to include z4 as a Pareto optimal/efficient point.  

       Trying to avoid the first weakness of (a), introduces the third weakness. To make z3 slightly ( and 

rightfully) more attractive than z1 and z2, suppose we set alpha = 0.000001. If we write out the 

objective in simplest form, it is: 
  max= 9.99999*Z1 + 9.999991*Z2 + 9.99999100001*Z3 + 5*Z4 + 1.000009*Z5;  

The coefficients of z2 and z3 differ only in the 12th decimal place.  This is less that the default 

optimality tolerance of most solvers, so most solvers would not distinguish between z2 and z3, and so 

might suggest that z2 is Pareto optimal. 

 For method (b), to illustrate the first weakness suppose we set k = 0.5 and solve: 
     max = obj2;  

     obj1 >= 0.5; 

     obj1 =  0*z1 +  1*z2 +  1.00001*z3 + 5*z4 + 10*z5; 

     obj2 = 10*z1 + 10*z2 +       10*z3 + 5*z4 +  1*z5; 

          z1   +  z2   +       z3   + z4   +  z5 = 1; 

     @bin( z1); @bin( z2); @bin( z3); @bin( z4); @bin( z5); 

 

There are two alternate optima, z2 = 1 and z3 = 1. The solver might arbitrarily choose the 

dominated point z2 = 1.  This flaw can be avoided if at each step we “double check” the solution by 

solving the series of two problems, given k1, first solve:  
 

     1) max = obj2;  

        obj1 >= k1;  
  

We get the solution obj2 = 10; 
 

Now set k2 = 10, and solve: 
     2) max = obj1;  

        Obj2 >= k2; 

Giving the solution obj1 = 1.00001, so ( obj1, obj2) = ( 1.00001, 10) is an undominated 

point. 
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14.3 Goal Programming and Soft Constraints 
Goal Programming is closely related to the concept of multi-criteria as well as a simple idea that we dub 

“soft constraints”. Soft constraints and Goal Programming are a response to the following two “laws of 

the real world”. 

 In the real world: 

1) there is always a feasible solution; 

2) there are no alternate optima. 

 In practical terms, (1) means a good manager (or one wishing to at least keep a job) never throws 

up his or her hands in despair and says “no feasible solution”. Law (2) means a typical decision maker 

will never be indifferent between two proposed courses of action. There are always sufficient criteria to 

distinguish some course of action as better than all others. 

 From a model perspective, these two laws mean a well-formulated model (a) always has a feasible 

solution and (b) does not have alternate optima. 

14.3.1 Example: Secondary Criterion to Choose Among Alternate Optima 
Here is a standard, seven-day/week staffing problem similar to that discussed in Chapter 7. The 

variables: M, T, W, R, F, S, N, denote the number of people starting their five-day work week on Monday, 

Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, respectively: 

MIN = 9*M + 9*T + 9*W + 9*R + 9*F + 9*S + 9*N; 

   [MON]   M         + R + F + S + N =   3; 

   [TUE]   M + T         + F + S + N =   3; 

   [WED]   M + T + W         + S + N =   8; 

   [THU]   M + T + W + R         + N =   8; 

   [FRI]   M + T + W + R + F         =   8; 

   [SAT]       T + W + R + F + S     =   3; 

   [SUN]           W + R + F + S + N =   3; 
END 
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When solved, we get the following solution: 

Optimal solution found at step:         6 

Objective value:                 72.00000 

Variable           Value        Reduced Cost 

       M        5.000000           0.0000000 

       T       0.0000000           0.0000000 

       W        3.000000           0.0000000 

       R       0.0000000           0.0000000 

       F       0.0000000            9.000000 

       S       0.0000000            9.000000 

       N       0.0000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        72.00000            1.000000 

     MON        2.000000           0.0000000 

     TUE        2.000000           0.0000000 

     WED       0.0000000           0.0000000 

     THU       0.0000000           -9.000000 

     FRI       0.0000000           0.0000000 

     SAT       0.0000000           0.0000000 

     SUN       0.0000000           0.0000000 

 Notice there may be alternate optima (e.g., the slack and dual price in row “WED” are both zero). 

This solution puts all the surplus capacity on Saturday and Sunday. The different optima might distribute 

the surplus capacity in different ways over the days of the week. Saturday and Sunday have a lot of 

excess capacity while the very similar days, Monday and Tuesday, have no surplus capacity. 

 In terms of multiple criteria, we might say: 

a) our most important criterion is to minimize total staffing cost; 

b) our secondary criterion is to have a little extra capacity, specifically one unit, each day if 

it will not hurt criterion 1. 
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 To encourage more equitable distribution, we add some “excess” variables (XM, XT, etc.) that give 

a tiny credit of −1 for each surplus up to at most 1 on each day. The modified formulation is: 

MODEL: 

MIN = 9*M + 9*T + 9*W + 9*R + 9*F + 9*S + 9*N 

     - XM  - XT  - XW  - XR  - XF  - XS  - XN; 

[MON] M            +  R   + F   + S   + N  - XM  3; 

[TUE] M + T               + F   + S   + N  - XT  3; 

[WED] M + T   + W               + S   + N  - XW  8; 

[THU] M + T   + W  +  R               + N  - XR  8; 

[FRI] M + T   + W  +  R   + F              - XF  8; 

[SAT]     T   + W  +  R   + F   + S        - XS  3; 

[SUN]           W  +  R   + F   + S   + N  - XN  3; 

  [N9]   XM   1; 

 [N10]   XT   1; 

 [N11]   XW   1; 

 [N12]   XR   1; 

 [N13]   XF   1; 

 [N14]   XS   1; 

 [N15]   XN   1; 
END 

The solution now is: 

Optimal solution found at step:        19 

Objective value:                 68.00000 

Variable           Value        Reduced Cost 

       M        4.000000           0.0000000 

       T       0.0000000           0.0000000 

       W        4.000000           0.0000000 

       R       0.0000000            1.000000 

       F       0.0000000            8.000000 

       S       0.0000000            8.000000 

       N       0.0000000            1.000000 

      XM        1.000000           0.0000000 

      XT        1.000000           0.0000000 

      XW       0.0000000           0.0000000 

      XR       0.0000000            6.000000 

      XF       0.0000000           0.0000000 

      XS        1.000000           0.0000000 

      XN        1.000000           0.0000000 

 Notice, just as before, we still hire a total of eight people, but now the surplus is evenly distributed 

over the four days M, T, S, and N. This should be a more attractive solution. 
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14.3.2 Preemptive/Lexico Goal Programming 
The above approach required us to choose the proper relative weights for our two objectives, cost and 

service. In some situations, it may be clear that one objective is orders of magnitude more important 

than the other. One could choose weights to reflect this (e.g., 99999999 for the first and 0.0000001 for 

the second), but there are a variety of reasons for not using this approach. First of all, there would 

probably be numerical problems, especially if there are more than two objectives. A typical computer 

cannot accurately add numbers that differ by more than 15 orders of magnitude (e.g., 100,000,000 and 

.0000001). 

 More importantly, it just seems more straightforward simply to say: “This first objective is far more 

important than the remaining objectives, the second objective is far more important than the remaining 

objectives,” etc. This approach is sometimes called Preemptive or Lexico goal programming. The 

following illustrates for our previous staff-scheduling example. The first model solved places a weight 

of 1.0 on the more important objective, COST, and no weight on the secondary objective, EXTRA credit 

for useful overstaffing: 

!Example of Lexico-goal programming 

 MIN = 1 * COST - 0 * EXTRA; 

 [MON] M         + R + F + S + N - XM >= 3; 

 [TUE] M + T         + F + S + N - XT >= 3; 

 [WED] M + T + W         + S + N - XW >= 8; 

 [THU] M + T + W + R         + N - XR >= 8; 

 [FRI] M + T + W + R + F         - XF >= 8; 

 [SAT]     T + W + R + F + S     - XS >= 3; 

 [SUN]         W + R + F + S + N - XN >= 3; 

 ! Upper limit on creditable excess; 

  [EXM]  XM <= 1; 

  [EXT]  XT <= 1; 

  [EXW]  XW <= 1; 

  [EXR]  XR <= 1; 

  [EXF]  XF <= 1; 

  [EXS]  XS <= 1; 

  [EXN]  XN <= 1; 

 ! Define the two objectives; 

 [OBJCOST] COST = M + R + F + S + N + T + W; 

 [OBJXTRA] EXTRA = XM + XT + XW + XR + XF + XS + XN; 

 END 
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The solution is: 

Optimal solution found at step:        11 

Objective value:                 8.000000 

Variable           Value        Reduced Cost 

    COST        8.000000           0.0000000 

   EXTRA       0.0000000           0.0000000 

       M        3.000000           0.0000000 

       R       0.0000000           0.0000000 

       F       0.0000000           0.0000000 

       S       0.0000000            1.000000 

       N       0.0000000            1.000000 

      XM       0.0000000           0.0000000 

       T       0.0000000           0.0000000 

      XT       0.0000000           0.0000000 

       W        5.000000           0.0000000 

      XW       0.0000000           0.0000000 

      XR       0.0000000           0.0000000 

      XF       0.0000000            1.000000 

      XS       0.0000000           0.0000000 

      XN       0.0000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        8.000000            1.000000 

     MON       0.0000000           0.0000000 

     TUE       0.0000000           0.0000000 

     WED       0.0000000           0.0000000 

     THU       0.0000000           0.0000000 

     FRI       0.0000000           -1.000000 

     SAT        2.000000           0.0000000 

     SUN        2.000000           0.0000000 

     EXM        1.000000           0.0000000 

     EXT        1.000000           0.0000000 

     EXW        1.000000           0.0000000 

     EXR        1.000000           0.0000000 

     EXF        1.000000           0.0000000 

     EXS        1.000000           0.0000000 

     EXN        1.000000           0.0000000 

 OBJCOST       0.0000000           -1.000000 

 OBJXTRA       0.0000000           0.0000000 



Multiple Criteria & Goal Programming  Chapter 14     443 

 Notice because there is zero weight in the objective, it does not claim any EXTRA credit for 

overstaffing by one unit. This solution starts 3 people on Monday, and 5 people on Wednesday. Thus, 

there is no overstaffing on Monday, Tuesday, Wednesday, Thursday, and Friday, but both Saturday and 

Sunday are overstaffed by two each. We can try to distribute the overstaffing more evenly by solving 

the following model. It fixes the COST at the minimum we have just learned, and now maximizes (or 

minimizes the negative of) the creditable extra staffing: 

MIN  = 0 * COST - 1 * EXTRA; 

  [MON] M         + R + F + S + N - XM >= 3; 

  [TUE] M + T         + F + S + N - XT >= 3; 

  [WED] M + T + W         + S + N - XW >= 8; 

  [THU] M + T + W + R         + N - XR >= 8; 

  [FRI] M + T + W + R + F         - XF >= 8; 

  [SAT]     T + W + R + F + S     - XS >= 3; 

  [SUN]         W + R + F + S + N - XN >= 3; 

  ! Upper limit on creditable excess; 

   [EXM]   XM <= 1; 

   [EXT]   XT <= 1; 

   [EXW]   XW <= 1; 

   [EXR]   XR <= 1; 

   [EXF]   XF <= 1; 

   [EXS]   XS <= 1; 

   [EXN]   XN <= 1; 

  ! Define the two objectives; 

 [OBJCOST] COST = M + R + F + S + N + T + W; 

 [OBJXTRA] EXTRA = XM + XT + XW + XR + XF + XS + XN; 

 ! Fix the cost at its minimum value; 

 [FXCOST] COST = 8; 

 END 

This gives the solution: 

Optimal solution found at step:         7 

Objective value:                -4.000000 

Variable           Value        Reduced Cost 

    COST        8.000000           0.0000000 

   EXTRA        4.000000           0.0000000 

       M        4.000000           0.0000000 

       R       0.0000000            1.000000 

       F       0.0000000            2.000000 

       S       0.0000000            2.000000 

       N       0.0000000            1.000000 

      XM        1.000000           0.0000000 

       T       0.0000000           0.0000000 

      XT        1.000000           0.0000000 

       W        4.000000           0.0000000 

      XW       0.0000000           0.0000000 

      XR       0.0000000           0.0000000 

      XF       0.0000000           0.0000000 

      XS        1.000000           0.0000000 

      XN        1.000000           0.0000000 
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     Row    Slack or Surplus      Dual Price 

       1       -4.000000           -1.000000 

     MON       0.0000000           0.0000000 

     TUE       0.0000000           0.0000000 

     WED       0.0000000           -1.000000 

     THU       0.0000000           -1.000000 

     FRI       0.0000000           -1.000000 

     SAT       0.0000000           0.0000000 

     SUN       0.0000000           0.0000000 

     EXM       0.0000000            1.000000 

     EXT       0.0000000            1.000000 

     EXW        1.000000           0.0000000 

     EXR        1.000000           0.0000000 

     EXF        1.000000           0.0000000 

     EXS       0.0000000            1.000000 

     EXN       0.0000000            1.000000 

 OBJCOST       0.0000000           -3.000000 

 OBJXTRA       0.0000000            1.000000 

  FXCOST       0.0000000            3.000000 

 Notice this is a different solution. Nevertheless, still with a cost of 8, but with now an EXTRA credit 

for slight overstaffing of 4. This solution starts 4 people on each of Monday and Wednesday. Thus, 

Wednesday, Thursday, and Friday have no overstaffing, but Monday, Tuesday, Saturday, and Sunday 

are overstaffed by one each. 

14.4 Minimizing the Maximum Hurt, or Unordered Lexico 
Minimization 

There are some situations in which there are a number of parties that, in some sense, are equal. There 

may be certain side conditions, however, that prevent us from treating them exactly equally. An example 

is representation in a House of Representatives. Ideally, we would like to have the number of 

representatives in a state be exactly proportional to the population of the state. Because the House of 

Representatives is typically limited to a fixed size and we cannot have fractional representatives 

(although some voters may feel they have encountered such an anomaly), we will find some states have 

more citizens per representative than others. 

 In more general settings, an obvious approach for minimizing such inequities is to choose things, so 

we minimize the maximum inequity or “hurt.” Once we have minimized the worst hurt, the obvious thing 

is to minimize the second greatest hurt, etc. We will refer to such a minimization as Unordered Lexico 

Minimization. For example, if there are four parties, and (10, 13, 8, 9) is the vector of taxes to be paid, then 

we would say the vector (13, 8, 9, 9) is better in the unordered Lexico-min sense. The highest tax is the 

same for both solutions, but the second highest tax is lower for the second solution. 

 Serafini (1996) uses this approach in scheduling jobs in a textile factory in northern Italy. Each job 

has a due-date. If demand and capacity are such that not all jobs can be completed by their due date, then 

a reasonable objective is to minimize the maximum lateness of any job. A reasonable sub-objective is to 

minimize the lateness of the second latest job, etc. 
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14.4.1 Example 
This example is based on one in Sankaran (1989). There are six parties and xi is the assessment to be 

paid by party i to satisfy a certain community building project. The xi must satisfy the set of constraints: 

A. X1 + 2 X2 + 4 X3 + 7 X4    16 

B. 2.5 X1 + 3.5 X2 + 5.2 X5    17.5 

C. 0.4 X2 + 1.3 X4 + 7.2 X6    12 

D. 2.5 X2 + 3.5 X3 + 5.2 X5    13.1 

E. 3.5 X1 + 3.5 X4 + 5.2 X6    18.2 

 We would like to minimize the highest assessment paid by anyone. Given that, we would like to 

minimize the second highest assessment paid by anyone. Given that, we would like to minimize the third 

highest, etc. The interested reader may try to improve upon the following set of assessments: 

 X1 = 1.5625 

 X2 = 1.5625 

 X3 = .305357 

 X4 = 1.463362 

 X5 = 1.5625 

 X6 = 1.463362 

There is no other solution in which: 

a) the highest assessment is less than 1.5625, and 

b) the second highest assessment is less than 1.5625, and 

c) the third highest assessment is less than 1.5625, and 

d) the fourth highest assessment is less than 1.463362, etc. 

14.4.2 Finding a Unique Solution Minimizing the Maximum 
A quite general approach to finding a unique unordered Lexico minimum exists when the feasible region 

is convex (i.e. any solution that is a positively weighted average of two feasible solutions is also feasible). 

Thus, problems with integer variables are not convex. Let the vector {x1, x2, …, xn} denote the cost 

allocated to each of n parties. 

 If the feasible region is convex, then there is a unique solution and the following algorithm will find 

it. Maschler, Peleg, and Shapley (1979) discuss this idea in the game theory setting, where the 

“nucleolus” is a closely related concept. If the feasible region is not convex (e.g., the problem has integer 

variables), then the following method is not guaranteed to find the solution. Let S be the original set of 

constraints on the x’s. 

1) Let J = {1, 2, . . . , n}, and k = 0; (Note: J is the set of parties for whom we do not yet know 

the final xi) 

2) Let k = k + 1; 

3) Solve the problem: 

Minimize Z 

subject to 

x feasible to S and, 

Z > xj for j in J 

(Note: this finds the minimum, maximum hurt among parties for which we have not yet 

fixed the xj’s.); 
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4) Set Zk = Z of (3), and add to S the constraints: 

xj < Zk for all j in J; 

5) Set L = {j in J for which xj = Zk in (3)}: 

For each j in L: 

Solve: 

Minimize xj 

subject to 

x feasible to S; 

If xj = Zk, then set J = J − j, and append to S the constraint xj = Zk 

6) If J is not empty, go to (2), else we are done. 

 To find the minimum maximum assessment for our example problem, we solve the following 

problem: 

MODEL: 

MIN = Z; 

 ! The physical constraints on the X's; 

   [A] X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

   [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

   [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

   [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

   [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

 ! Constraints to compute the max hurt  Z; 

   [H1] Z - X1 >= 0; 

   [H2] Z - X2 >= 0; 

   [H3] Z - X3 >= 0; 

   [H4] Z - X4 >= 0; 

   [H5] Z - X5 >= 0; 

   [H6] Z - X6 >= 0; 

END 

Its solution is: 

Objective value:                 1.5625000 

Variable           Value          Reduced Cost 

       Z        1.5625000           0.0000000 

      X1        1.5625000           0.0000000 

      X2        1.5625000           0.0000000 

      X3        1.5625000           0.0000000 

      X4        1.5625000           0.0000000 

      X5        1.5625000           0.0000000 

      X6        1.5625000           0.0000000 

Thus, at least one party will have a “hurt” of 1.5625. Which party or parties will it be? 
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 Because all six xi’s equal 1.5625, we solve a series of six problems such as the following: 

MODEL: 

MIN = X1; 

 ! The physical constraints on the X's; 

   [A] X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

   [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

   [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

   [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

   [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

! Constraints for finding the minmax hurt, Z; 

  [H1]     X1 <= 1.5625000; 

  [H2]     X2 <= 1.5625000; 

  [H3]     X3 <= 1.5625000; 

  [H4]     X4 <= 1.5625000; 

  [H5]     X5 <= 1.5625000; 

  [H6]     X6 <= 1.5625000; 

END 

The solution for the case of X1 is: 

Objective value:                 1.5625000 

Variable           Value         Reduced Cost 

      X1        1.5625000          0.0000000 

      X2        1.5625000          0.0000000 

      X3        0.3053573          0.0000000 

      X4        1.5625000          0.0000000 

      X5        1.5625000          0.0000000 

      X6        1.3966350          0.0000000 

 Thus, there is no solution with all the xi’s < 1.5625, but with X1 strictly less than 1.5625. So, we can 

fix X1 at 1.5625. Similar observations turn out to be true for X2 and X5. 

 So, now we wish to solve the following problem: 

MODEL: 

MIN  = Z; 

! The physical constraints on the  X's; 

       X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

   2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

   0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

   2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

   3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

 ! Constraints for finding the minmax hurt, Z; 

               X1 = 1.5625000; 

               X2 = 1.5625000; 

         - Z + X3 <= 0; 

         - Z + X4 <= 0; 

               X5 = 1.5625000; 

         - Z + X6 <= 0; 

END    
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Upon solution, we see the second highest “hurt” is 1.4633621: 

Objective value:                 1.4633621 

Variable           Value        Reduced Cost 

       Z        1.4633621         0.0000000 

      X1        1.5625000         0.0000000 

      X2        1.5625000         0.0000000 

      X3        1.4633621         0.0000000 

      X4        1.4633621         0.0000000 

      X5        1.5625000         0.0000000 

      X6        1.4633621         0.0000000 

 Any or all of X3, X4 or X6 could be at this value in the final solution. Which ones? To find out, we 

solve the following kind of problem for X3, X4 and X6: 

MODEL: 

MIN = X3; 

 ! The physical constraints on the  X's; 

       [A]   X1 + 2*X2 + 4*X3 + 7*X4  >=     16; 

       [B]   2.5*X1 + 3.5*X2 + 5.2*X5 >=     17.5; 

       [C]   0.4*X2 + 1.3*X4 + 7.2*X6 >=     12; 

       [D]   2.5*X2 + 3.5*X3 + 5.2*X5 >=     13.1; 

       [E]   3.5*X1 + 3.5*X4 + 5.2*X6 >=     18.2; 

 ! Constraints for finding the minmax hurt, Z; 

      [H1]   X1 =  1.5625000; 

      [H2]   X2 =  1.5625000; 

      [H3]   X3 <= 1.4633621; 

      [H4]   X4 <= 1.4633621; 

      [H5]   X5 =  1.5625000; 

      [H6]   X6 <= 1.4633621; 

END 

The solution, when we minimize X3, is: 

Objective value:                .3053571400 

Variable           Value        Reduced Cost 

      X3        .30535714         0.0000000 

      X1        1.5625000         0.0000000 

      X2        1.5625000         0.0000000 

      X4        1.4633621         0.0000000 

      X5        1.5625000         0.0000000 

      X6        1.4633621         0.0000000 

 Thus, X3 need not be as high as 1.4633621 in the final solution. We do find, however, that X4 and 

X6 can be no smaller than 1.4633621. 
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 So, the final problem we want to solve is: 

MODEL: 

MIN = Z; 

 ! The physical constraints on the X's; 

       [A] X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

       [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

       [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

       [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

       [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

 ! Constraints for finding the minmax hurt, Z; 

      [H1]       X1 = 1.5625000; 

      [H2]       X2 = 1.5625000; 

      [H3] - Z + X3 = 0; 

      [H4]       X4 = 1.4633621; 

      [H5]       X5 = 1.5625000; 

      [H6]     + X6 = 1.4633621; 

END 

We already know the solution will be: 

Objective value:                 .305357140 

Variable           Value        Reduced Cost 

       Z        .30535714         0.0000000 

      X1        1.5625000         0.0000000 

      X2        1.5625000         0.0000000 

      X3        .30535714         0.0000000 

      X4        1.4633621         0.0000000 

      X5        1.5625000         0.0000000 

      X6        1.4633621         0.0000000 

 The above solution minimizes the maximum X value, as well as the number of X’s at that value. 

Given that maximum value (of 1.5625), it minimizes the second highest X value, as well as the number 

at that value; etc. 

 The approach described requires us to solve a sequence of linear programs. It would be nice if we 

could formulate a single mathematical program for finding the unordered Lexico-min. There are a 

number of such formulations. Unfortunately, all of them suffer from numerical problems when 

implemented on real computers. The formulations assume arithmetic is done with infinite precision; 

whereas, most computers do arithmetic with at most 15 decimal digits of precision. 
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14.5 Identifying Points on the Efficient Frontier 
Until now, we have considered the problem of how to generate a solution on the efficient frontier. Now, 

let us take a slightly different perspective and consider the problem: Given a finite set of points, 

determine which ones are on the efficient frontier. When there are multiple criteria, it is usually 

impossible to find a single scoring formula to unambiguously rank all the points or players. The 

following table comparing on-time performance of two airlines (see Barnett, 1994) illustrates some of 

the issues: 

  
Alaska Airlines 

America West 
Airlines 

Destination % 
Arrivals 

 on 
Time 

No. of 
Arrivals 

% 
Arrivals 

 on 
Time 

No. of 
Arrivals 

Los Angeles 88.9 559 85.6 811 

Phoenix 94.8 233 92.1 5,255 

San Diego 91.4 232 85.5 448 

San Francisco 83.1 605 71.3 449 

Seattle 85.8 2,146 76.7 262 

Weighted 5-

Airport Average 
86.7 3,775 89.1 7,225 

 The weighted average at the bottom is computed by applying a weight to the performance at airport 

i proportional to the number of arrivals at that airport. For example, 

86.7 = (88.9  559 + … + 85.8  2146)/(559 + … + 2146).  

 According to this scoring, America West has a better on-time performance than Alaska Airlines. A 

traveler considering flying into San Francisco, however, would almost certainly prefer Alaska Airlines 

to America West with respect to on-time performance. In fact, the same argument applies to all five 

airports. Alaska Airlines dominates America West. How could America West have scored higher? The 

reason was a different scoring formula was used for each. Also, the airport receiving the most weight in 

America West’s formula, sunny Phoenix, had a better on-time performance by America West than 

Alaska Airline’s performance at its busiest airport, rainy Seattle. One should, in general, be suspicious 

when different scoring formulae are used for different candidates.  This paradox, whereby one 

conclusion is supported if we look at individual groups, but the opposite conclusion is supported if we 

aggregate all the groups into one big group, is sometimes called Simpson’s Paradox.  See for example, 

Wagner(1982). 

14.5.1 Efficient Points, More-is-Better Case 
The previous example was a case of multiple performance dimensions where, for each dimension, the 

higher the performance number, the better the performance. We will now illustrate a method for 

computing a single score or number, between 0 and 1, for each player. The interpretation of this number, 

or efficiency score, will be that a score of 1.0 means the player or organization being measured is on the 

efficient frontier. In particular, there is no other player better on all dimensions or even a weighted 

combination of players, so the weighted averages of their performances surpass the given player on 

every dimension. On the other hand, a score less than 1.0 means either there is some other player better 

on all dimensions or there is a weighted combination of players having a weighted average performance 

better on all dimensions. 
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Define: 

rij = the performance (or reward) of player i on the jth dimension (e.g., the on-time performance 

of Alaska Airlines in Seattle); 

vj = the weight or value to be applied to the jth dimension in evaluating overall efficiency. 

To evaluate the performance of player k, we will do the following in words: 

Choose the vj so as to maximize score (k) 

subject to 

For each player i (including k): 

score (i)  1. 

More precisely, we want to: 

Max j vj rkj 

subject to 

For every player i, including k: 

     j vj rij  1 

For every weight j: 

      vj  e, 

where e is a small positive number. 

 The reason for requiring every vj to be slightly positive is as follows. Suppose player k and some 

other player t are tied for best on one dimension, say j, but player k is worse than t on all other dimensions. 

Player k would like to place all the weight on dimension j, so player k will appear to be just as efficient 

as player t. Requiring a small positive weight on every dimension will reveal these slightly dominated 

players. Some care should be taken in the choice of the small “infinitesimal” constant e. If it is chosen 

too large, it may cause the problem to be infeasible. If it is chosen too small, it may be effectively 

disregarded by the optimization algorithm. From the above, you can observe that it should be bounded 

by:   

e  1/j rij.  

See Mehrabian, Jahanshahloo, Alirezaee, and Amin(2000) for a more detailed discussion. 

Example 

The performance of five high schools in the “three R’s” of “Reading, Writing and Arithmetic” are 

tabulated below (see Chicago Magazine, February 1995): 

School Reading Writing Mathematics 

Barrington 296 27 306 

Lisle 286 27.1 322 

Palatine 290 28.5 303 

Hersey 298 27.3 312 

Oak Park River Forest (OPRF) 294 28.1 301 

 Hersey, Palatine, and Lisle are clearly on the efficient frontier because they have the highest scores 

in reading, writing, and mathematics, respectively. Barrington is clearly not on the efficient frontier, 

because it is dominated by Hersey. What can we say about OPRF? 
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 We formulate OPRF’s problem as follows. Notice we have scaled both the reading and math scores, 

so all scores are less than 100. This is important if one requires the weight for each attribute to be at least 

some minimum positive value. 

MODEL: 

  MAX =  29.4*VR + 28.1*VW + 30.1*VM; 

  [BAR]  29.6*VR + 27  *VW + 30.6*VM <= 1; 

  [LIS]  28.6*VR + 27.1*VW + 32.2*VM <= 1; 

  [PAL]  29  *VR + 28.5*VW + 30.3*VM <= 1; 

  [HER]  29.8*VR + 27.3*VW + 31.2*VM <= 1; 

  [OPR]  29.4*VR + 28.1*VW + 30.1*VM <= 1; 

  [READ]      VR                     >= 0.0005; 

  [WRIT]                VW           >= 0.0005; 

  [MATH]                          VM >= 0.0005; 

END 

When solved: 

Optimal solution found at step:         2 

Objective value:                 1.000000 

Variable           Value        Reduced Cost 

      VR       0.1725174E-01       0.0000000 

      VW       0.1700174E-01       0.0000000 

      VM       0.5000000E-03       0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        1.000000            1.000000 

     BAR       0.1500157E-01       0.0000000 

     LIS       0.2975313E-01       0.0000000 

     PAL       0.0000000           0.0000000 

     HER       0.6150696E-02       0.0000000 

     OPR       0.0000000            1.000000 

    READ       0.1675174E-01       0.0000000 

    WRIT       0.1650174E-01       0.0000000 

    MATH       0.0000000           0.0000000 

 The value is 1.0, and thus, OPRF is on the efficient frontier. It should be no surprise OPRF puts the 

minimum possible weight on the mathematics score (where it is the lowest of the five). 

14.5.2 Efficient Points, Less-is-Better Case 
Some measures of performance, such as cost, are of the “less-is-better” nature. Again, we would like to 

have a measure of performance that gives a score of 1.0 for a player on the efficient frontier, less than 

1.0 for one that is not. 

 Define: 

cij = performance of player i on dimension j; 

wj = weight to be applied to the jth dimension. 

To evaluate the performance of player k, we want to solve a problem of the following form: 

Choose weights wj, so as to maximize the minimum weighted score, 

subject to 

the weighted score of player k = 1. 
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 If the objective function value from this problem is less than 1, then player k is inefficient, because 

there is no set of weights such that player k has the best score. More precisely, we want to solve: 

Max z 

subject to 

j wjckj = 1 

For each player i, including k: 

j wjcij  z. 

For every weight j: 

wj  e. 

Example 

The GBS Construction Materials Company provides steel structural materials to industrial contractors. 

GBS recently did a survey of price, delivery performance, and quality in order to get an assessment of 

how it compares with its four major competitors. The results of the survey, with the names of all 

companies disguised, appears in the following table: 

 
 
 

Company 

Quality (based on freedom 
from scale, straightness, 
etc., based on mean rank, 

where 1.0 is best) 

 
 

Delivery time 
(days) 

 
 

Price (in 
$/cwt) 

A 1.8 14 $21 

B 4.1 1 $26 

C 3.2 3 $25 

D 1.2 5 $23 

E 2.4 7 $22 

 For each of the three criteria, smaller is always better. Vendors A, B, and D are clearly competitive, 

based on price, delivery time, and quality, respectively. For example, a customer for whom quality is 

paramount will choose D. A customer for whom delivery time is important will choose B. Are C and E 

competitive? Imagine a customer who uses a linear weighting system to identify the best bid (e.g., score 

= WQ  Quality + WT  (delivery time) + WP  price). Is there a set of weights (all nonnegative), so 

Score (C) < Score (i), for i = A, B, D, E? Likewise, for E? 



454     Chapter 14  Multiple Criteria & Goal Programming 

 

The model for Company C is: 

MODEL: 

MAX = Z; 

      [A] - Z + 1.8*WQ + 14*WT + 21*WP  0; 

      [B] - Z + 4.1*WQ +    WT + 26*WP  0; 

      [C] - Z + 3.2*WQ +  3*WT + 25*WP  0; 

      [D] - Z + 1.2*WQ +  5*WT + 23*WP  0; 

      [E] - Z + 2.4*WQ +  7*WT + 22*WP  0; 
  [CTARG]       3.2*WQ +  3*WT + 25*WP = 1; 

   [QUAL]   WQ   0.0005; 

   [TIME]   WT   0.0005; 

  [PRICE]   WP   0.0005; 

END 

The solution is: 

Optimal solution found at step:         4 

Objective value:                0.9814257 

Variable           Value        Reduced Cost 

       Z       0.9814257           0.0000000 

      WQ       0.5000000E-03       0.0000000 

      WT       0.2781147E-01       0.0000000 

      WP       0.3659862E-01       0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.9814257            1.000000 

       A       0.1774060           0.0000000 

       B       0.0000000          -0.5137615 

       C       0.1857431E-01       0.0000000 

       D       0.0000000          -0.4862385 

       E       0.1962431E-01       0.0000000 

   CTARG       0.0000000           0.9816514 

    QUAL       0.0000000          -0.4513761 

    TIME       0.2731147E-01       0.0000000 

   PRICE       0.3609862E-01       0.0000000 

 Company C has an efficiency rating of 0.981. Thus, it is not on the efficient frontier. With a similar 

model, you can show Company E is on the efficient frontier. 

14.5.3 Efficient Points, the Mixed Case 
In many situations, there may be some dimensions where less is better, such as risk; whereas, there are 

other dimensions where more is better, such as chocolate. 

 In this case, unless we make additional restrictions on the weights, we cannot get a simple score of 

efficiency between 0 and 1 for a company. We can nevertheless extend the previous approach to 

determine if a point is on the efficient frontier. 

 Define: 

cij = level of the jth “less is better” attribute for player i, e.g., a cost, 

rij = level of the jth “more is better” attribute for player i, e.g., a revenue or reward, 

wj = weight to be applied to the jth “less is better” attribute, 

vj = weight to be applied to the jth “more is better” attribute. 
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In words, to evaluate the efficiency of player or point k, we want to: 

Max score (k) − (best score of any other player) 

subject to 

sum of the weights = 1 

 If the objective value is nonnegative, then player k is efficient; whereas, if the objective is negative, 

then there is no set of weights such that player k scores at least as well as every other player. 

 If we denote the best score of any other player by z, then, more specifically, we want to solve: 

Max j vj rkj − j wj ckj − z 

subject to 

For each player i, i  k 

z  j vj rij − j wj ckj 

and 

j vj + j wj = 1,  

vj  e, wj  e, z unconstrained in sign, where e is a small positive number as introduced in the “more-is-

better” case. 

 The dual of this problem is to find a set of nonnegative weights, i, to apply to each of the other 

players to: 

Minimize g 

subject to 

i i = 1 

For each “more is better” attribute j: 

g + i k j rij  rkj , 

For each “less is better” attribute j : 

g − i k j cij  − ckj , 

g unconstrained in sign. 

 If g is nonnegative, it means no weighted combination of other points (or players) could be found, 

so their weighted performance surpasses k on every dimension. 

14.6 Comparing Performance with Data Envelopment Analysis 
Data Envelopment Analysis (DEA) is a method for identifying efficient points in the mixed case. That 

is, when there are both “less is better” and “more is better” measures. An attractive feature of DEA, 

relative to the previous method discussed, is it does produce an efficiency score between 0 and 1. It does 

this by making slightly stronger assumptions about how efficiency is measured. Specifically, DEA 

assumes each performance measure can be classified as either an input or an output. For outputs, more 

is better; whereas, for inputs, less is better. The “score” of a point or a decision-making unit is then the 

ratio of an output score divided by an input score. 

 DEA was originated by Charnes, Cooper, and Rhodes (1978) as a means of evaluating the 

performance of decision-making units. Examples of decision-making units might be hospitals, banks, 

airports, schools, and managers. For example, Bessent, Bessent, Kennington, and Reagan (1982) used 

the approach to evaluate the performance of 167 schools around Houston, Texas. Simple comparisons 

can be misleading because different units are probably operating in different environments. For example, 

a school operating in a wealthy neighborhood will probably have higher test scores than a school in a 
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poor neighborhood, even though the teachers in the poor school are working harder and require more 

skill than the teachers in the wealthy school. Also, different decision makers may have different skills. 

If the teachers in school (A) are well trained in science and those in school (B) are well trained in fine 

arts, then a scoring system that applies a lot of weight to science may make the teachers in (B) appear to 

be inferior, even though they are doing an outstanding job at what they do best. 

 DEA circumvents both difficulties in a clever fashion. If the arts teachers were choosing the 

performance measures, they would choose one that placed a lot of weight on arts. However, the science 

teachers would probably choose a different one. DEA follows the philosophy of a popular fast food 

chain, that is, “Have it your way.” DEA will derive an “efficiency” score between 0 and 1 for each unit 

by solving the following problem: 

For each unit k: 

Choose a scoring function 

so as to: 

maximize score of unit k 

subject to: 

For every unit j (including k): 

scorej < 1. 

 Thus, unit k may choose a scoring function making it look as good as possible, so long as no other 

unit gets a score greater than 1 when that same scoring function is applied to the other unit. If a unit k 

gets a score of 1.0, it means there is no other unit strictly dominating k. 

 In the version of DEA we consider, the allowed scoring functions are limited to ratios of weighted 

outputs to weighted inputs. For example: 

score = weighted sum of outputs 

weighted sum of inputs 

We can normalize weights, so: 

weighted sum of inputs = 1; 

then “score < 1” is equivalent to: 

weighted sum of outputs < weighted sum of inputs. 

Algebraically, the DEA model is: 

Given 

n  = decision-making units, 

m = number of inputs, 

s  = number of outputs. 

Observed data: 

cij  = level of jth input for unit i, 

rij  = level of jth output for unit i. 

Variables: 

wj  = weight applied to the jth input, 

vj  = weight (or value) applied to the jth output. 
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For unit k, the model to compute the best score is: 

Maximize 
 j

s

=


1
vj rkj  

subject to 

 
 j

m

=


1

wj ckj = 1 

For each unit i (including k): 

 j

s

=


1
vj rij < 

 j

m

=


1
wj cij 

 This model will tend to have more constraints than decision variables. Thus, if implementation 

efficiency is a major concern, one may wish to solve the dual of this model rather than the primal. 

 Sexton et al. (1994) describes the use of DEA to analyze the transportation efficiency of 100 county 

level school districts in North Carolina. Examples of inputs were number of buses used and expenses. 

The single output was the number of pupils transported per day. Various adjustments were made in the 

analysis to take into account the type of district (e.g., population density). A savings of about $50 million 

over a four-year period was claimed. 

 Sherman and Ladino (1995) describe the use of DEA to analyze and improve the efficiency of 

branches in a 33-unit branch banking system. They claimed annual savings of $6 million. Examples of 

inputs for a branch unit were: number of tellers, office square feet, and expenses excluding personnel. 

Examples of outputs were number of deposits, withdrawals, checks cashed, loans made, and new 

accounts. Of the 33 units, ten obtained an efficiency score of 100%. An automatic result of the DEA 

analysis for an inefficient unit is an identification of the one or two units that dominate the inefficient 

unit. This dominating unit was then used as a “benchmark or best practices case” to help identify how 

the inefficient unit could be improved. 

Example 

Below are four performance measures on six high schools: Bloom (BL), Homewood (HW), New Trier 

(NT), Oak Park (OP), York (YK), and Elgin (EL). Cost/pupil is the number of dollars spent per year per 

pupil by the school. Percent not-low-income is the fraction of the student body coming from homes not 

classified as low income. The writing and science scores are the averages over students in a school on a 

standard writing test and a standard science test. The first two measures are treated as inputs, over which 

teachers and administrators have no control. The test scores are treated as outputs. 

School Cost/pupil Percent not 
low income 

Writing 
score 

Science 
score 

BL 8939 64.3 25.2 223 

HW 8625 99 28.2 287 

NT 10813 99.6 29.4 317 

OP 10638 96 26.4 291 

YK 6240 96.2 27.2 295 

EL 4719 79.9 25.5 222 
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 Which schools would you consider “efficient”? New Trier has the highest score in both writing 

(29.4) and science (317). However, it also spends the most per pupil, $10,813, and has the highest 

fraction not-low-income. A DEA model for maximizing the score of New Trier appears below. Notice 

we have scaled each factor, so it lies in the range (1,1000). This is important if one requires a strictly 

positive minimum weight on each factor, as the last four constraints of the model imply. The motivation 

for the strictly positive weight on each factor was given in the description of the “more-is-better” case: 

MODEL: 

MAX = SCORENT; 

! Define the numerator for New Trier; 

 [DEFNUMNT] SCORENT - 317*WNTSCIN - 29.4*WNTWRIT =  0; 

! Fix the denominator for New Trier; 

 [FIXDNMNT]  99.6*WNTRICH + 108.13*WNTCOST =    1; 

! Numerator/ Denominator < 1 for every school,; 

!  or equivalently, Numerator < Denominator; 

[BLNT]223*WNTSCIN+25.2*WNTWRIT-64.3*WNTRICH-89.39*WNTCOST<=0; 

[HWNT]287*WNTSCIN+28.2*WNTWRIT-99*WNTRICH-86.25*WNTCOST <= 0; 

[NTNT]317*WNTSCIN+29.4*WNTWRIT-99.6*WNTRICH-108.13*WNTCOST<=0; 

[OPNT]291*WNTSCIN+26.4*WNTWRIT-96*WNTRICH-106.38*WNTCOST<=0; 

[YKNT]295*WNTSCIN+27.2*WNTWRIT-96.2*WNTRICH-62.40*WNTCOST<=0; 

[ELNT]222*WNTSCIN+25.5*WNTWRIT-79.9*WNTRICH-47.19*WNTCOST<=0; 

! Each measure must receive a little weight; 

 [SCINT]   WNTSCIN >=  0.0005; 

 [WRINT]   WNTWRIT >=  0.0005; 

 [RICNT]   WNTRICH >=  0.0005; 

 [COSNT]   WNTCOST >=  0.0005; 

END 

The solution is: 

Optimal solution found at step:         3 

Objective value:                0.9615803 

Variable           Value        Reduced Cost 

 SCORENT       0.9615803           0.0000000 

 WNTSCIN       0.2987004E-02       0.0000000 

 WNTWRIT       0.5000000E-03       0.0000000 

 WNTRICH       0.8204092E-02       0.0000000 

 WNTCOST       0.1691228E-02       0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.9615803            1.000000 

DEFNUMNT       0.0000000            1.000000 

FIXDNMNT       0.0000000           0.9635345 

    BLNT       0.0000000           0.8795257 

    HWNT       0.8670327E-01       0.0000000 

    NTNT       0.3841965E-01       0.0000000 

    OPNT       0.8508738E-01       0.0000000 

    YKNT       0.0000000           0.4097145 

    ELNT       0.5945104E-01       0.0000000 

   SCINT       0.2487004E-02       0.0000000 

   WRINT       0.0000000           -3.908281 

   RICNT       0.7704092E-02       0.0000000 

   COSNT       0.1191227E-02       0.0000000 
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 The score of New Trier is less than 1.0. Thus, according to DEA, New Trier is not efficient. Looking 

at the solution report, one can deduce that NT is, according to DEA, strictly less efficient than BL and 

YK. Notice their “score less-than-or-equal-to 1” constraints are binding. Thus, if NT wants to improve 

its efficiency by doing a benchmark study, it should perhaps study the practices of BL and YK for insight. 

 A sets-based model that evaluates all the schools in one model is given below: 

MODEL: 

! Data Envelopment Analysis of Decision Maker Efficiency ; 

SETS: 

  DMU:    !The decisionmaking units; 

    SCORE;! Each decision making unit has a 

              score to be computed; 

  FACTOR; 

! There is a set of factors, input & output; 

  DXF( DMU, FACTOR):  F, ! F( I, J) = Jth factor of DMU I; 

         W;  ! Weights used to compute DMU I's score; 

 ENDSETS 

 DATA: 

  DMU = BL HW NT OP YK EL; 

! Inputs are spending/pupil, % not low income; 

! Outputs are Writing score and Science score; 

  NINPUTS = 2;  ! The first NINPUTS factors are inputs; 

 FACTOR= COST RICH     WRIT SCIN; 

!      The inputs,    the outputs; 

  F  =  89.39  64.3     25.2   223 

        86.25  99       28.2   287 

       108.13  99.6     29.4   317 

       106.38  96       26.4   291 

        62.40  96.2     27.2   295 

        47.19  79.9     25.5   222; 

  WGTMIN = .0005;  ! Min weight applied to every factor; 

  BIGM = 999999; ! Biggest a weight can be; 

 ENDDATA 

!----------------------------------------------------------; 

! The Model; 

! Try to make everyone's score as high as possible; 

  MAX = @SUM( DMU: SCORE); 

! The LP for each DMU to get its score; 

  @FOR( DMU( I): 

   [CSCR] SCORE( I) = @SUM( FACTOR(J)|J #GT# NINPUTS: 

                          F(I, J)* W(I, J)); 

! Sum of inputs(denominator) = 1; 

   [SUM21] @SUM( FACTOR( J)| J #LE# NINPUTS:  

                     F( I, J)* W( I, J)) = 1; 

! Using DMU I's weights, no DMU can score better than 1, 

    Note Numer/Denom <= 1 implies Numer <= Denom; 

   @FOR( DMU( K): 

   [LE1] @SUM( FACTOR( J)| J #GT# NINPUTS: F( K, J) * W( I, J)) 

          <= @SUM( FACTOR( J)| J #LE# NINPUTS: F( K, J) * W( I, J)) 

       ) 

     ); 

! The weights must be greater than zero; 

  @FOR( DXF( I, J): @BND( WGTMIN, W, BIGM)); 
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END 

Part of the output is: 

  Variable           Value        Reduced Cost 

SCORE( BL)        1.000000           0.0000000 

SCORE( HW)       0.9095071           0.0000000 

SCORE( NT)       0.9615803           0.0000000 

SCORE( OP)       0.9121280           0.0000000 

SCORE( YK)        1.000000           0.0000000 

SCORE( EL)        1.000000           0.0000000 

We see that the only efficient schools are Bloom, Yorktown, and Elgin. 

14.7 Problems 
1. In the example staffing problem in this chapter, the primary criterion was minimizing the number 

of people hired. The secondary criterion was to spread out any excess capacity as much as possible. 

The primary criterion received a weight of 9; whereas, the secondary criterion received a weight of 

1. The minimum number of people required (primary criterion) was 8. How much could the weight 

on the secondary criterion be increased before the number of people hired increases to more than 8? 

2. Reconsider the advertising media selection problem of this chapter. 

a) Reformulate it, so we achieve at least 197 (in 1000’s) useful exposures at minimum cost. 

b) Predict the cost before looking at the solution. 

3. A description of a “project crashing” decision appears in Chapter 8. There were two criteria, project 

length and project cost. Trace out the efficient frontier describing the trade-off between length and 

cost. 

4. The various capacities of several popular sport utility vehicles, as reported by a popular consumer 

rating magazine, are listed below: 

 
Vehicle 

 
Seats 

Cargo Floor 
Length (in.) 

Rear Opening 
Height (in.) 

Cargo Volume 
(cubic ft) 

Blazer 6 75.5 31.5 42.5 

Cherokee 5 62.0 33.5 34.5 

Land Rover 7 49.5 42.0 42.0 

Land Cruiser 8 65.5 38.5 44.5 

Explorer 6 78.5 35.0 48.0 

Trooper 5 57.0 36.5 42.5 

 Assuming sport utility vehicle buyers sport a linear utility and more capacity is better, which 

of the above vehicles are on the efficient frontier according to these four capacity measures? 

5. The Rotorua Fruit Company sells various kinds of premium fruits (e.g., apples, peaches, and kiwi 

fruit) in small boxes. Each box contains a single kind of fruit. The outside of the box specifies:  

i) the kind of fruit,  

ii) the number of pieces of fruit, and  

iii) the approximate weight of the fruit in the box.  
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 Satisfying specification (iii) is nontrivial, because the per unit weight of fruit as it comes from 

the orchard is a random variable. Consider the case of apples. Each apple box contains 12 apples. 

The label on each apple box says the box contains 4.25 lbs. of apples. In fact, a typical apple weighs 

from 5 to 6.5 ounces. At 16 ounces/lb., a box of 5-ounce apples would weigh only 3.75 lbs., whereas, 

a box of 6.5-ounce apples would weigh 4.875 lbs. The approach Rotorua is considering is to have a 

set of 24 automated scales on the box loading line. The 24 scales will be loaded with 24 apples. 

Based on the weights of the apples, a set of 12 apples whose total weight comes close to 4.25 lbs., 

will be dropped into the current empty box. In the next cycle, the 12 empty scales will be reloaded 

with new apples, a new empty box will be moved into position, and the process repeated. Rotorua 

cannot always achieve the ideal of exactly 4.25 lbs. in a box. However, being underweight is worse 

than being overweight. Rotorua has characterized its feeling/utility for this under/over issue by 

stating that given the choice between loading a box one ounce under and one ounce over, it clearly 

prefers to load it one ounce over. However, it would be indifferent between loading a box one ounce 

under vs. five ounces over. 

Suppose the scales currently contain apples with the following weights in ounces: 

 5.6, 5.9, 6.0, 5.8, 5.9, 5.4, 5.0, 5.5, 6.3, 6.2, 5.1, 6.2, 

 6.1, 5.2, 6.4, 5.7, 5.6, 5.5, 5.3, 6.0, 5.4, 5.3, 5.8, 6.1. 

a) How would you load the next box? 

b) Discuss some of the issues in implementing your approach. 
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15 
 

Economic Equilibria and 
Pricing 

 
Plus ce change, plus ce la meme chose. 

-Alphonse Karr: "Les Guepes", 1849 

 
15.1 What is an Equilibrium? 
As East and West Germany were about to be re-united in the early 1990’s, there was considerable interest 

in how various industries in the two regions would fare under the new economic structure. Similar 

concerns existed about the same time in Canada, the United States, and Mexico, as trade barriers were 

about to be dropped under the structure of the new North American Free Trade Agreement (NAFTA). 

Some of the planners concerned with NAFTA used so-called economic equilibrium models to predict 

the effect of the new structure on various industries. The basic idea of an equilibrium model is to predict 

what the state of a system will be in the “steady state”, under a new set of external conditions. These 

new conditions are typically things like new tax laws, new trading conditions, or dramatically new 

technology for producing some product.  

 Equilibrium models are of interest to at least two kinds of decision makers: people who set taxes, 

and people who are concerned with appropriate prices to set. Suppose state X feels it would like to put a 

tax on littering with, say, glass bottles. An explicit tax on littering is difficult to enforce. Alternatively, 

the state X might feel it could achieve the same effect by putting a tax on bottles when purchased, and 

then refunding the tax when the bottle is returned for recycling. Both of these are easy to implement and 

enforce. If a neighboring state, Y, however, does not have a bottle refund, then citizens of the state Y will 

be motivated to cross the border to X and turn their bottles in for refund. If the refund is high, then the 

refund from state X may end up subsidizing bottle manufacturing in state Y. Is this the intention of state 

X? A comprehensive equilibrium model takes into account all the incentives of the various sectors or 

players. 

 If one is modeling an economy composed of two or more individuals, each acting in his or her 

self-interest, there is no obvious overall objective function that should be maximized. In a market, a 

solution, or equilibrium point, is a set of prices such that supply equals demand for each commodity. 

More generally, an equilibrium for a system is a state in which no individual or component in the system 

is motivated to change the state. Thus, at equilibrium in an economy, there are no arbitrage possibilities 

(e.g., buy a commodity in one market and sell it in another market at a higher price at no risk). Because 
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economic equilibrium problems usually involve multiple players, each with their own objective, these 

problems can also be viewed as multiple criteria problems. 

15.2 A Simple Simultaneous Price/Production Decision 
A firm that has the choice of setting either price or quantity for its products may wish to set them 

simultaneously. If the production process can be modeled as a linear program and the demand curves 

are linear, then the problem of simultaneously setting price and production follows. 

 A firm produces and sells two products A and B at price PA and PB and in quantities XA and XB. 

Profit maximizing values for PA, PB, XA, and XB are to be determined. The quantities (sold) are related to 

the prices by the demand curves: 

XA = 60 − 21 PA + 0.1 PB , 

XB = 50 − 25 PB + 0.1 PA. 

 Notice the two products are mild substitutes. As the price of one is raised, it causes a modest increase 

in the demand for the other item. 

 The production side has the following features: 

 Product 
 A B 

Variable Cost per Unit $0.20 $0.30 

Production Capacity 25 30 

Further, the total production is limited by the constraint: 

XA + 2XB  50. 

The problem can be written in LINGO form as: 

MIN = −(PA − 0.20) * XA − (PB − 0.30) * XB; 

XA + 21 * PA − 0.1 * PB = 60;    
! Demand curve definition; 

XB + 25 * PB − 0.1 * PA = 50; 
XA <= 25;      !Supply restrictions; 

XB <= 30; 

XA + 2 * XB <= 50; 
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The solution is: 

Optimal solution found at step:         4 

Objective value:                -51.95106 

Variable           Value        Reduced Cost 

      PA        1.702805           0.0000000 

      XA        24.39056           0.0000000 

      PB        1.494622           0.0000000 

      XB        12.80472           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       -51.95106            1.000000 

       2       0.0000000            1.163916 

       3       0.0000000           0.5168446 

       4       0.6094447           0.2531134E-07 

       5        17.19528           0.0000000 

       6       0.0000000           0.3388889 

 Note it is the joint capacity constraint XA + 2XB  50, which is binding. The total profit contribution 

is $51.951058. 

15.3 Representing Supply & Demand Curves in LPs 
The use of smooth supply and demand curves has long been a convenient device in economics courses 

for thinking about how markets operate. In practice, it may be more convenient to think of supply and 

demand in more discrete terms. What is frequently done in practice is to use a sector approach for 

representing demand and supply behavior. For example, one represents the demand side as consisting 

of a large number of sectors with each sector having a fairly simple behavior. The most convenient 

behavior is to think of each demand sector as being represented by two numbers:  

the maximum price (its reservation price) the sector is willing to pay for a good, and  

the amount the sector will buy if the price is not above its reservation price.  

 The U.S. Treasury Department, when examining the impact of proposed taxes, has apparently 

represented taxpayers by approximately 10,000 sectors, see Glover and Klingman (1977) for example. 

 The methodology about to be described is similar to that used in the PIES (Project Independence 

Evaluation System) model developed by the Department of Energy. This model and its later versions were 

extensively used from 1974 onward to evaluate the effect of various U.S. energy policies. 

 Consider the following example. There is a producer A and a consumer X who have the following 

supply and demand schedules for a single commodity (e.g., energy): 

Producer A  Consumer X 

Market Price 
per Unit 

Amount 
Willing To Sell 

Market Price 
per Unit 

Amount Willing 
To Buy 

$1 2 $9 2 

2 4 4.5 4 

3 6 3 6 

4 8 2.25 8 

 For example, if the price is less than $2, but greater than $1, then the producer will produce 2 units. 

However, the consumer would like to buy at least 8 units at this price. By inspection, note the equilibrium 

price is $3 and any quantity. 
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 It is easy to find an equilibrium in this market by inspection. Nevertheless, it is useful to examine 

the LP formulation that could be used to find it. Although there is a single market clearing price, it is 

useful to interpret the supply schedule as if the supplier is willing to sell the first 2 units at $1, the next 

2 units at $2 each, etc. Similarly, the consumer is willing to pay $9 each for the first 2 units, $4.5 for the 

next 2 units, etc. To find the market-clearing price such that the amount produced equals the amount 

consumed, we act as if there is a broker who actually buys and sells at these marginal prices, and all 

transactions must go through the broker. The broker maximizes his profits. The broker will continue to 

increase the quantity of goods transferred as long as he can sell it at a price higher than his purchase 

price. At the broker’s optimum, the quantity bought equals the quantity sold and the price offered by the 

buyers equals the price demanded by the sellers. This satisfies the conditions for a market equilibrium. 

 Graphically, the situation is as in Figure 15.1: 

Figure 15.1 Demand and Supply Curves 
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 The area marked “producer-consumer surplus” is the profit obtained by the hypothetical broker. In 

reality, this profit is allocated between the producer and the consumer according to the equilibrium price. 

In the case where the equilibrium price is $3, the consumer’s profit or surplus is the portion of the 

producer-consumer surplus area above the $3 horizontal line, while the producer’s profit or surplus is 

the portion of the producer-consumer surplus area below $3. 

 Readers with a mathematical bent may note the general approach we are using is based on the fact 

that, for many problems of finding an equilibrium, one can formulate an objective function that, when 

optimized, produces a solution satisfying the equilibrium conditions. 
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 For purposes of the LP formulation, define: 

A1 = units sold by producer for $1 per unit; 

A2 = units sold by producer for $2 per unit; 

A3 = units sold by producer for $3 per unit; 

A4 = units sold by producer for $4 per unit; 

X1 = units bought by consumer for $9 per unit; 

X2 = units bought by consumer for $4.5 per unit; 

X3 = units bought by consumer for $3 per unit; 

X4 = units bought by consumer for $2.25 per unit. 

The formulation is: 

MAX = 9 * X1 + 4.5 * X2 + 3 * X3 + 2.25 * X4 

  ! Maximize broker's revenue; 

  -  A1 - 2 * A2  - 3 * A3 - 4 * A4; 

  ! minus cost; 

  A1 + A2 + A3 + A4 - X1 - X2 - X3 - X4 = 0; 

  ! Supply = demand; 

  A1 <= 2;   

  A2 <= 2;   

  A3 <= 2;   

  A4 <= 2; 

  ! Steps in supply; 

  X1 <= 2;   

  X2 <= 2;   

  X3 <= 2;   

  X4 <= 2; 

  ! and demand functions; 

A solution is: 

A1 = A2 = A3 =  X1 = X2 = X3 =  2 

A4 = X4 = 0 

Note there is more than one solution, since A3 and X3 cancel each other when they are equal. 

 The dual price on the first constraint is $3. In general, the dual price on the constraint that sets supply 

equal to demand is the market-clearing price. 

 Let us complicate the problem by introducing another supplier, B, and another consumer, Y. Their 

supply and demand curves are, respectively: 

Producer B  Consumer Y 

Market Price 
per Unit 

Amount 
Willing To Sell 

Market Price 
per Unit 

Amount Willing 
To Buy 

$2 2 $15 2 

4 4  8 4 

6 6  5 6 

8 8  3 8 

 An additional complication is shipping costs $1.5 per unit shipped from A to Y, and $2 per unit 

shipped from B to X. What will be the clearing price at the shipping door of A, B, X, and Y? How much 

will each participant sell or buy? 
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 The corresponding LP can be developed if we define B1, B2, B3, B4, Y1, Y2, Y3 and Y4 analogous 

to A1, X1, etc. Also, we define AX, AY, BX, and BY as the number of units shipped from A to X, A to Y, 

B to X, and B to Y, respectively. The formulation is: 

MAX = 9 * X1 + 4.5 * X2 + 3 * X3 + 2.25 * X4 

   + 15 * Y1 + 8 * Y2 + 5 * Y3 + 3 * Y4 

   - 2 * BX - 1.5 * AY - A1 - 2 * A2 - 3 * A3 

   - 4 * A4 - 2 * B1 - 4 * B2 - 6 * B3 - 8 * B4; 

! Maximize revenue - cost for broker;    

 - AY + A1 + A2 + A3 + A4 - AX = 0;     

! amount shipped from A; 

 - BX + B1 + B2 + B3 + B4 - BY = 0;     

! amount shipped from B; 

 - X1 - X2 - X3 - X4 + BX + AX = 0;  

! amount shipped from X; 

 - Y1 - Y2 - Y3 - Y4 + AY + BY = 0;  

! amount shipped from Y; 

 A1 <= 2; 

 A2 <= 2; 

 A3 <= 2; 

 A4 <= 2; 

 B1 <= 2; 

 B2 <= 2; 

 B3 <= 2; 

 B4 <= 2; 

 X1 <= 2; 

 X2 <= 2; 

 X3 <= 2; 

 X4 <= 2; 

 Y1 <= 2; 

 Y2 <= 2; 

 Y3 <= 2; 

 Y4 <= 2; 

 Notice from the objective function that the broker is charged $2 per unit shipped from B to X and 

$1.5 per unit shipped from A to Y. Most of the constraints are simple upper bound (SUB) constraints. In 

realistic-size problems, several thousand SUB-type constraints can be tolerated without adversely 

affecting computational difficulty. 
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The original solution is: 

Optimal solution found at step:         3 

Objective value:                 21.00000 

Variable           Value        Reduced Cost 

      X1        2.000000           0.0000000 

      X2        2.000000           0.0000000 

      X3        2.000000           0.0000000 

      X4       0.0000000           0.7500000 

      A1        2.000000           0.0000000 

      A2        2.000000           0.0000000 

      A3        2.000000           0.0000000 

      A4       0.0000000            1.000000 

     Row    Slack or Surplus      Dual Price 

       1        21.00000            1.000000 

       2       0.0000000           -3.000000 

       3       0.0000000            2.000000 

       4       0.0000000            1.000000 

       5       0.0000000           0.0000000 

       6        2.000000           0.0000000 

       7       0.0000000            6.000000 

       8       0.0000000            1.500000 

       9       0.0000000           0.0000000 

      10        2.000000           0.0000000 

 From the dual prices on rows 2 through 5, we note the prices at the shipping door of A, B, X, and Y 

are $3.5, $5, $3.5, and $5, respectively. At these prices, A and B are willing to produce 6 and 4 units, 

respectively. While, X and Y are willing to buy 4 and 6 units, respectively. A ships 2 units to Y, where 

the $1.5 shipping charge causes them to sell for $5 per unit. A ships 4 units to X, where they sell for $3.5 

per unit. B ships 4 units to Y, where they sell for $5 per unit. 

15.4 Auctions as Economic Equilibria 
The concept of a broker who maximizes producer-consumer surplus can also be applied to auctions. LP 

is useful if features that might be interpreted as bidders with demand curves complicate the auction. The 

example presented here is based on a design by R. L. Graves for a course registration system used since 

1981 at the University of Chicago in which students bid on courses. See Graves, Sankaran, and Schrage 

(1993). 

 Suppose there are N types of objects to be sold (e.g., courses) and there are M bidders 

(e.g., students). Bidder i is willing to pay up to bij, bij  0 for one unit of object type j. Further, a bidder 

is interested in at most one unit of each object type. Let Sj be the number of units of object type j available 

for sale. 

 There is a variety of ways of holding the auction. Let us suppose it is a sealed-bid auction and we 

want to find a single, market-clearing price, pj, for each object type j, such that: 

a) at most, Sj units of object j are sold; 

b) any bid for j less than pj does not buy a unit; 

c) pj = 0 if less than Sj units of j are sold; 

d) any bid for j greater than pj does buy a unit. 

 It is easy to determine the equilibrium pj’s by simply sorting the bids and allocating each unit to the 

higher bidder first. Nevertheless, in order to prepare for more complicated auctions, let us consider how 
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to solve this problem as an optimization problem. Again, we take the view of a broker who sells at as 

high a price as possible (buys at as low) and maximizes profits. 

 Define: 

xij = 1 if bidder i buys a unit of object j, else 0. 

The LP is: 

Maximize           
 i

M

=


1  j

N

=


1
xij bij 

subject to            
 i

M

=


1
xij  Sj  for j = 1 to N 

       xij  1   for all i and j. 

 The dual prices on the first N constraints can be used, with minor modification, as the clearing prices 

pj. The possible modifications have to do with the fact that, with step function demand and/or supply curves, 

there is usually a small range of acceptable clearing prices. The LP solution will choose one price in this 

range, usually at one end of the range. One may wish to choose a price within the interior of the range to 

break ties. 

 Now, we complicate this auction slightly by adding the condition that no bidder wants to buy more 

than 3 units total. Consider the following specific situation: 

Maximum Price Willing To Pay 
  Objects 

  1 2 3 4 5 

 

 

Bidders 

1 9 2 8 6 3 

2 6 7 9 1 5 

3 7 8 6 3 4 

4 5 4 3 2 1 

Capacity  1 2 3 3 4 

 For example, bidder 3 is willing to pay up to 4 for one unit of object 5. There are only 3 units of 

object 4 available for sale. 

 We want to find a “market clearing” price for each object and an allocation of units to bidders, so 

each bidder is willing to accept the units awarded to him at the market-clearing price. We must generalize 

the previous condition d to d': a bidder is satisfied with a particular unit if he cannot find another unit 

with a bigger difference between his maximum offer price and the market clearing price. This is 

equivalent to saying each bidder maximizes his consumer surplus. 
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 The associated LP is: 

MAX = 9 * X11 + 2 * X12 + 8 * X13 + 6 * X14 

      + 3 * X15 + 6 * X21 + 7 * X22 + 9 * X23 

      + X24 + 5 * X25 + 7 * X31 + 8 * X32 + 6 * X33 

      + 3 * X34 + 4 * X35 + 5 * X41 + 4 * X42 

      + 3 * X43 + 2 * X44 +  X45; 

      !(Maximize broker revenues); 

X11 + X21 + X31 + X41 <= 1; 

      !(Units of object 1 available); 

X12 + X22 + X32 + X42 <= 2;          !           .; 

X13 + X23 + X33 + X43 <= 3;          !           .; 

X14 + X24 + X34 + X44 <= 3;          !           .; 

X15 + X25 + X35 + X45 <= 4; 

      !(Units of object 5 available); 

X11 + X12 + X13 + X14 + X15 <= 3; 

      !(Upper limit on buyer 1 demand); 

X21 + X22 + X23 + X24 + X25 <= 3;    !           .; 

X31 + X32 + X33 + X34 + X35 <= 3;    !           .; 

X41 + X42 + X43 + X44 + X45 <= 3; 

      !(Upper limit on buyer 2 demand); 

X11 <=    1; 

X21 <=    1; 

X31 <=    1; 

X41 <=    1; 

X12 <=    1; 

X22 <=    1; 

X32 <=    1; 

X42 <=    1; 

X13 <=    1; 

X23 <=    1; 

X33 <=    1; 

X43 <=    1; 

X14 <=    1; 

X24 <=    1; 

X34 <=    1; 

X15 <=    1; 

X25 <=    1; 

X35 <=    1; 

X45 <=    1; 

The solution is: 

Optimal solution found at step:        23 

Objective value:                 67.00000 

Variable           Value        Reduced Cost 

     X11        1.000000           0.0000000 

     X12       0.0000000            4.000000 

     X13        1.000000           0.0000000 

     X14        1.000000           0.0000000 

     X15       0.0000000           0.0000000 

     X21       0.0000000           0.0000000 

     X22        1.000000           0.0000000 

     X23        1.000000           0.0000000 
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     X24       0.0000000           0.0000000 

     X25        1.000000           0.0000000 

     X31       0.0000000            3.000000 

     X32        1.000000           0.0000000 

     X33        1.000000           0.0000000 

     X34       0.0000000            2.000000 

     X35        1.000000           0.0000000 

     X41       0.0000000            2.000000 

     X42       0.0000000           0.0000000 

     X43       0.0000000           0.0000000 

     X44        2.000000           0.0000000 

     X45        1.000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        67.00000            1.000000 

       2       0.0000000            6.000000 

       3       0.0000000            3.000000 

       4       0.0000000            2.000000 

       5       0.0000000            1.000000 

       6        1.000000           0.0000000 

       7       0.0000000            3.000000 

       8       0.0000000           0.0000000 

       9       0.0000000            4.000000 

      10       0.0000000            1.000000 

      11       0.0000000           0.0000000 

      12        1.000000           0.0000000 

      13        1.000000           0.0000000 

      14        1.000000           0.0000000 

      15        1.000000           0.0000000 

      16       0.0000000            4.000000 

      17       0.0000000            1.000000 

      18        1.000000           0.0000000 

      19       0.0000000            3.000000 

      20       0.0000000            7.000000 

      21       0.0000000           0.0000000 

      22        1.000000           0.0000000 

      23       0.0000000            2.000000 

      24        1.000000           0.0000000 

      25        1.000000           0.0000000 

      26        1.000000           0.0000000 

      27       0.0000000            5.000000 

      28       0.0000000           0.0000000 

      29       0.0000000           0.0000000 

 The dual prices on the first five constraints essentially provide us with the needed market clearing 

prices. To avoid ties, we may wish to add or subtract a small number to each of these prices. We claim that 

acceptable market clearing prices for objects 1, 2, 3, 4 and 5 are 5, 5, 3, 0, and 0, respectively. 

 Now note that, at these prices, the market clears. Bidder 1 is awarded the sole unit of object 1 at a 

price of $5.00. If the price were lower, bidder 4 could claim the unit. If the price were more than 6, then 

bidder 1’s surplus on object 1 would be less than 9 − 6 = 3. Therefore, he would prefer object 5 instead. 

Where his surplus is 3 − 0 = 3. If object 2’s price were less than 4, then bidder 4 could claim the unit. If 

the price were greater than 5, then bidder 3 would prefer to give up his type-2 unit (with surplus 8 − 5 = 
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3) and take a type-4 unit, which has a surplus of 3 − 0 = 3. Similar arguments apply to objects 3, 4, and 

5. 

15.5 Multi-Product Pricing Problems 
When a vendor sets prices, they should take into account the fact that a buyer will tend to purchase a 

product or, more generally, a bundle of products that gives the buyer the best deal. In economics 

terminology, the vendor should assume buyers will maximize their utility. A reasonable way of 

representing buyer behavior is to make the following assumptions: 

1. Prospective buyers can be partitioned into market segments (e.g., college students, retired 

people, etc.). Segments can be defined sufficiently small, so individuals in the same 

segment have the same preferences. 

2. Each buyer has a reservation price for each possible combination (or bundle) of products 

he or she might buy. 

3. Each buyer will purchase that single bundle for which his reservation price minus his cost 

is maximized. 

 A smart vendor will set prices to maximize his profits, subject to customers maximizing their utility 

as described in (1-3). 

 The following is a general model that allows a number of features: 

a) some segments (e.g., students) may get a discount from the list price; 

b) there may be a customer segment specific cost of selling a product (e.g., because of a tax 

or intermediate dealer commission); 

c) the vendor incurs a fixed cost if he wishes to sell to a particular segment; 

d) the vendor incurs a fixed cost if he wishes to sell a particular product, regardless of whom 

it is sold to. 

 Analyses or models such as we are about to consider, where we take into account how customers 

choose products based on prices that vendors set, or which products vendors make available, are 

sometimes known as consumer choice models.  

 

 

 The model is applied to an example involving a vendor wishing to sell seven possible bundles to 

three different market segments: the home market, students, and the business market. The vendor has 
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decided to give a 10% discount to the student segment and incurs a 5% selling fee for products sold in 

the home market segment: 

MODEL: 

 !Product pricing (PRICPROD); 

 !Producer chooses prices to maximize producer 

 surplus;  

!Each customer chooses the one 

 product/bundle that maximizes consumer surplus; 

SETS: 

 CUST: 

     SIZE, ! Each cust/market has a size; 

     DISC, ! Discount off list price willing to 

        give to I; 

     DISD, ! Discount given to dealer(who sells 

        full price); 

       FM, ! Fixed cost of developing market I; 

       YM, ! = 1 if we develop market I, else 0; 

      SRP; ! Consumer surplus achieved by customer 

        I; 

 BUNDLE: 

     COST, ! Each product/bundle has a cost/unit to 

        producer; 

       FP, ! Fixed cost of developing product J; 

       YP, ! = 1 if we develop product J, else 0; 

    PRICE, ! List price of product J; 

     PMAX; ! Max price that might be charged; 

 CXB( CUST, BUNDLE): RP, ! Reservation 

       price of customer I for product J; 

      EFP, ! Effective price I pays for J, = 0 

       if not bought; 

        X; ! = 1 if I buys J, else 0; 

ENDSETS 

DATA: 

! The customer/market segments; 

  CUST =  HOME     STUD     BUS; 

! Customer sizes; 

   SIZE =  4000    3000    3000; 

! Fixed market development costs; 

     FM =  15000  12000   10000; 

! Discount off list price to each customer, 0 <= DISC < 1; 

   DISC =      0     .1       0; 

! Discount/tax off list to each dealer, 0 

      <= DISD < 1; 

   DISD =    .05      0       0; 

 BUNDLE =    B1   B2     B3   B12   B13   B23 B123; 

! Reservation prices; 

     RP =   400    50   200   450   650   250  700 

            200   200    50   350   250   250  400 

            500   100   100   550   600   260  600; 

! Variable costs of each product bundle; 

   COST =   100    20    30   120   130    50  150; 

! Fixed product development costs; 
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     FP = 30000 40000 60000 10000 20000  8000    0; 

ENDDATA 

!-------------------------------------------------; 

! The seller wants to maximize the profit 

      contribution; 

 [PROFIT] MAX = 

  @SUM( CXB( I, J): 

   SIZE( I) * EFP( I, J)              ! Revenue; 

    - COST( J)* SIZE( I) * X( I, J) 

      ! Variable cost; 

    - EFP( I, J) * SIZE( I) * DISD( I)) 

      ! Discount to dealers; 

    - @SUM( BUNDLE: FP * YP) 

      ! Product development cost; 

     - @SUM( CUST: FM * YM); 

      ! Market development cost; 

! Each customer can buy at most 1 bundle; 

 @FOR( CUST( I): 

    @SUM( BUNDLE( J) : X( I, J)) <= YM( I); 

    @BIN( YM( I)); 

  ); 

! Force development costs to be incurred 

   if in market; 

   @FOR( CXB( I, J): X( I, J) <= YP( J); 

      ! for product J; 

!  The X's are binary, yes/no, 1/0 variables; 

      @BIN( X( I, J)); 

     ); 

! Compute consumer surplus for customer I; 

     @FOR( CUST( I): SRP( I) 

     = @SUM( BUNDLE( J): RP( I, J) * X( I, J) 

     - EFP( I, J)); 

! Customer chooses maximum consumer surplus; 

     @FOR( BUNDLE( J): 

       SRP( I) >= RP( I, J) 

      - ( 1 - DISC( I)) * PRICE( J) 

         ); 

       ); 

! Force effective price to take on proper value; 

   @FOR( CXB( I, J): 

!  zero if I does not buy J; 

    EFP( I, J) <= X( I, J) * RP( I, J); 

!  cannot be greater than price; 

    EFP( I, J) <= ( 1 - DISC( I)) * PRICE( J); 

!  cannot be less than price if bought; 

    EFP( I, J) >= ( 1 - DISC( I))* PRICE( J) 

                   - ( 1 - X( I, J))* PMAX( J); 

       ); 

! Compute upper bounds on prices; 

 @FOR( BUNDLE( J): PMAX( J) 

      = @MAX( CUST( I): RP( I, J)/(1 - DISC( I))); 

     ); 

END 
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The solution, in part, is: 

Global optimal solution found at step:           146 

Objective value:                            3895000. 

Branch count:                                      0 

      Variable           Value        Reduced Cost 

    PRICE( B1)        500.0000           0.0000000 

    PRICE( B2)        222.2222           0.0000000 

    PRICE( B3)        200.0000           0.0000000 

   PRICE( B12)        550.0000           0.0000000 

   PRICE( B13)        650.0000           0.0000000 

   PRICE( B23)        277.7778           0.0000000 

  PRICE( B123)        700.0000           0.0000000 

X( HOME, B123)        1.000000           -2060000. 

 X( STUD, B23)        1.000000           -592000.0 

  X( BUS, B12)        1.000000           -1280000.  

 In summary, the home segment buys product bundle B123 at a price of $700. The student segment 

buys product bundle B23 at a list price of $277.78, (i.e., a discounted price of $250). The business 

segment buys product bundle B12 at a price of $550. 

 The prices of all other bundles can be set arbitrarily large. You can verify each customer is buying 

the product bundle giving the best deal: 

 
Cust 

Reservation price minus actual price 

B12 B23 B123 

Hom 450 – 550 = -100 250 - 277.78 = -27.78 700 – 700 = 0 

Std 350 - 9*550 = -145 250 -.9 * 277.78 = 0 400 - .9 * 700 = -230 

Bus 550 – 550 = 0 260 - 277.78 = -17.78 600 – 700 = -100 

 The vendor makes a profit of $3,895,000. In contrast, if no bundling is allowed, the vendor makes 

a profit of $2,453,000. 

 There may be other equilibrium solutions. However, the above solution is one that maximizes the 

profits of the vendor. An equilibrium such as this, where one of the players is allowed to select the 

equilibrium most favorable to that player, is called a Stackelberg equilibrium.  

 An implementation issue that one should be concerned with when using bundle pricing is the 

emergence of third party brokers who will buy your bundle, split it, and sell the components for a profit. 

For our example, a broker might buy the full bundle B123 for $700, sell the B1 component for $490 to 

the Business market, sell the B2 component for $190 (after discount) to the student market, sell the B3 

component to the Home market for $190, and make a profit of 490 + 190 + 190 - 700 = $170. The 

consumers should be willing to buy these components from the broker because their consumer surplus 

is $10, as compared to the zero consumer surplus when buying the bundles. This generally legal 

(re-)selling of different versions of the products to consumers in ways not intended by the seller is 

sometimes known as a "gray market", as compared to a black market where clearly illegal sales take 

place. Bundle pricing is a generalization of quantity discount pricing (e.g., "buy one, get the second one 

for half price") where the bundle happens to contain identical products. The same sort of gray market 

possibility exists with quantity discounts. The seller's major protection against gray markets is to make 

sure that the transaction costs of breaking up and reselling the components are too high. For example, if 

the only way of buying software is pre-installed on a computer, then the broker would have to setup an 

extensive operation to uninstall the bundled software and then reinstall the reconfigured software. 
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15.6 General Equilibrium Models of An Economy 
When trade agreements are being negotiated between countries, each country is concerned with how the 

agreement will affect various industries in the country. A tool frequently used for answering such 

questions is the general equilibrium model. In a general equilibrium model of an economy, one wants to 

simultaneously determine prices and production quantities for several goods. The goods are consumed 

by several market sectors. Goods are produced by a collection of processes. Each process produces one 

or more goods and consumes one or more goods. At an equilibrium, a process will be used only if the 

value of the goods produced at least equals the cost of the goods required by the process. 

 When two or more countries are contemplating lowering trade barriers, they may want to look at 

general equilibrium models to get some estimates of how various industries will fare in the different 

countries as the markets open up. 

 An example based on two production processes producing four goods for consumption in four 

consumption sectors is shown below. Each sector has a demand curve for each good, based on the price 

of each good. Each production process in the model below is linear ( i.e., it produces one or more goods 

from one or more of the other goods in a fixed proportion). A production process will not be used if the 

cost of raw materials and production exceeds the market value of the goods produced. The questions 

are: What is the clearing price for each good, and how much of each production process will be used? 

MODEL: 

   ! General Equilibrium Model of an economy,  (GENEQLB1); 

   ! Data based on Kehoe, Math Prog, Study 23(1985);  

   ! Find clearing prices for commodities/goods and 

     equilibrium production levels for processes in 

     an economy; 

   SETS: 

    GOOD: PRICE, H; 

    SECTOR; 

    GXS( GOOD, SECTOR): ALPHA, W; 

    PROCESS: LEVEL, RC; 

    GXP( GOOD, PROCESS): MAKE; 

   ENDSETS 
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   DATA: 

     GOOD = 1..4; SECTOR = 1..4; 

   ! Demand curve parameter for each good i & sector j; 

    ALPHA = 

      .5200  .8600  .5000  .0600 

      .4000  .1     .2     .25 

      .04    .02    .2975  .0025 

      .04    .02    .0025  .6875; 

   ! Initial wealth of good i by for sector j; 

     W = 

      50     0      0      0 

       0    50      0      0 

       0     0    400      0 

       0     0      0    400; 

   PROCESS= 1   2;  ! There are two processes to make goods; 

   !Amount produced of good i per unit of process j; 

     MAKE = 

           6   -1 

          -1    3 

          -4   -1 

          -1   -1; 

   ! Weights for price normalization constraint; 

     H = .25 .25 .25 .25; 

   ENDDATA 

   !-----------------------; 

   ! Variables: 

      LEVEL(p) = level or amount at which we operate 

                 process p. 

         RC(p) = reduced cost of process p,  

               = cost of inputs to process p - revenues from outputs 

                 of process p,  per unit. 

      PRICE(g) = equilibrium price for good g; 

   ! Constraints; 

   !  Supply = demand for each good g; 

    @FOR( GOOD( G): 

      @SUM( SECTOR( M): W( G, M)) 

      + @SUM( PROCESS( P): MAKE( G, P) * LEVEL( P)) 

      = @SUM( SECTOR( S): 

              ALPHA( G, S) *  

        @SUM( GOOD( I): PRICE( I) * W( I, S))/ PRICE( G)); 

        ); 

   !  Each process at best breaks even; 

    @FOR( PROCESS( P): 

     RC(P) = @SUM( GOOD( G): - MAKE( G, P) * PRICE( G)); 

   !  Complementarity constraints. If process p  

       does not break even(RC > 0), then do not use it; 

      RC(P)*LEVEL(P) = 0; 

        ); 

   ! Prices scale to 1; 

     @SUM( GOOD( G): H( G) * PRICE( G)) = 1; 

   ! Arbitrarily maximize some price to get a unique solution; 

   Max = PRICE(1); 

END 



Economic Equilibria  Chapter 15     479 

 

 

The complementarity constraints,  RC(P)*LEVEL(P)=0 , make this model difficult to solve for a 

traditional nonlinear solver.  If the Global Solver option in LINGO is used, then this model is easily 

solved, giving the clearing prices: 
      PRICE( 1)         1.100547 

      PRICE( 2)         1.000000 

      PRICE( 3)         1.234610 

      PRICE( 4)         0.6648431 
 

and the following production levels for the two processes:  
      LEVEL( 1)        53.18016 

      LEVEL( 2)        65.14806 

 

This model in fact has three solutions, see Kehoe (1985). The other two are 

PRICE( 1)        0.6377     

PRICE( 2)        1.0000      

PRICE( 3)        0.1546 

PRICE( 4)        2.2077  

and: 

Variable           Value         

PRICE( 1)        1.0000     

PRICE( 2)        1.0000      

PRICE( 3)        1.0000 

PRICE( 4)        1.0000   

Which solution you get may depend upon the objective function provided. 

15.7 Transportation Equilibria 
When designing a highway or street system, traffic engineers usually use models of some sophistication 

to predict the volume of traffic and the expected travel time on each link in the system. For each link, 

the engineers specify estimated average travel time as a nondecreasing function of traffic volume on the 

link. 

 The determination of the volume on each link is usually based upon a rule called Wardrop’s 

Principle: If a set of commuters wish to travel from A to B, then the commuters will take the shortest 

route in the travel time sense. The effect of this is, if there are alternative routes from A to B, commuters 

will distribute themselves over these two routes, so either travel times are equal over the two alternates 

or none of the A to B commuters use the longer alternate. 

 As an example, consider the network in Figure 15.2. Six units of traffic (e.g., in thousands of cars) 

want to get from A to B. 
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 This is a network with congestion, that is, travel time on a link increases as the volume of traffic 

increases. The travel time on any link as a function of the traffic volume is given in the following table: 

For All Traffic Volumes 
Less-Than-or-Equal-To 

Link Travel Time in Minutes 

AB AC BC BD CD 

2 20 52 12 52 20 

3 30 53 13 53 30 

4 40 54 14 54 40 

 The dramatically different functions for the various links might be due to such features as number 

of lanes or whether a link has traffic lights or stop signs. 

 We are interested in how traffic will distribute itself over the three possible routes ABD, ACD, and 

ABCD if each unit behaves individually optimally. That is, we want to find the flows for which a user is 

indifferent between the three routes: 

Figure 15.2 A Transportation Network 
 

6  U n i t s 6  U n i t s A 

B 

C 

D 

 

 This can be formulated as an LP analogous to the previous equilibrium problems if the travel time 

schedules are interpreted as supply curves. 

 Define variables as follows. Two-letter variable names (e.g., AB or CD) denote the total flow along 

a given arc (e.g., the arc AB or the arc CD). Variables with a numeric suffix denote the incremental flow 

along a link. For example, AB2 measures flow up to 2 units on link A→B. AB3 measures the incremental 

flow above 2, but less than 3. 
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 The formulation is then: 

MIN = 20 * AB2 + 30 * AB3 + 40 * AB4 + 52 * AC2 

 + 53 * AC3 + 54 * AC4 + 12 * BC2 + 13 * BC3 

 + 14 * BC4 + 52 * BD2 + 53 * BD3 + 54 * BD4 

 + 20 * CD2 + 30 * CD3 + 40 * CD4; 

 ! Minimize sum of congestion of incremental units; 

 - AB2 - AB3 - AB4 +  AB = 0; 

     !Definition of AB; 

- AC2 - AC3 - AC4 +  AC = 0;               

- BC2 -  BC3 -  BC4 +   BC =  0; 

- BD2 -  BD3 -  BD4 +   BD =  0;                  

- CD2 -  CD3 -  CD4 +   CD =  0;   

  AB +  AC  =  6;                   

!Flow out of A; 

  AB -  BC -  BD  =  0;             

!Flow through B; 

  AC +  BC -  CD  =  0;             

!Flow through C; 

  BD +  CD =   6;                   

!Flow into D; 

  AB2 <=   2;               

      !Definition of the steps in; 

  AB3 <=   1;                 

      !supply cost schedule;  

  AB4 <=   1; 

  AC2 <=   2; 

  AC3 <=   1; 

  AC4 <=   1; 

  BC2 <=   2; 

  BC3 <=   1; 

  BC4 <=   1; 

  BD2 <=   2; 

  BD3 <=   1; 

  BD4 <=   1; 

  CD2 <=   2; 

  CD3 <=   1; 

  CD4 <=   1; 

 The objective requires a little bit of explanation. It minimizes the incremental congestion seen by 

each incremental individual unit as it “selects” its route. It does not take into account the additional 

congestion that the incremental unit imposes on units already taking the route. Because additional traffic 

typically hurts rather than helps, this suggests this objective will understate true total congestion costs. 

Let us see if this is the case. 
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 The solution is: 

Objective Value           452.0000000 

Variable           Value      Reduced Cost 

     AB2        2.000000          0.000000 

     AB3        1.000000          0.000000 

     AB4        1.000000          0.000000 

     AC2        2.000000          0.000000 

     AC3        0.000000          1.000000 

     AC4        0.000000          2.000000 

     BC2        2.000000          0.000000 

     BC3        0.000000          1.000000 

     BC4        0.000000          2.000000 

     BD2        2.000000          0.000000 

     BD3        0.000000          1.000000 

     BD4        0.000000          2.000000 

     CD2        2.000000          0.000000 

     CD3        1.000000          0.000000 

     CD4        1.000000          0.000000 

      AB        4.000000          0.000000 

      AC        2.000000          0.000000 

      BC        2.000000          0.000000 

      BD        2.000000          0.000000 

      CD        4.000000          0.000000 

     Row           Slack       Dual Prices 

      2)        0.000000         40.000000 

      3)        0.000000         52.000000 

      4)        0.000000         12.000000 

      5)        0.000000         52.000000 

      6)        0.000000         40.000000 

      7)        0.000000        -92.000000 

      8)        0.000000         52.000000 

      9)        0.000000         40.000000 

     10)        0.000000          0.000000 

     11)        0.000000         20.000000 

     12)        0.000000         10.000000 

     13)        0.000000          0.000000 

     14)        0.000000          0.000000 

     15)        1.000000          0.000000 

     16)        1.000000          0.000000 

     17)        0.000000          0.000000 

     18)        1.000000          0.000000 

     19)        1.000000          0.000000 

     20)        0.000000          0.000000 

     21)        1.000000          0.000000 

     22)        1.000000          0.000000 

     23)        0.000000         20.000000 

     24)        0.000000         10.000000 

     25)        0.000000          0.000000 

 Notice 2 units of traffic take each of the three possible routes: ABD, ABCD, and ACD. The travel time 

on each route is 92 minutes. This agrees with our understanding of an equilibrium (i.e., no user is motivated 

to take a different route). The total congestion is 6  92 = 552, which is greater than the 452 value of the 
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objective of the LP. This is, as we suspected, because the objective measures the congestion incurred by 

the incremental unit. The objective function value has no immediate practical interpretation for this 

formulation. In this case, the objective function is simply a device to cause Wardrop’s principle to hold 

when the objective is optimized. 

 The solution approach based on formulating the traffic equilibrium problem as a standard LP was 

presented mainly for pedagogical reasons. For larger, real-world problems, there are highly specialized 

procedures (cf., Florian (1977)). 

15.7.1 User Equilibrium vs. Social Optimum 
We shall see, for this problem, the solution just displayed does not minimize total travel time. This is a 

general result: the so-called user equilibrium, wherein each player in a system behaves optimally, need 

not result in a solution as good as a social optimum, which is best overall in some sense. Indeed, the user 

equilibrium need not even be Pareto optimal. In order to minimize total travel time, it is useful to prepare 

a table of total travel time incurred by users of a link as a function of link volume. This is done in the 

following table, where “Total” is the product of link volume and travel time at that volume: 

Total and Incremental Travel Time Incurred on a Link 
 AB AC BC BD CD 

Traffic 
Volume 

 
Total 

Rate/
Unit 

 
Total 

Rate/
Unit 

 
Total 

Rate/
Unit 

 
Total 

Rate/
Unit 

 
Total 

Rate/
Unit 

2 40 20 104 52 24 12 104 52 40 20 

3 90 50 159 55 39 15 159 55 90 50 

4 160 70 216 57 56 17 216 57 160 70 

The appropriate formulation is: 

MIN = 20 * AB2 + 50 * AB3 + 70 * AB4 + 52 * AC2 

     + 55 * AC3 + 57 * AC4 + 12 * BC2 + 15 * BC3 

     + 17 * BC4 + 52 * BD2 + 55 * BD3 + 57 * BD4 

     + 20 * CD2 + 50 * CD3 + 70 * CD4; 

     ! Minimize total congestion; 

     -  AB2 -  AB3 -  AB4 +   AB =    0 ; 

      !Definition of AB; 

    -  AC2 -  AC3 -  AC4 +   AC =    0 ; 

      ! and AC;     

       BC2 -  BC3 -  BC4 +   BC =    0 ; 

      ! BC; 

    -  BD2 -  BD3 -  BD4 +   BD =    0 ; 

      ! BD;              

    -  CD2 -  CD3 -  CD4 +   CD =    0 ;  

      ! and CD; 

       AB +  AC  =   6;               

      ! Flow out of A; 

       AB -  BC -  BD  =    0;       

      ! Flow through B; 

       AC +  BC -  CD  =    0 ;        

      ! Flow through C;          

       BD +  CD =    6 ;               
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! Flow into D; 

       AB2 <=   2;                    

      ! Steps in supply schedule; 

       AB3 <=   1;                          

       AB4 <=   1; 

       AC2 <=   2; 

       AC3 <=   1; 

       AC4 <=   1; 

       BC2 <=   2; 

       BC3 <=   1; 

       BC4 <=   1; 

       BD2 <=   2; 

       BD3 <=   1; 

       BD4 <=   1; 

       CD2 <=   2; 

       CD3 <=   1; 

       CD4 <=   1; 

The solution is: 

Optimal solution found at step:        16 

Objective value:                 498.0000 

Variable           Value        Reduced Cost 

     AB2        2.000000           0.0000000 

     AB3        1.000000           0.0000000 

     AB4       0.0000000           0.0000000 

     AC2        2.000000           0.0000000 

     AC3        1.000000           0.0000000 

     AC4       0.0000000           0.0000000 

     BC2       0.0000000           0.0000000 

     BC3       0.0000000            27.00000 

     BC4       0.0000000            29.00000 

     BD2        2.000000           0.0000000 

     BD3        1.000000           0.0000000 

     BD4       0.0000000           0.0000000 

     CD2        2.000000           0.0000000 

     CD3        1.000000           0.0000000 

     CD4       0.0000000           0.0000000 

      AB        3.000000           0.0000000 

      AC        3.000000           0.0000000 

      BC       0.0000000            1.000000 

      BD        3.000000           0.0000000 

      CD        3.000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        498.0000            1.000000 

       2       0.0000000            70.00000 

       3       0.0000000            57.00000 

       4       0.0000000           -12.00000 

       5       0.0000000            57.00000 

       6       0.0000000            70.00000 

       7       0.0000000           -70.00000 

       8       0.0000000           0.0000000 

       9       0.0000000            13.00000 
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      10       0.0000000           -57.00000 

      11       0.0000000            50.00000 

      12       0.0000000            20.00000 

      13        1.000000           0.0000000 

      14       0.0000000            5.000000 

      15       0.0000000            2.000000 

      16        1.000000           0.0000000 

      17        2.000000           0.0000000 

      18        1.000000           0.0000000 

      19        1.000000           0.0000000 

      20       0.0000000            5.000000 

      21       0.0000000            2.000000 

      22        1.000000           0.0000000 

      23       0.0000000            50.00000 

      24       0.0000000            20.00000 

      25        1.000000           0.0000000 

 An interesting feature is no traffic uses link BC. Three units each take routes ABD and ACD. Even 

more interesting is the fact that the travel time on both routes is 83 minutes. This is noticeably less than 

the 92 minutes for the previous solution. With this formulation, the objective function measures the total 

travel time incurred. Note 498/6 = 83. 

 If link BC were removed, this latest solution would also be a user equilibrium because no user would 

be motivated to switch routes. The interesting paradox is that, by adding additional capacity, in this case 

link BC, to a transportation network, the total delay may actually increase. This is known as Braess’s 

Paradox (cf., Braess (1968) or Murchland (1970)). Murchland claims that this paradox was observed in 

Stuttgart, Germany when major improvements were made in the road network of the city center. When 

a certain cross street was closed, traffic got better. 

 To see why the paradox occurs, consider what happens when link BC is added. One of the 3 units 

taking route ABD notices that travel time on link BC is 12 and time on link CD is 30. This total of 42 

minutes is better than the 53 minutes the unit is suffering in link BD, so the unit replaces link BD in its 

route by the sequence BCD. At this point, one of the units taking link AC observes it can reduce its delay 

in getting to C by replacing link AC (delay 53 minutes) with the two links AB and BC (delay of 30 + 12 

= 42). Unfortunately (and this is the cause of Braess’s paradox), neither of the units that switched took 

into account the effect of their actions on the rest of the population. The switches increased the load on 

links AB and CD, two links for which increased volume dramatically increases the travel time of 

everyone. The general result is, when individuals each maximize their own objective function, the 

obvious overall objective function is not necessarily maximized.  Braess Paradox is a variation of the 

Prisoner’s Dilemma. If the travelers “cooperate” with each other and avoid link BC, then all travelers 

would be better off. 

15.8 Equilibria in Networks as Optimization Problems 
For physical systems, it is frequently the case that the equilibrium state is one that minimizes the energy 

loss or the energy level. This is illustrated in the model below for an electrical network. Given a set of 

resistances in a network, if we minimize the energy dissipated, then we get the equilibrium flow. In the 

network model corresponding to this model, a voltage of 120 volts is applied to node 1. The dual prices 

at a node are the voltages at that node: 
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MODEL:  

! Model of voltages and currents in a Wheatstone 

 Bridge; 

DATA: 

 R12 = 10; 

 R13 = 15; 

 R23 =  8; 

 R32 =  8; 

 R24 = 20; 

 R34 = 16; 

ENDDATA 

! Minimize the energy dissipated; 

 MIN = (I12 * I12 * R12 + I13 * I13 * R13 

      + I23 * I23 * R23 + I24 * I24 * R24 

      + I32 * I32 * R32 + I34 * I34 * R34)/ 2 

      - 120 * I01; 

 [NODE1] I01 = I12 + I13; 

 [NODE2]I12 + I32 = I23 + I24; 

 [NODE3]I13 + I23 = I32 + I34; 

 [NODE4]I24 + I34 = I45; 

END 

Optimal solution found at step:        13 

Objective value:                -479.5393 

Variable           Value        Reduced Cost 

     R12        10.00000           0.0000000 

     R13        15.00000           0.0000000 

     R23        8.000000           0.0000000 

     R32        8.000000           0.0000000 

     R24        20.00000           0.0000000 

     R34        16.00000           0.0000000 

     I12        4.537428           0.0000000 

     I13        3.454894           0.0000000 

     I23       0.8061420           0.1504372E-05 

     I24        3.731286           0.2541348E-05 

     I32       0.0000000            6.449135 

     I34        4.261036           0.1412317E-05 

     I01        7.992322           0.0000000 

     I45        7.992322           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       -479.5393            1.000000 

   NODE1       0.0000000            120.0000 

   NODE2       0.0000000            74.62572 

   NODE3       0.0000000            68.17658 

   NODE4       0.0000000           0.0000000 
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15.8.1 Equilibrium Network Flows 
Another network setting involving nonlinearities is in computing equilibrium flows in a network. 

Hansen, Madsen, and H.B. Nielsen (1991) give a good introduction. The laws governing the flow depend 

upon the type of material flowing in the network (e.g., water, gas, or electricity). Equilibrium in a 

network is described by two sets of values: 

a) flow through each arc; 

b) pressure at each node (e.g., voltage in an electrical network). 

 At an equilibrium, the values in (a) and (b) must satisfy the rules or laws that determine an 

equilibrium in a network. In general terms, these laws are: 

i. for each node, standard conservation of flow constraints apply to the flow values; 

ii. for each arc, the pressure difference between its two endpoint nodes is related to the flow 

over the arc and the resistance of the arc. 

 In an electrical network, for example, condition (ii) says the voltage difference, V, between two 

points connected by a wire with resistance in ohms, R, over which a current of I amperes flows, must 

satisfy the constraint: V = I  R. 

 The constraints (ii) tend to be nonlinear. The following model illustrates by computing the 

equilibrium in a simple water distribution network for a city. Pumps apply a specified pressure at two 

nodes, G and H. At the other nodes, water is removed at specified rates. We want to determine the 

implied flow rate on each arc and the pressure at each node: 

MODEL: 

! Network equilibrium NETEQL2:based on  

  Hansen et al., Mathematical Programming, vol. 52, no.1; 

 SETS: 

 NODE: DL, DU, PL, PU, P, DELIVER;  ! P = Pressure at this node; 

 ARC( NODE, NODE): R, FLO; ! FLO =  Flow on this arc; 

 ENDSETS 

 DATA: 

  NODE =    A,    B,    C,    D,    E,    F,   G,    H; 

  ! Lower & upper limits on demand at each node; 

    DL =    1     2     4     6     8     7 -9999 -9999; 

    DU =    1     2     4     6     8     7  9999  9999; 

  ! Lower & upper limits on pressure at each node; 

    PL =    0     0     0     0     0     0   240   240; 

    PU = 9999  9999  9999  9999  9999  9999   240   240; 

 

 ! The arcs available and their resistance parameter; 

 ARC = B A, C A, C B, D C, E D, F D, G D, F E, H E, G F, H F; 

   R =  1,   25,   1,   3,  18,  45,   1,  12,   1,  30,   1; 

 

PPAM = 1; ! Compressibility parameter; 

!For incompressible fluids and electricity: PPAM = 1, for gases: PPAM 

= 2; 

FPAM = 1.852;  !Resistance due to flow parameter; 

!        electrical networks:   FPAM = 1; 

!        other fluids:  1.8 <= FPAM <= 2;  

!   For optimization networks: FPAM=0, for arcs with flow>=0; 

ENDDATA 
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 @FOR( NODE( K):  ! For each node K; 

    ! Bound the pressure; 

     @BND( PL(K), P(K), PU(K)); 

 ! Flow in = amount delivered + flow out; 

     @SUM( ARC( I, K): FLO( I, K)) = DELIVER( K) + 

     @SUM( ARC( K, J): FLO( K, J)); 

 ! Bound on amount delivered at each node; 

     @BND( DL(K), DELIVER(K), DU(K)); 

     ); 

   

 @FOR( ARC( I, J): 

   ! Flow can go either way; 

    @FREE( FLO(I,J)); 

! Relate pressures at 2 ends to flow over arc; 

   P(I)^ PPAM - P(J)^ PPAM = 

      R(I,J)* @SIGN(FLO(I,J))* @ABS( FLO(I,J))^ FPAM;); 

END 

 Verify the following solution satisfies conservation of flow at each node and the pressure drop over 

each arc satisfies the resistance equations of the model: 

Feasible solution found at step:       22 

  Variable           Value 

      PPAM        1.000000 

      FPAM        1.852000 

     P( A)        42.29544 

     P( B)        42.61468 

     P( C)        48.23412 

     P( D)        158.4497 

     P( E)        188.0738 

     P( F)        197.3609 

     P( G)        240.0000 

     P( H)        240.0000 

FLO( B, A)       0.5398153 

FLO( C, A)       0.4601847 

FLO( C, B)        2.539815 

FLO( D, C)        7.000000 

FLO( E, D)        1.308675 

FLO( F, D)       0.9245077 

FLO( F, E)       0.8707683 

FLO( G, D)        10.76682 

FLO( G, F)        1.209051 

FLO( H, E)        8.437907 

FLO( H, F)        7.586225 
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15.9 Problems 
1. Producer B in the two-producer, two-consumer market at the beginning of the chapter is actually a 

foreign producer. The government of the importing country is contemplating putting a $0.60 per 

unit tax on units from Producer B. 

a) How is the formulation changed? 

b) How is the equilibrium solution changed? 

2. An organization is interested in selling five parcels of land, denoted A, B, C, D, and E, which it 

owns. It is willing to accept offers for subsets of the five parcels. Three buyers, x, y, and z are 

interested in making offers. In the privacy of their respective offices, each buyer has identified the 

maximum price he would be willing to pay for various combinations. This information is 

summarized below: 

 
Buyer 

Parcel 
Combination 

 
Maximum Price 

x A, B, D 95 

x C, D, E 80 

y B, E 60 

y A, D 82 

z B, D, E 90 

z C, E 71 

 Each buyer wants to buy at most one parcel combination. Suppose the organization is a 

government and would like to maximize social welfare. What is a possible formulation based on an 

LP for holding this auction? 

3. Commuters wish to travel from points A, B, and C to point D in the network shown in Figure 15.3: 

Figure 15.3 A Travel Network 

 

D

B

C

A

 



490     Chapter 15  Economic Equilibria 

 

 Three units wish to travel from A to D, two units from B to D, and one from C to D. The travel 

times on the five links as a function of volume are: 

For All Volumes Link Travel Time in Minutes 

Less-Than-or-Equal-To:  AC AD BC BD CD 

2 21 50 17 40 12 

3 31 51 27 41 13 

4 41 52 37 42 14 

a) Display the LP formulation corresponding to a Wardrop’s Principle user equilibrium. 

b) Display the LP formulation useful for the total travel time minimizing solution. 

c) What are the solutions to (a) and (b)? 

4. In the sale of real estate and in the sale of rights to portions of the radio frequency spectrum, the 

value of one item to a buyer may depend upon which other items the buyer is able to buy. A method 

called a combinatorial auction is sometimes used in such cases. In such an auction, a bidder is 

allowed to submit a bid on a combination of items. The seller is then faced with the decision of 

which combination of these “combination” bids to select. Consider the following situation. The 

Duxbury Ranch is being sold for potential urban development. The ranch has been divided into four 

parcels, A, B, C, and D for sale. Parcels A and B both face major roads. Parcel C is a corner parcel 

at the intersection of the two roads. D is an interior parcel with a narrow access to one of the roads. 

The following bids have been received for various combinations of parcels:  

Bid No. Amount Parcels Desired 

1 $380,000 A, C 

2 $350,000 A, D 

3 $800,000 A, B, C, D 

4 $140,000 B 

5 $120,000 B, C 

6 $105,000 B, D 

7 $210,000 C 

8 $390,000 A, B 

9 $205,000 D 

10 $160,000 A 

 Which combination of bids should be selected to maximize revenues, subject to not selling any 

parcel more than once? 
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5. Perhaps the greatest German writer ever was Johann Wolfgang von Goethe. While trying to sell one 

of his manuscripts to a publisher, Vieweg, he wrote the following note to the publisher: "Concerning 

the royalty, we will proceed as follows: I will hand over to Mr. Counsel Bottiger a sealed note, 

which contains my demand, and I wait for what Mr. Vieweg will suggest to offer for my work. If 

his offer is lower than my demand, then I take my note back, unopened, and the negotiation is 

broken. If, however, his offer is higher, then I will not ask for more than what is written in the note 

to be opened by Mr. Bottiger."(see Moldovanu and Tietzel (1998)). If you were the publisher, how 

would you decide how much to bid? 
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16 
 

Game Theory and Cost 
Allocation 

 
 

16.1 Introduction 
In most decision-making situations, our profits (and losses) are determined not only by our decisions, 

but by the decisions taken by outside forces (e.g., our competitors, the weather, etc.). A useful 

classification is whether the outside force is indifferent or mischievous. We, for example, classify the 

weather as indifferent because its decision is indifferent to our actions, in spite of how we might feel 

during a rainstorm after washing the car and forgetting the umbrella. A competitor, however, generally 

takes into account the likelihood of our taking various decisions and as a result tends to make decisions 

that are mischievous relative to our welfare. In this chapter, we analyze situations involving a 

mischievous outside force. The standard terminology applied to the problem to be considered is game 

theory. Situations in which these problems might arise are in the choice of a marketing or price strategy, 

international affairs, military combat, and many negotiation situations. For example, the probability a 

competitor executes an oil embargo against us probably depends upon whether we have elected a 

strategy of building up a strategic petroleum reserve. Frequently, the essential part of the problem is 

deciding how two or more cooperating parties “split the pie”. That is, allocate costs or profits of a joint 

project. For a thorough introduction to game theory, see Fudenberg and Tirole (1993). 

16.2 Two-Person Games 
In so-called two-person game theory, the key feature is each of the two players must make a crucial 

decision ignorant of the other player’s decision. Only after both players have committed to their 

respective decisions does each player learn of the other player’s decision and each player receives a 

payoff that depends solely on the two decisions. Two-person game theory is further classified according 

to whether the payoffs are constant sum or variable sum. In a constant sum game, the total payoff 

summed over both players is constant. Usually this constant is assumed to be zero, so one player’s gain 

is exactly the other player’s loss. The following example illustrates a constant sum game. 
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 A game is to be played between two players called Blue and Gold. It is a single simultaneous move 

game. Each player must make her single move in ignorance of the other player’s move. Both moves are 

then revealed and then one player pays the other an amount specified by the payoff table below: 

Payoff from Blue to Gold 
  Blue’s Move 
  a b 

 a 4 −6 

Gold’s Move b −5 8 

 c 3 −4 

 Blue must choose one of two moves, (a) or (b), while Gold has a choice among three moves, (a), 

(b), or (c). For example, if Gold chooses move (b) and Blue chooses move (a), then Gold pays Blue 5 

million dollars. If Gold chooses (c) and Blue chooses (a), then Blue pays Gold 3 million dollars. 

16.2.1 The Minimax Strategy 
This game does not have an obvious strategy for either player. If Gold is tempted to make move (b) in 

the hopes of winning the 8 million dollar prize, then Blue will be equally tempted to make move (a), so 

as to win 5 million from Gold. For this example, it is clear each player will want to consider a random 

strategy. Any player who follows a pure strategy of always making the same move is easily beaten. 

Therefore, define: 

BMi = probability Blue makes move i, i = a or b, 

GMi = probability Gold makes move i, i = a, b, or c. 

How should Blue choose the probabilities BMi? Blue might observe that: 

If Gold chooses move (a), my expected loss is: 

 4 BMA − 6 BMB. 

If Gold chooses move (b), my expected loss is: 

−5 BMA + 8 BMB. 

If Gold chooses move (c), my expected loss is: 

 3 BMA − 4 BMB. 

 So, there are three possible expected losses depending upon which decision is made by Gold. If 

Blue is conservative, a reasonable criterion is to choose the BMi, so as to minimize the maximum 

expected loss. This philosophy is called the minimax strategy. Stated another way, Blue wants to choose 

the probabilities BMi, so, no matter what Gold does, Blue’s maximum expected loss is minimized. If LB 

is the maximum expected loss to Blue, the problem can be stated as the LP: 

MIN = LB; 

! Probabilities must sum to 1; 

               BMA      + BMB  = 1; 

! Expected loss if Gold chooses (a); 

     -LB + 4 * BMA  - 6 * BMB <= 0; 

! Expected loss if Gold chooses (b); 

     -LB - 5 * BMA  + 8 * BMB <= 0; 

! Expected loss if Gold chooses (c); 

     -LB + 3 * BMA  - 4 * BMB <= 0; 
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The solution is: 

Optimal solution found at step:         2 

Objective value:                0.2000000 

Variable           Value        Reduced Cost 

      LB       0.2000000           0.0000000 

     BMA       0.6000000           0.0000000 

     BMB       0.4000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.2000000            1.000000 

       2       0.0000000          -0.2000000 

       3       0.2000000           0.0000000 

       4       0.0000000           0.3500000 

       5       0.0000000           0.6500000 

 The interpretation is, if Blue chooses move (a) with probability 0.6 and move (b) with probability 

0.4, then Blue’s expected loss is never greater than 0.2, regardless of Gold’s move. 

 If Gold follows a similar argument, but phrases the argument in terms of maximizing the minimum 

expected profit, PG, instead of minimizing maximum loss, then Gold’s problem is: 

MAX = PG; 

! Probabilities sum to 1; 

          GMA     + GMB     + GMC  = 1; 

! Expected profit if Blue chooses (a); 

-PG + 4 * GMA - 5 * GMB + 3 * GMC >= 0;  

! Expected profit if Blue chooses (b); 

-PG - 6 * GMA + 8 * GMB - 4 * GMC >= 0; 

The solution to Gold’s problem is: 

Optimal solution found at step:         1 

Objective value:                0.2000000 

Variable           Value        Reduced Cost 

      PG       0.2000000           0.0000000 

     GMA       0.0000000           0.1999999 

     GMB       0.3500000           0.0000000 

     GMC       0.6500000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.2000000            1.000000 

       2       0.0000000           0.2000000 

       3       0.0000000          -0.6000000 

       4       0.0000000          -0.4000000 

 The interpretation is, if Gold chooses move (b) with probability 0.35, move (c) with probability 0.65 

and never move (a), then Gold’s expected profit is never less than 0.2. Notice Gold’s lowest expected 

profit equals Blue’s highest expected loss. From Blue’s point of view the expected transfer to Gold is at 

least 0.2. The only possible expected transfer is then 0.2. This means if both players follow the random 

strategies just derived, then on every play of the game there is an expected transfer of 0.2 units from 

Blue to Gold. The game is biased in Gold’s favor at the rate of 0.2 million dollars per play. The strategy 

of randomly choosing among alternatives to keep the opponent guessing, is sometimes also known as a 

mixed strategy. 

 If you look closely at the solutions to Blue’s LP and to Gold’s LP, you will note a surprising 

similarity. The dual prices of Blue’s LP equal the probabilities in Gold’s LP and the negatives of Gold’s 
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dual prices equal the probabilities of Blue’s LP. Looking more closely, you can note each LP is really 

the dual of the other one. This is always true for a two-person game of the type just considered and 

mathematicians have long been excited by this fact. 

16.3 Two-Person Non-Constant Sum Games 
There are many situations where the welfare, utility, or profit of one person depends not only on his 

decisions, but also on the decisions of others. A two-person game is a special case of the above in which:  

1. there are exactly two players/decision makers,  

2. each must make one decision,  

3. in ignorance of the other’s decision, and  

4. the loss incurred by each is a function of both decisions.  

 A two-person constant sum game (frequently more narrowly called a zero sum game) is the special 

case of the above where:  

(4a) the losses to both are in the same commodity (e.g., dollars) and  

(4b) the total loss is a constant independent of players’ decisions.  

 Thus, in a constant sum game the sole effect of the decisions is to determine how a “constant sized 

pie” is allocated. Ordinary linear programming can be used to solve two-person constant sum games. 

 When (1), (2) and (3) apply, but (4b) does not, then we have a two-person non-constant sum game. 

Ordinary linear programming cannot be used to solve these games. However, closely related algorithms, 

known as linear complementarity algorithms, are commonly applied. Sometimes a two-person 

non-constant sum game is also called a bimatrix game. 

 As an example, consider two firms, each of which is about to introduce an improved version of an 

already popular consumer product. The versions are very similar, so one firm’s profit is very much 

affected by its own advertising decision as well as the decision of its competitor. The major decision for 

each firm is presumed to be simply the level of advertising. Suppose the losses (in millions of dollars) 

as a function of decision are given by Figure 16.1. The example illustrates that each player need not have 

exactly the same kinds of alternatives. 
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Figure 16.1 Two Person, Non-constant Sum Game  
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Negative losses correspond to profits. 

16.3.1 Prisoner’s Dilemma 
This cost matrix has the so-called prisoner’s dilemma cost structure. This name arises from a setting in 

which two accomplices in crime find themselves in separate jail cells. If neither prisoner cooperates with 

the authorities (thus the two cooperate), both will receive a medium punishment. If one of them provides 

evidence against the other, the other will get severe punishment while the one who provides evidence 

will get light punishment, if the other does not provide evidence against the first. If each provides 

evidence against the other, they both receive severe punishment. Clearly, the best thing for the two as a 

group is for the two to cooperate with each other. However, individually there is a strong temptation to 

defect. 

 The prisoner's dilemma is common in practice, especially in advertising. The only way of getting to 

Mackinac Island in northern Michigan is via ferry from Mackinaw City. Three different companies, 

Sheplers, the Arnold Line, and the Star Line operate such ferries. As you approach Mackinaw City by 

car, you may notice up to a mile before the ferry landing, that each company has one or more small 

roadside stands offering to sell ferry tickets for their line. Frequent users of the ferry service proceed 

directly to the well-marked dock area and buy a ticket after parking the car and just before boarding the 

ferry (no cars are allowed on Mackinac Island). No reserved seats are sold, so there is no advantage to 

buying the tickets in advance at the stands. First time visitors, however, are tempted to buy a ticket at a 

company specific stand because the signs suggest that this is the safe thing to do. The "socially" most 

efficient arrangement would be to have no advanced ticket booths. If a company does not have a stand, 

however, while its competitors do, then this company will lose a significant fraction of the first time 

visitor market. 

 The same situation exists with the two firms in our little numerical example. For example, if A does 

not advertise, but B does, then A makes 1 million and B makes 5 million of profit. Total profit would be 
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maximized if neither advertised. However, if either knew the other would not advertise, then the one 

who thought he had such clairvoyance would have a temptation to advertise. 

 Later, it will be useful to have a loss table with all entries strictly positive. The relative attractiveness 

of an alternative is not affected if the same constant is added to all entries. Figure 16.2 was obtained by 

adding +6 to every entry in Figure 16.1: 

Figure 16.2 Two Person, Non-constant Sum Game  
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We will henceforth work with the data in Figure 16.2.  

16.3.2 Choosing a Strategy 
Our example illustrates that we might wish our own choice to be:  

i. somewhat unpredictable by our competitor, and  

ii. robust in the sense that, regardless of how unpredictable our competitor is, our expected 

profit is high.  

 Thus, we are lead (again) to the idea of a random or mixed strategy. By making our decision random 

(e.g., by flipping a coin) we tend to satisfy (i). By biasing the coin appropriately, we tend to satisfy (ii). 

 For our example, define a1, a2, a3 as the probability A chooses the alternative “No advertise”, 

“Advertise Medium”, and “Advertise High”, respectively. Similarly, b1 and b2 are the probabilities that 

B applies to alternatives “No Advertise” and “Advertise”, respectively. How should firm A choose a1, 

a2, and a3? How should firm B choose b1 and b2? 

 For a bimatrix game, it is difficult to define a solution that is simultaneously optimum for both. We 

can, however, define an equilibrium stable set of strategies. A stable solution has the feature that, given 

B’s choice for b1 and b2, A is not motivated to change his probabilities a1, a2, and a3. Likewise, given a1, 

a2, and a3, B is not motivated to change b1 and b2. Such a solution, where no player is motivated to 

unilaterally change his or her strategy, is sometimes also known as a Nash equilibrium. There may be 

bimatrix games with several stable solutions. 
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 What can we say beforehand about a strategy of A’s that is stable? Some of the ai’s may be zero 

while for others we may have ai > 0. An important observation which is not immediately obvious is the 

following: the expected loss to A of choosing alternative i is the same over all i for which ai > 0. If this 

were not true, then A could reduce his overall expected loss by increasing the probability associated with 

the lower loss alternative. Denote the expected loss to A by vA. Also, the fact that ai = 0 must imply the 

expected loss from choosing i is > vA. These observations imply that, with regard to A’s behavior, we 

must have: 

2b1 + 5b2   vA (with equality if a1 > 0), 

3b1 + 4b2   vA (with equality if a2 > 0), 

 b1 + 5b2   vA (with equality if a3 > 0). 

Symmetric arguments for B imply: 

2a1 + 4a2 + 7a3   vB (with equality if b1 > 0), 

 a1 + 5a2 + 6a3   vB (with equality if b2 > 0). 

We also have the nonnegativity constraints: 

ai  0 and bi  0, for all alternatives i. 

Because the ai and bi are probabilities, we wish to add the constraints a1 + a2 + a3 = 1 and b1 + b2 = 1.  

 If we explicitly add slack (or surplus if you wish) variables, we can write: 

2b1 + 5b2 - slka1 = vA 

3b1 + 4b2 - slka2 = vA 

 b1 + 5b2 - slka3 = vA 

2a1 + 4a2 + 7a3 − slkb1 = vB  

a1 + 5a2 + 6a3 − slkb2 = vB  

a1 + a2 + a3 = 1  

b1 + b2 = 1  

ai  0, bi  0, slkai  0, and slkbi  0, for all alternatives i. 

slka1* a1 = 0 

slka2* a2 = 0 

slka3* a3 = 0 

slkb1* b1 = 0 

slkb2* b2 = 0  

 The last five constraints are known as the complementarity conditions. The entire model is known 

as a linear complementarity problem. 
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 Rather than use a specialized linear complementarity algorithm, we will simply use the integer 

programming capabilities for LINGO to model the problem as follows: 

MODEL: ! Two person nonconstant sum game.(BIMATRX); 

 SETS: 

   OPTA: PA, SLKA, NOTUA, COSA; 

   OPTB: PB, SLKB, NOTUB, COSB; 

   BXA( OPTB, OPTA): C2A, C2B; 

 ENDSETS 

 DATA: 

 OPTB = BNAD BYAD; 

 OPTA = ANAD AMAD AHAD; 

  C2A =  2    3    1  ! C2A( I, J) = cost to A if B; 

         5    4    5; ! chooses row I, A chooses col J; 

  C2B =  2    4    7  ! C2B( I, J) = cost to B if B; 

         1    5    6; ! chooses row I, A chooses col J; 

 ENDDATA 

!-------------------------------------------------; 

! Conditions for A, for each option J; 

 @FOR( OPTA( J): 

! Set CBSTA= cost of strategy J, if J is used by A; 

   CBSTA = COSA( J) - SLKA( J); 

   COSA( J) = @SUM( OPTB( I): C2A( I, J) * PB( I)); 

! Force SLKA( J) = 0 if strategy J is used; 

   SLKA( J) <= NOTUA( J) * @MAX( OPTB( I): 

     C2A( I, J)); 

! NOTUA( J) = 1 if strategy J is not used; 

   PA( J) <= 1 - NOTUA( J); 

! Either strategy J is used or it is not used; 

   @BIN( NOTUA( J)); 

       ); 

! A must make a decision; 

 @SUM( OPTA( J): PA( J)) = 1; 

! Conditions for B; 

 @FOR( OPTB( I): 

! Set CBSTB = cost of strategy I, if I is used by 

      B; 

   CBSTB =  COSB( I)  - SLKB( I); 

   COSB( I) = @SUM( OPTA( J): C2B( I, J) * PA( J)); 

! Force SLKB( I) = 0 if strategy I is used; 

   SLKB( I) <= NOTUB( I) * @MAX( OPTA( J): 

      C2B( I, J)); 

! NOTUB( I) = 1 if strategy I is not used; 

   PB( I) <= 1 - NOTUB( I); 

! Either strategy I is used or it is not used; 

   @BIN( NOTUB( I)); 

       ); 

!  B must make a decision; 

 @SUM( OPTB( I): PB( I)) = 1; 

  END   
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A solution is: 

    Variable           Value 

       CBSTA        3.666667 

       CBSTB        5.500000 

   PA( AMAD)       0.5000000 

   PA( AHAD)       0.5000000 

 SLKA( ANAD)       0.3333333 

NOTUA( ANAD)        1.000000 

 COSA( ANAD)        4.000000 

 COSA( AMAD)        3.666667 

 COSA( AHAD)        3.666667 

   PB( BNAD)       0.3333333 

   PB( BYAD)       0.6666667 

 COSB( BNAD)        5.500000 

 COSB( BYAD)        5.500000 

 The solution indicates that firm A should not use option 1(No ads) and should randomly choose with 

equal probability between options 2 and 3. Firm B should choose its option 2(Advertise) twice as 

frequently as it chooses its option 1(Do not advertise). 

 The objective function value, reduced costs and dual prices can be disregarded. Using our original 

loss table, we can calculate the following: 

   Weighted Contribution 
Situation  To Total Loss of 

A B Probability A B 

No Ads No Ads 0  1/3 0 0 

No Ads Ads 0  2/3 0 0 

Advertise Medium No Ads 1/2  1/3 (1/6)  (−3) (1/6)  (−2) 

Advertise Medium Ads 1/2  2/3 (1/3)  (−2) (1/3)  (−1) 

Advertise High No Ads 1/2  1/3 (1/6)  (−5) (1/6)  (1) 

     Advertise High Ads 1/2  2/3 (1/3)  (−1) (1/3)  (0) 

   −2.3333 −0.5 

 Thus, following the randomized strategy suggested, A would have an expected profit of 2.33 

million; whereas, B would have an expected profit of 0.5 million. Contrast this with the fact that, if A 

and B cooperated, they could each have an expected profit of 4 million. 

16.3.3 Bimatrix Games with Several Solutions 
When a nonconstant sum game has multiple or alternative stable solutions, life gets more complicated. 

The essential observation is we must look outside our narrow definition of “stable solution” to decide 

which of the stable solutions, if any, would be selected in reality. 
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 Consider the following nonconstant sum two-person game: 

Figure 16.3 Bimatrix Games 

 
As before, the numbers represent losses. 

 First, observe the one solution that is stable according to our definition: (I) Firm A always 

chooses option 1 and Firm B always chooses option 2. Firm A is not motivated to switch to 2 because 

its losses would increase to 100 from 10. Similarly, B would not switch to 1 from 2 because its 

losses would increase to 200 from 160. The game is symmetric in the players, so similar arguments 

apply to the solution (II): B always chooses 1 and A always chooses 2. 

 Which solution would result in reality? It probably depends upon such things as the relative 

wealth of the two firms. Suppose:  

i. A is the wealthier firm,  

ii. the game is repeated week after week, and  

iii. currently the firms are using solution II.  

 After some very elementary analysis, A concludes it much prefers solution I. To move things 

in this direction, A switches to option 1. Now, it becomes what applied mathematicians call a game 

of “chicken”. Both players are taking punishment at the rate of 200 per week. Either player could 

improve its lot by 200 − 160 = 40 by unilaterally switching to its option 2. However, its lot would 

be improved a lot more (i.e., 200 − 10 = 190) if its opponent unilaterally switched. At this point, a 

rational B would probably take a glance at A’s balance sheet and decide B switching to option 2 is 

not such a bad decision. When a game theory problem has multiple solutions, any given player 

would like to choose that stable solution which is best for it. If the player has the wherewithal to 

force such a solution (e.g., because of its financial size), then this solution is sometimes called a 

Stackelberg equilibrium.  

 If it is not clear which firm is wealthier, then the two firms may decide a cooperative solution 

is best (e.g., alternate between solutions I and II in alternate weeks). At this point, however, federal 

antitrust authorities might express a keen interest in this bimatrix game. 
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 We conclude a “stable” solution is stable only in a local sense. When there are multiple stable 

solutions, we should really look at all of them and take into account other considerations in addition 

to the loss matrix. 

       The above two-player non-cooperative game analysis involved only two players.  It can be 

extended to three or more players, however, the number of variables and constraints increases 

multiplicatively. For three players you will need three cubes rather than two matrices in order to 

describe the payoffs to a given player X, given that X chose alternative i, and player Y chose 

alternative j, and player Z chose alternative k. 

16.4 Nonconstant-Sum Cooperative Games with > 2 Players 
The most unrealistic assumption underlying classical two-person constant-sum game theory is the sum 

of the payoffs to all players must sum to zero (actually a constant, without loss of generality). In reality, 

the total benefits are almost never constant. Usually, total benefits increase if the players cooperate, so 

these situations are sometimes called cooperative games. In these nonconstant-sum games, the difficulty 

then becomes one of deciding how these additional benefits due to cooperation should be distributed 

among the players. 

 There are two styles for analyzing nonconstant sum games. If we restrict ourselves to two persons, 

then so-called bimatrix game theory extends the methods for two-person constant sum games to 

nonconstant sum games. If there are three or more players, then n-person game theory can be used in 

selecting a decision strategy. The following example illustrates the essential concepts of n-person game 

theory. 

 Three property owners, A, B, and C, own adjacent lakefront property on a large lake. A piece of 

property on a large lake has higher value if it is protected from wave action by a seawall. A, B, and C 

are each considering building a seawall on their properties. A seawall is cheaper to build on a given 

piece of property if either or both of the neighbors have seawalls. For our example, A and C already have 

expensive buildings on their properties. B does not have buildings and separates A from C (i.e., B is 

between A and C). The net benefits of a seawall for the three owners are summarized below: 

Owners Who Cooperate, Net Benefit to 
i.e., Build While Others Do Not Cooperating Owners 

A alone 1.2 

B alone 0 

C alone 1 

A and B 4 

A and C 3 

B and C 4 

A, B, and C 7 

 Obviously, all three owners should cooperate and build a unified seawall because then their total 

benefits will be maximized. It appears B should be compensated in some manner because he has no 

motivation to build a seawall by himself. Linear programming can provide some help in selecting an 

acceptable allocation of benefits. 
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 Denote by vA, vB, and vC the net benefits, which are to be allocated to owners A, B, and C. No owner 

or set of owners will accept an allocation that is less than that, which they would enjoy if they acted 

alone. Thus, we can conclude: 

vA  1.2 

vB  0 

vC  1 

vA + vB  4 

vA + vC  3 

vB + vC  4 

vA + vB + vC  7 

 That is, any allocation satisfying the above constraints should be self-enforcing. No owner would 

be motivated to not cooperate. He cannot do better by himself. The above constraints describe what is 

called the “core” of the game. Any solution (e.g., vA = 3, vB = 1, vC = 3) satisfying these constraints is 

said to be in the core. 

 Various objective functions might be appended to this set of constraints to give an LP. The objective 

could take into account secondary considerations. For example, we might choose to maximize the 

minimum benefit. The LP in this case is: 

Maximize z 

subject to z  vA; z  vB; z  vC 

vA  1.2 

vC  1 

vA + vB  4 

vA + vC  3 

vA + vB + vC  7 

A solution is vA = vB = vC = 2.3333. 

 Note the core can be empty. That is, there is no feasible solution. This would be true, for example, 

if the value of the coalition A, B, C was 5.4 rather than 7. This situation is rather interesting. Total 

benefits are maximized by everyone cooperating. However, total cooperation is inherently unstable 

when benefits are 5.4. There will always be a pair of players who find it advantageous to form a 

subcoalition and improve their benefits (at the considerable expense of the player left out). As an 

example, suppose the allocations to A, B, and C under full cooperation are 1.2, 2.1, and 2.1, respectively. 

At this point, A would suggest to B the two of them exclude C and cooperate between the two of them. 

A would suggest to B the allocation of 1.8, 2.2, and 1. This is consistent with the fact that A and B can 

achieve a total of 4 when cooperating. At this point, C might suggest to A that the two of them cooperate 

and thereby select an allocation of 1.9, 0, 1.1. This is inconsistent with the fact that A and C can achieve 

a total of 3 when cooperating. At this point, B suggests to C etc. Thus, when the core is empty, it may 

be everyone agrees that full cooperation can be better for everyone. There nevertheless must be an 

enforcement mechanism to prevent “greedy” members from pulling out of the coalition. 
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16.4.1 Shapley Value 
Another popular allocation method for cooperative games is the Shapley Value. The rule for the Shapley 

Value allocation is that each player should be awarded his average marginal contribution to the coalition 

if one considers all possible sequences for forming the full coalition. The following table illustrates for 

the previous example: 

                                 Marginal value of player 

Sequence                  A                B                C 

    A B C                  1.2              2.8               3 

    A C B                  1.2              4                  1.8 

    B A C                  4                 0                  3 

    B C A                  3                 0                  4 

    C A B                  2                 4                  1 

    C B A                  3                 3                  1 

            Total:         14.4           13.8              13.8 

            Average:      2.4             2.3                2.3 

Thus, the Shapley value allocates slightly more, 2.4, to Player A in our example. For this example, as 

with most typical cooperative games, the Shapley Value allocation is in the core if the core is non-empty. 

16.5 The Stable Marriage/Assignment Problem 
The stable marriage problem is the multi-person interpretation of the assignment problem.  Although the 

major application of the stable marriage model is in college admissions and large scale labor markets,  the 

problem historically has been explained as the “marriage” problem of assigning each of n men to exactly 

one of n women, and vice versa.  Instead of there being a single objective function,  each man provides a 

preference ranking of each of the women,  and each woman provides a ranking of each of the men.  An 

assignment is said to be stable if for every man i, and woman j, either: a) man i prefers the woman he 

currently is assigned to over woman j, or b) woman j prefers the man she is currently assigned to over man 

i.  Otherwise, man i and woman  j would be motivated to abandon their current partners and “elope”.  The 

stable marriage assignment method has been used for assigning medical residents and interns to hospitals in 

the U.S. since 1952.  Each year, thousands of prospective interns rank each of the hospitals in which they 

are interested, and each hospital ranks each of the interns in which they are interested.  Then a neutral agency, 

the National Resident Matching Program (NRMP) assigns interns to hospitals using methods described 

below.  A similar system is used in Canada and Scotland.  Norway and Singapore use a similar approach to 

assign students to schools and universities.  Roth (1984) gives a very interesting history of how the U.S. 

medical profession came to use the stable marriage assignment method embodied in NRMP.  Roth, Sonmez, 

and Unver(2005) describe the establishment of a system, based on the marriage assignment method, for 

matching kidney donors with people needing kidneys. 

 In any multi-player problem, the following questions should always be asked:  a) Is there always a stable 

assignment or more generally an equilibrium solution?  b) Can there be multiple stable solutions?   

c) If yes, what criterion should we use for choosing among the multiple solutions?  d) Is the solution Pareto 

optimal, i.e., undominated? e) Is our method for solving the problem, in particular how we answer (c),  

incentive compatible?  That is, does the method motivate the players to provide accurate input information, 

e.g., rankings, for our method? 

 We illustrate ideas with the following 3-man, 3-woman example from Gale and Shapley(1962).  A 1 

means most attractive. A 3 means least attractive. 
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  MAN = ADAM  BOB  CHUCK; 

 WOMAN= ALICE BARB CARMEN; 

 ! Men(row) preference for women(col); 

 MPREF = 

          1    2    3  !ADAM; 

          3    1    2  !BOB; 

          2    3    1; !CHUCK; 

 ! Women(col) preference for men(row); 

 WPREF = 

          3    2    1 !ADAM; 

          1    3    2 !BOB; 

          2    1    3;!CHUCK; 

! Thus, Adam's first choice is Alice. 

     Alice's first choice is Bob; 

 We shall see from this example that the answer to question (b) is that, yes, there can be multiple stable 

solutions.  In this example, giving each man his first choice (and incidentally, each woman her third choice) 

is feasible, giving the assignment:  Adam with Alice, Bob with Barb, and Chuck with Carmen.  It is stable 

because no man is motivated to switch.  A second stable solution is possible by giving each woman her first 

choice (and incidentally, each man his third choice), namely:  Adam with Carmen, Bob with Alice, and 

Chuck with Barb.  It is stable because no woman is motivated to switch.  A third, less obvious stable solution 

is to give everyone their second choice: Adam with Barb, Bob with Carmen, and Chuck with Alice.  All 

other assignments are unstable. 

How to solve the problem? 

Gale and Shapley (1962) show that an intuitive iterative courtship type of method can be made into a rigorous 

algorithm for finding a stable assignment.  The algorithm proceeds as follows: 

1) Each man proposes, or is tentatively assigned, to his first choice woman. 

2) If every woman has exactly one man assigned to her, then stop. We have a stable assignment. 

3) Else, each woman who has two or more men assigned to her rejects all but one of the men assigned 

to her, tentatively keeping the one most attractive to her of the men that just proposed to her. 

4) Each man just rejected in (3) proposes/is assigned to the next most attractive woman on his list. 

5) Go to (2). 

 This version of the algorithm will produce the first solution mentioned above in which all men get there 

first choice.  Obviously, there is the female version of this algorithm in which the roles of men and woman 

or exchanged.  That version gives the second solution above.  Gale and Shapley(1962) make the following 

observations:  i) Regarding our question (a) above, this algorithm will always find a stable solution;  ii) If 

both the male and the female versions of the algorithm give the same assignment, then that is the unique 

stable solution;  iii) When men propose first, the solution is optimal for the men in the sense that there is no 

other stable solution in which any man does better.  Similarly, the version in which women propose first, 

results in a solution that is optimal for women.   

 The two Gale/Shapley algorithms can only give a solution in which men are treated very well, or a 

solution in which women are treated very well.  What about a solution in which everyone is treated 

“moderately well”?  Vande Vate(1989) showed that it is possible to formulate the stable marriage assignment 

problem as a linear program.  The key observation is: if we consider any man i and woman j in a stable 

solution, then one of the following must hold: a) i and j are assigned to each other, or  b) man i is assigned 
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to some other woman k whom he prefers to j, or  c) woman j is assigned to some man k whom she prefers 

to i.  If none of (a), (b), and (c) hold,  then i and j both prefer each other to their current mates and they are 

tempted to elope. 

Define the parameters and sets: 

 mprefij  = the preference position of woman j for man i,                                                           

  e.g., if man 2’s first choice is woman 3, then mpref23 =  1,  

 wprefij  = the preference position of man i for woman j,                                                           

  e.g., if woman 3’s second choice is man 1, then wpref13 =  2, 

 SM(i,j)  = the set of women that man i prefers to woman j, 

        =  { k : mprefik < mprefij }, 

 SW(i,j)  = the set of men that woman j prefers to man i, 

       =  { k : mprefkj < mprefij }, 

Define the variables: 

 yij = 1 if man i and woman j are assigned to each other. 

The “no eloping” stability conditions (a), (b), and (c) above correspond to the linear constraints: 

  For all men i and women j: 

 yij + k in SM(i,j)  yik + k in SW(k,j)  ykj. 

 A remaining question is, what objective function should we use? We already saw a solution above in 

which men were treated well but women were treated poorly, and a solution in which women were treated 

well but men were treated poorly.  How about a solution in which minimizes the worst that anyone gets 

treated?  The following LINGO model illustrates. 

! Stable Marriage Assignment(stable_marriage3); 

SETS: 

   MAN: AM; 

 WOMAN: AW; 

 MXW(MAN,WOMAN): MPREF, WPREF, Y, RM, RW; 

ENDSETS 

DATA: 

! Example from Gale and Shapley(1962); 

  MAN = ADAM  BOB  CHUCK; 

 WOMAN= ALICE BARB CARMEN; 

 ! Men(row) preference for women(col); 

 MPREF = 

          1    2    3 !ADAM; 

          3    1    2 !BOB; 

          2    3    1;!CHUCK; 

 ! Women(col) preference for men(row); 

 WPREF = 

          3    2    1 !ADAM; 

          1    3    2 !BOB; 

          2    1    3;!CHUCK; 
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! Thus, Adam's first choice is Alice. 

     Alice's first choice is Bob; 

! This data set has 3 stable assignments; 

ENDDATA 

! Y(i,j) = 1 if man i is assigned to woman j; 

  

! Each man must be assigned; 

  @FOR(MAN(i): 

    @SUM(WOMAN(j): Y(i,j)) = 1; 

      ); 

! Each woman must be assigned; 

  @FOR(WOMAN(j): 

    @SUM(MAN(i): Y(i,j)) = 1; 

      ); 

 

! Stability conditions: Either man i and woman are 

   assigned to each other, or 

   man i gets a woman k he prefers to j, or 

   woman j, gets a man k she prefers to i;  

  @FOR( MXW(i,j): 

     Y(i,j) 

   + @SUM(WOMAN(k)| MPREF(i,k) #LT# MPREF(i,j): Y(i,k)) 

   + @SUM(  MAN(k)| WPREF(k,j) #LT# WPREF(i,j): Y(k,j)) >= 1 

        ); 

 

! Compute actual assigned rank for each man and woman; 

@FOR( MAN(i): 

  AM(i) = @SUM( WOMAN(k): MPREF(i,k)*Y(i,k)); 

  PWORST >= AM(i); 

    ); 

@FOR(WOMAN(j): 

  AW(j) = @SUM(   MAN(k): WPREF(k,j)*Y(k,j)); 

  PWORST >= AW(j); 

   ); 

   

! Minimize the worst given to anyone; 

  MIN = PWORST; 

 

When solved, we get the solution: 

    
          Variable           Value 

     Y( ADAM, BARB)        1.000000 

    Y( BOB, CARMEN)        1.000000 

   Y( CHUCK, ALICE)        1.000000 

 

 In the “Men first” solution, every woman got her third choice.  In the “Woman first” solution, every 

man got his third choice.  In this solution, the worst anyone gets is their second choice.  In fact, everyone 

gets their second choice.  McVitie and Wilson(1971) present an algorithm for efficiently enumerating 

all stable solutions.   

 For this example, we have an answer to question (d) above.  It is easy to see that each of the three 

solutions is Pareto optimal.  In the “Women first” solution, clearly the women cannot do any better, and 
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the men cannot do any better without hurting one of the women.  Similar comments apply to the other 

two solutions. 

 With regard to the incentive compatibility question, (e) above, Roth, Rothblum, and Vande Vate 

provide a partial answer, namely, if the “Men first” algorithm is used then there is nothing to be gained 

by a man misrepresenting his preferences.  This is somewhat intuitive in that if the “Men first” rule is 

used, then the resulting solution gives each man the best solution possible among all stable solutions.  

We may reasonably restrict ourselves to stable solutions.  Thus,  if some man misrepresents his 

preferences,  this might cause a different stable solution to result in which this man might be treated 

worse, but definitely no better.  Abdulkadiroglu, Pathak, and Roth(2005), mention that New York City,  

when assigning students to highschools, uses a “Students first” variant of the marriage assignment 

algorithm so as to motivate students to state their true preferences among highschools they are 

considering attending. 

16.5.1 The Stable Room-mate Matching Problem 
The stable room-mate problem is the multi-person interpretation of the 2-matching optimization problem.  

A college wants to match incoming freshman, two to a room in a freshman dormitory.  Each student provides 

a ranking of all other potential room-mates.  A matching is stable if there are no two students, i and j,  who 

are not room-mates such that i prefers j to his current room-mate, and j prefers i to his current room-mate.  

The stable marriage problem can be interpreted as a special case of the room-mate matching problem in 

which people give very unattractive rankings to people of the same sex. 

 In contrast to the stable marriage problem,  there need not be a stable solution to a stable room-mate 

problem.  The following 4-person example due to Gale and Shapley(1962) illustrates a situation with no 

stable matching. 

! Example from Gale and Shapley; 

  PERSON = AL   BOB  CAL DON; 

! Row preference for col; 

  PREF = 

      99  1  2  3 

       2 99  1  3 

       1  2 99  3 

       1  2  3 99; 

 ! E.g., AL  

 ! The 99 is to indicate that a person cannot be 

   matched to himself. 

 Consider, for example, the solution: AL with BOB, and CAL with DON.  It is not stable because BOB 

is matched with his second choice and CAL is matched with his third choice, whereas if BOB and CAL got 

together, BOB would get his first choice and CAL would get his second choice.  That would give us the 

solution BOB with CAL, and AL with DON.  This is solution is not stable,  however, because then AL and 

CAL would discover that they could improve their lot by getting together to give:  AL with CAL, and BOB 

with DON.  This solution is not stable, etc.   In the terminology of game theory,  the marriage assignment 

problem always has a core.  The room-mate matching problem may not have a core. 

 Irving(1985) gives an efficient algorithm for detecting whether a room-mates problem has a stable 

matching, and if yes, finding a stable matching. The room-mates problem can also be solved by formulating 

it as a mathematical program as illustrated by the following  LINGO model for finding a stable room-mate 

matching among 8 potential room-mates.  This example from Irving(1985) has three stable matchings.  
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! Stable Roommate Matching(stable_roommate8); 

! Each of 2n people specify a rank, 1, 2,..., 2n-1, for 

  each other person.  We want to pair up the people into 

  a stable set of pairs, i.e., there are no two people  

  i and j who are not paired up, but would prefer to be 

  paired up rather than be paired with their current partner. 

  It may be that there is no such a stable pairing.  This  

  LINGO model will find such a pairing if one exists, and  

  will minimize the worst that any person gets treated under 

  this pairing. 

SETS: 

 PERSON: AP; 

 PXP(PERSON,PERSON): PREF, Y, R, NOSTAB; 

ENDSETS 

DATA: 

! Example from Irving(1985); 

  PERSON = 1..8; 

! Row preference for col; 

 PREF=!1  2  3  4  5  6  7  8; 

      99  1  7  3  2  4  5  6 

       3 99  1  7  6  2  4  5 

       7  3 99  1  5  6  2  4 

       1  7  3 99  4  5  6  2 

       2  4  5  6 99  1  7  3 

       6  2  4  5  3 99  1  7 

       5  6  2  4  7  3 99  1 

       4  5  6  2  1  6  3 99; 

 ! E.g., the first choice of 1 is 2.  The first choice 

   of 8 is 5. 

 ! The 99 is to indicate that a person cannot be 

   matched to himself. 

 ! This data set has 3 stable matchings; 

ENDDATA 

 

! Y(i,j) = 1 if PERSON i and j are matched, for  i < j; 

  

  NP = @SIZE(PERSON); 

! Each person must be assigned; 

  @FOR(PERSON(i): 

    @SUM(PERSON(k)| k #GT# i: Y(i,k))  

  + @SUM(PERSON(k)| k #LT# i: Y(k,i)) = 1; 

      ); 

 

! Turn off the lower diagonal part of Y; 

   @SUM( PXP(i,j)| i #GT# j: Y(i,j)) = 0; 

 

! Enforce monogamy by making the Y(i,j) = 0 or 1; 

   @FOR( PXP(i,j): 

       @BIN(Y(i,j)) 

        ); 

     

! Stability conditions: Either person i and person j 

   are assigned to each other, or 
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   person i gets a person k he prefers to j, or 

   person j gets a person k he prefers to i, or 

   there is no stable solution;  

  @FOR( PXP(i,j)| i #LT# j: 

     Y(i,j) 

    +@SUM(PERSON(k)| k #LT# i #AND# PREF(i,k) #LT# PREF(i,j): Y(k,i)) 

    +@SUM(PERSON(k)| k #GT# i #AND# PREF(i,k) #LT# PREF(i,j): Y(i,k)) 

    +@SUM(PERSON(k)| k #LT# j #AND# PREF(j,k) #LT# PREF(j,i): Y(k,j)) 

    +@SUM(PERSON(k)| k #GT# j #AND# PREF(j,k) #LT# PREF(j,i): Y(j,k)) 

    + NOSTAB(i,j) >= 1 

        ); 

 

! Compute actual assigned rank for each person; 

@FOR( PERSON(i): 

  AP(i) = @SUM( PERSON(k)| i #LT# k: PREF(i,k)*Y(i,k)) 

        + @SUM( PERSON(k)| k #LT# i: PREF(i,k)*Y(k,i)); 

  PWORST >= AP(i); 

    ); 

 

! Compute number of instabilities; 

  NUMUSTAB = @SUM(PXP(i,j): NOSTAB(i,j)); 

! Apply most weight to getting a stable solution; 

  MIN = NP*NP*NUMUSTAB + PWORST; 

 

Notice in the resulting solution below, there is a stable matching, i.e. NUMUSTAB = 0, and, no participant 

received worse than his second choice.      

             Variable           Value 

             NUMUSTAB        0.000000 

             Y( 1, 5)        1.000000 

             Y( 2, 6)        1.000000 

             Y( 3, 7)        1.000000 

             Y( 4, 8)        1.000000 

 

16.6 Should We Behave Non-Optimally to Obtain Information? 
One of the arts of modeling is knowing which details to leave out of the model. Unfortunately, the most 

likely details left out of a model are the things that are difficult to quantify. One kind of 

difficult-to-quantify feature is the value of information. There are a number of situations where, if value 

of information is considered, then one may wish to behave non-optimally, at least in the short run.  Three 

situations to consider are:  1) We would like to gain information about a customer or supplier, e.g., a 

more precise description of the customer’s demand curve or credit-worthiness,  2) We do not want to 

communicate too much information to a competitor, or  3) We want to communicate information to a 

business partner, e.g., a supplier.  

 As an example of (1) suppose we extend credit to some customers.  If our initial credit optimization 

model says “never extend credit to customers with profile X”, then we may nevertheless wish to 

occasionally extend credit to such customers in order to have up-to-date information of the credit 

worthiness of customers with profile X.  In the inventory setting where unsatisfied demand is lost and 

not observed, Ding and Puterman(2002) suggest that it may be worthwhile to stock a little more than 

“optimal” so as to get a better estimate of customer demand. 
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Regarding (2), we may wish to behave non-optimally so as to not reveal too much information. Any 

good poker player knows that one should occasionally bluff by placing a large bet, even though the odds 

associated with the current hand do not justify a large bet.  If other players know you never bluff, then 

they will drop out early and not give you the chance of winning large bets, any time you make a large 

bet.   Similarly,  there was a rumor at the end of World War II that Britain allowed a bombing attack on 

Coventry on one occasion even though Britain knew in advance of the attack, thanks to its code-breaking.  

The argument was that if Britain had sent up a large fleet of fighter in advance to meet the incoming 

German bombers, the Germans would have known, earlier than Britain desired that Britain had broken 

the German communications code. 

An example of (3) comes from inventory control. An optimal inventory model may recommend using a 

very large order size. If we use a smaller order size, however, we will be giving more timely information 

to our supplier about retail demand for his product. In between orders, the supplier has no additional 

information about how his product is selling. In the extreme, if we used an order size of 1, then the 

supplier would have very up-to-date information about retail demand and could do better planning. 

In probability theory there is a problem class known as the multi-armed bandit problem that is similar to 

case (1).  A decision maker (DM) must decide which one of several slot machines (one armed bandits) 

should be selected for the next bet.  The DM strongly suspects that the expected payoff is different for 

different machines.  From a simple pure optimization perspective, the DM would bet only on the machine 

with the highest expected payoff.  From an information perspective, however, the DM wants to scatter 

the bets a little bit in order to better estimate the expected payoff of each machine.  This trade-off between 

optimization vs. experimentation is sometimes called the explore vs. exploit decision. 

16.7 Problems 
1. Both Big Blue, Inc. and Golden Apple, Inc. are “market oriented” companies and feel market share 

is everything. The two of them have 100% of the market for a certain industrial product. Blue and 

Gold are now planning the marketing campaigns for the upcoming selling season. Each company 

has three alternative marketing strategies available for the season. Gold’s market share as a function 

of both the Blue and Gold decisions are tabulated below: 

Payment To Blue by Gold as a Function 
of Both Decisions 

  Blue Decision 

  A B C 

 X .4 .8 .6 

Gold Decision Y .3 .7 .4 

 Z .5 .9 .5 

 Both Blue and Gold know the above matrix applies. Each must make their decision before 

learning the decision of the other. There are no other considerations. 

a) What decision do you recommend for Gold? 

b) What decision do you recommend for Blue? 
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2. Formulate an LP for finding the optimal policies for Blue and Gold when confronted with the 

following game: 

Payment To Blue By Gold as a Function of 
Both Decisions 

  Blue Decision 

  A B C D 

Gold Decision X 2 −2 1 6 

 Y −1 4 5 −1 

3. Two competing manufacturing firms are contemplating their advertising options for the upcoming 

season. The profits for each firm as a function of the actions of both firms are shown below. Both 

firms know this table: 

Profit Contributions 
  Fulcher Fasteners 

  Option A Option B Option C 

 Option Y  4  8  6 

Repicky  10  4  6  

Rivets Option X  8  12  10 

  8  2  4  

a) Which pair of actions is most profitable for the pair? 

b) Which pairs of actions are stable? 

c) Presuming side payments are legal, how much would which firm have to pay the other firm 

in order to convince them to stick with the most profitable pair of actions? 

4. The three neighboring communities of Parched, Cactus and Tombstone are located in the desert and 

are analyzing their options for improving their water supplies. An aqueduct to the mountains would 

satisfy all their needs and cost in total $730,000. Alternatively, Parched and Cactus could dig and 

share an artesian well of sufficient capacity, which would cost $580,000. A similar option for Cactus 

and Tombstone would cost $500,000. Parched, Cactus and Tombstone could each individually 

distribute shallow wells over their respective surface areas to satisfy their needs for respective costs 

of $300,000, $350,000 and $250,000. 

 Formulate and solve a simple LP for finding a plausible way of allocating the $730,000 cost of 

an aqueduct among the three communities. 

5. Sportcasters say Team I is out of the running if the number of games already won by I plus the 

number of remaining games for Team I is less than the games already won by the league leader. It 

is frequently the case that a team is mathematically out of the running even before that point is 

reached. By Team I being mathematically out of the running, we mean there is no combination of 

wins and losses for the remaining games in the season such that Team I could end the season having 

won more games than any other team. A third-place team might find itself mathematically though 

not obviously out of the running if the first and second place teams have all their remaining games 

against each other. 

 Formulate a linear program that will not have a feasible solution if Team I is no longer in the 

running. 
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The following variables may be of interest: 

xjk = number of times Team j may beat Team k in the season’s remaining games and Team I 

still win more games than anyone else. 

The following constants should be used: 

Rjk = number of remaining games between Team j and Team k. Note the number of times j 

beats k plus the number of times k beats j must equal Rjk. 

Tk = total number of games won by Team k to date. Thus, the number of games won at 

season’s end by Team k is Tk plus the number of times it beat other teams. 

6. In the 1983 NBA basketball draft, two teams were tied for having the first draft pick, the reason 

being that they had equally dismal records the previous year. The tie was resolved by two flips of a 

coin. Houston was given the opportunity to call the first flip. Houston called it correctly and 

therefore was eligible to call the second flip. Houston also called the second flip correctly and 

thereby won the right to negotiate with the top-ranked college star, Ralph Sampson. Suppose you 

are in a similar two-flip situation. You suspect the special coin used may be biased, but you have 

no idea which way. If you are given the opportunity to call the first flip, should you definitely accept, 

be indifferent, or definitely reject the opportunity (and let the other team call the first flip). State 

your assumptions explicitly. 

7. A recent auction for a farm described it as consisting of two tracts as follows:  

Tract 1:  40 acres, all tillable, good drainage.  

Tract 2: 35 acres, of which 30 acres are tillable, 5 acres containing pasture, drainage ditch and 

small pond.  

 The format of the auction was described as follows. First Tract 1 and Tract 2 will each be 

auctioned individually. Upon completion of bidding on Tract 1 and Tract 2, there will be a 15 minute 

intermission. After that period of time, this property will be put together as one tract of farmland. 

There will be a premium added to the total dollar price of Tract 1 and Tract 2. This total dollar 

amount will be the starting price of the 75 acres. If, at that time, no one bids, then the property will 

go to the highest bidders on Tracts 1 and 2. Otherwise, if the bid increases, then it will be sold as 

one.  

 Can you think of some modest changes in the auction procedure that might increase the total 

amount received for the seller? What are some of the game theory issues facing the individual 

bidders in this case? 
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Inventory, Production, and 
Supply Chain Management 

 
 

17.1 Introduction 
One carries inventory for a variety of reasons:  

a) protect against uncertainty in demand,  

b) avoid high overhead costs associated with ordering or producing small quantities 

frequently,  

c) supply does not occur when demand occurs, even though both are predictable 

(e.g., seasonal products such as agricultural products, or anti-freeze)  

d) protect against uncertainty in supply,  

e) unavoidable “pipeline” inventories resulting from long transportation times (e.g., shipment 

of oil by pipeline, or grain by barge)  

f) for speculative reasons because of an expected price rise.  

 We will illustrate models useful for choosing appropriate inventory levels for situations (a), (b), (c) 

and (d). 

17.2 One Period News Vendor Problem 
For highly seasonal products, such as ski parkas, the catalog merchant, L. L. Bean makes an estimate for 

the upcoming season, of the mean and standard deviation of the demand for each type of parka. Because 

of the short length of the season, L.L. Bean has to make the decision of how much to produce of each 

parka type before it sees any of the demand. There are many other products for which essentially the 

same decision process applies, for example, newspapers, Christmas trees, anti-freeze, and road salt. This 

kind of problem is sometimes known as the one-period newsvendor problem. 

 To analyze the problem, we need the following data: 

c = purchase cost/unit. 

v = revenue per unit sold. 

h = holding cost/unit purchased, but not sold. It may be negative if leftovers have a positive 

salvage value. 

p = explicit penalty per unit of unsatisfied demand, beyond the lost revenue. 
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 In addition, we need some information about the demand distribution (e.g., its mean and standard 

deviation). For the general case, we will presume for any value x: 

F(x) = probability demand (D) is less-than-or-equal-to x. 

17.2.1 Analysis of the Decision 
We want to choose: 

S = the stock-up-to level (i.e., the amount to stock in anticipation of demand). 

 We can determine the best value for S by marginal analysis as follows. Suppose we are about to 

produce S units, but we ask, “What is the expected marginal value of producing one more unit?” It is: 

 -c + ( v + p) * Prob{ demand > S} – h * Prob{ demand  S} 

 = -c + ( v + p) * ( 1 – F( S)) – h * F( S) 

 = - c + v + p – ( v + p + h) * F( S). 

 If this expression is positive, then it is worthwhile to increase S by at least one unit. In general, if 

this expression is zero, then the current value of S is optimal. Thus, we are interested in the value of S 

for which: 

-c + v + p – ( v + p + h) * F( S) = 0 

or re-arranging: 

F( S) = ( v + p – c) / ( v + p + h) 

         = ( v + p – c) / [( v + p – c) + ( c + h)]. 

Rephrasing the last line in words: 

Probability of not stocking out should = (opportunity shortage cost)/[(opportunity shortage 

cost) + ( opportunity holding cost)]. 

This formula is sometimes known as the news vendor formula. 

Example 1, News vendor with discrete demand distribution: 

Suppose L.L. Bean can purchase or produce a parka for $60, sell it for $140 during the regular season, 

and sell any leftovers for $40. Thus: 

c = 60, 

v = 140, 

p = 0, 

h = - 40. 

 The opportunity shortage cost is 140 – 60 = 80, and the opportunity holding cost is 60 – 40 = 20. 

Therefore, the newsvendor ratio is 80/(80 + 20) = 0.8. 

 To determine S, we must know the demand distribution. First, suppose this is not a big selling parka 

and we have the distribution in tabular form as follows: 

Demand, D:        2   3   4   5   6   7   8   9  11  12  13  14  15 

Prob{demand=D}: .04 .06 .09 .10 .11 .12 .10 .09 .09 .07 .06 .05 .02 

Cumulative, F():.04 .10 .19 .29 .40 .52 .62 .71 .80 .87 .93 .98 1.0 

Thus, we should stock S = 11 units. 
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Example 2, News vendor with Normal distribution: 

Suppose we have the same cost structure as before, but this item has a forecasted demand of 1000 and 

standard deviation of 300. We will make the standard assumption demand is Normal distributed. We 

must find the number of standard deviations above the mean such that the “left tail” probability is 0.80. 

From a Normal table, we see this occurs at about z = .84. The general form for the stock-up-to point is: 

S = mean + (standard deviation) * z, 

   = 1000 + 300 * .84 = 1252. 

 It would be nice to know the expected amount of lost sales. The “linear loss function”, or @PSL() 

in LINGO gives us this, specifically: 

(expected lost sales) = ( standard deviation) * @PSL( z) 

= ( standard deviation) * @PSL(( S – mean)/(standard deviation)) 

= 300 * @PSL( .84) 

= 300 * .1120 = 33.6 

 Alternatively, if we are lazy, we can use LINGO to do all the computations for us with the following 

model: 

MODEL: 

! Newsboy inventory model(NUSBOYGN); 

! Calculate: optimal order up to stock level, S, 

  and re-order point, R, for a 

  product with a normally distributed demand; 

DATA: 

MU = 1000; ! Mean demand; 

SD = 300; ! Standard deviation in demand; 

 V = 140; ! Revenue/unit sold; 

 C = 60; ! Cost/unit purchased; 

 P =  0; ! Penalty/unit unsatisfied demand; 

 H = -40; !Holding cost/unit left in inventory; 

 K = 1000; ! Fixed cost of placing an order; 

ENDDATA 

!----------------------------------------------; 

! Compute the newsvendor ratio; 

RATIO = ( P + V - C)/( P + V - C + C + H); 

! Calculate the order up to point, S; 

@PSN( ZS ) = RATIO; 

@FREE( ZS); 

S = MU + SD * ZS; 

! Compute expected profit of being there, PS; 

! Note if D = demand, then profit is: 

V * D - V * MAX( 0, D-S) - C * S 

- P * MAX(0,D-S) - H * (S-D) - H*MAX(0,D-S); 

! Taking expectations and collecting terms...; 

PS = V * MU - C * S - H * ( S - MU) 

     - ( V + P + H) * SD* @PSL( ZS) ; 

! Expected profit at reorder point should differ  

  from expected profit at S by fixed order cost, K; 

  PR = PS - K; 
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! Solve for ZR; 

PR = V * MU - C* R - H * ( R - MU) 

     - ( V + P + H) * SD* @PSL( ZR) ; 

@FREE( ZR); 

ZR <= ZS; ! Do not want the way over solution; 

! Finally, compute the re-order point; 

ZR = ( R - MU)/ SD; 

END 

A solution is: 

Variable           Value 

      MU        1000.000 

      SD        300.0000 

       V        140.0000 

       C        60.00000 

       P       0.0000000 

       H       -40.00000 

       K        1000.000 

   RATIO       0.8000000 

      ZS       0.8416211 

       S        1252.486 

      PS        71601.14 

      PR        70601.14 

       R        1114.215 

      ZR       0.3807171 

 The above examples assume the distribution of demand is known. In fact, getting a good estimate 

of the demand distribution is probably the most challenging aspect of using the news vendor model. The 

sports clothing retailer, Sport Obermeyer, see Fisher and Raman (1996), derive a demand distribution 

by soliciting forecasts from six experts. The average of these forecasts is used as the mean of the demand 

distribution. The standard deviation in the six forecasts is multiplied by an empirically derived 

adjustment factor (e.g., 1.75) to obtain the standard deviation used in the model. L.L. Bean apparently 

uses a slightly different approach to estimate the demand distribution for some of its products. A single 

point estimate forecast for a product is provided by either a single expert, typically a “buyer”, or by a 

consensus forecast from a group. An estimate of the standard deviation is obtained by assuming the 

coefficient of variation (i.e., standard deviation/mean) remains constant from year to year. The forecast 

errors from previous years are retained, and thus the coefficient of variation over previous years can be 

calculated. 

17.3 Multi-Stage News Vendor 
Advertisements for Lands End Outlet stores typically stress that items being sold in these stores are 

being sold at a very low price because they are left over from a catalog. Lands End stocked more units 

than catalog customers were interested in buying. The suggestion is that store customers can benefit 

from the poor inventory management of the catalog operation. 

 Similar examples are items carried in a “Christmas” catalog, then offered at a lower price in a 

“White” sale after the Christmas selling season, and perhaps offered at an even lower price at a third 

selling opportunity, if there are units still left in stock after the “White” sale. For example, a men’s long 

sleeve plaid shirt that was listed for $36 in a recent L.L. Bean Spring catalog, was listed for $25 in the 

subsequent Summer Sale catalog. Such multi-level selling situations are here referred to as multi-stage 

newsvendor problems. 
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 When making the initial stocking decision, one should take into account the selling price and likely 

demand at each of the downstream levels. It is, in fact, relatively easy to do a fairly accurate analysis of 

the optimum amount to stock. 

 For example, suppose a retailer can purchase a particular type of coat from a supplier for $100. The 

retailer will offer the garment for sale in the fall selling season for $225. Any units left over from the 

fall selling season will be offered in the winter catalog for $135. Any units still left over at that point 

will be offered for sale in “outlet” stores for $95. Demands at the three levels are estimated to have 

means and standard deviations of: 

Label: Fall Winter catalog Outlet store 

Mean 1200 300 400 

Std. 500 150 190 

 Intuitively, it seems one should stock about 1200 + 300 = 1500 units because it is profitable to sell 

the items in the winter catalog at $135. However, sales in the outlet store are not profitable in retrospect. 

Can we do a little better than intuition? 

 Marginal analysis can be used quite nicely in this situation. It goes like this. We are contemplating 

stocking S units (e.g., 1400 units). Is it, in fact, worthwhile to increase our stocking level to S+1? If yes, 

we simply repeat until the answer is “no”. Let: 

Di = the (not yet seen) demand at stage i, for i = 1, 2, 3; 

vi = the revenue or selling price/unit at level i; and 

c = cost/unit. 

The expected value of stocking one more unit in the general case is: 

− c + v3 * Prob{D1 + D2 + D3 > S}+ (v2 − v3) * Prob{D1 + D2 > S}+ (v1 − v2) * Prob{D1 > S}. 

or in our specific example: 

− 100 + 95 * Prob{D1 + D2 + D3 >1400}+ 40 * Prob{D1 + D2 > 1400}+ 90 * Prob{D1 >1400}. 

The reasoning behind this expression is as follows: 

Stocking the additional item costs $100. 

If the total demand over the three levels is > S, then we clearly can sell the unit for at least $95. 

If the total demand over the first two levels is > S, then we will receive not just $95, but an 

additional 135 − 95 = $40. 

If the total demand in the first level is > S, we will receive not just $135, but an additional 

225 − 135 = $90. 

At the optimum, this marginal cost expression should be essentially zero. 
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 If we can assume the demands are Normally distributed at the three levels, then we can compute the 

expected value of carrying one more unit, and in fact solve for the optimum amount to stock. Note, we 

do not have to assume the demands are independent at the three levels. The analysis is still correct: 

MODEL: 

! Multi-echelon newsboy(MELNUBOY); 

! Compute stock to carry, S; 

DATA: 

! The cost/unit of the item; 

C = 100; 

! Selling price/unit at the first level; 

V1 = 225; 

! Selling price/unit at the second level; 

V2 = 135; 

! Selling price/unit at the third level; 

V3 = 95; 

! Mean demands at the three levels; 

MEAN1 = 1200; 

MEAN2 = 300; 

MEAN3 = 400; 

! Standard deviations at the three levels; 

SD1 = 500; 

SD2 = 150; 

SD3 = 190; 

ENDDATA 

!-----------------------------------------------; 

! Compute means and s.d. of cumulative demands; 

CUMD3 = MEAN1 + MEAN2 + MEAN3; 

CUMD2 = MEAN1 + MEAN2; 

! This assumes demands are independent; 

CUMSD3 = (SD1 * SD1 + SD2 * SD2 + SD3 * SD3)^.5; 

CUMSD2 = ( SD1 * SD1 + SD2 * SD2)^.5; 

! Compute S; 

! Set to 0 marginal expected value of ordering 

one more unit beyond S, assuming Normal demand.; 

0 = - C 

+         V3 * ( 1 - @PSN(( S - CUMD3)/ CUMSD3)) 

+ ( V2 - V3) * ( 1 - @PSN(( S - CUMD2)/ CUMSD2)) 

+ ( V1 - V2) * ( 1 - @PSN(( S - MEAN1)/ SD1)); 

! Compute expected profit; 

!If the demands are D1, D2, and D3, then profit = 

V3* (( D1 + D2 + D3) - MAX( 0, D1+ D2+ D3 - S)) 

+( V2 - V3) * (( D1 + D2)- MAX( 0, D1+ D2 - S)) 

+ ( V1 - V2) * ( D1 - MAX( 0, D1 - S)) 

- C * S; 

! Taking expectations; 

EPROFIT = 

V3 * (CUMD3- CUMSD3* @PSL(( S- CUMD3)/ CUMSD3)) 

+(V2- V3)* (CUMD2 -CUMSD2*@PSL((S-CUMD2)/CUMSD2)) 

+(V1- V2)* (MEAN1- SD1* @PSL((S- MEAN1)/ SD1)) 

- C * S; 

END 
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A solution is: 

Variable           Value 

       C        100.0000 

      V1        225.0000 

      V2        135.0000 

      V3        95.00000 

   MEAN1        1200.000 

   MEAN2        300.0000 

   MEAN3        400.0000 

     SD1        500.0000 

     SD2        150.0000 

     SD3        190.0000 

   CUMD3        1900.000 

   CUMD2        1500.000 

  CUMSD3        555.5178 

  CUMSD2        522.0153 

       S        1621.628 

 EPROFIT        138339.6 

We see that we should stock substantially more than 1500. Namely, about 1622 units. 

17.3.1 Ordering with a Backup Option 
One type of “supply chain” agreement used by a number of clothing suppliers (e.g., Liz Claiborne, Ann 

Klein, and Benetton) is the “backup” supply agreement. A typical agreement is characterized by two 

numbers, a backup or holdback fraction and a nonuse penalty. Under, say a (.2, .1) backup agreement, a 

store that orders 100 units of an item from Anne Klein must take delivery of (1 − .2)  100 = 80 units 

before the selling season begins. That is, the supplier holds back 20% of the order. During the selling 

season, the store may additionally request quick delivery on up to .2  100 = 20 units at the same price. 

The store pays a penalty of .1  (purchase cost) for each item in the backup for which it does not request 

delivery. Essentially, the store requests delivery on additional backup items only when it is 100% sure 

of being able to sell the additional items. 

 Suppose your store is contemplating a (.2, .1) agreement for a particular item from Anne Klein that 

has a purchase cost of $50 per unit. You sell it for $160. You were planning to order 100 units of this 

item. Thus, you will definitely receive 80 and can sell up to 100 if the demand occurs. For any units of 

the 100 for which you do not take delivery, you must pay .1  $50 = $5. You are now having second 

thoughts and want to know the marginal value of ordering one more unit of this item. 

 So, for example, if total demand is greater than the 100, then increasing order size by one is a smart 

move ($160 − $50). If the demand is less-than-or-equal-to 100, but greater than 80, it is not so smart (− 

.1 $50). If demand is less-than-or-equal-to 80, then it is a dumb move (about − $50, ouch!). 

 Marginal analysis can be used to determine the best initial order size. We will, in this case, assume 

any items left over are worthless. Define: 

c = cost/unit from the supplier, 

v = selling price/unit, 

b = holdback fraction, 

u = penalty/unit of unused holdback items, stated as a fraction of c, 

h = holding cost/unit left over, 

D = the (random) demand. 
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The expected value of ordering one more unit beyond S is: 

(v − c) * Prob {D > S} 

− u * c * Prob {S * (1 − b) < D  S} 

− (c * (1 − b) + u * c * b + h (1 − b)) * Prob {D S * (1 − b)} 

 If this expression is positive, S should be increased. At the optimal S, the above expression should 

be approximately zero. The reasoning behind the three terms is: 

If D > S, we will take delivery of all units ordered and make a profit of v − c on the extra item 

ordered. 

If S * (1 − b) < D  S, with or without the extra unit, we take delivery of D units. We have to 

pay a penalty of u * c on the extra unit ordered, but not delivered. 

If D  S * (1 − b), we must take delivery of (1 − b) additional units, for which we pay c and 

incur a holding cost h. We must pay a penalty u * c on the additional units b on which we 

did not take delivery. 

 For our example data, suppose D has a Normal distribution with mean 400 and standard deviation 

100. The following is a LINGO model for this case: 

MODEL 

! Newsboy with a holdback fraction(NUBOYBCK); 

DATA: 

! Cost/unit; 

C = 50; 

! Selling price/unit; 

V = 160; 

! Cost per item left over( <0 for salvage); 

H = - 6; 

! Holdback fraction; 

B = .2; 

! Fraction of cost paid on unused units; 

U = .1; 

! Mean demand; 

MEAN = 400; 

! Standard deviation in demand; 

SD = 100; 

ENDDATA 

!Set to zero the marginal value of ordering an 

additional unit beyond S; 

( V - C) * ( 1 - @PSN(( S - MEAN)/ SD)) 

- U * C * ( @PSN(( S - MEAN)/ SD) 

- @PSN(( S*( 1 - B) - MEAN)/ SD)) 

- (( C + H) * ( 1 - B) + U * C * B ) 

* @PSN(( S *( 1 - B) - MEAN)/ SD) = 0; 

END 
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A solution is: 

Variable           Value 

       C        50.00000 

       V        160.0000 

       H       -6.000000 

       B       0.2000000 

       U       0.1000000 

    MEAN        400.0000 

      SD        100.0000 

       S        493.9043 

 The optimal order quantity is S = 494. This means we will take delivery of 0.8  494 = 395 units, 

and have the option to receive 99 more if needed. 

17.3.2 Safety Lotsize 
In the News vendor problem, we have to choose a number (e.g., S above) to try to match a random 

variable (e.g., the demand). A problem that is closely related to the newsvendor problem is the safety 

lotsize problem. The essential difference is that in the safety lotsize problem, we are given a target 

number, and we want to choose a distribution, so the associated random variable matches the given 

target number. The given number is typically a capacity, such as number of seats available on an aircraft, 

or parking spots in a garage, or the number of units of some product ordered by a customer. In each of 

these three cases, we may not be able to precisely control how many people show up for a flight, or 

control how many of the units we put into production turn out to be acceptable. For example, in the 

manufacture of semiconductor chips, the fraction of acceptable chips in a batch in the early stages of 

production may be as low as 20%. For airlines, a “no-show” rate of 15% is not unusual. We can, 

however, affect the number of “good outcomes” by such actions as how many reservations we give out 

for a flight or a parking lot, or how many chips we start into production. In semi-conductor chip 

manufacturing, even after considerable production experience is obtained, the yield may still be under 

80%. 

 The following illustrates for the case of the so-called overbooking problem in the airlines. This 

model does the analysis for three different assumptions about the distribution of the number of customers 

that do not show up: the Normal distribution, the binomial, and the Poisson. 

MODEL: 

! Safety lot size/ Over booking model(SLOTSIZE); 

! Compute S = number reservations to make; 

! Keywords: overbooking, safety lotsize, lotsize; 

DATA: 

! Capacity, e.g., seats available; 

   M = 140; 

! Prob{ unit is bad or no-show}; 

   Q = .1; 

! Cost per unit put in production; 

   C = - 188; 

! Penalty per good unit short of target; 

   P = 0; 

! Holding cost per good unit over target; 

   H = 420; 
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ENDDATA 

!----------------------------------------------------; 

! Model:  Define PROB =; 

!  Prob{ Bads <= S - M} = Prob{ Goods >= M}; 

!  The marginal cost of ordering S+1 rather than S is: 

     C - ( 1 - Q) * ( P * ( 1 - PROB) - H * PROB) = 0; 

!  Setting to zero, gives; 

    PROB = ( P - C/( 1 - Q))/( P + H); 

!  Note: can also write as newsboy ratio: 

     (P*(1-Q) - C)/(( P*(1-Q) - C) + (C + H*(1-Q))); 

! Now determine units to put into production, 

   reservations to sell, etc.;    

! Binomial(Choose a sample of size SB, where, 

   prob{unit is bad} = Q); 

    PROB = @PBN( Q, SB, SB - M); 

! Poisson approximation; 

    PROB = @PPS( Q * SP, SP - M); 

! Normal approximation. The .5 improves the 

 approximation of the continuous Normal distribution 

 to a discrete distribution. The variance of a 

 binomial random variable is SN*Q*(1-Q); 

    PROB = 

       @PSN(( SN - M + .5 - Q * SN)/ 

            (( SN * Q * ( 1 - Q))^.5));  

END 

The solution is: 

Variable           Value 

       M        140.0000 

       Q       0.1000000 

       C       -188.0000 

       P       0.0000000 

       H        420.0000 

    PROB       0.4973545 

      SB        154.8232 

      SP        154.7852 

      SN        154.9725 

 Thus, given that 10% of reservation holders do not show up and we have 140 seats to fill, regardless 

of our distribution assumption, we should sell 155 reservations (and hope exactly 140 customers show 

up). 

17.3.3 Multiproduct Inventories with Substitution 
One of the most important issues in inventory management is the consideration of unsatisfied demand, 

lost sales, or stockouts. When there are multiple related products, unsatisfied demand from one product 

may be satisfied by some other similar product. General Motors (see for example Eppen, Martin, and 

Schrage (1989)) has historically used a “diversion matrix” to represent the rate at which unsatisfied 

demand for one kind of GM car gets satisfied by, or substituted for, some other car. Similar methods 

have been used in the airlines in choosing capacities for various flights during the day. Here the process 

may be referred to as “spill” and “recapture”. The problem also arises in planning vehicle fleets in the 
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face of uncertain demand for vehicles of various sizes and types. If there is a shortage of small vehicles 

on a given day, surplus large vehicles may be substituted for the small. 

 The model below illustrates the essential aspects of the demand diversion inventory model used in 

the aforementioned GM study. The model is a one-period newsvendor type model, except there are 

multiple products. Each product has a cost per unit for each unit stocked, a revenue per unit for each unit 

sold, and a holding cost per unit left over. If there are n products, then shortage costs and the interaction 

among products is modeled by:  

• an n by n diversion matrix that specifies what fraction of the unsatisfied demand of product 

i may be diverted to and satisfied by product j, and  

• an n by n transfer cost matrix that specifies the cost per unit of transferring demand from 

one product to another.  

 For example, if a coach class passenger gets upgraded to first class because of lack of space in 

coach, one can represent this as a sale of a first class seat with the transfer cost being the difference in 

cost between a first class seat and a coach class seat. This model represents demands by scenarios. Each 

scenario specifies the demand for all products for that scenario. It is generally convenient to have a n+1st 

product class that represents the outside world. Demand transferred to it is truly lost. 

Example 

Multisys, Inc. provides maintenance under contract of desktop computers to industrial firms. Multisys, 

has just received notice from its disk supplier that it is about to make its last production run for 1 Gig 

and 2 Gig disk drives. These drives are becoming obsolete as larger capacity drives are becoming 

available. Multisys still has a large number of computers under maintenance contract that have these 1 

and 2 Gig drives. The two drives are plug-compatible physically (i.e., they are the same size and have 

the same electrical connections). About one third of the computers under contract that have the 1 Gig 

drive are software incompatible with the 2 Gig drive in that they cannot access or otherwise function 

with a disk with more than 1 Gig of storage. Otherwise, a 2 Gig drive could be substituted for a 1 Gig 

drive, and a customer receiving such a substitution would be happy. The 2 Gig drive costs more to 

Multisys, $200, vs. $140 for the 1 Gig drive. When Multisys replaces a drive, it charges a customer a 

service charge of either $20 or $30 depending upon whether the original disk is a 1 Gig or a 2 Gig disk. 

Multisys has enumerated a half dozen scenarios of what its customer requirements might be for 

replacement disks in the remaining life of their contracts (see the scenarios in the model). If Multisys is 

short of disks, it will have to buy them on the open retail market, where it expects it would have to pay 

$190 and $250 respectively for the 1 Gig and 2 Gig drives. Any drive left over after all maintenance 

contracts have expired is expected to have a salvage value of about $30, regardless of size. How many 

of each drive should Multisys order from its supplier? 
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 For this problem, the scenario approach introduced in chapter 12 is very convenient. We identify a 

number of scenarios of what the demands could be. This allows one to have rather arbitrary demand 

distributions. In particular, demands among the products can be correlated, as is frequently the case in 

reality. In the example below, we identify a modest six demand scenarios: 

MODEL: 

! Multi-product Newsboy inventory model(NUSBOYML), 

  with substitution, diversion, or spill.  

 For each product, 

  calculate the optimal order up to stock level, S; 

SETS: 

  PROD/ G1 G2 SPOT/: C, V, H, S; 

  PXP( PROD, PROD): FRAC, TC; 

  SCEN/1..6/: PROB, PROF; 

  SXP( SCEN, PROD): DEM, U, I; 

  SXPXP( SCEN, PROD, PROD): T; 

ENDSETS 

DATA: 

! Cost data for 1 Gig and 2 Gig disk drives. 

  Third product is outside spot market; 

 V =  20   30   0; ! Revenue/unit sold; 

 C = 140  200   0; ! Cost/unit stocked; 

 H = -30  -30   0; ! Holding cost/unit unused; 

!  The diversion matrix. FRAC( PR, PX) = upper limit 

    on fraction of product PX unsatisfied demand that 

    can be satisfied by product PR; 

 FRAC = 

       1      0   0  ! Upper limits on; 

     .66667   1   0  !  substitution fractions; 

       1      1   1; ! Sum over col should be >= 1; 

! Transfer costs. TC( PR, PX) = cost per unit of 

  satisfying a type PX demand with a type PR product; 

 TC =  

       0    0    0  ! Cost of transferring; 

       0    0    0  ! or substituting one; 

     190  250    0; ! product for another; 

! The demand scenarios. 3rd product takes care of 

  unsatisfied demand; 

 DEM = 2100 3300  0 

        900 2710  0 

       1890 2256  0 

       1994 1840  0 

       2442 2334  0 

       1509 2654  0; 

! Prob of each scenario; 

! (They are equally likely); 

 PROB = .166667  .166667  .166667  

        .166667  .166667  .166667; 

ENDDATA 
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!--------------------------------------------------; 

! Maximize expected profit; 

 MAX = @SUM( SCEN( SC): PROB( SC) * PROF( SC)); 

! For each scenario; 

 @FOR( SCEN( SC): 

  ! profit = 

     revenues - acquisition cost  

   - holding cost - transfer costs; 

! T( SC, PR, PX) = units of type PX demand satisfied 

                   by a type PR product; 

   PROF( SC) =  

     @SUM( PROD( PR): 

           V( PR) * @SUM( PROD( PX): T( SC, PX, PR)) 

                 - C( PR) * S( PR) 

                 - H( PR) * I( SC, PR)  

                 - @SUM( PROD( PX): 

                     TC( PR, PX) * T( SC, PR, PX))); 

   @FREE( PROF( SC)); 

   @FOR( PROD( PR): 

! Stock = inventory left + sent to various products; 

   S( PR) = I( SC, PR) + @SUM( PROD( PX): 

                                   T( SC, PR, PX)); 

! Directly satisfied + unsatisfied = original demand;  

   T( SC, PR, PR) + U( SC, PR) = DEM( SC, PR); 

! Unsatisfied demand must be covered from somewhere; 

   U( SC, PR) = @SUM( PROD( PX)| PX #NE# PR: 

                                    T( SC, PX, PR)); 

! Cannot send too much to any one place; 

    @FOR( PROD( PX)| PX #NE# PR: 

       T( SC, PX, PR) <= FRAC( PX, PR) * U( SC, PR); 

! In case users find it confusing 

   to transfer fractional items; 

    @GIN( T( SC, PR, PX)); 

        ); 

       ); 

      ); 

END 

 When solved, we see the expected net cost is $694,806.4. Hopefully, the maintenance revenues to 

Multisys are higher than this: 

Objective value:                -694806. 

 We see Multisys should stock 1508 of the 1 Gig drives and 2334 of the 2 Gig drives. There is at 

least one scenario in which it must buy 1558 drives on the spot market: 

Variable           Value        

  S( G1)        1508.000        

  S( G2)        2334.000           

S( SPOT)        1558.000           
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It is interesting to look at the transfers required under each scenario: 

  T( 1, G1, G1)        1508.000 

  T( 1, G2, G2)        2334.000 

T( 1, SPOT, G1)         592.000 

T( 1, SPOT, G2)         966.000 

  T( 2, G1, G1)        900.0000 

  T( 2, G2, G2)        2334.000 

T( 2, SPOT, G2)         376.000 

  T( 3, G1, G1)        1508.000 

  T( 3, G2, G1)          78.000 

  T( 3, G2, G2)        2256.000 

T( 3, SPOT, G1)         304.000 

  T( 4, G1, G1)        1508.000 

  T( 4, G2, G1)         324.000 

  T( 4, G2, G2)        1840.000 

T( 4, SPOT, G1)         162.000 

  T( 5, G1, G1)        1508.000 

  T( 5, G2, G2)        2334.000 

T( 5, SPOT, G1)         934.000 

  T( 6, G1, G1)        1508.000 

  T( 6, G2, G2)        2334.000 

T( 6, SPOT, G1)           1.000 

T( 6, SPOT, G2)         320.000 

 Notice Multisys plans to go to the spot market under every scenario. In scenarios 3 and 4, surplus 2 

Gig drives are substituted for 1 Gig drives.  

17.4 Economic Order Quantity 
The EOQ model assumes demand is constant over time and any order is satisfied instantly. Define: 

D = demand/year, 

K = fixed cost of placing an order, 

H = holding cost per unit per year. 

We want to determine: 

Q = quantity to order each time we order. 

For any Q chosen, the sum of setup and holding costs is: 

K * D/ Q + h * Q /2. 

The minimum of this function occurs when we set: 

Q = ( 2 * K * D / h)0.5  

 If we substitute this value for Q back into the cost function, we can find the cost per year if we 

behave optimally is: 

( 2 * K * D * h)0.5  

 This cost expression illustrates an interesting economy of scale in inventory management with 

respect to demand volume, D. 
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 Inventory related costs increase with the square root of volume. Thus, if you have two independent 

facilities, each incurring $1M per year in inventory related costs, combining them into a single facility 

will reduce total system costs to $1.41 M from the original $2M. 

17.5 The Q,r Model 
The Q,r model extends the EOQ model with the additional realistic assumptions:  

a) there is a positive lead time, and  

b) the demand during the lead time is random.  

 If not for (b), we could trivially extend the EOQ model with the simple observation that we should 

place our order for the amount Q each time the inventory drops to r = demand during a lead time. Thus, 

each order will arrive just as inventory hits zero. 

 If the demand during a lead-time is random, then we will typically wish to increase r slightly to 

reduce the probability of running out before the order arrives. The Q,r policy is fairly common. For 

example, Dick Dauch, as Executive Vice President of Worldwide Manufacturing at Chrysler (see Dauch 

(1993)), used a slight variant of the Q,r model on a wide range of products at Chrysler. Nahmias (1997) 

gives a thorough introduction to the Q,r model. 

17.5.1 Distribution of Lead Time Demand 
Define: 

L = mean lead time in years, 

D = mean demand / year, 

sdL = standard deviation in lead time, 

sdD = standard deviation in demand / year, 

MLD = L * D = mean lead time demand. 

 If demands from one period to the next are independent and identically distributed, then the standard 

deviation in demand during a lead time, sdo, is given by: 

sdo = ( L * sdD
2 + D * D * sdL

2) 0.5 

 This formula assumes demands, or forecast errors, are independently distributed among periods. In 

reality, demands (or at least forecast errors) tend to be positively correlated among periods. The result 

is this formula will typically understate the true standard deviation in lead-time demand or forecast error 

over the lead-time. 

17.5.2 Cost Analysis of Q,r 
Define: 

F(r) = probability we do not run short in an order cycle if the reorder point is r, 

b(r) = expected number of units short in an order cycle if the reorder point is r. 

If it is safe to assume lead-time demand has a Normal distribution, then: 

b(r) = sdo * @PSL(( r – MLD)/ sdo ). 
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For a given Q, and r, the approximate expected cost per year is:  

K * (number of orders per year) + h * (average inventory level) + p * b(r) * (number of orders 

per year) 

 The average inventory level can be approximated as follows. On average, the stock level expected 

at the end of an order cycle (just before an order comes in) is: 

r – MLD + b(r). 

 The b(r) term is effectively a correction for the fact that r – MLD by itself would be an average over 

situations, some of which correspond to negative inventory. When inventory is negative, we should not 

be charging the holding cost h to it (thereby claiming an income rather than a cost). The b(r) term 

effectively adds back in the negative inventory that would occur when the lead-time demand is greater 

than r. 

 When the replenishment order arrives, the stock level is the order quantity Q plus the average 

quantity in stock at the end of the previous cycle ( r − MLD + b(r)). The average stock level is the average 

of these two quantities, [Q + (r − MLD + b(r)) + ( r − MLD + b(r))]/2 = (Q/2 + r − MLD + b(r)). Note 

r- MLD + b(r) is the average safety stock in the system. 

 So, we can write the average cost per year as: 

 = K * D/Q + h * ( Q/2 + r – MLD + b( r)) + p * b(r) * D / Q 

or 

 = ( K + p * b( r)) * D / Q + h * ( Q/2 + r – MLD + b(r)). 

 This cost expression does not contain a term for inventory in the pipeline (i.e., inventory ordered 

but not yet on hand). For a given lead time, the average pipeline inventory is a constant equal to 

D*L = MLD. A different holding cost rate may apply to pipeline inventory than to inventory on hand. 

There may be several reasons why the carrying cost of inventory on order is less than the carrying cost 

of physical inventory. For example, in the auto industry, a lead time of ten weeks is not unusual for the 

time from when a dealer places an order with the manufacturer until the order arrives. Of these ten 

weeks, the first nine weeks might be manufacturing time with only the last week being the time to ship 

the automobile from the manufacturer to the dealer. The cars are typically shipped FOB (Free On 

Board/From Our Base) the manufacturer's plant. The dealer thus pays for the car once it ships. So, the 

dealer incurs inventory carrying costs (e.g., cost of capital, for only one tenth of the lead time). 

 To minimize the cost, we can either note the similarity of the cost expression to that of the simple 

EOQ model, or we can differentiate with respect to the parameters and set to zero to get: 

Q = [ 2 * D( K + p * b(r))/ h] 0.5 , and 

1 – F(r) = h * Q/( h * Q + p * D), or 

F(r) = p * D/ ( p * D + h * Q). 

 Note the similarity of the above to the news vendor formula. The intuition is as follows. Suppose 

we increase the reorder point, r, by one unit. If demand is high during the lead time, then the shortage 

cost avoided is p. If demand is low, then we simply carried an extra unit in inventory for a cycle, incurring 

a cost of h * ( cycle length) = h * D/Q. Using the newsvendor-like arguments, we want to set: 

F( r) = p/ ( p + h*D/Q) = p * D/ ( p * D + h * Q). 
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 Some textbooks, see Nahmias (1997) for a discussion, using a slightly different approximation to 

expected inventory level just before an order arrives, get a slightly different expression for F(r), namely: 

F(r) = (p * D – h * Q)/ ( p * D). 

 Both are the result of making approximations to the average inventory level. The latter is intuitively 

less appealing because, for high values of h * Q, it can result in a negative value for F(r). Negative 

probabilities are hard to comprehend. When h * Q is small relative to p * D, then the two expressions 

result in approximately the same value for F(r). For example, if p * D = 1.0 and h * Q = .05, then: 

1/1.05 = 0.952; 

whereas: 

(1 - .05)/ 1 = 0.95. 

Example 

When Hewlett-Packard first started supplying printers to Europe, the shipping time from its plant on the 

west coast of the U.S. to Europe was about five weeks. Suppose the forecasted yearly demand for a 

certain printer was 270,000 units, with a monthly standard deviation of about 6351. A monthly standard 

deviation of 6351 implies a monthly variance of 6351 * 6351 = 40333333, a yearly variance (if monthly 

demands are independent) of 12 * 40333333= 484000000, and a yearly standard deviation of 

(484000000)^.5 = 22000. The yearly holding cost is $110/printer per year. We allow a separate cost term 

for pipeline inventory of $5/unit. For example, if we do not have to pay for a product until we receive it, 

then there would be no charge on pipeline inventory. The penalty for being out of stock when a demand 

occurs is $200/printer. The fixed cost of placing an order is $300. Suppose the standard deviation in 

lead-time is two weeks. What should be the re-order point and the re-order quantity? We can have 

LINGO do all the work for us with the following model:  

! Q,r inventory model( EOQRMODL); 

! Find the order quantity, Q, 

   and re-order point, R, for a product with...; 

 DATA: 

  D = 270000; ! Mean demand / year; 

  H = 110; ! Holding cost/unit/year; 

  HP=   5; ! Holding cost on pipeline inventory; 

  K = 300; ! Fixed order cost; 

  P = 200; ! Penalty cost/ unsatisfied demand; 

  L = .0962;    ! Lead time in years; 

  SDL = .03846; ! S.D. in lead time in years; 

  SDD = 22000;  ! S.D. in yearly demand; 

 ENDDATA 

!-------------------------------------------; 

! The Q,R inventory model; 

 MLD = L * D;    ! Mean lead time demand; 

! s.d. in lead time demand; 

SLD=(SDD * SDD * L + D * D * SDL * SDL)^.5; 

! Expected cost/ period is ECOST; 

 MIN = ECOST; 

ECOST = COSTORD + COSTCYC + COSTSFT + COSTPEN + COSTPIPE; 

  COSTORD = ( K * D/ Q); 

  COSTCYC = H * Q/2; 

  COSTSFT = H*( R - MLD + BR); 
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  COSTPEN = P * D * BR/ Q; 

  COSTPIPE = HP * MLD; 

!Expected amount short/cycle.  @PSL() is 

  the standard Normal linear loss function; 

 BR = SLD * @PSL( Z); 

!@PSN()is the standard Normal left tail prob.; 

 @PSN( Z) =  P * D /( P * D + H * Q); 

 R = MLD + SLD * Z;     ! Reorder point; 

! The following are all to help solve it faster; 

  Q >= (2*K*D/H)^.5; 

  @BND( - 3, Z, 3); 

  @FREE( ECOST);   @FREE( R);  

  @FREE( COSTORD); @FREE( COSTCYC); 

  @FREE( COSTSFT); @FREE( COSTPEN); 

  @FREE( Z);       @FREE( BR); 

Note it breaks the total cost into five components:  

1. ordering costs due to the $300 cost of placing an order,  

2. cycle inventory due to carrying inventory between order points,  

3. holding costs due to carrying safety stock,  

4. penalty costs due to being out of stock, and  

5. pipeline inventory costs due to product we have paid for, so-called FOB, but not yet 

received. 

It will be interesting to see which of the five is the most significant. A solution is: 

Variable           Value 

       D        270000.0 

       H           110.0 

      HP             5.0 

       K           300.0 

       P           200.0 

       L          0.0962 

     SDL         0.03846 

     SDD         22000.0 

     MLD         25974.0 

     SLD        12425.47 

   ECOST       3995220.0 

 COSTORD        8991.226 

 COSTCYC        495483.0 

 COSTSFT       2874377.0 

 COSTPEN        486498.0 

COSTPIPE        129870.0 

       Q        9008.782 

       R        52023.54 

      BR        81.16215 

       Z        2.096463  

 Notice that, of the yearly cost of about $3,995,220, the major component is the safety stock cost of 

$2,874,377. Comparing the order quantity of 9008 with the yearly demand of 270,000, we can observe 

this corresponds essentially to ordering every 12 days. The high re-order point, 52,024, relative to the 

order quantity is because of the long five-week delivery pipeline. Note, five weeks of demand is about 

26,000 units. 
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 This model can answer a variety of “what-if” questions regarding how cost is affected by various 

features of the supply chain. For example, suppose we could switch to a very reliable carrier, so the 

lead-time is always exactly five weeks. We simply set SDL = 0 in the data section as follows: 

DATA: 

  D = 270000; ! Mean demand / year; 

  H = 110; ! Holding cost/unit/year; 

  HP=   5; ! Holding cost on pipeline inventory; 

  K = 300; ! Fixed order cost; 

  P = 200; ! Penalty cost/ unsatisfied demand; 

  L = .0962;    ! Lead time in years; 

  SDL = 0.0;    ! S.D. in lead time in years; 

  SDD = 22000;  ! S.D. in yearly demand; 

 ENDDATA 

And get the solution: 

Variable           Value 

       D        270000.0 

       H           110.0 

      HP             5.0 

       K           300.0 

       P           200.0 

       L          0.0962 

     SDL             0.0 

     SDD         22000.0 

     MLD         25974.0 

     SLD        6823.547 

   ECOST       2419380.0 

 COSTORD        16623.32 

 COSTCYC        267997.1 

 COSTSFT       1753502.0 

 COSTPEN        251387.9 

COSTPIPE        129870.0 

       Q        4872.674 

       R        41892.24 

      BR        22.68391 

       Z         2.33284     

 So, it looks like the uncertainty in the lead-time is costing us about 3995220 - 2419380 = $1,575,840 

a year, most of it in extra safety stock. 
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 We might push the lead time improvement further. Suppose by using airfreight, we could reduce 

the lead-time from 5 weeks to a reliable 1 week. Our transportation costs will be higher, but how much 

could we save in inventory related costs? We set L = 1/52 = .01923. Thus: 

DATA: 

  D = 270000; ! Mean demand / year; 

  H = 110; ! Holding cost/unit/year; 

  HP=   5; ! Holding cost on pipeline inventory; 

  K = 300; ! Fixed order cost; 

  P = 200; ! Penalty cost/ unsatisfied demand; 

  L = .01923;    ! Lead time in years; 

  SDL = 0.0;    ! S.D. in lead time in years; 

  SDD = 22000;  ! S.D. in yearly demand; 

ENDDATA 

Now, the solution is: 

Variable           Value 

       D        270000.0 

       H        110.0000 

      HP        5.000000 

       K        300.0000 

       P        200.0000 

       L       0.0192300 

     SDL       0.0000000 

     SDD        22000.00 

     MLD        5192.100 

     SLD        3050.790 

   ECOST        1164946. 

 COSTORD        32286.60 

 COSTCYC        137982.9 

 COSTSFT        863009.1 

 COSTPEN        105707.1 

COSTPIPE        25960.50 

       Q        2508.780 

       R        13032.73 

      BR        4.911033 

       Z        2.570031       

 This looks very promising. Total costs are cut to less than half. Most of the savings, about $900,000, 

comes from a reduction in safety stock, about $400,000 from reduction in pipeline inventory, and about 

$100,000 savings each from a reduction in penalty costs and cycle or pipeline stock. 

17.6 Base Stock Inventory Policy 
If the fixed cost of placing an order is very low relative to the cost of carrying inventory and the cost of 

being out of stock, then the optimal policy is to reorder one unit whenever a demand occurs. From the 

Q, r model perspective, the optimal solution has Q = 1. Thus, the only decision is R, the reorder point. 

R is said to be the base stock. An order is placed every time the stock level drops below R. In other 

words, as soon as demand is observed. Clearly, such a model is interesting only when replenishment 

lead times are greater than zero. The main tradeoff in the system is between the cost of holding versus 

the expected cost of backorders or lost sales, just as in the news vendor problem. Base stock policies are 

very common in aircraft maintenance systems, where spare parts, such as engines, are very valuable 
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relative to the fixed cost of shipping a part to a location where it is needed. Periodic base stock policies 

are also used for many items in a grocery store. A typical product in a grocery store has a fixed amount 

of shelf space allocated to it. Early each day, a supplier will stop by the store and fill up the space. The 

major decision is how much space to allot to each item. 

17.6.1 Base Stock — Periodic Review 
A slight variation of the basic base stock system is one in which inventory is not checked at every instant, 

but only periodically. For example, if the product is supplied by ship and the ship arrives only every two 

weeks, then there is not much benefit in checking inventory constantly. The most typical review period 

might be weekly (e.g., on Monday mornings after big weekend demand in a retail store). The 

Newsvendor analysis can then be used to determine the best order-up-to level. Let: 

L  = lead time in periods, 

h  = holding cost per unit left in stock at end of period, 

p  = penalty per unit of demand not satisfied from inventory immediately, 

S  = pipeline order up to level (also = the reorder point R), 

Dt  = demand in period t. 

 We want to determine the best value for S, given known values for L, h, and p, with the Dt’s being 

random variables. 

17.6.2 Policy 
At the beginning of each period, we observe the pipeline inventory, y, and place an order for S − y. Thus, 

an order placed in period t arrives just before demand occurs in period t + L (but after demand occurs in 

t + L - 1). So, L = 0 corresponds to instant delivery. We assume unsatisfied demand is backlogged. 

17.6.3 Analysis 
Just before demand occurs in period t + L, the physical inventory available to immediately satisfy 

demand is: 

S D j
    j t

t L

−
=

+ −


1

 
(e.g., if L = 0, the physical inventory is simply S). 

 If the demands are randomly distributed, let: 

F(x) = Prob {
   j t

t L

=

+

 Dj  x} 

Then, by marginal analysis, the expected profit contribution of increasing S by one unit is: 

p(1 - F(S)) - h F(S). 

Setting this to zero gives: 

p = (p + h)F(S) 

or 

F(S) = p/(p + h) 

Note, we did not require the assumption that Dt be independently distributed. 
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 The expected holding and shortage cost per period is: 

E [h * max (0, S - 
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+
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 In the case that 
   j t

t L

=

+

 Dt is Normal with mean  and s.d.  , the expected holding and shortage cost 

can be written as: 

= h (S - ) + (p + h)  * @PSL ((S - ) /). 

 The lost sales case is very difficult to analyze. The backlogging case as an approximation to the lost 

sales case will tend to set S too high, understate holding costs, and overstate shortage costs. 

Example 

An item at a food store is restocked daily. It has a mean demand of 18 units per day with a standard 

deviation of 4.243. There is a lead-time of two days before an order gets replenished. The holding cost 

per unit is $0.005 per day. The shortage penalty per unit is $0.05 per day. 

! Base stock policy  

  with periodic review and Normal demand(BASESTP) 

 DATA: 

   H = .005;  ! Holding cost/day; 

   P = .05;   ! Shortage penalty/day; 

   MEAN = 18; ! Mean demand/day; 

   SD = 4.243;! Std. Dev. in demand/day; 

   LEADT = 2; !Lead time in days; 

ENDDATA 

!-------------------------------------------------; 

 MU = LEADT * MEAN; 

 SIG = (LEADT * SD * SD)^.5; 

 MIN = H * ( S - MU) +  

       ( H + P) * SIG * @PSL(( S - MU)/ SIG); 

The solution is: 

Optimal solution found at step:        11 

Objective value:                0.5399486E-01 

Variable           Value        Reduced Cost 

       H       0.5000000E-02       0.0000000 

       P       0.5000000E-01       0.0000000 

    MEAN        18.00000           0.0000000 

      SD        4.243000           0.0000000 

   LEADT        2.000000           0.0000000 

      MU        36.00000           0.0000000 

     SIG        6.000508           0.0000000 

       S        44.01758           0.8759009E-05 

 So, we should carry a base stock of 44 units and expect holding plus penalty costs to be about $0.054 

per day. 
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17.6.4 Base Stock — Continuous Review 
We say we have continuous review if we review inventory continuously and place an order at any instant 

that the inventory level drops below the reorder point. Under continuous review, it is convenient to 

assume demand has a Poisson distribution. In fact, the Poisson distribution is a very appropriate 

distribution to use for slow moving items. A useful definition of a slow moving item is one for which 

the mean demand in a period is less than two times its standard deviation. Just as @PSL() is the linear 

loss function for the Normal distribution, @PPL() is the linear loss function for the Poisson distribution. 

Arguing much as before, the relevant model for the Poisson distribution is: 

! Base stock policy  

  with continuous review and Poisson demand(BASESTC); 

 DATA: 

   H = .005;  ! Holding cost/day; 

   P = .05;   ! Shortage penalty/day; 

   MEAN = 18; ! Mean demand/day; 

   LEADT = 2; !Lead time in days; 

ENDDATA 

!-------------------------------------------------; 

   MU = LEADT * MEAN; 

   MIN = H * ( S - MU) + ( H + P) * @PPL( MU, S); 

For this set of data, we get essentially the same result as when the Normal distribution was used: 

Optimal solution found at step:        66 

Objective value:                0.5583237E-01 

Variable           Value        Reduced Cost 

       H       0.5000000E-02       0.0000000 

       P       0.5000000E-01       0.0000000 

    MEAN        18.00000           0.0000000 

   LEADT        2.000000           0.0000000 

      MU        36.00000           0.0000000 

       S        43.99994          -0.4514980E-02 

17.7 Multi-Echelon Base Stock, the METRIC Model 
In 1997, the Wall Street Journal reported General Motors (GM) switched to a “distribution center” 

structure for distributing some of its automobile lines, see Stern and Blumenstein (1996). Previously, all 

of GM’s finished products were stored at retail car dealers. Under the new system, a significant fraction 

of cars would be stored at distribution centers (DC) located strategically around the country. Under the 

old system, if a given dealer did not have the exact style of car desired by a customer, then with high 

probability that dealer would lose the sale. Even worse for GM, that potential customer might switch to 

a competing manufacturer’s product. 

 Under the DC structure, a dealer would typically be able to get, within one day’s time from a nearby 

DC, the exact car desired by the customer. Under either system, GM must decide: 

1) how much inventory to allocate to each dealer. 

Under the DC system, GM must also decide: 

2) how much inventory to allocate to each DC. 

 A very similar problem is faced by a large airline. In order to maintain high on-time service, an 

airline must be able to quickly replace any critical part that fails in an aircraft. For example, the author 
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once had to wait five hours to board a flight because a safety exit chute on the aircraft was accidentally 

deployed while the aircraft was at the gate. There was a five-hour delay while a replacement chute was 

flown in from 1500 kilometers away. An airline must decide which parts to stock at which locations 

around the country. Some high demand parts will be stocked at locations where the demand is likely to 

occur, and some parts will be stored at centrally located DC’s, so they can be quickly flown to low 

demand cities when demand occurs there. 

 A key feature of many of these “inventory positioning” problems involving high value items is the 

appropriate replenishment policy to use as a base stock policy. That is, whenever a demand removes a unit 

from inventory, an order for a replacement unit is placed immediately. When there are two or more levels in 

the distribution system (e.g., retail outlets served by one or more DC’s), the most widely used model for 

analyzing this inventory positioning problem is some variation of the METRIC model developed by 

Sherbrooke (1992) for managing spare parts inventories for the U.S. Air Force. The following model 

illustrates for the case of five outlets served by a single DC or “depot”. In this version, the user specifies, 

among other parameters, how much stock to carry at the DC and how much stock to allocate over all outlets. 

The model decides how to best allocate the stock over the outlets and reports the total expected units on 

backorder. 

 We look at a situation of how to allocate five units of inventory, say spare engines for an airline, at 

either a central depot and at each of five demand points: 

MODEL:  

! Two level inventory model with possible  

repair at outlet(METRICX); 

! Compute average units on backorder, TBACK, for  

given limit on depot stock and stock available  

for outlets, using a base stock policy; 

SETS: 

OUTLET/1..5/: ! Each outlet has a...; 

D2OUTL, ! Resupply time from depot to outlet; 

DEM,    ! Demand rate at outlet; 

PREP,  ! Prob item can be repaired at outlet; 

REPT,    ! Repair time at outlet; 

SOUTLET, ! Stock level; 

ERT,    ! Effective resupply time from depot; 

AL;     ! Average level of backlogged demand; 

ENDSETS 

DATA: 

!  Delivery time to outlet from depot(days); 

D2OUTL =  3     7     3     3     9; 

!  Expected demand/day; 

DEM =   .068  .05   .074  .063  .038; 

!  Probability item can be repaired at outlet; 

PREP=   .2    .2    .2    .25   .1; 

!  Repair time at outlet, if repairable; 

REPT=    3     3     3     3     3; 

!  Stock levels to allocate over all outlets; 

SOUTOTL = 5; ! at the depot; 

SDEPOT  = 0; ! Resupply time at depot; 

RDEPOT =  9; 

ENDDATA 
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!---------------------------------------------; 

! Compute total demand at depot; 

DEM0 = @SUM( OUTLET: DEM * ( 1 - PREP)); 

! Effective expected wait at depot; 

EWT0 = @PPL( DEM0 * RDEPOT, SDEPOT)/ DEM0; 

@FOR( OUTLET( I): 

! Estimate resupply time including depot delay; 

ERT( I) = D2OUTL( I) + EWT0; 

! Expected demand on backorder; 

AL( I) = 

@PPL( DEM( I)* ( 1 - PREP( I)) * ERT( I) 

+ DEM( I) * PREP( I) * REPT( I), SOUTLET( I)); 

! Can stock only integer quantities; 

@GIN( SOUTLET( I)); 

); 

! Total expected demand on backorder; 

TBACK = @SUM( OUTLET: AL); 

! Limit on stock at outlets; 

@SUM( OUTLET( I): SOUTLET( I)) <= SOUTOTL; 

! Minimize expected backorders; 

MIN = TBACK; 

END 

Case 0: All inventory at outlets: 
   Variable           Value        

     SDEPOT        0.000000 

SOUTLET( 1)        1.000000        

SOUTLET( 2)        1.000000        

SOUTLET( 3)        1.000000         

SOUTLET( 4)        1.000000        

SOUTLET( 5)        1.000000        

      TBACK        .9166685        

    ERT( 1)        12.00000        

    ERT( 2)        16.00000        

    ERT( 3)        12.00000        

    ERT( 4)        12.00000        

    ERT( 5)        18.00000        

Case 1: One unit at the depot: 
   Variable           Value      

     SDEPOT        1.000000        

SOUTLET( 1)        1.000000        

SOUTLET( 2)        1.000000        

SOUTLET( 3)        1.000000        

SOUTLET( 4)        0.000000 

SOUTLET( 5)        1.000000        

      TBACK        .8813626        

    ERT( 1)        8.258586        

    ERT( 2)        12.25859        

    ERT( 3)        8.258586        

    ERT( 4)        8.258586        

    ERT( 5)        14.25859        
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Case 2: Two units at the depot: 
   Variable           Value        

     SDEPOT        2.000000        

SOUTLET( 1)        0.000000    

SOUTLET( 2)        1.000000        

SOUTLET( 3)        1.000000        

SOUTLET( 4)        0.000000    

SOUTLET( 5)        1.000000        

      TBACK        .8683596        

    ERT( 1)        5.602399        

    ERT( 2)        9.602399        

    ERT( 3)        5.602399        

    ERT( 4)        5.602399        

    ERT( 5)        11.60240        

Case 3: Three units at the depot: 
   Variable           Value     

     SDEPOT        3.000000     

SOUTLET( 1)        0.000000 

SOUTLET( 2)        1.000000        

SOUTLET( 3)        0.000000 

SOUTLET( 4)        0.000000    

SOUTLET( 5)        1.000000        

      TBACK        .9041468        

    ERT( 1)        4.094082        

    ERT( 2)        8.094082        

    ERT( 3)        4.094082        

    ERT( 4)        4.094082        

    ERT( 5)        10.09408          

 Observe that, from the expected number of units on backorder, the best solution is to put two units 

at the depot, and one unit at each of locations 2, 3, and 5. This version deals with only a single product 

and a single DC. See Sherbrooke (1992) for various extensions to this simple version. 
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17.8 DC With Holdback Inventory/Capacity 
Fisher and Raman (1996) describe an approach, called “accurate response” used at the apparel firm, 

Sport Obermeyer, to help reduce inventories for style goods. The basic setting is two periods with 

multiple outlets. In the first period, some inventory or production capacity may be held back in order to 

be allocated in the second period to the outlets that look like they might otherwise run out in the second 

period. This model has an upper limit, HBLIM, on the amount of inventory or capacity that can be held 

back. In the Sport Obermeyer case, this corresponds to the limited production capacity available at the 

end of the first period to react to demands observed during the first period. The model allows demands 

in the second period to be correlated with demands in the first period via the SHIFT parameter in the 

same manner Fisher and Raman (1996) do for Sport Obermeyer. SHIFT( R, S) is the amount by which 

all demands for retail point (or product) R, are shifted up if the demand scenario in the first period was 

S. 

MODEL: 

! Holdback inventory model(HOLDBACK). A central facility 

can holdback some inventory or capacity after the first 

period to allocate to outlets likely to run out in 

the second period; 

SETS: 

   RETAILP/1..2/: C, V, S1, P1, P2, H1, H2; 

   SCENE1/1..4/:; 

   SCENE2/1..3/:; 

   RXS1( RETAILP, SCENE1): DEM1, SHIFT, Z1, ALLOC; 

   RXS2( RETAILP, SCENE2): DEM2; 

   RXS1XS2( RETAILP, SCENE1, SCENE2): Z2; 

ENDSETS 

DATA: 

   C = 50 60;  ! Cost/unit for each retail point; 

   HBLIM = 80; ! Max available for period 2; 

   V = 120 160;! Selling price at each retail point; 

   P1=10 11; ! Shortage penalty, lost sales, period 1; 

   P2=12 17; ! Shortage penalty, lost sales, period 2; 

   H0 = 4;     ! Holding cost per unit in holdback; 

   H1 =  5 6;  ! Holding cost at end of period 1; 

   H2 = -18 -23; ! At end of period 2; 

   DEM1 = 90  60 100 210  ! Demands by scenario; 

          50 102  87  45; 

   DEM2 = 50  60 100 

          70  45  87; 

   SHIFT= 12 -10  13  19  ! Shift in period 2 demand; 

         -11  14  -8 -15; ! based on period 1 demand; 

ENDDATA 

!---------------------------------------------------; 

! Count number of scenarios; 

NS1 = @SIZE( SCENE1); 

NS2 = @SIZE( SCENE2); 

MAX = REVENUE - PCOST - SHORT1 - SHORT2 - HOLD0 - HOLD1 - HOLD2; 

PCOST = @SUM( RXS1( I, K1): 

            C( I) * ( S1( I) + ALLOC( I, K1))/NS1; 

             ); 

! Amount ordered = held back + initial allocation; 

S = HOLDBK + @SUM( RETAILP( I): S1( I)); 
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! Limits on amount available for second period; 

@BND( 0, HOLDBK, HBLIM); 

!  Set Z1 = lost sales in period 1; 

@FOR( RXS1( I, K1): 

   Z1( I, K1) >= DEM1( I, K1) - S1( I); 

); 

!  Set Z2 = lost sales in period 2; 

@FOR( RXS1XS2( I, K1, K2): 

 Z2( I, K1, K2) >= DEM2( I, K2) + SHIFT( I, K1) - 

 (S1( I) - DEM1( I, K1) + Z1( I, K1) + ALLOC( I, K1)); 

); 

! Cannot allocate more than was held back; 

@FOR( SCENE1( K1): 

 @SUM( RETAILP( I): ALLOC( I, K1)) <= HOLDBK; 

); 

! Compute various average costs; 

HOLD0 = H0 * HOLDBK; 

HOLD1 = @SUM( RXS1( I, K1): 

H1( I)* ( S1( I) - DEM1( I, K1) + Z1( I, K1)))/ NS1; 

! If there is a salvage value, HOLD2 could be < 0; 

@FREE( HOLD2); 

HOLD2 = @SUM( RXS1XS2( I, K1, K2): H2( I) *  

 ( S1( I) - DEM1( I, K1) + Z1( I, K1) + ALLOC( I, K1)  

 - DEM2( I, K2) - SHIFT( I, K1) + Z2( I, K1, K2))) 

 /( NS1 * NS2); 

SHORT1 = @SUM( RXS1( I, K1): P1( I) * Z1( I, K1))/NS1; 

SHORT2 = @SUM( RXS1XS2( I, K1, K2):  

P2( I) * Z2( I, K1, K2))/( NS1 * NS2); 

REVENUE = @SUM( RXS1XS2( I, K1, K2): V( I) *  

 ( DEM1( I, K1) - Z1( I, K1) 

 +  DEM2( I, K2) + SHIFT( I, K1) - Z2( I, K1, K2))) 

 /( NS1 * NS2); 

END 

Part of the solution is: 

Optimal solution found at step:        78 

Objective value:                 23496.58 

    Variable           Value        Reduced Cost 

     REVENUE        44060.00           0.0000000 

       PCOST        20600.00           0.0000000 

      SHORT1       0.0000000           0.1000000 

      SHORT2        49.91667           0.0000000 

       HOLD0        320.0000           0.0000000 

       HOLD1        745.0000           0.0000000 

       HOLD2       -1151.500           0.0000000 

           S        406.0000           0.0000000 

      HOLDBK        80.00000           -2.000000 

      S1( 1)        210.0000           0.0000000 

      S1( 2)        116.0000           0.0000000 

   Z1( 1, 1)       0.0000000            29.00000 

   Z1( 1, 2)       0.0000000            29.00000 

   Z1( 1, 3)       0.0000000            21.00000 

   Z1( 1, 4)       0.0000000           0.0000000 
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   Z1( 2, 1)       0.0000000            28.97500 

   Z1( 2, 2)       0.0000000            25.39167 

   Z1( 2, 3)       0.0000000            28.97500 

   Z1( 2, 4)       0.0000000            26.55833 

ALLOC( 1, 1)       0.0000000            8.000000 

ALLOC( 1, 2)       0.0000000            11.58333 

ALLOC( 1, 3)        3.000000           0.0000000 

ALLOC( 1, 4)        79.00000           0.0000000 

ALLOC( 2, 1)        10.00000           0.0000000 

ALLOC( 2, 2)        80.00000           0.0000000 

ALLOC( 2, 3)        50.00000           0.0000000 

ALLOC( 2, 4)        1.000000           0.0000000 

Z2( 1, 1, 1)       0.0000000            9.500000 

Z2( 1, 1, 2)       0.0000000            9.500000 

Z2( 1, 1, 3)       0.0000000            9.500000 

Z2( 1, 2, 1)       0.0000000            9.500000 

Z2( 1, 2, 2)       0.0000000            9.500000 

Z2( 1, 2, 3)       0.0000000            9.500000 

Z2( 1, 3, 1)       0.0000000            9.500000 

Z2( 1, 3, 2)       0.0000000            9.500000 

Z2( 1, 3, 3)       0.0000000            1.500000 

Z2( 1, 4, 1)       0.0000000            9.500000 

Z2( 1, 4, 2)       0.0000000            8.583333 

Z2( 1, 4, 3)        40.00000           0.0000000 

Z2( 2, 1, 1)       0.0000000            12.83333 

Z2( 2, 1, 2)       0.0000000            12.83333 

Z2( 2, 1, 3)       0.0000000            3.583333 

Z2( 2, 2, 1)       0.0000000            12.83333 

Z2( 2, 2, 2)       0.0000000            12.83333 

Z2( 2, 2, 3)        7.000000           0.0000000 

Z2( 2, 3, 1)       0.0000000            12.83333 

Z2( 2, 3, 2)       0.0000000            12.83333 

Z2( 2, 3, 3)       0.0000000            3.583333 

Z2( 2, 4, 1)       0.0000000            12.83333 

Z2( 2, 4, 2)       0.0000000            12.83333 

Z2( 2, 4, 3)       0.0000000            1.166666 

 The solution recommends ordering 406 units in total and holding back 80 units to allocate out later 

to the outlets that appear to need it. From the ALLOC variables, you can see that if scenario 4 occurs, 

then retail point 1 gets most of the held back units, otherwise retail point 2 gets most of the held back 

units. 

17.9 Multiproduct, Constrained Dynamic Lot Size Problems 
In many production settings, we know demand is not stationary. That is, the demand varies in a 

predictable way. If we are willing to disregard uncertainty, then efficient methods exist for scheduling 

production of products over time. One of the earliest occurrences of this problem was the case of a single 

product with no capacity constraints by Wagner and Whitin (1958). They referred to this problem as the 

dynamic lot size problem. 

 We will look at the more general case of multiple products. The most common interaction between 

products is competition for scarce resources. We first consider the case where each product has 

essentially the same cost and demand structure as a single product dynamic lot size problem. The 
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products interact by competing for scarce production capacity. This situation can be thought of as a 

single stage material requirements planning (MRP) problem where production capacities, setup costs, 

and holding costs are explicitly considered and optimum solutions are sought. 

 Examples might be the scheduling of production runs of different types of home appliances on an 

appliance assembly line or the scheduling of different types of automotive tires onto a tire production 

line. In the applications described by Lasdon and Terjung (1971) and King and Love (1981), several 

dozen tire types compete for scarce capacity on a few expensive tire molding machines. 

 The general situation can be described formally by the following example. 

17.9.1 Input Data 
P =  number of products; 

T = number of time periods; 

dit = demand for product i in period t, for i = 1, 2, ..., P; t = 1, 2, ..., T; 

hit = holding cost charged for each unit of product i in stock at end of period t; 

cit = cost per unit of each product i produced in period t; 

sit = setup cost charged if there is any production of product i in period t; 

at = production capacity in period t. We assume the units (e.g., ounces, pounds, grams, etc.) 

have been chosen for each product, so producing one unit of any product uses one unit of 

production capacity. 

 There have been many mathematical programming formulations of this problem. Many of them bad 

from a computational viewpoint. Lasdon and Terjung (1971) describe a good formulation that has been 

profitably used for many years at the Kelly-Springfield Tire Company. The following formulation due 

to Eppen and Martin (1987) appears to be one of the best and enjoys the additional benefit of being 

moderately easy to describe. The decision variables used in this formulation are: 

xist = fraction of demand in periods s through t of product I, which is produced in period s, 

where:  

   1  s  t  T; 

 = 0 otherwise. 

yit = 1 if any product i is produced in period t, 

 = 0 otherwise. 

It is useful to compute the variable cost associated with variable xist. It is: 

gist = cis * (dis di,s+1 + ... + dit) + di,s+1 * his + di,s+2 * (his + hi,s+1) + ...+ dit * (his + hi,s+1 + ... 

+ hi,t-1) 

 Similarly, it is useful to compute the amount of production, pist, in period s associated with using 

variable xist: 

pist = dis + di,s+1 + ... + dit 

The objective function can now be written: 
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There will be three types of constraints. Specifically:  

constraints that cause demand to be met each period for each product,  

constraints that, for each product and period, force a setup cost to be incurred if there was any 

production of that product, and  

constraints that force total production to be within capacity each period.  

The constraints can be written as: 

a) x ilt
t
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1

 = 1, for i = 1, 2, …, P, 
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x x
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− =  ,        for i = 1, 2, …, P and s = 2, 3, …, T 

b) yis − xiss − xis,s+1 − … − xis,T  0, for i = 1, 2, …, P, and s = 1, 2, …, T, 

c)  p +xist
t

T
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P

ist
==


s1
 

                for s = 1, 2, …, T 

All variables are required to be nonnegative. yit is required to be either 0 or 1. 

 If any of the dit = 0, then there must be a slight modification in the formulation. In particular, if pist 

= 0, then xist should not appear in constraint set (b). Also, if pist = 0 and s < t, then variable xist may be 

dropped completely from the formulation. 

17.9.2 Example 
The parameters of a two-product, constrained, dynamic lotsize problem are as follows: 

Demand May June July August September October 

Product A: 40 60 100 40 100 200 

Product B: 20 30 40 30 25 35 

Setup Cost 
      

Product A: 100 100 150 150 205 200 

Product B: 30 40 30 55 45 45 

Variable 
      

Cost/Unit       

Product A: 5 6 7 8 9 10 

Product B: 2 4 4 5 5 5 

Unit holding 
      

cost/period       

Product A: 1 1 2 2 3 2 

Product B: 2 1 1 2 1 2 

 Production capacity is 200 units per period, regardless of product. Two products can be produced 

in a period. 
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 An LP/IP formulation for this example appears as follows: 

MODEL: 

!  Two Product Capacitated Lotsizing Problem. 

!     Yit = 1 if product i is produced in period t, 

!     XAst = 1 if demands in periods s through t are 

! satisfied from production in period s, for product 

!       A, 

!     XBst = 1 etc.  for product B; 

MIN  = 100* YA1  +  100* YA2  +  150* YA3 

    +  150* YA4  +  205* YA5  +  200* YA6 

    +   30* YB1  +   40* YB2  +   30* YB3 

    +   55* YB4  +   45* YB5  +   45* YB6 

    +  200* XA11 +  560* XA12 + 1260* XA13 

    + 1620* XA14 + 2720* XA15 + 5520* XA16 

    +  360* XA22 + 1060* XA23 + 1420* XA24 

    + 2520* XA25 + 5320* XA26 +  700* XA33  

    + 1060* XA34 + 2160* XA35 + 4960* XA36 

    +  320* XA44 + 1320* XA45 + 3920* XA46 

    +  900* XA55 + 3300* XA56 + 2000* XA66 

    +   40* XB11 +  160* XB12 +  360* XB13 

    +  540* XB14 +  740* XB15 + 1055* XB16 

    +  120* XB22 +  320* XB23 +  500* XB24 

    +  700* XB25 + 1015* XB26 +  160* XB33 

    +  310* XB34 +  485* XB35 +  765* XB36  

    +  150* XB44 +  325* XB45 +  605* XB46 

    +  125* XB55 +  335* XB56 +  175* XB66; 

!  For product A: 

!     If a production lot was depleted in period 

! i-1 (the - terms), then a production run of some !sort must be started 

in period i (the  + terms); 

[A1] + XA11 + XA12 + XA13 + XA14 + XA15 + XA16 = + 1; 

[A2] - XA11 + XA22 + XA23 + XA24 + XA25 + XA26 = 0; 

[A3] - XA12 - XA22 + XA33 + XA34 + XA35 + XA36 = 0; 

[A4] - XA13 - XA23 - XA33 + XA44 + XA45 + XA46 = 0; 

[A5] - XA14 - XA24 - XA34 - XA44 + XA55 + XA56 = 0; 

[A6] - XA15 - XA25 - XA35 - XA45 - XA55 + XA66 = 0; 

!  The setup forcing constraints for A; 

[FA1]  YA1 - XA11 - XA12 - XA13 - XA14 - XA15 

      - XA16 >=   0; 

[FA2]  YA2 - XA22 - XA23 - XA24 - XA25 - XA26 >= 0; 

[FA3]  YA3 - XA33 - XA34 - XA35 - XA36 >= 0; 

[FA4]  YA4 - XA44 - XA45 - XA46 >= 0; 

[FA5]  YA5 - XA55 - XA56 >= 0; 

[FA6]  YA6 - XA66 >= 0; 

!  Same constraints for product B; 

[B1] + XB11 + XB12 + XB13 + XB14 + XB15 + XB16 = + 1; 

[B2] - XB11 + XB22 + XB23 + XB24 + XB25 + XB26 = 0; 

[B3] - XB12 - XB22 + XB33 + XB34 + XB35 + XB36 = 0; 

[B4] - XB13 - XB23 - XB33 + XB44 + XB45 + XB46 = 0; 

[B5] - XB14 - XB24 - XB34 - XB44 + XB55 + XB56 = 0; 

[B6] - XB15 - XB25 - XB35 - XB45 - XB55 + XB66 = 0; 
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!  The setup forcing constraints; 

[FB1]  YB1 - XB11 - XB12 - XB13 - XB14 - XB15 

     - XB16 >= 0; 

[FB2]  YB2 - XB22 - XB23 - XB24 - XB25 - XB26 >= 0; 

[FB3]  YB3 - XB33 - XB34 - XB35 - XB36 >= 0; 

[FB4]  YB4 - XB44 - XB45 - XB46 >= 0; 

[FB5]  YB5 - XB55 - XB56 >= 0; 

[FB6]  YB6 - XB66 >= 0; 

!  Here are the capacity constraints for each period; 

!The coefficent of a variable is the associated lotsize;  

[CAP1]  40* XA11 + 100* XA12 + 200* XA13 

      + 240* XA14 + 340* XA15  + 540* XA16 

      +  20* XB11 +  50* XB12 +  90* XB13 + 120* XB14 

      + 145* XB15 + 180* XB16 <=   200; 

[CAP2]  60* XA22 + 160* XA23 + 200* XA24 

      + 300* XA25 + 500* XA26   + 30* XB22 

      +  70* XB23 + 100* XB24 + 125* XB25 + 160* XB26 

      <= 200; 

[CAP3] 100* XA33 + 140* XA34 + 240* XA35 

      + 440* XA36 +  40* XB33   + 70* XB34 

      +  95* XB35 + 130* XB36 <=  200; 

[CAP4]  40* XA44 + 140* XA45 + 340* XA46 

       +  30* XB44 +  55* XB45  + 90* XB46 <= 200; 

[CAP5] 100* XA55 + 300* XA56 +  25* XB55 

      +  60* XB56 <=   200; 

[CAP6] 200* XA66 +  35* XB66 <=   200; 

!  Declare the setup variables integer; 

@BIN( YA1); @BIN( YA2);  

@BIN( YA3); @BIN( YA4); 

@BIN( YA5); @BIN( YA6);  

@BIN( YB1); @BIN( YB2); 

@BIN( YB3); @BIN( YB4);  

@BIN( YB5); @BIN( YB6); 

END 

 The interpretation of the Xijk variables and the constraint rows 2 through 7 can perhaps be better 

understood with the picture in the figure below: 

Example Solution 
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 The demand constraints, 2 through 7, force us to choose a set of batch sizes to exactly cover the 

interval from 1 to 6. If an arrow from period 1 terminates at the end of period 3 (production run in period 

1 is sufficient for only the first three periods), then another arrow must start at the end of period 3. 

 If we solve it as an LP (i.e., with the constraints Yit = 0 or relaxed to 0 < Yit < 1), we get a solution 

with cost $5,968.125. 

 When solved as an IP, we get the following solution: 

Objective Function Value  6030.00000 

        Variable            Value 

             YA1             1.000000 

             YA2             1.000000 

             YA6             1.000000 

             YB1             1.000000 

             YB3             1.000000 

             YB5             1.000000 

            XA11             0.666667 

            XA15             0.333333 

            XA25             0.666667 

            XA66             1.000000 

            XB12             1.000000 

            XB34             1.000000 

            XB56             1.000000 

 The production amounts can be read off the coefficients of the nonzero X variables in the capacity 

constraints of the LP. This solution can be summarized as follows: 

Product A  Product B 

Period Production Period Production 

1 140 

(0.6667  40 + 0.3333  340) 

1 50 

2 200 

(0.6667  300) 

2 0 

3 0 3 70 

4 0 4 0 

5 0 5 60 

6 200 6 0 
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A general, set-based formulation for this example follows: 

MODEL: 

SETS:  ! Multiproduct capacitated lotsizing (CAPLOT); 

   TIME ; 

   PROD: ST, ! Setup time for product I; 

   PT; ! Production time/unit for product I; 

   PXT( PROD, TIME): 

   D, ! Demand for prod I in period S; 

   K, ! Setup cost for prod I in period S; 

   C, ! Cost/unit for prod I in period S; 

   H, ! Holding cost/unit for prod I, end of period S; 

   MAKE, ! Amount to make of I in period S; 

   Y; ! = 1 if produce I in period S, else 0; 

   PXTXT( PROD, TIME, TIME)| &2 #LE# &3: 

   X, ! Fraction of demands in S through T satisfied  

        by production in period S; 

   VC, ! Variable cost of getting an item from S to T; 

   TP; ! Total production in the batch: (I,S,T); 

ENDSETS 

DATA: 

   CAP = 200;   ! Capacity each period; 

  PROD= A, B;  ! The products;  

   ST = 0  0;  ! Setup time for each product; 

   PT = 1  1;  ! Production time/unit for each product; 

 TIME= MAY  JUN  JUL  AUG  SEP  OCT; 

   D =  40   60  100   40  100  200 

        20   30   40   30   25   35; 

   K = 100  100  150  150  205  200 

        30   40   30   55   45   45; 

   H =   1    1    2    2    3    2 

         2    1    1    2    1    2; 

   C =   5    6    7    8    9   10 

         2    4    4    5    5    5; 

ENDDATA 

!------------------------------------------------------; 

@FOR( PXT( I, S): 

 VC( I, S, S) = C( I, S); 

 TP( I, S, S) = D( I, S); 

); 

@FOR( PXTXT( I, S, T) | S #LT# T: 

! Variable cost of getting product I from S to T; 

VC( I, S, T) = VC( I, S, T-1) + H( I, T - 1); 

! Total demand for I over S to T; 

TP( I, S, T) = TP( I, S, T-1) + D( I, T); 

); 

MIN = @SUM( PXT( I, T): K( I, T) * Y( I, T)) 

  + @SUM( PXTXT( I, S, T): 

  X( I, S, T) * 

     @SUM( PXT( I, J) | S #LE# J #AND# J #LE# T: 

                       D( I, J) * VC( I, S, J))); 

! Capacity constraints; 

@FOR( TIME( S): 

 @SUM( PXT( I, S): ST( I) * Y( I, S)) + 
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  @SUM( PXTXT( I, S, T): 

   TP( I, S, T) * PT( I) * X( I, S, T)) <= CAP;); 

! Demand constraints; 

@FOR( PROD( I): 

! First period must be covered; 

 @SUM( PXTXT( I, S, T)| S #EQ# 1: X( I, 1, T)) = 1; 

! For subsequent periods, if a run ended in S-1, then 

we must start a run in S; 

 @FOR( TIME( S)| S #GT# 1: 

  @SUM( PXT( I, J)| J #LT# S: X( I, J, S - 1)) = 

  @SUM( PXTXT( I, S, J): X( I, S, J)); 

    );   ); 

! Setup forcing constraints; 

@FOR( PXT( I, S): 

 @BIN( Y( I, S)); 

 Y( I, S) >= @SUM( PXTXT( I, S, T): 

 @SIGN( TP( I, S, T)) * X( I, S, T)); 

    ); 

! Compute amount made in each period; 

@FOR( PXT( I, S): 

 @FREE( MAKE( I, S)); 

 MAKE( I, S) = 

 @SUM( PXTXT( I, S, T): TP( I, S, T) * X( I, S, T)); 

    ); 

END 

With comparable solution: 

Optimal solution found at step:       110 

Objective value:                 6030.000 

Branch count:                           2 

   Variable           Value        Reduced Cost 

MAKE( A, 1)        150.0000           0.0000000 

MAKE( A, 2)        190.0000           0.0000000 

MAKE( A, 6)        200.0000           0.0000000 

MAKE( B, 1)        50.00000           0.0000000 

MAKE( B, 3)        70.00000           0.0000000 

MAKE( B, 5)        60.00000           0.0000000 

 Thus, we make production runs for product A in periods 1, 2, and 6. Production runs for product B 

are made in periods 1, 3, and 5. 

17.9.3 Extensions 
There are a variety of extensions to this model that may be of practical interest, such as: 

Carry-over-setups. It may be a setup cost is incurred in period s only if there was production in 

period s, but no production in period s - 1. A straightforward, though not necessarily good, way 

of handling this is by introducing a new variable, zit, related to yit by the relationship: zi  

yit − yi,t-1. The setup cost is charged to zit rather than yit. 
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Multiple machines in parallel. There may be a choice among M machines on which a product can 

be run. This may be handled by appending an additional subscript m, for m = 1, 2, ..., M, to the 

xist and yit variables. The constraints become: 
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       m = 1, 2, …, M. 

 If the machines are non-identical, then the manner in which pistm is calculated will be machine 

dependent. 

17.10 Problems 
1. The Linear Products Company (LPC) of Gutenborg, Iowa, distributes a folding bicycle called the 

Brompton. Demand for the Brompton over the past year has been at the rate of 5.9 per month, fairly 

uniformly distributed over the year. The Brompton is imported from a manufacturer in the United 

Kingdom. For a variety of reasons, including customs processing, small size of the manufacturer, 

averages of ocean shipping, and getting the shipment from the port of entry to Iowa, the lead time 

from the manufacturer to LPC is two months. The fixed cost of placing an order, taking into account 

international phone calls, shipping cost structure, and general order processing is $200. The cost 

and selling price per bicycle vary depending upon the features included, but a typical Brompton 

costs LPC $500. LPC sells a typical Brompton for $900. LPC uses a cost of capital of 12% per year. 

a) What order size do you recommend for LPC? 

b) LPC did a statistical analysis of their sales data for the past year and found the standard 

deviation in monthly demand to be 2.1. LPC estimates a customer who is ready to buy, but 

finds LPC out of stock, will buy from someone else with probability .8, rather than wait. 

What reorder point do you recommend for LPC? 

c) LPC did an analysis of their inbound shipments and found that the lead time has a standard 

deviation of 3 weeks.  Extending (b) above,  how much is this lead time uncertainty costing 

LPC? 

d)  Suppose LPC could reduce lead time to a reliable one month.  Compared to (c) above,  how 

much would this change be worth? 
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2. A company keeps fleets of vehicles at a number of sites around the country. At each site, the vehicles 

can be classified into two types, light and heavy. A heavy vehicle costs more per day, but it can do 

any task that a light vehicle can do. A question of some concern is what mix of vehicles should the 

company have at each site. If the firm does not have enough vehicles of the appropriate size to meet 

the demand on a given day, it rents the vehicles. Some cost data were collected on the cost of various 

vehicle types: 

 
Vehicle 

type 

Daily 
fixed 
cost 

Daily 
variable 

cost(if used) 

Owned Light $32 $40 

Owned Heavy $44 $54 

Rented Light 0 $175 

Rented Heavy 0 $225 

 At a particular site, the company collected demand data for the number of vehicles required on 

each of seven days: 

Day Lights Heavies 

1 6 0 

2 3 2 

4 8 3 

5 2 1 

6 4 4 

7 1 2 

 Based on just the above data, what is your recommendation for the number of vehicles to own 

of each type? 

3)  A recent option in U.S. tax law is the flexible spending account. If you exploit this option, you are 

allowed to specify before the year begins, an amount of your salary to be withheld and placed into 

a "flexible spending" account. During the year, you may withdraw from this account to pay medical 

expenses that are neither covered by your regular medical insurance, nor deductible on your income 

tax return as expenses. This account has a "use or lose it" nature in that any money left over in the 

account at the end of the year is lost to you. You are otherwise not taxed on the amount of money 

you set aside in this account. 

 a)  Suppose your tax rate is 35% and you estimate that your uncovered medical expenses 

during next year have an expected amount of $2400 with a standard deviation of $1100. 

You are contemplating setting aside S before tax dollars. Write an expression for the 

expected after tax value of setting aside one more dollar. 

 b)  How much money should you set aside?  

 c)  How would you go about estimating the distribution of your medical expenses for next 

year? 
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18 
 

Design & Implementation of 

Service and Queuing Systems 
 

"If you think you have reservations, you're at the wrong place." 

-Sign in Ed Debevec's Restaurant 

18.1 Introduction 
The distinctive feature of a service system is that it cannot stock its product in anticipation of impending 

demand. An organization whose main product is a service can prepare for increased demand only by 

increasing its capacity. A major question in planning a service system is capacity sizing. How many 

cashiers, ticket takers, staffers at a toll plaza, phone lines, computers at an internet service provider, 

runways at an airport, tables at a restaurant, fire stations, beds in a hospital, police cars in a region, 

restroom facilities, elevators, or machine maintenance personnel are needed so as to provide acceptable 

service? 

 Capacity planning for a service facility involves three steps: 

1. Data collection. Assemble all relevant historical data or set up a system for the on-going 

collection of demand data. 

2. Data analysis. Forecast demand; ascertain the probabilistic components of the demand; 

determine the minimum acceptable capacity for each demand period. 

3. Requirements recommendation. Taking into account such factors as the probabilistic 

nature of demand, cost of poorly served demand, capacity change costs and standard work 

shift patterns, recommend a capacity plan that minimizes all relevant expected costs. 

18.2 Forecasting Demand for Services 
Standard forecasting methods apply as well to demand for services as to the demand for goods. 

Long-range forecasting of demand for services must incorporate the fact that demand for services does 

not react to changes in the health of the economy in the same way as demand for goods. For example, 

demand for goods such as food is relatively unaffected by the health of the economy; whereas, demand 

for luxury services such as restaurant dining tends to be diminished by economic recessions. Demand 

for fast food dining service has been increased by the advent of the working mother. 
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 Shorter range forecasting of the demand for services is concerned in large part with the measurement 

of the cyclical components of demand. In particular, one wants to identify (say for a service that 

processes phone calls) the: 

 - hour of the day effect, 

 - day of the week effect (e.g., the number of calls per day to the 911 emergency number in 

New York City has been found to vary somewhat predictably almost by a factor of two 

based on the day of the week), 

 - week of year effect, 

 - moveable feast effect (e.g., Mother's Day, Labor Day, Easter, etc), 

 - advertising promotions. 

18.3 Waiting Line or Queuing Theory 
Queuing theory is a well-developed branch of probability theory that has long been used in the telephone 

industry to aid capacity planning. A. K. Erlang performed the first serious analysis of waiting lines or 

queues for the Copenhagen telephone system in the early 20th century. Erlang's methods are still widely 

used today in the telephone industry for setting various capacities such as operator staffing levels. For 

application at the mail order firm, L.L. Bean, see Andrews and Parsons (1993). Gaballa and Pearce 

(1979) describe applications at Qantas Airline. An important recent application of queuing models is in 

telephone call centers. There are two kinds of call centers: 1) In-bound call centers that handle incoming 

calls, such as orders for a catalog company, or customer support for a product; and 2) Out-bound call 

centers where telephones place calls to prospective customers to solicit business, or perhaps to remind 

current customers to pay their bills. 

 It is useful to note that a waiting line or queue is usually the negative of an inventory. Stock carried 

in inventory allows an arriving customer to be immediately satisfied. When the inventory is depleted, 

customers must wait until units of product arrive. The backlogged or waiting customers constitute a 

negative inventory, but they can also be thought of as a queue. A more explicit example is a taxi stand. 

Sometimes taxi cabs will be in line at the stand waiting for customers. At other times, customers may be 

in line waiting for cabs. What you consider a queue and what you consider an inventory depends upon 

whether you are a cab driver or a cab customer. 

 In queuing theory, a service system has three components: 

1) an arrival process,  

2) a queue discipline, and  

3) a service process.  

The figure below illustrates: 

Arrival Process → Queue discipline → Service Process 

(e.g., One 

arrival every 7 

minutes on 

average.) 

 (e.g., First-come 

first-serve), but 

if 10 are waiting, 

then arrivals are 

lost. 

 (e.g., 3 identical 

servers). Mean 

service time is 9 

minutes. 

A good introduction to queuing theory can be found in Gross and Harris (1998). 
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18.3.1 Arrival Process 
We distinguish between two types of arrival process: i) finite source and ii) infinite source. An example 

of finite source is 10 machines being watched over by a single repair person. When a machine breaks 

down, it corresponds to the arrival of a customer. The number of broken down machines awaiting repair 

is the number of waiting customers. We would say this system has a finite source of size ten. With a 

finite population, the arrival rate is reduced as more customers enter the system. When there are already 

8 of 10 machines waiting for repairs or being repaired, then the arrival rate of further customers (broken 

machines) is only 2/10 of the arrival rate if all the machines were up and running and thus eligible to 

breakdown. 

 An airline telephone reservation system, on the other hand, would typically be considered as having 

an infinite calling population. With an infinite population, the arrival rate is unaffected by the number 

of customers already in the system. 

 In addition to the type of arrival process, a second piece of information we need to supply is the 

mean time between calls. If the calling population is infinite, then this is a single number independent 

of the service process. However, for a finite population, there is a possibility for ambiguity because the 

arrival rate at any moment depends upon the number waiting. The ambiguity is resolved by concentrating 

on only one of the supposedly identical customers. It is sufficient to specify the mean time until a given 

customer generates another call, given that he just completed service. We call this the mean time between 

failures or MTBF for short.  

 A fine point that we are glossing over is the question of the distribution (as opposed to the mean) of 

the time between calls. Two situations may have the same mean time between calls, but radically 

different distributions. For example, suppose that in situation 1 every interval between calls is exactly 

10 minutes, while, in situation 2, 10% of the intervals are 1 minute long and 90% of the intervals are 11 

minutes. Both have the same mean, but it seems plausible that system 2 will be more erratic and will 

incur more waiting time. The standard assumption is that the distribution of the time between calls is the 

so-called exponential. Happily, it appears that this assumption is not far off the mark for most real 

situations. 

 The exponential distribution plays a key role in the models we will consider. For the infinite source 

case, we assume that the times between successive arrivals are distributed according to the exponential 

distribution. An exponential density function is graphed in the figure 18.1: 

 
Figure 18.1. An exponential distribution with mean 2. 
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 If r is the arrival rate, x is a value of the random variable, and e is the number 2.718284, then the 

frequency or density function plotted in Figure 18.1, is given by f(x) = re-rx. The mean and standard 

deviation are both 1/r. The key assumption underlying the exponential distribution is that the probability 

that the event of interest (e.g., the arrival of a customer or the breakdown of a specified machine) is a 

constant is independent of when the previous event occurred. Another way of stating this feature is via 

the “memoryless property”. That is, regardless of how long it has been since the previous arrival, the 

distribution of the time until the next arrival has the exponential distribution with mean 1/r. 

18.3.2 Queue Discipline 
All the models we consider use a first-come first-serve queue discipline. The only other piece of 

information required is the waiting capacity of the system. Calls or customers that arrive while there is 

waiting space join the system and, if necessary, wait for service. A demand or customer that finds all 

waiting spaces filled is lost. Examples are: a reservation office that has 10 incoming phone lines, but 

only four reservationists. A reservationist puts an incoming call on "hold" if all reservationists are 

already occupied. If all 10 lines are occupied, a caller will get a "busy" signal. An analogous system is 

a gasoline station with 4 pumps and room for 6 cars to wait behind the 4 cars being served. A prospective 

customer is said to balk if s/he refuses to join the queue. A somewhat similar action, reneging, is said to 

occur if a customer decides to leave the queue while waiting. 

18.3.3 Service Process 
The service process is characterized by two attributes: 

a) the number of servers (assumed identical). 

b) the service time distribution. 

The most common assumption is that service times follow the exponential distribution. 

 An implication of this distribution is that the mean service time equals the standard deviation. 

Therefore, comparing the mean with the standard deviation is a simple data check. 

 In contrast to arrival processes, there is little a priori justification for expecting any particular type 

of service time distribution. One must examine the data closely to select the appropriate approximate 

distribution. If the standard deviation in service time is much smaller than the mean service time, then a 

constant service time is a reasonable approximation. If the standard deviation approximately equals the 

mean, then the exponential assumption is reasonable. 

 The exponential distribution fits surprisingly well in many situations. Coffman and Wood (1969), 

for example, found that job compute times on a computer had a standard deviation somewhat higher 

than the mean. Nevertheless, the shape of the distribution was essentially exponential-like with the peak 

close to zero and a long tail to the right. 

18.3.4 Performance Measures for Service Systems 
There is a variety of measures of performance of a service system. The three measures we will consider 

are: 

 1) Probability of immediate service. 

 2) Average waiting time. 

 3) Average number waiting. 
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18.3.5 Stationarity 
In general, queuing models assume that demand is stationary (i.e., stable over time) or that the system 

has reached steady state. Obviously, this cannot be true if demand is spread over a sufficiently long 

period of time (e.g., an entire day). For example, it is usually obvious that the mean time between phone 

calls at 11:00 a.m. on any given day is not the same as the mean time at 11:00 p.m. of that same day. We 

define the load on a service system as the product of the mean arrival rate times the means service time 

per customer. Load is a unit-less quantity, which is a lower bound on the number of servers one would 

need to process the arriving work without having the queue grow without bound. We should probably 

be careful about using a steady-state-based queuing model if load is not constant for a reasonably long 

interval. What constitutes a “reasonable long interval”? To answer that question, let us define a notation 

we will use henceforth: 

R = mean arrival rate, 

T = mean or expected service time, 

S = number of servers. 

 The quantity T/(S – R*T) is a simple definition of “a reasonably long interval”. Notice that it 

becomes unbounded as the load approaches S. 

18.3.6 A Handy Little Formula 
There is a very simple yet general relationship between the average number in system and the average 

time in system. In inventory circles, this relationship is known as the inventory turns equation. In the 

service or queuing world, it is known as Little's Flow Equation, see Little (1961). In words, Little's 

equation is: 

(average number in systems) = (arrival rate) * (average time-in-system) 

Reworded in inventory terminology, it is: 

(average inventory level) = (sales rate) * (average time-in-system) 

Inventory managers frequently measure performance in "inventory turns", where: 

(inventory turns) = 1/(average time-in-system). 

Rearranging the Little's Flow equation: 

(average inventory level) = (sales rate)/(inventory turns) 

or 

(inventory turns) = (sales rate)/(average inventory level) 

 Little's Equation is very general. The only essential requirement is that the system to which it is 

applied cannot be drifting off to infinity. No particular probabilistic assumptions are required. 

18.3.7 Example 
Customers arrive at a rate of 25 per hour on average. Time-in-system averages out to 12 minutes. What 

is the average number of customers in system? 

Ans. (Average number in system) = (25/hour) * 12 minutes * 1 hour/60 minutes) 

= 25 * (1/5) = 5 
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18.4 Solved Queuing Models 
There are five situations or models that we will consider. They are summarized in Table 1. The key 

feature of these situations is that there are fairly simple formulae describing the performance of these 

systems. 

Table 1: 

Solved Service System Models 
Model 

Feature 

 

I 

 

II 

 

III 

 

IV 

 

V 
Queue 

Notation 

(M/G/c/c) (M/M/c) (M/G/) (F/M/c) (M/G/1) 

Population 

Size 

Infinite Infinite Infinite Finite Infinite 

Arrival 

Process 

Poisson Poisson Poisson General Poisson 

Waiting Space None Infinite Infinite Infinite Infinite 

Number  

of Servers 

Arbitrary Arbitrary Infinite Arbitrary 1 

Service 

distribution 

Arbitrary 

/General 

Exponential Arbitrary 

/General 

Exponential Arbitrary 

/General 

Solve  

with 

@PEL or B(s,a) @PEB or C(s,a) @PPS or  

Poisson 

@PFS Formula 

 The five models are labeled by the notation typically used for them in queuing literature. The 

notation is of the form (arrival process/service distribution/number of servers [/number spaces 

available] where: 

M = exponential (or Markovian) distributed, 

G = general or arbitrary,  

D = deterministic or fixed, and 

F = finite source. 

 The two “workhorse” models of this set of five are a) the M/G/c/c, also know as the Erlang loss or 

Erlang-B model, and b) the M/M/c, also known as the Erlang C model. LINGO has two built-in 

functions, @PEL() and @PEB() that “solve” these two cases. Their use is illustrated below. 

18.4.1 Number of Outbound WATS lines via Erlang Loss Model 
Some companies buy a certain number of outbound WATS (Wide Area Telephone Service) lines in 

order to reduce their long distance charges. An outbound WATS line allows you to make an unlimited 

number of long distance calls for a fixed fee. The fixed fee is low enough, so that, if you make a lot of 

calls, the cost per call is much lower than if you paid the standard cost/minute rate. Suppose that our 

company makes an average of 5 long distance calls per minute during the business day. The average 

duration of a call is 4 minutes. The system can be set up, so that, if one of our employees dials a long 

distance number, the call will be assigned to a WATS line if one of our WATS lines is available, else 

the call will use a regular line at regular rates for the duration of the call. Suppose we acquire 20 WATS 
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lines. What fraction of the calls would find all WATS lines busy and thus use a regular line? An 

appropriate model is: 

   ! Erlang Loss Model; 

   ! Any demands that find all servers busy, 

      are lost; 

 DATA: 

   ! Arrival rate; 

     R = 5; 

   ! Average service time; 

     T = 4; 

   ! Number of servers; 

     S = 20; 

 ENDDATA 

   LOAD = R * T; 

 !  Compute fraction lost; 

   FLOST = @PEL( LOAD, S); 

The solution is: 

Variable           Value 

       R        5.000000 

       T        4.000000 

       S       20.000000 

    LOAD       20.000000 

   FLOST       0.1588920 

 Thus, even though we have enough WATS line capacity to handle the average demand, nevertheless 

because of randomness, almost 16% of the demand is lost (i.e., overflows into the regular lines). 

 There is a statistical economy of scale in service demand (i.e., twice the demand does not require us to 

have twice the capacity). To illustrate, suppose we forecast great growth next year and expect the outbound 

call rate to be 50 calls per minute rather than 5. If again we acquire just enough WATS lines to handle the 

average demand, 50*4 = 200, what fraction of the demand will overflow? If we substitute R = 50 into the 

model, we get the solution: 

 
Variable           Value 

       R        50.00000 

       T        4.000000 

       S        200.0000 

    LOAD        200.0000 

   FLOST      0.05435242 

 

 The fraction overflow has dropped to approximately, 5%, even though we are still setting capacity equal 

to the average demand. 

18.4.2 Evaluating Service Centralization via the Erlang C Model 
The Ukallus Company takes phone orders at two independent offices and is considering combining the 

two into a single office, which can be reached via an "800" number. Both offices have similar volumes 

of 50 phone calls per hour (= .83333/minute) handled by 4 order takers in each office. Each office has 

sufficient incoming lines that automatically queue calls until an order taker is available. The time to 

process a call is exponentially distributed with mean 4 minutes. 
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 How much would service improve if it were centralized to an office with 8 order takers? The results 

are: 

 Two-Office 
System 

One Central 
Office 

Fraction of calls finding 
All servers busy 

.6577 .533 

Expected waiting time 
for calls that wait 

6 minutes 3 minutes 

Expected waiting 
overall (including calls 
that do not wait) 

3.95 minutes 1.60 minutes 

 Thus, the centralized office provides noticeably better (almost twice as good depending upon your 

measure), service with the same total resources. Alternatively, the same service level could be achieved 

with somewhat fewer resources. 

 The above statistics can be computed using the following LINGO model. Note that throughout, we 

define a customer’s wait as the customer’s time in system until her service starts. The waiting time does 

not include the service time. 

 ! Compute statistics for a multi-server system with(QMMC) 
   Poisson arrivals, exponential service time distribution. 

   Get the system parameters; 

 DATA: 

   R = .8333333; 

   T = 4; 

   S = 4; 

 ENDDATA 

! The model; 

! Average no. of busy servers; 

   LOAD = R * T; 

! Probability a given call must wait; 

   PWAIT = @PEB( LOAD, S); 

! Conditional expected wait, i.e., given must wait; 

   WAITCND = T/( S - LOAD); 

! Unconditional expected wait; 

   WAITUNC = PWAIT * WAITCND; 

The solution is: 

Variable     Value 

       R       .833333 

       T      4.000000 

       S      4.000000 

    LOAD      3.333333 

      PB      .6577216 

      CW     6.0000000 

      UW      3.946329 
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18.4.3 A Mixed Service/Inventory System via the M/G/ Model 
Suppose that it takes us 6 minutes to make a certain product (e.g., a hamburger). Demand for the product 

arrives at the rate of 2 per minute. In order to give good service, we decide that we will carry 10 units in 

stock at all times. Thus, whenever a customer arrives and takes one of our in-stock units, we immediately 

place an order for another one. We have plenty of capacity, so that, even if we have lots of units in 

process, we can still make a given one in an average time of 6 minutes. Customers who find us out of 

stock will wait for a new one to be made. This is called a base stock policy with backlogging: 

 Analysis: The number of units on order will have a Poisson 

distribution with mean = 2*6 = 12. Thus, if a customer arrives and 

there are 2 or less on order, it means there is at least one in stock. 

The following model will compute the fraction of customers who have to 

wait. 

! The M/G/infinity or Base stock Model; 

DATA: 

  ! Arrival rate; 

   R = 2; 

  ! Average service time; 

   T = 6; 

  ! Number units in stock; 

   S = 10; 

ENDDATA 

  LOAD = R * T; 

! Compute fraction who have to wait; 

  FWAIT = 1 - @PPS( LOAD, S - 1);  

! Note, @PPS( LOAD, X) =  

    Prob{ a Poisson random variable with mean = LOAD 

         has a value less-than-or-equal-to X};    

The solution is: 

 Variable           Value 

        R        2.000000 

        T        6.000000 

        S        10.00000 

     LOAD        12.00000 

    FWAIT       0.7576077 

Thus, more than 75% will have to wait. 

18.4.4 Optimal Number of Repairmen via the Finite Source Model.  
A textile firm has 10 semiautomatic machines, which occasionally need the services of a repairman, 

(e.g., if a thread breaks) in order to put the machine back in service. The repair time has an exponential 

distribution with a mean of 1 hour. Physical reasons imply that only one repairman work on a machine 

at a time (i.e., a helper does not help). Once repaired, the mean time until the machine jams again is 5 

hours. The cost of a fully equipped repairman is $30 per hour. The opportunity cost of a jammed machine 

is $350 per hour. How many repairmen should be assigned to these 10 machines? 
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 Using the @PFS function in LINGO, we can construct the following table of expected number of 

inoperative machines as a function of the number of repairmen: 

 
 

No. of 
Repairmen 

Expected 
No. of 

Inoperative 
Machines 

Expected 
cost/hour of 
Inoperative 
Machines 

 
 

Cost/hour of 
Repairmen 

 
Total 

expected 
cost/hour 

0 10.0 $3500.00 $0 $3500.00 

1 5.092 $1782.17 $30.00 $1812.17 

2 2.404 $841.30 $60.00 $901.30 

3 1.804 $631.50 $90.00 $721.50 

4 1.689 $591.28 $120.00 $711.28 

5 1.670 $584.38 $150.00 $734.38 

Thus, it appears that optimum number of repairmen is 4. 

 An example LINGO model for computing this table is as follows: 

  ! Machine repair 

   SETS: 

    NREP/1..5/:       ! Consider 5 possible no. of repair persons; 

            NDOWN, ! Expected no. of down machines; 

           CPERHR, ! Expected cost/hour of down machines; 

            TCOST;  ! Total expected cost/hour; 

   ENDSETS 

   ! For each configuration, compute the performance- 

    @FOR( NREP( I): 

       NDOWN( I) = @PFS( NMACH * RTIME / UPTIME, I, NMACH); 

       CPERHR( I) = CM * NDOWN( I); 

       TCOST( I) = CPERHR( I) + CR * I; 

       ); 

     ! The input data; 

    NMACH = 10; 

    RTIME = 1; 

   UPTIME = 5; 

   CR = 30; 

   CM = 350; 

END 

Part of the solution is: 

 Variable         Value 

TCOST( 1)      1812.173 

TCOST( 2)      901.3025 

TCOST( 3)      721.5043 

TCOST( 4)      711.2829 

TCOST( 5)      734.3842 

 A model similar to the machine repairman has been used by Samuelson (1999) to analyze predictive 

dialing methods in an outbound call center. In a predictive dialing system, an automatic dialer may start 

dialing the next client to be contacted even before there is an agent available to talk to the client. It takes 

anywhere from 10 to 30 seconds to dial a number and have the person dialed answer the phone. So, the 
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automatic dialing is done in the anticipation that an agent will become available by the time that a called 

party answers the phone. An automatic dialer can detect a busy signal or a call that is not answered, and 

can move on to dial the next number. Samuelson (1999) indicates that a good predictive dialer can 

increase the agent talk time (i.e., utilization) to 95% from less than 80%. The manager of a predictive 

dialer has at least two decision variables in controlling the predictive dialer: a) how many additional 

lines to use, beyond the number of agents, for dialing, and b) the delay time before starting dialing on a 

line once it becomes available. These two decisions can be fit into the machine repairman as follows. 

The number of agents equals the number of repairmen. The number of lines total is the population size. 

The up time is the delay time before initiating dialing + the dialing time + time to answer.  

18.4.5 Selection of a Processor Type via the M/G/1 Model 
You are about to install an ATM (Automated Teller Machine) at a new location. You have a choice 

between two machines. The type A is a highly automated machine with a mean time to process a 

transaction of 3 minutes with a standard deviation of 4.5 minutes. The type M machine is less automated. 

It has a mean processing time of 4 minutes with a standard deviation of 1 minute. The expected arrival 

rate is 10 customers/hour at the location in question. Which machine has a lower expected waiting time? 

Which machine has a lower expected time in system?  

 There is a simple expression for the expected waiting time in a system with a single server for which 

arrivals occur in a Poisson fashion and service times have a general distribution. If:  

R = mean arrival rate, 

T = mean service time, 

SD = the standard deviation in service times, and 

EW = expected waiting time,  

then: 

EW = R*( T*T + SD*SD)/[2*(1- R*T)]. 

The following LINGO model illustrates: 

! Single server queue with Poisson(Markovian) arrivals 

  and General service distribution, so-called M/G/1 queue; 

DATA: 

 R = .1666667;  ! Arrival rate in minutes(10/hour); 

 T = 3;         ! Mean service time in minutes; 

SD = 4.5;       ! Standard deviation in service time; 

ENDDATA 

! Compute load( = Prob{ wait > 0}); 

  RHO = R*T; 

! Expected waiting time; 

  EW = R*( SD * SD + T * T)/(2*(1-RHO)); 

! Expected time in system; 

  ET = EW + T; 

! Expected number waiting; 

  EN = R * EW; 

! Expected number in system; 

  ES = R * ET; 



564     Chapter 18  Queuing Systems 

 

The solution is: 

Variable           Value 

       R       0.1666667 

       T        3.000000 

      SD        4.500000 

     RHO       0.5000001 

      EW        4.875002 

      ET        7.875002 

      EN       0.8125005 

      ES        1.312501 

To evaluate the slower, but less variable server, we change the data section to: 

DATA: 

 R = .1666667;  ! Arrival rate in minutes(10/hour); 

 T = 4;         ! Mean service time in minutes; 

SD = 1;         ! Standard deviation in service time; 

ENDDATA 

Now, the solution is: 

Variable           Value 

       R       0.1666667 

       T        4.000000 

      SD        1.000000 

     RHO       0.6666668 

      EW        4.250003 

      ET        8.250003 

      EN       0.7083339 

      ES        1.375001 

 This is interesting. Due to the lower variability of the second server, the expected wait time is lower 

with it. The first server, however, because it is faster, has a lower total time in system, ET. There are 

some situations in which customers would prefer the longer expected time in system if it results in a 

lower expected waiting time. One such setting might be a good restaurant. A typical patron would like 

a low expected wait time, but might actually prefer a long leisurely service. 

18.4.6 Multiple Server Systems with General Distribution, M/G/c & G/G/c 
There is no simple, “closed form” solution for a system with multiple servers, a service time distribution 

that is non-exponential, and positive queue space. Whitt (1993), however, gives a simple approximation. 

He gives evidence that the approximation is usefully accurate. Define: 

 SCVA = squared coefficient of variation of the interarrival time distribution 

 = (variance in interarrival times)/ (mean interarrival time squared) 

 = (variance in interarrival times)*R*R, 

SCVT = squared coefficient of variation of the service time distribution 

 = (variance in service times)/(mean service time squared) 

 = (variance in service times/( T*T). 

EWM(R,T,S) = expected waiting time in an M/M/c system with arrival rate R, 

  expected service time T, and S servers. 
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The approximation for the expected waiting time is then: 

EWG(R,T,S,SCVA, SCVT) 

= EWM(R,T,S)*(SCVA + SCVT)/2. 

 Note that for the exponential distribution, the coefficient of variation is one. It is fairly easy to show 

that this approximation is in fact exact for M/G/1, M/M/c, M/G/, and when the system becomes heavily 

loaded. 

Example 

Suppose arrivals occur in a Poisson fashion at the rate of 50/hour (i.e., .8333333 per minute), there are 

three servers, and the service time for each customer is exactly three minutes. A constant service time 

implies that the service time squared coefficient of variation (SCVT) equals 0. Poisson arrivals implies 

that the squared coefficient of variation of interarrival times (SCVA) equals 1. The model is: 

! Compute approximate statistics for a (QGGC) 

   multi-server system with general arrivals,  

   and general service time distribution; 

DATA: 

   R = .8333333; ! Mean arrival rate; 

   T = 3;      ! Mean service time; 

   S = 3;      ! Number of servers; 

 SCVA = 1;      ! Squared coefficient of variation 

                    of interarrival times; 

 SCVT = 0;       ! Squared coefficient of variation 

                    of service times; 

 ENDDATA 

! The model; 

! Average no. of busy servers; 

   LOAD = R * T; 

! Probability a given call must wait; 

   PWAIT = @PEB( LOAD, S); 

! Conditional expected wait, i.e., given must wait; 

   WAITCND = T/( S - LOAD); 

! Unconditional expected wait; 

   WAITUNC = PWAIT * WAITCND; 

! Unconditional approximate expected wait for 

    general distribution; 

   WAITG = WAITUNC * (SCVA + SCVT)/2; 

The solution is: 

Variable           Value 

       R       0.8333333 

       T        3.000000 

       S        3.000000 

    SCVA        1.000000 

    SCVT       0.0000000 

    LOAD        2.500000 

   PWAIT       0.7022471 

 WAITCND        5.999999 

 WAITUNC        4.213482 

   WAITG        2.106741 
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 Thus, the approximate expected wait time is about 2.1067. Later we will show that the expected 

wait time can in fact be calculated exactly as 2.15. So, the approximation is not bad. 

18.5 Critical Assumptions and Their Validity 
The critical assumptions implicit in the models discussed can be classified into three categories: 

1) Steady state or stationarity assumptions. 

2) Poisson arrivals assumption. 

3) Service time assumptions. 

 The steady state assumption is that the system is not changing systematically over time (e.g., the 

arrival rate is not changing over time in a cyclical fashion). Further, we are interested in performance 

only after the system has been operating sufficiently long, so that the starting state has little effect on the 

long run average. No real system strictly satisfies the steady state assumption. All systems start up at 

some instant and terminate after some finite time. Arrival rates fluctuate in a predictable way over the course 

of a day, week, month, etc. Nevertheless, the models discussed seemed to fit reality quite well in many 

situations in spite of the lack of true stationarity in the real world. A very rough rule of thumb is that if the 

system processing capacity is b customers/minute and the arrival rate is c customers/minute, then the steady 

state formulae apply approximately after 1/(b - c) minutes. This corresponds roughly to one "busy period." 

 The models discussed have assumed that service times are either constant or exponential distributed. 

Performance tends to be relatively insensitive to the service time distribution (though still dependent 

upon the mean service time) if either the system is lightly loaded or the available waiting space is very 

limited. In fact, if there is no waiting space, then to compute the distribution of number in system the 

only information needed about the service time distribution is its mean. 

18.6 Networks of Queues 
Many systems, ranging from an office that does paperwork to a manufacturing plant, can be thought of 

as a network of queues. As a job progresses through the system, it successively visits various service or 

processing centers. The main additional piece of information one needs in order to analyze such a system 

is the routing transition matrix, that is, a matrix of the form:  

P(i,j) = Prob{ a job next visits processing center j | given that it just finished at center i}.  

 Jackson (1963) proved a remarkable result, essentially that if service times have an exponential 

distribution and arrivals from the outside arrive according to a Poisson process, then each of the 

individual queues in a network of queues can be analyzed by itself. The major additional piece of 

information that one needs to analyze a given work center or station is the arrival rate to the station. If 

we define REXT(j) = arrival rate to station j from the outside (or external) world, and R(j) = the arrival 

rate at station j both from inside and outside, then it is fairly easy to show and also intuitive that the R(j) 

should satisfy: 

R(j) = REXT(j) + i R(i)* P(i,j). 
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 The following LINGO model illustrates how to solve this set of equations and then solve the queuing 

problem at each station: 

! Jackson queuing network model(qjacknet); 

SETS: 

  CENTER: S, T, REXT, R, NQ, LOAD; 

  CXC( CENTER, CENTER): P; 

ENDSETS 

DATA: 

! Get center name, number of servers, 

  mean service time and external arrival rate; 

 CENTER,  S,   T,  REXT = 

  C1      2   .1    4 

  C2      1   .1    1 

  C3      1   .1    3; 

! P(i,j) = Prob{ job next goes to i| given just 

                  finished at j}; 

  P  = 0  .6   .4 

      .1   0   .4 

      .3  .3   0;   

ENDDATA 

! Solve for total arrival rate at each center; 

 @FOR( CENTER( I): 

   R( I) = REXT( I) + @SUM( CENTER( J): R( J) * P( I, J)); 

     ); 

! Now solve the queuing problem at each center; 

 @FOR( CENTER( I): 

!  LOAD( I) = load on center I; 

   LOAD( I) = R( I) * T( I); 

! Expected number at I = expected number waiting 

     + expected number in service; 

   NQ(I) = ( LOAD( I)/( S( I) - LOAD( I))) 

                *@PEB( LOAD( I), S( I)) + LOAD( I); 

!  @PEB() = Prob{ all servers are busy at I}; 

    ); 

! Expected time in system over all customers; 

   WTOT = @SUM( CENTER: NQ)/@SUM( CENTER: REXT); 

Part of the solution is: 

 Variable           Value 

     WTOT       0.6666667 

   R( C1)        10.00000 

   R( C2)        5.000000 

   R( C3)        7.500000 

  NQ( C1)        1.333333 

  NQ( C2)        1.000000 

  NQ( C3)        3.000000 

LOAD( C1)        1.000000 

LOAD( C2)       0.5000000 

LOAD( C3)       0.7500000 
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18.7 Designer Queues 
In preceding sections, we gave some “canned” queuing models for the most common waiting line 

situations. In this section, we present details on the calculations behind the queuing models. Thus, if you 

want to design your own queuing system that does not quite match any of the standard situations, you 

may be able to model your situation using the methods here.  

18.7.1 Example: Positive but Finite Waiting Space System 
A common mode of operation for an inbound call center is to have, say 20 agents, but say, 30 phone 

lines. Thus, a caller who finds a free phone line but all 20 agents busy, will be able to listen to soothing 

music while waiting for an agent. A caller who finds 30 callers in the system will get a busy signal and 

will have to give up. 

First, define some general parameters: 

r = arrival rate parameter. For the infinite source case, 1/r = mean time between successive 

arrivals. For the finite source case, 1/r = mean time from when a given customer 

finishes a service until it next requires service again (i.e., 1/r = mean up time), 

T = mean service time, 

S = number of servers, 

    M    = number of servers plus number of available waiting spaces. 

We want to determine: 

              Pk = Prob {number customers waiting and being served = k} 

 If there are S servers, and M total lines or spaces, then the distribution of the number in system, the 

Pk , satisfy the set of equations: 

Pk = (rT/k)Pk-1 for k = 1, 2, ..., S 

 = (rT/S)Pk-1 for k = S + 1, S + 2, ..., M 

and   

P0 + P1 + ... + PM = 1. 
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Here is a model that solves the above set of equations: 

! M/M/c  queue with limited space (qmmcf); 

DATA: 

!  Number of servers; 

    S = 9; 

!  Total number of spaces; 

    M = 12; 

!  Arrival rate; 

    R = 4; 

!  Mean service time; 

    T = 2; 

ENDDATA 

SETS:          

 STATE/1..500/: P; 

ENDSETS 

! The basic equation for a Markovian(i.e., the time 

   til next transition has an exponential distribution) system, 

   says:(expected transitions into state k per unit time)  

      = (expected transitions out of state k per unit time); 

! For state 1( P0 = prob{system is empty}); 

  P0* R + P( 2)*2/T = ( R + 1/T) * P( 1); 

! Remaining states with idle servers; 

@FOR( STATE( K) | K #GT# 1 #AND# K #LT# S: 

  P( K - 1)* R + P( K+1)*(K+1)/T = ( R + K/T) * P( K) 

    ); 

! States with all servers busy; 

@FOR( STATE( K) | K #GE# S #AND# K #LT# M: 

  P( K - 1)* R + P( K+1)*S/T = ( R + S/T) * P( K) 

    ); 

! All-full state is special; 

  P( M - 1)* R = (S/T)* P( M); 

! The P(k)'s are probabilities; 

  P0 + @SUM( STATE( K)| K #LE# M: P( K)) = 1; 

! Compute summary performance measures; 

!  Fraction lost; 

   FLOST = P( M); 

! Expected number in system; 

    EN = @SUM( STATE( K)| K #LE# M: K * P( K)); 

! Expected time in system for those who enter; 

    ET = EN/( R *(1-FLOST)); 

! Expected wait time for those who enter; 

    EW = ET - T; 
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The solution is: 

Variable           Value 

       N        9.000000 

       M        12.00000 

       R        4.000000 

       T        2.000000 

      P0       0.3314540E-03 

   FLOST       0.8610186E-01 

      EN        7.872193 

      ET        2.153466 

      EW        0.153466 

   P( 1)       0.2651632E-02 

   P( 2)       0.1060653E-01 

   P( 3)       0.2828407E-01 

   P( 4)       0.5656815E-01 

   P( 5)       0.9050903E-01 

   P( 6)       0.1206787 

   P( 7)       0.1379185 

   P( 8)       0.1379185 

   P( 9)       0.1225942 

  P( 10)       0.1089727 

  P( 11)       0.9686459E-01 

  P( 12)       0.8610186E-01 

 This model has three extra waiting spaces or lines beyond the nine servers. The fraction demand 

lost is 0.08610186. By comparison, if there were no extra lines, the fraction lost would be more than 

twice as much, 0.1731408. 

 The above model is an example of balking. A prospective customer is said to balk if the customer 

decides to not join the queue because the queue is too long. It is a common problem in systems where 

the queue is visible (e.g., automotive fuel filling stations). More generalized forms of balking can be 

modeled using methods of this chapter. One such form might be that an arriving customer balks with a 

probability that is increasing in the length of the queue. 

 A phenomenon similar to balking is reneging. A customer in the waiting queue is said to renege if 

she departs the waiting queue before having received service. For example, at internet websites it is not 

uncommon for more than 50% of customers to abandon their “shopping carts” before getting to the 

checkout step. Again, reneging behavior can be easily modeled using the methods of this section by 

having a reneging rate that is, say proportional to the number waiting. 
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18.7.2 Constant Service Time. Infinite Source. No Limit on Line Length 
The special case when the service time is a constant can be solved numerically. If the service time is a 

constant T, then we can exploit the fact that over any interval of time of length T: a) all customers in 

service at the beginning of the interval will have finished at the end, and b) the number of arrivals during 

the interval has a Poisson distribution. Define the Poisson probabilities: 

ak = e-(rT)(rT)k/k!    for k = 0, 1, 2, .. 

    =   ak-1 (rT)/k. 

The Pk satisfy the equations: 

1k

k=0

  = P



  

and if S is the number of servers: 

0 1 2
S k+S

k j jk k- j+S

j=0 j=S+1

 =   +     for  k = , , , ...a aP P P   

18.7.3 Example Effect of Service Time Distribution 
A firm uses 3 servers in parallel to process tasks that arrive at the mean rate of 50 per hour. The mean 

time to service a task is 3 minutes (.05 hours). The service time distribution is exponential. 

 The firm is considering switching to a more systemized processing approach in which there is no 

variability in the service time (i.e., every task takes exactly 3 minutes). Will this switch substantially 

reduce the average number in system? 
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 The following is a LINGO model for solving these equations: 

! Queue with constant service time (qmdc); 

DATA: 

 ! Arrival rate per minute; 

    R = .833333; 

 ! Service time in minutes; 

    T = 3; 

 ! Number of servers; 

    S =  3; 

ENDDATA 

SETS: 

 STATE/1..35/: A, P; 

ENDSETS 

 ! Probabilities must sum to 1; 

@SUM( STATE: P) = 1; 

  RHO = R * T; 

! J and K will correspond to a state-1; 

! Calculate probability of K-1 arrivals during a service time; 

  A(1) = @EXP( - RHO); 

@FOR( STATE(K)| K #GT# 1: 

  A(K) = A(K-1) * RHO/(K-1); 

    ); 

 NLAST = @SIZE( STATE); 

 @WARN(" S too large for approximation", A(NLAST) #GT# .1); 

! Transition equations: 

   Probability of having K-1 in system T minutes from now 

 = Prob{ all in system finished and K-1 arrived} + Prob{ S finished and 

just the proper number arrived to bring number in system back up to K-

1}; 

@FOR( STATE( K)| K #LT# @SIZE(STATE): 

  P( K) = @SUM( STATE( J)| J #LE# S: A( K) * P( J)) 

        + @SUM( STATE( J)| J #GT# S #AND# J #LE# K + S: P(J)*A(K-

J+S+1)); 

    ); 

! Because of the extra normalizing equation,  we can drop 

  one transition equation above; 

! Compute average number in system; 

  AVGNSYS = @SUM( STATE( K): (K-1)* P(K)); 

! By Little's equation, average time in system; 

  AVGTSYS = AVGNSYS/ R; 

! Average number waiting; 

         AVGNWTN = AVGNSYS - RHO; 
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Part of the solution is: 

Variable           Value 

     RHO        2.499999 

   NLAST        35.00000 

 AVGNSYS        4.291565 

 AVGTSYS        5.149880 

 AVGNWTN        1.791566 

   P( 1)       0.3936355E-01 

   P( 2)       0.1102164 

   P( 3)       0.1615349 

   P( 4)       0.1684308 

   P( 5)       0.1438250 

   P( 6)       0.1097549 

   P( 7)       0.7924944E-01 

   P( 8)       0.5598532E-01 

   P( 9)       0.3930554E-01 

  P( 10)       0.2757040E-01 

  P( 11)       0.1934223E-01 

  P( 12)       0.1357152E-01 

  P( 13)       0.9522611E-02 

It is of interest to compare this result with the case of exponentially distributed service times: 

 Exponential 
Service Distribution 

 
Constant 

Average No. in System 6.01 4.29 

Average No. Waiting 3.51 1.79 

 Thus, there is a noticeable improvement associated with reducing the variability in service time. In 

fact, in a heavily loaded system, reducing the variability as above will reduce the expected waiting time 

by a factor of almost 2. 



574     Chapter 18  Queuing Systems 

 

18.8 Problems 
1. The Jefferson Mint is a Philadelphia based company that sells various kinds of candy by mail. It has 

recently acquired the Toute-de-Suite Candy Company of New Orleans and the Amber Dextrose 

Candy Company of Cleveland. The telephone has been an important source of orders for all three 

firms. In fact, during the busiest three hours of the day (1 pm to 4 pm), Jefferson has been taking 

calls at the rate of .98 per minute, Toute-de-Suite at the rate of .65 calls per minute, and Dextrose at 

the rate of .79 calls per minute. All three find that on average it takes about three minutes to process 

a call. 

 Jefferson would like to examine the wisdom of combining one or more of the three phone order 

taking centers into a single order taking center in Philadelphia. This would require a phone line from 

New Orleans to Philadelphia at a cost of $170 per day and/or a phone line from Cleveland to 

Philadelphia at a cost of $140 per day. A phone order taker costs $75 per day. Regardless of the 

configuration chosen, the desired service level is 95%. That is, at least 95% of the calls should be 

answered immediately, else it is considered lost. This requirement is applicable to the busiest time 

of the day in particular. This is considered reasonable for the kind of semi-impulse buying involved. 

Note that only one phone line is needed to connect two cities. This dedicated line can handle several 

dozen conversations simultaneously. 

a) The New Orleans office could be converted first. What are the expected savings per day 

of combining it with the Philadelphia office? 

b) What is your complete recommendation? 

c) The Cleveland office has been operating with four order takers. How might you wish to 

question and possibly adjust the Cleveland call data? 

2. Reliability is very important to a communications firm. The Exocom firm has a number of its large 

digital communication switches installed around the country. It is concerned with how many spares 

it should keep in inventory to quickly replace failed switches in the field. It estimates that failures 

will occur in the field at the rate of about 1.5 per month. It is unattractive to keep a lot of spares 

because the cost of each switch is $800,000. On the other hand, it is estimated that, if a customer is 

without his switch, the cost is approximately $8,000 for each day out, including weekends. This 

cost is borne largely by Exocom in the form of penalties and lost good will. Even though a faulty 

switch can be replaced in about one hour, (once the replacement switch is on site), it takes about 

one half month to diagnose and repair a faulty switch. Once repaired, a switch joins the spares to 

hold. Exocom is anxious to get your advice because, if no more money need be invested in spares, 

then there are about four other investment projects waiting in the wings, which pass the company's 

1.5% per month cost of capital threshold. What is your recommendation? 
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3. Below is a record of long-distance phone calls made from one phone over an interval of time. 

 DESTINATION NUMBER  DESTINATION NUMBER 

DATE CITY STATE MINUTES DATE CITY STATE MINUTES 

03/04 MICHIGANCY IN 0.4 03/21 NEW YORK NY 12.6 

03/07 PHILA PA 3.1 03/21 PRINCETON NJ 2.0 

03/07 LAFAYETTE IN 3.9 03/21 PRINCETON NJ 0.2 

03/07 OSSINING NY 1.4 03/21 PRINCETON NJ 0.3 

03/07 LAFAYETTE IN 2.8 03/21 PRINCETON NJ 0.3 

03/08 LAFAYETTE IN 2.8 03/25 SANTA CRUZ CA 1.4 

03/08 SOSAN FRAN CA 2.0 03/25 FORT WAYNE IN 0.9 

03/08 PHILA PA 0.9 03/27 SANTA CRUZ CA 0.9 

03/11 BOSTON MA 5.1 03/27 SANTA CRUZ CA 8.1 

03/11 NEW YORK NY 3.1 03/27 SOSAN FRAN CA 8.2 

03/15 MADISON WI 0.3 03/27 CHARLOTSVL VA 0.7 

03/19 PHILA PA 3.6 03/28 CHARLOTSVL VA 8.4 

03/20 PALO ALTO CA 4.7 03/28 NEW YORK NY 0.8 

03/20 PALO ALTO CA 9.2 03/29 NEW YORK NY 1.7 

 
 DESTINATION NUMBER  DESTINATION NUMBER 

DATE CITY STATE MINUTES DATE CITY STATE MINUTES 

03/29 BOSTON MA 0.6 04/16 CAMBRIDGE MA 0.9 

04/01 HOUSTON TX 1.1 04/18 ROCHESTER NY 1.3 

04/01 BOSTON MA 10.6 04/19 PALO ALTO CA 16.1 

04/01 BRYAN TX 1.4 04/22 ROCHESTER NY 1.7 

04/01 PEORIA IL 1.0 04/23 CHARLSTON IL 0.7 

04/02 SANTA CRUZ CA 5.5 04/24 CHARLSTON IL 6.4 

04/03 HOUSTON TX 1.4 04/24 WLOSANGLS CA 3.0 

04/03 PEORIA IL 2.3 04/24 NEW YORK NY 5.1 

04/09 NEW YORK NY 1.1 04/24 FORT WAYNE IN 0.9 

04/11 LOS ALTOS CA 5.5 04/24 PORTAGE IN 2.2 

 
a) How well does a Poisson distribution (perhaps appropriately modified) describe the call 

per day behavior? 

b) How well does an exponential distribution describe the number of minutes per call? 

c) In what year were the calls made? 
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Design & Implementation of 
Optimization-Based Decision 

Support Systems 
 

I don't want it perfect, I want it Thursday. 

-John Pierpont Morgan 

19.1 General Structure of the Modeling Process 
The overall modeling process is one of: 

1) Determining the need for a model. 

2) Developing the model. 

3) Implementing the model. 

 One should not skip over step (1) in one’s enthusiasm to use a fancy model. Some questions to ask 

before deciding to use a model are: 

a) Are the expected savings from using the model greater than the cost of developing and 

implementing the model? 

b) Is there sufficient time to do (2) and (3) before the recommendation is needed? 

c) Is it easier to do an experiment on the real system than to build a model? Sometime ago a 

question arose in a telephone company about the effect of serving certain telephone calls 

for information arising in city A from a central facility in city B, rather than from the 

existing facility in A. It was more simple to make a five minute wiring change to see what 

happened, than to construct an accurate statistical model. Similarly, Banks and Gibson 

(1997) describe a situation in which one fast food restaurant chain built a detailed model 

to evaluate the effect of a second drive-up window. In less time, a competitor tested the 

same idea by stationing a second person in the drive-up lane with a remote hand-held 

terminal and voice communication to the inside of the restaurant. 

d) Do we have the input data needed to make plausible use of the model? 

 If the purpose of the model is to do a one-time analysis (e.g., to decide whether or not to make a 

certain investment), then step (3) will be relatively less laborious. 
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19.1.1 Developing the Model: Detail and Maintenance 
Whether the model is intended for a one-time study or is to be used regularly has some influence on how 

you develop the model. If the model is to be used regularly, then you want to worry especially about the 

following: 

Problem: The real world changes rapidly (e.g., prices, company structure, suppliers). We must be able 

to update the model just as fast. 

Resolution: There are two relevant philosophies. 

1) Keep worthless detail out of the model, follow the KISS (Keep It Simple, ...) admonition. 

2) Put as much of the model into data tables rather than hard coded into the model structure. 

19.2 Verification and Validation 
The term verification is usually applied to the process of verifying that the model as implemented is 

actually doing what we think it should. Effectively, verification is checking the model has no 

unintentional “bugs”. Validation is the process of demonstrating that all the approximations to reality 

intentionally incorporated in the model are tolerable and do not sully the quality of the results from the 

model. Stated simply, verification is concerned with "solving the equations right", and validation is 

concerned with "solving the right equations", see Roache (1998). Several general approaches for 

verifying a model are to: 

i) check the model results against solved special cases,  

ii) check the model results against known extreme cases,  

iii) check the model results on small examples that can be solved by hand,  

iv) check that model results change in the proper direction as model inputs are changed (e.g., if 

the price of a raw material increases, we should not buy more of it), and 

v) check that the model handles invalid cases robustly. 

vi) if there are multiple dimensions, e.g. products, suppliers, customers, time periods, 

scenarios, resources, transport modes, etc., the set of test cases should give good 

coverage of all combinations. 

 

 Many of the methods used for verifying the quality of computer software apply equally well to 

verifying large models. For example, a useful concept in testing of computer software is that of 

"coverage" by the test. A good test for software should exercise or cover all sections of code in a software 

program. Similarly, good test data for a model should exercise all features of the model. If a model 

allows up to N different products, say, one should have test data for the cases of: just 1 product (e.g., see 

(i) above); exactly N products; an intermediate number of products, and more than N products.  

Elaborating on (vi) above, we might want to have tests of all pairs of combination of: 1 and N productes, 

1 and M  suppliers, 1 and P periods, etc. 

19.2.1 Appropriate Level of Detail and Validation 
Validation should begin with understanding the real world to be modeled. A common problem is the 

people who are willing to speak most authoritatively about the process to be modeled are not always the 

most informed. A good rule of thumb is always to check your “facts” with a second source. Rothstein 

(1985) mentions, in a conversation with a vice president of a major airline, the vice president assured 

him the airline did not engage in overbooking of any kind. A short time later, in a discussion with 
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operating personnel, he learned in fact the airline had a sophisticated overbooking system used 

everywhere in that airline. 

 If unimportant details are kept out of the model, the model should be not only easier to modify, but 

also easier to use. 

Example. In developing a long-range ship scheduling model, a question of appropriate unit of time arose. 

Tides follow a roughly 13-hour cycle and this is an important consideration in the scheduling 

of ships into shallow ports. Deep draft ships can enter a shallow port only at high tide. Thus, 

in developing a multiperiod model for ship scheduling, it appeared 13 hours should be the 

length of a period. 

 However, we found ship travel times were sufficiently random, so scheduling to the day was 

satisfactory. Thus, to model a month of activity, 30 time periods, rather than about 60, was satisfactory. 

Halving the number of periods greatly simplified the computations. The moral perhaps is that, when it 

comes to incorporating detail into the model, a little bit of selective laziness may be a good thing.  

 If there is an art to modeling, this is it: identifying the simplifications or approximations that can be 

made without sacrificing the useful accuracy of the model. Simplifying approximations can be 

categorized roughly as follows: 

1) Functional - Use a linear function to approximate a slightly nonlinear one. 

2) Aggregation 

(2.1) Temporal aggregation - All events occurring during a given day (or week, month, 

etc.) are treated as having occurred at the end of the day. 

(2.2) Cross-sectional aggregation - All customers in a given mail code region are lumped 

together to be treated as one large customer. In a consumer products firm, all 

detergents are treated as a single product. 

3) Statistical - Replace a random variable by its expectation. For example, even though future 

sales are a random variable, most planners use a single number forecast in planning. 

4) Decomposition - If a system is overwhelming in its complexity, then decomposition is an 

approach that may be useful for simplifying the structure. Under this approach, a sequence 

of models are solved, each nailing down more detail of the complete solution. 

 Rogers, Plante, Wong, and Evans (1991) give an extensive survey of techniques for aggregation in 

optimization problems. The steps in using an approximate model can be summarized as follows: 

1) Obtain detailed input data. 

2) Derive the approximate (hopefully small) model. 

3) Solve the approximate model. 

4) Convert the solution of the approximate model back to the real world. 

 The difficult step is (4). The worst thing that can happen is it is impossible to convert the 

approximate solution back to a feasible real world solution. 

19.2.2 When Your Model & the RW Disagree, Bet on the RW 
As part of the validation process, you compare the output of your model with what happened in the real 

world (RW). When there is a discrepancy, there are two possibilities: (a) People in the RW are not 

behaving optimally and you have an opportunity to make some money by using your model; or (b) your 

model still has some flaws. 
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 Black (1989) described the situation quite well while he was trying to validate an option pricing 

model: 

 “We estimated the volatility of the stock for each of a group of companies... We noticed 

that several warrants looked like very good buys. The best buy of all seemed to be National 

General... I and others jumped right in and bought a bunch... Then a company called American 

Financial announced a tender offer for National General... the tender offer had the effect of 

sharply reducing the value of the warrants... In other words, the market knew something that 

our formula didn’t know... and that’s why the warrants seemed so low in price.” 

19.3 Separation of Data and System Structure 
There are two reasons for separating data from model structure: 

a) It allows us to adjust the model easily and quickly to changes in the real world, 

b) The person responsible for making day-to-day changes in the data need not be familiar 

with the technical details of the model structure. 

 A flexible system is table driven. In powerful systems such as LINGO and What’sBest!, factors 

such as interest rates can be input at a single place by a clerk, even though they appear numerous places 

in the model structure. 

19.3.1 System Structure 
In the typical case, a model will be used regularly (e.g., weekly in an operational environment). In this 

case, the model system can be thought of as having the structure shown in Figure 19.1: 

Figure 19.1 System Structure 

     Input Data
User Interface and
    Formulation
      Generator

Solver Data Files

Report Writer
Results Interface

 

 Notice there is a double-headed arrow between the data files and the formulation generator. This is 

because the generator may obtain parameters such as capacities from the data files. There is an arrow 

from the data files to the report writer because there are data, such as addresses of customers, that are 

needed for the output reports but are not needed in the formulation. The success of spreadsheet programs, 

such as Lotus 1-2-3, is due in part to the fact they incorporate all the above components in a relatively 

seamless fashion. 
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19.4 Marketing the Model 
It is important to keep in mind: Who will be the users/clients? Frequently, there are two types of clients 

in a single organization: 

1) The Model champion (e.g., a CEO), 

2) Actual user (e.g., a foreman working 12 hours/day and whose major concern is getting the 

work out and meeting deadlines). 

 Client (1) will commit to model development based on expected profit improvement. Client (2) will 

actually use the model if it simplifies his/her life. He may get fired if he misses a production deadline. 

There is a modest probability of a raise if he improves profitability and takes the trouble to document it. 

Thus, for client (2), the input and output user interfaces are very important. 

19.4.1 Reports 
A model has an impact largely via the reports it produces. If a standard report already exists in the 

organization, try to use it. The model simply puts better numbers in it. 

Example. An LP-based scheduling system was developed for shoe factories. It was a success in the 

first factory where it was tried. Production improved by about 15%. The system never “got 

off the ground” in a second factory. The reason for the difference in success was apparently 

as follows. The first factory had an existing scheduling report or work order. This report 

was retained. The results of the LP scheduling model simply put better numbers in it. The 

second factory had been using an informal scheduling system. The combination of 

installing both a new reporting system and a new scheduling system was too big a barrier 

to change. 

19.4.1.1 Designing Reports 

The proper attitude in designing reports is to ask: How will the results be used? 

 In operations settings, there frequently are three types of reports implied by the results of a model 

run: 

a) Raw material acquisition recommendations. For example, in extreme cases, the model 

might generate purchase orders directly. 

b) Production orders. For example, how are the raw materials to be processed into finished 

goods? 

c) Finished goods summaries. If the production process is complicated, (e.g., several different 

alternative processes are used to achieve the total production of a specific product), then it 

may not be clear from (a) and (b) how much of a particular finished good was produced. 
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Example.  Reports in a Blending Facility. In a facility that blends raw materials into finished goods, 

reports of the following type might be appropriate: 

(a) 

Raw Material Purchases 
Raw Material Total 

Required  
Beginning 
Inventory 

Required 
Purchases 

    

    

    

    

    

    

    

(b) 

Production 

Batch 1 Product: Batch 1 Product: 
Inputs: 
 Raw Material         Amount 

Inputs: 
 Raw Material         Amount 

    

    

    

    

    

    

 

(c) 

Finished Goods Summary 
Product Beginning 

Inventory 
Goods 

Produced 
Total 

Required 
Surplus 
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19.4.1.2 Dimensional View of Reports 

A more mechanical view of report generation is to take a dimensional view of a system (i.e., a problem 

and its solution have a number of dimensions). Each report is a sort and summary by dimensions. 

Example: Multiperiod Shipping 

Dimensions: Origins, destinations, time periods. The major decision variables might be of 

the form Xijt, where Xijt is the number of tons to be shipped from supplier i, to customer 

j in time period t. The types of reports might be: 

Supplier’s Report: Sorted by origin, time, destination (or summed over destination). 

Shipping Manager’s Report: Sorted by time, origin, destination. 

Customer’s Report: Sorted by destination, time, origin (or perhaps summed over 

origin). 

Most spreadsheets and database systems have multi-level sorting capability. 

19.4.1.3 Report Details/Passing the Snicker Test 

Results should be phrased in terms the user finds easy to use. 

 For example, reporting a steel bar should be cut to a length of 58.36 inches may cause snickers in 

some places because “everybody knows” this commodity (like U.S. stock prices) is measured in 

multiples of 1/8 inches, or dollars, as the case may be. So, it would be better to round the result to 58.375 

inches or, even better, report it as 58 and 3/8 inches. 

 Other examples: Dates should be reported not only in day of the month (taking into account leap 

years), but also day of the week. Different parts of the world use different formats for displaying dates 

(e.g., 14 March 1991 or 3/14/1991). Use a format appropriate for the location where used. 

Example: Vehicle Routing/Passing the Snicker Test 

Customers are grouped into trips, so the same vehicle serves customers on the same trip. The 

actual model decomposed the problem into two phases: 

(1) Allocate to trips  Big savings here. 

(2) Sequence each trip  Users notice this the most. 

If your system does an excellent job of allocating customers to trips (where the big savings 

exist), but does not always get the optimal sequence of customers within a trip, users may notice 

the latter weakness. Even though there may be no big savings possible by improving the 

sequence, users may have less faith in the system because of this small weakness. 

19.4.1.4 Models Should Always Have Feasible Solutions 

In a large model where the input data are prepared by many people, there may be no assurance the data 

are perfectly consistent. For example, production capacity as estimated by the production department 

may be insufficient to satisfy sales forecasts as estimated by the marketing department. If the model has 

a constraint that requires production to equal forecasted sales, then there may be no feasible solution. 

The terse message “No feasible solution” is not very helpful. 

 A better approach is to have in the model a superworker or superfacility that can make any product 

at infinite speed, but at a rather high cost. There will always be a feasible solution although some parts 

of the solution may look somewhat funny. 

 Another device is to allow demand to be backlogged at a high cost. 

 In each case, the solution will give sensible indications of where one should install extra capacity 

or cut back on projected sales, etc. 
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 A model may be fundamentally good, but incomplete in certain minor details. As a result, some of 

its recommendations may be slightly, but blatantly, incorrect. 

 For example, in reality almost every activity has a finite upper bound. 

 Similarly, there may be obvious bounds on the dual prices of certain resources. For example, if land 

is a scarce resource in the real world, then its dual price should never be zero. You should include sellout 

or buy activities corresponding to such things as renting out excess land to put lower and upper bounds 

on dual prices. 

19.4.1.5 “Signing Off” on System Structure 

If a prospective model (a) is likely to be complicated and (b) the group that will use the model is distinct 

from the group that will design the model, then it will be worthwhile to have beforehand a written 

document describing exactly what the model does. Effectively, the “User’s Manual” is written before 

the system is implemented. The prospective users should “sign off” on the design (e.g., by providing a 

letter that says “Yes, this is what we want and we will accept if it provides this”). 

 This document might include the following: 

a) Form in which input will be provided. 

b) Form in which output will be provided. 

c) Test data sets that must be successfully processed. The model will be accepted if and only 

if these are satisfied. 

19.4.2 Report Generation in LINGO 
The default report format in LINGO is the three column: Variable, Value, Reduced Cost report format.  

You can generate somewhat arbitrary customized reports by using several functions available in a DATA 

section in LINGO.  The functions are:  

@TEXT() = output function.  Allows you to specify a line to be output.   If  @TEXT( ) has no 

argument,  then the line is output to the terminal display, else it is output to the filename listed 

in the argument as in @TEXT(myfile.txt) =. 

@WRITEFOR output looping function.  Analogous to the @FOR function in 

       a model,  it specifies looping  over sets when generating output. 

 

@WRITE().  Used for outputting a single line. 

@NEWLINE(n)  inserts n newlines or carriage returns in the output. 

@FORMAT( field, value) specifies a field format, e.g., number of characters, and what value   

    to insert in the field. 

The following model based on the Sudoku puzzle illustrates how to use the above functions. 
 
! The sudoku puzzle in LINGO.  Fill out a 9x9 grid with the digits 

 1,2,...9, so that each digit appears once in 

   a) each column, 

   b) each row, 

   c) each of the nine 3x3 subsquares, 

   d) the main diagonal, 

   e) in the reflected diagonal; 

! Some versions of the puzzle do not require (d) and (e) 

! Keywords: sudoku, Puzzles; 
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SETS: 

 SIDE; 

 SS( SIDE, SIDE): X; 

 SSS( SIDE,SIDE,SIDE): Y; 

ENDSETS 

 DATA: 

  SIDE = 1..9; 

! Set diag = 1 if you want the diagonal constraints to be 

  satisfied, else 0 if not required; 

   diag = 0; 

 ENDDATA 

! Variables: 

   X(i,j) = value in row i, col j of matrix, 

   Y(i,j,k) = 1 if X(i,j) = k; 

 

! Any pre-specified entries inserted here; 

   X(1,1) = 5; 

   X(2,6) = 8; 

   X(3,4) = 5; 

   X(3,9) = 1; 

   X(4,2) = 1; 

   X(4,7) = 6; 

   X(4,8) = 3; 

   X(9,1) = 9; 

   X(9,2) = 8; 

   X(9,5) = 6; 

 

 ! Link X and Y; 

   @FOR( SS(i,j): 

     X(i,j) = @SUM(SIDE(k): k*y(i,j,k)); 

 ! Must choose something for cell i,j; 

    @SUM(SIDE(k): y(i,j,k)) = 1; 

 ! Make the Y's binary; 

    @FOR(SIDE(k): @bin(y(i,j,k))); 

       ); 

 

 ! Force each number k to appear once in each column j; 

   @FOR( SIDE(j): 

     @FOR( SIDE(k): 

       @SUM( SIDE(i): Y(i,j,k)) = 1; 

       );  ); 

 ! Force each number k to appear once in each row i; 

   @FOR( SIDE(i): 

     @FOR( SIDE(k): 

       @SUM( SIDE(j): Y(i,j,k)) = 1; 

        ); ); 

 ! Force each number k to appear once in each 3x3 subsquare;  

   @FOR( SIDE(k): 

     ! Upper left; 

     @SUM( SS(i,j) | i #le#3 #and# j #le# 3: y(i,j,k)) = 1; 

     ! Upper middle; 

     @SUM( SS(i,j) | i #le#3 #and# j #gt# 3 #and# j#le# 6: y(i,j,k)) = 1; 

     ! Upper right; 
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     @SUM( SS(i,j) | i #le#3 #and# j #gt# 6: y(i,j,k)) = 1; 

     ! Middle left; 

     @SUM( SS(i,j) | i #gt#3 #and# i #le#6 #and# j #le# 3: y(i,j,k)) = 1; 

     ! Middle middle; 

     @SUM( SS(i,j) | i #gt#3 #and# i #le#6 #and# j #gt# 3 #and# j #le# 6: 

y(i,j,k)) = 1; 

     ! Middle right; 

     @SUM( SS(i,j) | i #gt#3 #and# i #le#6 #and# j #gt# 6 #and# j #le# 9: 

y(i,j,k)) = 1; 

     ! Lower left; 

     @SUM( SS(i,j) | i #gt#6 #and# i #le#9 #and# j #gt# 0 #and# j #le# 3: 

y(i,j,k)) = 1; 

     ! Lower middle; 

     @SUM( SS(i,j) | i #gt#6 #and# i #le#9 #and# j #gt# 3 #and# j #le# 6: 

y(i,j,k)) = 1; 

     ! Lower right; 

     @SUM( SS(i,j) | i #gt#6 #and# i #le#9 #and# j #gt# 6 #and# j #le# 9: 

y(i,j,k)) = 1; 

 

   ! Force each number k to appear once in the main diagonal;  

     @SUM( SS(i,j) | i #eq# j: diag*y(i,j,k)) = diag; 

   ! Force each number k to appear once in the reflected diagonal; 

     @SUM( SS(i,j) | i + j #eq# 10: diag*y(i,j,k)) = diag; 

       ); 

 

  DATA: 

 ! Write the solution in matrix form; 

   @TEXT() = 

    @WRITE( @NEWLINE( 1), 25*' ', 'Sudoku Puzzle Solution', 

       @NEWLINE( 1)); 

   @TEXT() =  

      @WRITEFOR( SIDE( i):  

         @WRITEFOR( SIDE( j):  

            @FORMAT( '#8.0g', x( i, j) ) 

                   ) , @NEWLINE( 1) 

                ); 

   @TEXT() = ' '; 

  ENDDATA 

19.5 Reducing Model Size 
Practical LP models tend to be large. Thus, it makes sense to talk about the management of these models. 

Some of the important issues are: 

1. Choosing an appropriate formulation. Frequently, there are two conflicting considerations: 

(a) the model should be large enough to capture all important details of reality, and (b) the 

model should be solvable in reasonable time. 

2. What input data are needed? How is it collected? 

3. How do we create an explicit model from the current data? This process has traditionally 

been called matrix generation. 

4. How is the model solved? Is it solvable in reasonable time? In reality, some optimization 

program must be selected.  
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 In this section, we discuss issues (1) and (3). The selection of an appropriate formulation also has 

implications for how easily a model is solved (issue 4). 

 We begin our discussion with how to choose a formulation that is small and thus more easily solved 

(usually). 

 The computational difficulty of an LP is closely related to three features of the LP: the number of 

rows, the number of columns, and the number of nonzeroes in the constraint matrix. For linear programs, 

the computation time tends to increase with the square of the number of nonzeroes. Thus, there is some 

motivation to (re)formulate LP models, so they are small in the above-mentioned three dimensions. 

 Most commercial optimzation solvers have built-in routines, with names like REDUCE, that will 

mechanically do simple kinds of algebraic substitutions and eliminations necessary for reduction. 

Brearley, Mitra, and Williams (1975) give a thorough description of these reductions. 

19.5.1 Reduction by Aggregation 
We say we aggregate a set of variables if we replace a set of variables by a single variable. We aggregate 

a set of constraints if we replace a set of constraints by a single constraint. If we do aggregation, we must 

resolve several issues: 

1. After solving the LP, there must be a postprocessing/disaggregation phase to deduce the 

disaggregate values from the aggregate values. 

2. If row aggregation was performed, the solution to the aggregate problem may not be 

feasible to the true disaggregate problem. 

3. If variable aggregation was performed, the solution to the aggregate problem may not be 

optimal to the true disaggregate problem. 

To illustrate (2), consider the LP: 

Maximize          2x + y 

subject to             x  1 

              y  1 

          x, y  0 

 The optimal solution is x = y = 1; with objective value equal to 3. We could aggregate the rows to 

get: 

Maximize       2x + y 

subject to         x + y  2 

            x, y  0 

 The optimal solution to this aggregate problem is x = 2, y = 0, with objective value equal to 4. 

However, this solution is not feasible to the original problem. 

 To illustrate (3), consider the LP: 

Minimize          x1 + x2 

subject to          x1  2 

            x2  1 

       x1, x2  0 
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 The optimal solution is x1 = 2, x2 = 1, with objective value equal to 3. We could aggregate variables 

to get the LP: 

Minimize      2x 

subject to      x  2 

       x  1 

       x  0 

 The optimal solution to the aggregate problem is x = 2, with objective value equal to 4. This solution 

is, however, not optimal for the original, disaggregate LP. 

19.5.1.1 Example: The Room Scheduling Problem 

We will illustrate both variable and constraint aggregation with a problem that confronts any large hotel 

that has extensive conference facilities for business meetings. The hotel has r conference rooms available 

of various sizes. Over the next t time periods (e.g., days), the hotel must schedule g groups of people 

into these rooms. Each group has a hard requirement for a room of at least a certain size. Each group 

may also have a preference of certain time periods over others. Each group requires a room for exactly 

one time period. The obvious formulation is: 

Vgtr = value of assigning group g to time period t in room r. This value is provided by group 

g, perhaps as a ranking. The decision variables are: 

Xgtr = 1 if group g is assigned to room r in time period t. This variable is defined for each 

group g, each time period t, and each room r that is big enough to accommodate group 

g. 

         = 0 otherwise. 

The constraints are: 

rt

 xgtr = 1 for each group g 

g

 xgtr
 
 1 for each room r, time period t 

xgtr = 0 or 1 for all g, t, and r 

The objective is: 

Maximize         
rt


g

  V gtr xgtr 

 The number of constraints in this problem is g + r  t. The number of variables is approximately 

g  t  r/2. The 1/2 is based on the assumption that, for a typical group, about half of the rooms will be 

big enough. 

 A typical problem instance might have g = 250, t = 10, and r = 30. Such a problem would have 550 

constraints and about 37,500 variables. A problem of that size is nontrivial to solve, so we might wish 

to work with a smaller formulation. 

 Aggregation of variables can be used validly if a group is indifferent between rooms b and c, as 

long as both rooms b and c are large enough to accommodate the group. In terms of our notation, 

Vgtb = Vgtc for every g and t if both rooms b and c are large enough for g. More generally, two variables 

can be aggregated if, in each row of the LP, they have the same coefficients. Two constraints in an LP 

can be validly aggregated if, in each variable, they have the same coefficients. We will do constraint 

aggregation by aggregating together all rooms of the same size. This aggregation process is 
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representative of a fundamental modeling principle: when it comes to solving the model, do not 

distinguish things that do not need distinguishing. 

 The aggregate formulation can now be defined: 

K = number of distinct room sizes 

Nk = number of rooms of size k or larger 

Sk = the set of groups, which require a room of size k or larger 

Vgt = value of assigning group g to time period t 

xgt = 1 if group g is assigned to a room in time period t 

 = 0 otherwise 

The constraints are: 

i

 xgt = 1         for each group g 

g S k

 xgt  Nk      for each room size k. 

The objective is: 

Maximize   
tg

 Vgt Xgt 

 This formulation will have g + k  t constraints and g  t decision variables. For the case g = 250, 

t = 10, and r = 30, we might have k = 4. Thus, the aggregate formulation would have 290 constraints and 

2500 variables, compared with 550 constraints and 37,500 variables for the disaggregate formulation. 

 The post processing required to extract a disaggregate solution from an aggregate solution to our 

room scheduling problem is straightforward. For each time period, the groups assigned to that time 

period are ranked from largest to smallest. The largest group is assigned to the largest room, the second 

largest group to the second largest room, etc. Such an assignment will always be feasible as well as 

optimal to the original problem. 

19.5.1.2 Example 2: Reducing Rows by Adding Additional Variables 

If two parties, A and B, to a financial agreement, want the agreement to be treated as a lease for tax 

purposes, the payment schedule typically must satisfy certain conditions specified by the taxing agency. 

Suppose Pi is the payment A is scheduled to make to B in month i of a seven-year agreement. Parties A 

and B want to choose at the outset a set of Pj’s that satisfy a tax regulation that no payment in any given 

month can be less than 2/3 of the payment in any earlier month. If there are T periods, the most obvious 

way of writing these constraints is: 

For i = 2, T: 

For j = 1, i − 1:  

      Pi  0.66666 Pj 
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 This would require T(T − 1)/2 constraints. A less obvious approach would be to define PMi as the 

largest payment occurring any period before i. The requirement could be enforced with:  

PM1 = 0 

For i = 2 to T: 

Pi  0.66666 PMi 

PMi  PMi-1 

PMi  Pi-1 

 This would require 3T constraints rather than T(T − 1)/2. For T = 84, the difference is between 3486 

constraints and 252. 

19.5.2 Reducing the Number of Nonzeroes 
If a certain linear expression is used more than once in a model, you may be able to reduce the number 

of nonzeroes by substituting it out. For example, consider the two-sided constraints frequently 

encountered in metal blending models: 

Li  

j qij Xj

j Xj
  Ui         (for each quality characteristic i). 

 In these situations, Lk and Uk are lower and upper limits on the ith quality requirement, and qij is 

the quality of ingredient j with respect to the ith quality. The “obvious” way of writing this constraint in 

linear form is: 

 j

 (qij - Li) Xj  0, 

 j

 (qij - Uk) Xj  0. 

 By introducing a batch size variable B and a slack variable si, this can be rewritten: 

B -

 
 j

 Xj = 0 

 j

 qij Xj + si = Ui  B 

si  (Uk - Li)  B 

 If there are m qualities and n ingredients, the original formulation had 2  m  n nonzeroes. The 

modified formulation has n + 1 + m  (n + 2) + m  2 = n + 1 + m  (n + 4) nonzeroes. For large n, the 

modified formulation has approximately 50% fewer nonzeroes. 

19.5.3 Reducing the Number of Nonzeroes in Covering Problems 
A common feature in some covering and multiperiod financial planning models is each column will have 

the same coefficient (e.g., + 1) in a large number of rows. A simple transformation may substantially 

reduce the number of nonzeroes in the model. Suppose row i is written: 

   j 1=

n

  aij Xj = ai0 
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Now, suppose we subtract row i − 1 from row i, so row i becomes: 

   j 1=

n

 (aij - ai-1, j) Xj = ai0 - ai-1, 0 

If aij = ai-1,j  0 for most j, then the number of nonzeroes in row i is substantially reduced. 

Example 

Suppose we must staff a facility around the clock with people who work eight-hour shifts. A shift can 

start at the beginning of any hour of the day. If ri is the number of people required to be on duty from 

hour i to hour i + 1, Xi is the number of people starting a shift at the beginning of hour i, and si is the 

surplus variable for hour i, then the constraints are:  

X1 +     X18 + X19 + X20 + X21 + X22 + X23 + X24 − s1   = r1 

X1 + X2    +   X19 + X20 + X21 + X22 + X23 + X24  − s2  = r2 

X1 + X2    + X3  +   X20 + X21 + X22 + X23 + X24   − s3 = r3  

                   . 

                   . 

                   . 

 Suppose we subtract row 23 from row 24, row 22 from row 23, etc. The above constraints will be 

transformed to: 

X1 +     X18 + X19 + X20 + X21 + X22 + X23 + X24  − s1               = r1 

X2   −  X18                                                        + s1 − s2        = r2 − r1 

X1             − X19                                                      + s2 − s3 = r3 − r2  

                      . 

                      . 

                      . 

Thus, a typical constraint will have four nonzeroes rather than nine.  

 The pattern of nonzeroes for the X variables in the original formulation is shown in Figure 19.1. The 

pattern of the nonzeroes for the X variables in the transformed formulation is shown in Figure 19.2. The 

total constraint nonzeroes for X and s variables in the original formulation is 216. The analogous count 

for the transformed formulation is 101, a very attractive reduction. 
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Figure 19.2 
Nonzero Pattern for X Variables in Original Formulation. 

X Variables 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1 +                 + + + + + + + 
2 + +                 + + + + + + 
3 + + +                 + + + + + 
4 + + + +                 + + + + 
5 + + + + +                 + + + 
6 + + + + + +                 + + 
7 + + + + + + +                 + 
8 + + + + + + + + 
9  + + + + + + + + 
10   + + + + + + + + 
11    + + + + + + + + 
12     + + + + + + + + 
13      + + + + + + + + 
14       + + + + + + + + 
15        + + + + + + + + 
16         + + + + + + + + 
17          + + + + + + + + 
18           + + + + + + + + 
19            + + + + + + + + 
20             + + + + + + + + 
21              + + + + + + + + 
22               + + + + + + + + 
23                + + + + + + + + 

24                 + + + + + + + + 

Figure 19.3 
Nonzero Pattern for X Variables in Transformed Formulation 

X Variables 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 +                 + + + + + + + 

2  +                - 

3   +                - 

4    +                - 

5     +                - 

6      +                - 

7       +                - 

8        +                - 

9 -        + 

10  -        + 

11   -        + 

12    -        + 

13     -        + 

14      -        + 

15       -        + 

16        -        + 

17         -        + 

18          -        + 

19           -        + 

20            -        + 

21             -        + 

22              -        + 

23               -        + 

24                -        + 

19.6 On-the-Fly Column Generation 
There are a number of generic LP models that have a modest number of rows (e.g., a hundred or so), but 

a large number of columns (e.g., a million or so). This is frequently the case in cutting stock problems. 

R 
O 
W 
S 

 

R 
O 
W 
S 
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This could also be the case in staffing problems, where there might be many thousands of different work 

patterns people could work. Explicitly generating all these columns is not a task taken lightly. An 

alternative approach is motivated by the observation that, at an optimum, there will be no more positive 

columns than there are rows. 

 The following iterative process describes the basic idea: 

1. Generate and solve an initial LP that has all the rows of the full model defined, but only a 

small number (perhaps even zero) of the columns explicitly specified. 

2. Given the dual prices of the current solution, generate one or more columns that price out 

attractively. That is, if a0j is the cost of column j, aij is its usage of resource i (i.e., its 

coefficient in rows i for i = 1, ..., m), and pi is the dual price of row i, then generate or find 

a new column a such that: 

a0j + p1a1j + p2a2j + ... + pmamj < 0. 

If no such column exists, then stop. The solution is optimal. 

3. Solve the LP with the new column(s) from (2) added. 

4. Go to (2). 

 The crucial step is (2). To use column generation for a specific problem, you must be able to solve 

the column generation subproblem in (2). In mathematical programming form, the subproblem in (2) is: 

Given {pj}, solve 

Min  

subject to: 

The aij satisfy the conditions defining a valid column. 

19.6.1 Example of Column Generation Applied to a Cutting Stock Problem 
A common problem encountered in flat goods industries, such as paper, textiles, and steel, is the cutting 

of large pieces of raw material into smaller pieces needed for producing a finished product. Suppose raw 

material comes in 72" widths and it must be cut up into eight different finished good widths described 

by the following table: 

 
Product 

Width in 
Inches 

Linear feet 
Required 

1 60 500 

2 56 400 

3 42 300 

4 38 450 

5 34 350 

6 24 100 

7 15 800 

8 10 1000 

0 1 1 2 2j j j m mja p a p a p a+ + + +



594     Chapter 19  Decision Support Systems 

 

 We start the process somewhat arbitrarily by defining the eight pure cutting patterns. A pure pattern 

produces only one type of finished good width. Let Pi = number of feet of raw material to cut according 

to the pattern i. We want to minimize the total number of feet cut. The LP with these patterns is: 

MIN =P001 + P002 + P003 + P004 + P005 + P006 + P007 + P008; 

 [W60]     P001 >=  500;  !       (60 inch width); 

 [W56]     P002 >=  400;  !       (56 inch width); 

 [W42]     P003 >=  300;  !       (42 inch width); 

 [W38]     P004 >=  450;  !       (38 inch width); 

 [W34] 2 * P005 >=  350;  !       (34 inch width); 

 [W24] 3 * P006 >=  100;  !       (24 inch width); 

 [W15] 4 * P007 >=  800;  !       (15 inch width); 

 [W10] 7 * P008 >=  1000; !       (10 inch width); 

END 

The solution is: 

Optimal solution found at step:         0 

Objective value:                 2201.190 

Variable           Value        Reduced Cost 

    P001        500.0000           0.0000000 

    P002        400.0000           0.0000000 

    P003        300.0000           0.0000000 

    P004        450.0000           0.0000000 

    P005        175.0000           0.0000000 

    P006        33.33333           0.0000000 

    P007        200.0000           0.0000000 

    P008        142.8571           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2201.190            1.000000 

     W60       0.0000000           -1.000000 

     W56       0.0000000           -1.000000 

     W42       0.0000000           -1.000000 

     W38       0.0000000           -1.000000 

     W34       0.0000000          -0.5000000 

     W24       0.0000000          -0.3333333 

     W15       0.0000000          -0.2500000 

     W10       0.0000000          -0.1428571 

 The dual prices provide information about which finished goods are currently expensive to produce. 

A new pattern to add to the problem can be found by solving the problem: 

Minimize  

subject to 
 

y1 = 0, 1, 2,...     for    i = 1,... 8. 

Note the objective can be rewritten as: 

Maximize  

1 5 0 333333 0 25 0142857
1 2 3 4 5 6 7 8

− − − − − − − −y y y y y y y y. . . .

60 56 42 38 34 24 15 10 72
1 2 3 4 5 6 7 8y y y y y y y y+ + + + + + + 

1 2 3 4 5 6 7 8
5 0 333333 0 25 0142857y y y y y y y y+ + + + + + +. . . .
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 This is a knapsack problem. Although knapsack problems are theoretically difficult to solve, there 

are algorithms that are quite efficient on typical practical knapsack problems. An optimal solution to this 

knapsack problem is y4 = 1, y7 = 2 (i.e., a pattern that cuts one 38” width and two 15” widths). When this 

column, P009, is added to the LP, we get the formulation (in Picture form): 

P P P P P P P P P 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 

1: 1 1 1 1 1 1 1 1 1 MIN 

2: 1     '     '     > C 

3: ' 1'  '  '  '  '  > C 

4:     1 '     '     > C 

5:       1     '   1 > C 

6: '  '  ' 2'  '  '  > C 

7:       '   3 '     > B 

8:       '     4   2 > C 

9: '  '  '  '  ' 7'  > C 

The solution is: 

Optimal solution found at step:         3 

Objective value:                 2001.190 

Variable           Value        Reduced Cost 

    P001        500.0000           0.0000000 

    P002        400.0000           0.0000000 

    P003        300.0000           0.0000000 

    P004        50.00000           0.0000000 

    P005        175.0000           0.0000000 

    P006        33.33333           0.0000000 

    P007       0.0000000            1.000000 

    P008        142.8571           0.0000000 

    P009        400.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2001.190            1.000000 

     W60       0.0000000           -1.000000 

     W56       0.0000000           -1.000000 

     W42       0.0000000           -1.000000 

     W38       0.0000000           -1.000000 

     W34       0.0000000          -0.5000000 

     W24       0.0000000          -0.3333333 

     W15       0.0000000           0.0000000 

     W10       0.0000000          -0.1428571 

The column generation subproblem is: 

Minimize  

subject to 
 

y1 = 0, 1, 2,...     for    i = 1,... 8.  

 An optimal solution to this knapsack problem is y4 = 1, y5 = 1 (i.e., a pattern that cuts one 38” width 

and one 34” width). 

1 2 3 4 5 6 8
5 0 333333 0142857y y y y y y y+ + + + + +. . .

60 56 42 38 34 24 15 10 72
1 2 3 4 5 6 7 8y y y y y y y y+ + + + + + + 
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 We continue generating and adding patterns for a total of eight iterations. At this point, the LP 

formulation is: 

P P P P P P P P P P P P P P P 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MIN 

2: 1     '     '     '     '   1 > C 

3: ' 1'  '  '  '  '  '  '1 '  '  > C 

4:     1 '     '     ' 1   ' 1   > C 

5:       1     '   1 1     1     > C 

6: '  '  ' 2'  '  '  1  '  '  '  > C 

7:       '   3 '     '     1     > B 

8:       '     4   2 ' 2 1 '     > C 

9: '  '  '  '  ' 7'  '  '  1 3'1 > C 

The solution is: 

Optimal solution found at step:        10 

Objective value:                 1664.286 

Variable           Value        Reduced Cost 

    P001       0.0000000           0.1428571 

    P002       0.0000000           0.2142857 

    P003       0.0000000           0.4285714 

    P004       0.0000000           0.4285714 

    P005       0.0000000           0.1428571 

    P006       0.0000000           0.1428571 

    P007       0.0000000           0.1428571 

    P008        14.28571           0.0000000 

    P009       0.0000000           0.0000000 

    P010        350.0000           0.0000000 

    P011        200.0000           0.0000000 

    P012        400.0000           0.0000000 

    P013        100.0000           0.0000000 

    P014        100.0000           0.0000000 

    P015        500.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        1664.286            1.000000 

     W60       0.0000000          -0.8571429 

     W56       0.0000000          -0.7857143 

     W42       0.0000000          -0.5714286 

     W38       0.0000000          -0.5714286 

     W34       0.0000000          -0.4285714 

     W24       0.0000000          -0.2857143 

     W15       0.0000000          -0.2142857 

     W10       0.0000000          -0.1428571 
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The relevant knapsack problem is: 

Maximize 

0.857143y1 + 0.785714y2 + 0.571429y3 + 0.523809y4 

    + 0.476191y5 + 0.333333y6 + 0.214285y7 + 0.142857y8  

 subject to 

60y1 + 56y2 + 42y3 + 38y4 + 34y5 + 24y6 + 15y7 + 10y8  72 

y1 = 0, 1, 2,...     for    i = 1,... 8. 

 The optimal solution to the knapsack problem has an objective function value less-than-or-equal-to 

one. Because each column, when added to the LP, has a “cost” of one in the LP objective, when the 

proposed column is priced out with the current dual prices, it is unattractive to enter. Thus, the previous 

LP solution specifies the optimal amount to run of all possible patterns. There are in fact 29 different 

efficient patterns possible, where efficient means the edge waste is less than 10". Thus, the column 

generation approach allowed us to avoid generating the majority of the patterns. 

 If an integer solution is required, then a simple rounding up heuristic tends to work moderately well. 

In our example, we know the optimal integer solution costs at least 1665. By rounding P008 up to 15, 

we obtain a solution with cost 1665. 

   The following is a LINGO program that automates this column generation process. 

 
  MODEL:         ! Loopcut72.lng; 

  ! Uses Lingo's programming capability to do  

    on-the-fly column generation for a  

    cutting-stock problem; 

  ! Keywords: Column Generation, Knapsack Model, Cutting Stock; 

  SETS: 

     PATTERN: COST, X; 

    FG: WIDTH, DEM, PRICE, Y, YIELD; 

    FXP( FG, PATTERN): NBR; 

  ENDSETS 

 

  DATA: 

    PATTERN = 1..20; ! Allow up to 20 patterns; 

    RMWIDTH = 72;    ! Raw material width; 

    FG =  F60  F56  F42  F38  F34  F24  F15  F10;!Finished goods...; 

    WIDTH= 60   56   42   38   34   24   15   10;!their widths...; 

    DEM = 500  400  300  450  350  100  800 1000;!and demands; 

    BIGM = 999; 

  ENDDATA 

 

  SUBMODEL MASTER_PROB: 

    [MSTROBJ] MIN= @SUM( PATTERN( J)| J #LE# NPATS: COST( J)*X( J)); 

    @FOR( FG( I): 

     [R_DEM]  @SUM( PATTERN( J)| J #LE# NPATS:  

                        NBR( I, J) * X( J)) >= DEM( I); 

         ); 

  ENDSUBMODEL 

 

  SUBMODEL INTEGER_REQ: 

    @FOR( PATTERN: @GIN( X)); 

  ENDSUBMODEL 
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  SUBMODEL PATTERN_GEN: 

    [SUBOBJ] MAX = @SUM( FG( I): PRICE( I)* Y( I)); 

     @SUM( FG( I): WIDTH( I)*Y( I)) <= RMWIDTH; 

    @FOR( FG( I): @GIN(Y( I))); 

  ENDSUBMODEL 

 

  CALC: 

    ! Set some parameters; 

    @SET( 'DEFAULT'); ! Set all parameters to defaults; 

    @SET( 'TERSEO', 2); ! Turn off default output; 

  

   ! Max number of patterns we'll allow; 

    MXPATS = @SIZE( PATTERN); 

   ! Make first pattern an expensive super pattern; 

    COST( 1) = BIGM; 

    @FOR( FG( I): NBR( I, 1) = 1); 

 

   ! Loop as long as the reduced cost is 

     attractive and there is space; 

    NPATS = 1; 

    RC = -1;   ! Clearly attractive initially; 

    @WHILE( RC #LT# 0 #AND# NPATS #LT# MXPATS: 

     ! Solve for best patterns to run among ones 

       generated so far; 

    @SOLVE( MASTER_PROB); 

    ! Copy dual prices to PATTERN_GEN submodel; 

    @FOR( FG( I): PRICE( I) = -@DUAL( R_DEM( I))); 

    ! Generate the current most attractive pattern; 

    @SOLVE( PATTERN_GEN);  

    ! Marginal value of current best pattern; 

    RC = 1 - SUBOBJ; 

    ! Add the pattern to the Master if it is attractive; 

    @IFC( RC #LT# 0: 

       NPATS = NPATS + 1; 

       @FOR( FG( I): NBR( I, NPATS) = Y( I)); 

       COST( NPATS) = 1; 

        ); 

    ); 

 

   ! Finally solve Master as an IP; 

    @SOLVE( MASTER_PROB, INTEGER_REQ); 

 

  ! This following calc section displays the  

    solution in a tabular format;  

  ! Compute yield of each FG; 

    @FOR( FG( F): YIELD( F) =  

     @SUM( PATTERN( J)| J #LE# NPATS:  

        NBR( F, J) * X(J)) 

        );  

 

  ! Compute some stats; 

    TOTAL_FT_USED = @SUM( PATTERN(j)| j #LE# NPATS: X(j)) * RMWIDTH; 

    TOTAL_FT_YIELD = @SUM( FG: YIELD * WIDTH); 
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    PERC_WASTE =  100 * ( 1 - ( TOTAL_FT_YIELD / TOTAL_FT_USED)) ; 

  ! Display the table of patterns and their usage; 

    FW = 6; 

    @WRITE( @NEWLINE( 1));  

    @WRITE( ' Total raws used:    ', @SUM(PATTERN(j) | j #LE# NPATS: 

                                     X(j)), @NEWLINE( 2), 

          ' Total feet yield:   ', TOTAL_FT_YIELD , @NEWLINE( 1), 

          ' Total feet used:    ', TOTAL_FT_USED , @NEWLINE( 2), 

          ' Percent waste:    ', @FORMAT( PERC_WASTE, '#5.2G'),  

          '%',   @NEWLINE( 1));  

    @WRITE( @NEWLINE( 1), 24*' ', 'Pattern:', @NEWLINE( 1)); 

    @WRITE( '   FG  Demand Yield');  

    @FOR( PATTERN( I) | I #LE# NPATS: @WRITE( @FORMAT( I, '6.6G'))); 

    @WRITE( @NEWLINE( 1)); 

    @WRITE( ' ',FW*( NPATS+3)*'=', @NEWLINE( 1));  

    @FOR( FG( F):  

      @WRITE((FW - @STRLEN( FG( F)))*' ', FG( F), ' ',  

        @FORMAT( DEM( F), '6.6G'), @FORMAT( YIELD( F), '6.6G')); 

      @FOR( FXP( F, P) | P #LE# NPATS:  

        @WRITE( @IF( NBR( F, P) #GT# 0,  

        @FORMAT( NBR( F, P), "6.6G"), '     .'))); 

      @WRITE( @NEWLINE( 1)) 

    ); 

    @WRITE( ' ',FW*( NPATS+3)*'=', @NEWLINE( 1));  

    @WRITE( 2*FW*' ', ' Usage:'); 

    @WRITEFOR( PATTERN( P) | P#LE# NPATS: @FORMAT( X( P), '6.6G'));  

    @WRITE( @NEWLINE( 1));  

  ENDCALC 

  END 

 

19.6.2 Column Generation and Integer Programming  
Column generation can be used to easily find an optimum solution to an LP. This is not quite true with 

IP’s. The problem is, with an IP, there is no simple equivalent to dual price. Dual prices may be printed 

in an IP solution, but they have an extremely limited interpretation. For example, it may be that all dual 

prices are 0 in an IP solution. 

 Thus, the usual approach, when column generation is used to attack IP’s, is to use column generation 

only to solve the LP relaxation. A standard IP algorithm is then applied to the problem composed of only 

the columns generated during the LP. However, it may be that a true IP optimum includes one or more 

columns that were not generated during the LP phase. The LP solution, nevertheless, provides a bound 

on the optimum LP solution. In our previous cutting stock example, this bound was tight. 

 There is a fine point to be made with regard to the stopping rule. We stop, not when the previous 

column added leads to no improvement in the LP solution, but when the latest column generated prices 

out unattractively. 
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19.6.3 Row Generation 
An analogous approach can be used if the problem intrinsically has many thousands of constraints even 

though only a few of them will be binding. The basic approach is: 

1. Generate some of the constraints. 

2. Solve the problem with the existing constraints. 

3. Find a constraint that has not been generated, but is violated. If none, we are done. 

4. Add the violated constraint and go to (2) 



Decision Support Systems  Chapter 19    601  

 

A 

B 

19.7 Problems 
1. A rope, 30 meters long is suspended between two vertical poles, each 20 meters high. The lowest 

point of the hanging rope is 5 meters above the (level) ground. How far apart are the two poles? Use 

the model verification technique of checking extreme cases, to answer this question. 

2. Consider the LP: 

MAX = W + 20 * X; 

               X               + Z <= 70; 

                       Y       + Z <= 55; 

      W         - 30 * Y  - 46 * Z = 0; 

               X + 2 * Y + 3.1 * Z <= 130; 

END 

 All variables are nonnegative. Show how this model can be reduced to a smaller, but equivalent 

LP. 

3. One of the most important and creative steps in analyzing or modeling a problem is identifying the 

decision variables or, more generally, identifying the options available in solving the problem. Show 

how paying close attention to the options available allows you to solve the following two problems: 

a) On a sheet of paper, arrange nine dots in a 3 by 3 square grid. Without removing your pen 

from the paper, draw four straight connected line segments that pass through all nine 

points. 

b) Rearrange the letters in "new door" to create one word. 

4. Important skills in decision making and model formulation are identifying decision options and 

constraints. Consider the figure below. Draw the shortest path from A to B. 

 

 

           

           

           

           

           

           

           

           

 

 

 



602     Chapter 19  Decision Support Systems 

 

5.  A common footnote seen in financial reports is a phrase like: “numbers may not sum to 100 because 

of rounding”.  This is an example the rounding problem frequently encountered when preparing reports.  

In its simplest form,  one is given a column of numbers, some of which have fractional parts.  One wants 

to round the numbers to integers, or to numbers with fewer fractional digits, so that the sum of the 

rounded numbers equals the sum of the original numbers.  Some variations of this problem are: a) in 

regulated utilities where a firm is allowed to round certain charges to a multiple of a nickel,  subject to 

having the total equal a certain quantity;  b) in some parliaments, e.g., the U.S. House of Representatives,  

each state is supposed to have an integer number of representatives(out of a fixed total of 435) 

proportional to the state’s population.  To illustrate,  consider the following two sets of numbers and 

their sums: 

 

                    Set  1                                           Set 2 

                     23.3                                              3.7 

                     15.4                                            11.6 

                     61.3                                              9.8 

                   100.0                                            47.7 

                                                                          9.6 

                                                                        11.5 

                                                                          6.1 

                                                                      100.0 

 

Notice that for both examples,  if you round each component to the nearer integer,  the results will not 

sum to 100. 

 

 a) Specify a method for rounding the components of an arbitrary set of numbers,  extolling the virtues 

of your method. 

 

 b) Illustrate your method on the two examples. 

 

 

6. You have created a supply chain modeling system that can accommodate from 1 to 10 products, 

from 1 to 6 suppliers, from 1 to 25 customers, and from 1 to 12 time periods.  In order to test your 

modeling system you want run at least one case for each extreme of each dimension.  In case there is a 

bug in your modeling system that depends upon interactions between two dimension you also want to 

run at least one case for each pair of extremes.  For example, considering products and suppliers, you 

want to run at least four cases covering: 1) 1 product and 1 supplier, 2) 1 product and 6 suppliers,  3) 10 

products and 1 supplier, 4) 10 products and 6 suppliers.  Note that a given test case in fact covers one 

product setting, one supplier setting, one customer setting, and one number-of-periods setting.  What is 

the minimum number of test cases you need to run,  so that if you consider any pair of dimensions,  each 

of the four combinations of extreme cases have been run? 
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