

Optimization

Modeling with

LINGO
Sixth Edition

LINDO Systems, Inc.
1415 North Dayton Street, Chicago, Illinois 60622

Phone: (312)988-7422 Fax: (312)988-9065
E-mail: info@lindo.com

Preliminary
Edition

TRADEMARKS
What’sBest! and LINDO are registered trademarks and LINGO is a trademark of LINDO Systems, Inc.

Other product and company names mentioned herein are the property of their respective owners.

Copyright © 2021 by LINDO Systems Inc

All rights reserved. First edition 1998

Sixth edition, April 2006

Printed in the United States of America

First printing 2003

This printing August 2021

ISBN: 1-893355-00-4

Published by

1415 North Dayton Street

Chicago, Illinois 60622

Technical Support: (312) 988-9421

http://www.lindo.com

e-mail: tech@lindo.com

v

Contents

Contents ... v
Preface ... xvii

Acknowledgments ... xvii
1 ... 1
What Is Optimization?... 1

1.1 Introduction .. 1
1.2 A Simple Product Mix Problem .. 1

1.2.1 Graphical Analysis .. 2
1.3 Linearity ... 5
1.4 Analysis of LP Solutions .. 6
1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices .. 8

1.5.1 Reduced Costs ... 8
1.5.2 Dual Prices .. 8

1.6 Unbounded Formulations .. 9
1.7 Infeasible Formulations ... 10
1.8 Multiple Optimal Solutions and Degeneracy ... 11

1.8.1 The “Snake Eyes” Condition ... 13
1.8.2 Degeneracy and Redundant Constraints .. 15

1.9 Nonlinear Models and Global Optimization ... 16
1.10 Problems .. 18

2 ... 21
Solving Math Programs with LINGO ... 21

2.1 Introduction .. 21
2.2 LINGO for Windows, Apple Mac, and Linux .. 21

2.2.1 LINGO Menu ... 23
2.2.2 Windows Menu ... 24
2.2.3 Help Menu ... 24
2.2.4 Summary ... 25

2.3 Getting Started on a Small Problem .. 25
2.4 Integer Programming with LINGO ... 26

2.4.1 Warning for Integer Programs .. 27
2.5 Solving an Optimization Model .. 27
2.6 Problems .. 28

3 ... 31
Analyzing Solutions .. 31

3.1 Economic Analysis of Solution Reports ... 31
3.2 Economic Relationship Between Dual Prices and Reduced Costs 31

3.2.1 The Costing Out Operation: An Illustration ... 32
3.2.2 Dual Prices, LaGrange Multipliers, KKT Conditions, and Activity Costing 33

3.3 Range of Validity of Reduced Costs and Dual Prices ... 34
3.3.1 Predicting the Effect of Simultaneous Changes in Parameters—The 100% Rule . 38

3.4 Sensitivity Analysis of the Constraint Coefficients ... 39
3.5 The Dual LP Problem, or the Landlord and the Renter ... 40

 Table of Contents vi

3.6 Problems .. 43
4 ... 49
The Model Formulation Process .. 49

4.1 The Overall Process .. 49
4.2 Approaches to Model Formulation... 50
4.3 The Template Approach .. 50

4.3.1 Product Mix Problems ... 50
4.3.2 Covering, Staffing, and Cutting Stock Problems... 50
4.3.3 Blending Problems .. 50
4.3.4 Multiperiod Planning Problems ... 50
4.3.5 Network, Distribution, and PERT/CPM Models .. 51
4.3.6 Multiperiod Planning Problems with Random Elements ... 51
4.3.7 Financial Portfolio Models ... 51
4.3.8 Game Theory Models ... 52

4.4 Constructive Approach to Model Formulation ... 52
4.4.1 Example .. 53
4.4.2 Formulating Our Example Problem .. 53

4.5 Choosing Costs Correctly .. 54
4.5.1 Sunk vs. Variable Costs .. 54
4.5.2 Joint Products ... 56
4.5.3 Book Value vs. Market Value .. 57

4.6 Common Errors in Formulating Models ... 59
4.7 The Nonsimultaneity Error ... 61
4.8 Debugging a Model ... 61
4.9 Problems .. 63

5 ... 67
The Sets View of the World .. 67

5.1 Introduction .. 67
5.1.1 Why Use Sets? ... 67
5.1.2 What Are Sets? ... 67
5.1.3 Types of Sets .. 68

5.2 The SETS Section of a Model ... 68
5.2.1 Defining Primitive Sets .. 68
5.2.2 Defining Derived Sets ... 69
5.2.3 Summary ... 70

5.3 The DATA Section ... 71
5.4 Set Looping Functions ... 73

5.4.1 @SUM Set Looping Function ... 74
5.4.2 @MIN and @MAX Set Looping Functions ... 75
5.4.3 @FOR Set Looping Function .. 76
5.4.4 Nested Set Looping Functions .. 77

5.5 Set Based Modeling Examples .. 77
5.5.1 Primitive Set Example ... 78
5.5.2 Dense Derived Set Example ... 81
5.5.3 Sparse Derived Set Example - Explicit List .. 83
5.5.4 A Sparse Derived Set Using a Membership Filter .. 88
5.5.5 Disabling Sections of Code Temporarily ... 92

Table of Contents vii

5.6 Domain Functions for Variables .. 92
5.7 Spreadsheets and LINGO ... 93
5.8 Programming in LINGO ... 97

5.8.1 Building Blocks for Programming .. 97
5.8.2 Generating Graphs and Charts ... 99

5.9 Problems .. 101
6 ... 102
Product Mix Problems .. 102

6.1 Introduction .. 102
6.2 Example ... 103
6.3 Process Selection Product Mix Problems ... 106
6.4 Problems .. 111

7 ... 115
Covering, Staffing & Cutting Stock Models .. 115

7.1 Introduction .. 115
7.1.1 Staffing Problems .. 116
7.1.2 Example: Northeast Tollway Staffing Problems.. 116
7.1.3 Additional Staff Scheduling Features .. 118

7.2 Cutting Stock and Pattern Selection .. 119
7.2.1 Example: Cooldot Cutting Stock Problem ... 120
7.2.2 Formulation and Solution of Cooldot .. 121
7.2.3 Generalizations of the Cutting Stock Problem .. 125
7.2.4 Two-Dimensional Cutting Stock Problems ... 127
7.2.5 Paper Converting: A Rectangle Cutting Problem ... 128

7.3 Crew Scheduling Problems ... 129
7.3.1 Example: Sayre-Priors Crew Scheduling .. 130
7.3.2 Solving the Sayre/Priors Crew Scheduling Problem .. 132
7.3.3 Additional Practical Details ... 134

7.4 A Generic Covering/Partitioning/Packing Model ... 135
7.5 Problems .. 137

8 ... 147
Networks, Distribution and PERT/CPM ... 147

8.1 What’s Special About Network Models.. 147
8.1.1 Special Cases ... 150
8.1.2 Fitting into Network Structure: Roads with No Left Turns 150

8.2 PERT/CPM Networks and LP .. 151
8.3 Activity-on-Arc vs. Activity-on-Node Network Diagrams.. 156
8.4 Crashing of Project Networks .. 157

8.4.1 The Cost and Value of Crashing ... 158
8.4.2 The Cost of Crashing an Activity .. 158
8.4.3 The Value of Crashing a Project ... 158
8.4.4 Formulation of the Crashing Problem ... 159

8.5 Resource Constraints in Project Scheduling ... 162
8.6 Path Formulations.. 164

8.6.1 Example .. 165
8.7 Path Formulations of Undirected Networks ... 166

8.7.1 Example .. 167

 Table of Contents viii

8.8 Double Entry Bookkeeping: A Network Model of the Firm .. 169
8.9 Extensions of Network LP Models ... 170

8.9.1 Multicommodity Network Flows .. 171
8.9.2 Reducing the Size of Multicommodity Problems .. 172
8.9.3 Multicommodity Flow Example ... 172
8.9.4 Fleet Routing and Assignment .. 175
8.9.5 Fleet Assignment .. 178
8.9.6 Leontief Flow Models .. 182
8.9.7 Activity/Resource Diagrams .. 186
8.9.8 Spanning Trees ... 188
8.9.9 Steiner Trees .. 190

8.10 Nonlinear Networks ... 194
8.11 Problems .. 197

9 ... 205
Multi-period Planning Problems .. 205

9.1 Introduction .. 205
9.2 A Dynamic Production Problem ... 207

9.2.1 Formulation ... 207
9.2.2 Constraints .. 208
9.2.3 Representing Absolute Values.. 210

9.3 Multi-period Financial Models .. 210
9.3.1 Example: Cash Flow Matching ... 211

9.4 Financial Planning Models with Tax Considerations ... 215
9.4.1 Formulation and Solution of the WSDM Problem ... 216
9.4.2 Interpretation of the Dual Prices ... 217

9.5 Present Value vs. LP Analysis ... 218
9.6 Accounting for Income Taxes .. 218
9.7 Dynamic or Multi-period Networks ... 222
9.8 End Effects .. 224

9.8.1 Perishability/Shelf Life Constraints ... 225
9.8.2 Startup and Shutdown Costs .. 225

9.9 Non-optimality of Cyclic Solutions to Cyclic Problems .. 226
9.10 Problems .. 231

10... 235
Blending of Input Materials .. 235

10.1 Introduction .. 235
10.2 The Structure of Blending Problems.. 237

10.2.1 Example: The Pittsburgh Steel Company Blending Problem 238
10.2.2 Formulation and Solution of the Pittsburgh Steel Blending Problem 238

10.3 A Blending Problem within a Product Mix Problem ... 240
10.3.1 Formulation ... 241
10.3.2 Representing Two-sided Quality Constraints ... 242
10.3.3 Representing Soft Target Quality Constraints .. 245
10.3.4 Discrete Blending/All-or-Nothing Usage ... 246
10.3.5 Treatments vs. Ingredients in Blending Problems .. 246

10.4 Choice of Alternate Interpretations of Quality Requirements 247
10.5 How to Compute Blended Quality ... 250

Table of Contents ix

10.5.1 Example .. 250
10.5.2 Generalized Mean ... 251

10.6 Interpretation of Dual Prices for Blending Constraints .. 253
10.7 Fractional or Hyperbolic Programming .. 253
10.8 Multi-Level Blending: Pooling Problems .. 254
10.9 Problems .. 259

11... 271
Formulating and Solving Integer Programs ... 271

11.1 Introduction .. 271
11.1.1 Types of Variables .. 271

11.2 Exploiting the IP Capability: Standard Applications... 272
11.2.1 Binary Representation of General Integer Variables .. 272
11.2.2 Minimum Batch Size Constraints .. 272
11.2.3 Fixed Charge Problems .. 273
11.2.4 The Simple Plant Location Problem ... 273
11.2.5 The Capacitated Plant Location Problem (CPL) ... 275
11.2.6 Modeling Alternatives with the Scenario Approach .. 277
11.2.7 Linearizing a Piecewise Linear Function, Discontinuous Case 278
11.2.8 Linearizing a Piecewise Linear Function, Continuous Case 280
11.2.9 An n Interval Piecewise Linear Function Using Log(n) Binaries 282
11.2.10 Converting Multivariate Functions to Separable Functions 284

11.3 Outline of Integer Programming Methods ... 284
11.4 Computational Difficulty of Integer Programs .. 287

11.4.1 NP-Complete Problems .. 288
11.5 Problems with Naturally Integer Solutions and the Prayer Algorithm........................ 288

11.5.1 Network LPs Revisited .. 289
11.5.2 Integral Leontief Constraints ... 289
11.5.3 Example: A One-Period MRP Problem ... 290
11.5.4 Transformations to Naturally Integer Formulations .. 292

11.6 The Assignment Problem and Related Sequencing and Routing Problems 294
11.6.1 Example: The Assignment Problem ... 294
11.6.2 The Traveling Salesperson Problem .. 296
11.6.3 Capacitated Multiple TSP/Vehicle Routing Problems ... 303
11.6.4 Minimum Spanning Tree ... 306
11.6.5 The Linear Ordering Problem ... 307
11.6.6 Quadratic Assignment Problem .. 310

11.7 Problems of Grouping, Matching, Covering, Partitioning, and Packing 313
11.7.1 Formulation as an Assignment Problem ... 315
11.7.2 Matching Problems, Groups of Size Two ... 315
11.7.3 Groups with More Than Two Members .. 317
11.7.4 Groups with a Variable Number of Members, Assignment Version 321
11.7.5 Groups with A Variable Number of Members, Packing Version 322
11.7.6 Groups with A Variable Number of Members, Cutting Stock Problem 325
11.7.7 Groups with A Variable Number of Members, Vehicle Routing 329

11.8 Linearizing Products of Variables .. 333
11.8.1 Example: Bundling of Products ... 334

11.9 Representing Logical Conditions ... 336

 Table of Contents x

11.10 Problems .. 337
12... 347
Decision making Under Uncertainty and Stochastic Programs 347

12.1 Introduction .. 347
12.1.1 Identifying Sources of Uncertainty .. 348
12.2 The Scenario Planning (SP)Approach .. 349

12.2.1 Formulation and Structure of an SP Problem ... 349
12.3 Single Stage Decisions Under Uncertainty ... 351

12.3.1 The News Vendor Problem ... 351
12.3.2 Multi-product Inventory with Repositioning ... 353

12.4 Multi-Stage Decisions Under Uncertainty .. 356
12.4.1 Stopping Rule and Option to Exercise Problems ... 357
12.4.2. An Option Exercise Stopping Problem .. 360

12.5 Expected Value of Perfect Information (EVPI) .. 361
12.6 Expected Value of Modeling Uncertainty .. 361

12.6.1 Certainty Equivalence ... 361
12.7 Risk Aversion ... 362

12.7.1 Downside Risk .. 363
12.7.2 Example .. 364

12.8 Dynamic Programming and Financial Option Models ... 367
12.8.1 Binomial Tree Models of Interest Rates .. 368
12.8.2 Binomial Tree Models of Foreign Exchange Rates .. 372

12.9 Decisions Under Uncertainty with an Infinite Number of Periods 374
12.9.1 Example: Cash Balance Management ... 376

12.10 Chance-Constrained Programs ... 379
12.11 Problems .. 380

13... 383
Portfolio Optimization ... 383

13.1 Introduction .. 383
13.2 The Markowitz Mean/Variance Portfolio Model ... 383

13.2.1 Example .. 384
13.3 Dualing Objectives: Efficient Frontier and Parametric Analysis 386

13.3.1 Portfolios with a Risk-Free Asset .. 387
13.3.2 The Sharpe Ratio .. 390

13.4 Important Variations of the Portfolio Model ... 391
13.4.1 Portfolios with Transaction Costs ... 392
13.4.2 Nonlinear Transaction Costs... 393
13.4.3 Portfolios with Taxes ... 395
13.4.4 Factors Model for Simplifying the Covariance Structure 397
13.4.5 Example of the Factor Model .. 398
13.4.6 Scenario Model for Representing Uncertainty .. 400
13.4.7 Example: Scenario Model for Representing Uncertainty 400

13.5 Measures of Risk other than Variance .. 402
13.5.1 Value at Risk(VaR) ... 403
13.5.2 Example of VaR .. 404
13.5.3 VaR Anomalies ... 406
13.5.4 Conditional Value at Risk(CVaR) .. 407

Table of Contents xi

13.6 Scenario Model and Minimizing Downside Risk .. 409
13.6.1 Semi-variance and Downside Risk ... 410
13.6.2 Downside Risk and MAD .. 412
13.6.3 Power and Log Utility Functions ... 412
13.6.4 Scenarios Based Directly Upon a Covariance Matrix ... 413

13.7 Hedging, Matching and Program Trading ... 416
13.7.1 Portfolio Hedging .. 416
13.7.2 Portfolio Matching, Tracking, and Program Trading ... 416

13.8 Methods for Constructing Benchmark Portfolios ... 417
13.8.1 Scenario Approach to Benchmark Portfolios .. 420
13.8.2 Efficient Benchmark Portfolios .. 422
13.8.3 Efficient Formulation of Portfolio Problems ... 423

13.9 Cholesky Factorization for Quadratic Programs .. 425
13.10 Positive Definiteness Constraints .. 427
13.11 Problems .. 429

14... 431
Multiple Criteria and Goal Programming .. 431

14.1 Introduction .. 431
14.1.1 Alternate Optima and Multicriteria .. 432

14.2 Approaches to Multi-criteria Problems .. 432
14.2.1 Pareto Optimal Solutions and Multiple Criteria ... 432
14.2.2 Utility Function Approach .. 432
14.2.3 Trade-off Curves ... 433
14.2.4 Example: Ad Lib Marketing ... 433
14.2.5 Computing Trade-off Curves/Pareto Optimal Points: Pitfalls 436

14.3 Goal Programming and Soft Constraints ... 438
14.3.1 Example: Secondary Criterion to Choose Among Alternate Optima 438
14.3.2 Preemptive/Lexico Goal Programming ... 441

14.4 Minimizing the Maximum Hurt, or Unordered Lexico Minimization 444
14.4.1 Example .. 445
14.4.2 Finding a Unique Solution Minimizing the Maximum .. 445

14.5 Identifying Points on the Efficient Frontier ... 450
14.5.1 Efficient Points, More-is-Better Case .. 450
14.5.2 Efficient Points, Less-is-Better Case .. 452
14.5.3 Efficient Points, the Mixed Case ... 454

14.6 Comparing Performance with Data Envelopment Analysis 455
14.7 Problems .. 460

15... 463
Economic Equilibria and Pricing ... 463

15.1 What is an Equilibrium? ... 463
15.2 A Simple Simultaneous Price/Production Decision ... 464
15.3 Representing Supply & Demand Curves in LPs .. 465
15.4 Auctions as Economic Equilibria ... 469
15.5 Multi-Product Pricing Problems ... 473
15.6 General Equilibrium Models of An Economy ... 477
15.7 Transportation Equilibria .. 479

15.7.1 User Equilibrium vs. Social Optimum ... 483

 Table of Contents xii

15.8 Equilibria in Networks as Optimization Problems .. 485
15.8.1 Equilibrium Network Flows.. 487

15.9 Problems .. 489
16... 493
Game Theory and Cost Allocation .. 493

16.1 Introduction .. 493
16.2 Two-Person Games ... 493

16.2.1 The Minimax Strategy ... 494
16.3 Two-Person Non-Constant Sum Games ... 496

16.3.1 Prisoner’s Dilemma ... 497
16.3.2 Choosing a Strategy ... 498
16.3.3 Bimatrix Games with Several Solutions .. 501

16.4 Nonconstant-Sum Cooperative Games with > 2 Players .. 503
16.4.1 Shapley Value ... 505

16.5 The Stable Marriage/Assignment Problem .. 505
16.5.1 The Stable Room-mate Matching Problem... 509
16.6 Should We Behave Non-Optimally to Obtain Information? 511

16.7 Problems .. 512
17... 515
Inventory, Production, and Supply Chain Management ... 515

17.1 Introduction .. 515
17.2 One Period News Vendor Problem ... 515

17.2.1 Analysis of the Decision .. 516
17.3 Multi-Stage News Vendor .. 518

17.3.1 Ordering with a Backup Option ... 521
17.3.2 Safety Lotsize ... 523
17.3.3 Multiproduct Inventories with Substitution .. 524

17.4 Economic Order Quantity .. 528
17.5 The Q,r Model .. 529

17.5.1 Distribution of Lead Time Demand ... 529
17.5.2 Cost Analysis of Q,r .. 529

17.6 Base Stock Inventory Policy .. 534
17.6.1 Base Stock — Periodic Review .. 535
17.6.2 Policy ... 535
17.6.3 Analysis ... 535
17.6.4 Base Stock — Continuous Review ... 537

17.7 Multi-Echelon Base Stock, the METRIC Model ... 537
17.8 DC With Holdback Inventory/Capacity .. 541
17.9 Multiproduct, Constrained Dynamic Lot Size Problems .. 543

17.9.1 Input Data.. 544
17.9.2 Example .. 545
17.9.3 Extensions .. 550

17.10 Problems .. 551
18... 553
Design & Implementation of Service and Queuing Systems .. 553

18.1 Introduction .. 553
18.2 Forecasting Demand for Services ... 553

Table of Contents xiii

18.3 Waiting Line or Queuing Theory .. 554
18.3.1 Arrival Process .. 555
18.3.2 Queue Discipline ... 556
18.3.3 Service Process .. 556
18.3.4 Performance Measures for Service Systems ... 556
18.3.5 Stationarity .. 557
18.3.6 A Handy Little Formula ... 557
18.3.7 Example .. 557

18.4 Solved Queuing Models .. 558
18.4.1 Number of Outbound WATS lines via Erlang Loss Model 558
18.4.2 Evaluating Service Centralization via the Erlang C Model 559
18.4.3 A Mixed Service/Inventory System via the M/G/ Model 561
18.4.4 Optimal Number of Repairmen via the Finite Source Model. 561
18.4.5 Selection of a Processor Type via the M/G/1 Model .. 563
18.4.6 Multiple Server Systems with General Distribution, M/G/c & G/G/c 564

18.5 Critical Assumptions and Their Validity ... 566
18.6 Networks of Queues .. 566
18.7 Designer Queues ... 568

18.7.1 Example: Positive but Finite Waiting Space System .. 568
18.7.2 Constant Service Time. Infinite Source. No Limit on Line Length 571
18.7.3 Example Effect of Service Time Distribution... 571

18.8 Problems .. 574
19... 577
Design & Implementation of Optimization-Based Decision Support Systems 577

19.1 General Structure of the Modeling Process .. 577
19.1.1 Developing the Model: Detail and Maintenance ... 578

19.2 Verification and Validation ... 578
19.2.1 Appropriate Level of Detail and Validation.. 578
19.2.2 When Your Model & the RW Disagree, Bet on the RW 579

19.3 Separation of Data and System Structure ... 580
19.3.1 System Structure .. 580

19.4 Marketing the Model .. 581
19.4.1 Reports.. 581
19.4.2 Report Generation in LINGO .. 584

19.5 Reducing Model Size ... 586
19.5.1 Reduction by Aggregation... 587
19.5.2 Reducing the Number of Nonzeroes .. 590
19.5.3 Reducing the Number of Nonzeroes in Covering Problems 590

19.6 On-the-Fly Column Generation ... 592
19.6.1 Example of Column Generation Applied to a Cutting Stock Problem 593
19.6.2 Column Generation and Integer Programming ... 599
19.6.3 Row Generation .. 600

19.7 Problems .. 601
References ... 603
INDEX ... 613

 Table of Contents xiv

Table of Contents xv

xvii

Preface

This book shows how to use the power of optimization, sometimes known as mathematical

programming, to solve problems of business, industry, and government. The intended audience is

students of business, managers, and engineers. The major technical skill required of the reader is to be

comfortable with the idea of using a symbol to represent an unknown quantity.

 This book is one of the most comprehensive expositions available on how to apply optimization

models to important business and industrial problems. If you do not find your favorite business

application explicitly listed in the table of contents, check the very comprehensive index at the back of

the book.

 There are essentially three kinds of chapters in the book:

1. introduction to modeling (chapters 1, 3, 4, and 19),

2. solving models with a computer (chapters 2, 5), and

3. application specific illustration of modeling with LINGO (chapters 6-18).

 Readers completely new to optimization should read at least the first five chapters. Readers familiar

with optimization, but unfamiliar with LINGO, should read at least chapters 2 and 5. Readers familiar

with optimization and familiar with at least the concepts of a modeling language can probably skip to

chapters 6-18. One can pick and choose from these chapters on applications. There is no strong

sequential ordering among chapters 6-18, other than that the easier topics are in the earlier chapters.

Among these application chapters, chapters 11 (on integer programming), and 12 (on stochastic

programming) are worthy of special mention. They cover two computationally intensive techniques of

fairly general applicability. As computers continue to grow more powerful, integer programming and

stochastic programming will become even more valuable. Chapter 19 is a concluding chapter on

implementing optimization models. It requires some familiarity with the details of models, as illustrated

in the preceding chapters.

 There is a natural progression of skills needed as technology develops. For optimization, it has been:

1) Ability to solve the models: 1950’s

2) Ability to formulate optimization models: 1970’s

3) Ability to use turnkey or template models: 1990’s onward.

 This book has no material on the mathematics of solving optimization models. For users who are

discovering new applications, there is a substantial amount of material on the formulation of

optimization models. For the modern “two minute” manager, there is a big collection of “off-the-shelf”,

ready-to-apply template models throughout the book.

 Users familiar with the text Optimization Modeling with LINDO will notice much of the material in

this current book is based on material in the LINDO book. The major differences are due to the two very

important capabilities of LINGO: the ability to solve nonlinear models, and the availability of the set or

vector notation for compactly representing large models.

Acknowledgments
This book has benefited from comments and corrections from Egon Balas, Robert Bosch, Angel G. Coca

Balta, Sergio Chayet, Bruce Colletti, Richard Darst, Daniel Davidson, Robert Dell, Hamilton Emmons,

Saul Gass, Tom Knowles, Milt Gutterman, Changpyo David Hong, Kipp Martin, Syam Menon, Raul

Negro, David Phillips, J. Pye, Fritz Raffensperger, Rick Rosenthal, James Schmidt, Paul Schweitzer,

xviii Preface

Rob Stubbs, David Tulett, Richard Wendell, Mark Wiley, and Gene Woolsey and his students. The

outstanding software expertise and sage advice of Kevin Cunningham was crucial. Shuichi Shinmura

not only translated the text into Japanese, but also in the process identified numerous opportunities for

improvement in exposition. The production of this book (from editing and formatting to printing) was

ably managed by Sarah Snider, Hanzade Izmit, Srinnath Tumu, Jane Rees, and Stephane Francois.

1

1

What Is Optimization?

1.1 Introduction
Optimization, or constrained optimization, or mathematical programming, is a mathematical procedure

for determining optimal allocation of scarce resources. Optimization, and its most popular special form,

Linear Programming (LP), has found practical application in almost all facets of business, from

advertising to production planning. Transportation and aggregate production planning problems are the

most typical objects of LP analysis. The petroleum industry was an early intensive user of LP for solving

fuel blending problems.

 It is important for the reader to appreciate at the outset that the “programming” in Mathematical

Programming is of a different flavor than the “programming” in Computer Programming. In the former

case, it means to plan and organize (as in “Get with the program!”). In the latter case, it means to write

instructions for performing calculations. Although aptitude in one suggests aptitude in the other, training

in the one kind of programming has very little direct relevance to the other.

 For most optimization problems, one can think of there being two important classes of objects. The

first of these is limited resources, such as land, plant capacity, and sales force size. The second is

activities, such as “produce low carbon steel,” “produce stainless steel,” and “produce high carbon steel.”

Each activity consumes or possibly contributes additional amounts of the resources. The problem is to

determine the best combination of activity levels that does not use more resources than are actually

available. We can best gain the flavor of LP by using a simple example.

1.2 A Simple Product Mix Problem
The Enginola Television Company produces two types of TV sets, the “Astro” and the “Cosmo”. There

are two production lines, one for each set. The Astro production line has a capacity of 60 sets per day,

whereas the capacity for the Cosmo production line is only 50 sets per day. The labor requirements for

the Astro set is 1 person-hour, whereas the Cosmo requires a full 2 person-hours of labor. Presently,

there is a maximum of 120 man-hours of labor per day that can be assigned to production of the two

types of sets. If the profit contributions are $20 and $30 for each Astro and Cosmo set, respectively,

what should be the daily production?

2 Chapter 1 What is Optimization?

A structured, but verbal, description of what we want to do is:

Maximize Profit contribution

subject to Astro production less-than-or-equal-to Astro capacity,

 Cosmo production less-than-or-equal-to Cosmo capacity,

 Labor used less-than-or-equal-to labor availability.

 Until there is a significant improvement in artificial intelligence/expert system software, we will

need to be more precise if we wish to get some help in solving our problem. We can be more precise if

we define:

A = units of Astros to be produced per day,

C = units of Cosmos to be produced per day.

Further, we decide to measure:

Profit contribution in dollars,

Astro usage in units of Astros produced,

Cosmo usage in units of Cosmos produced, and

Labor in person-hours.

Then, a precise statement of our problem is:

Maximize 20A + 30C (Dollars)

subject to A 60 (Astro capacity)

 C 50 (Cosmo capacity)

 A + 2C 120 (Labor in person-hours)

 The first line, “Maximize 20A+30C”, is known as the objective function. The remaining three lines

are known as constraints. Most optimization programs, sometimes called “solvers”, assume all variables

are constrained to be nonnegative, so stating the constraints A 0 and C 0 is unnecessary.

 Using the terminology of resources and activities, there are three resources: Astro capacity, Cosmo

capacity, and labor capacity. The activities are Astro and Cosmo production. It is generally true that,

with each constraint in an optimization model, one can associate some resource. For each decision

variable, there is frequently a corresponding physical activity.

1.2.1 Graphical Analysis
The Enginola problem is represented graphically in Figure 1.1. The feasible production combinations

are the points in the lower left enclosed by the five solid lines. We want to find the point in the feasible

region that gives the highest profit.

 To gain some idea of where the maximum profit point lies, let’s consider some possibilities. The

point A = C = 0 is feasible, but it does not help us out much with respect to profits. If we spoke with the

manager of the Cosmo line, the response might be: “The Cosmo is our more profitable product.

Therefore, we should make as many of it as possible, namely 50, and be satisfied with the profit

contribution of 30 50 = $1500.”

What is Optimization? Chapter 1 3

Figure 1.1 Feasible Region for Enginola Figure 1.1 Feasible Region for Enginola

Feasible
Production
Combinations

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

Cosmo Capacity
 C = 50

Labor Capacity
A + 2 C =120

Astro Capacity
 A = 60

C
o
s
m
o
s

 You, the thoughtful reader, might observe there are many combinations of A and C, other than just

A = 0 and C = 50, that achieve $1500 of profit. Indeed, if you plot the line 20A + 30C = 1500 and add it

to the graph, then you get Figure 1.2. Any point on the dotted line segment achieves a profit of $1500.

Any line of constant profit such as that is called an iso-profit line (or iso-cost in the case of a cost

minimization problem).

 If we next talk with the manager of the Astro line, the response might be: “If you produce 50

Cosmos, you still have enough labor to produce 20 Astros. This would give a profit of

30 50 + 20 20 = $1900. That is certainly a respectable profit. Why don’t we call it a day and go

home?”

Figure 1.2 Enginola With "Profit = 1500"

Figure 1.2 Enginola with "Profit = 1500"

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C
o
s
m
o
s

20 A + 30 C = 1500

4 Chapter 1 What is Optimization?

 Our ever-alert reader might again observe that there are many ways of making $1900 of profit. If

you plot the line 20A + 30C = 1900 and add it to the graph, then you get Figure 1.3. Any point on the

higher rightmost dotted line segment achieves a profit of $1900.

Figure 1.3 Enginola with "Profit = 1900"

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C
o
s
m
o

s

70

20 A + 30 C = 1900

 Now, our ever-perceptive reader makes a leap of insight. As we increase our profit aspirations, the

dotted line representing all points that achieve a given profit simply shifts in a parallel fashion. Why not

shift it as far as possible for as long as the line contains a feasible point? This last and best feasible point

is A = 60, C = 30. It lies on the line 20A + 30C = 2100. This is illustrated in Figure 1.4. Notice, even

though the profit contribution per unit is higher for Cosmo, we did not make as many (30) as we feasibly

could have made (50). Intuitively, this is an optimal solution and, in fact, it is. The graphical analysis of

this small problem helps understand what is going on when we analyze larger problems.

Figure 1.4 Enginola with "Profit = 2100"

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C
o
s
m
o

s

70

20 A + 30 C = 2100

What is Optimization? Chapter 1 5

1.3 Linearity
We have now seen one example. We will return to it regularly. This is an example of a linear

mathematical program, or LP for short. Solving linear programs tends to be substantially easier than

solving more general mathematical programs. Therefore, it is worthwhile to dwell for a bit on the

linearity feature.

 Linear programming applies directly only to situations in which the effects of the different activities

in which we can engage are linear. For practical purposes, we can think of the linearity requirement as

consisting of three features:

1. Proportionality. The effects of a single variable or activity by itself are proportional

(e.g., doubling the amount of steel purchased will double the dollar cost of steel

purchased).

2. Additivity. The interactions among variables must be additive (e.g., the dollar amount of

sales is the sum of the steel dollar sales, the aluminum dollar sales, etc.; whereas the amount

of electricity used is the sum of that used to produce steel, aluminum, etc).

3. Continuity. The variables must be continuous (i.e., fractional values for the decision

variables, such as 6.38, must be allowed). If both 2 and 3 are feasible values for a variable,

then so is 2.51.

 A model that includes the two decision variables “price per unit sold” and “quantity of units sold”

is probably not linear. The proportionality requirement is satisfied. However, the interaction between

the two decision variables is multiplicative rather than additive (i.e., dollar sales = price quantity,

not price + quantity).

 If a supplier gives you quantity discounts on your purchases, then the cost of purchases will not

satisfy the proportionality requirement (e.g., the total cost of the stainless steel purchased may be less

than proportional to the amount purchased).

 A model that includes the decision variable “number of floors to build” might satisfy the

proportionality and additivity requirements, but violate the continuity conditions. The recommendation

to build 6.38 floors might be difficult to implement unless one had a designer who was ingenious with

split level designs. Nevertheless, the solution of an LP might recommend such fractional answers.

 The possible formulations to which LP is applicable are substantially more general than that

suggested by the example. The objective function may be minimized rather than maximized; the

direction of the constraints may be rather than , or even =; and any or all of the parameters (e.g., the

20, 30, 60, 50, 120, 2, or 1) may be negative instead of positive. The principal restriction on the class of

problems that can be analyzed results from the linearity restriction.

 Fortunately, as we will see later in the chapters on integer programming and quadratic programming,

there are other ways of accommodating these violations of linearity.

6 Chapter 1 What is Optimization?

 Figure 1.5 illustrates some nonlinear functions. For example, the expression X Y satisfies the

proportionality requirement, but the effects of X and Y are not additive. In the expression X 2 + Y 2, the

effects of X and Y are additive, but the effects of each individual variable are not proportional.

Figure 1.5: Nonlinear Relations

1.4 Analysis of LP Solutions
When you direct the computer to solve a math program, the possible outcomes are indicated in

Figure 1.6.

 For a properly formulated LP, the leftmost path will be taken. The solution procedure will first

attempt to find a feasible solution (i.e., a solution that simultaneously satisfies all constraints, but does

not necessarily maximize the objective function). The rightmost, “No Feasible Solution”, path will be

taken if the formulator has been too demanding. That is, two or more constraints are specified that cannot

be simultaneously satisfied. A simple example is the pair of constraints x 2 and x 3. The nonexistence

of a feasible solution does not depend upon the objective function. It depends solely upon the constraints.

In practice, the “No Feasible Solution” outcome might occur in a large complicated problem in which

an upper limit was specified on the number of productive hours available and an unrealistically high

demand was placed on the number of units to be produced. An alternative message to “No Feasible

Solution” is “You Can’t Have Your Cake and Eat It Too”.

What is Optimization? Chapter 1 7

Figure 1.6 Solution Outcomes

 If a feasible solution has been found, then the procedure attempts to find an optimal solution. If the

“Unbounded Solution” termination occurs, it implies the formulation admits the unrealistic result that

an infinite amount of profit can be made. A more realistic conclusion is that an important constraint has

been omitted or the formulation contains a critical typographical error.

 We can solve the Enginola problem in LINGO by typing the following:

 MODEL:

 MAX = 20*A + 30*C;

 A <= 60;

 C <= 50;

 A + 2*C <= 120;

 END

 We can solve the problem in the Windows version of LINGO by clicking on the red “bullseye”

icon. We can get the following solution report by clicking on the “X=” icon”:

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.00000

 C 30.00000 0.00000

 Row Slack or Surplus Dual Price

 1 2100.00000 1.00000

 2 0.00000 5.00000

 3 20.00000 0.00000

 4 0.00000 15.00000

 The output has three sections, an informative section, a “variables” section, and a “rows” section.

The second two sections are straightforward. The maximum profit solution is to produce 60 Astros and

30 Cosmos for a profit contribution of $2,100. This solution will leave zero slack in row 2 (the constraint

A 60), a slack of 20 in row 3 (the constraint C 50), and no slack in row 4 (the constraint

A + 2C 120). Note 60 + 2 30 = 120.

 The third column contains a number of opportunity or marginal cost figures. These are useful

by-products of the computations. The interpretation of these “reduced costs” and “dual prices” is

discussed in the next section. The reduced cost/dual price section is optional and can be turned on or

off by clicking on LINGO | Options | General Solver | Dual Computations | Prices.

8 Chapter 1 What is Optimization?

1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices
Realistic LPs require large amounts of data. Accurate data are expensive to collect, so we will generally

be forced to use data in which we have less than complete confidence. A time-honored adage in data

processing circles is “garbage in, garbage out”. A user of a model should be concerned with how the

recommendations of the model are altered by changes in the input data. Sensitivity analysis is the term

applied to the process of answering this question. Fortunately, an LP solution report provides

supplemental information that is useful in sensitivity analysis. This information falls under two headings,

reduced costs and dual prices.

 Sensitivity analysis can reveal which pieces of information should be estimated most carefully. For

example, if it is blatantly obvious that a certain product is unprofitable, then little effort need be expended

in accurately estimating its costs. The first law of modeling is "do not waste time accurately estimating

a parameter if a modest error in the parameter has little effect on the recommended decision".

1.5.1 Reduced Costs
Associated with each variable in any solution is a quantity known as the reduced cost. If the units of the

objective function are dollars and the units of the variable are gallons, then the units of the reduced cost

are dollars per gallon. The reduced cost of a variable is the amount by which the profit contribution of

the variable must be improved (e.g., by reducing its cost) before the variable in question would have a

positive value in an optimal solution. Obviously, a variable that already appears in the optimal solution

will have a zero reduced cost.

 It follows that a second, correct interpretation of the reduced cost is that it is the rate at which the

objective function value will deteriorate if a variable, currently at zero, is arbitrarily forced to increase a

small amount. Suppose the reduced cost of x is $2/gallon. This means, if the profitability of x were

increased by $2/gallon, then 1 unit of x (if 1 unit is a “small change”) could be brought into the solution

without affecting the total profit. Clearly, the total profit would be reduced by $2 if x were increased by

1.0 without altering its original profit contribution.

1.5.2 Dual Prices
Associated with each constraint is a quantity known as the dual price. If the units of the objective

function are cruzeiros and the units of the constraint in question are kilograms, then the units of the dual

price are cruzeiros per kilogram. The dual price of a constraint is the rate at which the objective function

value will improve as the right-hand side or constant term of the constraint is increased a small amount.

 Different optimization programs may use different sign conventions with regard to the dual prices.

The LINGO computer program uses the convention that a positive dual price means increasing the

right-hand side in question will improve the objective function value. On the other hand, a negative dual

price means an increase in the right-hand side will cause the objective function value to deteriorate. A

zero dual price means changing the right-hand side a small amount will have no effect on the solution

value.

 It follows that, under this convention, constraints will have nonnegative dual prices, constraints

will have nonpositive dual prices, and = constraints can have dual prices of any sign. Why?

 Understanding Dual Prices. It is instructive to analyze the dual prices in the solution to the Enginola

problem. The dual price on the constraint A 60 is $5/unit. At first, one might suspect this quantity

should be $20/unit because, if one more Astro is produced, the simple profit contribution of this unit is

$20. An additional Astro unit will require sacrifices elsewhere, however. Since all of the labor supply is

being used, producing more Astros would require the production of Cosmos to be reduced in order to

free up labor. The labor tradeoff rate for Astros and Cosmos is ½.. That is, producing one more Astro

What is Optimization? Chapter 1 9

implies reducing Cosmo production by ½ of a unit. The net increase in profits is $20 − (1/2)* $30 = $5,

because Cosmos have a profit contribution of $30 per unit.

 Now, consider the dual price of $15/hour on the labor constraint. If we have 1 more hour of labor,

it will be used solely to produce more Cosmos. One Cosmo has a profit contribution of $30/unit. Since

1 hour of labor is only sufficient for one half of a Cosmo, the value of the additional hour of labor is

$15.

1.6 Unbounded Formulations
If we forget to include the labor constraint and the constraint on the production of Cosmos, then an

unlimited amount of profit is possible by producing a large number of Cosmos. This is illustrated here:

MAX = 20 * A + 30 * C;

A <= 60;

This generates an error window with the message:

UNBOUNDED SOLUTION

 There is nothing to prevent C from being infinitely large. The feasible region is illustrated in

Figure 1.7. In larger problems, there are typically several unbounded variables and it is not as easy to

identify the manner in which the unboundedness arises.

Figure 1.7 Graph of Unbounded Formulation

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C

o

s

m

o

s

Astros

70

Unbounded

10 Chapter 1 What is Optimization?

1.7 Infeasible Formulations
An example of an infeasible formulation is obtained if the right-hand side of the labor constraint is made

190 and its direction is inadvertently reversed. In this case, the most labor that can be used is to produce

60 Astros and 50 Cosmos for a total labor consumption of 60 + 2 50 = 160 hours. The formulation and

attempted solution are:

MAX = (20 * A) + (30 * C);

A <= 60;

C <= 50;

A + 2 * C >= 190;

A window with the error message:

NO FEASIBLE SOLUTION.

will print. The reports window will generate the following:

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 50.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2700.000 0.0000000

 2 0.0000000 1.000000

 3 0.0000000 2.000000

 4 -30.00000 -1.000000

 This “solution” is infeasible for the labor constraint by the amount of 30 person-hours

(190 - (1 60 + 2 50)). The dual prices in this case give information helpful in determining how the

infeasibility arose. For example, the +1 associated with row 2 indicates that increasing its right-hand

side by one will decrease the infeasibility by 1. The +2 with row 3 means, if we allowed 1 more unit of

Cosmo production, the infeasibility would decrease by 2 units because each Cosmo uses 2 hours of labor.

The -1 associated with row 4 means that decreasing the right-hand side of the labor constraint by 1 would

reduce the infeasibility by 1.

What is Optimization? Chapter 1 11

 Figure 1.8 illustrates the constraints for this formulation.

Figure 1.8 Graph of Infeasible Formulation

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C
o
s
m
o
s

70

80

90

100

C

A

A + 2 C 190

50

60

1.8 Multiple Optimal Solutions and Degeneracy
For a given formulation that has a bounded optimal solution, there will be a unique optimum objective

function value. However, there may be several different combinations of decision variable values (and

associated dual prices) that produce this unique optimal value. Such solutions are said to be degenerate

in some sense. In the Enginola problem, for example, suppose the profit contribution of A happened to

be $15 rather than $20. The problem and a solution are:

MAX = 15 * A + 30 * C;

A <= 60;

C <= 50;

A + 2 * C <= 120;

Optimal solution found at step: 1

Objective value: 1800.000

Variable Value Reduced Cost

 A 20.00000 0.0000000

 C 50.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 1800.000 1.000000

 2 40.00000 0.0000000

 3 0.0000000 0.0000000

 4 0.0000000 15.00000

12 Chapter 1 What is Optimization?

Figure 1.9 Model with Alternative Optima

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C
o
s
m
o
s 15 A + 30 C = 1500

70

 The feasible region, as well as a “profit = 1500” line, are shown in Figure 1.9. Notice the lines

A + 2C = 120 and 15A + 30C = 1500 are parallel. It should be apparent that any feasible point on the

line A + 2C = 120 is optimal.

 The particularly observant may have noted in the solution report that the constraint, C 50 (i.e., row

3), has both zero slack and a zero dual price. This suggests the production of Cosmos could be decreased

a small amount without any effect on total profits. Of course, there would have to be a compensatory

increase in the production of Astros. We conclude that there must be an alternate optimum solution that

produces more Astros, but fewer Cosmos. We can discover this solution by increasing the profitability

of Astros ever so slightly. Observe:

MAX = 15.0001 * A + 30 * C;

A <= 60;

C <= 50;

A + 2 * C <= 120;

Optimal solution found at step: 1

Objective value: 1800.006

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 1800.006 1.00000

 2 0.0000000 0.1000000E-03

 3 20.00000 0.0000000

 4 0.0000000 15.00000

 As predicted, the profit is still about $1800. However, the production of Cosmos has been decreased

to 30 from 50, whereas there has been an increase in the production of Astros to 60 from 20.

What is Optimization? Chapter 1 13

1.8.1 The “Snake Eyes” Condition
Alternate optima may exist only if some row in the solution report has zeroes in both the second and

third columns of the report, a configuration that some applied statisticians call “snake eyes”. That is,

alternate optima may exist only if some variable has both zero value and zero reduced cost, or some

constraint has both zero slack and zero dual price. Mathematicians, with no intent of moral judgment,

refer to such solutions as degenerate.

 If there are alternate optima, you may find your computer gives a different solution from that in the

text. However, you should always get the same objective function value.

 There are, in fact, two ways in which multiple optimal solutions can occur. For the example in

Figure 1.9, the two optimal solution reports differ only in the values of the so-called primal variables

(i.e., our original decision variables A, C) and the slack variables in the constraint. There can also be

situations where there are multiple optimal solutions in which only the dual variables differ. Consider

this variation of the Enginola problem in which the capacity of the Cosmo line has been reduced to 30.

 The formulation is:

MAX = 20 * A + 30 * C;

A < 60;

!note that < and <= are equivalent;

!in LINGO;

C < 30;

A + 2 * C < 120;

The corresponding graph of this problem appears in Figure 1.10. An optimal solution is:

Optimal solution found at step: 0

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 20.00000

 3 0.0000000 30.00000

 4 0.0000000 0.0000000

 Again, notice the “snake eyes” in the solution (i.e., the pair of zeroes in a row of the solution report).

This suggests the capacity of the Cosmo line (the RHS of row 3) could be changed without changing the

objective value. Figure 1.10 illustrates the situation. Three constraints pass through the point A = 60,

C = 30. Any two of the constraints determine the point. In fact, the constraint A + 2C 120 is

mathematically redundant (i.e., it could be dropped without changing the feasible region).

14 Chapter 1 What is Optimization?

Figure 1.10 Alternate Solutions in Dual Variables

Astros

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120

C
o
s
m
o

s

70

80

90

C

A

A + 2 C 120

30

60

20 A + 30 C = 2100

If you decrease the RHS of row 3 very slightly, you will get essentially the following solution:

Optimal solution found at step: 0

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 5.000000

 3 0.0000000 0.0000000

 4 0.0000000 15.00000

Notice this solution differs from the previous one only in the dual values.

 We can now state the following rule: If a solution report has the “snake eyes” feature (i.e., a pair of

zeroes in any row of the report), then there may be an alternate optimal solution that differs either in the

primal variables, the dual variables, or in both.

 If a solution report exhibits the “snake eyes” configuration, a natural question to ask is: can we

determine from the solution report alone whether the alternate optima are in the primal variables or the

dual variables? The answer is “no”, as the following two related problems illustrate.

Problem D Problem P
MAX = X + Y; MAX = X + Y;

 X + Y + Z <= 1; X + Y + Z <= 1;

 X + 2 * Y <= 1; X + 2 * Z <= 1;

What is Optimization? Chapter 1 15

 Both problems possess multiple optimal solutions. The ones that can be identified by the standard

simplex solution methods are:

Solution 1

 Problem D Problem P

 OBJECTIVE VALUE OBJECTIVE VALUE

 1) 1.00000000 1) 1.00000000

Variable Value Reduced Cost Variable Value Reduced Cost

 X 1.000000 0 000000 X 1.000000 0.000000

 Y 0.000000 0.000000 Y 0.000000 0.000000

 Z 0.000000 1.000000 Z 0.000000 1.000000

Row

Slack or

Surplus

 Dual Prices

Row

Slack or

Surplus

 Dual Prices

 2) 0.000000 1.000000 2) 0.000000 1.000000

 3) 0.000000 0.000000 3) 0.000000 0.000000

Solution 2

 Problem D Problem P

 OBJECTIVE VALUE OBJECTIVE VALUE

 1) 1.00000000 1) 1.00000000

Variable Value Reduced Cost Variable Value Reduced Cost

 X 1.000000 0.000000 X 0.000000 0.000000

 Y 0.000000 1.000000 Y 1.000000 0.000000

 Z 0.000000 0.000000 Z 0.000000 1.000000

Row

Slack or

Surplus

Dual Prices

Row

Slack or

Surplus

Dual Prices

 2) 0.000000 0.000000 2) 0.000000 1.000000

 3) 0.000000 1.000000 3) 1.000000 0.000000

Notice that:

• Solution 1 is exactly the same for both problems;

• Problem D has multiple optimal solutions in the dual variables (only); while

• Problem P has multiple optimal solutions in the primal variables (only).

 Thus, one cannot determine from the solution report alone the kind of alternate optima that might

exist. You can generate Solution 1 by setting the RHS of row 3 and the coefficient of X in the objective

to slightly larger than 1 (e.g., 1.001). Likewise, Solution 2 is generated by setting the RHS of row 3 and

the coefficient of X in the objective to slightly less than 1 (e.g., 0.9999).

 Some authors refer to a problem that has multiple solutions to the primal variables as dual

degenerate and a problem with multiple solutions in the dual variables as primal degenerate. Other

authors say a problem has multiple optima only if there are multiple optimal solutions for the primal

variables.

1.8.2 Degeneracy and Redundant Constraints
In small examples, degeneracy usually means there are redundant constraints. In general, however,

especially in large problems, degeneracy does not imply there are redundant constraints. The constraint

set below and the corresponding Figure 1.11 illustrate:

2x − y 1

16 Chapter 1 What is Optimization?

2x − z 1

2y − x 1

2y − z 1

2z − x 1

2z − y 1

Figure 1.11 Degeneracy but No Redundancy

Y

X

Z

2Y - X 1

2 Z - X 1

 These constraints define a cone with apex or point at x = y = z = 1, having six sides. The point

x = y = z = 1 is degenerate because it has more than three constraints passing through it. Nevertheless,

none of the constraints are redundant. Notice the point x = 0.6, y = 0, z = 0.5 violates the first constraint,

but satisfies all the others. Therefore, the first constraint is nonredundant. By trying all six permutations

of 0.6, 0, 0.5, you can verify each of the six constraints are nonredundant.

1.9 Nonlinear Models and Global Optimization
Throughout this text the emphasis is on formulating linear programs. Historically nonlinear models

were to be avoided, if possible, for two reasons: a) they take much longer to solve, and b) once

“solved” traditional solvers could only guarantee that you had a locally optimal solution. A solution is

a local optimum if there is no better solution nearby, although there might be a much better solution

some distance away. Traditional nonlinear solvers are like myopic mountain climbers, they can get you

to the top of the nearest peak, but they may not see and get you to the highest peak in the mountain

range. Versions of LINGO from LINGO 8 onward have a global solver option. If you check the global

What is Optimization? Chapter 1 17

solver option, then you are guaranteed to get a global optimum, if you let the solver run long enough.

To illustrate, suppose our problem is:

 Min = @sin(x) + .5*@abs(x-9.5);

 x <= 12;

The graph of the function appears in Figure 1.12.

If you apply a traditional nonlinear solver to this model you might get one of three solutions: either x =

0, or x = 5.235987, or x = 10.47197. If you check the Global solver option in LINGO, it will report the

solution x = 10.47197 and label it as a global optimum. Be forewarned that the global solver does not

eliminate drawback (a), namely, nonlinear models may take a long time to solve to guaranteed

optimality. Nevertheless, the global solver may give a very good, even optimal, solution very quickly

but then take a long time to prove that there is no other better solution.

-1

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

s
in

(x
)

+
 .
5
*a

b
s
(x

-9
.5

)

x

Figure 1.12 A Nonconvex Function:
sin(x)+.5*abs(x-9.5)

18 Chapter 1 What is Optimization?

1.10 Problems
1. Your firm produces two products, Thyristors (T) and Lozenges (L), that compete for the scarce

resources of your distribution system. For the next planning period, your distribution system has

available 6,000 person-hours. Proper distribution of each T requires 3 hours and each L requires

2 hours. The profit contributions per unit are 40 and 30 for T and L, respectively. Product line

considerations dictate that at least 1 T must be sold for each 2 L’s.

(a) Draw the feasible region and draw the profit line that passes through the optimum point.

(b) By simple common sense arguments, what is the optimal solution?

2. Graph the following LP problem:

Minimize 4X + 6Y

subject to 5X + 2Y 12

 3X + 7Y 13

 X 0, Y 0.

In addition, plot the line 4X + 6Y = 18 and indicate the optimum point.

3. The Volkswagen Company produces two products, the Bug and the SuperBug, which share

production facilities. Raw materials costs are $600 per car for the Bug and $750 per car for the

SuperBug. The Bug requires 4 hours in the foundry/forge area per car; whereas, the SuperBug,

because it uses newer more advanced dies, requires only 2 hours in the foundry/forge. The Bug

requires 2 hours per car in the assembly plant; whereas, the SuperBug, because it is a more

complicated car, requires 3 hours per car in the assembly plant. The available daily capacities in the

two areas are 160 hours in the foundry/forge and 180 hours in the assembly plant. Note, if there are

multiple machines, the total hours available per day may be greater than 24. The selling price of the

Bug at the factory door is $4800. It is $5250 for the SuperBug. It is safe to assume whatever number

of cars are produced by this factory can be sold.

(a) Write the linear program formulation of this problem.

(b) The above description implies the capacities of the two departments (foundry/forge and

assembly) are sunk costs. Reformulate the LP under the conditions that each hour of

foundry/forge time cost $90; whereas, each hour of assembly time cost $60. The capacities

remain as before. Unused capacity has no charge.

4. The Keyesport Quarry has two different pits from which it obtains rock. The rock is run through a

crusher to produce two products: concrete grade stone and road surface chat. Each ton of rock from

the South pit converts into 0.75 tons of stone and 0.25 tons of chat when crushed. Rock from the

North pit is of different quality. When it is crushed, it produces a “50-50” split of stone and chat.

The Quarry has contracts for 60 tons of stone and 40 tons of chat this planning period. The cost per

ton of extracting and crushing rock from the South pit is 1.6 times as costly as from the North pit.

(a) What are the decision variables in the problem?

(b) There are two constraints for this problem. State them in words.

(c) Graph the feasible region for this problem.

(d) Draw an appropriate objective function line on the graph and indicate graphically and

numerically the optimal solution.

(e) Suppose all the information given in the problem description is accurate. What additional

information might you wish to know before having confidence in this model?

What is Optimization? Chapter 1 19

5. A problem faced by railroads is of assembling engine sets for particular trains. There are three

important characteristics associated with each engine type, namely, operating cost per hour,

horsepower, and tractive power. Associated with each train (e.g., the Super Chief run from Chicago

to Los Angeles) is a required horsepower and a required tractive power. The horsepower required

depends largely upon the speed required by the run; whereas, the tractive power required depends

largely upon the weight of the train and the steepness of the grades encountered on the run. For a

particular train, the problem is to find that combination of engines that satisfies the horsepower and

tractive power requirements at lowest cost.

 In particular, consider the Cimarron Special, the train that runs from Omaha to Santa Fe. This

train requires 12,000 horsepower and 50,000 tractive power units. Two engine types, the GM-I and

the GM-II, are available for pulling this train. The GM-I has 2,000 horsepower, 10,000 tractive

power units, and its variable operating costs are $150 per hour. The GM-II has 3,000 horsepower,

10,000 tractive power units, and its variable operating costs are $180 per hour. The engine set may

be mixed (e.g., use two GM-I's and three GM-II's).

 Write the linear program formulation of this problem.

6. Graph the constraint lines and the objective function line passing through the optimum point and

indicate the feasible region for the Enginola problem when:

(a) All parameters are as given except labor supply is 70 rather than 120.

(b) All parameters are as given originally except the variable profit contribution of a Cosmo

is $40 instead of $30.

7. Consider the problem:

Minimize 4x1 + 3x2

Subject to 2x1 + x2 10

 −3x1 + 2x2 6

 x1 + x2 6

 x1 0, x2 0

Solve the problem graphically.

8. The surgical unit of a small hospital is becoming more concerned about finances. The hospital

cannot control or set many of the important factors that determine its financial health. For example,

the length of stay in the hospital for a given type of surgery is determined in large part by

government regulation. The amount that can be charged for a given type of surgical procedure is

controlled largely by the combination of the market and government regulation. Most of the

hospital’s surgical procedures are elective, so the hospital has considerable control over which

patients and associated procedures are attracted and admitted to the hospital. The surgical unit has

effectively two scarce resources, the hospital beds available to it (70 in a typical week), and the

surgical suite hours available (165 hours in a typical week). Patients admitted to this surgical unit

can be classified into the following three categories:

Patient Type

Days of Stay

Surgical
Suite Hours

Needed

Financial

Contribution

A 3 2 $240

B 5 1.5 $225

C 6 3 $425

20 Chapter 1 What is Optimization?

 For example, each type B patient admitted will use (i) 5 days of the 7 70 = 490 bed-days

available each week, and (ii) 1.5 hours of the 165 surgical suite hours available each week. One

doctor has argued that the surgical unit should try to admit more type A patients. Her argument is

that, “in terms of $/days of stay, type A is clearly the best, while in terms of $/(surgical suite hour),

it is not much worse than B and C.”

 Suppose the surgical unit can in fact control the number of each type of patient admitted each

week (i.e., they are decision variables). How many of each type should be admitted each week?

 Can you formulate it as an LP?

21

2

Solving Math Programs with
LINGO

2.1 Introduction
The process of solving a math program requires a large number of calculations and is, therefore, best

performed by a computer program. The computer program we will use is called LINGO. The main

purpose of LINGO is to allow a user to quickly input a model formulation, solve it, assess the correctness

or appropriateness of the formulation based on the solution, quickly make minor modifications to the

formulation, and repeat the process. LINGO features a wide range of commands, any of which may be

invoked at any time. LINGO checks whether a particular command makes sense in a particular context.

 The main version of LINGO has a graphical user interface(GUI), althought there is a command line

interface available for certain special situations, e.g. running under Unix. We will work only with the

GUI version.

2.2 LINGO for Windows, Apple Mac, and Linux
When the GUI version LINGO starts, it opens a blank window known as a Model Window. The Model

Window is where you “do all your work”. Output in LINGO is displayed in a Report Window. LINGO

can generate a number of reports pertaining to your model. All the standard commands for opening and

saving files, familiar to Windows and Mac users are available. The following is a typical screen shot.

22 Chapter 2 Solving Math Programs with LINGO

Some of the less common commands available in the GUI version of LINGO are:

SOLVE

Use the SOLVE command from the LINGO/Solver menu, click on the button, or press Ctrl+U to send

the model currently in memory to the LINGO solver. If you have more than one model open, the

frontmost (or active) window is the one in memory.

Solving Math Problems with LINGO Chapter 2 23

MATCH PARENTHESIS Ctrl+P

Use the MATCH PARENTHESIS command from the Edit menu, click the button, or type Ctrl+P to find

the close parenthesis that corresponds to the open parenthesis you have selected.

In addition to this command, there is one other way to find matching parentheses. LINGO will highlight

matching parentheses in red when the Match Paren option is enabled under the LINGO|Options

command (see below). By placing the cursor immediately after one of the parentheses of interest, you

will notice that the color of the parenthesis changes from black to red. LINGO will simultaneously

display the matching parenthesis in red. These parentheses will remain displayed in red until you move

the cursor to another position.

PASTE FUNCTION

Use the PASTE FUNCTION command from the Edit menu to paste any of LINGO’s built-in functions

at the current insertion point. Choose the category of the LINGO function you want to paste, then select

the function from the cascading menu. LINGO inserts place holders for arguments in the functions.

SELECT FONT... Ctrl +J

Use the SELECT FONT command from the Edit menu or press Ctrl+J to select a new font in which to

display the currently selected text.

INSERT NEW OBJECT

Use the INSERT NEW OBJECT command from the Edit menu to embed an OLE object into the LINGO

document.

LINKS

Use the LINKS command from the Edit menu to control the links to external objects in your document.

OBJECT PROPERTIES Alt+Enter

Use the OBJECT PROPERTIES command from the Edit menu or press Alt+Enter to specify the

properties of a selected, embedded object

2.2.1 LINGO Menu

SOLUTION… X= Ctrl+W

Use the SOLUTION command from the LINGO menu, click the button, or press Ctrl+W to open the

Solutions dialog box. Here you can specify the way you want a report of the solution currently in memory

to appear. When you click OK, LINGO writes the report to a Report Window.

GENERATE… Ctrl+G/Ctrl+Q

Use the DISPLAY MODEL and DON’T DISPLAY MODEL sub-commands from the LINGO Solver |

Generate command or press Ctrl+G or Ctrl+Q, respectively, to create an expanded version of the current

model. The expanded model explicitly lists all the generated constraints and variables in your model.

 If you choose to display the model, LINGO will place a copy of the generated model in a new

window, which you may scroll through to examine, print, or save to disk. If you choose not to display

24 Chapter 2 Solving Math Programs with LINGO

the model, LINDO will generate the model without displaying it, but will store the generated model for

later use by the appropriate solver.

PICTURE Ctrl+K

Use the PICTURE command from the LINGO menu or press Ctrl+K to display a model in matrix form.

Viewing the model in matrix form can be helpful in identifying special structure in your model.

2.2.2 Windows Menu

COMMAND WINDOW Ctrl +1

Use the COMMAND WINDOW command from the Windows menu or press Ctrl+1 to open LINGO’s

Command Window. The Command Window gives you access to LINGO’s command line interface. In

general, Windows users will not need to make use of the Command Window. It is provided for users

who may want to put together application-specific “products” that make use of LINGO through

Command Window scripts to control the program. Please refer to your help file or user’s manual for

more information on the command line commands.

STATUS WINDOW Ctrl +2

Use the STATUS WINDOW command from the Windows menu or press Ctrl+2 to open LINGO’s Solver

Status window.

2.2.3 Help Menu

HELP TOPICS

Use the HELP TOPICS command from the Help menu, or click on the first question mark button to open

LINGO help to the Contents section. Press the second button (with the arrow) to invoke context-sensitive

help. Once the cursor has changed to the question mark, selecting any command will take you to help

for that command.

REGISTER

Use the REGISTER command from the Help menu to register your version of LINGO online. You will

need a connection to the internet open for this command to work. Enter your personal information in the

dialog box supplied and select the register button. Your information will be sent directly to LINDO

Systems via the Internet.

 LINDO Systems is constantly working to make our products faster and easier to use. Registering

your software with LINDO ensures that you will be kept up-to-date on the latest enhancements and other

product news.

AUTOUPDATE

Use the AUTOUPDATE command from the Help menu to have LINGO automatically check every time

you start the LINGO software whether there is a more recent version of LINGO available for download

on the LINDO Systems website. You will need a connection to the internet open for this command to

work.

Solving Math Problems with LINGO Chapter 2 25

ABOUT LINGO…

Use the ABOUT LINGO command from the Help menu to view information about the version of LINGO

you are currently using (e.g., the release number, constraint limit, variable limit, and memory limit).

2.2.4 Summary
This is not intended to be an exhaustive description of the commands available in the Windows version

of LINGO. Please refer to your help file or user’s manual for a more in-depth analysis.

2.3 Getting Started on a Small Problem
When you start LINGO for Windows, the program opens an <untitled> window for you. For purposes

of introduction, let’s enter the Enginola problem we looked at in the previous chapter directly into this

<untitled> window:

MAX = (20 * A) + (30 * C);

!note that the parentheses aren't needed, because LINGO;

!will do multiplication and division first;

A < 60;

C < 50;

A + 2 * C < 120;

 Note, even though the strict inequality, “<”, was entered above, LINGO interprets it as the loose

inequality, “”. The reason is that typical keyboards have only the strict inequalities, < and >. You may,

and in fact are encouraged to, use the two symbols “<=” to emphasize an inequality is of a

less-than-or-equal-to nature. Also, notice comments are preceded by the exclamation mark (!). A

semicolon (;) terminates a comment.

 Click on the Solve/“bullseye” button , use the Solve command from the Solve menu, or press

Ctrl+U to solve the model. While solving, LINGO will show the Solver Status Window with information

about the model and the solution process. When it’s done solving, the “State” field should read “Global

Optimum”. Then, click on the “Close” button to close the Solver Status Window:

 The following solution is now in a Report Window:

Optimal solution found at step: 1

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 5.000000

 3 20.00000 0.0000000

 4 0.0000000 15.00000

 Editing the model is simply a matter of finding and changing the variable, coefficient, or direction

you want to change. Any changes will be taken into account the next time that you solve the model.

 Click on the button, use the Save command from the File menu, or press Ctrl+S to save your

work.

26 Chapter 2 Solving Math Programs with LINGO

2.4 Integer Programming with LINGO
Fairly shortly after you start looking at problems for which optimization might be applicable, you

discover the need to restrict certain variables to integer values (i.e., 0, 1, 2, etc.). LINGO allows you to

identify such variables. We give an introductory treatment here. It is discussed more thoroughly in

Chapter 11, Formulating and Solving Integer Programs. Integer variables in LINGO can be either 0/1

or general. Variables restricted to the values 0 or 1 are identified with the @BIN specification. Variables

that may be 0, 1, 2, etc., are identified with the @GIN specification.

 In the following model, the variables TOM, DICK, and HARRY are restricted to be 0 or 1:

MAX = 4 * TOM + 3 * DICK + 2 * HARRY;

 2.5 * TOM + 3.1 * HARRY <= 5;

 .2 * TOM + .7 * DICK + .4 * HARRY <= 1;

@BIN(TOM);

@BIN(DICK);

@BIN(HARRY);

 After solving, to see the solution, choose Solution from the Reports menu, or click on the

button, and choose All Values. The Report Window displays the following:

Optimal solution found at step: 1

Objective value: 7.000000

Branch count: 0

Variable Value Reduced Cost

 TOM 1.000000 -4.000000

 DICK 1.000000 -3.000000

 HARRY 0.0000000 -2.000000

 Row Slack or Surplus Dual Price

 1 7.000000 1.000000

 2 2.500000 0.0000000

 3 0.1000000 0.0000000

 General integers, which can be 0, 1, 2, etc., are identified in analogous fashion by using @GIN

instead of @BIN, for example:

@GIN(TONIC);

This restricts the variable TONIC to 0, 1, 2, 3, ….

 The solution method used is branch-and-bound. It is an intelligent enumeration process that will

find a sequence of better and better solutions. As each one is found, the Status Window will be updated

with the objective value and a bound on how good a solution might still remain. After the enumeration

is complete, various commands from the Reports menu can be used to reveal information about the best

solution found.

 Let’s look at a slightly modified version of the original Enginola problem and see how the GIN

specification might help:

MAX = 20 * A + 30 * C;

A < 60;

C < 50;

A + 2 * C < 115;

Solving Math Problems with LINGO Chapter 2 27

Notice the capacity of 115 on the labor constraint (Row 4):

Optimal solution found at step: 1

Objective value: 2025.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 27.50000 0.0000000

 Row Slack or Surplus Dual Price

 1 2025.000 1.000000

 2 0.0000000 5.000000

 3 22.50000 0.0000000

 4 0.0000000 15.00000

 Note that a fractional quantity is recommended for C. If fractional quantities are undesirable, declare

A and C as general integer variables:

MAX = 20 * A + 30 * C;

A < 60;

C < 50;

A + 2 * C < 115;

@GIN(A);

@GIN(C);

Solving results in the following:

Optimal solution found at step: 4

Objective value: 2020.000

Branch count: 1

Variable Value Reduced Cost

 A 59.00000 -20.00000

 C 28.00000 -30.00000

 Row Slack or Surplus Dual Price

 1 2020.000 1.000000

 2 1.000000 0.0000000

 3 22.00000 0.0000000

 4 0.0000000 0.0000000

2.4.1 Warning for Integer Programs
Although the integer programming (IP) capability is very powerful, it requires skill to use effectively.

In contrast to linear programs, just because you can formulate a problem as an integer program, does not

mean that it can be solved in very little time. It is very easy to prepare a bad formulation for an essentially

easy problem. A bad formulation may require intolerable amounts of computer time to solve. Therefore,

you should have access to someone who is experienced in IP formulations if you plan to make use of

the IP capability. Good formulations of integer programs are discussed further in Chapter 11,

Formulating and Solving Integer Programs.

2.5 Solving an Optimization Model
Solving a linear or integer program is a numerically intensive process. We do not discuss the

implementation details of the solution algorithms. Writing an efficient solver requires several

person-years of effort. For a good introduction to some of the algorithms, see Martin (1999) or Greenberg

(1978).

28 Chapter 2 Solving Math Programs with LINGO

 Even though commercial optimization is quite robust, good practice is to avoid using extremely

small or extremely large numbers in a formulation. You should try to “scale” the model, so there are no

extremely small or large numbers. You should not measure weight in ounces one place and volume in

cubic miles somewhere else in the same problem). A rule of thumb is there should be no nonzero

coefficient whose absolute value is greater than 100,000 or less than 0.0001. If LINGO feels the model

is poorly scaled, it will display a warning. You can usually disregard this warning. However, it is good

practice to choose your units of measure appropriately, so this message does not appear.

2.6 Problems
1. Recall the Enginola/Astro/Cosmo problem of the previous chapter. Suppose we add the restriction

that only an even number (0, 2, 4…) of Cosmos are allowed. Show how to exploit the @GIN

command to represent this feature. Note, this kind of restriction sometimes arises in the manufacture

of plastic wrap. The product starts out as a long hollow tube. It is flattened and then two resulting

edges are cut off to leave you with two flat pieces. Thus, the number of units produced is always a

multiple of 2.

2. Using your favorite text editor, enter the Enginola formulation. Save it as a simple, unformatted text

file. Start up LINGO, read the model into LINGO, and solve it.

3. Continuing from (2), use LINGO to prepare an output file containing both the formulation and

solution. Read this file into your favorite text editor and print it.

Solving Math Problems with LINGO Chapter 2 29

31

3

Analyzing Solutions

3.1 Economic Analysis of Solution Reports
A substantial amount of interesting economic information can be gleaned from the solution report of a

model. In addition, optional reports, such as range analysis, can provide further information. The usual

use of this information is to do a quick “what if” analysis. The typical kinds of what if questions are:

(a) What would be the effect of changing a capacity or demand?

(b) What if a new opportunity becomes available? Is it a worthwhile opportunity?

3.2 Economic Relationship Between Dual Prices and Reduced
Costs

The reader hungering for unity in systems may convince himself or herself that a reduced cost is really

a dual price born under the wrong sign. Under our convention, the reduced cost of a variable x is really

the dual price with the sign reversed on the constraint x 0. Recall the reduced cost of the variable x

measures the rate at which the solution value deteriorates as x is increased from zero. The dual price on

x 0 measures the rate at which the solution value improves as the right-hand side (and thus x) is

increased from zero.

 Our knowledge about reduced costs and dual prices can be restated as:

Reduced cost of an (unused) activity: amount by which profits will decrease if one unit of this

activity is forced into the solution.

Dual price of a constraint: one unit reduces amount by which profits will decrease if the

availability of the resource associated with this constraint.

 We shall argue and illustrate that the reduced cost of an activity is really its net opportunity cost if

we “cost out” the activity using the dual prices as charges for resource usage. This sounds like good

economic sense. If one unit of an activity is forced into the solution, it effectively reduces the availability

of the resources it uses. These resources have an imputed value by way of the dual prices. Therefore, the

activity should be charged for the value used. Let’s look at an example and check if the argument works.

32 Chapter 3 Analyzing Solutions

3.2.1 The Costing Out Operation: An Illustration
Suppose Enginola is considering adding a video recorder to its product line. Market Research and

Engineering estimate the direct profit contribution of a video recorder as $47 per unit. It would be

manufactured on the Astro line and would require 3 hours of labor. If it is produced, it will force the

reduction of both Astro production (because it competes for a production line) and Cosmo production

(because it competes for labor). Is this tradeoff worthwhile? It looks promising. The video recorder

makes more dollars per hour of labor than a Cosmo and it makes more efficient use of Astro capacity

than Astros. Recall the dual prices on the Astro and labor capacities in the original solution were $5 and

$15. If we add this variable to the model, it would have a +47 in the objective function, a +1 in row 2

(the Astro capacity constraint), and a +3 in row 4 (the labor capacity constraint). We can “cost out” an

activity or decision variable by charging it for the use of scarce resources. What prices should be

charged? The obvious prices to use are the dual prices. The +47 profit contribution can be thought of as

a negative cost. The costing out calculations can be arrayed as in the little table below:

Row Coefficient Dual Price Charge

1 −47 1 −47

2 1 +5 +5

3 0 0 0

4 3 15 +45

 Total opportunity cost = +3

 Thus, a video recorder has an opportunity cost of $3. A negative one (−1) is applied to the 47 profit

contribution because a profit contribution is effectively a negative cost. The video recorder’s net cost is

positive, so it is apparently not worth producing.

 The analysis could be stopped at this point, but out of curiosity we’ll formulate the relevant LP and

solve it. If V = number of video recorders to produce, then we wish to solve:

MAX = 20 * A + 30 * C + 47 * V;

 A + V <= 60;

 C <= 50;

 A + 2 * C + 3 * V <= 120;

The solution is:

Optimal solution found at step: 1

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.000000 0.000000

 C 30.000000 0.000000

 V 0.000000 3.000000

 Row Slack or Surplus Dual Price

 1 2100.000000 1.000000

 2 0.000000 5.000000

 3 20.000000 0.000000

 4 0.000000 15.000000

 Video recorders are not produced. Notice the reduced cost of V is $3, the value we computed when

we “costed out” V. This is an illustration of the following relationship:

The reduced cost of an activity equals the weighted sum of its resource usage rates

minus its profit contribution rate, where the weights applied are the dual prices. A

Analyzing Solutions Chapter 3 33

“min” objective is treated as having a dual price of +1. A “max” objective is treated

as having a dual price of −1 in the costing out process.

Notice that the dual prices of an LP fully allocate the total profit to all the scarce resources, i.e., for the

above example, 5 *60 + 0*50 + 15*120 = 2100.

3.2.2 Dual Prices, LaGrange Multipliers, KKT Conditions, and Activity
Costing

When you solve a continuous optimization problem with LINGO or What’sBest!, you can optionally

have dual prices reported for each constraint. For simplicity, assume that our objective is to maximize

and all constraints are less-than-or-equal-to when all variable expressions are brought to the left-hand

side. The dual price of a constraint is then the rate of change of the optimal objective value with respect

to the right-hand side of the constraint. This is a generalization to inequality constraints of the idea of a

LaGrange multiplier for equality constraints. This idea has been around for more than 100 years. To

illustrate, consider the following slightly different, nonlinear problem:

[ROW1] MAX = 40*(X+1)^.5 + 30*(Y+1)^.5 + 25*(Z+1)^.5;

[ROW2] X + 15* Z <= 45;

[ROW3] Y + Z <= 45;

[ROW4] X* X + 3* Y*Y + 9 * Z*Z <= 3500;

We implicitly assume that X, Y, Z >= 0.

When solved, you get the solution:

Objective value = 440.7100

Variable Value Reduced Cost

 X 45.00000 0.0000000

 Y 22.17356 0.0000000

 Z 0.0000000 0.1140319

 Row Slack or Surplus Dual Price

 ROW2 0.0000000 0.8409353

 ROW3 22.82644 0.0000000

 ROW4 0.0000000 0.02342115

For example, the dual price of .8409353 on ROW2 implies that if the RHS of ROW2 is increased by a

small amount, epsilon, the optimal objective value will increase by about .8409353 * epsilon.

 When trying to understand why a particular variable or activity is unused (i.e., at zero), a useful

perspective is that of “costing out the activity”. We give the variable “credit” for its incremental

contribution to the objective and charge it for its incremental usage of each constraint, where the

charging rate applied is the dual price of the constraint. The incremental contribution, or usage, is simply

the partial derivative of the LHS with respect to the variable. The costing out of variable Z is illustrated

below:

Row Partial w.r.t Z Dual price Total charge

ROW1 12.5 -1 -12.5

ROW2 15 .8409353 12.614029

ROW3 1 0 0

ROW4 0 .02342115 0

 Net(Reduced Cost): .11403

34 Chapter 3 Analyzing Solutions

On the other hand, if we do the same costing out for X, we get:

Row Partial w.r.t X Dual price Total charge

ROW1 2.9488391 -1 -2.9488391

ROW2 1 .8409353 .8409353

ROW3 0 0 0

ROW4 90 .02342115 2.107899

 Net(Reduced Cost): 0

These two computations are illustrations of the Karush/Kuhn/Tucker (KKT) conditions, namely, in an

optimal solution:

a) a variable that has a positive reduced cost will have a value of zero;

b) a variable that is used (i.e., is strictly positive) will have a reduced cost of zero;

c) a “<=” constraint that has a positive dual price will have a slack of zero;

d) a “<=” constraint that has strictly positive slack, will have a dual price of zero.

These conditions are sometimes also called complementary slackness conditions.

3.3 Range of Validity of Reduced Costs and Dual Prices
In describing reduced costs and dual prices, we have been careful to limit the changes to “small” changes.

For example, if the dual price of a constraint is $3/hour, then increasing the number of hours available

will improve profits by $3 for each of the first few hours (possibly less than one) added. However, this

improvement rate will generally not hold forever. We might expect that, as we make more hours of

capacity available, the value (i.e., the dual price) of these hours would not increase and might decrease.

This might not be true for all situations, but for LP’s it is true that increasing the right-hand side of a

constraint cannot cause the constraint’s dual price to increase. The dual price can only stay the same or

decrease.

 As we change the right-hand side of an LP, the optimal values of the decision variables may change.

However, the dual prices and reduced costs will not change as long as the “character” of the optimal

solution does not change. We will say the character changes (mathematicians say the basis changes)

when either the set of nonzero variables or the set of binding constraints (i.e., have zero slack) changes.

In summary, as we alter the right-hand side, the same dual prices apply as long as the “character” or

“basis” does not change.

 Most LP programs will optionally supplement the solution report with a range (i.e., sensitivity

analysis) report. This report indicates the amounts by which individual right-hand side or objective

function coefficients can be changed unilaterally without affecting the character or “basis” of the optimal

solution. Recall the previous model:

MAX = 20 * A + 30 * C + 47 * V;

 A + V <= 60;

 C <= 50;

 A + 2 * C + 3 * V <= 120;

Analyzing Solutions Chapter 3 35

 To obtain the sensitivity report, while in the window with the program, choose Range from the

LINGO menu. The sensitivity report for this problem appears below:

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 A 20.00000 INFINITY 3.000000

 C 30.00000 10.00000 3.000000

 V 47.00000 3.000000 INFINITY

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 2 60.00000 60.00000 40.00000

 3 50.00000 INFINITY 20.00000

 4 120.0000 40.00000 60.00000

 Again, we find two sections, one for variables and the second for rows or constraints. The 3 in the

A row of the report means the profit contribution of A could be decreased by up to $3/unit without

affecting the optimal amount of A and C to produce. This is plausible because one Astro and one Cosmo

together make $50 of profit contribution. If the profit contribution of this pair is decreased by $3 (to

$47), then a V would be just as profitable. Note that one V uses the same amount of scarce resources as

one Astro and one Cosmo together. The INFINITY in the same section of the report means increasing the

profitability of A by any positive amount would have no effect on the optimal amount of A and C to

produce. This is intuitive because we are already producing A’s to their upper limit.

 The “allowable decrease” of 3 for variable C follows from the same argument as above. The

allowable increase of 10 in the C row means the profitability of C would have to be increased by at least

$10/unit (thus to $40/unit) before we would consider changing the values of A and C. Notice at $40/unit

for C’s, the profit per hour of labor is the same for both A and C.

 In general, if the objective function coefficient of a single variable is changed within the range

specified in the first section of the range report, then the optimal values of the decision variables, A, C,

and V, in this case, will not change. The dual prices, reduced cost and profitability of the solution,

however, may change.

 In a complementary sense, if the right-hand side of a single constraint is changed within the range

specified in the second section of the range report, then the optimal values of the dual prices and reduced

costs will not change. However, the values of the decision variables and the profitability of the solution

may change.

 For example, the second section tells us that, if the right-hand side of row 3 (the constraint C 50)

is decreased by more than 20, then the dual prices and reduced costs will change. The constraint will

then be C 30 and the character of the solution changes in that the labor constraint will no longer be

binding. The right-hand side of this constraint (C 50) could be increased an infinite amount, according

to the range report, without affecting the optimal dual prices and reduced costs. This makes sense

because there already is excess capacity on the Cosmo line, so adding more capacity should have no

effect.

36 Chapter 3 Analyzing Solutions

 Let us illustrate some of these concepts by re-solving our three-variable problem with the amount

of labor reduced by 61 hours down to 59 hours. The formulation is:

MAX = 20 * A + 30 * C + 47 * V;

 A + V <= 60;

 C <= 50;

 A + 2 * C + 3 * V <= 59;

The solution is:

Optimal solution found at step: 1

Objective value: 1180.000

Variable Value Reduced Cost

 A 59.00000 0.0000000

 C 0.0000000 10.00000

 V 0.0000000 13.00000

 Row Slack or Surplus Dual Price

 1 1180.000 1.000000

 2 1.000000 0.0000000

 3 50.00000 0.0000000

 4 0.0000000 20.00000

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 A 20.00000 INFINITY 4.333333

 C 30.00000 10.00000 INFINITY

 V 47.00000 13.00000 INFINITY

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 2 60.00000 INFINITY 1.000000

 3 50.00000 INFINITY 50.00000

 4 59.00000 1.000000 59.00000

 First, note that, with the reduced labor supply, we no longer produce any Cosmos. Their reduced

cost is now $10/unit, which means, if their profitability were increased by $10 to $40/unit, then we would

start considering their production again. At $40/unit for Cosmos, both products make equally efficient

use of labor.

Analyzing Solutions Chapter 3 37

 Also note, since the right-hand side of the labor constraint has reduced by more than 60, most of the

dual prices and reduced costs have changed. In particular, the dual price or marginal value of labor is

now $20 per hour. This is because an additional hour of labor would be used to produce one more $20

Astro. You should be able to convince yourself the marginal value of labor behaves as follows:

Labor Available Dual Price Reason

0 to 60 hours $20/hour Each additional hour will be used to

produce one $20 Astro.

60 to 160 hours $15/hour Each additional hour will be used to

produce half a $30 Cosmo.

160 to 280 hours $13.5/hour Give up half an Astro and add half

of a V for profit of 0.5 (−20 + 47).

More than 280 hours $0 No use for additional labor.

In general, the dual price on any constraint will behave in the above stepwise decreasing fashion.

 Figures 3.1 and 3.2 give a global view of how total profit is affected by changing either a single

objective coefficient or a single right-hand side. The artists in the audience may wish to note that, for a

maximization problem:

a) Optimal total profit as a function of a single objective coefficient always has a bowl

shape. Mathematicians say it is a convex function.

b) Optimal total profit as a function of a single right-hand side value always has an inverted

bowl shape. Mathematicians say it is a concave function.

 For some problems, as in Figures 3.1 and 3.2, we only see half of the bowl. For minimization problems,

the orientation of the bowl in (a) and (b) is simply reversed.

 When we solve a problem for a particular objective coefficient or right-hand side value, we obtain a

single point on one of these curves. A range report gives us the endpoints of the line segment on which this

one point lies.

Figure 3.1 Total Profit vs. Profit Contribution per Unit of Activity V

2100

2200

2300

2400

2500

2600

2700

2800

2900

50 60 70

Profit Contribution/unit of Activity V

T
o
t
a
l

P
r

o
f
i
t

C
o
n
t
r
i
b

u

t
i
o

n

38 Chapter 3 Analyzing Solutions

Figure 3.2 Profit vs. Labor Available

T
o
t
a
l

P
r
o
f
i
t

C
o
n
t
r
i
t
i
o

n
0

750

1200

1500

2250

2700

3000

3750

4320

4500

60

Labor Hours Available

50 100 250 300150
160

280

200

3.3.1 Predicting the Effect of Simultaneous Changes in Parameters—The
100% Rule

The information in the range analysis report tells us the effect of changing a single cost or resource

parameter. The range report for the Enginola problem is presented as an example:

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 A 20.00000 INFINITY 5.000000

 C 30.00000 10.00000 30.00000

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 2 60.00000 60.00000 40.00000

 3 50.00000 INFINITY 20.00000

 4 120.0000 40.00000 60.00000

 The report indicates the profit contribution of an Astro could be decreased by as much as $5/unit

without changing the basis. In this case, this means that the optimal solution would still recommend

producing 60 Astros and 30 Cosmos.

 Suppose, in order to meet competition, we are considering lowering the price of an Astro by $3/unit

and the price of a Cosmo by $10/unit. Will it still be profitable to produce the same mix? Individually,

each of these changes would not change the solution because 3 5 and 10 30.

 However, it is not clear these two changes can be made simultaneously. What does your intuition

suggest as a rule describing the simultaneous changes that do not change the basis (mix)?

Analyzing Solutions Chapter 3 39

The 100% Rule. You can think of the allowable ranges as slack, which may be used up in changing

parameters. It is a fact that any combination of changes will not change the basis if the

sum of percentages of slack used is less than 100%. For the simultaneous changes we

are contemplating, we have:

3

5

 100 +

10

30

 100 = 60% + 33% = 93.3% < 100%

 This satisfies the condition, so the changes can be made without changing the basis. Bradley, Hax,

and Magnanti (1977) have dubbed this rule the 100% rule. Since the value of A and C do not change,

we can calculate the effect on profits of these changes as −3 60 − 10 30 = −480. So, the new profit

will be 2100 − 480 = 1620.

 The altered formulation and its solution are:

MAX = 17 * A + 20 * C;

 A <= 60;

 C <= 50;

 A + 2 * C <= 120;

Optimal solution found at step: 1

Objective value: 1620.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 1620.000 1.000000

 2 0.0000000 7.000000

 3 20.00000 0.0000000

 4 0.0000000 10.00000

3.4 Sensitivity Analysis of the Constraint Coefficients
Sensitivity analysis of the right-hand side and objective function coefficients is somewhat easy to

understand because the objective function value changes linearly with modest changes in these

coefficients. Unfortunately, the objective function value may change nonlinearly with changes in

constraint coefficients. However, there is a very simple formula for approximating the effect of small

changes in constraint coefficients. Suppose we wish to examine the effect of decreasing by a small

amount e the coefficient of variable j in row i of the LP. The formula is:

(improvement in objective value) (value of variable j) (dual price of row i) e

Example: Consider the problem:

MAX = (20 * A) + (30 * C);

A <= 65;

C <= 50;

A + 2 * C <= 115;

40 Chapter 3 Analyzing Solutions

with solution:

Optimal solution found at step: 1

Objective value: 2050.000

Variable Value Reduced Cost

 A 65.00000 0.0000000

 C 25.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2050.000 1.000000

 2 0.0000000 5.000000

 3 25.00000 0.0000000

 4 0.0000000 15.00000

 Now, suppose it is discovered that the coefficient of C in row 4 should have been 2.01, rather than

2. The formula implies the objective value should be decreased by approximately 25 15 .01 = 3.75.

 The actual objective value, when this altered problem is solved, is 2046.269, so the actual decrease

in objective value is 3.731.

 The formula for the effect of a small change in a constraint coefficient makes sense. If the change

in the coefficient is small, then the values of all the variables and dual prices should remain essentially

unchanged. So, the net effect of changing the 2 to a 2.01 in our problem is effectively to try to use

25 .01 additional hours of labor. So, there is effectively 25 .01 fewer hours available. However, we

have seen that labor is worth $15 per hour, so the change in profits should be about 25 .01 15, which

is in agreement with the original formula.

 This type of sensitivity analysis gives some guidance in identifying which coefficient should be

accurately estimated. If the product of variable j’s value and row i’s dual price is relatively large, then

the coefficient in row i for variable j should be accurately estimated if an accurate estimate of total profit

is desired.

3.5 The Dual LP Problem, or the Landlord and the Renter
As you formulate models for various problems, you will probably discover that there are several rather

different-looking formulations for the same problem. Each formulation may be correct and may be based

on taking a different perspective on the problem. An interesting mathematical fact is, for LP problems,

there are always two formulations (more accurately, a multiple of two) to a problem. One formulation

is arbitrarily called the primal and the other is referred to as the dual. The two different formulations

arise from two different perspectives one can take towards a problem. One can think of these two

perspectives as the landlord’s and the renter’s perspectives.

 In order to motivate things, consider the following situations. Some textile “manufacturers” in Italy

own no manufacturing facilities, but simply rent time as needed from firms that own the appropriate

equipment. In the U.S., a similar situation exists in the recycling of some products. Firms that recycle

old telephone cable may simply rent time on the stripping machines that are needed to separate the

copper from the insulation. This rental process is sometimes called “tolling”. In the perfume industry,

many of the owners of well-known brands of perfume own no manufacturing facilities, but simply rent

time from certain chemical formulation companies to have the perfumes produced as needed. The basic

feature of this form of industrial organization is that the owner of the manufacturing resources never

owns either the raw materials or the finished product.

 Now, suppose you want to produce a product that can use the manufacturing resources of the famous

Enginola Company, manufacturer of Astros, Cosmos, and Video Recorders. You would thus like to rent

production capacity from Enginola. You need to deduce initial reasonable hourly rates to offer to

Analyzing Solutions Chapter 3 41

Enginola for each of its three resources: Astro line capacity, Cosmo line capacity, and labor. These three

hourly rates are your decision variables. You in fact would like to rent all the capacity on each of the

three resources. Thus, you want to minimize the total charge from renting the entire capacities (60, 50,

and 120). If your offer is to succeed, you know your hourly rates must be sufficiently high, so none of

Enginola’s products are worth producing (e.g., the rental fees foregone by producing an Astro should be

greater than 20). These “it’s better to rent” conditions constitute the constraints.

 Formulating a model for this problem, we define the variables as follows:

PA = price per unit to be offered for Astro line capacity,

PC = price per unit to be offered for Cosmo line capacity,

PL = price per unit to be offered for labor capacity.

Then, the appropriate model is:

The Dual Problem:
MIN = 60 * PA + 50 * PC + 120 * PL;

!ASTRO; PA + PL > 20;

!COSMO; PC + 2*PL > 30;

!VR; PA + 3 * PL > 47;

 The three constraints force the prices to be high enough, so it is not profitable for Enginola to

produce any of its products.

The solution is:

Optimal solution found at step: 2

Objective value: 2100.000

Variable Value Reduced Cost

 PA 5.000000 0.0000000

 PC 0.0000000 20.00000

 PL 15.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 -60.00000

 3 0.0000000 -30.00000

 4 3.000000 0.0000000

Recall the original, three-product Enginola problem was:

The Primal Problem:
MAX = 20 * A + 30 * C + 47 * V;

A + V <= 60;

 C <= 50;

A + 2 * C + 3 * V <= 120;

42 Chapter 3 Analyzing Solutions

with solution:

Optimal solution found at step: 1

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 V 0.0000000 3.000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 5.000000

 3 20.00000 0.0000000

 4 0.0000000 15.00000

 Notice the two solutions are essentially the same, except prices and decision variables are reversed.

In particular, note the price the renter should pay is exactly the same as Enginola’s original profit

contribution. This “Minimize the rental cost of the resources, subject to all activities being unprofitable”

model is said to be the dual problem of the original “Maximize the total profit, subject to not exceeding

any resource availabilities” model. The equivalence between the two solutions shown above always

holds. Upon closer scrutiny, you should also notice the dual formulation is essentially the primal

formulation “stood on its ear,” or its transpose, in fancier terminology.

 Why might the dual model be of interest? The computational difficulty of an LP is approximately

proportional to m2n, where m = number of rows and n = number of columns. If the number of rows in

the dual is substantially smaller than the number of rows in the primal, then one may prefer to solve the

dual.

 Additionally, certain constraints, such as simple upper bounds (e.g., x 1) are computationally less

expensive than arbitrary constraints. If the dual contains only a small number of arbitrary constraints,

then it may be easier to solve the dual even though it may have a large number of simple constraints.

 The term “dual price” arose because the marginal price information to which this term is applied is

a decision variable value in the dual problem.

 We can summarize the idea of dual problems as follows. If the original or primal problem has a

Maximize objective with constraints, then its dual has a Minimize objective with constraints. The

dual has one variable for each constraint in the primal and one constraint for each variable in the primal.

The objective coefficient of the kth variable of the dual is the right-hand side of the kth constraint in the

primal. The right-hand side of constraint k in the dual is equal to the objective coefficient of variable k

in the primal. Similarly, the coefficient in row i of variable j in the dual equals the coefficient in row j

of variable i in the primal.

 In order to convert all constraints in a problem to the same type, so one can apply the above, note

the following two transformations:

(1) The constraint 2x + 3y = 5 is equivalent to the constraints 2x + 3y 5 and 2x + 3y 5;

(2) The constraint 2x + 3y 5 is equivalent to −2x − 3y −5.

Example: Write the dual of the following problem:

Maximize 4x − 2y

subject to 2x + 6y 12

 3x − 2y = 1

 4x + 2y 5

Analyzing Solutions Chapter 3 43

Using transformations (1) and (2) above, we can rewrite this as:

Maximize 4x − 2y

subject to 2x + 6y 12

 3x − 2y l

 −3x + 2y −l

 −4x − 2y −5

 Introducing the dual variables r, s, t, and u, corresponding to the four constraints, we can write the

dual as:

Minimize 12r + s − t − 5u

subject to 2r + 3s − 3t − 4u 4

 6r−2s + 2t − 2u −2

3.6 Problems
1. The Enginola Company is considering introducing a new TV set, the Quasi. The expected profit

contribution is $25 per unit. This unit is produced on the Astro line. Production of one Quasi requires

1.6 hours of labor. Using only the original solution below, determine whether it is worthwhile to

produce any Quasi’s, assuming no change in labor and Astro line capacity.

The original Enginola problem with solution is below.

MAX = 20 * A + 30 * C;

A <= 60;

 C <= 50;

A + 2 * C <= 120;

Optimal solution found at step: 1

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 5.000000

 3 20.00000 0.0000000

 4 0.0000000 15.00000

2. The Judson Corporation has acquired 100 lots on which it is about to build homes. Two styles of

homes are to be built, the “Cape Cod” and the “Ranch Home”. Judson wishes to build these 100

homes over the next nine months. During this time, Judson will have available 13,000 man-hours

of bricklayer labor and 12,000 hours of carpenter labor. Each Cape Cod requires 200 man-hours of

carpentry labor and 50 man-hours of bricklayer labor. Each Ranch Home requires 120 hours of

bricklayer labor and 100 man-hours of carpentry. The profit contribution of a Cape Cod is projected

to be $5,100, whereas that of a Ranch Home is projected at $5,000. When formulated as an LP and

solved, the problem is as follows:

MAX = 5100 * C + 5000 * R;

 C + R < 100;

200 * C + 100 * R < 12000;

 50 * C + 120 * R < 13000;

44 Chapter 3 Analyzing Solutions

Optimal solution found at step: 0

Objective value: 502000.0

Variable Value Reduced Cost

 C 20.00000 0.0000000

 R 80.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 502000.0 1.000000

 2 0.0000000 4900.000

 3 0.0000000 1.000000

 4 2400.000 0.0000000

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 C 5100.000 4900.000 100.0000

 R 5000.000 100.0000 2450.000

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 2 100.0000 12.63158 40.00000

 3 12000.00 8000.000 2000.000

 4 13000.00 INFINITY 2400.000

(a) A gentleman who owns 15 vacant lots adjacent to Judson’s 100 lots needs some money

quickly and offers to sell his 15 lots for $60,000. Should Judson buy? What assumptions

are you making?

(b) One of Judson’s salesmen who is a native of Massachusetts feels certain he could sell the

Cape Cods for $2,000 more each than Judson is currently projecting. Should Judson

change its planned mix of homes? What assumptions are inherent in your

recommendation?

3. Jack Mazzola is an industrial engineer with the Enginola Company. He has discovered a way of

reducing the amount of labor used in the manufacture of a Cosmo TV set from 2 hours per set to

1.92 hours per set by replacing one of the assembled portions of the set with an integrated circuit

chip. It is not clear at the moment what this chip will cost. Based solely on the solution report below

(i.e., do not solve another LP), answer the following questions:

(a) Assuming labor supply is fixed, what is the approximate value of one of these chips in the

short run?

(b) Give an estimate of the approximate increase in profit contribution per day of this change,

exclusive of chip cost.

MAX = 20 * A + 30 * C;

 A <= 60;

 C <= 50;

 A + 2 * C <= 120;

Analyzing Solutions Chapter 3 45

Optimal solution found at step: 1

Objective value: 2100.000

Variable Value Reduced Cost

 A 60.00000 0.0000000

 C 30.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2100.000 1.000000

 2 0.0000000 5.000000

 3 20.00000 0.0000000

 4 0.0000000 15.00000

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 2 60.00000 60.00000 40.00000

 3 50.00000 INFINITY 20.00000

 4 120.0000 40.00000 60.00000

4. The Bug product has a profit contribution of $4100 per unit and requires 4 hours in the foundry

department and 2 hours in the assembly department. The SuperBug has a profit contribution of

$5900 per unit and requires 2 hours in the foundry and 3 hours in assembly. The availabilities in

foundry and assembly are 160 hours and 180 hours, respectively. Each hour used in each of foundry

and assembly costs $90 and $60, respectively. The following is an LP formulation for maximizing

profit contribution in this situation:

MAX = 4100 * B + 5900 * S - 90 * F - 60 * A;

 4 * B + 2 * S - F = 0;

 2 * B + 3 * S - A = 0;

 F <= 160;

 A <= 180;

 Following is an optimal solution report printed on a typewriter that skipped some sections of

the report.

Objective value:

Variable Value Reduced Cost

 B 73.33325

 S 60.00000

 F 120.0000 0.0000000

 A 180.0000 0.0000000

 Row Slack or Surplus Dual Price

 1 332400.0 1.000000

 2 0.0000000

 3 1906.667

 4 0.0000000

 5 0.0000000 1846.667

Fill in the missing parts, using just the available information (i.e., without re-solving the model on

the computer).

46 Chapter 3 Analyzing Solutions

5. Suppose the capacities in the Enginola problem were: Astro line capacity = 45; labor

capacity = 100.

(a) Allow the labor capacity to vary from 0 to 200 and plot:

• Dual price of labor as a function of labor capacity.

• Total profit as a function of labor capacity.

(b) Allow the profit contribution/unit of Astros to vary from 0 to 50 and plot:

• Number of Astros to produce as a function of profit/unit.

• Total profit as a function of profit/unit.

6. Write the dual problem of the following problem:

Minimize 12q + 5r + 3s

subject to q + 2r + 4s 6

 5q + 6r − 7s 5

 8q − 9r + 11s = 10

7. The energetic folks at Enginola, Inc. have not been idle. The R & D department has given some

more attention to the proposed digital recorder product (code name R) and enhanced it so much that

everyone agrees it could be sold for a profit contribution of $79 per unit. Unfortunately, its

production still requires one unit of capacity on both the A(stro) and C(osmo) lines. Even worse, it

now requires four hours of labor. The Marketing folks have spread the good word about the Astro

and Cosmo products, so a price increase has been made possible. Industrial Engineering has been

able to increase the capacity of the two lines. The new ex-marine heading Human Resources has

been able to hire a few more good people, so the labor capacity has increased to 135 hours. The net

result is that the relevant model is now:

MAX = 23 * A + 38 * C + 79 * R;

 A + R <= 75;

 C + R <= 65;

 A + 2 * C + 4 * R <= 135;

END

Without resorting to a computer, answer the following questions, supporting each answer with a

one- or two-sentence economic argument that might be understood by your spouse or “significant

other.”

(a) How many A’s should be produced?

(b) How many C’s should be produced?

(c) How many R’s should be produced?

(d) What is the marginal value of an additional hour of labor?

(e) What is the marginal value/unit of additional capacity on the A line?

(f) What is the marginal value per unit of additional capacity on the C line?

Analyzing Solutions Chapter 3 47

49

4

The Model Formulation
Process

Count what is countable, measure what is measurable, and

what is not measurable, make measurable.

Galileo Galilei(1564-1642)

4.1 The Overall Process
In using any kind of analytical or modeling approach for attacking a problem, there are five major steps:

1) Understanding the real problem.

2) Formulating a model of the problem.

3) Gathering and generating the input data for the model (e.g., per unit costs to be used,

etc.).

4) Solving or running the model.

5) Implementing and interpreting the solution in the real world.

 In general, there is a certain amount of iteration over the five (e.g., one does not develop the most

appropriate model the first time around). Of the above, the easiest is the solving of the model on the

computer. This is not because it is intrinsically easiest, but because it is the most susceptible to

mathematical analysis. Steps 1, 3, and 5 are, if not the most difficult, at least the most time consuming.

Success with these steps depends to a large extent upon being very familiar with the organization

involved (e.g., knowing who knows what the real production rate is on the punch press machine). Step

2 requires the most analytical skill. Steps 1 and 5 require the most people skills.

 Formulating good models is an art bordering on a science. The artistic ability is in developing simple

models that are nevertheless good approximations of reality. We shall see that there are a number of

classes of problems that are well approximated by optimization models.

 With all of the above comments in mind, we will devote most of the discussion to formulation of

optimization models, stating what universal truths seem to apply for steps (3) and (5), and giving an

introduction to the mechanics of step (4).

50 Chapter 4 The Model Formulation Process

4.2 Approaches to Model Formulation
We take two approaches to formulating models:

1) Template approach,

2) Constructive approach.

 The constructive approach is the more fundamental and general. However, readers with less analytic

skill may prefer the template approach. The latter is essentially a “model in a can” approach. In this

approach, examples of standard applications are illustrated in substantial detail. If you have a problem

that closely resembles one of these “template” models, you may be able to adjust it to your situation by

making modest changes to the template model. The advantage of this approach is that the user may not

need much technical background if there is a template model that closely fits the real situation.

4.3 The Template Approach
You may feel more comfortable and confident in your ability to structure problems if you have a

classification of “template” problems to which you can relate new problems you encounter. We will

present a classification of about a half dozen different categories of problems. In practice, a large real

problem you encounter will not fit a single template model exactly, but might require a combination of

two or more of the categories. The classification is not exhaustive, so you may encounter or develop

models that seem to fit none of these templates.

4.3.1 Product Mix Problems
Product mix problems are the problem types typically encountered in introductory LP texts. There are a

collection of products that can be sold and a finite set of resources from which these products are made.

Associated with each product are a profit contribution rate and a set of resource usage rates. The

objective is to find a mix of products (amount of each product) that maximizes profit, subject to not

using more resources than are available.

 These problems are always of the form “Maximize profit subject to less-than-or-equal-to

constraints”.

4.3.2 Covering, Staffing, and Cutting Stock Problems
Covering, staffing, and cutting stock problems are complementary (in the jargon, they are called dual)

to product mix problems in that their form is “Minimize cost subject to greater-than-or-equal-to

constraints”. The variables in this case might correspond to the number of people hired for various shifts

during the day. The constraints arise from the fact that the mix of variables chosen must “cover” the

requirements during each hour of the day.

4.3.3 Blending Problems
Blending problems arise in the food, feed, metals, and oil refining industries. The problem is to mix or

blend a collection of raw materials (e.g., different types of meats, cereal grains, or crude oils) into a

finished product (e.g., sausage, dog food, or gasoline). The cost per unit of the finished product is

minimized and it is subject to satisfying certain quality constraints (e.g., percent protein 15 percent).

4.3.4 Multiperiod Planning Problems
Multiperiod planning problems constitute perhaps the most important class of models. These models

take into account the fact that the decisions made in this period partially determine which decisions are

The Model Formulation Process Chapter 4 51

allowable in future periods. The submodel used each period may be a product mix problem, a blending

problem, or some other type. These submodels are usually tied together by means of inventory variables

(e.g., the inventory of raw materials, finished goods, cash, or loans outstanding) that are carried from

one period to the next.

4.3.5 Network, Distribution, and PERT/CPM Models
Network LP models warrant special attention for two reasons: (a) they have a particularly simple form,

which makes them easy to describe as a graph or network, and (b) specialized and efficient solution

procedures exist for solving them. They, therefore, tend to be easier to explain and comprehend. Network

LPs frequently arise from problems of product distribution. Any enterprise producing a product at

several locations and distributing it to many customers may find a network LP relevant. Large problems

of this type may be solved rapidly by the specialized procedures.

 One of the simplest network problems is finding the shortest route from one point in a network to

another. A slight variation on this problem, finding the longest route, happens to be an important

component of the project management tools PERT (Program Evaluation and Review Technique) and

CPM (Critical Path Method).

 Close cousins of network models are input/output and vertically integrated models. General Motors,

for example, makes engines in certain plants. These engines might be sold directly to customers, such

as industrial equipment manufacturers, or the engines may be used in GM’s own cars and trucks. Such

a company is said to be vertically integrated. In a vertically integrated model, there is usually one

constraint for each type of intermediate product. The constraint mathematically enforces the basic law

of physics that the amount used of an intermediate product by various processes cannot exceed the

amount of this product produced by other processes. There is usually one decision variable for each type

of process available.

 If one expands one’s perspective to the entire economy, then the models considered tend to be

similar to the input/output model popularized by Wassily Leontief (1951). Each industry is described by

the input products required and the output products produced. These outputs may in turn be inputs to

other industries. The problem is to determine appropriate levels at which each industry should be

operated in order to satisfy specific consumption requirements.

4.3.6 Multiperiod Planning Problems with Random Elements
One of the fundamental assumptions of optimization models is that all input data are known with

certainty. There are situations, however, where certain key data are highly random. For example, when

an oil company makes its fuel oil production decisions for the coming winter, the demand for that fuel

oil is very much a random variable. If, however, the distribution probabilities for all the random variables

are known, then there is a modeling technique for converting a problem that is an optimization model,

except for the random elements, into an equivalent, although possibly larger, deterministic optimization

model. Such models are sometimes called stochastic programs.

4.3.7 Financial Portfolio Models
An important application of optimization in the last ten years has been in the design of financial

investment portfolios. In its simplest form, it is concerned with how much to invest in a collection of

risky investments, so that a good compromise is struck between a high expected return and a low risk.

More complicated applications of this idea are concerned with investing so as to track some popular

financial index, such as the S&P 500.

52 Chapter 4 The Model Formulation Process

4.3.8 Game Theory Models
Game theory is concerned with the analysis of competitive situations. In its simplest form, a game

consists of two players, each of whom has available to them a set of possible decisions. Each player

must choose a strategy for making a decision in ignorance of the other player’s choice. Some time after

a decision is made, each player receives a payoff that depends on which combination of decisions was

made. The problem of determining each player’s optimal strategy can be formulated as a linear program.

 Not all problems you encounter will fit into one of the above categories. Many problems will be

combinations of the above types. For example, in a multiperiod planning problem, the single period

subproblems may be product mix or blending problems.

4.4 Constructive Approach to Model Formulation
The constructive approach is a set of guidelines for constructing a model from the ground up. This

approach requires somewhat more analytical skill, but the rules apply to any situation you are trying to

model. The odds are low you will find a template model that exactly matches your real situation. In

practice, a combination of these two approaches is needed.

 For the constructive approach, we suggest the following three-step approach for constructing a

model, which, with apologies to Sam Savage, might be called the ABC’s of modeling:

A. Identify and define the decision variables or Adjustable cells. Defining a decision variable

includes specifying the units in which it is measured (e.g., tons, hours, etc.). One way of

trying to deduce the decision variables is to ask the question: What should be the format

of a report that gives a solution to this problem? (For example, the numbers that constitute

an answer are: the amount to produce of each product and the amount to use of each

ingredient.) The cells in this report are the decision variables.

B. Define how we measure Best. More officially, define our objective or criterion function,

including the units in which it is measured. Among useable or feasible solutions, how

would preference/goodness (e.g., profit) be measured?

C. Specify the Constraints, including the units in which each is measured. A way to think

about constraints is as follows: Given a purported solution to a problem, what numeric

checks would you perform to check the validity of the solution?

 The majority of the constraints in most problems can be thought of as sources-equals-uses

constraints. Another common kind of constraint is the definitional or accounting constraint. Sometimes

the distinction between the two is arbitrary. Consider a production setting where we: i) start with some

beginning inventory of some commodity, ii) produce some of that commodity, iii) sell some of the

commodity, and iv) leave some of the commodity in ending inventory. From the sources-equals-uses

perspective, we might write:

beginning inventory + production = sales + ending inventory.

 From the definitional perspective, if we were thinking of how ending inventory is defined, we would

write:

ending inventory = (beginning inventory + production) − sales.

The two perspectives are in fact mathematically equivalent.

 For any application, it is useful to do each of the above in words first. In order to illustrate these

ideas, consider the situation in the following example.

The Model Formulation Process Chapter 4 53

4.4.1 Example
Deglo Toys has been manufacturing a line of precision building blocks for children for a number of

years. Deglo is faced with a standard end-of-the-year problem known as the build-out problem. It is

about to introduce a new line of glow-in-the-dark building blocks. Thus, they would like to deplete their

old-technology inventories before introducing the new line. The old inventories consist of 19,900

4-dimple blocks and 29,700 8-dimple blocks. These inventories can be sold off in the form of two

different kits: the Master Builder and the Empire Builder. The objective is to maximize the revenue from

the sale of these two kits. The Master kit sells for $16.95, and the Empire kit sells for $24.95. The Master

kit is composed of 30 4-dimple blocks plus 40 8-dimple blocks. The Empire kit is composed of 40

4-dimple blocks plus 85 8-dimple blocks. What is an appropriate model of this problem?

4.4.2 Formulating Our Example Problem
The process for our example problem would be as follows:

a) The essential decision variables are:

M = number of master builder kits to assemble and

E = number of empire builder kits to assemble.

b) The objective function is to maximize sales revenue (i.e., Maximize 16.95 M + 24.95E).

c) If someone gave us a proposed solution (i.e., values for M and E), we would check its

feasibility by checking that:

i. the number of 4-dimple blocks used 19,900 and

ii. the number of 8-dimple blocks used 29,700.

Symbolically, or algebraically, this is:

30M + 40E 19,900

40M + 85E 29,700

In LINGO form, the formulation is:

MAX = 16.95 * M + 24.95 * E;

 30 * M + 40 * E <= 19900;

 40 * M + 85 * E <= 29700;

with solution:

Optimal solution found at step: 0

Objective value: 11478.50

Variable Value Reduced Cost

 M 530.0000 0.0000000

 E 100.0000 0.0000000

 Row Slack or Surplus Dual Price

 1 11478.50 1.000000

 2 0.0000000 0.4660526

 3 0.0000000 0.7421052E-01

Thus, we should produce 530 Master Builders and 100 Empire Builders.

54 Chapter 4 The Model Formulation Process

4.5 Choosing Costs Correctly
Choosing costs and profit contribution coefficients in the objective requires some care. In many firms,

cost data may not be available at the detailed level required in an optimization model. If available, the

“official” cost coefficients may be inappropriate for the application at hand.

 The basic rule is fairly simple: The cost coefficient of a variable should be the rate of change of the

total cost as the variable changes. We will discuss the various temptations to violate this rule. The two

major temptations are sunk costs and joint costs.

4.5.1 Sunk vs. Variable Costs
A sunk cost is a cost that has already been incurred or committed to, although not necessarily paid. A

variable cost is a cost that varies with some activity level. Sunk costs should not appear in any coefficient

of a decision variable. Whether a cost is sunk or variable depends closely upon the length of our planning

horizon. A general rule is that: In the short run, all costs are sunk, while all costs are variable in the long

run. The following example illustrates.

Sunk and Variable Cost Example

A firm prepared a profit contribution table for two of its products, X and Y:

Product: X_ Y_

Selling price/unit $1000 $1000

Material cost/unit $200 $300

Labor cost/unit $495 $300

Net Profit contribution $305 $400

 These two products use a common assembly facility that has a daily capacity of 80 units. Product

specific production facilities limit the daily production of X to 40 units and Y to 60 units. The hourly

wage in the company is $15/ hour for all labor. The obvious model is:

Max = 305 * X + 400 * Y;

 X <= 40;

 Y <= 60;

 X + Y <= 80;

 The solution is to produce 60 Y’s and 20 X’s. At $15 per hour, the total labor required by this solution

is 20 495/15 + 60 300/15 = 1860 hours per day.

 Now, let us consider some possible additional details or variations of the above situation. Some

firms, such as some automobile manufacturers, have had labor contracts that effectively guarantee a job

to a fixed number of employees during the term of the contract (e.g., one year). If the above model is

being used to decide how many employees to hire and commit to before signing the contract, then the

$15/hour used above is perhaps appropriate, although it may be too low. In the U.S., the employer also

must pay Social Security and Medicare taxes that add close to 8% to the labor bill. In addition, the

employer typically also covers the cost of supplemental health insurance for the employee, so the cost

of labor is probably closer to $20 per hour rather than $15.

The Model Formulation Process Chapter 4 55

 Once the contract is signed, however, the labor costs then become sunk, but we now have a

constraint that we can use at most 1860 hours of labor per day. The variable profit contributions are now:

Product: X_ Y_

Selling price/unit $1000 $1000

Material cost/unit $200 $300

Net Profit contribution $800 $700

 Now, X is the more profitable product. Before we jump to the conclusion that we should now

produce 40 X’s and 40 Y’s, we must recall that labor capacity is now fixed. The proper, short term, model

is now:

MAX = 800 * X + 700 * Y;

 X <= 40;

 Y <= 60;

 X + Y <= 80;

 33 * X + 20 * Y <= 1860;

with solution:

Optimal solution found at step: 1

Objective value: 58000.00

Variable Value Reduced Cost

 X 20.00000 0.0000000

 Y 60.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 58000.00 1.000000

 2 20.00000 0.0000000

 3 0.0000000 215.1515

 4 0.0000000 0.0000000

 5 0.0000000 24.24242

Therefore, we still produce the same mix of products.

 Now, suppose in order to be competitive, the selling price of X must be dropped by $350 to $650.

Also, we still have our labor contract that says we may use up to and must pay for all of 1860 hours of

labor per day. The correct model is:

Max = 450 * X + 700 * Y;

 X <= 40;

 Y <= 60;

 X + Y <= 80;

 33 * X + 20 * Y <= 1860;

with still the same solution of X = 20 and Y = 60. If we (incorrectly) charge for labor, however, the model

is:

Max = - 45 * X + 400 * Y;

 X <= 40;

 Y <= 60;

 X + Y <= 80;

 33 * X + 20 * Y <= 1860;

and we would incorrectly conclude that X should not be produced.

56 Chapter 4 The Model Formulation Process

 There are many planning situations similar to the above. For example, an airline or a trucking firm

may use essentially the same model for long-range fleet sizing decisions as for daily fleet routing

decision. When solving the long-term fleet sizing decision, the cost of capital should be included in the

daily cost of having a vehicle. On the other hand, when making short-run routing decisions, the cost of

capital should not be included in the daily cost of a vehicle. However, the number of vehicles used is

constrained to be no greater than the fleet size chosen in the long-term plan. Only operating costs that

vary with the amount of usage of the vehicle should be included when solving the short-term model.

4.5.2 Joint Products
We say we have joint products or byproducts if a single process produces several products. The key

feature is that, if you run the process in question, you unavoidably get some amount of each of the joint

products. Some examples are:

Process Joint Products

Crude oil distillation gasoline, oil, kerosene, tar

Raw milk processing whole milk, skim milk, 2%, cream, yogurt

Meat processing light meat, dark meat, steak, chuck roast

Semi-conductor manufacturing high speed chips, low speed chips

Mining of precious metal ore gold, silver, copper

Sales calls sales of various products in product line

 There is a temptation, perhaps even a requirement by taxing authorities, that the cost of the joint

process be fully allocated to the output products. The important point is that, for decision-making

purposes, this allocation serves no purpose. It should be avoided. The proper way to model a joint

product process is to have a separate decision variable for each output product, and a decision variable

for the joint production process. Costs and revenues should be applied to their associated decision

variables (e.g., the cost of distillation should be associated with the decision variable of how much crude

to distill). The fact that, if you want to produce gasoline, then you must incur the cost of distillation is

taken care of by the constraints. Let us illustrate with an example.

Joint Cost Example

The Chartreuse Company (CC) raises pumpkins. It costs $800 to plant, harvest and sort a ton of raw

pumpkins. CC has capacity to plant and harvest 150 tons of pumpkins. In spite of CC’s best efforts at

genetic engineering, harvested pumpkins fall equally into three classes of pumpkins of increasing

quality: Good, Premium, and Exquisite. Once sorted, it costs $100 per ton to get each of the classes

ready for market. Alternatively, pumpkins from any class can be discarded at zero additional cost. Prices

have dropped recently, so there is concern about whether it is profitable to sell all grades of pumpkins.

Current selling prices per ton for the three grades are: $700, $1100, and $2200. How much should be

processed and sold of each grade?

 A proper model is:

MAX = (700 - 100)* G + (1100 - 100) * P + (2200 -

 100)* E - 800 * R;

R <= 150;

G <= .3333333 * R;

P <= .3333333 * R;

E <= .3333333 * R;

The Model Formulation Process Chapter 4 57

With solution:

Optimal solution found at step: 0

Objective value: 65000.0

Variable Value Reduced Cost

 G 50.00000 0.0000000

 P 50.00000 0.0000000

 E 50.00000 0.0000000

 R 150.0000 0.0000000

 Row Slack or Surplus Dual Price

 1 65000.00 1.000000

 2 0.0000000 433.3333

 3 0.0000000 600.0000

 4 0.0000000 1000.000

 5 0.0000000 2100.000

 There is a temptation to allocate the cost of planting, harvesting and sorting, over all three grades to

get the model:

MAX = (700 – 100 – 2400/3) * G + (1100 – 100 –

 2400/3) * P + (2200 - 100 – 2400/3) * E ;

G <= .333333 * 150;

P <= .333333 * 150;

E <= .333333 * 150;

 Given their (apparent) negative profit contribution in the above model, good pumpkins will not be

produced. If we then allocate the planting, harvesting, and sorting costs over just P and E, we get:

MAX = (1100 – 100 – 2400/2) * P + (2200 - 100 –

 2400/2) * E;

G <= .333333 * 150;

P <= .333333 * 150;

E <= .333333 * 150;

 Now, of course, Premium grade is not worth producing. This leaves the Exquisite grade to carry the

full cost of planting, harvesting, and sorting, and then we see it is not worth producing. Thus, even

though we started with a profitable enterprise, blind use of allocation of joint costs caused us to quit the

profitable business. The moral to the story is to not do cost allocation.

4.5.3 Book Value vs. Market Value
A common problem in formulating an optimization model for decisionmaking is what cost should be

attached to product that is used from inventory. A typical accounting system will carry a book value for

product in inventory. The temptation is to use this readily available number as the cost of using product

from inventory. For example, suppose you are a gasoline distributor who bought 10,000 gallons of

Regular gasoline last month for $2.77 per gallon. Due to unforeseen events, this month you still have

5,000 gallons of that Regular gasoline in inventory. Now the market price for Regular gasoline has

dropped to $2.70 per gallon, and you are contemplating your production and market operations for this

month. How much should you charge yourself for the use of this Regular in inventory? One person

might argue that the purchase is now a sunk cost so we should charge ourselves 0. Others might argue

that proper “Accounting” says we should charge the book value, $2.77/gallon. Which is it? The simple

quick answer is that for decision making purposes, book value should always be disregarded, except

when required by law for the calculation of taxes. Material in inventory should be treated as having zero

58 Chapter 4 The Model Formulation Process

cost, however, you should completely enumerate all possible options of what you can do with this

inventory, including selling it on the open market.

It helps to clarify issues by completing all the details for our little example and explicitly defining

decision variables for all the possible actions available. You can buy or sell Regular in unlimited

amounts this month for $2.70/gallon, however, it costs you $0.01/gallon in transportation and

transaction costs for any gasoline you buy to get it onto your property. Similarly, for any gasoline you

sell, there is a transaction cost of $0.02 per gallon. What can be done with Regular gasoline? It can

be sold directly, or it can be blended in equal proportions with Premium gasoline to produce Midgrade

gasoline. You have one customer who is willing to pay $2.82/gallon of Midgrade delivered to his door

for up to 6000 gallons, and a second customer who is willing to pay $2.80/gallon of Midgrade

delivered to his door for up to 8000 gallons. Premium gasoline can be purchased in unlimited amounts

for $2.90/gallon. What should we do with our Regular gasoline: nothing, sell it back to the market,

buy some Premium to blend with Regular (perhaps even buying more Regular) to sell to customer 1,

to customer 2? Following the ABC’s of optimization, step A is to define our decision variables: RB =

gallons of additional Regular gasoline bought on the market this month, RS = gallons of Regular

directly sold on the market this month, PB = gallons of Premium bought, MS1 = gallons of Midgrade

sold to customer 1, and MS2 = gallons of Midgrade sold to customer 2. Step B, the objective function

is to maximize revenues minus costs. Step C is to specify the constraints. The two main constraints

are the “Sources EQual Uses” constraints for Regular and Premium. A formulation is given below.

Recall that a gallon of Midgrade uses a half gallon of Regular and half gallon of Premium. To make

the solution report easier to understand, we have given a [row name] to each constraint.

!Maximize revenues – costs;

 MAX = (2.70 - .02)*RS + (2.82 - .02)*MS1 + (2.80-.02)*MS2

 - (2.70 + .01)*RB - (2.90 + .01)*PB;

!Sources = uses for Regular and Premium;

 [SEQUR] 5000 + RB = RS + .5*(MS1 + MS2);

 [SEQUP] PB = .5*(MS1 + MS2);

!Upper limits on amount we can sell;

 [UL1] MS1 <= 6000;

 [UL2] MS2 <= 8000;

Notice there is no explicit charge for Regular in inventory. The book value of $2.77 appears nowhere

in the formulation. Inventory is treated as a sunk cost or free good, however, we have included the

option to sell it directly. Thus, using Regular to blend Midgrade must compete with simply selling the

Regular directly at the current market price. A solution is:

 Objective value: 13430.00

 Variable Value Reduced Cost

 RS 2000.000 0.000000

 MS1 6000.000 0.000000

 MS2 0.000 0.015000

 RB 0.000 0.030000

 PB 3000.000 0.000000

 Row Slack or Surplus Dual Price

 1 13430.000 1.000000

 SEQUR 0.000 -2.680000

 SEQUP 0.000 -2.910000

 UL1 0.000 0.005000

The Model Formulation Process Chapter 4 59

 UL2 8000.000 0.000000

Thus, it is more profitable to blend the Regular inventory with Premium to sell it to customer 1

than to sell it directly to the market, however, selling Regular directly back to the market is more

profitable than selling to customer 2 blended into Midgrade.

4.6 Common Errors in Formulating Models
When you develop a first formulation of some real problem, the formulation may contain errors or bugs.

These errors will fall into the following categories:

A. Simple typographical errors;

B. Fundamental errors of formulation;

C. Errors of approximation.

 The first two categories of errors are easy to correct once they are identified. In principle, category

A errors are easy to identify because they are clerical in nature. In a large model, however, tracking them

down may be a difficult search problem. Category B errors are more fundamental because they involve

a misunderstanding of either the real problem or the nature of LP models. Category C errors are subtler.

Generally, a model of a real situation involves some approximation (e.g., many products are aggregated

together into a single macro-product, the days of a week are lumped together, or costs that are not quite

proportional to volume are nevertheless treated as linear). Avoiding category C errors requires skill in

identifying which approximations can be tolerated.

 With regard to category A errors, if the user is fortunate, category A errors will manifest themselves

by causing solutions that are obviously incorrect.

 Errors of formulation are more difficult to discuss because they are of many forms. Doing what we

call dimensional analysis can frequently expose the kinds of errors made by a novice. Anyone who has

taken a physics or chemistry course would know it as “checking your units.” Let us illustrate by

considering an example.

 A distributor of toys is analyzing his strategy for assembling Tinkertoy sets for the upcoming

holiday season. He assembles two kinds of sets. The “Big” set is composed of 60 sticks and 30

connectors, while the “Tot” set is composed of 30 sticks and 20 connectors. An important factor is, for

this season, he has a supply of only 60,000 connectors and 93,000 sticks. He will be able to sell all that

he assembles of either set. The profit contributions are $5.5 and $3.5 per set, respectively, for Big and

Tot. How much should he sell of each set to maximize profit?

 The distributor developed the following formulation. Define:

B = number of Big sets to assemble;

T = number of Tot sets to assemble;

S = number of sticks actually used;

C = number of connectors actually used.

MAX = 5.5 * B + 3.5 * T;

B - 30 * C - 60 * S = 0;

T - 20 * C - 30 * S = 0;

 C <= 60000;

 S <= 93000;

60 Chapter 4 The Model Formulation Process

Notice the first two constraints are equivalent to:

B = 30C + 60S

T = 20C + 30S

Do you agree with the formulation? If so, you should analyze its solution below:

Optimal solution found at step: 0

Objective value: 0.5455500E+08

Variable Value Reduced Cost

 B 7380000. 0.0000000

 T 3990000. 0.0000000

 C 60000.00 0.0000000

 S 93000.00 0.0000000

 Row Slack or Surplus Dual Price

 1 0.5455500E+08 1.000000

 2 0.0000000 5.500000

 3 0.0000000 3.500000

 4 0.0000000 235.0000

 5 0.0000000 435.0000

 There is a hint that the formulation is incorrect because the solution is able to magically produce

almost four million Tot sets from only 100,000 sticks.

 The mistake that was made is a very common one for newcomers to LP, namely, trying to describe

the features of an activity by a constraint. A constraint can always be thought of as a statement that the

usage of some item must be less-than-or-equal-to the sources of the item. The last two constraints have

this characteristic, but the first two do not.

 If one analyzes the dimensions of the components of the first two constraints, one can see there is

trouble. The dimensions (or “units”) for the first constraint are:

Term Units

B Big sets

30 C 30 [connectors/(Big set)] connectors

60 S 60 [sticks/(Big set)] sticks

 Clearly, they have different units, but if you are adding items together, they must have the same

units. It is elementary that you cannot add apples and oranges. The units of all components of a constraint

must be the same.

 If one first formulates a problem in words and then converts it to the algebraic form in LINGO, one

frequently avoids the above kind of error. In words, we wish to:

Maximize profit contribution

Subject to:

Usage of connectors sources of connectors

Usage of sticks sources of sticks

Converted to algebraic form in LINGO, it is:

MAX = 5.5 * B + 3.5 * T;

 30 * B + 20 * T <= 60000;

 60 * B + 30 * T <= 93000;

The Model Formulation Process Chapter 4 61

The units of the components of the constraint 30 B + 20 T 60,000 are:

Term Units

30 B 30 [connectors/(Big set)] (Big set) = 30 connectors

20 T 20 [connectors/(Tot set)] (Tot set) = 20 connectors

60,000 60,000 connectors available

 Thus, all the terms have the same units of “connectors”. Solving the problem, we obtain the sensible

solution:

Optimal solution found at step: 0

Objective value: 10550.00

Variable Value Reduced Cost

 B 200.0000 0.0000000

 T 2700.000 0.0000000

 Row Slack or Surplus Dual Price

 1 10550.00 1.000000

 2 0.0000000 0.1500000

 3 0.0000000 0.1666667E-01

4.7 The Nonsimultaneity Error
It must be stressed that all the constraints in an LP formulation apply simultaneously. A combination of

activity levels must be found that simultaneously satisfies all the constraints. The constraints do not

apply in an either/or fashion, although we might like them to be so interpreted. As an example, suppose

we denote by B the batch size for a production run of footwear. A reasonable policy might be, if a

production run is made, at least two dozen units should be made. Thus, B will be either zero or some

number greater-than-or-equal-to 24. There might be a temptation to state this policy by writing the two

constraints:

B 0

B 24.

 The desire is that exactly one of these constraints be satisfied. If these two constraints are part of an

LP formulation, the computer will reject such a formulation with a curt remark to the effect that no

feasible solution exists. There is no unique value for B that is simultaneously less-than-or-equal-to zero

and greater-than-or-equal-to 24.

 If such either/or constraints are important, then one must resort to integer programming. Such

formulations will be discussed in a later section.

4.8 Debugging a Model
LINGO has long had a “Debug” command, see Schrage(1989), that may be helpful in finding

formulation errors in models that are infeasible or unbounded. Consider the following model.
 MAX = 2*X + 3*Y;
 [CON1] 2*X + Y <= 12;

 [CON2] X + Y >= 25;

 [CON3] X + 3*Y <= 11;

62 Chapter 4 The Model Formulation Process

If you try to solve the model, it will be reported as infeasible. Typically, an infeasible or unbounded

model contains one or more errors. For an infeasible model, the Debug command (click on: LINGO |

Debug) will identify a smallest set of constraints that are infeasible, i.e., cannot all be satisfied. If the

infeasibility is due to an error, this set of constraints must contain an error. The Debug report for the

above model, if the output level is set to “verbose”, is as follows:

 Constraints and bounds that cause an infeasibility:

 Sufficient Rows:

 (Dropping any sufficient row will make the model feasible.)

 [CON2] X + Y >= 25 ;

 Necessary Rows:

 (If none of the necessary and sufficient rows are dropped,

 then the model remains infeasible.)

 [CON1] 2 * X + Y <= 12 ;

 Necessary Variable Bounds:

 (If none of the necessary and sufficient bounds are dropped,

 then the model remains infeasible.)

 X >= 0

The report implies that if you drop the constraint X + Y >= 25, then the model will become feasible.

As long as all of the constraints X+Y >= 25, 2*X + Y <= 12, and X >= 0 are retained, the model will

remain infeasible. Such a set of constraints is sometimes referred to as an “Irreducible Infeasible Set”,

or IIS, for short. For more discussion on infeasibility analysis, see Chinneck(2008). Similar debugging

analysis is available for unbounded linear programs.

The Model Formulation Process Chapter 4 63

4.9 Problems
1. The Tiny Timber Company wants to utilize best the wood resources in one of its forest regions.

Within this region, there is a sawmill and a plywood mill. Thus, timber can be converted to lumber

or plywood.

 Producing a marketable mix of 1000 board feet of lumber products requires 1000 board feet of

spruce and 4000 board feet of Douglas fir. Producing 1000 square feet of plywood requires 2000

board feet of spruce and 4000 board feet of Douglas fir. This region has available 32,000 board feet

of spruce and 72,000 board feet of Douglas fir.

 Sales commitments require at least 5000 board feet of lumber and 12,000 square feet of

plywood be produced during the planning period. The profit contributions are $45 per 1000 board

feet of lumber products and $60 per 1000 square feet of plywood. Let L be the amount (in 1000

board feet) of lumber produced and let P be the amount (in 1000 square feet) of plywood produced.

Express the problem as a linear programming model.

2. Shmuzzles, Inc., is a struggling toy company that hopes to make it big this year. It makes three

fundamental toys: the Shmacrobat, the Shlameleon, and the JigSaw Shmuzzle. Shmuzzles is trying

to unload its current inventories through airline in-flight magazines by packaging these three toys

in two different size kits, the Dilettante Shmuzzler kit and the Advanced Shmuzzler kit. It’s $29.95

for the Dilettante, whereas the Advanced sells for $39.95. The compositions of these two kits are:

Dilettante = 6 Shmacrobats plus 10 Shlameleons plus 1 Jig Saw

Advanced = 8 Shmacrobats plus 18 Shlameleons plus 2 Jig Saws

Current inventory levels are: 6,000 Shmacrobats, 15,000 Shlameleons, and 1,500 JigSaws.

Formulate a model for helping Shmuzzles, Inc., maximize its profits.

3. A standard problem encountered by many firms when introducing new products is the "phase-out"

problem. Given the components for products that are being phased out, the question is: what

amounts of the phased out products should be built so as to most profitably use the available

inventory. The following illustrates. The R. R. Bean Company produces, packages, and distributes

freeze-dried food for the camping and outdoor sportsman market. R. R. Bean is ready to introduce

a new line of products based on a new drying technology that produces a higher quality, tastier food.

The basic ingredients of the current (about to be discontinued) line are dried fruit, dried meat and

dried vegetables. There are two products in the current (to be phased out) line: the "Weekender" and

the "ExpeditionPak". In its "close-out" catalog, the selling prices of the two products are $3.80 and

$7.00 per package, respectively. Handling and shipping costs are $1.50 per package for each

package. It is R. R. Bean's long standing practice to include shipping and handling at no charge. The

"Weekender" package consists of 3 ounces of dried fruit, 7 ounces of dried meat, and 2 ounces of

dried vegetables. The makeup of the "ExpeditionPak" package is 5 ounces of dried fruit, 18 ounces

of dried meat, and 5 ounces of dried vegetables. R. R. Bean would like to deplete, as most profitably

as possible, its inventories of "old technology" fruit, meat, and vegetables before introducing the

new line. The current inventories are 10,000 ounces, 25,000 ounces, and 12,000 ounces respectively

of fruit, meat, and vegetables. The book values of these inventories are $2000, $2500, and $1800.

Any leftover inventory will be given to the local animal shelter at no cost or benefit to R. R. Bean.

The prices in the catalog are such that R. R. Bean is confident that it can sell all that it makes of the

two products. Formulate and solve an LP that should be useful in telling R.R. Bean how many

“Weekender” and “Expedition Pak” packages should be mixed to maximize profits from its current

inventories.

64 Chapter 4 The Model Formulation Process

4. Quart Industries produces a variety of bottled food products at its various plants. At its Americus

plant, it produces two products, peanut butter and apple butter. There are two scarce resources at

this plant: packaging capacity and sterilization capacity. Both have a capacity of 40 hours per week.

Production of 1000 jars of peanut butter requires 4 hours of sterilizer time and 5 hours of packaging

time, whereas it takes 6 hours of sterilizer time and 4 hours of packaging time to produce 1000 jars

of apple butter. The profit contributions per 1000 jars for the two products are $1100 and $1300,

respectively. Apple butter preparation requires a boil-down process best done in batches of at least

5000 jars. Thus, apple butter production during the week should be either 0, or 5000 or more jars.

How much should be produced this week of each product?

5. An important skill in model formulation is the ability to enumerate all alternatives. Scott Wilkerson

is a scientist-astronaut aboard a seven-day space shuttle mission. In spite of a modest health problem

that is aggravated by the zero gravity of space, Scott has been allowed on the mission because of

his scientific skills and because a pharmaceutical company has prepared a set of two types of pills

for Scott to take each day to alleviate his medical condition. At the beginning of each day Scott is

to take exactly one type X pill and exactly one type Y pill. If he deviates from this scheme, it will be

life threatening for him and the shuttle will have to be brought down immediately. On the first day

of the mission, Scott gets one type X pill out of the X bottle, but in the process of trying to get a pill

out of the Y bottle, two come out. He grasps for them immediately with the hand that has the X pill

and now he finds he has three pills in his hand. Unfortunately, the X and Y pills are indistinguishable.

Both types look exactly like a standard aspirin. There are just enough pills for the full length mission,

so none can be discarded. What should Scott do? (Hint: this problem would be inappropriate in the

integer programming chapter.)

6. The pharmacy forgot to put labels on 10 of your pill bottles. Of the 10 of them, 9 have pills that

weigh precisely 5 mg. One of bottles has pills that weigh exactly 5.1 mg. Your very busy nurse has

a very precise scale that she is willing to loan to you for just 10 seconds, just enough time to do one

weighing, no more. What would you weigh to determine which of the bottles has the 5.1 mg pills?

State all your assumptions.

The Model Formulation Process Chapter 4 65

67

5

The Sets View of the World

In Normal form, each attribute/field of an entity/record should depend on

the entity key, the whole key, and nothing but the key, so help me Codd.

-anonymous

5.1 Introduction
The most powerful feature of LINGO is its ability to model large systems. The key concept that provides

this power is the idea of a set of similar objects. When you are modeling situations in real life, there will

typically be one or more groups of similar objects. Examples of such groups might be factories, products,

time periods, customers, vehicles, employees, etc. LINGO allows you to group similar objects together

into sets. Once the objects in your model are grouped into sets, you can make single statements in LINGO

that apply to all members of a set.

 A LINGO model of a large system will typically have three sections: 1) a SETS section, 2) a DATA

section, and 3) a model equations section. The SETS section describes the data structures to be used for

solving a certain class of problems. The DATA section provides the data to “populate” the data

structures. The model equations section describes the relationships between the various pieces of data

and our decisions.

5.1.1 Why Use Sets?
In most large models, you will need to express a group of several very similar calculations or constraints.

LINGO’s ability to handle sets allows you to express such formulae or constraints efficiently.

 For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you

had to write each constraint explicitly (e.g., “Warehouse 1 can ship no more than its present inventory,

Warehouse 2 can ship no more than its present inventory, Warehouse 3 can ship no more than its present

inventory…” and so on). You would prefer to make a single general statement of the form: “Each

warehouse can ship no more than its present inventory”.

5.1.2 What Are Sets?
A set is a group of similar objects. A set might be a list of products, trucks, employees, etc. Each member

in the set may have one or more characteristics associated with it (e.g., weight, price/unit, or income).

We call these characteristics attributes. All members of the same set have the same set of attribute types.

Attribute values can be known in advance or unknowns for which LINGO solves. For example, each

product in a set of products might have an attribute listing its price. Each truck in a set of trucks might

have a hauling capacity attribute. In addition, each employee in a set of employees might have an

attribute specifying salary as well as an attribute listing birth date.

68 Chapter 6 Product Mix Problems

5.1.3 Types of Sets
LINGO recognizes two kinds of sets: primitive and derived. A primitive set is a set composed only of

objects that can’t be further reduced.

 A derived set is defined from one or more other sets using two operations: a) selection (of a subset),

and/or b) Cartesian product (sometimes called a “cross” or a “join”) of two or more other sets. The key

concept is that a derived set derives its members from other pre-existing sets. For example, we might

have the two primitive sets: WAREHOUSE and CUSTOMER. We might have the derived set called

SHIPLINK, which consists of every possible combination of a warehouse and a customer. Although the

set SHIPLINK is derived solely from primitive sets, it is also possible to build derived sets from other

derived sets as well.

5.2 The SETS Section of a Model
In a set-based LINGO model, the first section in the model is usually the SETS section. A SETS section

begins with the keyword SETS: (including the colon) and ends with the keyword ENDSETS. A model

may have no SETS section, a single SETS section, or multiple SETS sections. A SETS section may

appear almost anywhere in a model. The major restriction is that you must define a set and its attributes

before they are referenced in the model's constraints.

5.2.1 Defining Primitive Sets
To define a primitive set in a SETS section, you specify:

 the name of the set, and

 any attributes the members of the set may have.

A primitive set definition has the following syntax1:

setname:[attribute_list];

 The setname is a name you choose. It should be a descriptive name that is easy to remember. The

set name must conform to standard LINGO naming conventions: begin with an alphabetic character,

followed by up to 31 alphanumeric characters or the underscore (_). LINGO does not distinguish

between upper and lowercase characters in names.

 An example sets declaration is:

SETS:

 WAREHOUSE: CAPACITY;

ENDSETS

 This means that we will be working with one or more warehouses. Each one of them has an attribute

called CAPACITY. Set members may have zero or more attributes specified in the attribute_list of the

set definition. An attribute is some property each member of the set possesses. Attribute names must

follow standard naming conventions and be separated by commas.

 For illustration, suppose our warehouses had additional attributes related to their location and the

number of loading docks. These additional attributes could be added to the attribute list of the set

declaration as:

WAREHOUSE: CAPACITY, LOCATION, DOCKS;

1The use of Square brackets indicates that a particular item is optional. In this particular case, a primitive

set's member_list and attribute_list are optional.

Product Mix Problems Chapter 6 69

5.2.2 Defining Derived Sets
To define a derived set, you specify:

 the name of the set,

 its parent sets,

 optionally, any attributes the set members may have.

A derived set definition has the following syntax:

set_name (parent_set_list) [membership_filter] [: attribute_list];

 The set_name is a standard LINGO name you choose to name the set. The optional

membership_filter may place a general condition on membership in the set.

 The parent_set_list is a list of previously defined sets, separated by commas. LINGO constructs all

the combinations of members from each of the parent sets to create the members of the derived set. As

an example, consider the following SETS section:

SETS:

 PRODUCT ;

 MACHINE ;

 WEEK;

 ALLOWED(PRODUCT, MACHINE, WEEK): VOLUME;

ENDSETS

 Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from parent

sets PRODUCT, MACHINE, and WEEK. Unless specified otherwise, the set ALLOWED will have one

member for every combination of PRODUCT, MACHINE, and WEEK. The attribute VOLUME might

be used to specify how much of each product is produced on each machine in each week. A derived set

that contains all possible combinations of members is referred to as being a dense set. When a set

declaration includes a membership_filter or if the members of the derived set are given explicitly in a

DATA section, then we say the set is sparse.

 Summarizing, a derived set's members may be constructed by either:

 an explicit member list in a DATA section,

 a membership filter, or

 implicitly dense by saying nothing about the membership of the derived set.

Specification of an explicit membership list for a derived set in a DATA section will be illustrated in the

next section of the text.

 If you have a large, sparse set, explicitly listing all members can become cumbersome. Fortunately,

in many sparse sets, the members all satisfy some condition that differentiates them from the

non-members. If you can specify this condition, you can save yourself a lot of typing. This is exactly

how the membership filter method works. Using the membership filter method of defining a derived

set's member_list involves specifying a logical condition that each potential set member must satisfy for

inclusion in the set. You can look at the logical condition as a filter that filters out potential members

who don't measure up to some criteria.

70 Chapter 6 Product Mix Problems

 As an example of a membership filter, suppose you have already defined a set called TRUCKS and

each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that

contains only those trucks capable of hauling big loads. You could use an explicit member list and

explicitly enter each of the trucks that can carry heavy loads. However, why do all that work when you

could use a membership filter as follows:

HEAVY_DUTY(TRUCKS) | CAPACITY(&1) #GT# 50000;

 We have named the set HEAVY_DUTY and have derived it from the parent set TRUCKS. The

vertical bar character (|) is used to mark the beginning of a membership filter. The membership filter

allows only those trucks that have a hauling capacity (CAPACITY(&1)) greater than (#GT#) 50,000 into

the HEAVY_DUTY set. The &1 symbol in the filter is known as a set index placeholder. When building

a derived set that uses a membership filter, LINGO generates all the combinations of parent set members.

Each combination is then "plugged" into the membership condition to see if it passes the test. The first

parent set's value is plugged into &1, the second into &2, and so on. In this example, we have only one

parent set (TRUCKS), so &2 would not have made sense. The symbol #GT# is a logical operator and

means "greater than". Other logical operators recognized by LINGO include:

 #EQ# equal

 #NE# not equal

 #GE# greater-than-or-equal-to

 #LT# less than

 #LE# less-than-or-equal-to

5.2.3 Summary
LINGO recognizes two types of sets - primitive and derived. Primitive sets are the fundamental objects

in a model and can't be broken down into smaller components. Derived sets, on the other hand, are

created from other component sets. These component sets are referred to as the parents of the derived

set and may be either primitive or derived.

 A derived set can be either sparse or dense. Dense sets contain all combinations of the parent set

members (sometimes this is also referred to as the Cartesian product or cross of the parent sets). Sparse

sets contain only a subset of the cross of the parent sets. These may be defined by two methods - explicit

listing or membership filter. The explicit listing method involves listing the members of the sparse set

in a DATA section. The membership filter method allows you to specify the sparse set members

compactly using a logical condition, which all members must satisfy. The relationships amongst the

various set types are illustrated in Figure 5.1 below.

Product Mix Problems Chapter 6 71

Figure 5.1 Types of Sets

5.3 The DATA Section
A SETS section describes the structure of the data for a particular class of problems. A DATA section

provides the data to create a specific instance of this class of problems. The DATA section allows you

to isolate things that are likely to change from week to week. This is a useful practice in that it leads to

easier model maintenance and makes a model easier to scale up or down in dimension.

 We find it useful to partition a LINGO model of a large system into three distinct sections: a) the

SETS section, b) the DATA section, and c) the model equations section. The developer of a model has

to understand all three sections. However, if the developer has done a good job of partitioning the model

into the aforementioned sections, the day-to-day user may only need to be familiar with the DATA

section.

 Similar to the SETS section, the DATA section begins with the keyword DATA: (including the

colon) and ends with the keyword ENDDATA. In the DATA section, you place statements to initialize

either the attributes of the member of a set you defined in a SETS section or even the set members. These

expressions have the syntax:

attribute_list = value_list;

or

 set_name = member_list;

72 Chapter 6 Product Mix Problems

 The attribute_list contains the names of the attributes you want to initialize, optionally separated by

commas. If there is more than one attribute name on the left-hand side of the statement, then all attributes

must be associated with the same set. The value_list contains the values you want to assign to the

attributes in the attribute_list, optionally separated by commas. Consider the following example:

SETS:

 SET1: X, Y;

ENDSETS

DATA:

 SET1 = M1, M2, M3;

 X = 1 2 3;

 Y = 4 5 6;

ENDDATA

 We have two attributes, X and Y, defined on the set SET1. The three values of X are set to 1, 2, and

3, while Y is set to 4, 5, and 6. We could have also used the following compound data statement to the

same end:

SETS:

 SET1: X, Y;

ENDSETS

DATA:

 SET1 X Y =

 M1 1 4

 M2 2 5

 M3 3 6;

ENDDATA

 Looking at this example, you might imagine X would be assigned the values 1, 4, and 2, since they

are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data statement's

value list, it assigns the first n values to the first position of each of the n attributes in the attribute list,

the second n values to the second position of each of the n attributes, and so on. In other words, LINGO

is expecting the input data in column form rather than row form.

 The DATA section can also be used for specifying members of a derived set. The following

illustrates both how to specify set membership in a DATA section and how to specify a sparse derived

set. This example also specifies values for the VOLUME attribute, although that is not required:

SETS:

 PRODUCT ;

 MACHINE ;

 WEEK ;

 ALLOWED(PRODUCT, MACHINE, WEEK): VOLUME;

ENDSETS

DATA:

 PRODUCT = A B;

 MACHINE = M N;

 WEEK = 1..2;

 ALLOWED, VOLUME =

 A M 1 20.5

 A N 2 31.3

 B N 1 15.8;

ENDDATA

Product Mix Problems Chapter 6 73

The ALLOWED set does not have the full complement of eight members. Instead, ALLOWED is just the

three member sparse set:

(A,M,1), (A,N,2), and (B,N,1).

LINGO recognizes a number of standard sets. For example, if you declare in a DATA section:

 PRODUCT = 1..5;

then the members of the PRODUCT set will in fact be 1, 2, 3, 4, and 5. If you declare:

 PERIOD = Feb..May;

then the members of the PERIOD set will in fact be Feb, Mar, Apr, and May. Other examples of inferred

sets include mon..sun and thing1..thing12.

 If an attribute is not referenced in a DATA section, then it is by default a decision variable. LINGO

may set such an attribute to whatever value is consistent with the statements in the model equations

section.

 This section gave you a brief introduction to the use of the DATA section. Data do not have to

actually reside in the DATA section as shown in these examples. In fact, a DATA section can have OLE

links to Excel, ODBC links to databases, and connections to other spreadsheet and text based data files.

Examples are given later in this chapter.

 Note, when LINGO constructs the derived set, it is the right-most parent set that is incremented the

fastest.

5.4 Set Looping Functions
In the model equations section of a model, we state the relationships among various attributes. Any

statements not in a SETS or DATA section are by default in the model equations section. The power of

set based modeling comes from the ability to apply an operation to all members of a set using a single

statement. The functions in LINGO that allow you to do this are called set looping functions. If your

models do not make use of one or more set looping functions, you are missing out on the power of set

based modeling and, even worse, you're probably working too hard!

 Set looping functions allow you to iterate through all the members of a set to perform some

operation. There are four set looping functions in LINGO. The names of the functions and their uses are:

Function Function's Use

@FOR Used to generate constraints over members of a set.

@SUM Computes the sum of an expression over all members of

a set.

@MIN Computes the minimum of an expression over all

members of a set.

@MAX Computes the maximum of an expression over all

members of a set.

The syntax for a set looping function is:

@loop_function (setname [(set_index_list)

 [| conditional_qualifier]] : expression_list);

 The @loop_function symbol corresponds to one of the four set looping functions listed in the table

above. The setname is the name of the set over which you want to loop. The set_index_list is optional

74 Chapter 6 Product Mix Problems

and is used to create a list of indices each of which correspond to one of the parent, primitive sets that

form the set specified by setname. As LINGO loops through the members of the set setname, it will set

the values of the indices in the set_index_list to correspond to the current member of the set setname.

The conditional_qualifier is an optional filter and may be used to limit the scope of the set looping

function. When LINGO is looping over each member of setname, it evaluates the conditional_qualifier.

If the conditional_qualifier evaluates to true, then the expression_list of the @loop_function is

performed for the set member. Otherwise, it is skipped. The expression_list is a list of expressions to be

applied to each member of the set setname. When using the @FOR function, the expression list may

contain multiple expressions that are separated by semicolons. These expressions will be added as

constraints to the model. When using the remaining three set looping functions (@SUM, @MAX, and

@MIN), the expression list must contain only one expression. If the set_index_list is omitted, all

attributes referenced in the expression_list must be defined on the set setname.

5.4.1 @SUM Set Looping Function
In this example, we will construct several summation expressions using the @SUM function in order to

illustrate the features of set looping functions in general and the @SUM function in particular.

 Consider the model:

SETS:

 SET_A : X;

ENDSETS

DATA:

 SET_A = A1 A2 A3 A4 A5;

 X = 5 1 3 4 6;

ENDDATA

X_SUM = @SUM(SET_A(J): X(J));

 LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO

then begins looping over the members in SET_A. You can think of J as a pronoun. The index variable

J is first set to the first member of SET_A (i.e., A1) and X(A1) is then added to the accumulator. Then J

is set to the second element and this process continues until all values of X have been added to the

accumulator. The value of the sum is then stored into the variable X_SUM.

 Since all the attributes in our expression list (in this case, only X appears in the expression list) are

defined on the index set (SET_A), we could have alternatively written our sum as:

X_SUM = @SUM(SET_A: X);

 In this case, we have dropped the superfluous index set list and the index on X. When an expression

uses this shorthand, we say the index list is implied. Implied index lists are not allowed when attributes

in the expression list have different parent sets.

 Next, suppose we want to sum the first three elements of the attribute X. We can use a conditional

qualifier on the set index to accomplish this as follows:

X3_SUM = @SUM(SET_A(J) | J #LE# 3: X(J));

 The #LE# symbol is called a logical operator. This operator compares the operand on the left (J)

with the one on the right (3) and returns true if the left operand is less-than-or-equal-to the one on the

right. Otherwise, it returns false. Therefore, this time, when LINGO computes the sum, it plugs the set

index variable J into the conditional qualifier J #LE# 3. If the conditional qualifier evaluates to true,

X(J) will be added to the sum. The end result is that LINGO sums up the first three terms in X, omitting

the fourth and fifth terms, for a total sum of 9.

Product Mix Problems Chapter 6 75

 Before leaving this example, one subtle aspect to note in this last sum expression is the value that

the set index J is returning. Note we are comparing the set index variable to the quantity 3 in the

conditional qualifier J #LE# 3. In order for this to be meaningful, J must represent a numeric value.

Since a set index is used to loop over set members, one might imagine a set index is merely a placeholder

for the current set member. In a sense, this is true. However, what set indexes really return is the index

of the current set member in its parent primitive set. The index returned is one-based. In other words,

the value 1 is returned when indexing the first set member, 2 when indexing the second, and so on. Given

that set indices return a numeric value, they may be used in arithmetic expressions along with other

variables in your model.

5.4.2 @MIN and @MAX Set Looping Functions
The @MIN and @MAX functions are used to find the minimum and maximum of an expression over

members of a set. Again, consider the model:

SETS:

 SET_A : X;

ENDSETS

DATA:

 SET_A = A1 A2 A3 A4 A5;

 X = 5 1 3 4 6;

ENDDATA

To find the minimum and maximum values of X, all one need do is add the two expressions:

THE_MIN_OF_X = @MIN(SET_A(J): X(J));

THE_MAX_OF_X = @MAX(SET_A(J): X(J));

 As with the @SUM example above, we can use an implied index list since the attributes are defined

on the index set. Using implied indexing, we can recast our expressions as:

THE_MIN_OF_X = @MIN(SET_A: X);

THE_MAX_OF_X = @MAX(SET_A: X);

 In either case, when we solve this model, LINGO returns the expected minimum and maximum

values of X:

 Variable Value

THE_MIN_OF_X 1.000000

THE_MAX_OF_X 6.000000

 For illustration purposes, suppose we had just wanted to compute the minimum and maximum

values of the first three elements of X. As with the @SUM example, all we need do is add the conditional

qualifier J #LE# 3. We then have:

THE_MIN_OF_X_3 = @MIN(SET_A(J) | J #LE# 3: X(J));

THE_MAX_OF_X_3 = @MAX(SET_A(J) | J #LE# 3: X(J));

with solution:

 Variable Value

THE_MIN_OF_X_3 1.000000

THE_MAX_OF_X_3 5.000000

76 Chapter 6 Product Mix Problems

5.4.3 @FOR Set Looping Function
The @FOR function is used to generate constraints across members of a set. Whereas scalar based

modeling languages require you to explicitly enter each constraint, the @FOR function allows you to

enter a constraint just once and LINGO does the work of generating an occurrence of the constraint for

each of the set members. As such, the @FOR statement provides the set based modeler with a very

powerful tool.

 To illustrate the use of @FOR, consider the following:

SETS:

 TRUCKS : HAUL;

ENDSETS

DATA:

 TRUCKS = MAC, PETERBILT, FORD, DODGE;

ENDDATA

 Specifically, we have a primitive set of four trucks with a single attribute titled HAUL. If the attribute

HAUL is used to denote the amount a truck hauls, then we can use the @FOR function to limit the

amount hauled by each truck to 2,500 pounds with the following expression:

@FOR(TRUCKS(T): HAUL(T) <= 2500);

 In this case, it might be instructive to view the constraints that LINGO generates from our

expression. You can do this by using the LINGO | Generate command under Windows or by using the

GENERATE command on other platforms. Running this command, we find that LINGO generates the

following four constraints:

 HAUL(MAC) <= 2500;

HAUL(PETERBILT) <= 2500;

 HAUL(FORD) <= 2500;

 HAUL(DODGE) <= 2500;

 As we anticipated, LINGO generated one constraint for each truck in the set to limit them to a load

of 2,500 pounds.

 Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any five

numbers placed into the GPM attribute:

SETS:

 OBJECT: GPM, MPG;

ENDSETS

DATA:

 OBJECT = A B C D E;

 GPM = .0303 .03571 .04545 .07142 .10;

ENDDATA

 @FOR(OBJECT(I):

 MPG(I) = 1 / GPM(I)

);

Product Mix Problems Chapter 6 77

Solving this model gives the following values for the reciprocals:

Variable Value

 MPG(A) 33.00330

 MPG(B) 28.00336

 MPG(C) 22.00220

 MPG(D) 14.00168

 MPG(E) 10.00000

 Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR

statement that causes us to skip the reciprocal computation whenever a zero is encountered. The

following @FOR statement accomplishes this:

@FOR(OBJECT(I) | GPM(I) #NE# 0:

 MPG(I) = 1 / GPM(I)

);

 The conditional qualifier (listed in bold) tests to determine if the GPM is not equal (#NE#) to zero.

If so, the computation proceeds.

 This was just a brief introduction to the use of the @FOR statement. There will be many additional

examples in the sections to follow.

5.4.4 Nested Set Looping Functions
The simple models shown in the previous section use @FOR to loop over a single set. In larger models,

you may need to loop over a set within another set looping function. When one set looping function is

used within the scope of another, we call it nesting. LINGO allows nesting.

 The following is an example of an @SUM loop nested within an @FOR:

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) = DEMAND(J);

);

 Specifically, for each vendor, we sum up the shipments going from all the warehouses to that vendor

and set the quantity equal to the vendor's demand.

 @SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on

the other hand, may only be nested within other @FOR functions.

5.5 Set Based Modeling Examples
Recall, four types of sets can be created in LINGO:

 primitive,

 dense derived,

 sparse derived - explicit list, and

 sparse derived - membership filter.

 This section will help develop your talents for set based modeling by building and discussing four

models. Each of these four models will introduce one of the set types listed above.

78 Chapter 6 Product Mix Problems

5.5.1 Primitive Set Example
The following staff scheduling model illustrates the use of a primitive set. This model may be found in

the SAMPLES subdirectory off the main LINGO directory under the name STAFFDEM.LNG.

The Problem

Suppose you run the popular Pluto Dog's hot dog stand that is open seven days a week. You hire

employees to work a five-day workweek with two consecutive days off. Each employee receives the

same weekly salary. Some days of the week are busier than others and, based on past experience, you

know how many workers are required on a given day of the week. In particular, your forecast calls for

these staffing requirements:

Day Mon Tue Wed Thu Fri Sat Sun

Staff Req'd 20 16 13 16 19 14 12

 You need to determine how many employees to start on each day of the week in order to minimize

the total number of required employees, while still meeting or exceeding staffing requirements each day

of the week.

The Formulation

The first question to consider when building a set based model is, "What are the relevant sets and their

attributes?". In this model, we have a single primitive set, the days of the week. We will be concerned

with two attributes of the DAYS set. The first is the number of staff required on each day. The second is

the decision variable of the number of staff to start on each day. If we call these attributes REQUIRED

and START, then we might write the SETS section and DATA sections as:

SETS:

 DAYS : REQUIRED, START;

ENDSETS

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

 We are now at the point where we can begin entering the model's mathematical relations (i.e., the

objective and constraints). Let's begin by writing the objective: minimize the total number of employees

we start during the week. In standard mathematical notation, we might write:

Minimize: START i

 The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and "@SUM(

DAYS(I):" for i and we have:

MIN = @SUM(DAYS(I): START(I));

 Now, all that's left is to deduce the constraints. There is only one set of constraints in this model.

Namely, we must have enough staff on duty each day to meet or exceed staffing requirements. In words,

what we want is:

for each day: Staff on duty today Staff required today,

i

Product Mix Problems Chapter 6 79

 The right-hand side of this expression, Staff required today, is given. It is simply the quantity

REQUIRED(I). The left-hand side, Staff on duty today takes a little thought. Given that all employees

are on a five-day on/two day off schedule, the number of employees working today is:

Number working today = Number starting today +

Number starting 1 day ago + Number starting 2 days ago +

Number starting 3 days ago + Number starting 4 days ago.

 In other words, to compute the number of employees working today, we sum up the number of

people starting today plus those starting over the previous four days. The employees starting five and

six days back don't count because they are on their days off. Therefore, using mathematical notation,

what one might consider doing is adding the constraint:

i = j - 4, j

 STARTi REQUIREDj, for j DAYS

Translating into LINGO notation, we can write this as:

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5: START(J - I + 1))

 >= REQUIRED(J)

);

 In words, the LINGO statement says, for each day of the week, the sum of the employees starting

over the five-day period beginning four days ago and ending today must be greater-than-or-equal-to the

required number of staff for the day. This sounds correct, but there is a slight problem. If we try to solve

our model with this constraint, we get the error message:

 To see why we get this error message, consider what happens on Thursday. Thursday has an index

of 4 in our set DAYS. As written, the staffing constraint for Thursday will be:

START(4 - 1 + 1) + START(4 - 2 + 1) +

START(4 - 3 + 1) + START(4 - 4 + 1) +

START(4 - 5 + 1) >= REQUIRED(4);

Simplifying, we get:

START(4) + START(3) +

START(2) + START(1) +

START(0) >= REQUIRED(4);

80 Chapter 6 Product Mix Problems

 It is the START(0) term that is at the root of our problem. START is defined for days 1 through 7.

START(0) does not exist. An index of 0 on START is considered "out of range".

 What we would like to do is to have any indices less-than-or-equal-to 0, wrap around to the end of

the week. Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a

function that does just this, and it is called @WRAP.

 The @WRAP function takes two arguments - call them INDEX and LIMIT. Formally speaking,

@WRAP returns J such that J = INDEX - K LIMIT, where K is an integer such that J is in the interval

[1,LIMIT]. Informally speaking, @WRAP will subtract or add LIMIT to INDEX until it falls in the range

1 to LIMIT, and, therefore, is just what we need to "wrap around" an index in multi-period planning

models.

 Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint:

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7))) >= REQUIRED(J)

);

The Solution

Below is our staffing model in its entirety:

SETS:

 DAYS : REQUIRED, START;

ENDSETS

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7))) >= REQUIRED(J)

);

Solving this model, we get the solution report:

Optimal solution found at step: 8

Objective value: 22.00000

 Variable Value Reduced Cost

REQUIRED(MON) 20.00000 0.0000000

REQUIRED(TUE) 16.00000 0.0000000

REQUIRED(WED) 13.00000 0.0000000

REQUIRED(THU) 16.00000 0.0000000

REQUIRED(FRI) 19.00000 0.0000000

REQUIRED(SAT) 14.00000 0.0000000

REQUIRED(SUN) 12.00000 0.0000000

 START(MON) 8.00000 0.0000000

 START(TUE) 2.00000 0.0000000

 START(WED) 0.00000 0.0000000

 START(THU) 6.00000 0.0000000

 START(FRI) 3.00000 0.0000000

 START(SAT) 3.00000 0.0000000

 START(SUN) 0.00000 0.0000000

Product Mix Problems Chapter 6 81

 Row Slack or Surplus Dual Price

 1 22.00000 1.000000

 2 0.0000000 -0.2000000

 3 0.0000000 -0.2000000

 4 0.0000000 -0.2000000

 5 0.0000000 -0.2000000

 6 0.0000000 -0.2000000

 7 0.0000000 -0.2000000

 8 0.0000000 -0.2000000

The objective value of 22 means we need to hire 22 workers.

 We start our workers according to the schedule:

 Mon Tue Wed Thu Fri Sat Sun

Start 8 2 0 6 3 3 0

 If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see the slack values

are 0 on all of the days. This means there are no extra workers on any day.

5.5.2 Dense Derived Set Example
The following model illustrates the use of a dense derived set in a blending model. This model may be

found in the SAMPLES subdirectory off the main LINGO directory under the name CHESS.LNG.

The Problem

The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called the

Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The table

below lists the number of ounces of the two nuts contained in each pound of each brand and the price at

which the company can sell a pound of each brand:

 Pawn Knight Bishop King

Peanuts (oz.) 15 10 6 2

Cashews (oz.) 1 6 10 14

Selling Price ($/lb.) 2 3 4 5

 Chess has contracts with suppliers to receive per day: 750 pounds of peanuts and 250 pounds of

cashews. Our problem is to determine the number of pounds of each brand to produce each day to

maximize total revenue without exceeding the available supply of nuts.

The Formulation

 The primitive sets in this model are the nut types and the brands of mixed nuts. The NUTS set has

the single attribute SUPPLY that is the daily supply of nuts in pounds. The BRANDS set has PRICE and

PRODUCE attributes, where PRICE stores the selling price of the brands and PRODUCE represents the

decision variables of how many pounds of each brand to produce each day.

82 Chapter 6 Product Mix Problems

 We need one more set, however, in order to input the brand formulas. We need a two dimensional

table defined on the nut types and the brands. To do this, we will generate a derived set from the cross

of the NUTS and BRANDS sets. Adding this derived set, we get the complete SETS section:

SETS:

 NUTS : SUPPLY;

 BRANDS : PRICE, PRODUCE;

 FORMULA(NUTS, BRANDS): OUNCES;

ENDSETS

 We have titled the derived set FORMULA, and it has the single attribute OUNCES, which will be

used to store the ounces of nuts used per pound of each brand. Since we have not specified the members

of this derived set, LINGO assumes we want the complete, dense set that includes all pairs of nuts and

brands.

 Now that our sets are defined, we can move on to building the DATA section. We initialize the

three attributes SUPPLY, PRICE, and OUNCES in the DATA section as follows:

DATA:

 NUTS = PEANUTS, CASHEWS;

 SUPPLY = 750 250;

 BRANDS = PAWN, KNIGHT, BISHOP, KING;

 PRICE = 2 3 4 5;

 OUNCES = 15 10 6 2 !(Peanuts);

 1 6 10 14; !(Cashews);

ENDDATA

 With the sets and data specified, we can enter our objective function and constraints. The objective

function of maximizing total revenue is straightforward:

MAX = @SUM(BRANDS(I): PRICE(I) * PRODUCE(I));

 Our model has only one class of constraints. Namely, we can't use more nuts than we are supplied

with on a daily basis. In words, we would like to ensure that:

For each nut type i, the number of pounds of nut i used must be less-than-or-equal-to the supply

of nut i.

We can express this in LINGO as:

@FOR(NUTS(I):

 @SUM(BRANDS(J):

 OUNCES(I, J) * PRODUCE(J) / 16) <= SUPPLY(I)

);

We divide the sum on the left-hand side by 16 to convert from ounces to pounds.

Product Mix Problems Chapter 6 83

The Solution

Our completed nut-blending model is:

SETS:

 NUTS : SUPPLY;

 BRANDS : PRICE, PRODUCE;

 FORMULA(NUTS, BRANDS): OUNCES;

ENDSETS

DATA:

 NUTS = PEANUTS, CASHEWS;

 SUPPLY = 750 250;

 BRANDS = PAWN, KNIGHT, BISHOP, KING;

 PRICE = 2 3 4 5;

 OUNCES = 15 10 6 2 !(Peanuts);

 1 6 10 14; !(Cashews);

ENDDATA

MAX = @SUM(BRANDS(I):

 PRICE(I) * PRODUCE(I));

 @FOR(NUTS(I):

 @SUM(BRANDS(J):

 OUNCES(I, J) * PRODUCE(J)/16) <= SUPPLY(I)

);

An abbreviated solution report to the model follows:

Optimal solution found at step: 0

Objective value: 2692.308

 Variable Value Reduced Cost

 PRODUCE(PAWN) 769.2308 0.0000000

PRODUCE(KNIGHT) 0.0000000 0.1538461

PRODUCE(BISHOP) 0.0000000 0.7692297E-01

 PRODUCE(KING) 230.7692 0.0000000

 Row Slack or Surplus Dual Price

 1 2692.308 1.000000

 2 0.0000000 1.769231

 3 0.0000000 5.461538

 This solution tells us Chess should produce 769.2 pounds of the Pawn mix and 230.8 of the King

for total revenue of $2692.30. The dual prices on the rows indicate Chess should be willing to pay up to

$1.77 for an extra pound of peanuts and $5.46 for an extra pound of cashews. If, for marketing reasons,

Chess decides it must produce at least some of the Knight and Bishop mixes, then the reduced cost

figures tell us revenue will decrease by 15.4 cents with the first pound of Knight produced and revenue

will decline by 76.9 cents with the first pound of Bishop produced.

5.5.3 Sparse Derived Set Example - Explicit List
In this example, we will introduce the use of a sparse derived set with an explicit listing. When using

this method to define a sparse set, we must explicitly list all members of the set. This will usually be

some small subset of the dense set resulting from the full Cartesian product of the parent sets.

 For our example, we will set up a PERT (Program Evaluation and Review Technique) model to

determine the critical path of tasks in a project involving the roll out of a new product. PERT is a simple,

but powerful, technique developed in the 1950s to assist managers in tracking the progress of large

projects. Its first official application was to the fleet submarine ballistic missile project, the so-called

84 Chapter 6 Product Mix Problems

Polaris project. According to Craven(2001), PERT was given its name by Vice Admiral William F.

Raborn, who played a key role in starting the Polaris project. Raborn had a new bride whose nickname

was Pert. In her honor, Raborn directed that the management system that was to monitor the Polaris

project be called PERT. The Polaris project was completed eighteen months ahead of schedule! Perhaps

PERT played some role in this success. PERT is particularly useful at identifying the critical activities

within a project, which, if delayed, will delay the project completion date. These time critical activities

are referred to as the critical path of a project. Having such insight into the dynamics of a project goes a

long way in guaranteeing it won't get sidetracked and become delayed. PERT, and a closely related

technique called CPM (Critical Path Method), continues to be used successfully on a wide range of

projects. The formulation for this model is included in the SAMPLES subdirectory off the main LINGO

directory under the name PERTD.LNG.

The Problem

Wireless Widgets is about to launch a new product — the Solar Widget. In order to guarantee the launch

will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the launch. Doing

so will allow them to identify the critical path of tasks that must be completed on time in order to

guarantee the Solar Widget's timely introduction. The tasks that must be accomplished before

introduction and their anticipated times for completion are listed in the table below:

Task Weeks

Finalize Design 10

Forecast Demand 14

Survey Competition 3

Set Prices 3

Schedule Production Run 7

Cost Out 4

Train Salesmen 10

 Certain tasks must be completed before others can commence. These precedence relations are

shown in Figure 5.2:

Figure 5.2 Product Launch Precedence Relations

Forecast
Demand

Finalize
Design

Schedule
Production Run Cost Out

Train
Salesmen

Set
Prices

Survey
Competition

 For instance, the two arrows originating from the Forecast Demand node indicate the task must be

completed before the Schedule Production Run and the Set Prices tasks may be started.

 Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the

tasks on the critical path.

The Formulation

 We will need a primitive set to represent the tasks of the project.

Product Mix Problems Chapter 6 85

We have associated four attributes with the TASKS set. The definitions of the attributes are:

TIME Time duration to complete the task, given

ES Earliest possible start time for the task, to be computed,

LS Latest possible start time for the task, to be computed

SLACK Difference between LS and ES for the task, to be computed.

 If a task has a 0 slack, it means the task must start on time or the whole project will be delayed. The

collection of tasks with 0 slack time constitutes the critical path for the project.

 In order to compute the start times for the tasks, we will need to examine the precedence relations.

Thus, we will need to input the precedence relations into the model. The precedence relations can be

viewed as a list of ordered pairs of tasks. For instance, the fact the DESIGN task must be completed

before the FORECAST task could be represented as the ordered pair (DESIGN, FORECAST). Creating

a two-dimensional derived set on the TASKS set will allow us to input the list of precedence relations.

Therefore, our DATA section will look as follows:

DATA:

 TASKS : TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

 Notice that the PRED set has no attributes. Its purpose is only to provide the information about the

precedence relationships between tasks.

 Next, we can input the task times and precedence pairs in the DATA section thus:

DATA:

 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN;

 TIME = 10, 14, 3, 3, 7, 4, 10;

 PRED =

 DESIGN, FORECAST,

 DESIGN, SURVEY,

 FORECAST, PRICE,

 FORECAST, SCHEDULE,

 SURVEY, PRICE,

 SCHEDULE, COSTOUT,

 PRICE, TRAIN,

 COSTOUT, TRAIN;

ENDDATA

 Keep in mind that the first member of the PRED set is the ordered pair (DESIGN, FORECAST)

and not just the single task DESIGN. Therefore, this set has a total of 8 members. Each of which

corresponds to an arc in the precedence relations diagram.

 The feature to note from this example is that the set PRED is a sparse derived set with an explicit

listing of members. The set is a subset derived from the cross of the TASKS set upon itself. The set is

sparse because it contains only 8 out of a possible 49 members found in the complete cross of TASKS on

TASKS. The set has an explicit listing because we have included a listing of the members we want

included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where

there are thousands of members to select from, but it does make sense whenever set membership

conditions are not well-defined and the sparse set size is small relative to the dense alternative.

86 Chapter 6 Product Mix Problems

 Now, with our sets and data established, we can turn our attention to building the formulas of the

model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time (SLACK).

The trick is computing ES and LS. Once we have these times, SLACK is merely the difference of the

two. Let's start by deriving a formula to compute ES. A task cannot begin until all its predecessor tasks

are completed. Thus, if we find the latest finishing time of all predecessors to a task, then we have also

found its earliest start time. Therefore, in words, the earliest start time for task t is equal to the maximum

of the sum of the earliest start time of the predecessor plus its completion time over all predecessors of

task t. The corresponding LINGO notation is:

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I)));

 Note, we skip the computation for task 1 by adding the conditional qualifier J #GT# 1. We do this

because task 1 has no predecessors. We will give the first task an arbitrary start time of 0 below.

 Computing LS is similar to ES, except we must think backwards. In words, the latest time for task t

to start is the minimum, over all successor tasks j, of j's latest start minus the time to perform task t. If

task t starts any later than this, it will force at least one successor to start later than its latest start time.

Converting into LINGO syntax gives:

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I)));

Here, we omit the computation for the last task, since it has no successor tasks.

 Computing slack time is just the difference between LS and ES and may be written as:

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

 We can set the start time of task 1 to some arbitrary value. For our purposes, we will set it to 0 with

the statement:

ES(1) = 0;

 We have now input formulas for computing the values of all the variables with the exception of the

latest start time for the last task. It turns out, if the last project were started any later than its earliest start

time, the entire project would be delayed. So, by definition, the latest start time for the last project is

equal to its earliest start time. We can express this in LINGO using the equation:

LS(7) = ES(7);

 This would work, but it is not a very general way to express the relation. Suppose you were to add

some tasks to your model. You'd have to change the 7 in this equation to whatever the new number of

tasks was. The whole idea behind LINGO's set based modeling language is the equations in the model

should not need changing each time the data change. Expressing the equation in this form violates data

independence. Here's a better way to do it:

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

 The @SIZE function returns the size of a set. In this case, it will return the value 7, as desired.

However, if we changed the number of tasks, @SIZE would also return the new, correct value. Thus, we

preserve the data independence of our model's structure.

Product Mix Problems Chapter 6 87

The Solution

The entire PERT formulation and portions of its solution appear below:

SETS:

 TASKS : TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

ENDSETS

DATA:

 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN;

 TIME = 10, 14, 3, 3, 7, 4, 10;

 PRED =

 DESIGN,FORECAST,

 DESIGN,SURVEY,

 FORECAST,PRICE,

 FORECAST,SCHEDULE,

 SURVEY,PRICE,

 SCHEDULE,COSTOUT,

 PRICE,TRAIN,

 COSTOUT,TRAIN;

ENDDATA

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I));

);

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

ES(1) = 0;

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

The interesting part of the solution is:

 Variable Value

 LTASK 7.000000

 ES(DESIGN) 0.000000

 ES(FORECAST) 10.000000

 ES(SURVEY) 10.000000

 ES(PRICE) 24.000000

 ES(SCHEDULE) 24.000000

 ES(COSTOUT) 31.000000

 ES(TRAIN) 35.000000

 LS(DESIGN) 0.000000

 LS(FORECAST) 10.000000

 LS(SURVEY) 29.000000

 LS(PRICE) 32.000000

 LS(SCHEDULE) 24.000000

 LS(COSTOUT) 31.000000

 LS(TRAIN) 35.000000

 SLACK(DESIGN) 0.000000

SLACK(FORECAST) 0.000000

 SLACK(SURVEY) 19.000000

 SLACK(PRICE) 8.000000

SLACK(SCHEDULE) 0.000000

88 Chapter 6 Product Mix Problems

 SLACK(COSTOUT) 0.000000

 SLACK(TRAIN) 0.000000

 The interesting values are the slacks for the tasks. SURVEY and PRICE have respective slacks of 19

and 8. The start time of either SURVEY or PRICE (but not both) may be delayed by as much as these

slack values without delaying the completion time of the entire project. The tasks DESIGN, FORECAST,

SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack. These tasks constitute the critical

path. If any of their start times are delayed, the entire project will be delayed. Management will want to

pay close attention to these critical path activities to be sure they start on time and complete within the

allotted time. Finally, the ES(TRAIN) value of 35 tells us the estimated time to the start of the roll out

of the new Solar Widget will be 45 weeks: 35 weeks to get to the start of training, plus 10 weeks to

complete training.

5.5.4 A Sparse Derived Set Using a Membership Filter
In this example, we introduce the use of a sparse derived set with a membership filter. Using a

membership filter is the third method for defining a derived set. When you define a set using this method,

you specify a logical condition each member of the set must satisfy. This condition is used to filter out

members that don't satisfy the membership condition.

 For our example, we will formulate a matching problem. In a matching problem, there are N objects

we want to match into pairs at minimum cost. Sometimes this is known as the roommate selection

problem. It is a problem faced by a university at the beginning of each school year as incoming first year

students are assigned to rooms in dormitories. The pair (I,J) is indistinguishable from the pair (J,I).

Therefore, we arbitrarily require I be less than J in the pair. Formally, we require I and J make a set of

ordered pairs. In other words, we do not wish to generate redundant ordered pairs of I and J, but only

those with I less than J. This requirement that I be less than J will form our membership filter.

 The file containing this model may be found in the SAMPLES subdirectory off the main LINGO

directory under the name MATCHD.LNG.

The Problem

Suppose you manage your company's strategic planning department. There are eight analysts in the

department. Your department is about to move into a new suite of offices. There are four offices in the

new suite and you need to match up your analysts into 4 pairs, so each pair can be assigned to one of

the new offices. Based on past observations you know some of the analysts work better together than

they do with others. In the interest of departmental peace, you would like to come up with a pairing of

analysts that results in minimal potential conflicts. To this goal, you have come up with a rating system

for pairing your analysts. The scale runs from 1 to 10, with a 1 rating for a pair meaning the two get

along fantastically, whereas all sharp objects should be removed from the pair's office in anticipation

Product Mix Problems Chapter 6 89

of mayhem for a rating of 10. The ratings appear in the following table:

Analysts 1 2 3 4 5 6 7 8

1 - 9 3 4 2 1 5 6

2 - - 1 7 3 5 2 1

3 - - - 4 4 2 9 2

4 - - - - 1 5 5 2

5 - - - - - 8 7 6

6 - - - - - - 2 3

7 - - - - - - - 4

 Analysts' Incompatibility Ratings

 Since the pairing of analyst I with analyst J is indistinguishable from the pairing of J with I, we have

only included the above diagonal elements in the table. Our problem is to find the pairings of analysts

that minimizes the sum of the incompatibility ratings of the paired analysts.

The Formulation

The first set of interest in this problem is the set of eight analysts. This primitive set can be written simply

as:

ANALYSTS;

 The final set we want to construct is a set consisting of all the potential pairings. This will be a

derived set we will build by taking the cross of the ANALYST set. As a first pass, we could build the

dense derived set:

PAIRS(ANALYSTS, ANALYSTS);

 This set, however, would include both PAIRS(I, J) and PAIRS(J, I). Since only one of these pairs

is required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the

form PAIRS(I, I). As much as each of the analysts might like an office of their own, such a solution is

not feasible. The solution is to put a membership filter on our derived set requiring each pair (I,J) in the

final set to obey the condition J be greater than I. We do this with the set definition:

PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1;

 The start of the membership filter is denoted with the vertical bar character (|). The &1 and &2

symbols in the filter are known as set index placeholders. Set index placeholders are valid only in

membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross of

the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if it

passes the test. Specifically, for each pair (I,J) in the cross of set ANALYSTS on itself, I is substituted

into the placeholder &1 and J into &2 and the filter is evaluated. If the filter evaluates to true, (I,J) is

added to the pairs set. Viewed in tabular form, this leaves us with just the above diagonal elements of

the (I,J) pairing table.

 We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute that

corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to indicate if

analyst I is paired with analyst J. We will call these attributes RATING and MATCH. We append them

to the PAIRS set definition as follows:

PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1: RATING, MATCH;

90 Chapter 6 Product Mix Problems

 We will simply initialize the RATING attribute to the incompatibility ratings listed in the table above

using the DATA section:

DATA:

 ANALYSTS = 1..8;

 RATING =

 9 3 4 2 1 5 6

 1 7 3 5 2 1

 4 4 2 9 2

 1 5 5 2

 8 7 6

 2 3

 4;

ENDDATA

 We will use the convention of letting MATCH(I, J) be 1 if we pair analyst I with analyst J, otherwise

0. As such, the MATCH attribute contains the decision variables for the model.

 Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is

just the inner product on the RATING and MATCH attributes and is written as:

MIN = @SUM(PAIRS(I, J):

 RATING(I, J) * MATCH(I, J));

There is just one class of constraints in the model. In words, what we want to do is:

For each analyst, ensure the analyst is paired with exactly one other analyst.

Putting the constraint into LINGO syntax, we get:

@FOR(ANALYSTS(I):

 @SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I:

 MATCH(J, K)) = 1

);

 The feature of interest in this constraint is the conditional qualifier J #EQ# I #OR# K #EQ# I on the

@SUM function. For each analyst I, we sum up all the MATCH variables that contain I and set them

equal to 1. In so doing, we guarantee analyst I will be paired up with exactly one other analyst. The

conditional qualifier guarantees we only sum up the MATCH variables that include I in its pairing.

 One other feature is required in this model. We are letting MATCH(I, J) be 1 if we are pairing I

with J. Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value from

0 to infinity. Since we want MATCH to be restricted to being only 0 or 1, we need to add one other

feature to our model. What we need is to apply the @BIN variable domain function to the MATCH

attribute. Variable domain functions are used to restrict the values a variable can assume. Unlike

constraints, variable domain functions do not add equations to a model. The @BIN function restricts a

variable to being binary (i.e., 0 or 1). When you have a model that contains binary variables, it is said to

be an integer programming (IP) model. IP models are much more difficult to solve than models that

contain only continuous variables. Carelessly formulated IPs (with several hundred integer variables or

more) can literally take forever to solve! Thus, you should limit the use of binary variables whenever

possible. To apply @BIN to all the variables in the MATCH attribute, add the @FOR expression:

@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

Product Mix Problems Chapter 6 91

The Solution

The entire formulation for our matching example and parts of its solution appears below:

SETS:

 ANALYSTS;

 PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1:

 RATING, MATCH;

ENDSETS

DATA:

 ANALYSTS = 1..8;

 RATING =

 9 3 4 2 1 5 6

 1 7 3 5 2 1

 4 4 2 9 2

 1 5 5 2

 8 7 6

 2 3

 4;

ENDDATA

MIN = @SUM(PAIRS(I, J):

 RATING(I, J) * MATCH(I, J));

@FOR(ANALYSTS(I):

 @SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I:

 MATCH(J, K)) = 1

);

@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

A solution is:

 Variable Value

 MATCH(1, 2) 0.0000000

 MATCH(1, 3) 0.0000000

 MATCH(1, 4) 0.0000000

 MATCH(1, 5) 0.0000000

 MATCH(1, 6) 1.000000

 MATCH(1, 7) 0.0000000

 MATCH(1, 8) 0.0000000

 MATCH(2, 3) 0.0000000

 MATCH(2, 4) 0.0000000

 MATCH(2, 5) 0.0000000

 MATCH(2, 6) 0.0000000

 MATCH(2, 7) 1.000000

 MATCH(2, 8) 0.0000000

 MATCH(3, 4) 0.0000000

 MATCH(3, 5) 0.0000000

 MATCH(3, 6) 0.0000000

 MATCH(3, 7) 0.0000000

92 Chapter 6 Product Mix Problems

 MATCH(3, 8) 1.000000

 MATCH(4, 5) 1.000000

 MATCH(4, 6) 0.0000000

 MATCH(4, 7) 0.0000000

 MATCH(4, 8) 0.0000000

 MATCH(5, 6) 0.0000000

 MATCH(5, 7) 0.0000000

 MATCH(5, 8) 0.0000000

 MATCH(6, 7) 0.0000000

 MATCH(6, 8) 0.0000000

 MATCH(7, 8) 0.0000000

 Notice from the objective value, the total sum of incompatibility ratings for the optimal pairings is

6. Scanning the Value column for 1’s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5).

5.5.5 Disabling Sections of Code Temporarily

If debugging a model or program it is useful to be able to disable or “comment out” a section of code

temporarily, and re-enable it later. A special case of the @FOR command can be used for this. Two

steps are needed, the first, a setup step and a second step that can be used for any section of code you

wish to disable. The general structure is:

 SETS:

 ! Any other set declarations;

 SYS/1..1/; ! Declare a set of size 1, call it SYS (or anything else);

 ENDSETS

 ! Other parts of model;

 @FOR(SYS | 0: ! 0 to disable, 1 to turn back on;

 ! Section of code to be disabled, - or re-enabled;

); ! End of @FOR(SYS loop;

Realize that if the condition is “SYS | 0”, the loop will never be executed, whereas if the condition is

“| 1”, then because the set SYS is of size 1, the loop will be executed exactly once. The “!” character

can used to disable a single statement, but it applies only to the next “ ; ”, not an arbitrary section.

5.6 Domain Functions for Variables
Variable domain functions were briefly introduced in this chapter when we used @BIN in the previous

matching model. Variable domain functions allow one to put restrictions on the values allowed for

decision variables. Examples of the four domain functions available are:

 @BIN(Y);
 @GIN(X);

 @BND(100, DELIVER, 250);

 @FREE(PROFIT);

Product Mix Problems Chapter 6 93

 The statement @BIN(Y) restricts the variable Y to be a binary variable. That is, it can take on

only the values 0 and 1.

 The statement @GIN(X)restricts the variable Xto be a general integer variable. That is, it can take

on only the values 0, 1, 2, …

 The @BND() specification allows one to specify simple upper and lower bounds. The statement

@BND(100, DELIVER, 250) restricts the variable DELIVER to be in the interval [100, 250]. The

same effect could be achieved by the slightly more verbose:

DELIVER >= 100;

DELIVER <= 250;

 LINGO, by default, gives a lower bound of zero to every decision variable. The statement @FREE(

PROFIT) overrides this default lower bound for the variable PROFIT and says that (unfortunately)

PROFIT can take on any value between minus infinity and plus infinity. Each of the domain functions

can appear inside @FOR loops, just like any other constraint.

5.7 Spreadsheets and LINGO
In this chapter, we have seen how LINGO can be useful for modeling very large problems. The most

widely used method for modeling of any sort is undoubtedly spreadsheet models. When is which

approach more appropriate?

 The major advantages of doing a model in a spreadsheet are:

- Excellent report formatting features available,

- Large audience of people who understand spreadsheets, and

- Good interface capability with other systems such as word processors.

The major advantages of doing a model in LINGO are:

- Flexibility of various kinds.

- Scalability--It is easy to change the size of any set (e.g., add time periods, products,

customers, suppliers, transportation modes, etc.) without having to worry about copying or

editing formulae. There is no upper limit of 16,384(as in a spreadsheet) on the number of

columns, or 1,048,576 on the number of rows.

- Sparse sets are easily represented. E.g., not every plant produces every product.

- Auditability and visibility--It is easy to see the formulae of a LINGO model in complete,

comprehensive form. Truly understanding the model formulae underlying a complex

spreadsheet is an exercise in detective work.

- Multiple dimensions are easily represented. A spreadsheet handles two dimensions very well,

three dimensions somewhat well, and four or more dimensions not very well.

- Separation of model equations from the data. In a spreadsheet, a careless user, when

modifying the data, may unintentionally modify a formula of the model.

94 Chapter 6 Product Mix Problems

 One can get most of the benefits of both by using LINGO in conjunction with spreadsheets. One

can place "hooks" in a LINGO model, so it automatically retrieves and inserts data from/to spreadsheets,

databases, and ordinary files. Under Microsoft Windows, the hooks used are the OLE (Object Linking

and Embedding) and ODBC (Open Database Connectivity) interfaces provided as part of Windows.

Using the OLE capability to connect an Excel spreadsheet to a LINGO model requires two steps:

a) In the spreadsheet, each data area that is to be either a supplier to or a receiver of data from

the LINGO model must be given an appropriate range name. This is done in the

spreadsheet by highlighting the area of interest with the mouse, and then using the Insert |

Name | Define command. The most convenient name to give to a range is the same name

by which the data are referenced in the LINGO model.

b) In the LINGO model, each attribute (vector) (e.g., plant capacities) that is to be retrieved

from a spreadsheet, must appear in a LINGO DATA section in a statement of the form:

CAPACITY = @OLE('C:\MYDATA.XLS');

 Each attribute (e.g., amount to ship) to be sent to a spreadsheet must appear in a LINGO DATA

section in a statement of the form:

@OLE('C:\MYDATA.XLS') = AMT_SHIPPED;

If only one spreadsheet is open in Excel, this connection can be simplified. You need only write:

CAPACITY = @OLE();

LINGO will look in the only open spreadsheet for the range called CAPACITY. This “unspecified

spreadsheet” feature is very handy if you want to apply the same LINGO model to several different

spreadsheet data sets.

Product Mix Problems Chapter 6 95

 This spreadsheet connection can be pushed even further by embedding the LINGO model in the

spreadsheet for which it has a data connection. This is handy because the associated LINGO model will

always be obviously and immediately available when the spreadsheet is opened. The screen shot below

shows a transportation model embedded in a spreadsheet. To the casual user, it looks like a standard

spreadsheet with a special solve button.

96 Chapter 6 Product Mix Problems

The data and results are stored on the first tab/sheet of the spreadsheet file. Not so obvious is the LINGO

model that is stored on another tab in the same spreadsheet (see below). Completely hidden is a small

VBA program in the spreadsheet that causes the LINGO model on the second tab to be solved whenever

the Solve button is clicked on the first tab. The complete example can be found in the file xlingtran.xls.

Just as @OLE() is used to connect a LINGO model to a spreadsheet and @ODBC() is used to connect a

LINGO model to most databases that support the SQL interface, the @TEXT() statement is available to

connect a LINGO model to a simple text file. You can send the value(s) of attribute X to a file called

"myfile.out" with:

DATA:

 @TEXT('MYFILE.OUT') = X;

ENDDATA

The following will send the value of X to the screen, along with an explanatory message:

@TEXT() = 'The value of X=', X;

Still one more way that LINGO can be incorporated into an application is by way of a subroutine call.

A regular computer program, say in C/C++ or Visual Basic, can make a regular call to the LINGO

DLL(Dynamic Link Library). The model is passed as a string variable to the LINGO DLL. See the

LINGO manual for more details.

Product Mix Problems Chapter 6 97

5.8 Programming in LINGO
LINGO also has a programming capability(in the sense of computer programming) or looping capability.

The main benefits of this are the ability to a) do preprocessing of data to be used in the model, e.g. to do

complicated calculations of profit contribution coefficients, b) do postprocessing of solutions to produce

customized output rather than the standard LINGO solution report, c) solve 2 or more related models in

a single run. The ability to solve multiple models with “one click” makes it easier to do things like i)

parametric analysis to show how profit changes as a function of some critical parameter, ii) solve goal

programming problems where there is a hierarchy of goals, and iii) build models incrementally by

adding variables and/or constraints in an iterative, column-generation fashion.

5.8.1 Building Blocks for Programming
Executable statements are identified by a CALC section:

 CALC:

 ! Executable statements;
 ENDCALC

Calculations occur sequentially, from top to bottom in a CALC section except when one of four different

“flow control statements: @IFC, @FOR, @WHILE, or @BREAK are encountered. The format of an

“If Condition” statement is:

 @IFC(condition:

 ! Executable Statements;
 @ELSE

 ! Executable Statements;
);

There are two loop control statements, @FOR for looping over a set of known size,

 @FOR(set | condition:

 ! Executable Statements;
);

 and @WHILE, for looping an initially unknown number of times:

 @WHILE(condition:

 ! Executable Statements;
);

One can break out of a loop with:

 @BREAK

An output string can be written with a statement of the form:

 @WRITE(output_list);

where the output_list can be an explicit string, a variable, a variable in a specified format, @FORMAT(),

or an end of line character, @NEWLINE(n).

98 Chapter 6 Product Mix Problems

The syntax of the @FORMAT function is:

 @FORMAT(math_expression, field_description),

where a field_description is something like “6.2f” for numbers or “7s” for a name.

A model that we want to reference and solve in a CALC section is indicated with the SUBMODEL

declaration, e.g.

 SUBMODEL mymodel:

 ! Model Statements;
 ENDSUBMODEL

We can solve a previously defined submodel in a CALC section with an @SOLVE statement, e.g. :

 @SOLVE(mymodel);

We illustrate programming in LINGO with the computation of an “efficient frontier” for the Astro-

Cosmo problem.

! Model to compute efficient frontier;

SUBMODEL ASTROCOSMO:

 MAX = OBJ;

 OBJ= 20*A + 30*C;

 A <= 60;

 C <= 50;

 A + 2*C <= LABORAV;

ENDSUBMODEL

 DATA:

 ! Number of points to compute in efficient frontier;

 NPTS = 11;

 ! Upper limit on labor(lower limit is 0);

 UPLIM = 200;

 ENDDATA

 CALC:

 ! Set output level to super terse;

 @SET('TERSEO', 2);

 @WRITE(' Labor Profit',@NEWLINE(1));

 ! Loop over points on efficient frontier;

 i = 0; !Standard 3 statement loop control construct;

 @WHILE(i #LT# NPTS:

 i = i + 1;

 LABORAV = UPLIM*(i-1)/(NPTS-1);

 ! Solve model with new labor availability;

 @SOLVE(ASTROCOSMO);

 ! Write the objective value, OBJ, in a field of

 8 characters with 2 digits to the right of decimal point;

Product Mix Problems Chapter 6 99

 @WRITE(" ", @FORMAT(LABORAV, "8.0f"),

 ' ', @FORMAT(OBJ,"8.2f"), @NEWLINE(1));

); ! End @WHILE loop;

 ENDCALC

This produces the output:

 Labor Profit

 0 0.00

 20 400.00

 40 800.00

 60 1200.00

 80 1500.00

 100 1800.00

 120 2100.00

 140 2400.00

 160 2700.00

 180 2700.00

 200 2700.00

5.8.2 Generating Graphs and Charts
LINGO can generate about a dozen different chart or graph types such as histograms, pie charts,

scatter plots, two dimensional curves, and surface charts. The previous example can be modified to

generate a two dimensional curve by adding a small SETS section and modifying the CALC section

as follows.

 SETS:

 ! Define a grid;

 S /1..NPTS/: CX, CY;

 ENDSETS

 CALC:

 ! Set output level to super terse;

 @SET('TERSEO', 2);

 ! Loop over points on efficient frontier;

 i = 0; !Standard 3 statement loop control construct;

 @WHILE(i #LT# NPTS:

 i = i + 1;

 LABORAV = UPLIM*(i-1)/(NPTS-1);

 ! Solve model with new labor availability;

 @SOLVE(ASTROCOSMO);

 ! Fill the grid with values at current point;

 CX(i) = LABORAV ;

 CY(i) = OBJ;

); ! End @WHILE loop;

 ! Generate the chart;

 @CHART(

100 Chapter 6 Product Mix Problems

 'CX CY', ! Data series;

 'CURVE', ! Use CURVE chart type;

 'Profit vs. Labor Available', ! Chart title;

 'Y = Profit', ! Label for Y axis;

 'Labor Available' ! Label for X axis;

);

 ENDCALC

The following graph results.

All the different chart types can be listed by clicking on:
 Edit -> Paste Function -> Charting.

For more details on programming in LINGO, see the online documentation or the LINGO manual.

Product Mix Problems Chapter 6 101

5.9 Problems
1. You wish to represent the status of an academic institution during a specific teaching term. The

major features to be represented are that instructors teach courses and students are registered for

courses. You want to keep track of who is teaching which course, who is registered for each course,

and which courses a given student is taking. What sets would you recommend if each course is

taught by exactly one instructor?

2. Suppose we take into account the additional complication of team teaching. That is, two or more

instructors teach some courses. How would you modify your answer to the previous question?

3. In some schools there may be some people, e.g., graduate students, who are a student in one course

and an instructor for another course. How would you generalize your answer to the previous

question?

102 Chapter 6 Product Mix Problems

6

Product Mix Problems

6.1 Introduction
Product mix problems are conceptually the easiest constrained optimization problems to comprehend.

The Astro/Cosmo problem considered earlier is an example. Although product mix problems are seldom

encountered in their simple textbook form in practice, they very frequently constitute important

components of larger problems such as multiperiod planning models.

 The features of a product mix problem are that there is a collection of products competing for a

finite set of resources. If there are m resources and n products, then the so-called “technology” is

characterized by a table with m rows and n columns of technologic coefficients. The coefficient in row

i, column j, is the number of units of resource i used by each unit of product j. The numbers in a row of

the table are simply the coefficients of a constraint in the LP. In simple product mix problems, these

coefficients are nonnegative. Additionally, associated with each product is a profit contribution per unit

and associated with each resource is an availability. The objective is to find how much to produce of

each product (i.e., the mix) to maximize profits subject to not using more of each resource than is

available.

 The following product mix example will illustrate not only product mix LP formulations, but also:

1) representation of nonlinear profit functions and 2) the fact that most problems have alternative correct

formulations. Two people may develop different formulations of the same problem, but both may be

correct.

Product Mix Problems Chapter 6 103

6.2 Example
A certain plant can manufacture five different products in any combination. Each product requires time

on each of three machines in the following manner (figures in minutes/unit):

 Machine

Product 1 2 3

A 12 8 5

B 7 9 10

C 8 4 7

D 10 0 3

E 7 11 2

Each machine is available 128 hours per week.

 Products A, B, and C are purely competitive and any amounts made may be sold at respective prices

of $5, $4, and $5. The first 20 units of D and E produced per week can be sold at $4 each, but all made

in excess of 20 can only be sold at $3 each. Variable labor costs are $4 per hour for machines 1 and 2,

while machine 3 labor costs $3 per hour. Material costs are $2 for products A and C, while products B,

D, and E only cost $1. You wish to maximize profit to the firm.

 The principal complication is that the profit contributions of products D and E are not linear. You

may find the following device useful for eliminating this complication. Define two additional products

D2 and E2, which sell for $3 per unit. What upper limits must then be placed on the sale of the original

products D and E? The decision variables and their profit contributions are as follows:

Decision
Variables

Definition

Profit
Contribution

per Unit

A Number of units of A produced per week 5 − 2 = $3

B Number of units of B produced per week 4 − 1 = $3

C Number of units of C produced per week 5 − 2 = $3

D Number of units of D not in excess of 20

produced/week

 $3

D2 Number of units of D produced in excess of 20

per week*

 $2

E Number of units of E not in excess of 20

produced/week

 $3

E2 Number of units of E produced in excess of 20 $2

M1 Hours of machine 1 used per week −$4

M2 Hours of machine 2 used per week −$4

M3 Hours of machine 3 used per week −$3
*Total production of product D is D + D2.

104 Chapter 6 Product Mix Problems

 We will not worry about issues of sequencing the various products on each machine. This is

reasonable if the due-dates for the products are far enough in the future. Our problem in this case is to:

Maximize Revenues minus costs

Subject to

 Minutes used equals minutes run on each machine,

 At most 20 units each can be produced of products D and E,

 Each machine can be run at most 128 hours.

More precisely, the formulation in LINGO is:

! Maximize revenue minus costs;

MAX = 3 * A + 3 * B + 3 * C + 3 * D + 2 * D2 + 3 * E

 + 2 * E2 - 4 * M1 - 4 * M2 - 3 * M3;

! Machine time used = machine time made available;

12*A + 7*B + 8*C + 10*D + 10*D2 + 7*E + 7*E2 - 60*M1 = 0;

8*A + 9*B + 4*C + 11*E + 11*E2 - 60*M2 = 0;

5*A + 10*B + 7*C + 3*D + 3*D2 + 2*E + 2*E2 - 60*M3=0;

 D <= 20; ! Max sellable at high price;

 E <= 20;

!Machine availability;

 M1 <= 128;

 M2 <= 128;

 M3 <= 128;

END

 The first three constraints have the units of “minutes” and specify the hours of machine time as a

function of the number of units produced. The next two constraints place upper limits on the number of

high profit units of D and E that may be sold. The final three constraints put upper limits on the amount

of machine time that may be used and have the units of “hours”.

 Constraint 2 can be first written as:

12A + 7B + 8C + 10D + 10D2 + 7E + 7E2
=M1

60

Multiplying by 60 and bringing M1 to the left gives the second constraint. The solution is:

Optimal solution found at step: 4

Objective value: 1777.625

Variable Value Reduced Cost

 A 0.0000000 1.358334

 B 0.0000000 0.1854168

 C 942.5000 0.0000000

 D 0.0000000 0.1291668

 D2 0.0000000 1.129167

 E 20.00000 0.0000000

 E2 0.0000000 0.9187501

 M1 128.0000 0.0000000

 M2 66.50000 0.0000000

 M3 110.6250 0.0000000

Product Mix Problems Chapter 6 105

 Row Slack or Surplus Dual Price

 1 1777.625 1.000000

 2 0.0000000 0.2979167

 3 0.0000000 0.6666667E-01

 4 0.0000000 0.5000000E-01

 5 20.00000 0.0000000

 6 0.0000000 0.8125000E-01

 7 0.0000000 13.87500

 8 61.50000 0.0000000

 9 17.37500 0.0000000

 The form of the solution is quite simple to state: make as many of E as possible (20). After that,

make as much of product C as possible until we run out of capacity on machine 1.

 This problem is a good example of one for which it is very easy to develop alternative formulations

of the same problem. These alternative formulations are all correct, but may have more or less constraints

and variables. For example, the constraint:

8A + 9B + 4C + 11E + 11E2 − 60M2 = 0

can be rewritten as:

M2 = (8A + 9B + 4C + 11E + 11E2)/60.

 The expression on the right-hand side can be substituted for M2 wherever M2 appears in the

formulation. Because the expression on the right-hand side will always be nonnegative, the

nonnegativity constraint on M2 will automatically be satisfied. Thus, M2 and the above constraint can be

eliminated from the problem if we are willing to do a bit of arithmetic. When similar arguments are

applied to M1 and M3 and the implied divisions are performed, one obtains the formulation:

MAX = 1.416667*A + 1.433333*B + 1.85*C + 2.183334*D + 1.183333*D2 +

1.7*E + .7*E2;

! Machine time used = machine time made available;

12*A + 7*B + 8*C + 10*D + 10*D2 + 7*E + 7*E2 <= 7680;

8*A + 9*B + 4*C + 11*E + 11*E2 <= 7680;

5*A + 10*B + 7*C + 3*D + 3*D2 + 2*E + 2*E2 <= 7680;

! Product limits;

D < 20;

E < 20;

106 Chapter 6 Product Mix Problems

 This looks more like a standard product mix formulation. All the constraints are capacity constraints

of some sort. Notice the solution to this formulation is really the same as the previous formulation:

Optimal solution found at step: 6

Objective value: 1777.625

Variable Value Reduced Cost

 A 0.0000000 1.358333

 B 0.0000000 0.1854170

 C 942.5000 0.0000000

 D 0.0000000 0.1291660

 D2 0.0000000 1.129167

 E 20.00000 0.0000000

 E2 0.0000000 0.9187500

 Row Slack or Surplus Dual Price

 1 1777.625 1.000000

 2 0.0000000 0.2312500

 3 3690.000 0.0000000

 4 1042.500 0.0000000

 5 20.00000 0.0000000

 6 0.0000000 0.8125000E-01

 The lazy formulator might give the first formulation, whereas the second formulation might be given

by the person who enjoys doing arithmetic.

6.3 Process Selection Product Mix Problems
A not uncommon feature of product mix models is two or more distinct variables in the LP formulation

may actually correspond to alternate methods for producing the same product. In this case, the LP is

being used not only to discover how much should be produced of a product, but also to select the best

process for producing each product.

 A second feature that usually appears with product mix problems is a requirement that a certain

amount of a product be produced. This condition takes the problem out of the realm of simple product

mix. Nevertheless, let us consider a problem with the above two features.

 The American Metal Fabricating Company (AMFC) produces various products from steel bars. One

of the initial steps is a shaping operation performed by rolling machines. There are three machines

available for this purpose, the B3, B4, and B5. The following table gives their features:

Speed

Allowable

Available

Labor
Cost

 in Feet Raw Material Hours Per Hour
Machine per Minute Thickness in Inches per Week Operating

B3 150 3/16 to 3/8 35 $10

B4 100 5/16 to 1/2 35 $15

B5 75 3/8 to 3/4 35 $17

 This kind of combination of capabilities is not uncommon. That is, machines that process larger

material operate at slower speed.

 This week, three products must be produced. AMFC must produce at least 218,000 feet of 1
4 "

material, 114,000 feet of 3
8 " material, and 111,000 feet of 1

2 " material. The profit contributions per

foot excluding labor for these three products are 0.017, 0.019, and 0.02. These prices apply to all

Product Mix Problems Chapter 6 107

production (e.g., any in excess of the required production). The shipping department has a capacity limit

of 600,000 feet per week, regardless of the thickness.

 What are the decision variables and constraints for this problem? The decision variables require

some thought. There is only one way of producing 1
4 " material, three ways of producing 3

8 ", and two

ways of producing 1
2 ". Thus, you will want to have at least the following decision variables. For

numerical convenience, we measure length in thousands of feet:

B34 = 1,000’s of feet of 1
4 " produced on B3,

B38 = 1,000’s of feet of 3
8 " produced on B3,

B48 = 1,000’s of feet of 3
8 " produced on B4,

B58 = 1,000’s of feet of 3
8 " produced on B5,

B42 = 1,000’s of feet of 1
2 " produced on B4,

B52 = 1,000’s of feet of 1
2 " produced on B5.

 For the objective function, we must have the profit contribution including labor costs. When this is

done, we obtain:

 Profit Contribution
Variable per Foot

B34 0.01589

B38 0.01789

B48 0.01650

B58 0.01522

B42 0.01750

B52 0.01622

 Clearly, there will be four constraints corresponding to AMFC’s three scarce machine resources and

its shipping department capacity. There should be three more constraints due to the production

requirements in the three products. For the machine capacity constraints, we want the number of hours

required for 1,000 feet processed. For machine B3, this figure is 1,000/(60 min./hr.) (150 ft./min.) =

0.111111 hours per 1,000 ft. Similar figures for B4 and B5 are 0.16667 hours per 1,000 ft. and 0.22222

hours per 1,000 feet.

 The formulation can now be written:

Maximize=15.89B34+17.89B38+16.5B48+15.22B58+17.5B42+16.22B52

subject to

 0.11111B34 + 0.11111B38 35 Machine

 0.16667B48 + 0.16667B42 35 capacities

 0.22222B58 + 0.22222B52 35 in hours

 B34+B38+B48+B58+B42+B52 600 Shipping capacity in 1,000’s of feet

 B34 218 Production

 B38 + B48 + B58 114 requirements

 B42 + B52 111 in 1,000’s of feet

Without the last three constraints, the problem is a simple product mix problem.

108 Chapter 6 Product Mix Problems

 It is a worthwhile exercise to attempt to deduce the optimal solution just from cost arguments. The
1

4 " product can be produced on only machine B3, so we know B34 is at least 218. The 3
8 " product is

more profitable than the 1
4 " on machine B3. Therefore, we can conclude that B34 = 218 and B38 will take

up the slack. The 1
2 " and the 3

8 " product can be produced on either B4 or B5. In either case, the 1
2 " is

more profitable per foot, so we know B48 and B58 will be no greater than absolutely necessary. The

question is: What is “absolutely necessary”? The 3
8 " is more profitably run on B3 than on B4 or B5.

Therefore, it follows that we will satisfy the 3
8 " demand from B3 and, if sufficient, the remainder from

B4 and then from B5. Specifically, we proceed as follows:

Set B34 = 218.

 This leaves a slack of 35 − 218 0.11111 = 10.78 hours on B3. This is sufficient to produce 97,000

feet of 3
8 ", so we conclude that:

B38 = 97.

 The remainder of the 3
8 " demand must be made up from either machine B4 or B5. It would appear

that it should be done on machine B4 because the profit contribution for 3
8 " is higher on B4 than B5.

Note, however, that 1
2 " is also more profitable on B4 than B5 by exactly the same amount. Thus, we are

indifferent. Let us arbitrarily use machine B4 to fill the rest of 3
8 " demand. Thus:

B48 = 17.

 Now, any remaining capacity will be used to produce 1
2 " product. There are 35 − 17 0.16667 =

32.16667 hours of capacity on B4. At this point, we should worry about shipping capacity. We still have

capacity for 600 − 218 − 97 − 17 = 268 in 1,000’s of feet. B42 is more profitable than B52, so we will

make it as large as possible. Namely, 32.16667/0.16667 = 193, so:

B42 = 193.

The remaining shipping capacity is 268 − 193 = 75, so:

B52 = 75.

Product Mix Problems Chapter 6 109

 Any LP is in theory solvable by similar manual economic arguments, but the calculations could be

very tedious and prone to errors of both arithmetic and logic. If we take the lazy route and solve it with

LINGO, we get the same solution as our manual one:

Optimal solution found at step: 2

Objective value: 10073.85

Variable Value Reduced Cost

 B34 218.00000 0.000000

 B38 97.00315 0.000000

 B48 16.99685 0.000000

 B58 0.00000 0.000000

 B42 192.99900 0.000000

 B52 75.00105 0.000000

 Row Slack or Surplus Dual Price

 1 10073.85 1.000000

 2 0.000000 24.030240

 3 0.000000 7.679846

 4 18.333270 0.000000

 5 0.000000 16.220000

 6 0.000000 -3.000000

 7 0.000000 -1.000000

 8 157.000000 0.000000

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 B34 15.89000 3.000000 INFINITY

 B38 17.89000 INFINITY 2.670000

 B48 16.50000 1.000000 0.0

 B58 15.22000 0.000000 INFINITY

 B42 17.50000 0.0 1.000000

 B52 16.22000 1.280000 0.0

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 2 35.00000 1.888520 9.166634

 3 35.00000 12.50043 13.75036

 4 35.00000 INFINITY 18.33327

 5 600.0000 82.50053 75.00105

 6 218.0000 97.00315 16.99685

 7 114.0000 157.0000 16.99685

 8 111.0000 157.0000 INFINITY

 Notice B58 is zero, but its reduced cost is also zero. This means B58 could be increased (and B48

decreased) without affecting profits. This is consistent with our earlier statement that we were indifferent

between using B48 and B58 to satisfy the 3
8 " demand.

110 Chapter 6 Product Mix Problems

 Below is a sets version of the problem:

!This is a sets version of the previous example;

MODEL:

SETS:

 MACHINE / B3, B4, B5 / : HPERWK, TIME;

!This is the coefficient for the time per day constraint;

 THICKNESS / FOURTH, EIGHT, HALF / : NEED;

!This is the amount of each thickness needed

to be produced;

 METHOD (MACHINE, THICKNESS) : VOLUME, PROFIT, POSSIBLE;

!VOLUME is the variable, PROFIT the objective coefficients, and POSSIBLE

is a Boolean representing whether it is possible to produce the given

thickness;

ENDSETS

DATA:

! Hours/week available on each machine;

 HPERWK = 35, 35, 35;

! Hours per 1000 feet for each machine;

 TIME = .11111 .16667 .22222;

! Amount needed of each product;

 NEED = 218 114 111;

! Profit by product and machine;

 PROFIT = 15.89, 17.89, 0,

 0, 16.5, 17.5,

 0, 15.22, 16.22;

! Which products can be made on which machine;

 POSSIBLE = 1, 1, 0,

 0, 1, 1,

 0, 1, 1;

! Shipping capacity per day;

 SHPERDAY = 600;

ENDDATA

!--;

!Objective function;

MAX = @SUM(METHOD(I,J): VOLUME(I,J) * PROFIT(I,J));

@SUM(METHOD(K, L): VOLUME(K, L)) <= SHPERDAY;

!This is the max amount that can be made each day;

@FOR(MACHINE(N):

 ! Maximum time each machine can be used/week.;

 @SUM(THICKNESS(M):

 POSSIBLE(N,M) * VOLUME(N,M) * TIME(N))<=HPERWK(N););

 @FOR(THICKNESS(Q) :

 !Must meet demand for each thickness;

 @SUM(MACHINE(P): POSSIBLE(P,Q)*VOLUME(P,Q))>=NEED(Q));

END

Product Mix Problems Chapter 6 111

6.4 Problems
1. Consider a manufacturer that produces two products, Widgets and Frisbees. Each product is made

from the two raw materials, polyester and polypropylene. The following table gives the amounts

required of each of the two products:

Widgets Frisbees Raw Material

3 5 Polyester

6 2 Polypropylene

 Because of import quotas, the company is able to obtain only 12 units and 10 units of polyester

and polypropylene, respectively, this month. The company is interested in planning its production

for the next month. For this purpose, it is important to know the profit contribution of each product.

These contributions have been found to be $3 and $4 for Widgets and Frisbees, respectively. What

should be the amounts of Widgets and Frisbees produced next month?

2. The Otto Maddick Machine Tool Company produces two products, muffler bearings and torque

amplifiers. One muffler bearing requires 1
8 hour of assembly labor, 0.25 hours in the stamping

department, and 9 square feet of sheet steel. Each torque amplifier requires 1
3 hour in both assembly

and stamping and uses 6 square feet of sheet steel. Current weekly capacities in the two departments

are 400 hours of assembly labor and 350 hours of stamping capacity. Sheet steel costs 15 cents per

square foot. Muffler bearings can be sold for $8 each. Torque amplifiers can be sold for $7 each.

Unused capacity in either department cannot be laid off or otherwise fruitfully used.

a) Formulate the LP useful in maximizing the weekly profit contribution.

b) It has just been discovered that two important considerations were not included.

i. Up to 100 hours of overtime assembly labor can be scheduled at a cost of $5 per hour.

ii. The sheet metal supplier only charges 12 cents per square foot for weekly usage in

excess of 5000 square feet.

 Which of the above considerations could easily be incorporated in the LP model and how? If

one or both cannot be easily incorporated, indicate how you might nevertheless solve the problem.

3. Review the solution to the 5-product, 3-machine product mix problem introduced at the beginning

of the chapter.

a) What is the marginal value of an additional hour of capacity on each of the machines?

b) The current selling price of product A is $5. What would the price have to be before we

would produce any A?

c) It would be profitable to sell more of product E at $4 if you could, but it is not profitable

to sell E at $3 per unit even though you can. What is the breakeven price at which you

would be indifferent about selling any more E?

d) It is possible to gain additional capacity by renting by the hour automatic versions of each

of the three machines. That is, they require no labor. What is the maximum hourly rate you

would be willing to pay to rent each of the three types of automatic machines?

112 Chapter 6 Product Mix Problems

4. The Aviston Electronics Company manufactures motors for toys and small appliances. The

marketing department is predicting sales of 6,100 units of the Dynamonster motor in the next

quarter. This is a new high and meeting this demand will test Aviston’s production capacities. A

Dynamonster is assembled from three components: a shaft, base, and cage. It is clear that some of

these components will have to be purchased from outside suppliers because of limited in-house

capacity. The variable in-house production cost per unit is compared with the outside purchase cost

in the following table.

Component Outside Cost Inside Cost

Shaft 1.21 0.81

Base 2.50 2.30

Cage 1.95 1.45

Aviston’s plant consists of three departments. The time requirements in hours of each component

in each department if manufactured in-house are summarized in the following table. The hours

available for Dynamonster production are listed in the last row.

 Cutting Shaping Fabrication
Component Department Department Department

Shaft 0.04 0.06 0.04

Base 0.08 0.02 0.05

Cage 0.07 0.09 0.06

Capacity 820 820 820

a) What are the decision variables?

b) Formulate the appropriate LP.

c) How many units of each component should be purchased outside?

5. Buster Sod’s younger brother, Marky Dee, operates three ranches in Texas. The acreage and

irrigation water available for the three farms are shown below:

 Water Available
Farm Acreage (acre feet)

1 400 1500

2 600 2000

3 300 900

Three crops can be grown. However, the maximum acreage that can be grown of each crop is limited

by the amount of appropriate harvesting equipment available. The three crops are described below:

 Total
Harvesting

Water Expected

 Capacity Requirements Profit
Crop (in acres) (in acre-feet/acre) (in $/acre)

Milo 700 6 400

Cotton 800 4 300

Wheat 300 2 100

Product Mix Problems Chapter 6 113

Any combination of crops may be grown on a farm.

a) What are the decision variables?

b) Formulate the LP.

6. Review the formulation and solution of the American Metal Fabricating process selection/product

mix problem in this chapter. Based on the solution report:

a) What is the value of an additional hour of capacity on the B4 machine?

b) What is the value of an additional 2 hours of capacity on the B3 machine?

c) By how much would one have to raise the profit contribution/1,000 ft. of 1
4 " material

before it would be worth producing more of it?

d) If the speed of machine B5 could be doubled without changing the labor cost, what would

it be worth per week? (Note labor on B5 is $17/hour.)

7. A coupon recently appeared in an advertisement in the weekend edition of a newspaper. The coupon

provided $1 off the price of any size jar of Ocean Spray cranberry juice. The cost of the weekend

paper was more than $1.

Upon checking at a local store, we found two sizes available as follows:

Size in oz.

Price

Price/oz. w/o
Coupon

Price/oz. with
Coupon

32 2.09 .0653125 .0340625

48 2.89 .0602083 .039375

 What questions, if any, should we ask in deciding which size to purchase? What should be our

overall objective in analyzing a purchasing decision such as this?

115

7

Covering, Staffing & Cutting
Stock Models

7.1 Introduction
Covering problems tend to arise in service industries. The crucial feature is that there is a set of

requirements to be covered. We have available to us various activities, each of which helps cover some,

but not all, the requirements. The qualitative form of a covering problem is:

Choose a minimum cost set of activities

Subject to

The chosen activities cover all of our requirements.

Some examples of activities and requirement types for various problems are listed below:

Problem Requirements Activities

Staff scheduling Number of people

required on duty

each period of the

day or week.

Work or shift patterns. Each

pattern covers some, but not all,

periods.

Routing Each customer

must be visited.

Various feasible trips, each of

which covers some, but not all,

customers.

Cutting of bulk

raw material

stock (e.g., paper,

wood, steel,

textiles)

Units required of

each finished

good size.

Cutting patterns for cutting raw

material into various finished

good sizes. Each pattern

produces some, but not every,

finished good.

In the next sections, we look at several of these problems in more detail.

116 Chapter 7 Covering, Staffing & Cutting Stock

7.1.1 Staffing Problems
One part of the management of most service facilities is the scheduling or staffing of personnel. That is,

deciding how many people to use on what shifts. This problem exists in staffing the information

operators department of a telephone company, a toll plaza, a large hospital, and, in general, any facility

that must provide service to the public.

 The solution process consists of at least three parts: (1) Develop good forecasts of the number of

personnel required during each hour of the day or each day of the week during the scheduling period.

(2) Identify the possible shift patterns, which can be worked based on the personnel available and work

agreements and regulations. A particular shift pattern might be to work Tuesday through Saturday and

then be off two days. (3) Determine how many people should work each shift pattern, so costs are

minimized and the total number of people on duty during each time period satisfies the requirements

determined in (1). All three of these steps are difficult. LP can help in solving step 3.

 One of the first published accounts of using optimization for staff scheduling was by Edie (1954).

He developed a method for staffing tollbooths for the New York Port Authority. Though old, Edie’s

discussion is still very pertinent and thorough. His thoroughness is illustrated by his summary (p. 138):

“A trial was conducted at the Lincoln Tunnel...Each toll collector was given a slip showing his booth

assignments and relief periods and instructed to follow the schedule strictly...At no times did excessive

backups occur...The movement of collectors and the opening and closing of booths took place without

the attention of the toll sergeant. At times, the number of booths were slightly excessive, but not to the

extent previously... Needless to say, there is a good deal of satisfaction...”

7.1.2 Example: Northeast Tollway Staffing Problems
The Northeast Tollway out of Chicago has a toll plaza with the following staffing demands during each

24-hour period:

Hours

Collectors
Needed

12 A.M. to 6 A.M. 2

6 A.M. to 10 A.M. 8

10 A.M. to Noon 4

Noon to 4 P.M. 3

4 P.M. to 6 P.M. 6

6 P.M. to 10 P.M. 5

10 P.M. to 12 Midnight 3

 Each collector works four hours, is off one hour, and then works another four hours. A collector can

be started at any hour. Assuming the objective is to minimize the number of collectors hired, how many

collectors should start work each hour?

Formulation and Solution
Define the decision variables:

x1 = number of collectors to start work at 12 midnight,

x2 = number of collectors to start work at 1 A.M.,
.

.

.
x24 = number of collectors to start work at 11 P.M.

Covering, Staffing & Cutting Stock Chapter 7 117

 There will be one constraint for each hour of the day, which states the number of collectors on at

that hour be the number required for that hour. The objective will be to minimize the number of collectors

hired for the 24-hour period. More formally:

Minimize x1 + x2 + x3 + ... + x24

subject to

x1 + x24 + x23 + x22 + x20 + x19 + x18 + x17 2 (12 midnight to 1 A.M.).

x2 + x1 + x24 + x23 + x21 + x20 + x19 + x18 2 (1 A.M. to 2 A.M.)
.

.

.

x7 + x6 + x5 + x4 + x2 + x1 + x24 + x23 8 (6 A.M. to 7 A.M.)
.

.

.

x24 + x23 + x22 + x21 + x19 + x18 + x17 + x16 3 (11 P.M. to 12 midnight)

 It may help to see the effect of the one hour off in the middle of the shift by looking at the

“PICTURE” of equation coefficients:

Constraint Row x1 x2 x3 x4 x5 x6 x7 x8 x9 ... x17 x18 x19 x20 x21 x22 x23 x24 RHS

12 A.M. to 1 A.M. 1 1 1 1 1 1 1 1 2

1 A.M. to 2 A.M. 1 1 1 1 1 1 1 1 1 2

2 A.M. to 3 A.M. 1 1 1 1 1 1 1 1 2

3 A.M. to 4 A.M. 1 1 1 1 1 1 1 1 2

4 A.M. to 5 A.M. 1 1 1 1 1 1 1 1 2

5 A.M. to 6 A.M. 1 1 1 1 1 1 1 1 2

6 A. M. to 7 A.M. 1 1 1 1 1 1 1 1 8

7 A.M. to 8 A.M. 1 1 1 1 1 1 1 1 8

8 A.M. to 9 A.M. 1 1 1 1 1 1 1 1 8

9 A.M. to 10 A.M. 1 1 1 1 1 1 1 8

10 A.M. to 11 A.M. 1 1 1 1 1 1 4

11 A.M. to 12 P.M. 1 1 1 1 1 4

12 P.M. to 1 P.M. 1 1 1 1 3

1 P.M. to 2 P.M. 1 1 1 1 3

2 P.M. to 3 P.M. 1 1 1 3

 etc. etc.

118 Chapter 7 Covering, Staffing & Cutting Stock

Sets Based Formulation

A “sets” based formulation for this problem in LINGO is quite compact. There are two sets, one for the

24-hour day and the other for the nine-hour shift. Note the use of the @WRAP function to modulate the

index for the X variable:

MODEL: ! 24 hour shift scheduling;

 SETS: !Each shift is4 hours on, 1 hour off, 4 hours on;

 HOUR/1..24/: X, NEED;

 ENDSETS

 DATA:

 NEED=2 2 2 2 2 2 8 8 8 8 4 4 3 3 3 3 6 6 5 5 5 5 3 3;

 ENDDATA

 MIN = @SUM(HOUR(I): X(I));

 @FOR(HOUR(I): ! People on duty in hour I are those who

 started 9 or less hours earlier, but not 5;

 @SUM(HOUR(J)|(J#LE#9)#AND#(J#NE#5): X(@WRAP((I-J+1),24)))>= NEED(I));

END

When solved as an LP, we get an objective value of 15.75 with the following variables nonzero:

x2 = 5 x5 = 0.75 x11 = 1 x16 = 1

x3 = 0.75 x6 = 0.75 x14 = 1 x17 = 1

x4 = 0.75 x7 = 0.75 x15 = 2 x18 = 1

 The answer is not directly useful because some of the numbers are fractional. To enforce the

integrality restriction, use the @GIN function as in the following line:

@FOR(HOUR(I): @GIN(X(I)));

When it is solved, we get an objective value of 16 with the following variables nonzero:

x2 = 4 x5 = 1 x14 = 1 x17 = 2

x3 = 1 x6 = 1 x15 = 1 x18 = 1

x4 = 1 x7 = 1 x16 = 2

 One of the biggest current instances of this kind of staffing problem is in telephone call centers.

Examples are telephone order takers for catalog retailers and credit checkers at credit card service

centers. A significant fraction of the population of Omaha, Nebraska works in telephone call centers. A

typical shift pattern at a call center consists of 8 hours of work split by a 15 minute break, a half hour

lunch break, and another 15 minute break.

7.1.3 Additional Staff Scheduling Features
In a complete implementation there may be a fourth step, rostering, in addition to the first three steps

of forecasting, work pattern identification, and work pattern selection. In rostering, specific individuals

by name are assigned to specific work patterns. In some industries, e.g., airlines, individuals(e.g.,

pilots) are allowed to bid on the work patterns that have been selected.

 In some staffing situations, there may be multiple skill requirements that need to be covered, e.g.

during the first hour there must be at least 3 Spanish speakers on duty and at least 4 English speakers.

Different employees may have different sets of skills, e.g., some may speak only English, some are

conversant in both English and Spanish, etc.

Covering, Staffing & Cutting Stock Chapter 7 119

 In some situations, e.g., mail processing, demand may be postponeable by one or two periods, so

that we are allowed to be understaffed, say during a peak period, if the carryover demand can be

processed in the next period.

 In almost all situations, demand is somewhat random so that staff requirements are somewhat soft.

We might say that we need at least ten people on duty during a certain period, however, if we have

eleven on duty, the extra person will probably not be standing around idle during the full period. There

is a good chance that by chance demand will be higher than the point forecast so that we can use the

extra person. The queueing theory methods of chapter 18 are frequently used to provide estimates of

the marginal benefit of each unit of overstaffing.

7.2 Cutting Stock and Pattern Selection
In industries such as paper, plastic food wrap, metal bars, and textiles, products are manufactured in

large economically produced sizes at the outset. These sizes are cut into a variety of smaller, more usable

sizes as the product nears the consumer. The determination of how to cut the larger sizes into smaller

sizes at minimal cost is known as the cutting stock problem. As an example of the so-called

one-dimensional cutting stock problem, suppose machine design dictates material is manufactured in

72-inch widths. There are a variety of ways of cutting these smaller widths from the 72-inch width, two

of which are shown in Figure 7.1.

Figure 7.1 Example Cutting Patterns

Pattern 1 Pattern 2

35

18

35

18

35

 Pattern 1 has 2 inches of edge waste (72 − 2 35 = 2), whereas there is only 1 inch of edge waste

(72 − 2 18 − 35 = 1) with pattern 2. Pattern 2, however, is not very useful unless the number of linear

feet of 18-inch material required is about twice the number of linear feet of 35-inch material required.

Thus, a compromise must be struck between edge waste and end waste.

 The solution of a cutting stock problem can be partitioned into the 3-step procedure discussed earlier:

(1) Forecast the needs for the final widths. (2) Construct a large collection of possible patterns for cutting

the large manufactured width(s) into the smaller widths. (3) Determine how much of each pattern should

be run of each pattern in (2), so the requirements in (1) are satisfied at minimum cost. Optimization can be

used in performing step (3).

120 Chapter 7 Covering, Staffing & Cutting Stock

 Many large paper manufacturing firms have LP-based procedures for solving the cutting stock

problem. Actual cutting stock problems may involve a variety of cost factors in addition to the edge

waste/end waste compromise. The usefulness of the LP-based procedure depends upon the importance of

these other factors. The following example illustrates the fundamental features of the cutting stock problem

with no complicating cost factors.

7.2.1 Example: Cooldot Cutting Stock Problem
The Cooldot Appliance Company produces a wide range of large household appliances such as

refrigerators and stoves. A significant portion of the raw material cost is due to the purchase of sheet

steel. Currently, sheet steel is purchased in coils in three different widths: 72 inches, 48 inches, and 36

inches. In the manufacturing process, eight different widths of sheet steel are required: 60, 56, 42, 38,

34, 24, 15, and 10 inches. All uses require the same quality and thickness of steel.

 A continuing problem is trim waste. For example, one way of cutting a 72-inch width coil is to slit

it into one 38-inch width coil and two 15-inch width coils. There will then be a 4-inch coil of trim waste

that must be scrapped.

 The prices per linear foot of the three different raw material widths are 15 cents for the 36-inch

width, 19 cents for the 48-inch width, and 28 cents for the 72-inch width. Simple arithmetic reveals the

costs per inch foot of the three widths are 15/36 = 0.416667 cents/(inch foot), 0.395833 cents/(inch

 foot), and 0.388889 cents/(inch foot) for the 36", 48", and 72" widths, respectively.

 The coils may be slit in any feasible solution. The possible cutting patterns for efficiently slitting

the three raw material widths are tabulated below.

 For example, pattern C4 corresponds to cutting a 72-inch width coil into one 24-inch width and four

10-inch widths with 8 inches left over as trim waste.

 The lengths of the various widths required in this planning period are:

Width 60” 56” 42” 38” 34” 24” 15” 10”

Number of feet

required
500 400 300 450 350 100 800 1000

 The raw material availabilities this planning period are 1600 ft. of the 72-inch coils and 10,000 ft.

each of the 48-inch and 36-inch widths.

 How many feet of each pattern should be cut to minimize costs while satisfying the requirements of

the various widths? Can you predict beforehand the amount of 36-inch material used?

Covering, Staffing & Cutting Stock Chapter 7 121

7.2.2 Formulation and Solution of Cooldot
Let the symbols A1, A2, . . . , E4 appearing in the following table denote the number of feet to cut of the

corresponding pattern:

Cutting Patterns for Raw Material

 Number to Cut of the Required Width

Pattern 60” 56” 42” 38” 34” 24” 15” 10” Waste in

Designation 72-Inch Raw Material Inches

A1 1 0 0 0 0 0 0 1 2

A2 0 1 0 0 0 0 1 0 1

A3 0 1 0 0 0 0 0 1 6

A4 0 0 1 0 0 1 0 0 6

A5 0 0 1 0 0 0 2 0 0

A6 0 0 1 0 0 0 1 1 5

A7 0 0 1 0 0 0 0 3 0

A8 0 0 0 1 1 0 0 0 0

A9 0 0 0 1 0 1 0 1 0

B0 0 0 0 1 0 0 2 0 4

B1 0 0 0 1 0 0 1 1 9

B2 0 0 0 1 0 0 0 3 4

B3 0 0 0 0 2 0 0 0 4

B4 0 0 0 0 1 1 0 1 4

B5 0 0 0 0 1 0 2 0 8

B6 0 0 0 0 1 0 1 2 3

B7 0 0 0 0 1 0 0 3 8

B8 0 0 0 0 0 3 0 0 0

B9 0 0 0 0 0 2 1 0 9

C0 0 0 0 0 0 2 0 2 4

C1 0 0 0 0 0 1 3 0 3

C2 0 0 0 0 0 1 2 1 8

C3 0 0 0 0 0 1 1 3 3

C4 0 0 0 0 0 1 0 4 8

C5 0 0 0 0 0 0 4 1 2

C6 0 0 0 0 0 0 3 2 7

C7 0 0 0 0 0 0 2 4 2

C8 0 0 0 0 0 0 1 5 7

C9 0 0 0 0 0 0 0 7 2

122 Chapter 7 Covering, Staffing & Cutting Stock

48-Inch Raw Material

D0 0 0 1 0 0 0 0 0 6

D1 0 0 0 1 0 0 0 1 0

D2 0 0 0 0 1 0 0 1 4

D3 0 0 0 0 0 2 0 0 0

D4 0 0 0 0 0 1 1 0 9

D5 0 0 0 0 0 1 0 2 4

D6 0 0 0 0 0 0 3 0 3

D7 0 0 0 0 0 0 2 1 8

D8 0 0 0 0 0 0 1 3 3

D9 0 0 0 0 0 0 0 4 8

36-Inch Raw Material

E0 0 0 0 0 1 0 0 0 2

E1 0 0 0 0 0 1 0 1 2

E2 0 0 0 0 0 0 2 0 6

E3 0 0 0 0 0 0 1 2 1

E4 0 0 0 0 0 0 0 3 6

For accounting purposes, it is useful to additionally define:

T1 = number of feet cut of 72-inch patterns,

T2 = number of feet cut of 48-inch patterns,

T3 = number of feet cut of 36-inch patterns,

W1 = inch feet of trim waste from 72-inch patterns,

W2 = inch feet of trim waste from 48-inch patterns,

W3 = inch feet of trim waste from 36-inch patterns,

X1 = number of excess feet cut of the 60-inch width,

X2 = number of excess feet cut of the 56-inch width,
 .

 .

 .

X8 = number of excess feet cut of the 10-inch width.

 It may not be immediately clear what the objective function should be. One might be tempted to

calculate a cost of trim waste per foot for each pattern cut and then minimize the total trim waste cost.

For example:

MIN = 0.3888891W1 + 0.395833W2 + 0.416667W3;

 However, such an objective can easily lead to solutions with very little trim waste, but very high

cost. This is possible in particular when the cost per square inch is not the same for all raw material

widths. A more reasonable objective is to minimize the total cost. That is:

MIN = 28 * T1 + 19 * T2 + 15 * T3;

Covering, Staffing & Cutting Stock Chapter 7 123

Incorporating this objective into the model, we have:

MODEL:

 SETS:

! Each raw material has a Raw material width, Total used,

 Waste total, Cost per unit, Waste cost, and Supply available;

 RM: RWDTH,T, W, C, WCOST, S;

! Each Finished good has a Width, units Required. eXtra produced;

 FG: FWDTH, REQ, X;

 PATTERN: USERM, WASTE, AMT;

 PXF(PATTERN, FG): NUM;

 ENDSETS

 DATA:

! The raw material widths;

 RM = R72 R48 R36;

 RWDTH= 72 48 36;

 C = .28 .19 .15;

 WCOST= .00388889 .00395833 .00416667;

 S = 1600 10000 10000;

! The finished good widths;

 FG = F60 F56 F42 F38 F34 F24 F15 F10;

 FWDTH= 60 56 42 38 34 24 15 10;

 REQ= 500 400 300 450 350 100 800 1000;

! Index of R.M. that each pattern uses;

 USERM = 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1

 2 2 2 2 2 2 2 2 2 2

 3 3 3 3 3;

! How many of each F.G. are in each R.M. pattern;

 NUM= 1 0 0 0 0 0 0 1

 0 1 0 0 0 0 1 0

 0 1 0 0 0 0 0 1

 0 0 1 0 0 1 0 0

 0 0 1 0 0 0 2 0

 0 0 1 0 0 0 1 1

 0 0 1 0 0 0 0 3

 0 0 0 1 1 0 0 0

 0 0 0 1 0 1 0 1

 0 0 0 1 0 0 2 0

 0 0 0 1 0 0 1 1

 0 0 0 1 0 0 0 3

 0 0 0 0 2 0 0 0

 0 0 0 0 1 1 0 1

 0 0 0 0 1 0 2 0

 0 0 0 0 1 0 1 2

 0 0 0 0 1 0 0 3

 0 0 0 0 0 3 0 0

 0 0 0 0 0 2 1 0

 0 0 0 0 0 2 0 2

 0 0 0 0 0 1 3 0

 0 0 0 0 0 1 2 1

 0 0 0 0 0 1 1 3

 0 0 0 0 0 1 0 4

124 Chapter 7 Covering, Staffing & Cutting Stock

 0 0 0 0 0 0 4 1

 0 0 0 0 0 0 3 2

 0 0 0 0 0 0 2 4

 0 0 0 0 0 0 1 5

 0 0 0 0 0 0 0 7

 0 0 1 0 0 0 0 0

 0 0 0 1 0 0 0 1

 0 0 0 0 1 0 0 1

 0 0 0 0 0 2 0 0

 0 0 0 0 0 1 1 0

 0 0 0 0 0 1 0 2

 0 0 0 0 0 0 3 0

 0 0 0 0 0 0 2 1

 0 0 0 0 0 0 1 3

 0 0 0 0 0 0 0 4

 0 0 0 0 1 0 0 0

 0 0 0 0 0 1 0 1

 0 0 0 0 0 0 2 0

 0 0 0 0 0 0 1 2

 0 0 0 0 0 0 0 3;

ENDDATA

! Minimize cost of raw material used;

MIN = TCOST;

 TCOST = @SUM(RM(I): C(I)*T(I));

! Compute total cost of waste;

 TOTWASTE = @SUM(RM(I): WCOST(I)*W(I));

@FOR(RM(I):

 T(I) = @SUM(PATTERN(K)| USERM(K) #EQ# I: AMT(K));

! Raw material supply constraints;

 T(I) <= S(I);

);

! Must produce at least amount required of each F.G.;

@FOR(FG(J):

 @SUM(PATTERN(K): NUM(K,J)*AMT(K)) = REQ(J) + X(J);

);

 ! Turn this on to get integer solutions;

 !@FOR(PATTERN(K): @GIN(AMT(K)));

! Waste related computations;

! Compute waste associated with each pattern;

 @FOR(PATTERN(K):

 WASTE(K) = RWDTH(USERM(K)) - @SUM(FG(J): FWDTH(J)*NUM(K,J));

);

! Waste for each R.M. in this solution;

 @FOR(RM(I):

 W(I) = @SUM(PATTERN(K)| USERM(K) #EQ# I: WASTE(K)*AMT(K));

);

END

Covering, Staffing & Cutting Stock Chapter 7 125

 If you minimize cost of waste, then you will get a different solution than if you minimize total cost

of raw materials. Two different solutions obtained under the two different objectives are compared in

the following table:

Cutting Stock Solutions

Nonzero Patterns

Trim Waste
Minimizing Solution

Feet to Cut

Total Cost
Minimizing Solution

Feet to Cut

A1 500 500

A2 400 400

A5 200 171.4286

A7 100 128.5714

A8 350 350

A9 50 3.571429

B8 0 32.14286

C9 0 14.28571

D1 150 96.42857

D3 25 0

Trim Waste Cost $5.44 $5.55

 Total Cost $2348.00 $466.32

X4 100.000 0

X6 19650 0

T1 1600 1600

T2 10000 96.429

T3 0 0

 The key difference in the solutions is the “Min trim waste” solution uses more of the 48" width raw

material, patterns D1 and D3, and cuts in a way so the edge waste is minimized. The “Min trim waste”

solution produces more of the 38” width, 550 units, than is needed, 450 units, because the objective

function does not count this as waste. The “Min trim waste” formulation has a number of alternate

optimal solutions, some having a raw material cost less than $2348. A key observation from this

example is that you should always remember your overall objective, e.g., minimize total cost or

maximize total profit, and not get distracted by optimizing secondary criteria.

 Both solutions involve fractional answers. By turning on the @GIN declaration you can get an

integer answer. The cost of the “cost minimizing” solution increases to $466.34.

7.2.3 Generalizations of the Cutting Stock Problem
In large cutting stock problems, it may be unrealistic to generate all possible patterns. There is an

efficient method for generating only the patterns that have a very high probability of appearing in the

optimal solution. It is beyond the scope of this section to discuss this procedure. However, it does become

important in large problems. See Chapter 18 for details. Dyckhoff (1981) describes another formulation

126 Chapter 7 Covering, Staffing & Cutting Stock

that avoids the need to generate patterns. However, that formulation may have a very large number of

rows.

Complications

In complex cutting stock problems, the following additional cost considerations may be important:

1. Fixed cost of setting up a particular pattern. This cost consists of lost machine time, labor,

etc. This motivates solutions with few patterns.

2. Value of overage or end waste. For example, there may be some demand next period for

the excess cut this period.

3. Underage cost. In some industries, you may supply plus or minus, say 5%, of a specified

quantity. The cost of producing the least allowable amount is measured in foregone profits.

4. Machine usage cost. The cost of operating a machine is usually fairly independent of the

material being run. This motivates solutions that cut up wide raw material widths.

5. Material specific products. It may be impossible to run two different products in the same

pattern if they require different materials (e.g., different thickness, quality, surface finish

or type).

6. Upgrading costs. It may be possible to reduce setup, edge-waste, and end-waste costs by

substituting a higher-grade material than required for a particular demand width.

7. Order splitting costs. If a demand width is produced from several patterns, then there will

be consolidation costs due to bringing the different lots of the output together for shipment.

8. Stock width change costs. A setup involving only a pattern change usually takes less time

than one involving both a pattern change and a raw material width change. This motivates

solutions that use few raw material widths.

9. Minimum and maximum allowable edge waste. For some materials, a very narrow ribbon

of edge waste may be very difficult to handle. Therefore, one may wish to restrict attention

to patterns that have either zero edge waste or edge waste that exceeds some minimum,

such as two centimeters. On the other hand, one may also wish to specify a maximum

allowable edge waste. For example, in the paper industry, edge waste may be blown down

a recycling chute. Edge waste wider than a certain minimum may be too difficult to blow

down this chute.

10. Due dates and sequencing. Some of the demands need to be satisfied immediately, whereas

others are less urgent. The patterns containing the urgent or high priority products should

be run first. If the urgent demands appear in the same patterns as low priority demands,

then it is more difficult to satisfy the high priority demands quickly.

11. Inventory restrictions. Typically, a customer’s order will not be shipped until all the

demands for the customer can be shipped. Thus, one is motivated to distribute a given

customer’s demands over as few patterns as possible. If every customer has product in

every pattern, then no customer’s order can be shipped until every pattern has been run.

Thus, there will be substantial work in process inventory until all patterns have been run.

12. Limit on 1-set patterns. In some industries, such as paper, there is no explicit cost

associated with setting up a pattern, but there is a limit on the rate at which pattern changes

can be made. It may take about 15 minutes to do a pattern change, much of this work being

done off-line without shutting down the main machine. The run time to produce one roll

set might take 10 minutes. Thus, if too many 1-set patterns are run, the main machine will

have to wait for pattern changes to be completed.

Covering, Staffing & Cutting Stock Chapter 7 127

13. Pattern restrictions. In some applications, there may be a limit on the total number of final

product widths that may appear in a pattern, and/or a limit on the number of “small” widths

in a pattern. The first restriction would apply, for example, if there were a limited number

of take-up reels for winding the slit goods. The second restriction might occur in the paper

industry where rolls of narrow product width have a tendency to fall over, so one does not

want to have too many of them to handle in a single pattern. Some demanding customers

may request their product be cut from a particular position (e.g., the center) of a pattern,

because they feel the quality of the material is higher in that position.

14. Pattern pairing. In some plastic wrap manufacturing, the production process, by its nature,

produces two widths of raw material simultaneously, an upper output and a lower output.

Thus, it is essentially unavoidable that one must run the same number of feet of whatever

pattern is being used on the upper output as on the lower output. A similar situation

sometimes happens by accident in paper manufacturing. If a defect develops on the

“production belt”, a small width of paper in the interior of the width is unusable. Thus, the

machine effectively produces two output widths, one to the left of the defect, the other to

the right of the defect.

15. Bundle size and/or minimum purchase quantity. In some markets you may be forced to buy

product in bundles of a given size, e.g., 10 pieces per bundle. Further, you may be forced

to make cuts in bundles rather than in individual pieces. Thus, even though you have a

demand of 15 units for some finished good, you are forced to cut at least 20 units because

the bundle size is 10.

16. Saw thickness/kerf. If the material is sawed rather than sheared, each saw cut may remove

a small amount of material, sometimes called the kerf. Precise solution of a cutting stock

problem should take into account material lost to the kerf. Suppose the kerf is 2 mm. You

can represent the effect of kerf by adding 2 mm to each final product width and 2 mm to

each raw material width.

17. Max “smalls’ per pattern. There may be a limit on the number of “small” widths in a

pattern. This restriction might be encountered in the paper industry where rolls of narrow

product width have a tendency to tip over, so one does not want to have too many of them

to handle in a single pattern.

 Most of the above complications can be incorporated by making modest changes to the pattern

generating procedure. The most troublesome complications are high fixed setup costs, order-splitting

costs, and stock width change costs. If they are important, then one will usually be forced to use some

ad hoc, manual solution procedure. An LP solution may provide some insight into which solutions are

likely to be good, but other methods must be used to determine a final workable solution.

7.2.4 Two-Dimensional Cutting Stock Problems
The one-dimensional cutting stock problem is concerned with the cutting of a raw material that is in

coils. The basic idea still applies if the raw material comes in sheets and the problem is to cut these

sheets into smaller sheets. For example, suppose plywood is supplied in 48- by 96-inch rectangular

sheets and the end product demand is for sheets with dimensions in inches of 36 50, 24 36, 20 60,

and 18 30. Once you have enumerated all possible patterns for cutting a 48 96 sheet into

combinations of the four smaller sheets, then the problem is exactly as before.

 Enumerating all possible two-dimensional patterns may be complicated. Two features of practical

two-dimensional cutting problems affect the difficulty of this task: (a) orientation requirements, and (b)

128 Chapter 7 Covering, Staffing & Cutting Stock

“guillotine” cut requirements. Applications in which (a) is important are in the cutting of wood and

fabric. For reasons of strength or appearance, a demand unit may be limited in how it is positioned on

the raw material (Imagine a plaid suit for which the manufacturer randomly oriented the pattern on the

raw material). Any good baseball player knows the grain of the bat must face the ball when hitting.

Attention must be paid to the grain of the wood if the resulting wood product is to be used for structural

or aesthetic purposes. Glass is an example of a raw material for which orientation is not important.

 A pattern is said to be cuttable with guillotine cuts if each cut must be made by a shear across the full

width of the item being cut. As an example, suppose you wish to cut as many 4x5 rectangles as possible

from a 9x9 square. If you are allowed to make any kind of cut and rotation is allowed, then you can cut

4 such rectangles. If only guillotine cuts are allowed, then at most three pieces can be cut. Figure 7.2

illustrates.

Figure 7.2 Guillotine and Non-Guillotine Cuts of 4x5 from 9x9

 Non-Guillotine Guillotine

7.2.5 Paper Converting: A Rectangle Cutting Problem
A particular form of cutting rectangles is found in the paper industry. Paper is produced in long rolls

several thousand meters long and from one to ten meters wide. There are two major steps in cutting such

a roll into rectangles: 1) The original roll is run through a “slitter” to cut the roll into two or more

narrower final rolls, 2) A final roll is run through a “sheeter” that cuts the roll into sheets of an arbitrary

specified length, and width equal to the width of the input roll. This general process, plus related steps

is sometimes known as “paper converting.”

Example: We need the following two sets of rectangles: a) 10,000 rectangles, each 40 x 60 cm, b)

12,000 rectangles, each 35 x 65 cm. Raw paper rolls are of width 110 cm, unlimited length. What is

the minimum amount of raw paper needed to cut these 22,000 rectangles? A useful observation is that a

rectangle can be oriented in either of two ways across the width of the raw roll. The possible patterns

are:
 Copies of various widths across the raw roll:

 65 cm 60 cm 40 cm 35 cm Waste Copies/meter of each

 40 x 60 35 x 65
P1: 1 1 5 100/60 100/35

P2 1 1 10 100/35+100/65

Covering, Staffing & Cutting Stock Chapter 7 129

P3 1 1 10 100/40+100/60

P4 1 1 15 100/40 100/65

P5 2 30 2*100/60

P6 1 2 0 100/60 2*100/65

P7 3 5 3*100/65

For example, pattern P1 has 1) a 35 x 65 rectangle arranged so that the 65 cm dimension is across the

width of the roll, and 2) a 40 x 60 rectangle arranged so that the 40 cm dimension is across the width.

The two together use a total of 65 + 40 = 105 cm, leaving an edge waste of 5 cm.

If we define Pi = number of meters that we slit from the raw roll using pattern Pi, then a relevant LP is:

min = P1 + P2 + P3 + P4 + P5 + P6 + P7; ! Minimize total meters used;

! Satisfy total units needed of each of the two rectangles;

[R4060] (10/6)*P1 + 100*(1/40 + 1/60)*P3 + (100/40)*P4 +

 2*(100/60)*P5 + (100/60)*P6 >= 10000;

[R3565] (100/35)*P1 + 100*(1/35+1/65)*P2 + (100/65)*P4

 + 2*(100/65)*P6 + 3*(100/65)*P7 >= 12000;

With solution:
 Global optimal solution found.

 Objective value: 4740.0000

 Variable Value

 P1 0.0000

 P2 0.0000

 P3 840.0000

 P4 0.0000

 P5 0.0000

 P6 3900.0000

 P7 0.0000

In words the solution is: 1a) Run 840 meters through the slitter producing: 1 final roll of width 60 cm

and 1 final roll of width 40 cm, and a waste roll of width 10 cm. 1b) Run the 60 cm roll through the

sheeter producing 840*100/40 =2100 sheets of 40 x 60. 1c) Run the 40 cm roll through the sheeter,

producing 840*100/60 = 1400 sheets of 40 x 60. 2a) Run 3900 meters through the slitter producing: 1

final roll of width 40 cm, 2 final rolls of width 35 cm, and no waste. 2b) Run the 40 cm roll through the

sheeter producing 3900*100/60 = 6500 sheets of 40 x 60. 2c) Run the 2 rolls of width 35 cm through

the sheeter producing 2*3900*100/65 = 12,000 sheets of 35 x 65. The total production is 2100 + 1400

+ 6500 = 10,000 sheets of 40 x 60, and 12,000 sheets of 35 x 60. The efficiency, in terms of square cm

needed divided by square cm used, is [10000*40*60 + 12000*35*65] / [(840+3900)*100*110] =

0.9839.

7.3 Crew Scheduling Problems
A major component of the operating cost of an airline is the labor cost of its crews. Managing the aircraft

and crews of a large airline is a complex scheduling problem. Paying special attention to these scheduling

problems can be rewarding. The yearly cost of a crew member far exceeds the one-time cost of a typical

computer, so devoting some computing resources to make more efficient use of crews and airplanes is

attractive. One small part of an airline’s scheduling problems is discussed below.

 Large airlines face a staffing problem known as the crew-scheduling problem. The requirements to

be covered are the crew requirements of the flights that the airline is committed to fly during the next

scheduling period (e.g., one month). During its working day, a specific crew typically, but not

130 Chapter 7 Covering, Staffing & Cutting Stock

necessarily, flies a number of flights on the same aircraft. The problem is to determine which flights

should comprise the day’s work of a crew.

 The approach taken by many airlines is similar to the approach described for general staffing

problems: (1) Identify the demand requirements (i.e., the flights to be covered). (2) Generate a large

number of feasible sequences of flights one crew could cover in a work period. (3) Select a minimum

cost subset of the collections generated in (2), so the cost is minimized and every flight is contained in

exactly one of the selected collections.

 Integer programming (IP) can be used for step (3). Until 1985, most large airlines used computerized

ad hoc or heuristic procedures for solving (3) because the resulting IP tends to be large and difficult to

solve. Marsten, Muller, and Killion (1979), however, described an IP-based solution procedure that was

used very successfully by Flying Tiger Airlines. Flying Tiger had a smaller fleet than the big passenger

carriers, so the resulting IP could be economically solved and gave markedly lower cost solutions than

the ad hoc, heuristic methods. These optimizing methods are now being extended to large airlines.

 A drastically simplified version of the crew-scheduling problem is given in the following example.

This example has only ten flights to be covered. By contrast, a typical major airline has over 2000 flights

per day to be covered.

7.3.1 Example: Sayre-Priors Crew Scheduling
The Sayre-Priors Airline and Stormdoor Company is a small diversified company that operates the

following set of scheduled flights:

Flights

Flight
Number

Origin

Destination

Time of Day

101 Chicago Los Angeles Afternoon

410 New York Chicago Afternoon

220 New York Miami Night

 17 Miami Chicago Morning

 7 Los Angeles Chicago Afternoon

 13 Chicago New York Night

 11 Miami New York Morning

 19 Chicago Miami Night

 23 Los Angeles Miami Night

 3 Miami Los Angeles Afternoon

Covering, Staffing & Cutting Stock Chapter 7 131

The flight schedule is illustrated graphically in the figure below:

Figure 7.3: Flight Schedule

Afternoon
Night

Morning

 The Flight Operations Staff would like to set up a low-cost crew assignment schedule. The basic

problem is to determine the next flight, if any, a crew operates after it completes one flight. A basic

concept needed in understanding this problem is that of a tour. The characteristics of a tour are as

follows:

• A tour consists of from one to three connecting flights.

• A tour has a cost of $2,000 if it terminates in its city of origin.

• A tour that requires “deadheading” (i.e., terminates in a city other than the origin city) costs

$3,000.

 In airline parlance, a tour is frequently called a “pairing” or a “rotation” because a tour consist of a

pair of duty periods, an outbound one, and a return one. The following are examples of acceptable tours:

Tour Cost

17, 101, 23 $2,000

220, 17, 101 $3,000

410, 13 $2,000

 In practice, the calculation of the cost of a tour is substantially more complicated than above. There

might be a minimum fixed payment, cf, to a crewmember simply for being on duty, a guaranteed rate

per hour, cd , while in the airplane, and a guaranteed rate per hour, ce , for total elapsed time away from

home so that the we might have: pairing_cost(i) = max{ cf, cd *flying_time(i), ce *elapsed_time(i)}).

132 Chapter 7 Covering, Staffing & Cutting Stock

7.3.2 Solving the Sayre/Priors Crew Scheduling Problem
The first thing to do for this small problem is to enumerate all feasible tours. We do not consider a

collection of flights that involve an intermediate layover a tour. There are 10 one-flight tours, 14

two-flight tours, and either 37 or 41 three-flight tours depending upon whether one distinguishes the

origin city on a non-deadheading tour. These tours are indicated in the following table:

List of Tours

One-Flight
Tours

Cost

Two-Flight
Tours

Cost

Three-Flight
Tours

Cost

 1. 101 $3,000 11. 101, 23 $3,000 25. 101, 23, 17 $2,000

 2. 410 $3,000 12. 410, 13 $2,000 26. 101, 23, 11 $3,000

 3. 220 $3,000 13. 410, 19 $3,000 27. 410, 19, 17 $3,000

 4. 17 $3,000 14. 220, 17 $3,000 28. 410, 19, 11 $2,000

 5. 7 $3,000 15. 220, 11 $2,000 29. 220, 17, 101 $3,000

 6. 13 $3,000 16. 17, 101 $3,000 30. 220, 11, 410 $3,000

 7. 11 $3,000 17. 7, 13 $3,000 25. 17, 101, 23 $2,000

 8. 19 $3,000 18. 7, 19 $3,000 31. 7, 19, 17 $3,000

 9. 23 $3,000 19. 11, 410 $3,000 32. 7, 19, 11 $3,000

10. 3 $3,000 20. 19, 17 $2,000 33. 11, 410, 13 $3,000

 21. 19, 11 $3,000 28. 11, 410, 19 $2,000

 22. 23, 17 $3,000 34. 19, 17, 101 $3,000

 23. 23, 11 $3,000 28. 19, 11, 410 $2,000

 24. 3, 23 $2,000 25. 23, 17, 101 $2,000

 35. 23, 11, 410 $3,000

 36. 3, 23, 17 $3,000

 37. 3, 23, 11 $3,000

Define the decision variables:

Ti =
1 if tour i is used

 0 if tour i is not used, for i = 1, 2, . . . , 37.

We do not distinguish the city of origin on non-deadheading three-flight tours. The formulation,in

words, is:

 Minimize the cost of the tours selected;

 Subject to,

 For each flight leg i:

 The number of tours selected must include exactly one that covers

flight i.

Covering, Staffing & Cutting Stock Chapter 7 133

In LINGO scalar format, a model is:

MODEL:

 [_1] MIN= 3 * T_1 + 3 * T_2 + 3 * T_3 + 3 * T_4 + 3 * T_5

 + 3 * T_6 + 3 * T_7 + 3 * T_8 + 3 * T_9 + 3 * T_10

 + 3 * T_11 + 2 * T_12 + 3 * T_13 + 3 * T_14 + 2 * T_15

 + 3 * T_16 + 3 * T_17 + 3 * T_18 + 3 * T_19 + 2 * T_20

 + 3 * T_21 + 3 * T_22 + 3 * T_23 + 2 * T_24 + 2 * T_25

 + 3 * T_26 + 3 * T_27 + 2 * T_28 + 3 * T_29 + 3 * T_30

 + 3 * T_31 + 3 * T_32 + 3 * T_33 + 3 * T_34 + 3 * T_35

 + 3 * T_36 + 3 * T_37 ;

 [COV_F101] T_1 + T_11 + T_16 + T_25 + T_26 + T_29 + T_34 = 1 ;

 [COV_F410] T_2 + T_12 + T_13 + T_19 + T_27 + T_28 + T_30

 + T_33 + T_35 = 1 ;

 [COV_F220]T_3 + T_14 + T_15 + T_29 + T_30 = 1 ;

 [COV_F17] T_4 + T_14 + T_16 + T_20 + T_22 + T_25 + T_27

 + T_29 + T_31 + T_34 + T_36 = 1 ;

 [COV_F7] T_5 + T_17 + T_18 + T_31 + T_32 = 1 ;

 [COV_F13] T_6 + T_12 + T_17 + T_26 = 1 ;

 [COV_F11] T_7 + T_15 + T_19 + T_21 + T_23 + T_26 + T_28

 + T_30 + T_32 + T_33 + T_35 + T_37 = 1 ;

 [COV_F19] T_8 + T_13 + T_18 + T_20 + T_21 + T_27 + T_28

 + T_31 + T_32 + T_34 = 1 ;

 [COV_F23] T_9 + T_11 + T_22 + T_23 + T_24 + T_25 + T_35

 + T_36 + T_37 = 1 ;

 [COV_F3] T_10 + T_24 + T_36 + T_37 = 1 ;

 @BIN(T_1); @BIN(T_2); @BIN(T_3); @BIN(T_4); @BIN(T_5);

 @BIN(T_6); @BIN(T_7); @BIN(T_8); @BIN(T_9); @BIN(T_10);

 @BIN(T_11); @BIN(T_12); @BIN(T_13); @BIN(T_14); @BIN(T_15);

 @BIN(T_16); @BIN(T_17); @BIN(T_18); @BIN(T_19); @BIN(T_20);

 @BIN(T_21); @BIN(T_22); @BIN(T_23); @BIN(T_24); @BIN(T_25);

 @BIN(T_26); @BIN(T_27); @BIN(T_28); @BIN(T_29); @BIN(T_30);

 @BIN(T_31); @BIN(T_32); @BIN(T_33); @BIN(T_34); @BIN(T_35);

 @BIN(T_36); @BIN(T_37);

 END

The tabular “Picture” below of the coefficients may give a better feel for the structure of the

problem. The first constraint, for example, forces exactly one of the tours including flight 101, to be

chosen:

 T

 T T T T T T T T T 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

 1: 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 2 3 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 MIN

 2: 1 1 1 1 1 1 1 = 1

 3: 1 1 1 1 1 1 1 1 1 = 1

 4: 1 1 1 1 1 = 1

 5: 1 1 1 1 1 1 1 1 1 1 = 1

 6: 1 1 1 1 1 = 1

 7: 1 1 1 1 = 1

 8: 1 1 1 1 1 1 1 1 1 1 1 1 = 1

 9: 1 1 1 1 1 1 1 1 1 1 = 1

10: 1 1 1 1 1 1 1 1 1 1 = 1

11: 1 1 1 1 = 1

134 Chapter 7 Covering, Staffing & Cutting Stock

When solved simply as an LP, the solution is naturally integer, with the tours selected being:

Tour Flights

T17 7, 13

T24 3, 23

T28 410, 19, 11

T29 220, 17, 101

The cost of this solution is $10,000.

It can be shown, e.g., by adding the constraint: T_17 + T_24 + T_28 + T_29 <= 3, that

there is one other solution with a cost of $10,000, namely:

Tour Flights

T12 410, 13

T24 3, 23

T29 220, 17, 101

T32 7, 11, 19

 The kind of IP’s that result from the crew scheduling problem with more than 500 constraints have

proven somewhat difficult to solve. A general formulation of the Sayre/Priors problem is given in

section 7.4.

7.3.3 Additional Practical Details
An additional detail sometimes added to the above formulation in practice is crew-basing constraints.

Associated with each tour is a home base. Given the number of pilots living near each home base, one

may wish to add a constraint for each home base that puts an upper limit on the number of tours selected

for that home base.

A simplification in practice is that a given pilot is typically qualified for only one type of aircraft.

Thus, a separate crew-scheduling problem can be solved for each aircraft fleet (e.g., Boeing 747, Airbus

320, etc.). Similarly, cabin attendant crews can be scheduled independently of flight (pilot) crews.

After crew schedules have been selected, there still remains the rostering problem of assigning

specifice crew schedules to specific pilots. In the U.S., perhaps by union agreement, many of the major

airlines allow pilots to select schedules by a bidding process. In some smaller airlines and in non-U.S.

airlines schedules may be assigned to specific pilots by a central planning process. The bidding process

may make some of the crew members more happy, at least the ones with high seniority, however, the

centralized assignment process may be more efficient because it eliminates inefficient gaming of the

system.

Uncertainties due to bad weather and equipment breakdowns are an unfortunate fact of airline life.

Thus, one wishes to have crew schedules that are robust or insensitive to disruptions. A crew schedule

tends to be disruption sensitive if the schedule requires crews to change planes frequently and if the

connection times between these changes are short. Suppose that a plane is delayed a half hour by a

need to get some equipment repaired. If the crew of this plane is scheduled to change planes at the next

stop, then at the next stop the airline may need or wish to delay up to three flights: a) the flight that is

scheduled to use this plane, b) the flight which is scheduled to use this flight crew, and c) the flight to

which a significant number of passengers on this flight are transferring. In our little example we saw

that there were alternate optima. Thus, in addition to minimizing total crew costs, we might wish to

secondarily minimize expected delays by avoiding tours that involve crews changing planes a) such

Covering, Staffing & Cutting Stock Chapter 7 135

that there is short change-over time, b) different from the plane to which most of the passengers are

changing(thus two flights must be delayed), c) at an airport where there are few backup crews available

to take over for the delayed crew.

7.4 A Generic Covering/Partitioning/Packing Model
The model given for the crew-scheduling problem was very specific to that particular problem. The

following is a fairly general one for any standard, so-called covering, partitioning or packing problem.

This model takes the viewpoint of facilities and customers. Each facility or pattern, if opened, serves a

specified set of customers or demands. Specialized to our crew-scheduling example, a tour is a facility,

and a flight is a customer. The main data to be entered are the "2-tuples" describing which facilities serve

which customers. This model allows considerable flexibility in specifying whether customers are over

served or under served. If the parameter BUDU is set to 0, this means that every customer (or flight)

must be served by at least one open facility (or tour). This is sometimes called a set covering problem.

Alternatively, if BUDV is set to 0, then each flight can appear in at most one selected tour. This is

sometimes called a set packing problem. If both BUDV and BUDU are set to zero, then each flight must

appear in exactly one selected tour. This is sometimes called a set partitioning problem. It is called set

partition because any feasible solution in fact partitions the set of customers into subsets, one subset for

each chosen open facility (or tour).

 ! The set covering/partitioning/packing/ problem (COVERPAK);

 SETS:

 ! Given a set of demands, a set of candidate patterns,

 and which demands are covered by each pattern,

 which patterns should be used?;

 PATTERN: COST, Y; ! The patterns or tours;

 DMND: CU, CV, U, V;

 ! The "which PATTERN serves which demand" 2-tuples;

 PXD(PATTERN, DMND);

 ENDSETS

 DATA:

 ! Data for a simple crew scheduling problem;

 PATTERN = 1..37;

 ! Cost of each PATTERN;

 COST = 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 2

 3 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3;

 ! Names of the demands;

 DMND= F101 F410 F220 F17 F7 F13 F11 F19 F23 F3;

 ! Cost/unit under at each demand;

 CU = 1;

 ! Cost/unit over at each demand;

 CV = 1;

 ! Max allowed to spend on patterns or facilities facilities;

 BUDGET = 9999;

 ! Max allowed underage at each demand,

 0 makes a covering or partitioning problem;

 BUDU = 0;

 ! Max allowed overage at each demand,

 0 makes it a packing or partitioning problem;

 BUDV = 0;

136 Chapter 7 Covering, Staffing & Cutting Stock

 ! Both = 0 makes it a partitioning problem;

 PXD =

 1,F101 2,F410 3,F220 4,F17 5,F7 6,F13 7,F11 8,F19 9,F23 10,F3

 11,F101 11,F23 12,F410 12,F13 13,F410 13,F19 14,F220 14,F17

 15,F220 15,F11 16,F17 16,F101 17,F7 17,F13 18,F7 18,F19

 19,F11 19,F410 20,F19 20,F17 21,F19 21,F11 22,F23 22,F17

 23,F23 23,F11 24,F3 24,F23 25,F101 25,F23 25,F17

 26,F101 26,F13 26,F11 27,F410 27,F19 27,F17

 28,F410 28,F19 28,F11 29,F220 29,F17 29,F101 30,F220 30,F11 30,F410

 31,F7 31,F19 31,F17 32,F7 32,F19 32,F11 33,F11 33,F410

 34,F19 34,F17 34,F101 35,F23 35,F11 35,F410 36,F3 36,F23 36,F17

 37,F3 37,F23 37,F11;

 ENDDATA

 !--;

 ! Minimize cost of facilities opened, demands under or over served,;

 MIN = @SUM(PATTERN(I): COST(I) * Y(I))

 + @SUM(DMND(J): CU(J) * U(J) + CV(J) * V(J));

 ! For each demand,

 sum of patterns serving it + under variable - over variable= 1;

 @FOR(DMND(J):

 [COV] @SUM(PXD(I, J): Y(I)) + U(J) - V(J) = 1;

);

 ! Stay within budget on facilities cost;

 @SUM(PATTERN: COST * Y) <= BUDGET;

 ! and demand under and overage costs;

 @SUM(DMND: CU * U) <= BUDU;

 @SUM(DMND: CV * V) <= BUDV;

 ! A PATTERN is either open or it is not, no halfsies;

 @FOR(PATTERN(I): @BIN(Y(I)););

A solution obtained from this model is:

Variable Value

 Y(12) 1.000000

 Y(24) 1.000000

 Y(29) 1.000000

 Y(32) 1.000000

 Notice that it is different from our previous solution. It, however, also has a cost of 10(000), so it is

an alternate optimum.

Covering, Staffing & Cutting Stock Chapter 7 137

7.5 Problems
1. Certain types of facilities operate seven days each week and face the problem of allocating person

power during the week as staffing requirements change as a function of the day of the week. This

kind of problem is commonly encountered in public service and transportation organizations.

Perhaps the most fundamental staffing problem involves the assignment of days off to full-time

employees. In particular, it is regularly the case that each employee is entitled to two consecutive

days off per week. If the number of employees required on each of the seven days of the week is

given, then the problem is to find the minimum workforce size that will allow these demands to be

met and then to determine the days off for the people in this workforce.

 To be specific, let us study the problem faced by the Festus City Bus Company. The number of

drivers required for each day of the week is as follows:

Mon Tues Wed Thurs Fri Sat Sun

18 16 15 16 19 14 12

 How many drivers should be scheduled to start a five-day stint on each day of the week?

Formulate this problem as a linear program. What is the optimal solution?

2. Completely unintentionally, several important details were omitted from the Festus City Staffing

Problem (see previous question):

a) Daily pay is $50 per person on weekdays, $75 on Saturday, and $90 on Sunday.

b) There are up to three people that can be hired who will work part-time, specifically, a 3-day

week consisting of Friday, Sunday, and Monday. Their pay for this 3-day stint is $200.

Modify the formulation appropriately. Is it obvious whether the part-time people will be used?

3. A political organization, Uncommon Result, wants to make a mass mailing to solicit funds. It has

identified six “audiences” it wishes to reach. There are eight mailing lists it can purchase in order

to get the names of the people in each audience. Each mailing list covers only a portion of the

audiences. This coverage is indicated in the table below:

 Audiences

Mailing
List

M.D.

LL.D.

D.D.S.

Business
Executive

Brick
Layers

Plumbers

Cost

1 Y N N Y N N $5000

2 N Y Y N N N $4000

3 N Y N N N Y $6000

4 Y N N N N Y $4750

5 N N N Y N Y $5500

6 N N Y N N N $3000

7 N Y N N Y N $5750

8 Y N N N Y N $5250

138 Chapter 7 Covering, Staffing & Cutting Stock

 A “Y” indicates the mailing list contains essentially all the names in the audience. An “N”

indicates that essentially no names in the audience are contained in the mailing list. The costs

associated with purchasing and processing a mailing list are given in the far right column. No change

in total costs is incurred if an audience is contained in several mailing lists.

 Formulate a model that will minimize total costs while ensuring all audiences are reached.

Which mailing lists should be purchased?

4. The Pap-Iris Company prints various types of advertising brochures for a wide range of customers.

The raw material for these brochures is a special finish paper that comes in 50-inch width rolls. The

50-inch width costs $10 per inch-roll (i.e., $500/roll). A roll is 1,000 feet long. Currently, Pap-Iris

has three orders. Order number 1 is a brochure that is 16 inches wide with a run length of 400,000

feet. Order number 2 is a brochure that is 30 inches wide and has a run length of 80,000 feet. Order

number 3 is a brochure that is 24 inches wide and has a run length of 120,000 feet. The major

question is how to slit the larger raw material rolls into widths suitable for the brochures. With the

paper and energy shortages, Pap-Iris wants to be as efficient as possible in its use of paper.

Formulate an appropriate LP.

5. Postal Optimality Analysis (Due to Gene Moore). As part of a modernization effort, the U.S. Postal

Service decided to improve the handling and distribution of bulk mail (second-, third- and

fourth-class non-preferential) in the Chicago area. As part of this goal, a new processing facility

was proposed for the Chicago area. One part of this proposal was development of a low-cost

operational plan for the staffing of this facility. The plan would recognize the widely fluctuating

hourly volume characteristic of such a facility and would suggest a staffing pattern or patterns that

would accomplish the dual objectives of processing all mail received in a day while having no idle

time.

 A bulk mail processing facility, as the name implies, performs the function of receiving,

unpacking, weighing, sorting by destination, and shipping of mail designated as non-preferential,

including second class (bulk rate), third class (parcel post), and fourth class (books). It is frequently

designed as a single purpose structure and is typically located in or adjacent to the large metropolitan

areas, which produce this type of mail in significant volume. Although the trend in such facilities

has been increased utilization of automated equipment (including highly sophisticated handling and

sorting devices), paid manpower continues to account for a substantial portion of total operating

expense.

 Mail is received by the facility in mailbags and in containers. Both of which are shipped in

trucks. It is also received in tied and wrapped packages, which are sent directly to the facility on

railroad flatcars. Receipts of mail by the facility tend to be cyclical on a predictable basis throughout

the 24-hour working day, resulting in the build-up of an “inventory” of mail during busy hours,

which must be processed during less busy hours. A policy decision to have “no idle time” imposes

a constraint on the optimal level of staffing.

Covering, Staffing & Cutting Stock Chapter 7 139

 Once the facility is ready for operations, it will be necessary to implement an operating plan

that includes staffing requirements. A number of assumptions regarding such a plan are necessary

at the outset. Some of them are based upon existing Postal Service policy, whereas others evolve

from functional constraints. These assumptions are as follows:

i. Pieces of mail are homogeneous in terms of processing effort.

ii. Each employee can process 1800 pieces per hour.

iii. Only full shifts are worked (i.e., it is impossible to introduce additional labor inputs or

reduce existing labor inputs at times other than shift changes).

iv. Shift changes occur at midnight, 8:00 A.M. and 4:00 P.M. (i.e., at the ends of the first, second

and third shifts, respectively).

v. All mail arrivals occur on the hour.

vi. All mail must be processed the same day it is received (i.e., there may be no “inventory”

carryover from the third shift to the following day’s first shift).

vii. Labor rates, including shift differential, are given in the following table:

Shift

$/Hour

Daily
Rate

1st (Midnight-8 A.M.) 7.80 62.40

2nd (8 A.M. -4 P.M). 7.20 57.60

3rd (4 P.M. -Midnight) 7.60 60.80

viii. Hourly mail arrival is predictable and is given in the following table.

Cumulative Mail Arrival

1st Shift 2nd Shift 3rd Shift
Hour Pieces Hour Pieces Hour Pieces

0100 56,350 0900 242,550 1700 578,100

0200 83,300 1000 245,000 1800 592,800

0300 147,000 1100 249,900 1900 597,700

0400 171,500 1200 259,700 2000 901,500

0500 188,650 1300 323,400 2100 908,850

0600 193,550 1400 369,950 2200 928,450

0700 210,700 1500 421,400 2300 950,500

0800 220,500 1600 485,100 2400 974,000

a) Formulate the appropriate LP under the no idle time requirement. Can you predict

beforehand the number to staff on the first shift? Will there always be a feasible solution

to this problem for arbitrary arrival patterns?

b) Suppose we allow idle time to occur. What is the appropriate formulation? Do you expect

this solution to incur higher cost because it has idle time?

140 Chapter 7 Covering, Staffing & Cutting Stock

6. In the famous Northeast Tollway staffing problem, it was implied that at least a certain specified

number of collectors were needed each period of the day. No extra benefit was assumed from having

more collectors on duty than specified. You may recall that, because of the fluctuations in

requirements over the course of the day, the optimal solution did have more collectors than required

on duty during certain periods.

 In reality, if more collectors are on duty than specified, the extra collectors are not completely

valueless. The presence of the extra collectors results in less waiting for the motorists (boaters?).

Similarly, if less than the specified number of collectors is on duty, the situation is not necessarily

intolerable. Motorists will still be processed, but they may have to wait longer.

 After much soul searching and economic analysis, you have concluded that one full-time

collector costs $100 per shift. An extra collector on duty for one hour results in $10 worth of benefits

to motorists. Further, having one less collector on duty than required during an one-hour period

results in a waiting cost to motorists of $50.

 Assuming you wish to minimize total costs (motorists and collectors), show how you would

modify the LP formulation. You only need illustrate for one constraint.

7. Some cities have analyzed their street cleaning and snow removal scheduling by methods somewhat

analogous to those described for the Sayre-Priors airline problem. After a snowfall, each of specified

streets must be swept by at least one truck.

a) What are the analogs of the flight legs in Sayre-Priors?

b) What might be the decision variables corresponding to the tours in Sayre-Priors?

c) Should the constraints be equality or inequality in this case and why?

8. The St. Libory Quarry Company (SLQC) sells the rock that it quarries in four grades: limestone,

chat, Redi-Mix-Grade, and coarse. A situation it regularly encounters is one in which it has large

inventories of the grades it does not need and very little inventory in the grades needed at the

moment. Large rocks removed from the earth are processed through a crusher to produce the four

grades. For example, this week it appears the demand is for 50 tons of limestone, 60 tons of chat,

70 tons of Redi-Mix, and 30 tons of coarse. Its on-hand inventories for these same grades are

respectively: 5, 40, 30, and 40 tons. For practical purposes, one can think of the crusher as having

three operating modes: close, medium, and coarse. SLQC has gathered some data and has concluded

one ton of quarried rock gets converted into the following output grades according to the crusher

setting as follows:

 Tons Output per Ton Input

Crusher
Operating

Mode

Limestone

Chat

Redi-Mix

Coarse

Operating
Cost/Ton

Close 0.50 0.30 0.20 0.00 $8

Medium 0.20 0.40 0.30 0.10 $5

Coarse 0.05 0.20 0.35 0.40 $3

 SLQC would like to know how to operate its crusher to bring inventories up to the equivalent

of at least two weeks worth of demand. Provide whatever help your current circumstances permit.

Covering, Staffing & Cutting Stock Chapter 7 141

9. A certain optical instrument is being designed to selectively provide radiation over the spectrum

from about 3500 to 6400 Angstrom units. To cover this optical range, a range of chemicals must be

incorporated into the design. Each chemical provides coverage of a certain range. A list of the

available chemicals, the range each covers, and its relative cost is provided below.

 Range Covered in Angstroms

Chemical

Lower Limit

Upper Limit

Relative
Cost

PBD 3500 3655 4

PPO 3520 3905 3

PPF 3600 3658 1

PBO 3650 4075 4

PPD 3660 3915 1

POPOP 3900 4449 6

A-NPO 3910 4095 2

NASAL 3950 4160 3

AMINOB 3995 4065 1

BBO 4000 4195 2

D-STILB 4000 4200 2

D-POPOP 4210 4405 2

A-NOPON 4320 4451 2

D-ANTH 4350 4500 2

4-METHYL-V 4420 5400 9

7-D-4-M 4450 4800 3

ESCULIN 4450 4570 1

NA-FLUOR 5200 6000 9

RHODAMINE-6G 5600 6200 8

RHODAMINE-B 6010 6400 8

ACRIDINE-RED 6015 6250 2

 What subset of the available chemicals should be chosen to provide uninterrupted coverage

from 3500 to 6400 Angstroms?

10. A manufacturer has the following orders in hand:

Order X Y Z

Units 60,000 90,000 300,000

Selling
Price/unit

.45 .24 .16

142 Chapter 7 Covering, Staffing & Cutting Stock

 Each order is for a single distinct type of product. The manufacturer has four different

production processes available for satisfying these orders. Each process produces a different

combination of the three products. Each process costs $0.50 per unit. The manufacturer must satisfy

the volumes specified in the above table. The manufacturer formulated the following LP:

Min .5 A + .5 B + .5 C + .5 D

s.t.

 A >= 60000

 2 B + C >= 90000

 A + C + 3 D >= 300000

a) Which products are produced by process C?

b) Suppose the agreements with customers are such that, for each product, the manufacturer

is said to have filled the order if the manufacturer delivers an amount within + or − 10%

of the “nominal” volume in the above table. The customer pays for whatever is delivered.

Modify the formulation to incorporate this more flexible arrangement.

11. The formulation and solution of a certain staff-scheduling problem are shown below:

MIN M + T + W + R + F + S + N

 T + W + R + F + S >= 14

 W + R + F + S + N >= 9

 M + R + F + S + N >= 8

 M + T + F + S + N >= 6

 M + T + W + S + N >= 17

 M + T + W + R + N >= 15

 M + T + W + R + F >= 18

END

Optimal solution found at step: 4

Objective value: 19.0000000

 Variable Value Reduced Cost

 M 5.000000 .0000000

 T .0000000 .0000000

 W 11.00000 .0000000

 R .0000000 .0000000

 F 2.000000 .0000000

 S 1.000000 .0000000

 N .0000000 .3333333

 Row Slack or Surplus Dual Price

 2 .0000000 -.3333333

 3 5.000000 .0000000

 4 .0000000 -.3333333

 5 2.000000 .0000000

 6 .0000000 -.3333333

 7 1.000000 .0000000

 8 .0000000 -.3333333

Covering, Staffing & Cutting Stock Chapter 7 143

 where, M, T, W, R, F, S, N is the number of people starting their five-day work week on Monday,

Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday respectively.

a) How many people are required on duty on Thursday?

b) Suppose that part-time helpers are available who will work the three-day pattern, Thursday,

Friday, and Saturday. That is, if you hire one of them, they will work all three days. These

people cost 20% more per day than the ordinary folk who work a five-day week. Let P

denote the number of part-timers to hire. Show how to modify the formulation to

incorporate this option.

c) Using information from the solution report, what can you say about the (economic)

attractiveness of the part-time help?

12. Acie Knielson runs a small survey research company out of a little office on the Northwest side. He

has recently been contracted to do a telephone survey of the head-of-household of at least 220

households. The demographics of the survey must satisfy the following profile:

Age of head-of-household 18-25 26-35 36-60 61

Households in survey (min): 30 50 100 40

 When Acie makes a phone call, he knows only on average what kind of head-of-household he

will find (if any). Acie can make either daytime or nighttime phone calls. Calls at night have a higher

probability of success. However, they cost more because a higher wage must be paid. Being a

surveyor, Acie has good statistics on all this. Specifically, from past experience, he knows he can

expect:

Percent of calls finding head-of-household of given type

Call Type

18-25

26-35

36-60

61 or
more

Not at
home

Cost/call

Day 2% 2% 8% 15% 73% $2.50

Night 4% 14% 28% 18% 36% $5.50

 In words, what are the decision variables? What are the constraints? What is your

recommendation? How much do you estimate this project will cost Acie?

144 Chapter 7 Covering, Staffing & Cutting Stock

13. A political candidate wants to make a mass mailing of some literature to counteract some nasty

remarks his opponent has recently made. Five mailing lists have been identified that contain names

and addresses of voters our candidate might like to reach. Each list may be purchased for a price. A

partial list cannot be purchased. The numbers of names each list contains in each of four professions

are listed below.

Names on Each List (in 1000’s) by Profession
Mailing

List

Law

Health
Business

Executives
Craft

Professionals
Cost of

List

1 28 4 7 2 41,000

2 9 29 11 3 52,000

3 6 3 34 18 61,000

4 2 4 6 20 32,000

5 8 9 12 14 43,000

Desired

Coverage
20 18 22 20

 Our candidate has estimated how many voters he wants to reach in each profession. This is

listed in the row “Desired Coverage”. Having a more limited budget than the opponent, our

candidate does not want to spend any more than he has to in order to “do the job”.

a) How many decision variables would you need to model this problem?

b) How many constraints would you need to model this problem?

c) Define the decision variables you would use and write the objective function.

d) Write a complete model formulation.

14. Your agency provides telephone consultation to the public from 7 a.m. to 8 p.m., five days a week.

The telephone load on your agency is heaviest in the months around April 15 of each year. You

would like to set up staffing procedures for handling this load during these busy months. Each

telephone consultant you hire starts work each day at either 7, 8, 9, 10, or 11 a.m., works for four

hours, is off for one hour, and then works for another four hours. A complication that has become

more noteworthy in recent years is that an increasing fraction of the calls handled by your agency

is from Spanish-speaking clients. Therefore, you must have some consultants who speak Spanish.

You are able to hire two kinds of consultants: English-speaking only, and bilingual (i.e., both

English- and Spanish-speaking). A bilingual consultant can handle English and Spanish calls

equally well. It should not be surprising that a bilingual consultant costs 1.1 times as much as an

English-only consultant. You have collected some data on the call load by hour of the day and

language type, measured in consultants required, for one of your more important offices. These data

are summarized below:

Hour of the day: 7 8 9 10 11 12 1 2 3 4 5 6 7

English load: 4 4 5 6 6 8 5 4 4 5 5 5 3

Spanish load: 5 5 4 3 2 3 4 3 2 1 3 4 4

 For example, during the hour from 10 a.m. to 11a.m., you must have working at least three

Spanish-speaking consultants plus at least six more who can speak English.

How many consultants of each type would you start at each hour of the day?

Covering, Staffing & Cutting Stock Chapter 7 145

15. The well-known mail order company R. R. Bean staffs its order-taking phone lines seven days per

week. Each staffer costs $100 per day and can work five consecutive days per week. An important

question is: Which five-day interval should each staffer work? One of the staffers is pursuing an

MBA degree part-time and, as part of her coursework, developed the following model specific to

R. R. Bean’s staffing requirements.

MIN=500 * M + 500 * T + 500 * W + 500 * R + 500 * F

 + 500 * S + 500 * N;

 [R1] M + R + F + S + N >= 6 ;

 [R2] M + T + F + S + N >= 7 ;

 [R3] M + T + W + S + N >= 11;

 [R4] M + T + W + R + N >= 9 ;

 [R5] M + T + W + R + F >= 11;

 [R6] T + W + R + F + S >= 9;

 [R7] W + R + F + S + N >= 10;

END

 Note that M denotes the number of staffers starting on Monday, T the number starting on

Tuesday, etc. R1, R2, etc., simply serve as row identifiers.

a) What is the required staffing level on Wednesday (not the number to hire starting on

Wednesday, which is a harder question)?

b) Suppose you can hire people on a 3-day-per-week part-time schedule to work the pattern

consisting of the three consecutive days, Wednesday, Thursday, Friday. Because of

training, turnover, and productivity considerations of part-timers, you figure the daily cost

of these part-timers will be $105 per day. Show how this additional option would be added

to the model above.

c) Do you think the part-time option above might be worth using?

d) When the above staffing requirements are met, there will nevertheless be some customer

calls that are lost, because of the chance all staffers may be busy when a prospective

customer calls. A fellow from marketing who is an expert on customer behavior and knows

a bit of queuing theory estimates having an additional staffer on duty on any given day

beyond the minimum specified in the model above is worth $75. More than one above the

minimum is of no additional value. For example, if the minimum number of staffers

required on a day is 8, but there are actually 10 on duty, then the better service will generate

$75 of additional revenue. A third fellow, who is working on an economics degree

part-time at Freeport Community College, argues that, because the $75 per day benefit is

less than the $100 per day cost of a staffer, the solution will be unaffected by the $75

consideration. Is this fellow’s argument correct?

e) To double check your answer to (b), you decide to generalize the formulation to incorporate

the $75 benefit of one-person overstaffing. Define any additional decision variables needed

and show (i) any modifications to the objective function and to existing constraints and (ii)

any additional constraints. You need only illustrate for one day of the week.

146 Chapter 7 Covering, Staffing & Cutting Stock

16. In a typical state lottery, a player submits an entry by choosing six numbers without replacement

(i.e., no duplicates) from the set of numbers {1, 2, 3, ..., 44}. After all entries have been submitted,

the state randomly chooses six numbers without replacement from the set {1, 2, 3,..., 44}. If all of

your six numbers match those of the state, then you win a big prize. If only five out of six of your

numbers match those of the state, then you win a medium size prize. If only four out of six of your

numbers match those of the state, then you win a small prize. If several winners chose the same

set of numbers, then the prize is split equally among them. You are thinking of submitting two

entries to the next state lottery. A mathematician friend suggests the two entries: {2, 7, 1, 8, 28,

18} and {3, 1, 4, 15, 9, 2}. Another friend suggests simply {1, 2, 3, 4, 5, 6} and {7, 8, 9, 10, 11,

12}. Which pair of entries has the higher probability of winning some prize?

17. For most cutting stock problems, the continous LP solution is close to the IP solution. In

particular, you may notice that many cutting stock problems possess the “integer round-up”

feature. For example, if the LP solution requires 11.6 sets, then that is a good indication that

there is an IP solution that requires exactly 12 sets. Does this round-up feature hold in general?

Consider for example a problem in which there is a single raw material of width 600 cm. There

are three finished good widths: 300 cm, 200 cm, and 120 cm, with requirements respectively of

3, 5, and 9 units.

147

8

Networks, Distribution and
PERT/CPM

8.1 What’s Special About Network Models
A subclass of models called network LPs warrants special attention for three reasons:

1. They can be completely described by simple, easily understood graphical figures.

2. Under typical conditions, they have naturally integer answers, and one may find a network

LP a useful device for describing and analyzing the various shipment strategies.

3. They are frequently easier to solve than general LPs.

 Physical examples that come to mind are pipeline or electrical transmission line networks. Any

enterprise producing a product at several locations and distributing it to many warehouses and/or

customers may find a network LP a useful device for describing and analyzing shipment strategies.

 Although not essential, efficient specialized solution procedures may be used to solve network LPs.

These procedures may be as much as 100 times faster than the general simplex method. Bradley, Brown,

and Graves (1977) give a detailed description. Some of these specialized procedures were developed

several years before the simplex method was developed for general LPs.

 Figure 8.1 illustrates the network representing the distribution system of a firm using intermediate

warehouses to distribute a product. The firm has two plants (denoted by A and B), three warehouses

(denoted by X, Y, and Z), and four customer areas (denoted by 1, 2, 3, 4). The numbers adjacent to each

node denote the availability of material at that node. Plant A, for example, has nine units available to be

shipped. Customer 3, on the other hand, has −4 units meaning it needs to receive a shipment of four

units.

 The number above each arc is the cost per unit shipped along that arc. For example, if five of plant

A’s nine units are shipped to warehouse Y, then a cost of 5 2 = 10 will be incurred as a direct result.

The problem is to determine the amount shipped along each arc, so total costs are minimized and every

customer has his requirements satisfied.

148 Chapter 8 Networks, Distribution & PERT/CPM

Figure 8.1 Three-Level Distribution Network

9

8

1

2

3
1

2

5
7

9
6

7

8
7

4

1

2

3

4

-3

-5

-4

-2

Plants Warehouses Customers

X

Y

Z

B

A

 The essential condition on an LP for it to be a network problem is that it be representable as a

network. There can be more than three levels of nodes, any number of arcs between any two nodes, and

upper and lower limits on the amount shipped along a given arc.

 With variables defined in an obvious way, the general LP describing this problem is:

[COST] MIN = AX + 2 * AY + 3 * BX + BY + 2 * BZ + 5 * X1

 + 7 * X2 + 9 * Y1 + 6 * Y2 + 7 * Y3 + 8 * Z2 + 7 * Z3

 + 4 * Z4;

[A] AX + AY <= 9;

[B] BX + BY + BZ <= 8;

[X] - AX - BX + X1 + X2 = 0;

[Y] - AY - BY + Y1 + Y2 + Y3 = 0;

[Z] - BZ + Z2 + Z3 + Z4 = 0;

[C1] - X1 - Y1 = -3;

[C2] - X2 - Y2 - Z2 = -5;

[C3] - Y3 - Z3 = -4;

[C4] - Z4 = -2;

 There is one constraint for each node that is of a “sources = uses” form. Constraint 5, for example,

is associated with warehouse Y and states that the amount shipped out minus the amount shipped in must

equal 0.

 A different view of the structure of a network problem is possible by displaying just the coefficients

of the above constraints arranged by column and row. In the picture below, note that the apostrophes are

placed every third row and column just to help see the regular patterns:

 A A B B B X X Y Y Y Z Z Z

 X Y X Y Z 1 2 1 2 3 2 3 4

COST: 1 2 3 1 2 5 7 9 6 7 8 7 4 MIN

A: 1 1 ' ' ' ' = 9

B: ' ' 1 1 1 ' ' ' ' ' ' ' ' = 8

X: −1 −1 1 1 ' ' =

Y: −1 −1 ' 1 1 1 ' =

Z: ' ' ' ' −1 ' ' ' ' ' 1 1 1 =

C1: ' −1 −1 ' ' = −3
C2: ' ' −1 −1 −1 ' = -5

C3: ' ' ' ' ' ' ' ' ' −1 ' −1 ' = -4

C4: ' ' ' ' −1 = −2

Networks, Distribution & PERT/CPM Chapter 8 149

 You should notice the key feature of the constraint matrix of a network problem. That is, without

regard to any bound constraints on individual variables, each column has exactly two nonzeroes in the

constraint matrix. One of these nonzeroes is a +1, whereas the other is a −1. According to the convention

we have adopted, the +1 appears in the row of the node from which the arc takes material, whereas the

row of the node to which the arc delivers material is a −1. On a problem of this size, you should be able

to deduce the optimal solution manually simply from examining Figure 8.1. You may check it with the

computer solution below:

Variable Value Reduced Cost

 AX 3.000000 0.000000

 AY 3.000000 0.000000

 BX 0.000000 3.000000

 BY 6.000000 0.000000

 BZ 2.000000 0.000000

 X1 3.000000 0.000000

 X2 0.000000 0.000000

 Y1 0.000000 5.000000

 Y2 5.000000 0.000000

 Y3 4.000000 0.000000

 Z2 0.000000 3.000000

 Z3 0.000000 1.000000

 Z4 2.000000 0.000000

 Row Slack or Surplus Dual Price

 COST 100.000000 -1.000000

 A 3.000000 0.000000

 B 0.000000 1.000000

 X 0.000000 1.000000

 Y 0.000000 2.000000

 Z 0.000000 3.000000

 C1 0.000000 6.000000

 C2 0.000000 8.000000

 C3 0.000000 9.000000

 C4 0.000000 7.000000

This solution exhibits two pleasing features found in the solution to any network problem:

1. If the right-hand side coefficients (the capacities and requirements) are integer, then the

variables will also be integer.

2. If the objective coefficients are integer, then the dual prices will also be integer.

We can summarize network LPs as follows:

1. Associated with each node is a number that specifies the amount of commodity available

at that node (negative implies that commodity is required.)

2. Associated with each arc are:

a) a cost per unit shipped (which may be negative) over the arc,

b) a lower bound on the amount shipped over the arc (typically zero), and

c) an upper bound on the amount shipped over the arc (infinity in our example).

 The problem is to determine the flows that minimize total cost subject to satisfying all the supply,

demand, and flow constraints.

150 Chapter 8 Networks, Distribution & PERT/CPM

8.1.1 Special Cases
There are a number of common applications of LP models that are special cases of the standard network

LP. The ones worthy of mention are:

1. Transportation or distribution problems. A two-level network problem, where all the

nodes at the first level are suppliers, all the nodes at the second level are users, and the only

arcs are from suppliers to users, is called a transportation, or distribution model.

2. Shortest and longest path problems. Suppose one is given the road network of the United

States and wishes to find the shortest route from Bangor to San Diego. This is equivalent

to a special case of a network or transshipment problem in which one unit of material is

available at Bangor and one unit is required at San Diego. The cost of shipping over an arc

is the length of the arc. Simple, fast procedures exist for solving this problem. An important

first cousin of this problem, the longest route problem, arises in the analysis of PERT/CPM

projects.

3. The assignment problem. A transportation problem in which the number of suppliers equals

the number of customers, each supplier has one unit available, and each customer requires

one unit, is called an assignment problem. An efficient, specialized procedure exists for its

solution.

4. Maximal flow. Given a directed network with an upper bound on the flow on each arc, one

wants to find the maximum that can be shipped through the network from some specified

origin, or source node, to some other destination, or sink node. Applications might be to

determine the rate at which a building can be evacuated or military material can be shipped

to a distant trouble spot.

8.1.2 Fitting into Network Structure: Roads with No Left Turns
The parcel delivery service, UPS got publicity a number of years ago when it claimed that its drivers did

not make left turns. The argument is that at a busy intersection, making a left turn requires the left turning

vehicle to wait for a gap in oncoming traffic. We illustrate here that it sometimes requires a bit of thought

to precisely describe a problem as a network problem. How do we represent restrictions on turns at an

intersection, left turns and U turns in particular? One way of representing turn restrictions in a standard

directed network is to add arcs and nodes to an intersection to represent the valid possibilities. Figure

8.2 illustrates what one can do to represent a 4-way intersection where left turns and U turns are

prohibited. One node is replaced by 8 nodes and 8 additional arcs. Observe that for a Roundabout,

however, no additional nodes and arcs are required. Some UPS drivers have admitted that left turns are

sometimes made, usually only on streets with low traffic.

Networks, Distribution & PERT/CPM Chapter 8 151

Figure 8.2 Network for a 4-Way Intersection with No Left or U Turns

8.2 PERT/CPM Networks and LP
Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM) are two closely

related techniques for monitoring the progress of a large project. A key part of PERT/CPM is calculating

the critical path. That is, identifying the subset of the activities that must be performed exactly as planned

in order for the project to finish on time.

 We will show that the calculation of the critical path is a very simple network LP problem,

specifically, a longest path problem. You do not need this fact to efficiently calculate the critical path,

but it is an interesting observation that becomes useful if you wish to examine a multitude of “crashing”

options for accelerating a tardy project.

152 Chapter 8 Networks, Distribution & PERT/CPM

 In the table below, we list the activities involved in the simple, but nontrivial, project of building a

house. An activity cannot be started until all of its predecessors are finished:

 Activity Predecessors
Activity Mnemonic Time (Mnemonic)

Dig Basement DIG 3 ⎯

Pour Foundation FOUND 4 DIG

Pour Basement Floor POURB 2 FOUND

Install Floor Joists JOISTS 3 FOUND

Install Walls WALLS 5 FOUND

Install Rafters RAFTERS 3 WALLS, POURB

Install Flooring FLOOR 4 JOISTS

Rough Interior ROUGH 6 FLOOR

Install Roof ROOF 7 RAFTERS

Finish Interior FINISH 5 ROUGH, ROOF

Landscape SCAPE 2 POURB, WALLS

 In Figure 8.3, we show the so-called PERT (or activity-on-arrow) network for this project. We

would like to calculate the minimum elapsed time to complete this project. Relative to this figure, the

number of interest is simply the longest path from left to right in this figure. The project can be completed

no sooner than the sum of the times of the successive activities on this path. Verify for yourself that the

critical path consists of activities DIG, FOUND, WALLS, RAFTERS, ROOF, and FINISH and has length

27.

 Even though this example can be worked out by hand, almost without pencil and paper, let us derive

an LP formulation for solving this problem. Most people attempting this derivation will come up with

one of two seemingly unrelated formulations.

 The first formulation is motivated as follows. Let variables DIG, FOUND, etc. be either 1 or 0

depending upon whether activities DIG, FOUND, etc. are on or not on the critica1 path. The variables

equa1 to one will define the critical path. The objective function will be related to the fact that we want

to find the maximum length path in the PERT diagram.

 Our objective is in fact:

MAX = 3 * DIG + 4 * FOUND + 2 * POURB + 3 * JOISTS +

 5 * WALLS + 3 * RAFTERS + 4 * FLOOR + 6 *

 ROUGH + 7 * ROOF + 5 * FINISH + 2 * SCAPE;

Networks, Distribution & PERT/CPM Chapter 8 153

 Figure 8.3 Activity-on-Arc PERT/CPM Network

A B C

D

F

H

I

G

E

3
3

3

4

4

5

5

2

2

6

7

Dig Found

Joists

Scape

Walls

Pour B Rafters

Roof

Finish

RoughFloor

 By itself, this objective seems to take the wrong point of view. We do not want to maximize the

project length. However, if we specify the proper constraints, we shall see this objective will seek out

the maximum length path in the PERT network. We want to use the constraints to enforce the following:

1. DIG must be on the critical path.

2. An activity can be on the critical path only if one of its predecessors is on the critical path.

Further, if an activity is on a critical path, exactly one of its successors must be on the

critical path, if it has successors.

3. Exactly one of SCAPE or FINISH must be on the critical path.

Convince yourself the following set of constraints will enforce the above:

− DIG = −1;

− FOUND + DIG = 0;

− JOISTS — POURB — WALLS + FOUND = 0;

− FLOOR + JOISTS = 0;

− RAFTERS − SCAPE + POURB + WALLS = 0;

− ROUGH + FLOOR = 0;

− ROOF + RAFTERS = 0;

− FINISH + ROUGH + ROOF = 0;
+ FINISH + SCAPE = +1;

 If you interpret the length of each arc in the network as the scenic beauty of the arc, then the

formulation corresponds to finding the most scenic route by which to ship one unit from A to I.

154 Chapter 8 Networks, Distribution & PERT/CPM

 The solution of the problem is:

Optimal solution found at step: 2

Objective value: 27.00000

Variable Value Reduced Cost

 DIG 1.000000 0.0000000

 FOUND 1.000000 0.0000000

 POURB 0.0000000 3.000000

 JOISTS 0.0000000 0.0000000

 WALLS 1.000000 0.0000000

 RAFTERS 1.000000 0.0000000

 FLOOR 0.0000000 0.0000000

 ROUGH 0.0000000 2.000000

 ROOF 1.000000 0.0000000

 FINISH 1.000000 0.0000000

 SCAPE 0.0000000 13.00000

 Row Slack or Surplus Dual Price

 1 27.00000 1.000000

 2 0.0000000 6.000000

 3 0.0000000 -9.000000

 4 0.0000000 -5.000000

 5 0.0000000 -2.000000

 6 0.0000000 0.0000000

 7 0.0000000 2.000000

 8 0.0000000 3.000000

 9 0.0000000 10.00000

 10 0.0000000 15.00000

 Notice the variables corresponding to the activities on the critical path have a value of 1. What is

the solution if the first constraint, −DIG = −1, is deleted?

 It is instructive to look at the PICTURE of this problem in the following figure:

 R

 J A F

 F P O W F F R I S

 O O I A T L O R N C

 D U U S L E O U O I A

 I N R T L R O G O S P

 G D B S S S R H F H E

1: 3 4 2 3 5 3 4 6 7 5 2 MAX

2: −1 ' ' ' = −1
3: 1 −1 ' ' ' ' ' ' ' ' ' =

4: 1 −1 −1 −1 ' ' =

5: 1 −1 ' =

6: ' ' 1 ' 1 −1 ' ' ' ' −1 =

7: ' 1 −1 ' =

8: ' 1 ' −1 ' =

9: ' ' ' ' ' ' ' 1 1 −1 ' =

10: ' ' 1 1 = 1

 Notice that each variable has at most two coefficients in the constraints. When two, they are +1 and

−1. This is the distinguishing feature of a network LP.

Networks, Distribution & PERT/CPM Chapter 8 155

 Now, let us look at the second possible formulation. The motivation for this formulation is to

minimize the elapsed time of the project. To do this, realize that each node in the PERT network

represents an event (e.g., as follows: A, start digging the basement; C, complete the foundation; and I,

complete landscaping and finish interior).

 Define variables A, B, C, …, H, I as the time at which these events occur. Our objective function is

then:

MIN = I − A;

 These event times are constrained by the fact that each event has to occur later than each of its

preceding events, at least by the amount of any intervening activity. Thus, we get one constraint for each

activity:

B − A >= 3; ! DIG;

C − B >= 4; ! FOUND;

E − C >= 2;

D − C >= 3;

E − C >= 5;

F − D >= 4;

G − E >= 3;

H − F >= 6;

H − G >= 7;

I − H >= 5;

I − E >= 2;

The solution to this problem is:

Optimal solution found at step: 0

Objective value: 27.00000

Variable Value Reduced Cost

 I 27.00000 0.0000000

 A 0.0000000 0.0000000

 B 3.000000 0.0000000

 C 7.000000 0.0000000

 E 12.00000 0.0000000

 D 10.00000 0.0000000

 F 14.00000 0.0000000

 G 15.00000 0.0000000

 H 22.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 27.00000 1.000000

 2 0.0000000 -1.000000

 3 0.0000000 -1.000000

 4 3.000000 0.0000000

 5 0.0000000 0.0000000

 6 0.0000000 -1.000000

 7 0.0000000 0.0000000

 8 0.0000000 -1.000000

 9 2.000000 0.0000000

 10 0.0000000 -1.000000

 11 0.0000000 -1.000000

 12 13.00000 0.0000000

156 Chapter 8 Networks, Distribution & PERT/CPM

 Notice that the objective function value equals the critical path length. We can indirectly identify

the activities on the critical path by noting the constraints with nonzero dual prices. The activities

corresponding to these constraints are on the critical path. This correspondence makes sense. The

right-hand side of a constraint is the activity time. If we increase the time of an activity on the critical

path, it should increase the project length and thus should have a nonzero dual price. What is the solution

if the first variable, A, is deleted?

 The PICTURE of the coefficient matrix for this problem follows:

 A B C D E F G H I

 1:—1 ' ' 1 MIN

 2:−1 1 ' ' 3

 3: ' −1 '1 ' ' ' ' 4

 4: −1 ' 1 ' 2

 5: −1 1 ' > 3

 6: ' −1 ' 1 ' ' ' 5

 7: −1 1 ' > 4

 8: ' −1 1 3

 9: ' ' ' −1 ' 1 ' 6

10: ' −1 1 > 7

11: ' ' −1 1 5

12: ' ' ' −1 ' ' '1 2

 Notice the PICTURE of this formulation is essentially the PICTURE of the previous formulation

rotated ninety degrees. Even though these two formulations originally were seemingly unrelated, there

is really an incestuous relationship between the two, a relationship that mathematicians politely refer to

as duality.

8.3 Activity-on-Arc vs. Activity-on-Node Network Diagrams
Two conventions are used in practice for displaying project networks: (1) Activity-on-Arc (AOA) and

(2) Activity-on-Node (AON). Our previous example used the AOA convention. The characteristics of

the two are:

AON

• Each activity is represented by a node in the network.

• A precedence relationship between two activities is represented by an arc or link between

the two.

• AON may be less error prone because it does not need dummy activities or arcs.

AOA

• Each activity is represented by an arc in the network.

• If activity X must precede activity Y, there are X leads into arc Y. The nodes thus represent

events or “milestones” (e.g., “finished activity X”). Dummy activities of zero length may

be required to properly represent precedence relationships.

• AOA historically has been more popular, perhaps because of its similarity to Gantt charts

used in scheduling.

 An AON project with six activities is shown in Figure 8.4. The number next to each node is the

duration of the activity. Activities A and B are the sources or start of the project. Activity F is the final

activity. By inspection, you can discover that the longest path consists of activities A, C, E, and F. It has

Networks, Distribution & PERT/CPM Chapter 8 157

a length of 29. The corresponding AOA network for the same project is shown in Figure 8.5. In the AOA

network, we have enclosed the activity letters in circles above the associated arc. The unenclosed

numbers below each arc are the durations of the activities. We have given the nodes, or milestones,

arbitrary number designations enclosed in squares. Notice the dummy activity (the dotted arc) between

nodes 3 and 4. This is because a dummy activity will be required in an AOA diagram anytime that two

activities (e.g., A and B) share some (e.g., activity D), but not all (e.g., activity C), successor activities.

Figure 8.4 An Activity-on-Node Representation

7

9 5 6

9 8
F D B

A C E

Figure 8.5 An Activity-on-Arc Representation

0

A

D

C

E

F

9 5

6

9 8

7
B

7

3 1 5

6 4 2

8.4 Crashing of Project Networks
Once the critical path length for a project has been identified, the next question invariably asked is: can

we shorten the project? The process of decreasing the duration of a project or activity is commonly called

crashing. For many construction projects, it is common for the customer to pay an incentive to the

contractor for finishing the project in a shorter length of time. For example, in highway repair projects,

it is not unusual to have incentives from $5,000 to $25,000 per day that the project is finished before a

target date.

158 Chapter 8 Networks, Distribution & PERT/CPM

8.4.1 The Cost and Value of Crashing
There is value in crashing a project. In order to crash a project, we must crash one or more activities.

Crashing an activity costs money. Deciding to crash an activity requires us to compare the cost of

crashing that activity with the value of the resulting reduction in project length. This decision is

frequently complicated by the fact that some negotiation may be required between the party that incurs

the cost of crashing the activity (e.g., the contractor) and the party that enjoys the value of the crashed

project (e.g., the customer).

8.4.2 The Cost of Crashing an Activity
An activity is typically crashed by applying more labor to it (e g., overtime or a second shift). We might

typically expect that using second-shift labor could cost 1.5 times as much per hour as first-shift labor.

We might expect third-shift labor to cost twice as much as first-shift labor.

 Consider an activity that can be done in six days if only first-shift labor is used and has a labor cost

of $6,000. If we allow the use of second-shift labor and thus work two shifts per day, the activity can be

done in three days for a cost of 3 1000 + 3 l000 1.5 = 7,500. If third-shift labor is allowed, then

the project can be done in two days by working three shifts per day and incurring a total of:

2 1000 + 2 1000 1.5 + 2 1000 2 = $9,000.

Thus, we get a crashing cost curve for the activity as shown in Figure 8.6:

Figure 8.6 Activity Crash Cost Curve

Activity Duration

C
o
s
t

1.5

1.25

1

1/3 1/2 1

Normal time

8.4.3 The Value of Crashing a Project
There are two approaches to deciding upon the amount of project crashing: (a) we simply specify a

project duration time and crash enough to achieve this duration, or (b) we estimate the value of crashing

it for various days. As an example of (a), in 1987 a new stadium was being built for the Montreal Expos

baseball team. The obvious completion target was the first home game of the season.

 As an example of (b), consider an urban expressway repair. What is the value per day of completing

it early? Suppose that 6,000 motorists are affected by the repair project and each is delayed by 10 minutes

Networks, Distribution & PERT/CPM Chapter 8 159

each day because of the repair work (e.g., by taking alternate routes or by slower traffic). The total daily

delay is 6,000 10 = 60,000 minutes = 1000 hours. If we assign an hourly cost of $5/person hours,

the social value of reducing the repair project by one day is $5,000.

8.4.4 Formulation of the Crashing Problem
Suppose we have investigated the crashing possibilities for each activity or task in our previous project

example. These estimates are summarized in the following table:

 Minimum duration
 Normal duration if crashed

Activity Predecessor (Days) (Days) $/Day

A — 9 5 5000

B — 7 3 6000

C A 5 3 4000

D A,B 8 4 2000

E C 6 3 3000

F D,E 9 5 9000

 For example, activity A could be done in five days rather than nine. However, this would cost us an

extra (9 − 5) 5000 = $20,000.

 First, consider the simple case where we have a hard due date by which the project must be done.

Let us say 22 days in this case. How would we decide which activities to crash? Activity D is the cheapest

to crash per day. However, it is not on the critical path, so its low cost is at best just interesting.

 Let us define:

EFi = earliest finish time of activity i, taking into account any crashing that is done;

Ci = number of days by which activity i is crashed.

In words, the LP model will be:

Minimize Cost of crashing

subject to

For each activity j and each predecessor i:

 earliest finish of j earliest finish of predecessor i + actual duration of j;

For each activity j:

 minimum duration for j if crashed actual duration of j normal duration for j.

A LINGO formulation is:

! Find optimal crashing for a project with a due date;

SETS:

 TASK: NORMAL, FAST, COST, EF, ACTUAL;

 PRED(TASK, TASK):;

ENDSETS

160 Chapter 8 Networks, Distribution & PERT/CPM

DATA:

 TASK, NORMAL, FAST, COST =

 A 9 5 5000

 B 7 3 6000

 C 5 3 4000

 D 8 4 2000

 E 6 3 3000

 F 9 5 9000;

 PRED =

 A, C

 A, D

 B, D

 C, E

 D, F

 E, F;

 DUEDATE = 22;

ENDDATA

!-------------------------------------;

! Minimize the cost of crashing;

 [OBJ] MIN = @SUM(TASK(I): COST(I)*(NORMAL(I) - ACTUAL(I)));

! For tasks with no predecessors...;

 @FOR(TASK(J): EF(J) >= ACTUAL(J););

! and for those with predecessors;

 @FOR(PRED(I, J):

 EF(J) >= EF(I) + ACTUAL(J);

);

! Bound the actual time;

 @FOR(TASK(I):

 @BND(FAST(I), ACTUAL(I), NORMAL(I));

);

! Last task is assumed to be last in project;

 EF(@SIZE(TASK)) <= DUEDATE;

Part of the solution is:

Global optimal solution found at step: 24

 Objective value: 31000.00

 Variable Value Reduced Cost

 EF(A) 7.000000 0.0000000

 EF(B) 7.000000 0.0000000

 EF(C) 10.00000 0.0000000

 EF(D) 13.00000 0.0000000

 EF(E) 13.00000 0.0000000

 EF(F) 22.00000 0.0000000

 ACTUAL(A) 7.000000 0.0000000

 ACTUAL(B) 7.000000 -4000.000

 ACTUAL(C) 3.000000 1000.000

 ACTUAL(D) 6.000000 0.0000000

 ACTUAL(E) 3.000000 2000.000

 ACTUAL(F) 9.000000 -2000.000

Thus, for an additional cost of $31,000, we can meet the 22-day deadline.

Networks, Distribution & PERT/CPM Chapter 8 161

 Now, suppose there is no hard project due date, but we do receive an incentive payment of $5000

for each day we reduce the project length. Define PCRASH = number of days the project is finished

before the twenty-ninth day. Now, the formulation is:

! Find optimal crashing for a project with

 a due date and incentive for early completion;

SETS:

 TASK: NORMAL, FAST, COST, EF, ACTUAL;

 PRED(TASK, TASK):;

ENDSETS

DATA:

 TASK, NORMAL, FAST, COST =

 A 9 5 5000

 B 7 3 6000

 C 5 3 4000

 D 8 4 2000

 E 6 3 3000

 F 9 5 9000;

 PRED =

 A, C

 A, D

 B, D

 C, E

 D, F

 E, F;

! Incentive for each day we beat the due date;

 INCENT = 5000;

 DUEDATE = 29;

ENDDATA

!-------------------------------------;

! Minimize the cost of crashing

 less early completion incentive payment;

 [OBJ] MIN = @SUM(TASK(I): COST(I)*(NORMAL(I) - ACTUAL(I)))

 - INCENT * PCRASH;

! For tasks with no predecessors...;

 @FOR(TASK(J): EF(J) >= ACTUAL(J););

! and for those with predecessors;

 @FOR(PRED(I, J):

 EF(J) >= EF(I) + ACTUAL(J);

);

! Bound the actual time;

 @FOR(TASK(I):

 @BND(FAST(I), ACTUAL(I), NORMAL(I));

);

! Last task is assumed to be last in project;

 EF(@SIZE(TASK)) + PCRASH = DUEDATE;

162 Chapter 8 Networks, Distribution & PERT/CPM

 From the solution, we see we should crash it by five days to give a total project length of twenty-four

days:

Global optimal solution found at step: 21

 Objective value: -6000.000

 Variable Value Reduced Cost

 PCRASH 5.000000 0.0000000

 EF(A) 7.000000 0.0000000

 EF(B) 7.000000 0.0000000

 EF(C) 12.00000 0.0000000

 EF(D) 15.00000 0.0000000

 EF(E) 15.00000 0.0000000

 EF(F) 24.00000 0.0000000

 ACTUAL(A) 7.000000 0.0000000

 ACTUAL(B) 7.000000 -6000.000

 ACTUAL(C) 5.000000 -1000.000

 ACTUAL(D) 8.000000 0.0000000

 ACTUAL(E) 3.000000 0.0000000

 ACTUAL(F) 9.000000 -4000.000

The excess of the incentive payments over crash costs is $6,000.

8.5 Resource Constraints in Project Scheduling
For many projects, a major complication is that there are a limited number of resources. The limited

resources require you to do tasks individually that otherwise might be done simultaneously. Pritzker,

Watters, and Wolfe (1969) gave a formulation representing resource constraints in project and jobshop

scheduling problems. The formulation is based on the following key ideas: a) time is discrete rather than

continuous (e.g., each period is a day), b) for every activity and every discrete period there is a 0/1

variable that is one if that activity starts in that period, and c) for every resource and period there is a

constraint that enforces the requirement that the amount of resource required in that period does not

exceed the amount available.

 To illustrate, we take the example considered previously with shorter activity times, so the total

number of periods is smaller:

 MODEL:

 ! PERT/CPM project scheduling with resource constraints(PERTRSRC);

 ! There is a limited number of each resource/machine.

 ! An activity cannot be started until: 1) all its predecessors have

completed, and 2) resources/machines required are available.;

 SETS:

 ! There is a set of tasks with a given duration, and

 a start time to be determined;

 TASK: TIME, START, ES;

 ! The precedence relations, the first task in the

 precedence relationship needs to be completed before the

 second task can be started;

 PRED(TASK, TASK);

 ! There are a set of periods;

 PERIOD;

Networks, Distribution & PERT/CPM Chapter 8 163

 RESOURCE: CAP;

 ! Some operations need capacity in some department;

 TXR(TASK, RESOURCE): NEED;

 ! SX(I, T) = 1 if task I starts in period T;

 TXP(TASK, PERIOD): SX;

 RXP(RESOURCE, PERIOD);

 ENDSETS

 DATA:

 ! Upper limit on number of periods required to complete the project;

 PERIOD = 1..20;

 ! Task names and duration;

 TASK TIME =

 FIRST 0

 FCAST 7

 SURVEY 2

 PRICE 1

 SCHED 3

 COSTOUT 2

 FINAL 4;

 ! The predecessor/successor combinations;

 PRED= FIRST,FCAST, FIRST,SURVEY,

 FCAST,PRICE, FCAST,SCHED, SURVEY,PRICE,

 SCHED,COSTOUT, PRICE,FINAL, COSTOUT,FINAL;

 ! There are 2 departments, accounting and operations,

 with capacities...;

 RESOURCE = ACDEPT, OPNDEPT;

 CAP = 1, 1;

 ! How much each task needs of each resource;

 TXR, NEED =

 FCAST, OPNDEPT, 1

 SURVEY, OPNDEPT, 1

 SCHED, OPNDEPT, 1

 PRICE, ACDEPT, 1

 COSTOUT, ACDEPT, 1;

 ENDDATA

 !--;

 ! Minimize start time of last task;

 MIN = START(@SIZE(TASK));

 ! Start time for each task;

 @FOR(TASK(I):

 [DEFSTRT] START(I) = @SUM(PERIOD(T): T * SX(I, T));

);

 @FOR(TASK(I):

 ! Each task must be started in some period;

 [MUSTDO] @SUM(PERIOD(T): SX(I, T)) = 1;

 ! The SX vars are binary, i.e., 0 or 1;

 @FOR(PERIOD(T): @BIN(SX(I, T)););

);

 ! Precedence constraints;

 @FOR(PRED(I, J):

 [PRECD] START(J) >= START(I) + TIME(I);

164 Chapter 8 Networks, Distribution & PERT/CPM

);

 ! Resource usage, For each resource R and period T;

 @FOR(RXP(R, T):

 ! Sum over all tasks I that use resource R in period T;

 [RSRUSE] @SUM(TXR(I, R):

 @SUM(PERIOD(S)| S #GE# (T - (TIME(I) - 1)) #AND# S #LE# T:

 NEED(I, R) * SX(I, S))) <= CAP(R);

);

 ! The following makes the formulation tighter;

 ! Compute earliest start disregarding resource constraints;

 @FOR(TASK(J):

 ES(J) = @SMAX(0, @MAX(PRED(I, J): ES(I) + TIME(I)));

 ! Task cannot start earlier than unconstrained early start;

 @SUM(PERIOD(T) | T #LE# ES(J): SX(J, T)) = 0;

);

 END

 When solved, we get a project length of 14. If there were no resource constraints, then the project

length would be 13:

Global optimal solution found

 Objective value: 14.00000

 Variable Value

 START(FIRST) 1.000000

 START(FCAST) 1.000000

 START(SURVEY) 11.00000

 START(PRICE) 13.00000

 START(SCHED) 8.000000

START(COSTOUT) 11.00000

 START(FINAL) 14.00000

8.6 Path Formulations
In many network problems, it is natural to think of a solution in terms of paths that material takes as it

flows through the network. For example, in Figure 8.1, there are thirteen possible paths. Namely:

A → X → 1, A → X → 2, A → Y → 1, A → Y → 2, A → Y → 3, B→ X → 1, B→ X → 2,

B → Y → 1, B → Y → 2, B → Y → 3, B → Z → 2, B → Z → 3,

B → Z → 4

 One can, in fact, formulate decision variables in terms of complete paths rather than just simple

links, where the path decision variable corresponds to using a combination of links. This is a form of

what is sometimes called a composite variable approach. The motivations for using the path approach

are:

1. More complicated cost structures can be represented. For example, Geoffrion and Graves

(1974) use the path formulation to represent “milling in transit” discount fare structures in

shipping food and feed products.

Networks, Distribution & PERT/CPM Chapter 8 165

2. Path-related restrictions can be incorporated. For example, regulations allow a truck driver

to be on duty for at most 10 hours. Thus, in a truck routing network one would not consider

paths longer than 10 hours. In a supply chain network, a path that is long may be prohibited

because it may cause lead times to be too long.

3. The number of rows (constraints) in the model may be substantially less.

4. In integer programs where some, but not all, of the problem has a network structure, the

path formulation may be easier to solve.

8.6.1 Example
Let us reconsider the first problem (Figure 8.1, page 148). Suppose shipments from A to X are made by

the same carrier as shipments from X to 2. This carrier will give a $1 per unit “milling-in-transit” discount

for each unit it handles from both A to X and X to 2. Further, the product is somewhat fragile and cannot

tolerate a lot of transportation. In particular, it cannot be shipped both over link B→X and X→2 or both

over links A→Y and Y→1.

 Using the notation AX1 = number of units shipped from A to X to 1, etc., the path formulation is:

MIN = 6 * PAX1 + 7 * PAX2 + 8 * PAY2

 + 9 * PAY3 + 8 * PBX1 + 10 * PBY1

 + 7 * PBY2 + 8 * PBY3 + 10 * PBZ2

 + 9 * PBZ3 + 6 * PBZ4;

 [A] PAX1 + PAX2 + PAY2 + PAY3 <= 9;

 [B] PBX1 + PBY1 + PBY2 + PBY3

 + PBZ2 + PBZ3 + PBZ4 <= 8;

 [C1] PAX1 + PBX1 + PBY1 = 3;

 [C2] PAX2 + PAY2 + PBY2 + PBZ2 = 5;

 [C3] PAY3 + PBY3 + PBZ3 = 4;

 [C4] PBZ4 = 2;

 Notice the cost of path AX2 = 1 + 7 − 1 = 7. In addition, paths BX2 and AY1 do not appear. This

model has only six constraints as opposed to nine in the original formulation. The reduction in constraints

arises from the fact that, in path formulations, one does not need the “sources = uses” constraints for

intermediate nodes.

 In general, the path formulation will have fewer rows, but more decision variables than the

corresponding network LP model.

 When we solve, we get:

Objective value= 97.0000

 Variable Value

 PAX1 3.000000

 PAX2 3.000000

 PBY2 2.000000

 PBY3 4.000000

 PBZ4 2.000000

 This is cheaper than the previous solution, because the three units shipped over path AX2 go for $1

per unit less.

 A path formulation need not have a naturally integer solution. If the path formulation, however, is

equivalent to a network LP, then it will have a naturally integer solution.

 The path formulation is popular in long-range forest planning. See, for example, Davis and Johnson

(1986), where it is known as the “Model I” approach. The standard network LP based formulation is

166 Chapter 8 Networks, Distribution & PERT/CPM

known as the “Model II” approach. In a forest planning Model II, a link in the network represents a

decision to plant an acre of a particular kind of tree in some specified year and harvest it in some future

specified year. A node represents a specific harvest and replant decision. A decision variable in Model I

is a complete prescription of how to manage (i.e., harvest and replant) a given piece of land over time.

Some Model I formulations in forest planning may have just a few hundred constraints, but over a million

decision variables or paths.

 There is a generalization of the path formulation to arbitrary linear programs, known as

Fourier/Motzkin/Dines elimination, see for example Martin (1999) and Dantzig (1963). The

transformation of a network LP to the path formulation involves eliminating a particular node

(constraint), by generating a new variable for every combination of input arc and output arc incident to

the node. A constraint in an arbitrary LP can be eliminated if it is first converted to a constraint with a

right-hand side of zero and then a new variable is generated for every combination of positive and

negative coefficient in the constraint. The disadvantage of this approach is that even though the number

of constraints is reduced to one, the number of variables may grow exponentially with the number of

original constraints.

 A variable corresponding to a path in a network is an example of a composite variable, a general

approach that is sometimes useful for representing complicated/ing constraints. A composite variable is

one that represents a feasible combination of two or more original variables. The complicating

constraints are represented implicitly by generating only those composite variables that correspond to

feasible combinations and values of the original variables.

8.7 Path Formulations of Undirected Networks
In many communications networks, the arcs have capacity, but are undirected. For example, when you

are carrying on a phone conversation with someone in a distant city, the conversation uses capacity on

all the links in your connection. However, you cannot speak of a direction of flow of the connection.

 A major concern for a long distance communications company is the management of its

communications network. This becomes particularly important during certain holidays, such as Mother’s

Day. Not only does the volume of calls increase on these days, but also the pattern of calls changes

dramatically from the business-oriented traffic during weekdays in the rest of the year. A

communications company faces two problems: (a) the design problem. That is, what capacity should be

installed on each link? As well as, (b) the operations problem. That is, given the installed capacity, how

are demands best routed? The path formulation is an obvious format for modeling an undirected network.

The following illustrates the operational problem.

Networks, Distribution & PERT/CPM Chapter 8 167

 Consider the case of a phone company with the network structure shown in Figure 8.7:

Figure 8.7 Phone Company Network Structure

SEA
CHI

DNV ATL

MIA

80

95

110

200

105

 The number next to each arc is the number of calls that can be in progress simultaneously along that

arc. If someone in MIA tries to call his mother in SEA, the phone company must first find a path from

MIA to SEA such that each arc on that path is not at capacity. It is quite easy to inefficiently use the

capacity. Suppose there is a demand for 110 calls between CHI and DNV and 90 calls between ATL and

SEA. Further, suppose all of these calls were routed over the ATL, DNV link. Now, suppose we wish to

make a call between MIA and SEA. Such a connection is impossible because every path between the two

contains a saturated link (i.e., either ATL, DNV or CHI, ATL). However, if some of the 110 calls between

CHI and DNV were routed over the CHI, SEA, DNV links, then one could make calls between MIA and

SEA. In conventional voice networks, a call cannot be rerouted once it has started. In packet switched

data networks and, to some extent, in cellular phone networks, some rerouting is possible.

8.7.1 Example
Suppose during a certain time period the demands in the table below occur for connections between pairs

of cities:

 DNV CHI ATL MIA

SEA 10 20 38 33

DNV 42 48 23

CHI 90 36

ATL 26

 Which demands should be satisfied and via what routes to maximize the number of connections

satisfied?

168 Chapter 8 Networks, Distribution & PERT/CPM

 Solution. If we use the path formulation, there will be two paths between every pair of cities except

ATL and MIA. We will use the notation P1ij for number of calls using the shorter or more northerly path

between cities i and j, and P2ij for the other path, if any. There will be two kinds of constraints:

1) a capacity constraint for each link, and

2) an upper limit on the calls between each pair of cities, based on available demand.

A formulation is:

! Maximize calls carried;

MAX = P1MIAATL + P1MIADNV + P2MIADNV

 + P1MIASEA + P2MIASEA + P1MIACHI

 + P2MIACHI + P1ATLDNV + P2ATLDNV

 + P1ATLSEA + P2ATLSEA + P1ATLCHI

 + P2ATLCHI + P1DNVSEA + P2DNVSEA

 + P1DNVCHI + P2DNVCHI + P1SEACHI

 + P2SEACHI;

! Capacity constraint for each link;

[KATLMIA] P1MIAATL + P1MIADNV + P2MIADNV

 + P1MIASEA + P2MIASEA + P1MIACHI

 + P2MIACHI <= 105;

[KATLDNV] P1MIADNV + P1MIASEA + P1MIACHI

 + P1ATLDNV + P1ATLSEA + P1ATLCHI

 + P2DNVSEA + P2DNVCHI + P2SEACHI <= 200;

[KDNVSEA] P2MIADNV + P1MIASEA + P1MIACHI

 + P2ATLDNV + P1ATLSEA + P1ATLCHI

 + P1DNVSEA + P1DNVCHI + P2SEACHI <= 95;

[KSEACHI] P2MIADNV + P2MIASEA + P1MIACHI

 + P2ATLDNV + P2ATLSEA + P1ATLCHI

 + P2DNVSEA + P1DNVCHI + P1SEACHI <= 80;

[KATLCHI] P2MIADNV + P2MIASEA + P2MIACHI

 + P2ATLDNV + P2ATLSEA + P2ATLCHI

 + P2DNVSEA + P2DNVCHI + P2SEACHI <= 110;

! Demand constraints for each city pair;

[DMIAATL] P1MIAATL <= 26;

[DMIADNV] P1MIADNV + P2MIADNV <= 23;

[DMIASEA] P1MIASEA + P2MIASEA <= 33;

[DMIACHI] P1MIACHI + P2MIACHI <= 36;

[DATLDNV] P1ATLDNV + P2ATLDNV <= 48;

[DATLSEA] P1ATLSEA + P2ATLSEA <= 38;

[DATLCHI] P1ATLCHI + P2ATLCHI <= 90;

[DDNVSEA] P1DNVSEA + P2DNVSEA <= 10;

[DDNVCHI] P1DNVCHI + P2DNVCHI <= 42;

[DSEACHI] P1SEACHI + P2SEACHI <= 20;

Networks, Distribution & PERT/CPM Chapter 8 169

When this formulation is solved, we see we can handle 322 out of the total demand of 366 calls:

Optimal solution found at step: 11

Objective value: 322.0000

Variable Value Reduced Cost

P1MIAATL 26.00000 0.000000

P1MIADNV 23.00000 0.000000

P2MIADNV 0.00000 2.000000

P1MIASEA 0.00000 0.000000

P2MIASEA 0.00000 0.000000

P1MIACHI 25.00000 0.000000

P2MIACHI 0.00000 0.000000

P1ATLDNV 48.00000 0.000000

P2ATLDNV 0.00000 2.000000

P1ATLSEA 38.00000 0.000000

P2ATLSEA 0.00000 0.000000

P1ATLCHI 23.00000 0.000000

P2ATLCHI 67.00000 0.000000

P1DNVSEA 3.50000 0.000000

P2DNVSEA 6.50000 0.000000

P1DNVCHI 5.50000 0.000000

P2DNVCHI 36.50000 0.000000

P1SEACHI 20.00000 0.000000

P2SEACHI 0.00000 2.000000

 Row Slack or Surplus Dual Price

 1 322.00000 1.000000

 KATLMIA 31.00000 0.000000

 KATLDNV 0.00000 0.000000

 KDNVSEA 0.00000 1.000000

 KSEACHI 0.00000 0.000000

 KATLCHI 0.00000 1.000000

 DMIAATL 0.00000 1.000000

 DMIADNV 0.00000 1.000000

 DMIASEA 33.00000 0.000000

 DMIACHI 11.00000 0.000000

 DATLDNV 0.00000 1.000000

 DATLSEA 0.00000 0.000000

 DATLCHI 0.00000 0.000000

 DDNVSEA 0.00000 0.000000

 DDNVCHI 0.00000 0.000000

 DSEACHI 0.00000 1.000000

 Verify that the demand not carried is MIA-CHI: 11 and MIA-SEA: 33. Apparently, there are a number

of alternate optima.

8.8 Double Entry Bookkeeping: A Network Model of the Firm
Authors frequently like to identify who was the first to use a given methodology. A contender for the

distinction of formulating the first network model is Fra Luca Pacioli. In 1594, while director of a

Franciscan monastery in Italy, he published a description of the accounting convention that has come to

be known as double entry bookkeeping. From the perspective of networks, each double entry is an arc

in a network.

170 Chapter 8 Networks, Distribution & PERT/CPM

 To illustrate, suppose you start up a small dry goods business. During the first two weeks, the

following transactions occur:

CAP 1) You invest $50,000 of capital in cash to start the business.

UR 2) You purchase $27,000 of product on credit from supplier S.

PAY 3) You pay $13,000 of your accounts payable to supplier S.

SEL 4) You sell $5,000 of product to customer C for $8,000 on credit.

REC 5) Customer C pays you $2,500 of his debt to you.

 In our convention, liabilities and equities will typically have negative balances. For example, the

initial infusion of cash corresponds to a transfer (an arc) from the equity account (node) to the cash

account, with a flow of $50,000. The purchase of product on credit corresponds to an arc from the

accounts payable account node to the raw materials inventory account, with a flow of $27,000. Paying

$13,000 to the supplier corresponds to an arc from the cash account to the accounts payable account,

with a flow of $13,000. Figure 8.8 illustrates.

Figure 8.8 Double Entry Bookkeeping as a Network Model

Cash

Retained

earnings

Accounts

receivable

Accounts

payable

Raw
material

inventory

Equity
50,000

13,000

27,000

 5,000

 2
,5

0
0

 8,000

8.9 Extensions of Network LP Models
There are several generalizations of network models that are important in practice. These extensions

share two features in common with true network LP models, namely:

• They can be represented graphically.

• Specialized, fast solution procedures exist for several of these generalizations.

The one feature typically not found with these generalizations is:

• Solutions are usually not naturally integer, even if the input data are integers.

Networks, Distribution & PERT/CPM Chapter 8 171

The important generalizations we will consider are:

1. Networks with Gains. Sometimes called generalized networks, this generalization allows a

specified gain or loss of material as it is shipped from one node to another. Structurally,

these problems are such that every column has at most two nonzeroes in the constraint

matrix. However, the requirement that these coefficients be +1 and −1 is relaxed.

Specialized procedures, which may be twenty times faster than the regular simplex method,

exist for solving these problems.

 Examples of “shipments” with such gains or losses are: investment in an

interest-bearing account, electrical transmission with loss, natural gas pipeline shipments

where the pipeline pumps burn natural gas from the pipeline, and work force attrition.

Stroup and Wollmer (1992) show how a network with gains model is useful in the airline

industry for deciding where to purchase fuel and where to ferry fuel from one stop to

another. Truemper (1976) points out, if the network with gains has no circuits when

considered as an undirected network, then it can be converted to a pure network model by

appropriate scaling.

2. Undirected Networks. In communications networks, there is typically no direction of

shipment. The arcs are undirected.

3. Multicommodity Networks. In many distribution situations, there are multiple commodities

moving through the network, all competing for scarce network capacity. Each source may

produce only one of the commodities and each destination, or sink, may accept only one

specific commodity.

4. Leontief Flow. In a so-called Leontief input-output model (see Leontief, 1951), each

activity uses several commodities although it produces only one commodity. For example,

one unit of automotive production may use a half ton of steel, 300 pounds of plastic, and

100 pounds of glass. Material Requirements Planning (MRP) models have the same

feature. If each output required only one input, then we would simply have a network with

gains. Special purpose algorithms exist for solving Leontief Flow and MRP models. See,

for example, Jeroslow, Martin, Rardin, and Wang (1992).

5. Activity/Resource Diagrams. If Leontief flow models are extended, so each activity can

have not only several inputs, but also several outputs, then one can in fact represent

arbitrary LPs. We call the obvious extension of the network diagrams to this case an

activity/resource diagram.

8.9.1 Multicommodity Network Flows
In a network LP, one assumption is a customer is indifferent, except perhaps for cost, to the source from

which his product was obtained. Another assumption is that there is a single commodity flowing through

the network. In many network-like situations, there are multiple distinct commodities flowing through

the network. If each link has infinite capacity, then an independent network flow LP could be solved for

each commodity. However, if a link has a finite capacity that applies to the sum of all commodities

flowing over that link, then we have a multicommodity network problem.

 The most common setting for multicommodity network problems is in shipping. The network might

be a natural gas pipeline network and the commodities might be different fuels shipped over the network.

In other shipping problems, such as traffic assignment or overnight package delivery, each

origin/destination pair constitutes a commodity.

 The crucial feature is identity of the commodities must be maintained throughout the network. That is,

customers care which commodity gets delivered. An example is a metals supply company that ships

172 Chapter 8 Networks, Distribution & PERT/CPM

aluminum bars, stainless steel rings, steel beams, etc., all around the country, using a single limited capacity

fleet of trucks.

 In general form, the multicommodity network problem is defined as:

Dik = demand for commodity k at node i, with negative values denoting supply;

Cijk = cost per unit of shipping commodity k from node i to node j;

Uij = capacity of the link from node i to node j.

We want to find:

Xijk = amount of commodity k shipped from node i to node j, so as to:

min cijk xijk

subject to:

For each commodity k and node t :

xitk = Dtk + xtjk

For each link i, j:

xijk Uij

8.9.2 Reducing the Size of Multicommodity Problems
If the multiple commodities correspond to origin destination pairs and the cost of shipping a unit over a

link is independent of the final destination, then you can aggregate commodities over destinations. That

is, you need identify a commodity only by its origin, not by both origin and destination. Thus, you have

as many commodities as there are origins, rather than (number of origins) (number of destinations).

For example, in a 100-city problem, using this observation, you would have only 100 commodities,

rather than 10,000 commodities.

 One of the biggest examples of multicommodity network problems in existence are the Patient

Distribution System models developed by the United States Air Force for planning for transport of sick

or wounded personnel.

8.9.3 Multicommodity Flow Example
You have decided to compete with Federal Express by offering “point to point” shipment of materials.

Starting small, you have identified six cities as the ones you will first serve. The matrix below represents

the average number of tons potential customers need to move between each origin/destination pair per

day. For example, people in city 2 need to move four tons per day to city 3:

 Demand in tons,
D(i, j),

by O/D pair

Cost/ton shipped,
 C(i, j),
by link

Capacity in tons,
 U(i, j),
By link

 To: 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

From

1 0 5 9 7 0 4 0 4 5 8 9 9 0 2 3 2 1 20

2 0 0 4 0 1 0 3 0 3 2 4 6 0 0 2 8 3 9

3 0 0 0 0 0 0 5 3 0 2 3 5 3 0 0 1 3 9

4 0 0 0 0 0 0 7 3 3 0 5 6 5 4 6 0 5 9

5 0 4 0 2 0 8 8 5 3 6 0 3 1 0 2 7 0 9

6 0 0 0 0 0 0 9 7 4 5 5 0 9 9 9 9 9 0

kji

i

j

k

Networks, Distribution & PERT/CPM Chapter 8 173

 Rather than use a hub system as Federal Express does, you will ship the materials over a regular

directed network. The cost per ton of shipping from any node i to any other node j is denoted by C(i, j).

There is an upper limit on the number of tons shipped per day over any link in the network of U(i, j).

This capacity restriction applies to the total amount of all goods shipped over that link, regardless of

origin or destination. Note U(i, j) and C(i, j) apply to links in the network, whereas D(i, j) applies to

origin/destination pairs. This capacity restriction applies only to the directed flow. That is, U(i, j) need

not equal U(j, i). It may be that none of the goods shipped from origin i to destination j moves over link

(i, j). It is important goods maintain their identity as they move through the network. Notice city 6 looks

like a hub. It has high capacity to and from all other cities.

 In order to get a compact formulation, we note only three cities, 1, 2, and 5, are suppliers. Thus, we

need keep track of only three commodities in the network, corresponding to the city of origin for the

commodity. Define:

Xijk = tons shipped from city i to city j of commodity k.

The resulting formulation is:

MODEL:

! Keywords: multi-commodity, network flow, routing;

! Multi-commodity network flow problem;

SETS:

! The nodes in the network;

 NODES/1..6/:;

! The set of nodes that are origins;

 COMMO(NODES)/1, 2, 5/:;

 EDGES(NODES, NODES): D, C, U, V;

 NET(EDGES, COMMO): X;

ENDSETS

DATA:

! Demand: amount to be shipped from

 origin(row) to destination(col);

D = 0 5 9 7 0 4

 0 0 4 0 1 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 4 0 2 0 8

 0 0 0 0 0 0;

! Cost per unit shipped over a arc/link;

C = 0 4 5 8 9 9

 3 0 3 2 4 6

 5 3 0 2 3 5

 7 3 3 0 5 6

 8 5 3 6 0 3

 9 7 4 5 5 0;

! Upper limit on amount shipped on each link;

U = 0 2 3 2 1 20

 0 0 2 8 3 9

 3 0 0 1 3 9

 5 4 6 0 5 9

 1 0 2 7 0 9

 9 9 9 9 9 0;

174 Chapter 8 Networks, Distribution & PERT/CPM

! Whether an arc/link exists or not;

! V = 0 if U = 0;

! V = 1 otherwise;

V = 0 1 1 1 1 1

 0 0 1 1 1 1

 1 0 0 1 1 1

 1 1 1 0 1 1

 1 0 1 1 0 1

 1 1 1 1 1 0;

ENDDATA

! Minimize shipping cost over all links;

MIN = @SUM(NET(I, J, K): C(I, J) * X(I, J, K));

! This is the balance constraint. There are two cases:

 Either the node that needs to be balanced is not a supply,

 in which case the sum of incoming amounts

 minus the sum of outgoing amounts must equal

 the demand for that commodity for that city;

!or where the node is a supply,

 the sum of incoming minus outgoing amounts must equal

 the negative of the sum of the demand for the commodity

 that the node supplies;

 @FOR(COMMO(K): @FOR(NODES(J)|J #NE# K:

 @SUM(NODES(I): V(I, J) * X(I, J, K) - V(J, I) * X(J, I, K))

 = D(K, J);

);

 @FOR(NODES(J)|J #EQ# K:

 @SUM(NODES(I): V(I, J) * X(I, J, K) - V(J, I) * X(J, I, K))

 = -@SUM(NODES(L): D(K, L))););

! This is a capacity constraint;

 @FOR(EDGES(I, J)|I #NE# J:

 @SUM(COMMO(K): X(I, J, K)) <= U(I, J);

);

END

 Notice there are 3 (commodities) 6 (cities) = 18 balance constraints. If we instead identified goods

by origin/destination combination rather than just origin, there would be 9 6 = 54 balance constraints.

Solving, we get:

Optimal solution found at step: 56

Objective value: 361.0000

 Variable Value Reduced Cost

X(1, 2, 1) 2.000000 0.0000000

X(1, 3, 1) 3.000000 0.0000000

X(1, 4, 1) 2.000000 0.0000000

X(1, 5, 1) 1.000000 0.0000000

X(1, 6, 1) 17.00000 0.0000000

X(2, 3, 2) 2.000000 0.0000000

X(2, 4, 2) 2.000000 0.0000000

X(2, 5, 2) 1.000000 0.0000000

X(3, 4, 5) 1.000000 0.0000000

X(4, 2, 5) 4.000000 0.0000000

X(4, 3, 2) 2.000000 0.0000000

Networks, Distribution & PERT/CPM Chapter 8 175

X(5, 3, 1) 1.000000 0.0000000

X(5, 3, 5) 1.000000 0.0000000

X(5, 4, 5) 5.000000 0.0000000

X(5, 6, 5) 8.000000 0.0000000

X(6, 2, 1) 3.000000 0.0000000

X(6, 3, 1) 5.000000 0.0000000

X(6, 4, 1) 5.000000 0.0000000

 Notice, because of capacity limitations on other links, the depot city (6) is used for many of the

shipments.

8.9.4 Fleet Routing and Assignment
An important problem in the airline and trucking industry is fleet routing and assignment. Given a set of

shipments or flights to be made, the routing part is concerned with the path each vehicle takes. This is

sometimes called the FTL(Full Truck Load) routing problem. The assignment part is of interest if the

firm has several different fleets of vehicles available. Then the question is what type of vehicle is

assigned to each flight or shipment. We will describe a simplified version of the approach used by

Subramanian et al. (1994) to do fleet assignment at Delta Airlines. A similar approach has been used at

US Airways by Kontogiorgis and Acharya (1999).

 To motivate things, consider the following set of flights serving Chicago (ORD), Denver (DEN),

and Los Angeles (LAX) that United Airlines once offered on a typical weekday:

Daily Flight Schedule

 City Time

 Flight Depart Arrive Depart Arrive

1 221 ORD DEN 0800 0934

2 223 ORD DEN 0900 1039

3 274 LAX DEN 0800 1116

4 105 ORD LAX 1100 1314

5 228 DEN ORD 1100 1423

6 230 DEN ORD 1200 1521

7 259 ORD LAX 1400 1609

8 293 DEN LAX 1400 1510

9 412 LAX ORD 1400 1959

10 766 LAX DEN 1600 1912

11 238 DEN ORD 1800 2121

 This schedule can be represented by the network in Figure 8.9. The diagonal lines from upper left

to lower right represent flight arrivals. The diagonal lines from lower left to upper right represent

departures. To complete the diagram, we need to add the lines connecting each flight departure to each

flight arrival. The thin line connecting the departure of Flight 274 from LAX to the arrival of Flight 274

in Denver illustrates one of the missing lines. If the schedule repeats every day, it is reasonable to have

the network have a backloop for each city, as illustrated for LAX. To avoid clutter, these lines have not

been added.

176 Chapter 8 Networks, Distribution & PERT/CPM

Figure 8.9 A Fleet Routing Network

Perhaps the obvious way of interpreting this as a network problem is as follows:

a) Each diagonal line (with the connection to its partner) constitutes a variable, corresponding

to a flight;

b) each horizontal line or backloop corresponds to a decision variable representing the number

of aircraft on the ground;

c) each point of either an arrival or a departure constitutes a node, and the model will have a

constraint saying, in words:

(no. of aircraft on the ground at this city at this instant) + (arrivals at this instant)

 = (no. of departures from this city at this instant) + (no. of aircraft on the ground after

this instant).

 With this convention, there would be 22 constraints (8 at ORD, 8 at DEN, and 6 at LAX), and 33

variables (11 flight variables and 22 ground variables). The number of constraints and variables can be

reduced substantially if we make the observation that the feasibility of a solution is not affected if, for

each city:

a) Each arrival is delayed until the first departure after that arrival.

b) Each departure is advanced (made earlier) to the most recent departure just after an arrival.

Thus, the only nodes required are when a departure immediately follows an arrival.

 If we have a fleet of just one type of aircraft, we probably want to know what is the minimum

number of aircrafts needed to fly this schedule. In words, our model is:

Minimize number of aircraft on the ground overnight

(That is the only place they can be, given the flight schedule)

subject to

source of aircraft = use of aircraft at each node of the network

and each flight must be covered.

Networks, Distribution & PERT/CPM Chapter 8 177

 Taking all the above observations into account gives the following formulation of a network LP.

Note the G variables represent the number of aircraft on the ground at a given city just after a specified

instant:

! Fleet routing with a single plane type;

! Minimize number of planes on ground overnight;

MIN = GC2400 + GD2400 + GL2400;

! The plane(old) conservation constraints;

! Chicago at 8 am, sources - uses = 0;

GC2400 - F221 - F223 - F105 - F259 - GC1400 = 0;

! Chicago at midnight;

GC1400 + F228 + F230 + F412 + F238 - GC2400 = 0;

! Denver at 11 am;

GD2400 + F221 + F223 - F228 - GD1100 = 0;

! Denver at high noon;

GD1100 + F274 - F230 - F293 - F238 - GD1800 = 0;

! Denver at midnight;

GD1800 + F766 - GD2400 = 0;

! LA at 8 am;

GL2400 - F274 - GL0800 = 0;

! LA at 1400;

GL0800 + F105 - F412 - GL1400 = 0;

! LA at 1600;

GL1400 + F293 - F766 - GL1600 = 0;

! LA at midnight;

GL1600 + F259 - GL2400 = 0;

! Cover our flight's constraints;

 F221 = 1;

 F223 = 1;

 F274 = 1;

 F105 = 1;

 F228 = 1;

 F230 = 1;

 F259 = 1;

 F293 = 1;

 F412 = 1;

 F766 = 1;

 F238 = 1;

178 Chapter 8 Networks, Distribution & PERT/CPM

 This model assumes no deadheading is used. That is, no plane is flown empty from one city to

another in order to position it for the next day. The reader probably figured out by simple intuitive

arguments that six aircraft are needed. The following solution gives the details:

Optimal solution found at step: 0

Objective value: 6.000000

Variable Value Reduced Cost

 GC2400 4.000000 0.0000000

 GD2400 1.000000 0.0000000

 GL2400 1.000000 0.0000000

 F221 1.000000 0.0000000

 F223 1.000000 0.0000000

 F105 1.000000 0.0000000

 F259 1.000000 0.0000000

 GC1400 0.0000000 1.000000

 F228 1.000000 0.0000000

 F230 1.000000 0.0000000

 F412 1.000000 0.0000000

 F238 1.000000 0.0000000

 GD1100 2.000000 0.0000000

 F274 1.000000 0.0000000

 F293 1.000000 0.0000000

 GD1800 0.0000000 1.000000

 F766 1.000000 0.0000000

 GL0800 0.0000000 0.0000000

 GL1400 0.0000000 0.0000000

 GL1600 0.0000000 1.000000

 Thus, there are four aircraft on the ground overnight at Chicago, one overnight at Denver, and one

overnight at Los Angeles.

8.9.5 Fleet Assignment
If we have two or more aircraft types, then we have the additional decision of specifying the type of

aircraft assigned to each flight. The typical setting is we have a limited number of new aircraft that are

more efficient than previous aircraft. Let us extend our previous example by assuming we have two

aircraft of type B. They are more fuel-efficient than our original type A aircraft. However, the capacity

of type B is slightly less than A. We now probably want to maximize the profit contribution. The profit

contribution from assigning an aircraft of type i to flight j is:

+ (revenue from satisfying all demand on flight j)

− (“spill” cost of not being able to serve all demand on j because of the limited capacity of

aircraft type i)

− (the operating cost of flying aircraft type i on flight j)

+ (revenue from demand spilled from previous flights captured on this flight).

The spill costs and recoveries are probably the most difficult to estimate.

 The previous model easily generalizes with the two modifications:

a) Conservation of flow constraints is needed for each aircraft type.

b) The flight coverage constraints become more flexible, because there are now two ways of

covering a flight.

Networks, Distribution & PERT/CPM Chapter 8 179

 After carefully calculating the profit contribution for each combination of aircraft type and flight,

we get the following model:

! Fleet routing and assignment with two plane types;

! Maximize profit contribution from flights covered;

MAX = 105 * F221A + 121 * F221B + 109 * F223A + 108

 * F223B + 110 * F274A + 115 * F274B + 130 *

 F105A + 140 * F105B + 106 * F228A + 122 *

 F228B + 112 * F230A + 115 * F230B + 132 *

 F259A + 129 * F259B + 115 * F293A + 123 *

 F293B + 133 * F412A + 135 * F412B + 108 *

 F766A + 117 * F766B + 116 * F238A + 124 *

 F238B;

! Conservation of flow constraints;

! for type A aircraft;

! Chicago at 8 am, sources - uses = 0;

F221A - F223A - F105A - F259A - GC1400A + GC2400A=0;

! Chicago at midnight;

F228A + F230A + F412A + F238A + GC1400A - GC2400A=0;

! Denver at 11 am;

 F221A + F223A - F228A - GD1100A + GD2400A = 0;

! Denver at high noon;

F274A - F230A - F293A - F238A + GD1100A - GD1800A=0;

! Denver at midnight;

 F766A - GD2400A + GD1800A = 0;

! LA at 8 am;

 - F274A - GL0800A + GL2400A = 0;

! LA at 1400;

 F105A - F412A + GL0800A - GL1400A = 0;

! LA at 1600;

 F293A - F766A + GL1400A - GL1600A = 0;

! LA at midnight;

 F259A - GL2400A + GL1600A = 0;

! Aircraft type B, conservation of flow;

! Chicago at 8 am;

-F221B - F223B - F105B - F259B - GC1400B +GC2400B=0;

! Chicago at midnight;

F228B + F230B + F412B + F238B + GC1400B - GC2400B=0;

! Denver at 11 am;

 F221B + F223B - F228B - GD1100B + GD2400B = 0;

! Denver at high noon;

F274B - F230B - F293B - F238B + GD1100B - GD1800B=0;

! Denver at midnight;

 F766B - GD2400B + GD1800B = 0;

! LA at 8 am;

 - F274B - GL0800B + GL2400B = 0;

! LA at 1400;

 F105B - F412B + GL0800B - GL1400B = 0;

! LA at 1600;

 F293B - F766B + GL1400B - GL1600B = 0;

! LA at midnight;

 F259B - GL2400B + GL1600B = 0;

! Can put at most one plane on each flight;

180 Chapter 8 Networks, Distribution & PERT/CPM

 F221A + F221B <= 1;

 F223A + F223B <= 1;

 F274A + F274B <= 1;

 F105A + F105B <= 1;

 F228A + F228B <= 1;

 F230A + F230B <= 1;

 F259A + F259B <= 1;

 F293A + F293B <= 1;

 F412A + F412B <= 1;

 F766A + F766B <= 1;

 F238A + F238B <= 1;

! Fleet size of type B;

 GC2400B + GD2400B + GL2400B <= 2;

The not so obvious solution is:

Optimal solution found at step: 37

Objective value: 1325.000

Variable Value Reduced Cost

 F221B 1.000000 0.0000000

 F223A 1.000000 0.0000000

 F274A 1.000000 0.0000000

 F105A 1.000000 0.0000000

 F228B 1.000000 0.0000000

 F230A 1.000000 0.0000000

 F259A 1.000000 0.0000000

 F293B 1.000000 0.0000000

 F412A 1.000000 0.0000000

 F766B 1.000000 0.0000000

 F238A 1.000000 0.0000000

 GC2400A 3.000000 0.0000000

 GD1100A 1.000000 0.0000000

 GL2400A 1.000000 0.0000000

 GC2400B 1.000000 0.0000000

 GD1100B 1.000000 0.0000000

 GD2400B 1.000000 0.0000000

 Six aircraft are still used. The newer type B aircraft cover flights 221, 228, 293, and 766. Since there

are two vehicle types, this model is a multicommodity network flow model rather than a pure network

flow model. Thus, we are not guaranteed to be able to find a naturally integer optimal solution to the LP.

Nevertheless, such was the case for the example above.

Networks, Distribution & PERT/CPM Chapter 8 181

 Generating an explicit model as above would be tedious. The following is a set-based version of the

above model. With the set based version, adding a flight or an aircraft type is a fairly simple clerical

operation:

MODEL:

SETS: ! Fleet routing and assignment (FLEETRAV);

 CITY :; ! The cities involved;

 ACRFT: ! Aircraft types;

 FCOST, ! Fixed cost per day of this type;

 FSIZE; ! Max fleet size of this type;

 FLIGHT:;

 FXCXC(FLIGHT, CITY, CITY) :

 DEPAT, ! Flight departure time;

 ARVAT; ! arrival time at dest.;

 AXC(ACRFT, CITY):

 OVNITE; ! Number staying overnite by type,city;

 AXF(ACRFT, FXCXC):

 X, ! Number aircraft used by type,flight;

 PC; ! Profit contribution by type,flight;

ENDSETS

DATA:

 CITY = ORD DEN LAX;

 ACRFT, FCOST, FSIZE =

 MD90 0 7

 B737 0 2;

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238;

 FXCXC, DEPAT, ARVAT =

! Flight Origin Dest. Depart Arrive;

 F221 ORD DEN 800 934

 F223 ORD DEN 900 1039

 F274 LAX DEN 800 1116

 F105 ORD LAX 1100 1314

 F228 DEN ORD 1100 1423

 F230 DEN ORD 1200 1521

 F259 ORD LAX 1400 1609

 F293 DEN LAX 1400 1510

 F412 LAX ORD 1400 1959

 F766 LAX DEN 1600 1912

 F238 DEN ORD 1800 2121;

 PC = ! Profit contribution of each vehicle*flight combo;

 105 109 110 130 106 112

 132 115 133 108 116

 121 108 115 140 122 115

 129 123 135 117 124;

ENDDATA

!---;

! Maximize profit contribution from flights minus

 overhead cost of aircraft in fleet;

 MAX = @SUM(AXF(I, N, J, K): PC(I, N, J, K) * X(I, N, J, K))

 - @SUM(AXC(I, J): FCOST(I) * OVNITE(I, J));

182 Chapter 8 Networks, Distribution & PERT/CPM

! At any instant, departures in particular, the number of

 cumulative arrivals must be >= number of cumulative departures;

! For each flight of each aircraft type;

 @FOR(ACRFT(I):

 @FOR(FXCXC(N, J, K):

! Aircraft on ground in morning +

 number aircraft arrived thus far >=

 number aircraft departed thus far;

 OVNITE(I, J) +

 @SUM(FXCXC(N1, J1, K1)| K1 #EQ# J #AND#

 ARVAT(N1, J1, K1) #LT# DEPAT(N, J, K):

 X(I, N1, J1, J)) >=

 @SUM(FXCXC(N1, J1, K1)| J1 #EQ# J #AND#

 DEPAT(N1, J1, K1) #LE# DEPAT(N, J, K):

 X(I, N1, J, K1));

););

! This model does not allow deadheading, so at the end of the day,

 arrivals must equal departures;

 @FOR(ACRFT(I):

 @FOR(CITY(J):

 @SUM(AXF(I, N, J1, J): X(I, N, J1, J)) =

 @SUM(AXF(I, N, J, K): X(I, N, J, K));

);

);

! Each flight must be covered;

 @FOR(FXCXC(N, J, K):

 @SUM(AXF(I, N, J, K): X(I, N, J, K)) = 1;

);

! Fleet size limits;

 @FOR(ACRFT(I):

 @SUM(AXC(I, J): OVNITE(I, J)) <= FSIZE(I);

);

! Fractional planes are not allowed;

 @FOR(AXF: @GIN(X););

END

 Sometimes, especially in trucking, one has the option of using rented vehicles to cover only selected

trips. With regard to the model, the major modification is that rented vehicles do not have to honor the

conservation of flow constraints. Other details that are sometimes included relate to maintenance. With

aircraft, for example, a specific aircraft must be taken out of service for maintenance after a specified

number of landings, or after a specified number of flying hours, or after a certain elapsed time, whichever

occurs first. It is not too difficult to incorporate such details, although the model becomes substantially

larger.

8.9.6 Leontief Flow Models
In a Leontief flow model, each activity produces one output. However, it may use zero or more inputs.

The following example illustrates.

Example: Islandia Input-Output Model

The country of Islandia has four major export industries: steel, automotive, electronics, and plastics. The

economic minister of Islandia would like to maximize exports-imports. The unit of exchange in Islandia

is the klutz. The prices in klutzes on the world market per unit of steel, automotive, electronics, and

Networks, Distribution & PERT/CPM Chapter 8 183

plastics are, respectively: 500, 1500, 300, and 1200. Production of one unit of steel requires 0.02 units

of automotive production, 0.01 units of plastics, 250 klutzes of raw material purchased on the world

market, plus one-half man-year of labor. Production of one automotive unit requires 0.8 units of steel,

0.15 units of electronics, 0.11 units of plastic, one man-year of labor, and 300 klutzes of imported

material. Production of one unit of electronic equipment requires 0.01 units of steel, 0.01 units of

automotive, 0.05 units of plastic, half a man-year of labor, and 50 klutzes of imported material.

Automotive production is limited at 650,000 units. Production of one unit of plastic requires 0.03 units

of automotive production, 0.2 units of steel, 0.05 units of electronics, 2 man-years of labor, plus 300

klutzes of imported materials. The upper limit on plastic is 60,000 units. The total manpower available

in Islandia is 830,000 men per year. No steel, automotive, electronics, or plastic products may be

imported.

 How much should be produced and exported of the various products?

Formulation and Solution of the Islandia Problem

The formulation of an input-output model should follow the same two-step procedure for formulating

any LP model. Namely, (1) identify the decision variables and (2) identify the constraints. The key to

identifying the decision variables for this problem is to make the distinction between the amount of

commodity produced and the amount exported. Once this is done, the decision variables can be

represented as:

PROD(STEEL) = units of steel produced,

PROD(AUTO) = units of automotive produced,

PROD(PLASTIC) = units of plastic produced,

PROD(ELECT) = units of electronics produced,

EXP(STEEL) = units of steel exported,

EXP(AUTO) = units of automotive exported,

EXP(PLASTIC) = units of plastic exported,

EXP(ELECT) = units of electronics exported.

 The commodities can be straightforwardly identified as steel, automotive, electronics, plastics,

manpower, automotive capacity, and plastics capacity. Thus, there will be seven constraints.

184 Chapter 8 Networks, Distribution & PERT/CPM

 The sets formulation and solution are:

MODEL: ! Islandia Input/output model;

SETS:

 COMMO:

 PROD, EXP, REV, COST, MANLAB, CAP;

 CXC(COMMO, COMMO): USERATE;

ENDSETS

DATA:

 COMMO = STEEL, AUTO, PLASTIC, ELECT;

 COST = 250 300 300 50;

 REV = 500 1500 1200 300;

 MANLAB = .5 1 2 .5;

! Amount used of the column commodity per unit

 of the row commodity;

 USERATE= -1 .02 .01 0

 .8 -1 .11 .15

 .2 .03 -1 .05

 .01 .01 .05 -1;

 MANPOWER = 830000;

 CAP = 999999 650000 60000 999999;

ENDDATA

[PROFIT] MAX = @SUM(COMMO: REV * EXP - PROD * COST);

 @FOR(COMMO(I):

 [NETUSE] ! Net use must equal = 0;

 EXP(I) + @SUM(COMMO(J): USERATE(J,I)* PROD(J))

 = 0;

 [CAPLIM] PROD(I) <= CAP(I);

);

 [MANLIM] @SUM(COMMO:PROD * MANLAB) < MANPOWER;

END

 Notice this model has the Leontief flow feature. Namely, each decision variable has at most one

negative constraint coefficient.

 The solution is:

 Global optimal solution found.

 Objective value: 0.4354312E+09

 Variable Value Reduced Cost

 MANPOWER 830000.0 0.000000

 PROD(STEEL) 393958.3 0.000000

 PROD(AUTO) 475833.3 0.000000

 PROD(PLASTIC) 60000.00 0.000000

 PROD(ELECT) 74375.00 0.000000

 EXP(STEEL) 547.9167 0.000000

 EXP(AUTO) 465410.4 0.000000

 EXP(PLASTIC) 0.000000 2096.875

 EXP(ELECT) 0.000000 121.8750

 REV(STEEL) 500.0000 0.000000

 REV(AUTO) 1500.000 0.000000

 REV(PLASTIC) 1200.000 0.000000

Networks, Distribution & PERT/CPM Chapter 8 185

 REV(ELECT) 300.0000 0.000000

 COST(STEEL) 250.0000 0.000000

 COST(AUTO) 300.0000 0.000000

 COST(PLASTIC) 300.0000 0.000000

 COST(ELECT) 50.00000 0.000000

 MANLAB(STEEL) 0.5000000 0.000000

 MANLAB(AUTO) 1.000000 0.000000

 MANLAB(PLASTIC) 2.000000 0.000000

 MANLAB(ELECT) 0.5000000 0.000000

 CAP(STEEL) 999999.0 0.000000

 CAP(AUTO) 650000.0 0.000000

 CAP(PLASTIC) 60000.00 0.000000

 CAP(ELECT) 999999.0 0.000000

 USERATE(STEEL, STEEL) -1.000000 0.000000

 USERATE(STEEL, AUTO) 0.2000000E-01 0.000000

 USERATE(STEEL, PLASTIC) 0.1000000E-01 0.000000

 USERATE(STEEL, ELECT) 0.000000 0.000000

 USERATE(AUTO, STEEL) 0.8000000 0.000000

 USERATE(AUTO, AUTO) -1.000000 0.000000

 USERATE(AUTO, PLASTIC) 0.1100000 0.000000

 USERATE(AUTO, ELECT) 0.1500000 0.000000

 USERATE(PLASTIC, STEEL) 0.2000000 0.000000

 USERATE(PLASTIC, AUTO) 0.3000000E-01 0.000000

 USERATE(PLASTIC, PLASTIC) -1.000000 0.000000

 USERATE(PLASTIC, ELECT) 0.5000000E-01 0.000000

 USERATE(ELECT, STEEL) 0.1000000E-01 0.000000

 USERATE(ELECT, AUTO) 0.1000000E-01 0.000000

 USERATE(ELECT, PLASTIC) 0.5000000E-01 0.000000

 USERATE(ELECT, ELECT) -1.000000 0.000000

 Row Slack or Surplus Dual Price

 PROFIT 0.4354312E+09 1.000000

 NETUSE(STEEL) 0.000000 500.0000

 CAPLIM(STEEL) 606040.7 0.000000

 NETUSE(AUTO) 0.000000 1500.000

 CAPLIM(AUTO) 174166.7 0.000000

 NETUSE(PLASTIC) 0.000000 3296.875

 CAPLIM(PLASTIC) 0.000000 2082.656

 NETUSE(ELECT) 0.000000 421.8750

 CAPLIM(ELECT) 925624.0 0.000000

 MANLIM 0.000000 374.0625

 The solution indicates the best way of selling Islandia’s steel, automotive, electronics, plastics, and

manpower resources is in the form of automobiles.

 This problem would fit the classical input-output model format of Leontief if, instead of maximizing

profits, target levels were set for the export (or consumption) of steel, automotive, and plastics. The

problem would then be to determine the production levels necessary to support the specified

export/consumption levels. In this case, the objective function is irrelevant.

 A natural generalization is to allow alternative technologies for producing various commodities.

These various technologies may correspond to the degree of mechanization or the form of energy

consumed (e.g., gas, coal, or hydroelectric).

186 Chapter 8 Networks, Distribution & PERT/CPM

8.9.7 Activity/Resource Diagrams
The graphical approach for depicting a model can be extended to arbitrary LP models. The price one

must pay to represent a general LP graphically is one must introduce an additional component type into

the network. There are two component types in such a diagram: (1) activities, which correspond to

variables and are denoted by a square, and (2) resources, which correspond to constraints and are denoted

by a circle. Each constraint can be thought of as corresponding to some commodity and, in words, as

saying “uses of commodity sources of commodity”. The arrows incident to a square correspond to the

resources, commodities, or constraints with which that variable has an interaction. The arrows incident

to a circle must obviously then correspond to the activities or decision variables with which the constraint

has an interaction.

Example: The Vertically Integrated Farmer

A farmer has 120 acres that can be used for growing wheat or corn. The yield is 55 bushels of wheat or

95 bushels of corn per acre per year. Any fraction of the 120 acres can be devoted to growing wheat or

corn. Labor requirements are 4 hours per acre per year, plus 0.15 hours per bushel of wheat, and 0.70

hours per bushel of corn. Cost of seed, fertilizer, etc., is 20 cents per bushel of wheat produced and 12

cents per bushel of corn produced. Wheat can be sold for $1.75 per bushel and corn for $0.95 per bushel.

Wheat can be bought for $2.50 per bushel and corn for $1.50 per bushel.

 In addition, the farmer may raise pigs and/or poultry. The farmer sells the pigs or poultry when they

reach the age of one year. A pig sells for $40. He measures the poultry in terms of coops. One coop

brings in $40 at the time of sale. One pig requires 25 bushels of wheat or 20 bushels of corn, plus 25

hours of labor and 25 square feet of floor space. One coop of poultry requires 25 bushels of corn or 10

bushels of wheat, plus 40 hours of labor and 15 square feet of floor space.

 The farmer has 10,000 square feet of floor space. He has available per year 2,000 hours of his own

time and another 2,000 hours from his family. He can hire labor at $1.50 per hour. However, for each

hour of hired labor, 0.15 hour of the farmer’s time is required for supervision. How much land should

be devoted to corn and to wheat, and how many pigs and/or poultry should be raised to maximize the

farmer’s profits? This problem is based on an example in chapter 12 of Hadley (1962).

Networks, Distribution & PERT/CPM Chapter 8 187

 You may find it convenient to use the following variables for this problem:

WR Wheat raised (in bushels)

CR Corn harvested (in bushels)

PS Pigs raised and sold

HS Hens raised and sold (number of coops)

LB Labor hired (in hours)

WS Wheat marketed or sold (in bushels)

CS Corn marketed or sold (in bushels)

CH Corn used to feed hens (in bushels)

WH Wheat used to feed hens (in bushels)

CP Corn used to feed pigs (in bushels)

WP Wheat used to feed pigs (in bushels)

CB Corn bought (in bushels)

WB Wheat bought (in bushels)

The activity-resource diagram for the preceding problem is shown in Figure 8.10:

Figure 8.10 An Activity-Resource Diagram

Some things to note about an activity-resource diagram are:

• Each rectangle in the diagram corresponds to a decision variable in the formulation.

• Each circle in the diagram corresponds to a constraint or the objective.

• Each arrow in the diagram corresponds to a coefficient in the formulation.

• Associated with each circle or rectangle is a unit of measure (e.g., hours or bushels).

• The units or dimension of each arrow is:

 “Units of the circle” per “unit of the rectangle.”

1.5

 .12

188 Chapter 8 Networks, Distribution & PERT/CPM

Below is the formulation corresponding to the above diagram.

 ! All constraints are in Uses <= Sources form;

 [PROFIT] MAX= 1.75*WS +.95*CS +40*PS +40*HS -1.5*LB -.2*WR -.12*CR -1.5*CB -2.5*WB;

 [LAND] (1/55)*WR + (1/95)*CR <= 120 ; ! Acres;

 [LABOR] (.15+4/55)*WR + (.7+4/95)*CR + 40*HS + 25*PS <= .85*LB + 4000 ; ! Hours;

 [HRDLABOR] LB <= 2000/.15; ! Hours;

 [WHEAT] WS + WH + WP <= WB + WR; ! Bushels);

 [CORN] CS + CH + CP <= CB + CR; ! Bushels;

 [HENFEED] HS <= (1/25)*CH + (1/10)*WH; ! Coops;

 [PIGFEED] PS <= (1/20)*CP + (1/25)*WP; ! Pigs;

 [FLOORSP] 25*PS + 15*HS <= 10000; ! Square feet;

Notice that there is a one-to-one correspondence between the rows of the formulation and the round

nodes of the diagram, and a one-to-one correspondence between the variables of the formulation and the

square “hyper-arcs” of the diagram. The solution is:

 Variable Value Reduced Cost

 WS 5967.500 0.000000

 CS 0.000000 0.4122697

 PS 0.000000 0.000000

 HS 63.25000 0.000000

 LB 0.000000 1.021875

 WR 6600.000 0.000000

 CR 0.000000 0.000000

 CB 0.000000 0.1377303

 WB 0.000000 0.7500000

 WH 632.5000 0.000000

 WP 0.000000 0.7125000

 CH 0.000000 0.6622697

 CP 0.000000 0.0653947

 Row Slack or Surplus Dual Price

 PROFIT 11653.12 1.000000

 LAND 0.000000 78.35938

 LABOR 0.000000 0.5625000

 HRDLABOR 13333.33 0.000000

 WHEAT 0.000000 1.750000

 CORN 0.000000 1.362270

 HENFEED 0.000000 17.50000

 PIGFEED 0.000000 25.93750

 FLOORSP 9051.250 0.000000

Notice that the most profitable use of land is to raise wheat. The most profitable use of the farmer’s own

labor and floor space is to use it, plus some wheat, to raise hens.

8.9.8 Spanning Trees
Another simple yet important network-related problem is the spanning tree problem. It arises, for

example, in the installation of utilities such as cable, power lines, roads, and sewers to provide services

to homes in newly developed regions. Given a set of homes to be connected, we want to find a minimum

cost network, so every home is connected to the network. A reasonable approximation to the cost of the

network is the sum of the costs of the arcs in the network. If the arcs have positive costs, then a little

reflection should convince you the minimum cost network contains no loops (i.e., for any two nodes (or

Networks, Distribution & PERT/CPM Chapter 8 189

homes) on the network, there is exactly one path connecting them). Such a network is called a spanning

tree.

 A simple algorithm is available for finding a minimal cost spanning tree, see Kruskal (1956):

1. Set Y = {2, 3, 4 ... n} (i.e., the set of nodes yet to be connected).

A = {1} (i.e., the set of already connected nodes). We may arbitrarily define node 1 as the

root of the tree.

2. If Y is empty, then we are done,

3. else find the shortest arc (i,j) such that i is in A and j is in Y.

4. Add arc (i, j) to the network and

set A = A + j,

 Y = Y − j.

5. Go to (2).

 Because of the above simple and efficient algorithm, LP is not needed to solve the minimum

spanning tree problem. In fact, formulating the minimum spanning tree problem as an LP is a bit tedious.

 The following illustrates a LINGO model for a spanning tree. This model does not explicitly solve

it as above, but just solves it as a straightforward integer program:

MODEL: ! (MNSPTREE);

!Given a set of nodes and the distance between each pair, find

the shortest total distance of links on the network to connect

all the nodes. This is the classic minimal spanning tree (MST)

problem;

SETS:

 CITY: LVL;

 ! LVL(I) = level of city I in tree. LVL(1) = 0;

 LINK(CITY, CITY):

 DIST, ! The distance matrix;

 X; ! X(I,J) = 1 if we use link I, J;

ENDSETS

 ! This model finds the minimum cost network connecting Atlanta,

 Chicago, Cincinnati, Houston, LA, and Montreal so that

 messages can be sent from Atlanta (base) to all other cities;

DATA:

 CITY= ATL CHI CIN HOU LAX MON;

 ! Distance matrix need not be symmetric. City 1 is base;

 DIST = 0 702 454 842 2396 1196 !from Atlanta;

 702 0 324 1093 2136 764 !from Chicago;

 454 324 0 1137 2180 798 !from Cinci;

 842 1093 1137 0 1616 1857 !from Houston;

 2396 2136 2180 1616 0 2900 !from LA;

 1196 764 798 1857 2900 0;!from Montreal;

ENDDATA

!--;

!The model size: Warning, may be slow for N > 8;

N = @SIZE(CITY);

!The objective is to minimize total dist. of links;

MIN = @SUM(LINK: DIST * X);

!For city K, except the base, ... ;

@FOR(CITY(K)| K #GT# 1: ! It must be entered;

 @SUM(CITY(I)| I #NE# K: X(I, K)) = 1;

190 Chapter 8 Networks, Distribution & PERT/CPM

!If there is a link from J-K, then LVL(K)=LVL(J)+1.

 Note:These are not very powerful for large problems;

 @FOR(CITY(J)| J #NE# K:

 LVL(K) >= LVL(J) + X(J, K)

 - (N - 2) * (1 - X(J, K))

 + (N - 3) * X(K, J);););

 LVL(1) = 0; ! City 1 has level 0;

!There must be an arc out of city 1;

@SUM(CITY(J)| J #GT# 1: X(1, J)) >= 1;

!Make the X's 0/1;

@FOR(LINK: @BIN(X););

!The level of a city except the base is at least 1 but no more than N-

1, and is 1 if link to the base;

@FOR(CITY(K)| K #GT# 1:

 @BND(1, LVL(K), 999999);

 LVL(K) <= N - 1 - (N - 2) * X(1, K););

END

The solution is:

Optimal solution found at step: 16

Objective value: 4000.000

 Variable Value Reduced Cost

 N 6.000000 0.0000000

 LVL(CHI) 2.000000 0.0000000

 LVL(CIN) 1.000000 0.0000000

 LVL(HOU) 1.000000 0.0000000

 LVL(LAX) 2.000000 0.0000000

 LVL(MON) 3.000000 0.0000000

X(ATL, CIN) 1.000000 454.0000

X(ATL, HOU) 1.000000 842.0000

X(CHI, MON) 1.000000 764.0000

X(CIN, CHI) 1.000000 324.0000

X(HOU, LAX) 1.000000 1616.000

 The solution indicates Atlanta should connect to Cincinnati and Houston. Houston, in turn connects

to LA. Cincinnati connects to Chicago, and Chicago connects to Montreal.

8.9.9 Steiner Trees
A Steiner tree is a generalization of a minimal spanning tree. The difference is, for a given network, only

a specified subset of the nodes need be connected in a Steiner tree. Providing network services in a new

housing development is a simple example, such as communication cable, sewer lines, water lines, and

roads. Each house must be connected to the network, but not all possible nodes or junctions in the

candidate network need be included.

Example

The first computer, an IBM RS6000, to beat a grandmaster, Gary Kasparov, at the game of chess,

contained electronic chips designed with the help of Steiner-tree-like optimization methods. A typical

VLSI (Very Large Scale Integrated) chip on this computer was less than 2 millimeters on a side.

Nevertheless, it might contain over 120 meters of connecting pathways for connecting the various

devices on the chip. An important part of increasing the speed of a chip is reducing the length of the

paths on the chip. Figure 8.11 shows a chip on which five devices must be connected on a common tree.

Networks, Distribution & PERT/CPM Chapter 8 191

Because of previous placement of various devices, the only available links are the ones indicated in the

figure. The square nodes, A, B, C, D, and E, must be connected. The round nodes, F, G, etc., may be

used, but need not be connected. What set of links should be used to minimize the total distance of links?

Figure 8.11 Steiner Tree Problem

A

B

C

D

E

F G H

I J

K

 Finding a minimal length Steiner tree is considerably harder than finding a minimal length spanning

tree. For small problems, the following LINGO model will find minimal length Steiner trees. The data

correspond to the network in Figure 8.11:

MODEL: ! (STEINERT);

!Given a set of nodes, the distance between them, and a specified

subset of the nodes, find the set of links so that the total distance

is minimized, and there is a (unique) path between every pair of

nodes in the specified subset. This is called a Steiner tree problem;

SETS:

 ALLNODE : U;

 ! U(I) = level of node I in the tree;

 ! U(1) = 0;

 MUSTNOD(ALLNODE); ! The subset of nodes that must be connected;

 LINK(ALLNODE, ALLNODE):

 DIST, ! The distance matrix;

 X; ! X(I, J) = 1 if we use link I, J;

ENDSETS

192 Chapter 8 Networks, Distribution & PERT/CPM

DATA:

 ALLNODE= ! Distance matrix need not be symmetric;

 A B C D E F G H I J K;

 DIST =0 14 999 999 999 4 999 999 999 999 999

 14 0 999 999 999 999 999 3 999 999 999

 999 999 0 9 999 999 999 999 2 999 999

 999 999 9 0 999 999 999 999 999 3 6

 999 999 999 999 0 999 999 5 999 999 3

 4 999 999 999 999 0 999 999 3 999 999

 999 999 999 999 999 999 0 2 999 3 999

 999 3 999 999 5 999 2 0 999 999 999

 999 999 2 999 999 3 999 999 0 8 999

 999 999 999 3 999 999 3 999 8 0 999

 999 999 999 6 3 999 999 999 999 999 0;

! The subset of nodes that must be connected.

 The first node must be a must-do node;

MUSTNOD = A B C D E;

ENDDATA

!---;

! The model size: Warning, may be slow for N > 8;

N = @SIZE(ALLNODE);

! Objective is minimize total distance of links;

MIN = @SUM(LINK: DIST * X);

! For each must-do node K, except the base, ... ;

@FOR(MUSTNOD(K)| K #GT# 1:

! It must be entered;

 @SUM(ALLNODE(I)| I #NE# K: X(I, K)) = 1;

! Force U(J)=number arcs between node J and node 1. Note: This is not

very strong for large problems;

@FOR(ALLNODE(J)| J #GT# 1 #AND# J #NE# K:

 U(J) >= U(K) + X (K, J) -

 (N - 2) * (1 - X(K, J)) +

 (N - 3) * X(J, K););

);

! There must be an arc out of node 1;

@SUM(ALLNODE(J)| J #GT# 1: X(1, J)) >= 1;

!If an arc out of node J, there must be an arc in;

@FOR(ALLNODE(J)| J #GT# 1:

 @FOR(ALLNODE(K)| K #NE# J:

 @SUM(ALLNODE(I)| I #NE# K #AND# I #NE# J:

 X(I, J)) >= X(J, K);

););

! Make the X's 0/1;

@FOR(LINK: @BIN(X););

! Level of a node except the base is at least 1, no more than N-1, and

is 1 if link to the base;

@FOR(ALLNODE(K)| K #GT# 1:

 @BND(1, U(K), 999999);

 U(K) < N - 1 - (N - 2) * X(1, K););

END

Networks, Distribution & PERT/CPM Chapter 8 193

The solution has a cost of 33. The list of links used is:

Optimal solution found at step: 30

Objective value: 33.00000

Branch count: 0

Variable Value Reduced Cost

X(A, F) 1.000000 4.000000

X(F, I) 1.000000 3.000000

X(G, H) 1.000000 2.000000

X(H, B) 1.000000 3.000000

X(H, E) 1.000000 5.000000

X(I, C) 1.000000 2.000000

X(I, J) 1.000000 8.000000

X(J, D) 1.000000 3.000000

X(J, G) 1.000000 3.000000

194 Chapter 8 Networks, Distribution & PERT/CPM

The corresponding minimal length Steiner tree appears in Figure 8.12:

Figure 8.12 Minimal Length Steiner Tree

A

B

C

D

E

F G H

I J

 Notice node K is not in the tree. This example is missing two important features of real chip design:

a) It shows only two-dimensional paths. In fact, three-dimensional paths are possible (and typically

needed) by adding vertical layers to the chip. b) It only shows one tree; whereas, in fact, there may

be many distinct trees to be constructed (e.g., some devices need to be connected to electrical “ground”,

others need to be connected to the clock signal, etc.). This might be handled by solving the trees

sequentially, the more complicated trees first.

8.10 Nonlinear Networks
There are a number of important problems where the constraints describe a network problem. However,

either the objective is nonlinear, or there are additional conditions on the network that are nonlinear. The

first example describes a transportation problem where the value of shipping or assigning an item to a

destination depends upon (a) how many items have already been shipped to that destination, and (b) the

type of item and type of destination. In the military, this kind of problem is known as a weapons or target

assignment problem. If we define:

x(i,j) = number of units of type j assigned to task i;

p(i,j) = Prob{ a unit of type j will not successfully complete task i}.

Then, assuming independence, the probability task i will not be completed is:

 p(i, 1)x(i, 1) p(i, 2)x(i, 2) … p(i, n)x(i, n).

The log of the proability that task i will not be completed is:

 x(i, 1) *log[p(i, 1)]+ x(i, 2) *log[p(i, 2)]+ …+ x(i, n) *log[p(i, n)].

 A reasonable objective is to maximize the expected value of successfully completed tasks. The

following model illustrates this idea, using data from Bracken and McCormick (1968):

MODEL:

! (TARGET) Bracken and McCormick;

SETS:

DESTN/1..20/: VALUE, DEM, LFAILP;

Networks, Distribution & PERT/CPM Chapter 8 195

SOURCE/1..5/: AVAIL;

DXS(DESTN, SOURCE): PROB, VOL;

ENDSETS

DATA:

! Probability that a unit from source J will NOT do the job at

destination I;

PROB=

1.00 .84 .96 1.00 .92

 .95 .83 .95 1.00 .94

1.00 .85 .96 1.00 .92

1.00 .84 .96 1.00 .95

1.00 .85 .96 1.00 .95

 .85 .81 .90 1.00 .98

 .90 .81 .92 1.00 .98

 .85 .82 .91 1.00 1.00

 .80 .80 .92 1.00 1.00

1.00 .86 .95 .96 .90

1.00 1.00 .99 .91 .95

1.00 .98 .98 .92 .96

1.00 1.00 .99 .91 .91

1.00 .88 .98 .92 .98

1.00 .87 .97 .98 .99

1.00 .88 .98 .93 .99

1.00 .85 .95 1.00 1.00

 .95 .84 .92 1.00 1.00

1.00 .85 .93 1.00 1.00

1.00 .85 .92 1.00 1.00;

! Units available at each source;

AVAIL= 200 100 300 150 250;

! Min units required at each destination;

DEM=

 30 0 0 0 0 100 0 0 0 40

 0 0 0 50 70 35 0 0 0 10;

! Value of satisfying destination J;

VALUE=

 60 50 50 75 40 60 35 30 25 150

 30 45 125 200 200 130 100 100 100 150;

ENDDATA

!Max sum over I:(value of destn I)

 *Prob{success at I};

 MAX = @SUM(DESTN(I): VALUE(I) *

 (1 - @EXP(LFAILP(I))));

! The supply constraints;@FOR(SOURCE(J):

 @SUM(DESTN(I): VOL(I, J)) <= AVAIL(J));

@FOR(DESTN(I):

!The demand constraints;

@SUM(SOURCE(J): VOL(I, J)) > DEM(I);

!Compute log of destination I failure probability;

@FREE(LFAILP(I));

 LFAILP(I) =

 @SUM(SOURCE(J): @LOG(PROB(I,J)) * VOL(I,J)););

END

196 Chapter 8 Networks, Distribution & PERT/CPM

 Observe the model could be “simplified” slightly by using the equation computing LFAILP (I) to

substitute out LFAILP (I) in the objective. The time required to solve the model would probably increase

substantially, however, if this substitution were made. The reason is the number of variables appearing

nonlinearly in the objective increases dramatically. A general rule for nonlinear programs is:

If you can reduce the number of variables that appear nonlinearly in the objective or a constraint

by using linear constraints to define intermediate variables, then it is probably worth doing.

Verify the constraint defining LFAILP (I) is linear in both LFAILP (I) and VOL (I, J).

 Notice the solution involves fractional assignments. A simple generalization of the model is to

require the VOL () variables to be general integers:

Optimal solution found at step: 152

Objective value: 1735.570

 Variable Value Reduced Cost

 VOL(1, 5) 50.81594 0.0000000

 VOL(2, 1) 13.51739 0.0000000

 VOL(2, 2) 1.360311 0.2176940

 VOL(2, 5) 45.40872 0.0000000

 VOL(3, 5) 48.62891 0.0000000

 VOL(4, 2) 23.48955 0.0000000

 VOL(5, 2) 20.89957 0.0000000

 VOL(6, 1) 100.0000 0.0000000

 VOL(7, 1) 39.10010 0.0000000

 VOL(8, 1) 27.06643 0.0000000

 VOL(8, 5) 0.4547474E-12 0.0000000

 VOL(9, 1) 20.31608 0.0000000

VOL(10, 5) 51.13144 0.0000000

VOL(11, 4) 33.19754 0.0000000

VOL(12, 4) 40.93452 0.0000000

VOL(13, 5) 54.01499 0.0000000

VOL(14, 4) 58.82350 0.0000000

VOL(14, 5) 0.5684342E-13 0.0000000

VOL(15, 2) 26.21095 0.0000000

VOL(15, 3) 43.78905 0.0000000

VOL(16, 2) 24.23657 0.2176940

VOL(16, 4) 17.04444 0.0000000

VOL(17, 2) 3.803054 0.0000000

VOL(17, 3) 72.03255 -0.4182476E-05

VOL(18, 2) 0.8881784E-15 0.1489908

VOL(18, 3) 57.55117 0.0000000

VOL(19, 3) 64.21183 0.0000000

VOL(20, 3) 62.41540 0.0000000

Networks, Distribution & PERT/CPM Chapter 8 197

8.11 Problems
1. The Slick Oil Company is preparing to make next month’s pipeline shipment decisions. The Los

Angeles terminal will require 200,000 barrels of oil. This oil can be supplied from either Houston

or Casper, Wyoming. Houston can supply oil to L.A. at a transportation cost of $.25 per barrel.

Casper can supply L.A. at a transportation cost of $.28 per barrel. The St. Louis terminal will require

120,000 barrels. St. Louis can be supplied from Houston at a cost of $.18 per barrel and from Casper

at a cost of $.22 per barrel. The terminal at Freshair, Indiana requires 230,000 barrels. Oil can be

shipped to Freshair from Casper at a cost of $.21 per barrel, from Houston at a cost of $.19 per

barrel, and from Titusville, Pa. at a cost of $.17 per barrel. Casper will have a total of 250,000 barrels

available to be shipped. Houston will have 350,000 barrels available to be shipped. Because of

limited pipeline capacity, no more than 180,000 barrels can be shipped from Casper to L.A. next

month and no more than 150,000 barrels from Houston to L.A. The Newark, N.J. terminal will

require 190,000 barrels next month. It can be supplied only from Titusville at a cost of $.14 per

barrel. The Atlanta terminal will require 150,000 barrels next month. Atlanta can be supplied from

Titusville at a cost of $.16 per barrel or from Houston at a cost of $.20 per barrel. Titusville will

have a total of 300,000 barrels available to be shipped.

 Formulate the problem of finding the minimum transportation cost distribution plan as a linear

program.

2. Louis Szathjoseph, proprietor of the Boulangerie Restaurant, knows he will need 40, 70, and 60

tablecloths on Thursday, Friday, and Saturday, respectively, for scheduled banquets. He can rent

tablecloths for three days for $2 each. A tablecloth must be laundered before it can be reused. He

can have them cleaned overnight for $1.50 each. He can have them laundered by regular one-day

service (e.g., one used on Thursday could be reused on Saturday) for $.80 each. There are currently

20 clean tablecloths on hand with none dirty or at the laundry. Rented tablecloths need not be cleaned

before returning.

a) What are the decision variables?

b) Formulate the LP appropriate for minimizing the total cost of renting and laundering the

tablecloths. For each day, you will probably have a constraint requiring the number of clean

tablecloths available to at least equal that day’s demand. For each of the first two days, you

will probably want a constraint requiring the number of tablecloths sent to the laundry not

to exceed those that have been made dirty. Is it a network LP?

3. The Millersburg Supply Company uses a large fleet of vehicles it leases from manufacturers. The

following pattern of vehicle requirements is forecast for the next 8 months:

Month Jan Feb Mar Apr May Jun Jul Aug

Vehicles
Required

430 410 440 390 425 450 465 470

 Vehicles can be leased from various manufacturers at various costs and for various lengths of

time. The best plans available are: three-month lease, $1,700; four-month lease, $2,000; five-month

lease, $2,600. A lease can be started in any month. On January 1, there are 200 cars on lease, all of

which go off lease at the end of February.

a) Formulate an approach for minimizing Millersburg’s leasing costs over the 8 months.

b) Show that this problem is a network problem.

198 Chapter 8 Networks, Distribution & PERT/CPM

4. Several years ago, a university in the Westwood section of Los Angeles introduced a bidding system

for assigning professors to teach courses in its business school. The table below describes a small,

slightly simplified three-professor/two-course version. For the upcoming year, each professor

submits a bid for each course and places limits on how many courses he or she wants to teach in

each of the school’s two semesters. Each professor, however, is expected to teach four courses total

per year (at most three per semester).

 Prof. X Prof. Y Prof. Z

Fall Courses 1 3 1

Spring Courses 3 2 3 Sections Needed
 in the Year

 Min Max

Course A bids 6 3 8 3 7

Course B bids 4 7 2 2 8

 From the table, note that: professor Z strongly prefers to teach course A; whereas, professor X

has a slight preference for A. Professor Y does not want to teach more than two course sections in

the Spring. Over both semesters, at least three sections of Course A must be taught. Can you

formulate this problem as a network problem?

5. Aircraft Fuel Ferrying Problem. Fuel cost is one of the major components of variable operating cost

for an airline. Some cities collect a tax on aircraft fuel sold at their airports. Thus, the cost per liter

of fuel may vary noticeably from one airport to another. A standard problem with any airliner is the

determination of how much fuel to take on at each stop. Fuel consumption is minimized if just

sufficient fuel is taken on at each stop to fly the plane to the next stop. This policy, however,

disregards the fact that fuel prices may differ from one airport to the next. Buying all the fuel at the

cheapest stop may not be the cheapest policy either. This might require carrying large fuel loads that

would in turn cause large amounts of fuel to be burned in ferrying the fuel. The refueling

considerations at a given stop on a route are summarized by the following three numbers: (a) the

minimum amount of fuel that must be on board at takeoff to make it to the next stop, (b) the cost

per liter of fuel purchased at this stop, and (c) the amount of additional fuel above the minimum that

is burned per liter of fuel delivered to the next stop. These figures are given below for an airplane

that starts at Dallas, goes to Atlanta, then Chicago, Des Moines, St. Louis, and back to Dallas.

 Dallas Atlanta Chicago Des Moines St. Louis

a) 3100 2700 1330 1350 2500

b) .29 .34 .35 .31 .33

c) .04 .03 .02 .01 .04

 For example to fly from Dallas to Atlanta, the plane must take off with at least 3100 liters of

fuel. Any fuel purchased in Dallas costs $0.29 per liter. For each liter of fuel delivered to Atlanta

(i.e., still in the tank), an additional .04 liters had to be put in at Dallas. Alternatively, each additional

1.04 liters loaded at Dallas, results in an additional liter delivered to Atlanta. The plane has a

maximum fuel carrying capacity of 6000 liters, which we will assume is independent of airport.

Also, assume the minimum amount of reserve fuel that must be on board for safety reasons is fixed

independent of airport, so we can act as if no reserve is required.

Networks, Distribution & PERT/CPM Chapter 8 199

 Formulate and solve a model for deciding how much fuel to buy at each airport. Is this problem

any form of a network LP?

6. Show that any LP can be converted to an equivalent LP in which every column (variable) has at

most three nonzero constraint coefficients. What does this suggest about the fundamental

complexity of a network LP vs. a general LP?

7. Figure 8.12 is the activity-on-arc diagram showing the precedence relations among the five activities

involved in repairing a refinery. The three numbers above each arc represent (from left to right,

respectively) the normal time for performing the activity in days, the time to perform the activity if

crashed to the maximum extent, and the additional cost in $1000s for each day the activity is

shortened. An activity can be partially crashed. It is desired the project be completed in 15 days.

Write an LP formulation for determining how much each activity should be crashed.

Figure 8.12 PERT Diagram with Crashing Allowed

9, 5, 4

6, 3, 5

7, 2, 6

9, 4, 7

9, 2, 8

A

B

C

D

E

8. Given n currencies, the one-period currency exchange problem is characterized by a beginning

inventory vector, an exchange rate matrix, and an ending inventory requirement vector defined as

follows:

ni = amount of cash on hand in currency i, at the beginning of the period measured in units of

currency i, for i = 1, 2, ..., n;

rij = units of currency j obtainable per unit of currency i for i = 1, 2, ..., n, j = 1, 2, ..., n. Note

that rii = 1 and, in general, we can expect rij < 1/rji, for i j.

ei = minimum ending inventory requirement for currency i, for i = 1, 2, ..., n. That is, at the

end of the period, we must have at least ei units of currency i on hand.

The decision variables are:

Xij = amount of currency i converted into currency j, for i = 1, 2, ..., n; j = 1, 2, ..., n.

200 Chapter 8 Networks, Distribution & PERT/CPM

 Formulate a model for determining an efficient set of values for the Xij. The formulation should

have the following features:

a) If there is a “money pump” kind of arbitrage opportunity, the model will find it.

b) It should not be biased against any particular currency (i.e., the solution should be

independent of which currency is called 1).

c) If a currency is worthless, you should buy no more of it than sufficient to meet the minimum

requirement. A currency i is worthless if rij = 0, for all j i.

9. The following linear program happens to be a network LP. Draw the corresponding network. Label

the nodes and links.

MIN = 4 * T + 2 * U + 3 * V + 5 * W + 6 * X + 7 * Y + 9 * Z;

 [A] T + Y + Z >= 4;

 [B] U - W - X - Z = 0;

 [C] - T + W = 1;

 [D] V + X - Y = 2;

 [E] U + V <= 7;

END

10. Consider a set of three flights provided by an airline to serve four cities, A, B, C, and H. The airline

uses a two-fare pricing structure. The decision of how many seats or capacity to allocate to each

price class is sometimes called yield or revenue management. We would like to decide upon how

many seats to allocate to each fare class on each flight. Node H is a hub for changing planes. The

three flights are: from A to H, H to B, and H to C. The respective flight capacities are 120, 100, and 110.

Customer demand has the following characteristics:

Itinerary

Class 1
Demand

At a Price
of

Class 2
Demand

At a Price
of

AH 33 190 56 90

AB (via H) 24 244 43 193

AC (via H) 12 261 67 199

HB 44 140 69 80

HC 16 186 17 103

 How many seats should be allocated to each class on each of the three flights? An obvious

solution, if it is feasible, is to set aside enough class 1 seats on every flight, so all class 1 travelers

can be accommodated. Thus, the leg AH would get 33 + 24 + 12 = 69 class 1 seats, leg HB would

get 24 + 44 = 68 class 1 seats and leg HC would get 12 + 16 = 28 class 1 seats. The total revenue of

this solution is $38,854. Is this the most profitable solution?

Networks, Distribution & PERT/CPM Chapter 8 201

11. A common distribution system structure in many parts of the world is the three-level system

composed of plants, distribution centers (DC), and outlets. A cost minimization model for a system

composed of two plants (A & B), three DC’s (X, Y, and Z), and four outlets (1, 2, 3, and 4) is shown

below:

MIN = AX + 2 * AY + 3 * BX + BY + 2 * BZ + 5 * X1 +

 7 * X2 + 9 * Y1 + 6 * Y2 + 7 * Y3 + 8 * Z2 + 7

 * Z3 + 4 * Z4;

 AX + AY = 9;

 BX + BY + BZ = 8;

- AX - BX + X1 + X2 = 0;

- AY - BY + Y1 + Y2 + Y3 = 0;

- BZ + Z2 + Z3 + Z4 = 0;

- X1 - Y1 = - 3;

- X2 - Y2 - Z2 = - 5;

- Y3 - Z3 = - 4;

- Z4 = - 5;

END

Part of the solution is shown below:

Objective value: 121.0000

Variable Value Reduced Cost

 AX 3.000000 0.0000000

 AY 6.000000 0.0000000

 BX 0.0000000 3.000000

 BY 3.000000 0.0000000

 BZ 5.000000 0.0000000

 X1 3.000000 0.0000000

 X2 0.0000000 0.0000000

 Y1 0.0000000 5.000000

 Y2 5.000000 0.0000000

 Y3 4.000000 0.0000000

 Z2 0.0000000 3.000000

 Z3 0.0000000 1.000000

 Z4 5.000000 0.0000000

a) Is there an alternate optimal solution to this distribution problem?

b) A trucking firm that offers services from city Y to city 1 would like to get more of your business.

At what price per unit might you be willing to give them more business according to the above

solution?

c) The demand at city 2 has been decreased to 3 units. Show how the model is changed.

d) The capacity of plant B has been increased to 13 units. Show how the model is changed.

e) Distribution center Y is actually in a large city where there is an untapped demand of 3 units

that could be served directly from the DC at Y. Show how to include this additional demand at

Y.

202 Chapter 8 Networks, Distribution & PERT/CPM

12. Labor on the first shift of a day (8 a.m. to 4 p.m.) costs $15 per person hour. Labor on the second

(4 p.m. to midnight) and third (midnight to 8 a.m.) shifts cost $20 per person hour and $25 per

person hour, respectively. A certain task requires 18 days if done with just first shift labor and

costs $8640. Second and third shift labor has the same efficiency as first shift labor. The only way

of accelerating or crashing the task is to add additional shifts for one or more additional days. The

total cost of the task consists solely of labor costs.

Complete the following crash cost table for this task.

Task
time in
whole
days

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

Total
cost

8640

13. You are on a camping trip and wish to prepare a recipe for a certain food delight that calls for 4 cups

of water. The only containers in your possession are two ungraduated steel vessels, one of 3-cup

capacity, the other of 5-cup capacity. Show how you can solve this problem by drawing a certain

two-dimensional network, where each node represents a specific combination of contents in your

two containers.

14. Following is part of the schedule for an airline:

 City Time Difference

 Flight Depart Arrive Depart Arrive in Profit

1 221 ORD DEN 0800 0934 +$3000

2 223 ORD DEN 0900 1039 −$4000

3 274 LAX DEN 0800 1116 −$3000

4 105 ORD LAX 1100 1314 +$10000

5 228 DEN ORD 1100 1423 −$2000

6 230 DEN ORD 1200 1521 −$3000

7 259 ORD LAX 1400 1609 +$4000

8 293 DEN LAX 1400 1510 +$1000

9 412 LAX ORD 1400 1959 +$7000

10 766 LAX DEN 1600 1912 +$2000

11 238 DEN ORD 1800 2121 −$4000

 The airline currently flies the above schedule using standard Boeing 737 aircraft. Boeing is

trying to convince the airline to use a new aircraft, the 737-XX, known affectionately as the Dos

Equis. The 737-XX consumes more fuel per kilometer. However, it is sufficiently larger such that,

if it carries enough passengers, it is more efficient per passenger kilometer. The “Difference in

Profit” column above shows the relative profitability of using the 737-XX instead of the standard

737 on each flight. The airline is considering using at most one 737-XX.

 Based on the available information, analyze the wisdom of using the 737-XX in place of one

of the standard 737’s.

Networks, Distribution & PERT/CPM Chapter 8 203

15. The following linear program happens to be a network LP:

MIN = 9 * S + 4 * T + 2 * U + 3 * V + 5 * W + 6 * X + 7 * Y;

 [A] - T + W = 1;

 [B] S + T + Y >= 4;

 [C] U - W - X - S = 0;

 [D] U + V <= 7;

 [E] V + X - Y = 2;

END

a) Draw the corresponding network.

b) Label the nodes and links.

16. A small, but growing, long-distance phone company, SBG Inc., is trying to decide in which markets

it should try to expand. It has used the following model to decide how to maximize the calls it carries

per hour:

MAX = P1SEADNV + P2SEADNV + P1SEACHI + P2SEACHI

 + P1SEAATL + P2SEAATL + P1SEAMIA + P2SEAMIA

 + P1DNVCHI + P2DNVCHI + P1DNVATL + P2DNVATL

 + P1DNVMIA + P2DNVMIA + P1CHIATL + P2CHIATL

 + P1CHIMIA + P2CHIMIA + P1ATLMIA;

 [LSEADNV] P1SEADNV + P2SEACHI + P2SEAATL + P2SEAMIA

 + P1DNVCHI + P2DNVATL + P2DNVMIA + P2CHIATL +

 P2CHIMIA <= 95;

 [LSEACHI] P2SEADNV + P1SEACHI + P1SEAATL + P1SEAMIA

 + P1DNVCHI + P2DNVATL + P2DNVMIA + P2CHIATL +

 P2CHIMIA <= 80;

 [LDNVATL] P2SEADNV + P2SEACHI + P2SEAATL + P2SEAMIA

 + P2DNVCHI + P1DNVATL + P1DNVMIA + P2CHIATL +

 P2CHIMIA <= 200;

 [LCHIATL] P2SEADNV + P2SEACHI + P1SEAATL + P1SEAMIA

 + P2DNVCHI + P2DNVALT + P2DNVMIA + P1CHIATL +

 P1CHIMIA <= 110;

 [LATLMIA] P1SEAMIA + P2SEAMIA + P1DNVMIA + P2DNVMIA

 + P1CHIMIA + P2CHIMIA + P1ATLMIA <= 105;

 [DSEADNV] P1SEADNV + P2SEADNV <= 10;

 [DSEACHI] P1SEACHI + P2SEACHI <= 20;

 [DSEAATL] P1SEAATL + P2SEAATL <= 38;

 [DSEAMIA] P1SEAMIA + P2SEAMIA <= 33;

 [DDNVCHI] P1DNVCHI + P2DNVCHI <= 42;

 [DDNVATL] P1DNVATL + P2DNVATL <= 48;

 [DDNVMIA] P1DNVMIA + P2DNVMIA <= 23;

 [DCHIATL] P1CHIATL + P2CHIATL <= 90;

 [DCHIMIA] P1CHIMIA + P2CHIMIA <= 36;

 [DATLMIA] P1ATLMIA <= 26;

204 Chapter 8 Networks, Distribution & PERT/CPM

 Now, it would like to refine the model, so it takes into account not only revenue per call, but

also modest variable costs associated with each link for carrying a call. The variable cost per typical

call according to link used is shown in the table below:

 Variable Cost/Call

 DNV CHI ATL MIA

SEA .11 .16 X X

DNV X .15 X

CHI .06 X

ATL .07

 An X means there is no direct link between the two cities. SBG would like to find the

combination of calls to accept to maximize profit contribution. Suppose the typical revenue per call

between ATL and SEA is $1.20. Show how to modify the model just to represent the revenue and

cost information for the demand between SEA and ATL.

17. Below is a four-activity project network presented in activity-on-node form, along with information

on crashing opportunities for each activity:

Activity Normal
Time

(days)

Crash
Cost Per

Day

Minimum
Possible Time

(days)

A 8 3 4

B 7 4 5

C 6 6 3

D 9 2 5

Complete the following tabulation of crashing cost vs. project length:

Step Project
Length

Incremental
Crashing
Cost/Day

Total
Crashing

Cost

Activities
to Crash

0 16 0 0 —

1

2

3

4

205

9

Multi-period Planning
Problems

9.1 Introduction
One of the most important uses of optimization is in multi-period planning. Most of the problems we

have considered thus far have been essentially one-period problems. The formulations acted as if

decisions this period were decoupled from decisions in future periods. Typically, however, if we produce

more of a certain product this period than required by a constraint, that extra production will not be

worthless, but can probably be used next period.

 These interactions between periods can be represented very easily within optimization models. In

fact, most large linear programs encountered in practice are multi-period models. A common synonym

for “multi-period” is “dynamic” (e.g., a multi-period LP may be referred to as a dynamic model).

 In some applications, the need to represent the multi-period aspects is quite obvious. One setting in

which multi-period LP has been used for a number of years is in the manufacture of cheese. Production

decisions must be made monthly or even weekly. The production time for many cheeses, however, may

be months. For example, Parmesan cheese may need to be stored in inventory for up to ten months. What

Americans call Swiss cheese may take from two to four months. The various grades of cheddar obtained

depend upon the number of weeks held in storage. Sharp cheddar may be aged up to a year in storage.

Clearly, in such applications, the multi-period aspect of the model is the important feature.

 Models for planning over time represent the real world by partitioning time into a number of periods.

The portion of the model corresponding to a single period might be some combination of product mix,

blending, and other models. These single-period or static models are linked by:

1. A link or inventory variable for each commodity and period. The linking variable

represents the amount of commodity transferred from one period to the next.

2. A “material balance” or “sources = uses” constraint for each commodity and period. The

simplest form of this constraint is “beginning inventory + production = ending inventory +

goods sold”.

 Multi-period models are usually used in a rolling or sliding format. In this format, the model is

solved at the beginning of each period. The recommendations of the solution for the first period are

implemented. As one period elapses and better data and forecasts become available, the model is slid

forward one period. The period that had been number 2 becomes number 1, etc., and the whole process

206 Chapter 9 Multi-period Planning Problems

is repeated. When using a model in this sliding fashion, a practical problem is that, as the new information

becomes available, this period’s “optimal” solution may be drastically different from the previous

period’s “optimal” solution. The people who have to implement the solution may find this disconcerting.

The scheduling system is said to suffer from nervousness. An approach that has been used successfully

in scheduling ships, scheduling plant closings/openings, and scheduling production of breakfast cereal,

see Brown, Dell, and Wood (1997), is to specify a “reference” solution (e.g., the previous period’s

solution). One then defines a secondary objective of minimizing the deviation of the current solution

from the reference solution. If one puts zero weight on the secondary objective, then one gets the

theoretically optimal solution. If one puts an extremely high weight on the secondary objective, then one

simply gets the reference solution returned. If a modest weight is placed on the secondary objective, then

one gets a solution that is a good compromise between low cost as measured by standard accounting,

but is also close to the reference solution.

 There is nothing sacred about having all periods of the same length. For example, when a petroleum

company plans production for the coming year, it is sensible to have the periods correspond to the

seasons of the year. One possible partition is to have the winter period extend from December 1 to March

15, the spring period extend from March 16 to May 15, the summer period extend from May 16 to

September 15, and the autumn period extend from September 16 to November 30.

 Some companies, such as forest product or mineral resource based companies, plan as much as 50

years into the future. In such a case, one might have the first two periods be one year each, the next

period be two years, the next two periods three years each, the next two periods five years each, and the

final three periods ten years each.

 Inter-period interactions are usually accounted for in models by the introduction of inventory

decision variables. These variables “link” adjacent periods. As an example, suppose we have a single

explicit decision to make each period. Namely, how much to produce of a single product. Call this

decision variable for period j, Pj. Further, suppose we have contracts to sell known amounts of this

product, dj, in period j. Define the decision variable Ij as the amount of inventory left over at the end of

period j. By this convention, the beginning inventory in period j is Ij-1. The LP formulation will then

contain one “sources of product = uses of product” constraint for each period. For period 2, the sources

of product are beginning inventory, I1, and production in the period, P2. The uses of product are demand,

d2, and end of period inventory, I2. For example, if d2 = 60 and d3 = 40, then the constraint for period 2

is:

I1 + P2 = 60 + I2 or I1 + P2 − I2 = 60.

The constraint for period 3 is:

I2 + P3 − I3 = 40.

Notice how I2 “links” (i.e., appears in both the constraints for periods 2 and 3).

 In some problems, the net outflow need not exactly equal the net inflow into the next period. For

example, if the product is cash, then one of the linking variables may be short-term borrowing or lending.

For each dollar carried over from period 2 by lending, we will enter period 3 with $1.05 if the interest

rate is 5% per period.

 On the other hand, if the “product” is workforce and there is a predictable attrition rate of 10% per

period, then the above two constraints would be modified to:

.90I1 + P2 − I2 = 60

.90I2 + P3 − I3 = 40.

In this case, Pi is the number hired in period i.

Multi-period Planning Problems Chapter 9 207

 The following example provides a simplified illustration of a single-product, multi-period planning

situation.

9.2 A Dynamic Production Problem
A company produces one product for which the demand for the next four quarters is predicted to be:

Spring Summer Autumn Winter

20 30 50 60

Assuming all the demand is to be met, there are two extreme policies that might be followed:

1. “Track” demand with production and carry no inventory.

2. Produce at a constant rate of 40 units per quarter and allow inventory to absorb the

fluctuations in demand.

 There are costs associated with carrying inventory and costs associated with varying the production

level, so one would expect the least-cost policy is probably a combination of (1) and (2) (i.e., carry some

inventory, but also vary the production level somewhat).

 For costing purposes, the company estimates changing the production level from one period to the

next costs $600 per unit. These costs are often called “hiring and firing” costs. It is estimated that

charging $700 for each unit of inventory at the end of the period can accurately approximate inventory

costs. The initial inventory is zero and the initial production level is 40 units per quarter. We require

these same levels be achieved or returned to at the end of the winter quarter.

 We can now calculate the production change costs associated with the no-inventory policy as:

$600 (20 + 10 + 20 + 10 + 20) = $48,000.

On the other hand, the inventory costs associated with the constant production policy is:

$700 (20 + 30 + 20 + 0) = $49,000.

 The least cost policy is probably a mix of these two pure policies. We can find the least-cost policy

by formulating a linear program.

9.2.1 Formulation
The following definitions of variables will be useful:

Pi = number of units produced in period i, for i = 1, 2, 3, and 4;

Ii = units in inventory at the end of period i;

Ui = increase in production level between period i − 1 and i;

Di = decrease in production level between i − 1 and i.

 The Pi variables are the obvious decision variables. It is useful to define the Ii, Ui, and Di variables,

so we can conveniently compute the costs each period.

 To minimize the cost per year, we want to minimize the sum of inventory costs:

$700 I1 + $700 I2 + $700 I3 + $700 I4

plus production change costs:

 $600 U1 + $600 U2 + $600 U3 + $600 U4 + $600 U5

+ $600 D1 + $600 D2 + $600 D3 + $600 D4 + $600 D5.

208 Chapter 9 Multi-period Planning Problems

 We have added a U5 and a D5 in order to charge for the production level change back to 40, if needed

at the end of the 4th period.

9.2.2 Constraints
Every multi-period problem will have a “material balance” or “sources = uses” constraint for each

product per period. The usual form of these constraints in words is:

beginning inventory + production − ending inventory = demand.

Algebraically, these constraints for the problem at hand are:

P1 − I1 = 20

I1 + P2 − I2 = 30

I2 + P3 − I3 = 50

I3 + P4 = 60

 Notice I4 and I0 do not appear in the first and last constraints, because initial and ending inventories

are required to be zero.

 If the formulation is solved as is, there is nothing to force U1, D1, etc., to be greater than zero.

Therefore, the solution will be the pure production policy. Namely, P1 = 20, P2 = 30, P3 = 50, P4 = 60.

This policy implies a production increase at the end of every period, except the last. This suggests a way

of forcing U1, U2, U3, and U4 to take the proper values is to append the constraints:

U1 P1 − 40

U2 P2 − P1

U3 P3 − P2

U4 P4 − P3.

 Production decreases are still not properly measured. An analogous set of four constraints should

take care of this problem, specifically:

D1 40 − P1

D2 P1 − P2

D3 P2 − P3

D4 P3 − P4.

 To incorporate the requirement that the production level be returned to 40 at the end of the winter

quarter, we add the variables U5 and D5 to measure changes at the end of the last quarter. U5 and D5 are

forced to take on the right values with the constraints:

U5 40 − P4

D5 P4 − 40.

 Before moving on, we will note the production-change constraints can be reduced to 5 constraints

from the 10 implied by the above form. The key observation is two constraints such as:

U2 P2 − P1

D2 P1 − P2

can be replaced by the single constraint:

U2 − D2 = P2 − P1.

Multi-period Planning Problems Chapter 9 209

 The argument is more economic than algebraic. The purpose with either formulation is to force

U2 = P2 − P1 if P2 − P1 0 and D2 = P1 − P2 if P1 − P2 0. From economics, you can argue that, at the

optimal solution, you will find at most one of U2 and D2 are greater than 0 under either formulation. If

both U2 and D2 are greater than 0 under the second formulation, then both can be reduced by an equal

amount. Thus, reducing costs without violating any constraints.

 The complete formulation is:

MODEL:

!Minimize inventory + workforce change costs;

MIN = 700 * I1 + 700 * I2 + 700 * I3 + 700 * I4

 + 600 * U1 + 600 * U2 + 600 * U3 + 600 * U4

 + 600 * D1 + 600 * D2 + 600 * D3 + 600 * D4

 + 600 * U5 + 600 * D5;

!Initial conditions on inventory & production;

[CNDBI] I0 = 0;

[CNDBP] P0 = 40;

!Beginning inventory + production = demand + ending inventory;

[INV1] I0 + P1 = 20 + I1;

[INV2] I1 + P2 = 30 + I2;

[INV3] I2 + P3 = 50 + I3;

[INV4] I3 + P4 = 60 + I4;

!Change up - change down = prod. this period - prod. prev. period;

[CHG1] U1 - D1 = P1 - P0;

[CHG2] U2 - D2 = P2 - P1;

[CHG3] U3 - D3 = P3 - P2;

[CHG4] U4 - D4 = P4 - P3;

[CHG5] U5 - D5 = P5 - P4;

!Ending conditions;

[CNDEI] I4 = 0;

[CNDEP] P5 = 40;

END

The solution is:

Optimal solution found at step: 7

Objective value: 43000.00

Variable Value Reduced Cost

 I1 5.000000 0.0000000

 I2 0.0000000 200.0000

 I3 5.000000 0.0000000

 I4 0.0000000 0.0000000

 U1 0.0000000 1200.000

 U2 0.0000000 250.0000

 U3 30.00000 0.0000000

 U4 0.0000000 250.0000

 D1 15.00000 0.0000000

 D2 0.0000000 950.0000

 D3 0.0000000 1200.000

 D4 0.0000000 950.0000

 U5 0.0000000 1200.000

210 Chapter 9 Multi-period Planning Problems

 D5 15.00000 0.0000000

 I0 0.0000000 0.0000000

 P0 40.00000 0.0000000

 P1 25.00000 0.0000000

 P2 25.00000 0.0000000

 P3 55.00000 0.0000000

 P4 55.00000 0.0000000

 P5 40.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 43000.00 -1.000000

 CNDBI 0.0000000 -950.0000

 CNDBP 0.0000000 -600.0000

 INV1 0.0000000 950.0000

 INV2 0.0000000 250.0000

 INV3 0.0000000 -250.0000

 INV4 0.0000000 -950.0000

 CHG1 0.0000000 600.0000

 CHG2 0.0000000 -350.0000

 CHG3 0.0000000 -600.0000

 CHG4 0.0000000 -350.0000

 CHG5 0.0000000 600.0000

 CNDEI 0.0000000 -1650.000

 CNDEP 0.0000000 600.0000

We see the solution is a mixed policy:

P1 = P2 = 25; P3 = P4 = 55.

The mixed policy found by LP is $5,000 cheaper than the best pure policy.

9.2.3 Representing Absolute Values
You may be tempted to represent the production-change costs in the above model by the expression:

600 *(@ABS(P1 – P0) + @ABS(P2 – P1) + …+@ABS(P5 – P4));

 This is mathematically correct, but computationally unwise, because it converts a linear program

into a nonlinear program. Nonlinear programs are always more time consuming to solve. We have

exploited the following result to obtain a linear program from an apparently nonlinear program. Subject

to a certain condition, any appearance in a model of a term of the form:

@ABS (expression)

can be replaced by the term U + D, if we add the constraint:

U – D = expression.

 The “certain condition” is that the model must be such that a small value of @ABS (expression) is

preferred to a large value for @ABS (expression). The result is, if expression is positive, then U will be

equal to expression, whereas, if expression is negative, then D will equal the negative of expression.

9.3 Multi-period Financial Models
In most multi-period planning problems, the management of liquid or cash-like assets is an important

consideration. If you are willing to consider cash holdings as an inventory just like an inventory of any

Multi-period Planning Problems Chapter 9 211

other commodity, then it is a small step to incorporate financial management decisions into a

multi-period model. The key feature is, for every period, there is a constraint that effectively says,

“sources of cash − uses of cash = 0”. The following simple, but realistic, example illustrates the major

features of such models.

9.3.1 Example: Cash Flow Matching
Suppose, as a result of a careful planning exercise, you have concluded that you will need the following

amounts of cash for the current plus next 14 years to meet certain commitments:

Year: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cash (in
$1,000s)

10 11 12 14 15 17 19 20 22 24 26 29 31 33 36

 A common example where such a projection is made is in a personal injury lawsuit. Both parties

may reach an agreement that the injured party should receive a stream of payments such as above or its

equivalent. Other examples where the above approach has been used is in designing bond portfolios to

satisfy cash needs for a pension fund, or for so-called balance sheet defeasance where one kind of debt

is replaced by another having the same cash flow stream.

 For administrative simplicity in the personal injury example, both parties prefer an immediate single

lump sum payment that is “equivalent” to the above stream of 15 payments. The party receiving the

lump sum will argue that the lump sum payment should equal the present value of the stream using a

low interest rate such as that obtained in a very low risk investment (i.e., a government guaranteed

savings account). For example, if an interest rate of 4% is used, the present value of the stream of

payments is $230,437. The party that must pay the lump sum, however, would like to argue for a much

higher interest rate. To be successful, such an argument must include evidence that such higher interest

rate investments are available and are no riskier than savings accounts. The investments usually offered

are government securities. Generally, a broad spectrum of such investments is available on a given day.

For simplicity, assume there are just two such investments available with the following features:

Security

Current

Cost

Yearly
Return

Years to
Maturity

Principal
Repayment at

Maturity

1 $980 $60 5 $1000

2 $965 $65 12 $1000

 The paying party will offer a lump sum now with a recommendation of how much should be invested

in securities 1 and 2 and in savings accounts, such that the yearly cash requirements are met with the

minimum lump sum payment.

 The following decision variables are useful in solving this problem:

B1 = amount invested now in security 1, measured in “face value amount”,

B2 = amount invested now in security 2, measured in “face value amount”,

S i = amount invested into a savings account in year i, and

L = initial lump sum.

212 Chapter 9 Multi-period Planning Problems

 The objective function will be to minimize the initial lump sum. There will be a constraint for each

year that forces the cash flows to net to zero. If we assume idle cash is invested at 4 percent in a savings

account and all amounts are measured in $1000’s, then the formulation is:

MIN = L;

L - 0.98 * B1 - 0.965 * B2 - S0 = 10;

0.06 * B1 + 0.065 * B2 + 1.04 * S0 - S1 = 11;

0.06 * B1 + 0.065 * B2 + 1.04 * S1 - S2 = 12;

0.06 * B1 + 0.065 * B2 + 1.04 * S2 - S3 = 14;

0.06 * B1 + 0.065 * B2 + 1.04 * S3 - S4 = 15;

1.06 * B1 + 0.065 * B2 + 1.04 * S4 - S5 = 17;

0.065 * B2 + 1.04 * S5 - S6 = 19;

0.065 * B2 + 1.04 * S6 - S7 = 20;

0.065 * B2 + 1.04 * S7 - S8 = 22;

0.065 * B2 + 1.04 * S8 - S9 = 24;

0.065 * B2 + 1.04 * S9 - S10 = 26;

0.065 * B2 + 1.04 * S10 - S11 = 29;

1.065 * B2 + 1.04 * S11 - S12 = 31;

1.04 * S12 - S13 = 33;

1.04 * S13 - S14 = 36;

 The PICTURE of the constraint coefficients gives a better appreciation of the structure of the

problem. An A represents numbers bigger than 1.0, but less than 10.0. Numbers 10 or larger, but less

than 100.0, are represented by a B. Numbers less than 1.0, but at least 0.1, are represented by a T.

Numbers less than 0.1, but at least 0.01, are represented by a U:

 S S S S S

 B B S S S S S S S S S S 1 1 1 1 1

 L 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

 1: 1 MIN

 2: 1-T-T-1 = A

 3: U U A-1 = B

 4: U U A-1 = B

 5: U U A-1 = B

 6: U U A-1 = B

 7: A U A-1 = B

 8: U A-1 = B

 9: U A-1 = B

10: U A-1 = B

11: U A-1 = B

12: U A-1 = B

13: U A-1 = B

14: A A-1 = B

15: A-1 = B

16: A-1 = B

Multi-period Planning Problems Chapter 9 213

 Notice in row 7, B1 has a coefficient of 1.06. This represents the principal repayment of $1000 plus

the interest payment of $60 measured in $1000’s. Variable S14 (investment of funds in a savings account

after the final payment is made) appears in the problem even though at first you might think it useless to

allow such an option. S14 is effectively a surplus cash variable in the final period. Nevertheless, it is not

unusual for the solution that minimizes the lump sum payment to have cash left over at the end of the

period. This is because a bond may be the most economical way of delivering funds to intermediate

periods. This may cause the big principal repayment at the end of a bond’s life to “overpay” the most

distant periods. The solution is:

Optimal solution found at step: 14

Objective value: 195.6837

Variable Value Reduced Cost

 L 195.6837 0.0000000

 B1 95.79577 0.0000000

 B2 90.15474 0.0000000

 S0 4.804497 0.0000000

 S1 5.604481 0.0000000

 S2 5.436464 0.0000000

 S3 3.261727 0.0000000

 S4 0.0000000 0.1069792

 S5 90.40358 0.0000000

 S6 80.87978 0.0000000

 S7 69.97503 0.0000000

 S8 56.63409 0.0000000

 S9 40.75951 0.0000000

 S10 22.24994 0.0000000

 S11 0.0000000 0.1412458

 S12 65.01479 0.0000000

 S13 34.61538 0.0000000

 S14 0.0000000 0.3796368

 Of the $195,683.70 lump sum payment, $10,000 goes to immediate requirements, $4,804.50 goes

into a savings account, and 0.98 95,795.77 + 0.965 90,154.74 = $180,879.20 goes into longer-term

securities. Considering a wide range of investments rather than just savings accounts has reduced the

amount of the lump sum payment by about $34,750, or 15%.

 In actual solutions, one may find a major fraction of the lump sum is invested in a single security.

For example, appending the following constraint limits the amount invested in security 1 to half the

initial lump sum:

0.98 B1 − 0.5 L 0.

 An additional complication may arise due to integrality requirements on the B1 and B2 investments.

For example, bonds can be bought only in $1000 increments. Generally, with a modest amount of

judgment, the fractional values can be rounded to neighboring integer values with no great increase in

lump sum payment. For example, if B1 and B2 are set to 96 and 90 in the previous example, the total cost

increases to $195,726.50 from $195,683.70. When this is done, S14 becomes nonzero. Specifically, the

last period is overpaid by about $40.

214 Chapter 9 Multi-period Planning Problems

 A sets version that places an integrality requirement on the bond purchase variables is:

MODEL:

! Name= PBOND, Bond portfolio/ cash matching problem: Given cash needs

in each future period, what collection of bonds should we buy to cover

these needs?;

SETS:

BOND/1..2/ : MATAT, ! Matures at period;

 PRICE, ! Purchase price;

 CAMNT, ! Coupon payout each period;

 BUY; ! Amount to buy of each bond;

PERIOD/1..15/:

 NEED, ! Cash needed each period;

SINVEST; ! Short term investment each period;

ENDSETS

DATA:

STRTE = .04; ! Short term interest rate;

MATAT = 6, 13; ! Years to maturity;

PRICE = .980, .965;! Purchase price in thousands;

CAMNT = .060, .065; ! Coupon amount in thousands;

NEED = 10, 11, 12, 14, 15, 17, 19, 20, 22, 24,

 26, 29, 31, 33, 36; ! Cash needed in

 thousands;

ENDDATA

!---;

MIN = LUMP;

! First period is slightly special;

LUMP =

NEED(1) + SINVEST(1) + @SUM(BOND: PRICE * BUY);

! For subsequent periods;

@FOR(PERIOD(I)| I #GT# 1:

 @SUM(BOND(J)| MATAT(J) #GE# I:

 CAMNT(J) * BUY(J)) +

 @SUM(BOND(J)| MATAT(J) #EQ# I: BUY(J)) +

 (1 + STRTE) * SINVEST(I - 1) =

 NEED(I) + SINVEST(I);

);

! Can only buy integer bonds;

@FOR(BOND(J): @GIN(BUY(J)););

END

Optimal solution found at step: 28

Objective value: 195.7265

Branch count: 3

 Variable Value Reduced Cost

 STRTE 0.4000000E-01 0.0000000

 LUMP 195.7265 0.0000000

 MATAT(1) 6.000000 0.0000000

 MATAT(2) 13.00000 0.0000000

 PRICE(1) 0.9800000 0.0000000

 PRICE(2) 0.9650000 0.0000000

 CAMNT(1) 0.6000000E-01 0.0000000

 CAMNT(2) 0.6500000E-01 0.0000000

 BUY(1) 96.00000 0.7622063

Multi-period Planning Problems Chapter 9 215

 BUY(2) 90.00000 0.7290568

 NEED(1) 10.00000 0.0000000

 NEED(2) 11.00000 0.0000000

 NEED(3) 12.00000 0.0000000

 NEED(4) 14.00000 0.0000000

 NEED(5) 15.00000 0.0000000

 NEED(6) 17.00000 0.0000000

 NEED(7) 19.00000 0.0000000

 NEED(8) 20.00000 0.0000000

 NEED(9) 22.00000 0.0000000

 NEED(10) 24.00000 0.0000000

 NEED(11) 26.00000 0.0000000

 NEED(12) 29.00000 0.0000000

 NEED(13) 31.00000 0.0000000

 NEED(14) 33.00000 0.0000000

 NEED(15) 36.00000 0.0000000

 SINVEST(1) 4.796526 0.0000000

 SINVEST(2) 5.598387 0.0000000

 SINVEST(3) 5.432322 0.0000000

 SINVEST(4) 3.259615 0.0000000

 SINVEST(5) 0.0000000 0.8548042

 SINVEST(6) 90.61000 0.0000000

 SINVEST(7) 81.08440 0.0000000

 SINVEST(8) 70.17778 0.0000000

 SINVEST(9) 56.83489 0.0000000

SINVEST(10) 40.95828 0.0000000

SINVEST(11) 22.44661 0.0000000

SINVEST(12) 0.1944784 0.0000000

SINVEST(13) 65.05226 0.0000000

SINVEST(14) 34.65435 0.0000000

SINVEST(15) 0.4052172E-01 0.0000000

9.4 Financial Planning Models with Tax Considerations
The next example treats a slightly more complicated version of the portfolio selection problem and then

illustrates how to include and examine the effect of taxes. Winston-Salem Development Management

(WSDM) is trying to complete its investment plans for the next three years. Currently, WSDM has two

million dollars available for investment. At six-month intervals over the next three years, WSDM expects

the following income stream from previous investments: $500,000 (six months from now); $400,000;

$380,000; $360,000; $340,000; and $300,000 (at the end of third year). There are three development

projects in which WSDM is considering participating. The Foster City Development would, if WSDM

participated fully, have the following cash flow stream (projected) at six-month intervals over the next

three years (negative numbers represent investments, positive numbers represent income):

−$3,000,000; -$1,000,000; −$1,800,000; $400,000; $1,800,000; $1,800,000; $5,500,000. The last figure

is its estimated value at the end of three years. A second project involves taking over the operation of

some old lower-middle-income housing on the condition that certain initial repairs to it be made and that

it be demolished at the end of three years. The cash flow stream for this project, if participated in fully,

would be: −$2,000,000; −$500,000; $1,500,000; $1,500,000; $1,500,000; $200,000; -$1,000,000.

 The third project, the Disney-Universe Hotel, would have the following cash flow stream (six-month

intervals) if WSDM participated fully. Again, the last figure is the estimated value at the end of the three

years: −$2,000,000; −$2,000,000; −$1,800,000; $1,000,000; $1,000,000; $1,000,000; $6,000,000.

216 Chapter 9 Multi-period Planning Problems

WSDM can borrow money for half-year intervals at 3.5 percent interest per half year. At most, 2 million

dollars can be borrowed at one time (i.e., the total outstanding principal can never exceed 2 million).

WSDM can invest surplus funds at 3 percent per half year.

 Initially, we will disregard taxes. We will formulate the problem of maximizing WSDM’s net worth

at the end of three years as a linear program. If WSDM participates in a project at less than 100 percent,

all the cash flows of that project are reduced proportionately.

9.4.1 Formulation and Solution of the WSDM Problem
Define:

F = fractional participation in the Foster City problem;

M = fractional participation in Lower-Middle;

D = participation in Disney;

Bi = amount borrowed in period i in 1000’s of dollars, i = 1, …, 6;

Li = amount lent in period i in 1000’s of dollars, i = 1, …, 6;

Z = net worth after the six periods in 1000’s of dollars.

The problem formally is then (all numbers will be measured in units of 1000):

MODEL:

MAX = Z; ! Max worth at end of final period;

! Uses - sources = supply of cash in each period;

 3000 * F + 2000 * M + 2000 * D - B1 + L1 = 2000;

 1000 * F + 500 * M + 2000 * D + 1.035 * B1 - 1.03 * L1 - B2 + L2=500;

 1800 * F - 1500 * M + 1800 * D + 1.035 * B2 - 1.03 * L2 - B3 + L3=400;

 -400 * F - 1500 * M - 1000 * D + 1.035 * B3 - 1.03 * L3 - B4 + L4=380;

-1800 * F - 1500 * M - 1000 * D + 1.035 * B4 - 1.03 * L4 - B5 + L5=360;

-1800 * F - 200 * M - 1000 * D + 1.035 * B5 - 1.03 * L5 - B6 + L6=340;

Z - 5500 * F + 1000 * M - 6000 * D + 1.035 * B6 - 1.03 * L6=300;

! Borrowing limits;

B1 <= 2000;

B2 <= 2000;

B3 <= 2000;

B4 <= 2000;

B5 <= 2000;

B6 <= 2000;

! We can invest at most 100% in a project;

F <= 1;

M <= 1;

D <= 1;

END

 Rows 4 through 17 are the cash flow constraints for each of the periods. They enforce the

requirement that uses of cash − sources of cash = 0 for each period. In the initial period, for example, L1

uses cash, whereas B1 is a source of cash.

Multi-period Planning Problems Chapter 9 217

 The solution is:

Optimal solution found at step: 11

Objective value: 7665.179

Variable Value Reduced Cost

 Z 7665.179 0.0000000

 F 0.7143414 0.0000000

 M 0.6372096 0.0000000

 D 0.0000000 452.3816

 B1 1417.443 0.0000000

 L1 0.0000000 0.8788487E-02

 B2 2000.000 0.0000000

 L2 0.0000000 0.3343139

 B3 2000.000 0.0000000

 L3 0.0000000 0.2509563

 B4 448.4490 0.0000000

 L4 0.0000000 0.5304549E-02

 B5 0.0000000 0.5149997E-02

 L5 2137.484 0.0000000

 B6 0.0000000 0.5000029E-02

 L6 3954.865 0.0000000

 Row Slack or Surplus Dual Price

 1 7665.179 1.000000

 2 0.0000000 1.819220

 3 0.0000000 1.757701

 4 0.0000000 1.381929

 5 0.0000000 1.098032

 6 0.0000000 1.060900

 7 0.0000000 1.030000

 8 0.0000000 1.000000

 9 582.5567 0.0000000

 10 0.0000000 0.3274043

 11 0.0000000 0.2454662

 12 1551.551 0.0000000

 13 2000.000 0.0000000

 14 2000.000 0.0000000

 15 0.2856586 0.0000000

 16 0.3627904 0.0000000

 17 1.000000 0.0000000

 Thus, we should try to invest or buy 0.7143414 of the Foster City project, 0.6372096 of the

Middle-income project, and invest nothing in the Disney Universe project. At the end of the planning

horizon, our net worth should have grown to 7,665,179.

9.4.2 Interpretation of the Dual Prices
The dual price on each of the first seven constraints is the increase in net worth in the last period resulting

from an extra dollar made available in the earliest period. For example, the 1.81922 indicates an extra

dollar available at the start of period 1 would increase the net worth in the last period by about $1.82.

 An extra dollar in period 5 is worth $1.0609 at the end, because all we will do with it is invest it for

two periods at three percent. Thus, it will grow to 1.03 1.03 = 1.0609 at the end.

218 Chapter 9 Multi-period Planning Problems

 An extra dollar in period 4 will save us from borrowing a dollar that period. Thus, we will be $1.035

richer in period 5. We have already seen the value per extra dollar in period 5, so the value of an extra

dollar in period 4 is $1.035 1.0609 = $1.09803.

 The dual prices on the borrowing constraints can be reconciled with the rest of the dual prices as

follows. Having an additional dollar in period 2 is worth $1.7577. If this dollar were borrowed, then we

would have to pay out $1.035 in period 3, which would have an effective cost of 1.035 1.38193. Thus,

the net value in the last period of borrowing an extra dollar in period 2 is 1.7577 − 1.035 1.38193 =

0.3274, which agrees with the dual price on the borrowing constraint for period 2.

 The effective interest rate or cost of capital, i, in any period t, can be found from the dual prices by

deriving the rate at which one would be willing to borrow. Borrowing one dollar in period t would give

us $1 more in period t, but would require us to pay out 1 + i dollars in period t + 1. We must balance

these two considerations. Consider period 1. An extra dollar is worth $1.81922 at the end of period 6.

Paying back 1 + i in period 2 would cost (1 + i) $1.7577 at the end of period 6. Balancing these two:

1.81922 = (1 + i)1.7577.

Solving:

i = 0.035.

 This is not surprising because we are already borrowing at that rate in period 1, but not to the limit.

 Applying a similar analysis to the other periods, we get the following effective rates:

Period i Period i

1 0.03500 4 0.035

2 0.27190 5 0.030

3 0.25855 6 0.030

9.5 Present Value vs. LP Analysis
A standard method for evaluating the attractiveness of a project is by computing the present value of its

cash flow stream. LP analysis, as we have just illustrated, is a generalization of present value (PV)

analysis. The assumptions underlying PV analysis are that money can be: a) borrowed or lent at the same

rate, b) without limit, c) at the same rate in every period. An LP model, such as that just considered,

gives exactly the same recommendation as PV analysis if the same assumptions are made. LP analysis,

however, allows one to have a borrowing rate different from a lending rate; a borrowing rate or lending

rate that varies from period to period; a rate that depends upon the term of the loan(longer term usually

means a higher rate/year); and/or an upper limit on the amount borrowed or lent at a given rate.

 Like PV analysis, LP analysis avoids the ambiguity of multiple rates of return that can occur when

the internal rate of return is used to evaluate a project. Consider a project that requires an initial

investment of $1 million, pays back $2.5 million after one year, and incurs a termination cost after two

years of $1.55 million. This project has two internal rates of return. One is about 13.82% per year. The

other is about 36.18% per year. Is the project attractive if our cost of capital is 11% per year? Both PV

and LP analysis will (correctly) reject this project if our cost of capital is 12% per year, accept the project

if our cost of capital is 24% per year, and reject the project if our cost of capital is 38% per year.

9.6 Accounting for Income Taxes
Suppose we take taxes into account. Let us consider the following simplified situation. There is a tax

rate of fifty percent on profit for any period. If there is a loss in a period, eighty percent can be carried

Multi-period Planning Problems Chapter 9 219

forward to the next period. (Typically, tax laws put a limit on how many years a loss can be carried

forward, but eighty percent may be a good approximation.)

 Taxable income for each of the prospective projects as well as all existing projects is given in the

table below. Note that because of factors such as depreciation, actual net cash flow may be rather

different from taxable income in a period:

 Project

Period

Foster
City

Lower-Middle
Housing

Disney
Universe

Existing

1 −100,000 −200,000 −150,000 0

2 −300,000 −400,000 −200,000 100,000

3 −600,000 −200,000 −300,000 80,000

4 −100,000 500,000 −200,000 76,000

5 500,000 1,000,000 500,000 72,000

6 1,000,000 100,000 800,000 68,000

7 4,000,000 −1,000,000 5,000,000 60,000

To formulate a model, in this case, we need to additionally define:

Pi = profit in period i, and

Ci = loss in period i.

 The formulation is affected in two ways. First, we must append some equations that force the Pi's

and Ci's to be computed properly, and, secondly, terms must be added to the cash flow constraints to

account for the cash expended in the payment of tax.

 In words, one of the tax computation equations is:

Profit − loss = revenue − expense − 0.8 (last period’s loss).

Algebraically, this equation for period 2 is:

P2 − C2 = 100 + 0.03L1 − 300F − 400M − 200D − 0.035B1 − 0.8C1,

or in standard form:

P2 − C2 − 0.03L1 + 300F + 400M + 200D + 0.035B1 + 0.8C1 = 100.

220 Chapter 9 Multi-period Planning Problems

The entire formulation is:

MAX = Z;

!Cash flow constraints, uses-sources= 0, including the 50% tax usage;

3000*F +2000*M + 2000*D - B1 + L1 + 0.5*P1=2000;

1000*F + 500*M + 2000*D+1.035*B1-1.03*L1-B2+L2+0.5*P2= 500;

1800*F -1500*M + 1800*D+1.035*B2-1.03*L2-B3+L3+0.5*P3= 400;

-400*F -1500*M - 1000*D+1.035*B3-1.03*L3-B4+L4+0.5*P4= 380;

-1800*F -1500*M - 1000*D+1.035*B4-1.03*L4-B5+L5+0.5*P5= 360;

-1800*F - 200*M - 1000*D+1.035*B5-1.03*L5-B6+L6+0.5*P6= 340;

Z-5500*F+1000*M - 6000*D+1.035*B6-1.03*L6 +0.5*P7= 300;

! The borrowing limits;

B1 <= 2000;

B2 <= 2000;

B3 <= 2000;

B4 <= 2000;

B5 <= 2000;

B6 <= 2000;

! The investing limits;

F <= 1;

M <= 1;

D <= 1;

! Taxable Profit-Loss for each period;

100*F+ 200*M+ 150*D +P1 -C1 = 0;

300*F+ 400*M+ 200*D+0.035*B1-0.03*L1+P2+0.8*C1-C2=100;

600*F+ 200*M+ 300*D+0.035*B2-0.03*L2+P3+0.8*C2-C3= 80;

100*F- 500*M+ 200*D+0.035*B3-0.03*L3+P4+0.8*C3-C4= 76;

-500*F-1000*M- 500*D+0.035*B4-0.03*L4+P5+0.8*C4-C5= 72;

-1000*F- 100*M- 800*D+0.035*B5-0.03*L5+P6+0.8*C5-C6= 68;

-4000*F+1000*M-5000*D+0.035*B6-0.03*L6+P7+0.8*C6-C7= 60;

The solution is:

Objective value: 5899.975

Variable Value Reduced Cost

 Z 5899.9750 0.0000000

 F 0.4872107 0.0000000

 M 1.0000000 0.0000000

 D 0.0000000 945.00740

 B1 1461.6320 0.0000000

 L1 0.0000000 0.5111823E-02

 P1 0.0000000 0.4499472

 B2 2000.0000 0.0000000

 L2 0.0000000 0.1960928

 P2 0.0000000 0.3793084

 B3 1046.9790 0.0000000

 L3 0.0000000 0.3167932E-02

 P3 0.0000000 0.2042549

 B4 0.0000000 0.2575563E-02

 L4 991.26070 0.0000000

 P4 0.0000000 0.1107492

 B5 0.0000000 0.2537532E-02

 L5 3221.6490 0.0000000

 P5 1072.6580 0.0000000

Multi-period Planning Problems Chapter 9 221

 B6 0.0000000 0.2499981E-02

 L6 4359.3480 0.0000000

 P6 751.86020 0.0000000

 P7 1139.6230 0.0000000

 C1 248.72110 0.0000000

 C2 696.29720 0.0000000

 C3 1039.3640 0.0000000

 C4 340.85670 0.0000000

 C5 0.0000000 0.1091125

 C6 0.0000000 0.1075000

 C7 0.0000000 0.5000000

 Row Slack or Surplus Dual Price

 1 5899.9750 1.0000000

 2 0.0000000 1.3218740

 3 0.0000000 1.2860920

 4 0.0000000 1.0678540

 5 0.0000000 1.0456780

 6 0.0000000 1.0302250

 7 0.0000000 1.0150000

 8 0.0000000 1.0000000

 9 538.36780 0.0000000

 10 0.0000000 0.1924019

 11 953.02070 0.0000000

 12 2000.0000 0.0000000

 13 2000.0000 0.0000000

 14 2000.0000 0.0000000

 15 0.5127893 0.0000000

 16 0.0000000 573.56060

 17 1.0000000 0.0000000

 18 0.0000000 -0.2109901

 19 0.0000000 -0.2637376

 20 0.0000000 -0.3296720

 21 0.0000000 -0.4120900

 22 0.0000000 -0.5151125

 23 0.0000000 -0.5075000

 24 0.0000000 -0.5000000

 Notice tax considerations cause a substantial change in the solution. More funds are placed into the

lower-middle income housing project, M, and fewer funds are invested in the Foster City project, F.

Project M has cash flows, which help to smooth out the stream of yearly profits.

222 Chapter 9 Multi-period Planning Problems

9.7 Dynamic or Multi-period Networks
Thus far we have viewed network problems mainly as either a steady state or a one period problem. For

example, in a pipeline network model, the solution can be interpreted as either the flow of material that

occurs continuously day after day, or as a flow that occurs for one period and then stops. In many real

systems, however, we are interested in a flow that varies from period to period, i.e., we are interested

in multi-period or dynamic solutions. In these multi-period flows we also want to take into account that

it may take several periods for flow to travel over an arc. Example dynamic networks are: a) river

systems with various dams where we are interested in the amount of water to be spilled over the dam

each period so as to satisfy various criteria regarding lake and river levels, river flows, and hydroelectric

generation needs. A period might be a day, an arc might be the river section from one dam to the next,

and it may take several periods for water to flow from one dam to the next. b) evacuation of a threatened

facility or region as part of disaster planning, where we are interested in what routes people should take

so that a large number of people escape in a short amount of time. For a building evacuation, a period

might be 10 seconds, an arc may be a hallway, or a stairwell from one door to the next. Each arc may

have a capacity limit of how many people can enter it per period, c) fleet routing of airplanes or trucks,

where each arc in the network is a movement that must be made by either a truck or an airplane. The

lead time of an arc is the length of time that it takes a vehicle to traverse the arc.

To represent a dynamic network algebraically, we need to define:

Parameters:

L(i,j) = lead time, in periods, for flow to travel from node i to node j in the arc

 from i to j,

Variables:

xijt = flow entering arc ij at i in period t, and therefore exiting at j in period t+L(i,j),

Vjt = inventory remaining at node j at the end of period t,

The basic node balance equation says that (inventory at node k at the end of period t) = (ending inventory

at k in the preceding period) + (arriving shipments) – (shipments out of k in t), or algebraically:

Vkt = Vkt-1 + i xik(t-L(i,k)) - j xkjt

Example:

 We will illustrate the main ideas with an evacuation problem for a building. Complete details can be

found in the set based LINGO model: evacu8.lng in the Applications Library at www.lindo.com.

Figure 9.1 gives the numeric details of a building for which we want to plan evacuation routes. The

nodes are places where people are or can congregate. The arcs correspond to hallways, stairwells, etc.

The number of people to be evacuated from each node in the network appears in italicized font below

each node. A period is a 10 second interval. The italicized number appearing below each arc is the

number of periods it takes to traverse the arc. The number appearing above each arc is the upper limit

on the number of people that can enter an arc per period. The number appearing above each node is the

upper limit on the number of people that can be waiting at a node.

http://www.lindo.com/

Multi-period Planning Problems Chapter 9 223

Node F corresponds to the outside world. For example, the fastest that one of the 50 people at node

A can get to the safety of the outside world is in 2 periods by taking the path A, C, D, F. Not all the

people at A can make it this fast, however, because the arc from C to D can handle only 12 people per

period. Also, people from B may also try to use arc C, D. Arc (C,E) with its long lead time of three

periods but relatively high capacity of 17 might correspond to a long, wide corridor, whereas arc (A,C)

with its short lead time but low capacity might correspond to a short narrow stairwell.

What should be our objective? An obvious one is to minimize the number of periods that it takes

to evacuate all people. An interesting challenge is to see if you can do it in at most 70 seconds for the

above problem. Perhaps a more refined objective is to maximize the number of people who get out

quickly. If X_i_j_t is the number of people moving from i to j starting in period t, and realizing that

node F is the outside world, we would like X_D_F_1 + X_E_F_1 to be large, and X_D_F_9 +

X_E_F_9 to be much smaller. The objective that we will in fact use is:

Max = 10*(X_D_F_1 + X_E_F_1) + 9*(X_D_F_2 + X_E_F_2)

+8*(X_D_F_3 + X_E_F_3) 7*(X_D_F_4 + X_E_F_4)+ etc.

That is, we attach a desirable weight of 10 to getting people out in period 1, a weight of 9 to getting

them out in period 2, etc. The model evacu8.lng is written in very general SETS form. If you want

to see what the actual objective (as shown above) or constraints look like for the given data set, click on

LINGO | Generate | Display model.

224 Chapter 9 Multi-period Planning Problems

 Suppose you allow 10 periods for our model. We do not draw the corresponding multiperiod network,

but you can think of drawing it as follows. Get yourself a very wide sheet of paper and make 10 copies,

side by side of the above network. Then unhook the arrow end of each arc (i, j) and reconnect it L(i,j)

subnetworks later. The main, nontrivial constraints in this network model are the flow balance

constraints at each node each period. For example, the constraint for node E in period 5 is:

[BAL_E_5] - X_B_E_3 - X_C_E_2 + X_E_F_5 - V_E_4 + V_E_5 = 0 ;

This is equivalent to:

V_E_5 = V_E_4 + X_B_E_3 + X_C_E_2 - X_E_F_5;

In words, this says that at the end of period 5, the number of people at node E equals the number

there at the end of period 4, plus people that left node B for E two periods ago, plus the number of people

that left node C for E three periods ago, minus the number of people that left node E in period 5 for

node F.

In general SETS form in evacu8.lng, this constraint is written as:
 ! For every node k and time period t;

 @FOR(NXT(k,t)| t #GT# 1:

 [BAL] V(k,t) = V(k,t-1) - @SUM(NXN(k,j): X(k,j,t))

 +@SUM(NXN(i,k)|t-LT(i,k) #GT# 0: X(i,k,t-LT(i,k)));

);

where the set NXT(,) is the set of all node k, time period t combinations, and the set NXN(,) is

the set of all from-to arcs k,j that exist in the network.

The model is completed by adding the upper bound constraints on the number of people at each

node each period, and the upper bound constraints on the number of people traveling on each arc each

period. For example, the flow upper bound on the arc from B to E in period 4 is:

[UFLO_B_E_4] X_B_E_4 <= 16 ;

The upper bound on the number of people at node D at the end period 6 is:

[USTOR_D_6] V_D_6 <= 10 ;

If you solve evacu8.lng, you will see that you can in fact evacuate the building in 70 seconds.

For simplicity and ease of direction, e.g. in terms of placement of “Exit This Way” signs, it might be

desirable that the solution have all people at a given node evacuate over the same route. You may wish

to check whether the solution satisfies this additional “administrative” constraint. Another example of

a dynamic network, this time for a hydroelectric river system can be found in the model

dampoold.lng. For a production example, see mrpcap.lng.

9.8 End Effects
Most multi-period planning models “chop” off the analysis at some finite time in the future. The manner

in which this chopping off is done can be important. In general, we care about the state in which things

are left at the end of a planning model (e.g., inventory levels and capital investment). If we arbitrarily

terminate our planning model at year five in the future, then an optimal solution to our model may, in

reality, be an optimal solution to how to go out of business in five years. Grinold (1983) provides a

comprehensive discussion of various methods for mitigating end-of-horizon effects. Some of the options

for handling the end effect are:

Multi-period Planning Problems Chapter 9 225

a) Truncation. Simply drop from the model all periods beyond a chosen cutoff point.

b) Primal limits. Place reasonable limits on things such as inventory level at the end of the

final period.

c) Salvage values/ dual prices. Place reasonable salvage values on things such as inventory

level at the end of the final period.

d) Infinite final period. Let the final period of the model represent an infinite number of

periods for which the same decisions are made in every period. So, for example, ending

inventories = beginning inventories in this final period. Net present value discounting is

used in the objective function to make the final period comparable to the earlier finite

periods. This is the approach used by Carino et al. (1994) in their model of the Yasuda

Kasai Company, Peiser and Andrus (1983) in their model of Texas real estate development,

and by Eppen, Martin, and Schrage (1988) in their model of General Motors.

9.8.1 Perishability/Shelf Life Constraints
Many products, food products in particular, are perishable. It is important to take into account the fact

the product can be stored in inventory for only a modest length of time. For example, blood for blood

transfusions can be stored for at most 21 days. If there is a single level of production, then this

consideration is easy to represent. Define: dt = demand in period t (given), and the variables:

Pt = production in period t, and It = inventory at the end of period t. Then, the standard inventory balance

constraint is:

It-1 + Pt = dt +It

 If product can be carried for one period before it is discarded, then it is clear that we should add the

constraint: It dt+1. In general, if product can be carried in inventory for at most k periods, then we add

the constraint: It dt+1 + dt+2 …+ dt+k .

9.8.2 Startup and Shutdown Costs
In the electric power generation industry, there is a decision problem known as the unit commitment

problem. As the power demanded over the course of a day varies, the power generation company must

decide which power units to start up as the demand increases and which to shutdown as demand

decreases. A major concern is that there may be a significant cost to startup a generator, regardless of

how long it runs. It is usually the case that the unit that is more efficient at producing power (e.g., a coal-

fired unit) may, however, cost more to startup than say a gas-fired unit. Thus, if an extra burst of power

is needed for only a short interval of time, it may be more cost effective to start up and run the gas-fired

unit. A similar cost structure was encountered by Eppen, Martin, and Schrage(1988) in planning startup

and shutdown of automotive plants. The typical way of representing startup costs, as well as shutdown

costs, is with the following three sets of variables: yit = 1 if unit i is operating in period t, else 0; zit = 1 if

unit i is started in period t, else 0; qit = 1 if unit i is stops in period t, else 0.

 The crucial constraints are then:

zit - qit = yit - yit-1 .

 Thus, if yit = 1, but yit-1 = 0, then zit is forced to be 1. If yit = 0, but yit-1 = 1, then qit is forced to be 1.

For completeness, you may also need zit + qit ≤ 1, and zit , qit restricted to 0 or 1.

226 Chapter 9 Multi-period Planning Problems

9.9 Non-optimality of Cyclic Solutions to Cyclic Problems
In some situations, such as when modeling the end of the planning horizon as above, it is reasonable to

assume demand is cyclic (e.g., it repeats forever in a weekly cycle). A natural question to ask is whether

an optimal policy will have the same cycle length. We shall see that the answer may be 'no'. That is, even

though demand has the same pattern, week-in and week-out, the most profitable policy need not have a

weekly cycle. It may be optimal to behave differently from week to week.

 In order to illustrate, let us reconsider the fleet routing and assignment problem introduced in chapter

8. We augment the original data with data on the profitability of two aircraft types for each flight:

 Profit contribution($100)

Flight Origin Dest. Depart Arrive MD90 B737

 F221 ORD DEN 800 934 115 111

 F223 ORD DEN 900 1039 109 128

 F274 LAX DEN 800 1116 129 104

 F105 ORD LAX 1100 1314 135 100

 F228 DEN ORD 1100 1423 125 102

 F230 DEN ORD 1200 1521 132 105

 F259 ORD LAX 1400 1609 112 129

 F293 DEN LAX 1400 1510 105 131

 F412 LAX ORD 1400 1959 103 135

 F766 LAX DEN 1600 1912 128 105

 F238 DEN ORD 1800 2121 128 101

 For example, on flight pattern 221 an MD90 aircraft is more profitable than a B737 ($11,500 vs.

$11,100), whereas a B737 is substantially more profitable ($12,900 vs. $11,200) on flight pattern 259.

The above pattern of flights is to be covered every day. Suppose that we have seven MD90's available,

but only one B737 available to cover these flights. As before, we assume no deadheading. First, we

assume that we will use a solution with a cycle of one day. An appropriately modified model from

chapter 8 is:

MODEL:

SETS: ! Fleet routing and assignment (FLEETRAT);

 CITY :; ! The cities involved;

 ACRFT: ! Aircraft types;

 FCOST, ! Fixed cost per day of this type;

 FSIZE; ! Max fleet size of this type;

 FLIGHT:;

 FXCXC(FLIGHT, CITY, CITY) :

 DEPAT, ! Flight departure time;

 ARVAT; ! arrival time at dest.;

 AXC(ACRFT, CITY):

 OVNITE; ! Number staying overnight by type, city;

 AXF(ACRFT, FXCXC):

 X, ! Number aircraft used by type, flight;

 PC; ! Profit contribution by type, flight;

ENDSETS

DATA:

 CITY = ORD DEN LAX;

 ACRFT, FCOST, FSIZE =

 MD90 .01 7

 B737 .01 1;

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238;

Multi-period Planning Problems Chapter 9 227

 FXCXC, DEPAT, ARVAT =

! Flight Origin Dest. Depart Arrive;

 F221 ORD DEN 800 934

 F223 ORD DEN 900 1039

 F274 LAX DEN 800 1116

 F105 ORD LAX 1100 1314

 F228 DEN ORD 1100 1423

 F230 DEN ORD 1200 1521

 F259 ORD LAX 1400 1609

 F293 DEN LAX 1400 1510

 F412 LAX ORD 1400 1959

 F766 LAX DEN 1600 1912

 F238 DEN ORD 1800 2121;

 PC = ! Profit contribution of each vehicle*flight combo;

 115 109 129 135 125 132

 112 105 103 128 128

 111 128 104 100 102 105

 129 131 135 105 101;

ENDDATA

!---;

! Maximize profit contribution from flights minus

 overhead cost of aircraft in fleet;

 MAX = @SUM(AXF(I, N, J, K): PC(I, N, J, K) * X(I, N, J, K))

 - @SUM(AXC(I, J): FCOST(I) * OVNITE(I, J));

! At any instant, departures in particular, the number of

 cumulative arrivals must be >= number of cumulative departures;

! For each flight of each aircraft type;

 @FOR(ACRFT(I):

 @FOR(FXCXC(N, J, K):

! Aircraft on ground in morning +

 number aircraft arrived thus far >=

 number aircraft departed thus far;

 OVNITE(I, J) +

 @SUM(FXCXC(N1, J1, K1)| K1 #EQ# J #AND#

 ARVAT(N1, J1, K1) #LT# DEPAT(N, J, K):

 X(I, N1, J1, J)) >=

 @SUM(FXCXC(N1, J1, K1)| J1 #EQ# J #AND#

 DEPAT(N1, J1, K1) #LE# DEPAT(N, J, K):

 X(I, N1, J, K1));

););

! This model does not allow deadheading, so at the end of the day,

 arrivals must equal departures;

 @FOR(ACRFT(I):

 @FOR(CITY(J):

 @SUM(AXF(I, N, J1, J): X(I, N, J1, J)) =

 @SUM(AXF(I, N, J, K): X(I, N, J, K));

);

);

! Each flight must be covered;

 @FOR(FXCXC(N, J, K):

 @SUM(AXF(I, N, J, K): X(I, N, J, K)) = 1;

);

228 Chapter 9 Multi-period Planning Problems

! Fleet size limits;

 @FOR(ACRFT(I):

 @SUM(AXC(I, J): OVNITE(I, J)) <= FSIZE(I);

);

! Fractional planes are not allowed;

 @FOR(AXF: @GIN(X););

END

It has the solution:

Global optimal solution found at step: 106

Objective value: 1323.940

 Variable Value

 X(MD90, F221, ORD, DEN) 1.000000

 X(MD90, F223, ORD, DEN) 1.000000

 X(MD90, F274, LAX, DEN) 1.000000

 X(MD90, F105, ORD, LAX) 1.000000

 X(MD90, F228, DEN, ORD) 1.000000

 X(MD90, F230, DEN, ORD) 1.000000

 X(MD90, F259, ORD, LAX) 1.000000

 X(MD90, F412, LAX, ORD) 1.000000

 X(MD90, F238, DEN, ORD) 1.000000

 X(B737, F293, DEN, LAX) 1.000000

 X(B737, F766, LAX, DEN) 1.000000

 The daily profit contribution of this solution is 1323.94 * 100 = $132,394 per day. Notice that our

single B737 flies from DEN at 2 pm to LAX as flight 293, and then departs LAX at 4 pm for DEN as

flight 766. The above model requires that at the beginning of each day we must have the same number

of MD90's and B737's at a given airport as on every other day. Just for reference, if you solve the above

model with no B737's available, the profit contribution is $132,094. So, the B737 seems to be worth only

$200 per day.

 Can we do better if we allow a two-day cycle in the solution? We can try by changing the input to

the model as in the model below. Effectively, we have given two days worth of demand, denoting the

second day's flights by an S, vs. the F denoting the flights on the first day. Otherwise, the model is

identical. The profit of this two day solution should be at least 2 * 132,394 = $264,788:

MODEL:

SETS: ! Fleet routing and assignment (FLEETRAT);

 CITY :; ! The cities involved;

 ACRFT: ! Aircraft types;

 FCOST, ! Fixed cost per day of this type;

 FSIZE; ! Max fleet size of this type;

 FLIGHT:;

 FXCXC(FLIGHT, CITY, CITY) :

 DEPAT, ! Flight departure time;

 ARVAT; ! arrival time at dest.;

 AXC(ACRFT, CITY):

 OVNITE; ! Number staying overnight by type, city;

 AXF(ACRFT, FXCXC):

 X, ! Number aircraft used by type, flight;

 PC; ! Profit contribution by type, flight;

ENDSETS

Multi-period Planning Problems Chapter 9 229

DATA:

 CITY = ORD DEN LAX;

 ACRFT, FCOST, FSIZE =

 MD90 .01 7

 B737 .01 1;

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238

 S221 S223 S274 S105 S228 S230 S259 S293 S412 S766 S238;

 FXCXC, DEPAT, ARVAT =

! Flight Origin Dest. Depart Arrive;

 F221 ORD DEN 800 934

 F223 ORD DEN 900 1039

 F274 LAX DEN 800 1116

 F105 ORD LAX 1100 1314

 F228 DEN ORD 1100 1423

 F230 DEN ORD 1200 1521

 F259 ORD LAX 1400 1609

 F293 DEN LAX 1400 1510

 F412 LAX ORD 1400 1959

 F766 LAX DEN 1600 1912

 F238 DEN ORD 1800 2121

 S221 ORD DEN 3200 3334

 S223 ORD DEN 3300 3439

 S274 LAX DEN 3200 3516

 S105 ORD LAX 3500 3714

 S228 DEN ORD 3500 3823

 S230 DEN ORD 3600 3921

 S259 ORD LAX 3800 4009

 S293 DEN LAX 3800 3910

 S412 LAX ORD 3800 4359

 S766 LAX DEN 4000 4312

 S238 DEN ORD 4000 4521;

 PC = ! Profit contribution of each vehicle*flight combo;

 115 109 129 135 125 132

 112 105 103 128 128

 115 109 129 135 125 132

 112 105 103 128 128

 111 128 104 100 102 105

 129 131 135 105 101

 111 128 104 100 102 105

 129 131 135 105 101;

ENDDATA

230 Chapter 9 Multi-period Planning Problems

Now, the solution is:

Global optimal solution found at step: 103

Objective value: 2718.930

 Variable Value

 X(MD90, F221, ORD, DEN) 1.000000

 X(MD90, F223, ORD, DEN) 1.000000

 X(MD90, F274, LAX, DEN) 1.000000

 X(MD90, F105, ORD, LAX) 1.000000

 X(MD90, F228, DEN, ORD) 1.000000

 X(MD90, F230, DEN, ORD) 1.000000

 X(MD90, F259, ORD, LAX) 1.000000

 X(MD90, F293, DEN, LAX) 1.000000

 X(MD90, F766, LAX, DEN) 1.000000

 X(MD90, F238, DEN, ORD) 1.000000

 X(MD90, S221, ORD, DEN) 1.000000

 X(MD90, S274, LAX, DEN) 1.000000

 X(MD90, S105, ORD, LAX) 1.000000

 X(MD90, S228, DEN, ORD) 1.000000

 X(MD90, S230, DEN, ORD) 1.000000

 X(MD90, S259, ORD, LAX) 1.000000

 X(MD90, S412, LAX, ORD) 1.000000

 X(MD90, S766, LAX, DEN) 1.000000

 X(MD90, S238, DEN, ORD) 1.000000

 X(B737, F412, LAX, ORD) 1.000000

 X(B737, S223, ORD, DEN) 1.000000

 X(B737, S293, DEN, LAX) 1.000000

 Notice that our profit, 2718.93 * 100 = $271,893 is more than twice the profit of the one day solution,

2 * 132,394 = $264,788. How did we arrive at this happy situation? Notice how the B737 is used. On

the first day, it flies from LAX to ORD via flight 412. On the second day, it flies from ORD to DEN via

flight 223 and then from DEN back to LAX via flight 293. It is only on the second day that it is back

where it started, LAX. All three flights are very profitable for the B737 relative to the MD90. By allowing

a two-day cycle, the B737 is able to cover these very profitable flights at least half of the time. Thus,

even though the demand pattern has a one day cycle, it is profitable to allow the solution to have a two

day cycle.

 A good discussion of how to avoid the temptation to restrict solutions can be found in the book on

“conceptual blockbusting” by Adams (1986). Orlin (1982) gives a more detailed analysis of the cyclic

vehicle routing problem.

Multi-period Planning Problems Chapter 9 231

9.10 Problems
1. The Izza Steel Company of Tokyo has predicted delivery requirements of 3,000, 6,000, 5,000, and

2,000 tons of steel in the next four periods. Current workforce is at the 4,000 tons per period level.

At the moment, there is 500 tons of steel in stock. At the end of the four periods, Izza would like its

inventory position to be back at 500 tons. Regular time workforce has a variable cost of $100 per

ton. Overtime can be hired in any period at a cost of $140 per ton. Regular time workforce size can

be increased from one period to the next at a cost of $300 per ton of change in capacity. It can be

decreased at a cost of $80 per ton. There is a charge of $5 per ton for inventory at the end of each

period. Izza would like the regular time workforce to be at the 3,000-ton level at the end of the four

periods.

a) Formulate Izza’s problem as a linear program.

b) What assumption does your model make about idle workforce?

2. An airline predicts the following pilot requirements for the next five quarters: 80, 90, 110, 120, 110.

Current staff is 90 pilots. The question of major concern is the number of pilots to hire in each of

the next five quarters. A pilot must spend the quarter in which she is hired in training. The line’s

training facilities limit the number of pilots in training to at most 15. Further, the training of pilots

requires the services of experienced pilots at the ratio of 5 to 1 (e.g., five pilots in training require

one experienced pilot). An experienced pilot so assigned cannot be used to satisfy regular

requirements. The cost of hiring and training a pilot is estimated at $20,000 exclusive of the

experienced pilot time required. Experienced pilots cost $25,000 per quarter. Company policy does

not include firing pilots.

a) What are the variables?

b) Formulate a model for determining how many pilots to hire in each period.

3. The Toute de Suite Candy Company includes in its product line a number of different mixed nut

products. The Chalet nut mix is required to have no more than 25 percent peanuts and no less than

40 percent almonds.

The nuts available, their prices, and their availabilities this month are as follows:

Nut Price Availability

Peanuts 20¢/lb. 400 lbs.

Walnuts 35¢/lb. No limit

Almonds 50¢/lb. 200 lbs.

 The Chalet mix sells for 80 cents per pound. At most, 700 pounds can be mixed per month in

questions (a), (b), and (c).

a) Formulate the appropriate model for this problem.

b) Toute de Suite would like to incorporate into the analysis its second major mixed nut line,

the Hovel line. The Hovel mix can contain no more than 60 percent peanuts and no less

than 20 percent almonds. Hovel sells for 40 cents per pound. Modify your model

appropriately.

232 Chapter 9 Multi-period Planning Problems

c) Toute de Suite would like to incorporate next month’s requirements into the analysis. The

expected situation next month is:

Nut

Price

Requirement
(Availability)

Peanuts 19¢/lb. 500 lbs

Walnuts 36¢/lb. No limit

Almonds 52¢/lb. 180 lbs.

Chalet 81¢/lb.

Hovel 39¢/lb.

 It cost 2 cents per pound to store nuts (plain or mixed) for one month. Because of a contract

commitment, at least 200 pounds of Chalet mix must be sold next month. Modify your model

appropriately.

4. If two parties to a financial agreement, A and B, want the agreement to be treated as a lease for tax

purposes, the payment schedule typically must satisfy certain conditions specified by the taxing

agency. Suppose Pi is the payment A is scheduled to make to B in year i of a seven-year agreement.

Parties A and B want to choose at the outset a set of Pi’s to satisfy a tax regulation that no payment

in any given period can be less than two-thirds of the payment in any later period. Show the

constraints for period i to enforce this lower bound on Pi. Use as few constraints per period as

possible.

5. One of the options available to a natural gas utility is the renting of a storage facility, so it can buy

gas at a cheap rate in the summer and store it until possibly needed in the winter. There is a yearly

fee of $80,000 for each year the facility is rented. There is an additional requirement that, if the

utility starts renting the facility in year t, it must also rent it for at least the next three years. The gas

utility has a long range planning model with a variable xt = 1 if the utility rents the storage facility

in year t, 0 otherwise; yt = 1 if the utility starts renting in period t; and zt = 1 if the utility stops renting

after period t, for t = 1 to 25. It is not clear whether or not this facility should be rented. Show how

to represent this fee structure in an LP/IP model.

6. Below is the formulation of a cash flow matching problem, where the B variables represent

investments in bonds and the S variables represent investment in savings for one period. The

right-hand sides are the cash requirements for the various years.

MIN = L;

[P0]L -.98 * B1 - .965 * B2 - S0 = 10;

[P01] .06 * B1 + .065 * B2 + 1.04 * S0 - S1 = 11;

[P02] .06 * B1 + .065 * B2 + 1.04 * S1 - S2 = 12;

[P03] .06 * B1 + .065 * B2 + 1.04 * S2 - S3 = 14;

[P04] .06 * B1 + .065 * B2 + 1.04 * S3 - S4 = 15;

[P05] 1.06 * B1 + .065 * B2 + 1.04 * S4 - S5 = 17;

[P06] .065 * B2 + 1.04 * S5 - S6 = 19;

[P07] .065 * B2 + 1.04 * S6 - S7 = 20;

[P08] .065 * B2 + 1.04 * S7 - S8 = 22;

[P09] .065 * B2 + 1.04 * S8 - S9 = 24;

[P10] .065 * B2 + 1.04 * S9 - S10 = 26;

[P11] .065 * B2 + 1.04 * S10 - S11 = 29;

[P12] 1.065 * B2 + 1.04 * S11 - S12 = 31;

END

Multi-period Planning Problems Chapter 9 233

a) The option to borrow at seven percent per period for a term of one period has become

available in every period. Show the modification in the above model for the periods with

right-hand sides of 15, 17, and 19. Denote the borrowing variables by M0, M1, etc.

b) Would this option in fact be attractive in the above model in any period?

c) Almost all the parties involved were happy with this model until the Internal Revenue

Service (IRS) suddenly became interested. The IRS has made the judgment that the initial

endowment in the very first period may be tax-free. However, thereafter, the regular tax

laws apply. Upon further inquiry, the IRS responded that regular income is taxed at 37

percent and capital gains at 15 percent.

 We now want to find the initial lump sum such that, after taxes have been paid each period, we

can still cover the right-hand side requirements. For simplicity, assume taxes are paid in the same

period as the income being taxed. Show how rows P04 and P05 are altered by this unpleasant new

reality (Disregard (a) and (b) above in answering.).

235

10

Blending of Input Materials

10.1 Introduction
In a blending problem, there are:

1) Two or more input raw material commodities;

2) One or more qualities associated with each input commodity;

3) One or more output products to be produced by blending the input commodities, so certain

output quality requirements are satisfied.

Blending models are used most frequently in three industries:

1) Feed and food (e.g., the blending of cattle feed, hotdogs, etc.);

2) Metals industry (e.g., the blending of specialty steels and nonferrous alloys, especially

where recycled or scrap materials are used);

3) Petroleum industry (e.g., the blending of gasolines of specified octanes and volatility).

 The market price of a typical raw material commodity may change significantly over the period of

a month or even a week. The smart buyer will want to buy corn, for example, from the cheapest supplier.

The even smarter buyer will want to exploit the fact that, as the price of corn drops relative to soybeans,

the buyer may be able to save some money by switching to a blend that uses more corn.

 A first approximation is that the quality of the finished product is the weighted average of the

qualities of the products going into the blend. A listing of blending applications according important

quality measures and typical input ingredients is given below:

236 Chapter 10 Blending of Input Materials

Output
Commodity

Qualities

Raw Materials

Feed Moisture, density, fraction

foreign material, fraction

damaged.

Various types of feeds, e.g., by

source.

Food Protein, carbohydrate, fat content. Corn, oats, soybeans, meat types.

Gasoline Octane, volatility, vapor pressure. Types of crude oil refinery

products.

Metals Carbon, manganese, chrome

content.

Metal ore, scrap metals.

Grain for

export

%Moisture, %foreign matter,

%damaged.

Grain from various suppliers.

Coal for sale %Sulfur, %BTU, %ash,

%moisture.

Coal from Illinois, Wyoming,

Pennsylvania.

Wine Vintage, variety, region. Pure wines of various vintage,

variety, region.

Concrete %CaO, %SiO2, %Al2O3,

%Fe2O3, %MgO, Strength,

permeability to water, Cure time,

workability, freeze resistance.

Portland cement, Slag, Fly ash,

sand, stone/rocks of various size,

water.

Natural gas Heat content, Density. Methane, Ethane, Propane,

Nitrogen, Carbon dioxide.

Bank balance

sheet

Proportion of loans of various

types, average duration of loans

and investment portfolios.

Types of loans and investments

available.

 Fields and McGee (1978) describe a feed blending LP for constructing low cost rations for cattle in

a feedlot. Feedlot managers used this particular model at the rate of over 1,000 times per month. Schuster

and Allen (1998) discuss the blending of grape juice at Welch's, Inc. The qualities of concern in grape

juice are sweetness, acidity, and color. A blending problem must be solved at least once each season

based upon how much of each type of grape is harvested by Welch's suppliers. Long term contracts

require Welch’s to take all of each supplier's harvest.

 A recent success story in the steel industry has been the mini-mill. These small mills use mostly

recyclable scrap steels to be charged into an electric furnace. The blending problem, in this case, is to

decide what combination of scrap types to use to satisfy output quality requirements for specified

products such as reinforcing bars, etc.

 The first general LP to appear in print was a blending or diet problem formulated by George Stigler

(1945). The problem was to construct a “recipe” from about 80 foods, so the mix satisfied about a dozen

nutritional requirements. For example, percent protein greater than 5 percent, percent cellulose less than

40 percent, etc. When Stigler formulated this problem, the Simplex method for solving LPs did not exist.

Therefore, it was not widely realized that this “diet problem” was just a special case of this wider class

of problems. Stigler, realizing its generality, stated: “...there does not appear to be any direct method of

finding the minimum of a linear function subject to linear conditions.” The solution he obtained to his

Blending of Input Materials Chapter 10 237

specific problem by ingenious arguments was within a few cents of the least cost solution determined

later when the Simplex method was invented. Both the least cost solution and Stigler’s solution were not

exactly haute cuisine. Both consisted largely of cabbage, flour and dried navy beans with a touch of

spinach for excitement. It is not clear that anyone would want to exist on this diet or even live with

someone who was on it. These solutions illustrate the importance of explicitly including constraints that

are so obvious they can be forgotten. In this case, they are palatability constraints.

10.2 The Structure of Blending Problems
Let us consider a simple feed blending problem. We must produce a batch of cattle feed having a protein

content of at least 15%. Mixing corn (which is 6% protein) and soybean meal (which is 35% protein)

produces this feed.

 In words, the protein constraint is:

bushels of protein in mix

 bushels in mix

 0.15

 If C is the number of bushels of corn in the mix and S is the number of bushels of soybean meal,

then we have:

0.06 C + 0.35 S

 C + S

 0.15

 At first glance, it looks like we have trouble. This constraint is not linear. If, however, we multiply

both sides by C + S, we get:

0.06 C + 0.35 S 0.15 (C + S)

or, in standard form, finally:

−0.09 C + 0.20 S 0.

 Constraints on additional characteristics (i.e., fat, carbohydrates and even such slightly nonlinear

things as color, taste, and texture) can be handled in similar fashion.

 The distinctive feature of a blending problem is that the crucial constraints, when written in intuitive

form, are ratios of linear expressions. They can be converted to linear form by multiplying through by

the denominator. Ratio constraints may also be found in “balance sheet” financial planning models

where a financial institution may have ratio constraints on the types of loans it makes or on the average

duration of its investments.

 The formulation is slightly more complicated if the blending aspect is just a small portion of a larger

problem in which the batch size is a decision variable. The second example in this section will consider

this complication. The first example will consider the situation where the batch size is specified

beforehand.

238 Chapter 10 Blending of Input Materials

10.2.1 Example: The Pittsburgh Steel Company Blending Problem
The Pittsburgh Steel (PS) Co. has been contracted to produce a new type of very high carbon steel which

has the following tight quality requirements:

 At Least Not More Than

Carbon Content 3.00% 3.50%

Chrome Content 0.30% 0.45%

Manganese Content 1.35% 1.65%

Silicon Content 2.70% 3.00%

PS has the following materials available for mixing up a batch:

 Cost per
Pound

Percent
Carbon

Percent
Chrome

Percent
Manganese

Percent
Silicon

Amount
Available

Pig Iron 1 0.0300 4.0 0.0 0.9 2.25 unlimited

Pig Iron 2 0.0645 0.0 10.0 4.5 15.00 unlimited

Ferro-
Silicon 1

0.0650 0.0 0.0 0.0 45.00 unlimited

Ferro-
Silicon 2

0.0610 0.0 0.0 0.0 42.00 unlimited

Alloy 1 0.1000 0.0 0.0 60.0 18.00 unlimited

Alloy 2 0.1300 0.0 20.0 9.0 30.00 unlimited

Alloy 3 0.1190 0.0 8.0 33.0 25.00 unlimited

Carbide
(Silicon)

0.0800 15.0 0.0 0.0 30.00 20 lb.

Steel 1 0.0210 0.4 0.0 0.9 0.00 200 lb.

Steel 2 0.0200 0.1 0.0 0.3 0.00 200 lb.

Steel 3 0.0195 0.1 0.0 0.3 0.00 200 lb.

 An one-ton (2000-lb.) batch must be blended, which satisfies the quality requirements stated earlier.

The problem now is what amounts of each of the eleven materials should be blended together to

minimize the cost, but satisfy the quality requirements. An experienced steel man claims the least cost

mix will not use any more than nine of the eleven available raw materials. What is a good blend? Most

of the eleven prices and four quality control requirements are negotiable. Which prices and requirements

are worth negotiating?

 Note the chemical content of a blend is simply the weighted average of the chemical content of its

components. Thus, for example, if we make a blend of 40% Alloy 1 and 60% Alloy 2, the manganese

content is (0.40) × 60 + (0.60) × 9 = 29.4.

10.2.2 Formulation and Solution of the Pittsburgh Steel Blending Problem
The PS blending problem can be formulated as an LP with 11 variables and 13 constraints. The 11

variables correspond to the 11 raw materials from which we can choose. Four constraints are from the

upper usage limits on silicon carbide and steels. Four of the constraints are from the lower quality limits.

Another four constraints are from the upper quality limits. The thirteenth constraint is the requirement

that the weight of all materials used must sum to 2000 pounds.

Blending of Input Materials Chapter 10 239

 If we let P1 be the number of pounds of Pig Iron 1 to be used and use similar notation for the

remaining materials, the problem of minimizing the cost per ton can be stated as:

MIN = 0.03 * P1 + 0.0645 * P2 + 0.065 * F1 + 0.061 * F2 + 0.1 * A1

+ 0.13 * A2 + 0.119 * A3 + 0.08 * CB + 0.021 * S1 + 0.02 * S2 + 0.0195

* S3;

! Raw material availabilities;

CB <= 20;

S1 <= 200;

S2 <= 200;

S3 <= 200;

! Quality requirements on;

! Carbon content;

.04 * P1 + 0.15 * CB + 0.004 * S1 + 0.001 * S2 + 0.001 * S3 >= 60;

.04 * P1 + 0.15 * CB + 0.004 * S1 + 0.001 * S2 + 0.001 * S3 <= 70;

! Chrome content;

0.1 * P2 + 0.2 * A2 + 0.08 * A3 >= 6;

0.1 * P2 + 0.2 * A2 + 0.08 * A3 <= 9;

! Manganese content;

0.009 * P1 + 0.045 * P2 + 0.6 * A1 + 0.09 * A2 + 0.33 * A3 + 0.009 *

S1 + 0.003 * S2 + 0.003 * S3 >= 27;

0.009 * P1 + 0.045 * P2 + 0.6 * A1 + 0.09 * A2 + 0.33 * A3 + 0.009 *

S1 + 0.003 * S2 + 0.003 * S3 <= 33;

! Silicon content;

0.0225 * P1 + 0.15 * P2 + 0.45 * F1 + 0.42 * F2 + 0.18 * A1 + 0.3 * A2

+ 0.25 * A3 + 0.3 * CB >= 54;

0.0225 * P1 + 0.15 * P2 + 0.45 * F1 + 0.42 * F2 + 0.18 * A1 + 0.3 * A2

+ 0.25 * A3 + 0.3 * CB <= 60;

! Finish good requirements;

P1 + P2 + F1 + F2 + A1 + A2 + A3 + CB + S1 + S2 + S3 = 2000;

In words, the general form of this model is:

Minimize cost of raw materials

subject to

(a) Raw material availabilities (rows 2-5)

(b) Quality requirements (rows 6-13)

(c) Finish good requirements (row 14)

It is generally good practice to be consistent and group constraints in this fashion.

 For this particular example, when writing the quality constraints, we have exploited the knowledge

that the batch size is 2000. For example, 3% of 2000 is 60, 3.5% of 2000 is 70, etc.

240 Chapter 10 Blending of Input Materials

 When solved, we get the solution:

Optimal solution found at step: 11

Objective value: 59.55629

Variable Value Reduced Cost

 P1 1474.264 0.0000000

 P2 60.00000 0.0000000

 F1 0.0000000 0.1035937E-02

 F2 22.06205 0.0000000

 A1 14.23886 0.0000000

 A2 0.0000000 0.2050311E-01

 A3 0.0000000 0.1992597E-01

 CB 0.0000000 0.3356920E-02

 S1 200.0000 0.0000000

 S2 29.43496 0.0000000

 S3 200.0000 0.0000000

 Row Slack or Surplus Dual Price

 1 59.55629 1.000000

 2 20.00000 0.0000000

 3 0.0000000 0.1771118E-03

 4 170.5650 0.0000000

 5 0.0000000 0.5000000E-03

 6 0.0000000 -0.1833289

 7 10.00000 0.0000000

 8 0.0000000 -0.2547314

 9 3.000000 0.0000000

 10 0.0000000 -0.1045208

 11 6.000000 0.0000000

 12 0.0000000 -0.9880212E-01

 13 6.000000 0.0000000

 14 0.0000000 -0.1950311E-01

Notice only 7 of the 11 raw materials were used.

 In actual practice, this type of LP was solved on a twice-monthly basis by Pittsburgh Steel. The

purchasing agent used the first solution, including the reduced cost and dual prices, as a guide in buying

materials. The second solution later in the month was mainly for the metallurgist’s benefit in making up

a blend from the raw materials actually on hand.

 Suppose we can pump oxygen into the furnace. This oxygen combines completely with carbon to

produce the gas CO2, which escapes. The oxygen will burn off carbon at the rate of 12 pounds of carbon

burned off for each 32 pounds of oxygen. Oxygen costs two cents a pound. If you reformulated the

problem to include this additional option, would it change the decisions? The oxygen injection option to

burn off carbon is clearly uninteresting because, in the current solution, it is the lower bound constraint

rather than the upper bound on carbon that is binding. Thus, burning off carbon by itself, even if it could

be done at no expense, would increase the total cost of the solution.

10.3 A Blending Problem within a Product Mix Problem
One additional aspect of blending problem formulation will be illustrated with an example in which the

batch size is a decision variable. In the previous example, the batch size was specified. In the following

example, the amount of product to be blended depends upon how cheaply the product can be blended.

Thus, it appears the blending decision and the batch size decision must be made simultaneously.

Blending of Input Materials Chapter 10 241

 This example is suggestive of gasoline blending problems faced in a petroleum refinery. We wish

to blend gasoline from three ingredients: butane, heavy naphtha, and catalytic reformate. Four

characteristics of the resultant gasoline and its inputs are important: cost, octane number, vapor pressure,

and volatility. These characteristics are summarized in the following table:

 Commodity

Feature

Butane
(BUT)

Catalytic
Reformate

(CAT)

Heavy
Naphtha

(NAP)

Regular
Gasoline (REG)

Premium
Gasoline (PRM)

Cost/Unit 7.3 18.2 12.5 -18.4 -22

Octane 120.0 100.0 74.0 89 oct 110 94 oct 110

Vapor Pressure 60.0 2.6 4.1 8 vp 11 8 vp 11

Volatility 105.0 3.0 12.0 17 vo 25 17 vo 25

Availability 1000.0 4000.0 5000.0 4000 sell 8000 2000 sell 6000

 The cost per unit for REG and PRM are listed as negative, meaning we can sell them. That is, a

negative cost is a revenue.

 The octane rating is a measure of the gasoline’s resistance to “knocking” or “pinging”. Vapor

pressure and volatility are closely related. Vapor pressure is a measure of susceptibility to stalling,

particularly on an unusually warm spring day. Volatility is a measure of how easily the engine starts in

cold weather.

 From the table, we see in this planning period, for example, there are only 1,000 units of butane

available. The profit contribution of regular gasoline is $18.40 per unit exclusive of the cost of its

ingredients.

 A slight simplification assumed in this example is that the interaction between ingredients is linear.

For example, if a “fifty/fifty” mixture of BUT and CAT is made, then its octane will be

0.5 × 120 + 0.5 × 100 = 110 and its volatility will be 0.5 × 105 + 0.5 × 3 = 54. In reality, this linearity

is violated slightly, especially with regard to octane rating.

10.3.1 Formulation
The quality constraints require a bit of thought. The fractions of a batch of REG gasoline consisting of

Butane, Catalytic Reformate, and Heavy Naphtha are BUT/REG, CAT/REG, and NAP/REG,

respectively. Thus, if the god of linearity smiles upon us, the octane constraint of the blend for REG

should be the expression:

(BUT/REG) × 120 + (CAT/REG) × 100 + (NAP/REG) × 74 89.

 Your expression, however, may be a frown because a ratio of variables like BUT/REG is definitely

not linear. Multiplying through by REG, however, produces the linear constraint:

120 BUT + 100 CAT + 74 NAP 89 REG

or in standard form:

120 BUT + 100 CAT + 74 NAP − 89 REG 0.

242 Chapter 10 Blending of Input Materials

10.3.2 Representing Two-sided Quality Constraints
All the quality requirements are two sided. That is, they have both an upper limit and a lower limit. The

upper limit constraint on octane is clearly:

120 BUT + 100 CAT + 74 NAP − 110 REG 0.

We can write it in equality form by adding an explicit slack:

120 BUT + 100 CAT + 74 NAP − 110 REG + SOCT = 0.

 When SOCT = 0, the upper limit is binding. You can verify that, when SOCT = 110 REG – 89 REG

= 21 REG, the lower limit is binding. Thus, a compact way of writing both the upper and lower limits is

with the two constraints:

1) 120 BUT + 100 CAT + 74 NAP − 110 REG + SOCT = 0,

2) SOCT 21 REG.

 Notice, even though there may be many ingredients, the second constraint involves only two

variables. This is a compact way of representing two-sided constraints.

 Similar arguments can be used to develop the vapor and volatility constraints. Finally, a constraint

must be appended, which states the whole equals the sum of its raw material parts, specifically:

REG = BUT + NAP + CAT.

 When all constraints are converted to standard form and the expression for profit contribution is

written, we obtain the formulation:

MODEL:

MAX = 22 * B_PRM + 18.4 * B_REG - 7.3 * XBUT_PRM - 7.3 * XBUT_REG

 - 12.5 * XNAP_PRM - 12.5 * XNAP_REG

 - 18.2 * XCAT_PRM - 18.2 * XCAT_REG;

 ! Subject to raw material availabilities;

[RMLIMBUT] XBUT_PRM + XBUT_REG <= 1000;

[RMLIMCAT] XCAT_PRM + XCAT_REG <= 4000;

[RMLIMNAP] XNAP_PRM + XNAP_REG <= 5000;

!For each finished good, batch size computation;

[BDEF_REG]B_REG - XNAP_REG - XCAT_REG - XBUT_REG=0;

[BDEF_PRM]B_PRM - XNAP_PRM - XCAT_PRM - XBUT_PRM=0;

 ! Batch size limits;

[BLO_REG] B_REG >= 4000;

[BHI_REG] B_REG <= 8000;

[BLO_PRM] B_PRM >= 2000;

[BHI_PRM] B_PRM <= 6000;

 ! Upper(UP) and Lower(DN) quality restrictions for each product;

[QUPREGOC] - 110 * B_REG

 + SOCT_REG + 74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG = 0;

[QDNREGOC] - 21 * B_REG + SOCT_REG <= 0;

[QUPREGVA] - 11 * B_REG

 + SVAP_REG + 4.1 * XNAP_REG + 2.6 * XCAT_REG + 60 * XBUT_REG = 0;

[QDNREGVA] - 3 * B_REG + SVAP_REG <= 0;

[QUPREGVO] - 25 * B_REG

 + SVOL_REG + 12 * XNAP_REG + 3 * XCAT_REG + 105 * XBUT_REG = 0;

[QDNREGVO] - 8 * B_REG + SVOL_REG <= 0;

Blending of Input Materials Chapter 10 243

[QUPPRMOC] - 110 * B_PRM

 + SOCT_PRM + 74 * XNAP_PRM + 100 * XCAT_PRM + 120 * XBUT_PRM = 0;

[QDNPRMOC] - 16 * B_PRM + SOCT_PRM <= 0;

[QUPPRMVA] - 11 * B_PRM

 + SVAP_PRM + 4.1 * XNAP_PRM + 2.6 * XCAT_PRM + 60 * XBUT_PRM = 0;

[QDNPRMVA] - 3 * B_PRM + SVAP_PRM <= 0;

[QUPPRMVO] - 25 * B_PRM

 + SVOL_PRM + 12 * XNAP_PRM + 3 * XCAT_PRM + 105 * XBUT_PRM = 0;

[QDNPRMVO] - 8 * B_PRM + SVOL_PRM <= 0;

END

The following is the same problem, set in a general, set-based blending formulation:

MODEL:

 ! General Blending Model(BLEND) in LINGO;

 SETS:

!Each raw material has availability & cost/unit;

 RM/ BUT, CAT, NAP/: A, C;

! Each f. g. has min & max sellable, profit

contr./unit and batch size to be determined;

 FG/ REG, PRM/: D, E, P, B;

 ! There are a set of quality measures;

 QM/ OCT, VAP, VOL/;

!Each RM & QM combo has a quality level;

 RQ(RM, QM): Q;

 !For each combo QM, FG there are upper &

lower limits on quality, slack on quality

 to be determined;

 QF(QM, FG): U, L, S;

!Each combination of RM and FG has an amount

 used, to be determined;

 RF(RM, FG): X;

 ENDSETS

 DATA:

 A= 1000, 4000, 5000;!Raw material availabilities;

 C = 7.3, 18.2, 12.5; ! R. M. costs;

 Q = 120, 60, 105, !Quality parameters...;

 100, 2.6, 3, ! R. M. by quality;

 74, 4.1, 12;

 D = 4000, 2000; ! Min needed of each F.G.;

 E = 8000, 6000; !Max sellable of each F.G;

 P = 18.4, 22; !Selling price of each F.G.;

 U = 110, 110, ! Upper limits on quality;

 11, 11, ! Quality by F.G.;

 25, 25;

 L = 89, 94, !Lower limits on quality...;

 8, 8, ! Quality by F.G.;

 17, 17;

 ENDDATA

244 Chapter 10 Blending of Input Materials

!--;

! The model;

! For each raw material, the availabilities;

 @FOR(RM(I):

 [RMLIM] @SUM(FG(K): X(I, K)) < A(I);

);

 @FOR(FG(K):

!For each finished good, compute batch size;

 [BDEF] B(K) = @SUM(RM(I): X(I, K));

 ! Batch size limits;

 [BLO] B(K) > D(K);

 [BHI] B(K) < E(K);

 ! Quality restrictions for each quality;

 @FOR(QM(J):

[QUP]@SUM(RM(I): Q(I, J) * X(I, K)) + S(J,

 K) = U(J, K) * B(K);

[QDN] S(J, K) < (U(J, K) - L(J, K)) * B(K);

););

!We want to maximize profit contribution;

[PROFIT] MAX = @SUM(FG: P * B)

 - @SUM(RM(I): C(I) * @SUM(FG(K): X(I, K)));

END

 As with all of our set based models, the data are well separated from the model equations. Thus,

when the data change, the user need not be concerned with the model equations when updating the

model.

 The interesting part of the solution is:

Objective value: 48750.00

 Variable Value Reduced Cost

 B(REG) 4000.000 0.0000000

 B(PRM) 4500.000 0.0000000

 S(OCT, REG) 84000.00 0.0000000

 S(OCT, PRM) 72000.00 0.0000000

 S(VAP, REG) 1350.424 0.0000000

 S(VAP, PRM) 7399.576 0.0000000

 S(VOL, REG) 17500.00 0.0000000

 S(VOL, PRM) 36000.00 0.0000000

 X(BUT, REG) 507.4153 0.0000000

 X(BUT, PRM) 492.5847 0.0000000

 X(CAT, REG) 1409.958 0.0000000

 X(CAT, PRM) 2590.042 0.0000000

 X(NAP, REG) 2082.627 0.0000000

 X(NAP, PRM) 1417.373 0.0000000

 Row Slack or Surplus Dual Price

 RMLIM(BUT) 0.0000000 27.05000

 RMLIM(CAT) 0.0000000 6.650000

 RMLIM(NAP) 1500.000 0.0000000

 BDEF(REG) 0.0000000 -22.65000

 BLO(REG) 0.0000000 -1.225000

 BHI(REG) 4000.000 0.0000000

QUP(REG, OCT) 0.0000000 -0.4750000

QDN(REG, OCT) 0.0000000 0.4750000

Blending of Input Materials Chapter 10 245

QUP(REG, VAP) 0.0000000 0.0000000

QDN(REG, VAP) 10649.58 0.0000000

QUP(REG, VOL) 0.0000000 0.0000000

QDN(REG, VOL) 14500.00 0.0000000

 BDEF(PRM) 0.0000000 -22.65000

 BLO(PRM) 2500.000 0.0000000

 BHI(PRM) 1500.000 0.0000000

QUP(PRM, OCT) 0.0000000 -0.4750000

QDN(PRM, OCT) 0.0000000 0.4750000

QUP(PRM, VAP) 0.0000000 0.0000000

QDN(PRM, VAP) 6100.424 0.0000000

QUP(PRM, VOL) 0.0000000 0.0000000

QDN(PRM, VOL) 0.0000000 0.0000000

 PROFIT 48750.00 1.000000

 The solution suggests that Premium is the more profitable product, so we sell the minimum amount

of Regular required and then sell as much Premium as scarce resources, BUT and CAT, allow.

 LP blending models have been a standard operating tool in refineries for years. Recently, there have

been some instances where these LP models have been replaced by more sophisticated nonlinear models,

which more accurately approximate the nonlinearities in the blending process. See Rigby, Lasdon, and

Waren (1995), for a discussion of how Texaco does it. For example, volatility may be represented by a

logarithmic expression and octane may be represented with a polynomial like a1*x+ a2*x2+ a3*x3+ a4*x4,

see Rardin(1998).

 There is a variety of complications as gasoline blending models are made more detailed. For

example, in high quality gasoline, the vendor may want the octane to be constant across volatility ranges

in the ingredients. The reason is, if you “floor” the accelerator on a non-fuel injected automobile, a shot

of raw gas is squirted into the intake. The highly volatile components of the blend will reach the

combustion chamber first. If these components have low octane, you will have knocking, even though

the “average” octane rating of the gasoline is high. This may be more important in a station selling gas

for city driving than in a station on a cross country highway in Kansas where most driving is at a constant

speed.

10.3.3 Representing Soft Target Quality Constraints
Recall that in the above gasoline blending problem we required the octane rating of Regular gasoline to

be in the range: 89 octane 110. Now suppose that ideally, the octane target is 91. If we required the

octane of Regular to be exactly 91, we could write:

 74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG = 91* B_REG;

But if we allow deviations above and below, we could add deviation/slack/surplus variables:

 74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG

 + SLOCT_REG – SUOCT_REG = 91* B_REG;

 SLOCT_REG <= (91-89) * B_ REG;

 SUOCT_REG <= (110-91) * B_REG;

In the (maximize) objective we could add terms:

 - ALPHAL * SLOCT_REG – ALPHAU * SUOCT_REG;

246 Chapter 10 Blending of Input Materials

Setting constants ALPHAL, ALPHAU > 0 would encourage the blended octane to closely match the

target of 91. Setting ALPHAL, ALPHAU = 0 would only restrict octane to the interval [89, 110].

10.3.4 Discrete Blending/All-or-Nothing Usage
Error! Bookmark not defined.There are some blending applications in which it makes sense to use

only discrete quantities of certain ingredients. For example, if you are doing menu planning for a school

or some other institution, you would not recommend that a meal consist of 0.75 apples and 1.2 bananas.

You would recommend only a whole number. In the processing of scrap metal, the scrap tends come in

compressed bundles. If you are melting scrap in a furnace, you would use all or nothing of a bundle, not

a fraction. If you are blending coal at a port facility, you would tend to use either all or none of a barge

of coal, or a railcar of coal. This all-or-nothing feature can be handled straightforwardly by introducing

binary variables. In our previous gasoline blending example, suppose there is a naptha supply of 4100,

and it is of an all or nothing nature, i.e., if you use any of it you must use all of it. This can be represented

by introducing a binary variable: ZNAP = 1 if any (and all) or the naptha is used, = 0 if none is used.

The additional constraints would be:

 @BIN(ZNAP); ! ZNAP is a 0/1, binary variable.;

 [RMLIMNAP] XNAP_PRM + XNAP_REG = 4100 * ZNAP; ! Naptha used = 0 or 4100;

When the model is solved with this constraint replacing:
 [RMLIMNAP] XNAP_PRM + XNAP_REG = 5000;

 we get a solution which in part is:

 Global optimal solution found.
 Objective value: 45810.00

 Variable Value

 B_PRM 2700.000

 B_REG 6400.000

 XBUT_PRM 295.5508

 XBUT_REG 704.4492

 XNAP_PRM 850.4237

 XNAP_REG 3249.576

 XCAT_PRM 1554.025

 XCAT_REG 2445.975

 ZNAP 1.000000

10.3.5 Treatments vs. Ingredients in Blending Problems
Error! Bookmark not defined. In some blending problems, you can apply treatments that can

significantly change the quality directly without having much effect on the volume of the blend.

Examples are: a) in gasoline blending, the octane rating can be increased by adding small amounts of

tetraethyl lead (TEL), methyl tertiary-butyl ether (MTBE), or ferrocene. Note, however, that regulatory

authorities in many countries may have restrictions on the use of these additives because of pollution

Blending of Input Materials Chapter 10 247

issues. b) in the manufacture of steel, one can remove C (carbon) and S (sulfur) by treating with O

(oxygen) and CaO (lime).

A simplified representation of (b) is that C can be removed by injecting O to produce CO, which is

easily separated out. Atomic weights of C and O are 12 and 16. So each ton of O injected might

remove up to 12/16 = 0.75 tons of C. Another simplified representation is that S can be removed by

adding CaO, which produces CaS + O, both of which are easily separated out, e.g. as slag floating on

the top of the blending vessel. Atomic weights of Ca and S are 40 and 32. So each ton of CaO applied

might remove up to 32/(40+16) = 0.57 tons of S.

We can represent treatments as a generalization of raw material ingredients if we introduce an

additional parameter vector:

 vc(i) = volume contribution per unit of treatment i applied.

We also use the notation:

 Parameters:

 q(i, j) = contribution of treatment i to quality j.

 U(j) = upper limit on quality j per volume, e.g., the fraction of sulfur allowed,

 Variables:

 B = batch size, to be determined,

 x(i) = amount of treatment or raw material i to be used,

For a typical ingredient, vc(i) = 1, e.g., if we add a ton of Wyoming coal to a batch of blends of various

coals, the batch size increases by 1 ton. Now consider in contrast that we add a ton of lime to a steel

batch. The purpose of the lime is, among other things, to remove sulfur. The lime combines with the

sulfur which is then removed as slag from the top of the blending vessel. Let us suppose that each ton

of lime removes 0.57 tons of sulfur. In this case, we would set vc(lime) = -0.57, i.e., adding lime leads

to a net decrease in the final batch size. Further, q(lime, sulfur) = -0.57, i.e., each ton of lime added,

decreases the amount of sulfur in the final batch by 0.57 tons.

 The constraints in general are then:

 B = Σi vc(i) * x(i); Compute the batch size;

 For each quality j:

 (Σi q(i,j) * x(i)) / B ≤ U(j) ; Quality constraint in ratio form.

 or in linear form:

 Σi q(i, j) * x(i) ≤ U(j)* B;

10.4 Choice of Alternate Interpretations of Quality Requirements
Some quality features can be stated according to some measure of either goodness or, alternatively,

undesirability. An example is the efficiency of an automobile. It could be stated in miles per gallon or

alternatively in gallons per mile. In considering the quality of a blend of ingredients (e.g., the efficiency

of a fleet of cars), it is important to identify whether it is the goodness or the badness measure which is

additive over the components of the blend. The next example illustrates.

 A federal regulation required the average of the miles per gallon computed over all automobiles

sold by an automobile company in a specific year be at least 18 miles per gallon.

248 Chapter 10 Blending of Input Materials

 Let us consider a hypothetical case for the Ford Motor Company. Assume Ford sold only the four

car types: Mark V, Ford, Granada, and Fiesta. Various parameters of these cars are listed below:

Car Miles per
Gallon

Marginal Prod. Cost Selling Price

Fiesta 30 13,500 14,000

Granada 18 14,100 15,700

Ford 16 14,500 15,300

Mark V 14 15,700 20,000

 There is some flexibility in the production facilities, so capacities may apply to pairs of car types.

These limitations are:

Yearly Capacity in Units Car Types Limited

250,000 Fiestas

2,000,000 Granadas plus Fords

1,500,000 Fords plus Mark V’s

 There is a sale capacity limit of 3,000,000 on the total of all cars sold. How many of each car type

should Ford plan to sell?

 Interpreting the mileage constraint literally results in the following formulation:

 MAX = 500*FIESTA + 1600*GRANADA + 4300*MARKV + 800*FORD;

 12 * FIESTA - 4 * MARKV - 2 * FORD >= 0;

 FIESTA <= 250;

 GRANADA + FORD <= 2000;

 MARKV + FORD <= 1500;

 FIESTA + GRANADA + MARKV + FORD <= 3000;

Automobiles and dollars are measured in 1000s. Note row 2 is equivalent to:

30 Fiesta + 18 Granada + 16 Ford + 14 Mark V

 Fiesta + Granada + Ford + Mark V

 18.

The solution is:

Optimal solution found at step: 1

Objective value: 6550000.

Variable Value Reduced Cost

 FIESTA 250.0000 0.0000000

 GRANADA 2000.000 0.0000000

 MARKV 750.0000 0.0000000

 FORD 0.0000000 2950.000

 Row Slack or Surplus Dual Price

 1 6550000. 1.000000

 2 0.0000000 -1075.000

 3 0.0000000 13400.00

 4 0.0000000 1600.000

 5 750.0000 0.0000000

 6 0.0000000 0.0000000

Blending of Input Materials Chapter 10 249

 Let’s look more closely at this solution. Suppose each car is driven the same number of miles per

year regardless of type. An interesting question is whether the ratio of the total miles driven by the above

fleet divided by the number of gallons of gasoline used is at least equal to 18. Without loss, suppose

each car is driven one mile. The gasoline used by a car driven one mile is 1/(miles per gallon). Thus, if

all the cars are driven the same distance, then the ratio of miles to gallons of fuel of the above fleet is

(250 + 2000 + 750)/[(250/30) + (2000/18) + (750/14)] = 17.3 miles per gallon—which is considerably

below the mpg we thought we were getting.

 The first formulation is equivalent to allotting each automobile the same number of gallons and each

automobile then being driven until it exhausts its allotment. Thus, the 18 mpg average is attained by

having less efficient cars drive fewer miles. A more sensible way of phrasing things is in terms of gallons

per mile. In this case, the mileage constraint is written:

Fiesta/30 + Granada/18 + Ford/16 + MarkV/14 1/18

Fiesta + Granada + Ford + MarkV

Converted to standard form this becomes:

−0.022222222 * FIESTA + 0.0069444444 * FORD + 0.015873016 * MARKV =0;

When this problem is solved with this constraint, we get the solution:

Optimal solution found at step: 0

Objective value: 4830000.

Variable Value Reduced Cost

 FIESTA 250.0000 0.0000000

 FORD 0.0000000 2681.250

 MARKV 350.0000 0.0000000

 GRANADA 2000.000 0.0000000

 Notice the profit contribution drops noticeably under this second interpretation. The federal

regulations could very easily be interpreted to be consistent with the first formulation. Automotive

companies, however, wisely implemented the second way of computing fleet mileage rather than leave

themselves open to later criticism of having implemented what Uncle Sam said rather than what he

meant.

 For reference, in 2010, the U.S. "light truck" (so-called sport utility vehicles) fleet mileage

requirement was 23.4 miles per gallon, and the passenger car fleet requirement was 27.5 miles per gallon.

For each tenth of a mile per gallon that a fleet falls short of the requirement, the U.S. Federal government

sets a fine of $5 per vehicle. The requirements are based on a "model year" basis. This gives a car

manufacturer some flexibility if it looks like it might miss the target in a given year. For example, the

manufacturer could "stop production" of a vehicle that has poor mileage, such as the big Chevy

Suburban, and declare that all subsequent copies sold belong to the next model year. This may achieve

the target in the current model year, but postpone the problem to the next model year.

250 Chapter 10 Blending of Input Materials

10.5 How to Compute Blended Quality
The general conclusion is one should think carefully when one needs to compute an average performance

measure for some blend or collection of things. There are several ways of computing averages or means

when one has a collection of N quantities, x1, x2,xN :

 Type Formula Average of (5, 9)

Arithmetic: (x1 + x2 . . . + xN)/N , 7.000

Logarithmic: (x1 - x2)/ LN(x1 / x2), for N = 2 6.805

Geometric: (x1 x2 . . . xN)^(1/N) 6.708

Harmonic: 1/[(1/x1 + 1/x2 . . . + 1/xN)/N] 6.429

 The arithmetic mean is appropriate for computing the mean return of the assets in a portfolio. If,

however, we are interested in the average growth of a portfolio over time, we would probably want to

use the geometric mean of the yearly growths. Consider, for example, an investment that has a growth

factor of 1.5 in the first year and 0.67 in the second year (e.g., a rate of return of 50% in the first year

and −33% in the second year). Most people would not consider the average growth to be (1.5 + 0.67)/2

= 1.085.

 The harmonic mean tends to be appropriate when computing an average rate of something, as in

average miles/gallon in the example above, or for computing the average density of blend of ingredients.

Density is usually measured in weight per volume (e.g., grams per cubic centimeter). If the decision

variables are measured in weight units rather than volume units, then the harmonic mean is appropriate.

The harmonic mean is also appropriate for computing the average price earnings ratio for a collection of

companies.

 The logarithmic mean is used in computing the average temperature difference in a heat exchanger,

based on the temperature difference at the two ends, e.g., as used in a petroleum refinery.

10.5.1 Example
We have two ingredients, one with a density of 0.7 g/cc and the other with a density of 0.9 g/cc. If we

mix together one gram of each, what is the density of the mix? Clearly, the mix has a weight of 2 grams.

Its volume in cc’s is 1/0.7 + 1/0.9. Thus, its density is 2/(1/0.7 + 1/0.9) = 0.7875 g/cc. This is less than

the 0.8 we would predict if we took the arithmetic average. If we define:

Xi = grams of ingredient i in the mix,

 t = target lower limit on density desired.

Then, we can write the density constraint for our little example as:

(X1 + X2)/(X1/0.7 + X2 /0.9) ≥ t,

 or

(X1 + X2)/t ≥ X1/0.7 + X2/0.9,
 or

(1/t – 1/0.7) X1 + (1/t – 1/0.9) X2 ≥ 0,

(i.e., a harmonic mean constraint).

Blending of Input Materials Chapter 10 251

10.5.2 Generalized Mean
One can generalize the idea just discussed by introducing a transformation f (q). The interpretation is

that the function f () “linearizes” the quality. The basic idea is that many of the quality measures used in

practice were chosen somewhat arbitrarily (e.g., why is the freezing point of water 32 degrees on the

Fahrenheit scale?). So, even though a standardly used quality measure does not “blend linearly”, perhaps

we can find a transformation that does. Such linearizations are common in industry. Some examples

follow:

1. The American Petroleum Institute likes to measure the lightness of a material in “API

gravity”, see Dantzig and Thapa (1997). Water has an API gravity of 10. API gravity does

not blend linearly. However, the specific gravity, defined by:

 sg = 141.5/(API gravity + 131.5)

does blend linearly. Note, the specific gravity of a material is the weight in grams of one

cubic centimeter of material. For example, if component 1 has an API gravity of 35,

component 2 has a API gravity of 55, xi is the amount used of component i, and we want a

blend with an API gravity of at most 45, the constraint could be written:

 (141.5/(35 + 131.5)) x1 + (141.5/(55 + 131.5)) x2 141.5/(45 + 131.5) (x1 + x2).

 Note, if we want the API gravity to be low, then we want the specific gravity high.

2. In the transmissivity of light through a glass fiber of length xi, or the financial growth of

an investment over a period of length xi, or in the probability of no failures in a number of

trials xi, one may have constraints of the form: a1
x1 a2

x2 …an
xn a0. This can be linearized

by taking logarithms (e.g., ln(a1) * x1 + ln(a2) * x2 +… ln(an) * xn ln(a0)).

 For example, if we expect stocks to have a long term growth rate of 10% per year, we

expect less risky bonds to have a long term growth rate of 6% per year, we want an overall

growth of 40% over five years, and x1 and x2 are the number of years we invest in stocks

and bonds respectively over a five year period, then we want the constraint:

 (1.10) x1(1.06) x2 1.40.

 Linearizing, this becomes:

 ln(1.10) x1 + ln(1.06) x2 ln(1.40), or

 .09531 x1 + .05827 x2 .3364,

 x1 + x2 = 5.

3. Rigby, Lasdon, and Waren (1995) use this idea when approximating the Reid vapor

pressure (RVP) of a blended gasoline at Texaco. Note, the RVP of a liquid is the pressure

in a closed container having a small amount of the liquid at 100 degrees F. If ri is the RVP

of component i of the blend, they use the transformation:

 f (ri) = ri 1.25

252 Chapter 10 Blending of Input Materials

For example, if component 1 has an RVP of 80, component 2 has an RVP of 100, xi is the

amount used of component i, and we want a blend with an RVP of at least 90, the constraint

could be written:

 80 1.25 x1 + 100 1.25 x2 90 1.25 (x1 + x2),

 or

 239.26 x1 + 316.23 x2 277.21 (x1 + x2).

4. The flashpoint of a chemical is the lowest temperature at which it will catch fire. Typical

jet fuel has a flashpoint of around 100 degrees F. Typical heating oil has a flashpoint of at

least 130 degrees F. The jet fuel used in the supersonic SR-71 jet aircraft had a flashpoint

of several hundred degrees F. If pi is the flashpoint of component i in degrees F, then the

transformation, the so-called blending index is:

 f (pi) = 51708*exp(((LOG(pi) - 2.6287)^2/(-0.91725)))

where LOG is the natural logarithm, will approximately linearize the flashpoint. See Fahim

et al. (2010) or Kaiser et al. (2020). For example, if component 1 has a flashpoint of 100,

and component 2 has a flashpoint of 140, then f (100) = 731.073, and f (140) = 151.569.

Notice that f (pi) is a decreasing function of pi, so a higher flashpoint means a lower

blending index f (pi) value.

 Suppose we want a blend with a flashpoint of at least 130. Now f (130) = 218.939, so

the flash point constraint, were xj is the amount by weight of component j of the above

two components is:

 731.073 x1 + 151.569 x2 218.939 (x1 + x2).

5. The viscosity of a liquid is a measure, in units of centistokes, of the time it takes a standard

cup volume of liquid, at 122 degrees Fahrenheit, to flow through a hole of a certain

diameter. The higher the viscosity, the less quickly the liquid flows. If vi is the viscosity of

component i, then the transformation:

 f (vi) = ln (ln (vi + .08))

will approximately linearize the viscosity.

 For example, if component 1 has a viscosity of 5, component 2 has a viscosity of 25,

xi is the amount used of component i, and we want a blend with a viscosity of at most 20,

the constraint would be written:

 ln (ln (5 + .08)) x1 + ln (ln (25+ .08)) x2
 ln (ln (20 + .08)) (x1 + x2),

 or

 .4857 x1 + 1.17 x2 1.0985(x1 + x2).

 The preceding examples apply the transformation to each quality individually. One could extend

the idea even further by allowing a “matrix” transformation to several qualities together.

Blending of Input Materials Chapter 10 253

10.6 Interpretation of Dual Prices for Blending Constraints
The dual price for a blending constraint usually requires a slight reinterpretation in order to be useful.

As an example, consider the minimum octane constraint for Premium gasoline in the model considered

earlier. The constraint was effectively:

−94 B_PRM + 120 XBUT_PRM + 74 XNAP_PRM + 100 XCAT_PRM 0.

 The dual price of this constraint is the rate of increase in profit if the right-hand side of this constraint

is increased from 0 to 1. Unfortunately, this is not a change we would ordinarily consider. More typical

changes that might be entertained would be changing the octane rating from 94 to either 93 or 95. A

very approximate rule for estimating the effect of changing the coefficient in row i of variable B_PRM

is to compute the product of the dual price in row i and the value of variable B_PRM. For variable

B_PRM and the octane constraint, this value is -.475*4500 = −2137.5. This suggests, if the octane

requirement is reduced to 93 (or increased to 95) from 94, the total profit will increase by about 2137.5

to 48750 + 2137.5 = $50887.5 (or decrease to 48750-2137.5= $46,612.5). If the LP is actually re-solved

with an octane requirement of 93 (or 95), the actual profit contribution changes to $51,000 (or

$46,714.29).

 This approximation can be summarized generally as follows:

If we wish to change a certain quality requirement of blend by a small amount , the effect on

profit of this change is approximately of the magnitude (dual price of the constraint)
(batch size). For small changes, the approximation tends to understate profit after the change.

For large changes, the approximation may err in either direction.

10.7 Fractional or Hyperbolic Programming
 In blending problems, we have seen ratio constraints of the form:

j i j

j j

q X

X
q

0

can be converted to linear form, by rewriting:

j qj Xj q0 Xj or (qj − q0) xj 0

 Can we handle a similar feature in the objective? That is, can a problem of the following form be

converted to linear form?

(1) Maximize
o j j j

o j j j

u + u X

v + v X

(2) subject to: j aij Xj = bi , for i = 1, 2, . . .

 The ai,j, u0, uj, v0, and vj are given constants. For example, we might wish to maximize the fraction

of protein in a blend subject to constraints on availability of materials and other quality specifications.

254 Chapter 10 Blending of Input Materials

 We can make it linear with the following transformations:

Define:

 r = 1/(v0 + j vj Xj)

and

 yj = Xj r

We assume r > 0.

 Then our objective is:

(1') Maximize u0 r + juj yj

 subject to:

r = 1/(v0 + j vj X j), or

(1.1') r v0 + j vj yj = 1

Any other constraint i of the form:

(2) j aij Xj = bi

can be written as:

j aij Xj r = bi r

or linear in terms of the new variables,

(2') j aij yi − bi r = 0

10.8 Multi-Level Blending: Pooling Problems
A complicating factor in some blending problems is that not all raw ingredients can be stored separately.

Such a situation can arise in a number of ways. Two ingredients may be produced at the same location,

but for economic reasons, are transported together (e.g., in one tank car or via one pipeline). Another

possibility is two ingredients are delivered separately, but only a single holding facility is available at

the blending site. In general, many facilities that blend ingredients have only a modest number of storage

facilities. For example, a grain storage facility may have only a half dozen bins. A petroleum refinery

may have only a half dozen tanks. If there are more than a half dozen different sources of raw materials,

then not all raw materials can be stored separately. In the petroleum industry, this leads to what is called

a pooling problem.

 This pooling of raw materials within a blending problem leads to a nonlinear program. The pooling

problem discussed here is taken from Haverly (1978). A, B, and C are ingredients containing 3%, 1%,

and 2% sulfur as an impurity, respectively. These chemicals are to be blended to provide two output

products, X and Y, which must meet sulfur content upper limits of 2.5% and 1.5%, respectively. At the

given prices of $9 per unit of X and $15 per unit of Y, customers will buy all of X and Y produced up to

a maximum of 100 units of X and 200 units of Y. The costs per unit for ingredients A, B, and C are $6,

$16, and $10, respectively. The problem is to operate the process in order to maximize profit.

 A complicating factor in this blending process is the fact that products A and B must be stored in

the same tank, or “pool”. So, until the amounts of A and B are determined, the pool sulfur content is

unknown. Figure 10.1 illustrates. However, it is the pool sulfur content together with the amounts of

pool material and of chemical C used in blending X and Y that determine the X and Y sulfur contents.

Blending of Input Materials Chapter 10 255

The sulfur constraints on X and Y affect the amounts of A and B needed, and it is this “circularity” that

causes a nonlinearity.

Figure 10.1 A Pooling Problem

Pool

Y

X

C

A

B

 The constraint equations defining this system involve material balances and sulfur constraints for

the output products. Consider the material balance equations first.

 We have the following mass balance for the pool, assuming all of the pool material is to be used up:

Amount A + Amount B = Pool to X + Pool to Y.

For the output products, the balance equations are:

Pool to X + C to X = Amount X

and:

Pool to Y + C to Y = Amount Y.

For the total amount of C, the equation is:

C to X + C to Y = Amount C.

 Introducing the pool sulfur percent, Pool S, as a new variable, makes it easy to write the X and Y

sulfur constraints. If we let Pool S have a value between 0 and 100 and express all other percentages on

the same scale, these constraints are:

Pool S Pool to X + 2 C to X 2.5 Amount X

Pool S Pool to Y + 2 C to Y 1.5 Amount Y

 The left-hand side of each inequality represents the actual sulfur content of the appropriate product

and the right-hand side is the maximum amount of sulfur permitted in that product. The pool sulfur

balance equation is:

3 Amount A + 1 Amount B = Pool S (Amount A + Amount B).

 This defines Pool S as the amount of sulfur in the pool divided by the total amount of material in

the pool.

256 Chapter 10 Blending of Input Materials

 As mentioned earlier, product demand sets upper bounds on production as:

Amount X 100

Amount Y 200

and physical considerations restrict all variables to be nonnegative quantities. Clearly, the pool sulfur

can never be less than 1% or more than 3%. Thus:

1 Pool S 3.

 Finally, the profit function must be formulated. If Cost A, Cost B, Cost C, Cost X, and Cost Y are

the appropriate cost coefficients, the profit can be written as:

Cost X Amount X + Cost Y Amount Y − Cost A Amount A

− Cost B Amount B − Cost C Amount C

A LINGO formulation follows:

MODEL:

 COSTA = 6;

 COSTB = 16;

 COSTC = 10;

 COSTX = 9;

 COSTY = 15;

 MAX = COSTX * AMOUNTX + COSTY * AMOUNTY - COSTA * AMOUNTA - COSTB *

AMOUNTB - COSTC * AMOUNTC;

 ! Sources = uses for the pool;

 AMOUNTA + AMOUNTB = POOLTOX + POOLTOY;

 ! Sources for final products;

 POOLTOX + CTOX = AMOUNTX;

 POOLTOY + CTOY = AMOUNTY;

 ! Uses of C;

 AMOUNTC = CTOX + CTOY;

 ! Blending constraints for final products;

 POOLS * POOLTOX + 2 * CTOX <= 2.5 * AMOUNTX;

 POOLS * POOLTOY + 2 * CTOY <= 1.5 * AMOUNTY;

 ! Blending constraint for the pool product;

 3*AMOUNTA + AMOUNTB=POOLS*(AMOUNTA + AMOUNTB);

 ! Demand upper limits;

 AMOUNTX <= 100;

 AMOUNTY <= 200;

END

Blending of Input Materials Chapter 10 257

 This problem is tricky in that it has (as we shall see) several local optima. LINGO, left to its own

devices, may find the following solution:

Optimal solution found at step: 16

Objective value: 400.0000

Variable Value Reduced Cost

 COSTA 6.000000 0.0000000

 COSTB 16.00000 0.0000000

 COSTC 10.00000 0.0000000

 COSTX 9.000000 0.0000000

 COSTY 15.00000 0.0000000

 AMOUNTX 0.0000000 0.0000000

 AMOUNTY 200.0000 0.0000000

 AMOUNTA 0.0000000 2.000003

 AMOUNTB 100.0000 0.0000000

 AMOUNTC 100.00000 0.0000000

 POOLTOX 0.0000000 4.000026

 POOLTOY 100.0000 0.0000000

 CTOX 0.0000000 0.0000000

 CTOY 100.00000 0.0000000

 POOLS 0.9999932 0.0000000

 Examination of the solution shows the optimal operation produces only product Y using equal

amounts of B and C. The cost per unit of output is $(16 + 10) / 2 = $13 and the sale price is $15, giving

a profit of $2 per unit. Since all 200 units are produced and sold, the profit is $400.

 Nonlinear problems, such as this pooling model, have the curious feature that the solution you get

may depend upon where the solver starts its solution search. You can set the starting point by inserting

an "INIT" initialization section in your model such as the following:

 INIT:

AMOUNTX = 0;

AMOUNTY = 0;

AMOUNTA = 0;

AMOUNTB = 0;

AMOUNTC = 0;

POOLTOX = 0;

POOLTOY = 0;

 CTOX = 0;

 CTOY = 0;

 POOLS = 3;

 ENDINIT

258 Chapter 10 Blending of Input Materials

 The INIT section allows you to provide the solver with an initial guess at the solution. Starting at

the point provided in the INIT section, LINGO may find the solution:

Optimal solution found at step: 4

Objective value: 100.0000

Variable Value Reduced Cost

 AMOUNTX 100.0000 0.0000000

 AMOUNTY 0.0000000 0.0000000

 AMOUNTA 50.00000 0.0000000

 AMOUNTB 0.0000000 2.000005

 AMOUNTC 50.00000 0.0000000

 POOLTOX 50.00000 0.0000000

 POOLTOY 0.0000000 6.000000

 CTOX 50.00000 0.0000000

 CTOY 0.0000000 0.0000000

 POOLS 3.000000 0.0000000

 COSTA 6.000000 0.0000000

 COSTB 16.00000 0.0000000

 COSTC 10.00000 0.0000000

 COSTX 9.000000 0.0000000

 COSTY 15.00000 0.0000000

 In this solution, only product X is produced and sold. It is made using an equal blend of chemicals

A and C. The net cost of production is $8 per unit, yielding a profit of $1 per unit of X sold. Since only

100 units are called for, the final profit is $100. This solution is locally optimal. That is, small changes

from this operating point reduce the profit. There are no feasible operating conditions close to this one

that yield a better solution.

 Our earlier solution, yielding a profit of $400, is also a local optimum. However, there is no other

feasible point with a larger profit, so we call the $400 solution a global optimum. The reader is invited

to find other local optima, for example, by increasing the use of A and decreasing B and C.

 Generally speaking, an initial guess should not set variable values to zero. Since zero multiplied by

any quantity is still zero, such values can lead to unusual behavior of the optimization algorithm. For

example, if we take our previous initial guess, except set POOLS = 2, the solver may get stuck at this

point and gives the solution:

Optimal solution found at step: 1

Objective value: 0.0000000E+00

Variable Value Reduced Cost

 AMOUNTX 0.0000000 0.0000000

 AMOUNTY 0.0000000 0.0000000

 AMOUNTA 0.0000000 6.000000

 AMOUNTB 0.0000000 16.00000

 AMOUNTC 0.0000000 0.0000000

 POOLTOX 0.0000000 -10.00000

 POOLTOY 0.0000000 -10.00000

 CTOX 0.0000000 0.0000000

 CTOY 0.0000000 0.0000000

 POOLS 2.000000 0.0000000

 COSTA 6.000000 0.0000000

 COSTB 16.00000 0.0000000

 COSTC 10.00000 0.0000000

 COSTX 9.000000 0.0000000

Blending of Input Materials Chapter 10 259

 COSTY 15.00000 0.0000000

 As this output shows, LINGO finds the starting point to be optimal. Actually, this point is not even

a local optimum, but rather a stationary point (i.e., very small changes do not provide any significant

improvement, within the tolerances used in the algorithm, in the objective). The point satisfies the

so-called first-order necessary conditions for an optimum. If, however, the starting point is perturbed by

some small amount, the solver should find an actual local optimum and perhaps the global one. In fact,

setting all variables previously at zero to 0.1 does lead to the global maximum solution with profit of

$400.

 This model is an example of where a global solver is helpful. If the “Global solver” option is

selected in LINGO, then the global optimal solution with value 400 is found without fail. For this

problem, all solutions obtained have the property that many constraints are active. In other words, they

hold as equalities. Of course, the five equality constraints (rows 2 through 5 and row 8) are always active.

In addition, in the globally optimal solution, the sulfur content of Y is at its upper limit, and six variables

are either at lower or upper limits (POOLS, CTOX, POOLTOX, AMOUNTA, AMOUNTY, and

AMOUNTX). Hence, there are twelve active constraints, but only ten variables. When there are at least

as many active constraints as there are variables, this is called a vertex solution. In linear programming,

any LP having an optimal solution has a vertex solution. This is not true in NLP, but vertex optima are

not uncommon and seem to occur frequently in models involving blending and processing.

 When there are more active constraints than variables, the vertex is called degenerate. In the global

solution to this problem, there are two “extra” active constraints. One could be removed by dropping the

upper and lower limits on POOLS. These are redundant because they are implied by constraint 8 and the

nonnegativity of the variables. The lower limits on AMOUNTX and AMOUNTY could also be dropped,

since they are implied by rows 3 and 4 and the lower limits on CTOX, CTOY, POOLTOX, and

POOLTOY. Doing this would lead to the same vertex solution, but with exactly as many active

constraints as variables. Some other constraints are redundant too. The reader is invited to find them.

10.9 Problems
1. The Exxoff Company must decide upon the blends to be used for this week’s gasoline production.

Two gasoline products must be blended and their characteristics are listed below:

Gasoline

Vapor
Pressure

Octane
Number

Selling Price (in
$/barrel)

Lo-lead 7 80 $ 9.80

Premium 6 100 $12.00

The characteristics of the components from which the gasoline can be blended are shown below:

Component

Vapor
Pressure

Octane
Number

Available this
Week (in barrels)

Cat-Cracked Gas 8 83 2700

Isopentane 20 109 1350

Straight Gas 4 74 4100

260 Chapter 10 Blending of Input Materials

 The vapor pressure and octane number of a blend is simply the weighted average of the

corresponding characteristics of its components. Components not used can be sold to

“independents” for $9 per barrel.

a) What are the decision variables?

b) Give the LP formulation.

c) How much Premium should be blended?

2. The Blendex Oil Company blends a regular and a premium product from two ingredients, Heptane

and Octane. Each liter of regular is composed of exactly 50% Heptane and 50% Octane. Each liter

of premium is composed of exactly 40% Heptane and 60% Octane. During this planning period,

there are exactly 200,000 liters of Heptane and 310,000 liters of Octane available. The profit

contributions per liter of the regular and premium product this period are $0.03 and $0.04 per liter

respectively.

a) Formulate the problem of determining the amounts of the regular and premium products

to produce as an LP.

b) Determine the optimal amounts to produce without the use of a computer.

3. Hackensack Blended Whiskey Company imports three grades of whiskey: Prime, Choice, and

Premium. These unblended grades can be used to make up the following two brands of whiskey

with associated characteristics:

Brand

Specifications

Selling price per
liter

Scottish Club Not less than 60% Prime.

Not more than 20% Premium.

$6.80

Johnny Gold Not more than 60% Premium.

Not less than 15% Prime.

$5.70

The costs and availabilities of the three raw whiskeys are:

Whiskey

Available This Week (Number of
Liters)

Cost per
Liter

Prime 2,000 $7.00

Choice 2,500 $5.00

Premium 1,200 $4.00

 Hackensack wishes to maximize this week’s profit contribution and feels it can use linear

programming to do so. How much should be made of each of the two brands? How should the three

raw whiskeys be blended into each of the two brands?

Blending of Input Materials Chapter 10 261

4. The Sebastopol Refinery processes two different kinds of crude oil, Venezuelan and Saudi, to

produce two general classes of products, Light and Heavy. Either crude oil can be processed by

either of two modes of processing, Short or Regular. The processing cost and amounts of Heavy

and Light produced depend upon the mode of processing used and the type of crude oil used. Costs

vary, both across crude oils and across processing modes. The relevant characteristics are

summarized in the table below. For example, the short process converts each unit of Venezuelan

crude to 0.45 units of Light product, 0.52 units of Heavy product, and 0.03 units of waste.

 Short Process Regular Process

 Venezuela
n

Saud
i

Venezuela
n

Saud
i

Light product fraction 0.45 0.60 0.49 0.68

Heavy product fraction 0.52 0.36 0.50 0.32

Unusable product fraction 0.03 0.04 0.01 0.00

 Saudi crude costs $20 per unit, whereas Venezuelan crude is only $19 per unit. The short

process costs $2.50 per unit processed, while the regular process costs $2.10 per unit. Sebastopol

can process 10,000 units of crude per week at the regular rate. When the refinery is running the

Short process for the full week, it can process 13,000 units per week.

The refinery may run any combination of short and regular processes in a given week.

 The respective market values of Light and Heavy products are $27 and $25 per unit. Formulate

the problem of deciding how much of which crudes to buy and which processes to run as an LP.

What are the optimal purchasing and operating decisions?

5. There has been a lot of soul searching recently at your company, the Beansoul Coal Company

(BCC). Some of its better coal mines have been exhausted and it is having more difficulty selling

its coal from remaining mines. One of BCC’s most important customers is the electrical utility,

Power to the People Company (PPC). BCC sells coal from its best mine, the Becky mine, to PPC.

The Becky mine is currently running at capacity, selling all its 5000 tons/day of output to PPC.

Delivered to PPC, the Becky coal costs BCC $81/ton and PPC pays BCC $86/ton. BCC has four

other mines, but you have been unable to get PPC to buy coal from these mines. PPC says that coal

from these mines does not satisfy its quality requirements. Upon pressing PPC for details, it has

agreed it would consider buying a mix of coal as long as it satisfies the following quality

requirements: sulfur < 0.6%; ash < 5.9%; BTU > 13000 per ton; and moisture < 7%. You note your

Becky mine satisfies this in that its quality according to the above four measures is: 0.57%, 5.56%,

13029 BTU, and 6.2%. Your four other mines have the following characteristics:

Mine

BTU Per

Ton

Sulfur

Percent

Ash

Percent

Moisture
Percent

Cost Per Ton
Delivered to

PPC

Lex 14,201 0.88 6.76 5.1 73

Casper 10,630 0.11 4.36 4.6 90

Donora 13,200 0.71 6.66 7.6 74

Rocky 11,990 0.39 4.41 4.5 89

262 Chapter 10 Blending of Input Materials

 The daily capacities of your Lex, Casper, Donora, and Rocky mines are 4000, 3500, 3000, and

7000 tons respectively. PPC uses an average of about 13,000 tons per day.

 BCC’s director of sales was ecstatic upon hearing of your conversation with PPC. His response

was “Great! Now, we will be able sell PPC all of the 13,000 tons per day it needs”. Your stock with

BCC’s newly appointed director of productivity is similarly high. Her reaction to your discussion

with PCC was: “Let’s see, right now we are making a profit contribution of only $5/ton of coal sold

to PPC. I have figured out we can make a profit contribution of $7/ton if we can sell them a mix.

Wow! You are an ingenious negotiator!” What do you recommend to BCC?

6. The McClendon Company manufactures two products, bird food and dog food. The company has

two departments, blending and packaging. The requirements in each department for manufacturing

a ton of either product are as follows:

 Time per Unit in Tons

 Blending Packaging

Bird food 0.25 0.10

Dog food 0.15 0.30

Each department has 8 hours available per day.

 Dog food is made from the three ingredients: meat, fishmeal, and cereal. Bird food is made

from the three ingredients: seeds, ground stones, and cereal. Descriptions of these five materials are

as follows.

 Descriptions of Materials in Percents

Protein

Carbohydrates

Trace
Minerals

Abrasives

Cost
(in $/ton)

Meat 12 10 1 0 600

Fishmeal 20 8 2 2 900

Cereal 3 30 0 0 200

Seeds 10 10 2 1 700

Stones 0 0 3 100 100

The composition requirements of the two products are as follows:

 Composition Requirements of the Products in Percents

Protein

Carbohydrates

Trace
Minerals

Abrasive

s

Seeds

Bird food 5 18 1 2 10

Dog food 11 15 1 0 0

 Bird food sells for $750 per ton while dog food sells for $980 per ton. What should be the

composition of bird food and dog food and how much of each should be manufactured each day?

Blending of Input Materials Chapter 10 263

7. Recent federal regulations strongly encourage the assignment of students to schools in a city, so the

racial composition of any school approximates the racial composition of the entire city. Consider

the case of the Greenville city schools. The city can be considered as composed of five areas with

the following characteristics:

Area Fraction Minority Number of students

1 0.20 1,200

2 0.10 900

3 0.85 1,700

4 0.60 2,000

5 0.90 2,500

 The ruling handed down for Greenville is that a school can have neither more than 75 percent

nor less than 30 percent minority enrollment. There are three schools in Greenville with the

following capacities:

School Capacity

Bond 3,900

Pocahontas 3,100

Pierron 2,100

 The objective is to design an assignment of students to schools, so as to stay within the capacity

of each school and satisfy the composition constraints while minimizing the distance traveled by

students. The distances in kilometers between areas and schools are:

 Area

School 1 2 3 4 5

Bond 2.7 1.4 2.4 1.1 0.5

Pocahontas 0.5 0.7 2.9 0.8 1.9

Pierron 1.6 2.0 0.1 1.3 2.2

 There is an additional condition that no student can be transported more than 2.6 kilometers.

Find the number of students that should be assigned to each school from each area. Assume any

group of students from an area has the same ethnic mix as the whole area.

8. A farmer is raising pigs for market and wishes to determine the quantity of the available types of

feed that should be given to each pig to meet certain nutritional requirements at minimum cost. The

units of each type of basic nutritional ingredient contained in a pound of each feed type is given in

the following table along with the daily nutritional requirement and feed costs.

Nutritional
Ingredient

Pound
of Corn

Pound of
Tankage

Pound of
Alfalfa

Units Required
per day

Carbohydrates 9 2 4 20

Proteins 3 8 6 18

Vitamins 1 2 6 15

Cost (cents)/lb. 7 6 5

264 Chapter 10 Blending of Input Materials

9. Rico-AG is a German fertilizer company, which has just received a contract to supply 10,000 tons

of 3-12-12 fertilizer. The guaranteed composition of this fertilizer is (by weight) at least 3%

nitrogen, 12% phosphorous, and 12% potash. This fertilizer can be mixed from any combination of

the raw materials described in the table below.

Raw Material
%

Nitrogen
%

Phosphorous
%

Potash
Current World

Price/Ton

AN 50 0 0 190 Dm

SP 1 40 5 180 Dm

CP 2 4 35 196 Dm

BG 1 15 17 215 Dm

 Rico-AG has in stock 500 tons of SP that was bought earlier for 220 Dm/ton. Rico-AG has a

long-term agreement with Fledermausguano, S.A. This agreement allows it to buy already mixed

3-12-12 at 195 Dm/ton.

a) Formulate a model for Rico-AG that will allow it to decide how much to buy and how to

mix. State what assumptions you make with regard to goods in inventory.

b) Can you conclude in advance that no CP and BG will be used because they cost more than

195 Dm/ton?

10. The Albers Milling Company buys corn and wheat and then grinds and blends them into two final

products, Fast-Gro and Quick-Gro. Fast-Gro is required to have at least 2.5% protein while

Quick-Gro must have at least 3.2% protein. Corn contains 1.9% protein while wheat contains 3.8%

protein. The firm can do the buying and blending at either the Albers (A) plant or the Bartelso (B)

plant. The blended products must then be shipped to the firm’s two warehouse outlets, one at Carlyle

(C) and the other at Damiansville (D). Current costs per bushel at the two plants are:

 A B

Corn 10.0 14.0

Wheat 12.0 11.0

Transportation costs per bushel between the plants and warehouses are:

Fast-Gro: To Quik-Gro: To

 C D C D

From

A 1.00 2.00

 From
A 3.00 3.50

 B 3.00 0.75 B 4.00 1.90

The firm must satisfy the following demands in bushels at the warehouse outlets:

 Product

Warehouse Fast-Gro Quik-Gro

C 1,000 3,000

D 4,000 6,000

Formulate an LP useful in determining the purchasing, blending, and shipping decisions.

Blending of Input Materials Chapter 10 265

11. A high quality wine is typically identified by three attributes: (a) its vintage, (b) its variety, and (c)

its region. For example, the Optima Winery of Santa Rosa, California produced a wine with a label

that stated: 1984, Cabernet Sauvignon, Sonoma County. The wine in the bottle may be a blend of

wines, not all of which need be of the vintage, variety, and region specified on the label. In this case,

the state of California and the U.S. Department of Alcohol, Tobacco, and Firearms strictly enforce

the following limits. To receive the label 1984, Cabernet Sauvignon, Sonoma County, at least 95%

of the contents must be of 1984 vintage, at least 75% of the contents must be Cabernet Sauvignon,

and at least 85% must be from Sonoma County. How small might be the fraction of the wine in the

bottle that is of 1984 vintage and of the Cabernet Sauvignon variety and from grapes grown in

Sonoma County?

12. Rogers Foods of Turlock, California (see Rosenthal and Riefel (1994)) is a producer of high quality

dried foods, such as dried onions, garlic, etc. It has regularly received “Supplier of the Year” awards

from its customers, retail packaged food manufacturers such as Pillsbury. A reason for Rogers’

quality reputation is it tries to supply product to its customers with quality characteristics that closely

match customer specifications. This is difficult to do because Rogers does not have complete control

over its input. Each food is harvested once per year from a variety of farms, one “lot” per farm. The

quality of the crop from each farm is somewhat of a random variable. At harvest time, the crop is

dried and each lot placed in the warehouse. Orders throughout the year are then filled from product

in the warehouse.

 Two of the main quality features of product are its density and its moisture content. Different

customers may have different requirements for each quality attribute. If a product is too dense, then

a jar that contains five ounces may appear only half full. If a product is not sufficiently dense, it

may be impossible to get five ounces into a jar labelled as a five-ounce jar.

To illustrate the problem, suppose you have five lots of product with the following characteristics:

Lot Fraction Moisture Density Kg. Available

1 0.03 0.80 1000

2 0.02 0.75 2500

3 0.04 0.60 3100

4 0.01 0.60 1500

5 0.02 0.65 4500

You currently have two prospective customers with the following requirements:

 Fraction
Moisture Density

Customer

Min

Max

Min

Max

Max Kg.
Desired

Selling Price
per Kg.

P 0.035 0.045 0.70 0.75 3,000 $5.25

G 0.01 0.03 0.60 0.65 15,000 $4.25

What should you do?

266 Chapter 10 Blending of Input Materials

13. The Lexus automobile gets 26 miles per gallon (mpg), the Corolla gets 31 mpg, and the Tercel gets

35 mpg. Let L, C, and T represent the number of automobiles of each type in some fleet. Let F

represent the total number in the fleet. We require, in some sense, the mpg of the fleet to be at least

32 mpg. Fleet mpg is measured by (total miles driven by the fleet)/(total gallons of fuel consumed

by fleet).

a) Suppose the sense in which mpg is measured is each auto is given one gallon of fuel, then

driven until the fuel is exhausted. Write appropriate constraints to enforce the 32 mpg

requirement.

b) Suppose the sense in which mpg is measured is each auto is driven one mile and then

stopped. Write appropriate constraints to enforce the 32 mpg requirement.

14. In the financial industry, one is often concerned with the “duration” of one’s portfolio of various

financial instruments. The duration of a portfolio is simply the weighted average of the duration of

the instruments in the portfolio, where the weight is simply the number of dollars invested in the

instrument. Suppose the Second National Bank is considering revising its portfolio and has denoted

by X1, X2, and X3, the number of dollars invested (in millions) in each of three different instruments.

The durations of the three instruments are respectively: 2 years, 4 years, and 5 years. The following

constraint appeared in their planning model:

 + X1 − X2 − 2 X3 0

In words, this constraint is:

a) duration of the portfolio must be at most 10 years;

b) duration of the portfolio must be at least 3 years;

c) duration of the portfolio must be at least 2 years;

d) duration of the portfolio must be at most 3 years;

e) none of the above.

15. You are manager of a team of ditch diggers, each member of the team is characterized by a

productivity measure with units of cubic feet per hour. An average productivity measure for the

entire team should be based on which of the following:

a) the arithmetic mean;

b) the geometric mean;

c) the harmonic mean.

16. Generic Foods has three different batches of cashews in its warehouse. The percentage moisture

content for batches 1, 2, and 3 respectively are 8%, 11%, and 13%. In blending a batch of cashews

for a particular customer, the following constraint appeared:

+ 2 X1 − X2 − 3 X3 0

Blending of Input Materials Chapter 10 267

In words, this constraint is:

a) percent moisture must be at most 10%;

b) percent moisture must be at least 3%;

c) percent moisture must be at least 10%;

d) percent moisture must be at most 2%;

e) none of the above.

17. The Beanbody Company buys various types of raw coal on the open market and then pulverizes the

coal and mixes it to satisfy customer specifications. Last week Beanbody bought 1500 tons of type

M coal for $78 per ton that was intended for an order that was canceled at the last minute. Beanbody

had to pay an additional $1 per ton to have the coal shipped to its processing facility. Beanbody has

no other coal in stock. Type M coal has a BTU content of 13,000 BTU per ton. This week type M

coal can be bought (or sold) on the open market for $74 per ton. Type W coal, which has a BTU

content of 10,000 BTU/ton, can be bought this week for $68 per ton. Type K coal, which has a BTU

content of 12,000 BTU/ton, can be bought this week for $71 per ton. All require an additional $1/ton

to be shipped into Beanbody's facility. In fact, Beanbody occasionally sells raw coal on the open

market and then Beanbody also has to pay $1/ton outbound shipping. Beanbody expects coal prices

to continue to drop next week. Right now Beanbody has an order for 2700 tons of pulverized product

having a BTU content of at least 11,000 BTU per ton. Clearly, some additional coal must be bought.

The president of Beanbody sketched out the following incomplete model for deciding how much of

what coal to purchase to just satisfy this order.;

MODEL:

! MH = tons of on-hand type M coal used;

! MP = tons of type M coal purchased;

! WP = tons of type W coal purchased;

! KP = tons of type K coal purchased;

 MIN = __ * MH + __ * MP + __ * WP + __ * KP;

 MH + MP + WP + KP = 2700;

 MH <= 1500;

 2000 * MH + ____ * MP - 1000 * WP + ____ * KP >= 0;

END

What numbers would you place in the ______ places?

18. A local high school is considering using an outside supplier to provide meals. The big question is:

How much will it cost to provide a nutritious meal to a student? Exhibit A reproduces the

recommended daily minima for an adult as recommended by the noted dietitian, George Stigler

(1945). Because our high school need provide only one meal per day, albeit the main one, it should

be sufficient for our meal to satisfy one-half of the minimum daily requirements.

 With regard to nutritive content of foods, Exhibit B displays the nutritional content of various

foods available from one of the prospective vendors recommended by a student committee at the

high school. See Bosch (1993) for a comprehensive discussion of these data.

268 Chapter 10 Blending of Input Materials

 For preliminary analysis, it is adequate to consider only calories, protein, calcium, iron,

vitamins A, B1, and B2.

a) Using only the candidate foods and prices in Exhibit B, and allowing fractional portions,

what is the minimum cost needed to give a satisfactory meal at our high school?

b) Suppose we require only integer portions be served in a meal (e.g., .75 of a Big Mac is not

allowed). How is the cost per meal affected?

c) Suppose in addition to (b), for meal simplicity, we put a limit of at most three food items

from Exhibit B in a meal. For example, a meal of hamburger, fries, chicken McNuggets,

and a garden salad has one too many items. How is the cost per meal affected?

d) Suppose instead of (c), we require at most one unit per serving of a particular food type be

used. How is the cost per meal affected?

e) Suppose we modify (a) with the condition that the number of grams of fat in the meal must

be less-than-or-equal-to 1/20th of the total calories in the meal. How is the cost per meal

affected?

f) How is the answer to (a) affected if you use current prices from your neighborhood

McDonald's? For reference, Stigler claimed to be able to feed an adult in 1944 for $59.88

for a full year.

Exhibit A

Nutrient Allowance

Calories 3,000 calories

Protein 70 grams

Calcium .8 grams

Iron 12 milligrams

Vitamin A 5,000 International Units

Thiamine (B1) 1.8 milligrams

Riboflavin (B2 or G) 2.7 milligrams

Niacin (Nicotinic Acid) 18 milligrams

Ascorbic Acid (C) 75 milligrams

Blending of Input Materials Chapter 10 269

Exhibit B

Menu Item Price Cal. Protein Fat Sodium Vit A Vit
C

Vit
B1

Vit
B2

Niacin Calcium Iron

Hamburger 0.59 255 12 9 490 4 4 20 10 20 10 15

McLean
Deluxe

1.79 320 22 10 670 10 10 25 20 35 15 20

Big Mac 1.65 500 25 26 890 6 2 30 25 35 25 20

Small Fr.
Fries

0.68 220 3 12 110 0 15 10 0 10 0 2

Ch.
McNuggets

1.56 270 20 15 580 0 0 8 8 40 0 6

Chef Salad 2.69 170 17 9 400 100 35 20 15 20 15 8

Garden
Salad

1.96 50 4 2 70 90 35 6 6 2 4 8

Egg
McMuffin

1.36 280 18 11 710 10 0 30 20 20 25 15

Wheaties 1.09 90 2 1 220 20 20 20 20 20 2 20

Van. Cone 0.63 105 4 1 80 2 0 2 10 2 10 0

Milk 0.56 110 9 2 130 10 4 8 30 0 30 0

Orange Juice 0.88 80 1 0 0 0 120 10 0 0 0 0

Grapefruit
Juice

0.68 80 1 0 0 0 100 4 2 2 0 0

Apple Juice 0.68 90 0 0 5 0 2 2 0 0 0 4

19. Your firm has just developed two new ingredients code named A and B. They seem to have great

potential in the automotive aftermarket. These ingredients are blended in various combinations to

produce a variety of products. For these products (and for the ingredients themselves), there are

three qualities of interest: 1) opacity, 2) friction coefficient, and 3) adhesiveness. The research lab

has provided the following table describing the qualities of various combinations of A and B:

 Fraction of Quality of this Combination

Combination A B Opacity Friction coef. Adhesiveness

1 0.00 1.00 10.0 400.0 .100

2 0.50 0.50 25.0 480.0 .430

3 .75 .25 32.5 533.3 .522

4 1.00 0.00 40.0 600.0 .600

For example, the opacity of B by itself is 10, while the friction coefficient of A by itself is 600.

a) For which qualities do the two ingredients appear to interact in a linear fashion?

b) You wish to prepare a product that, among other considerations, has opacity of at least 17,

a friction coefficient of at least 430, and adhesiveness of no more than .35. Denote by T,

A, and B the amount of total product produced, amount of A used, and the amount of B

used. Write the constraints relating T, A, and B to achieve these qualities.

270 Chapter 10 Blending of Input Materials

20. Indiana Flange Inc. produces a wide variety of formed steel products it ships to customers all over

the country. It uses several different shipping companies to ship these products. The products are

shipped in standard size boxes. A shipping company has typically two constraints it has to worry

about in assembling a load: a weight constraint and a volume constraint. One of the shippers,

Amarillo Freight, handles this issue by putting a density constraint (kilograms/cubic meter) on all

shipments it receives from Indiana Flange. If the shipment has a density greater than a certain

threshold (110 kg/m3), Amarillo imposes a surcharge. Currently, Indiana Flange wants to ship the

following products to Los Angeles:

Product Long Tons Density

A 100 130

B 85 95

Note, there are 1000 kilograms per long ton.

 Let AY and BY be the number of tons shipped via Amarillo Freight. Although the densities of

products A and B do not change from week to week, the number of tons Indiana Flange needs to

ship varies considerably from week to week. Indiana Flange does not want to incur the surcharge.

Write a constraint enforcing the Amarillo density constraint that is general (i.e., need not be changed

from week to week).

21. The growth of the World Wide Web has dramatically increased the demand for glass fiber optic

cable, the main medium used for high capacity data transfer. A major measure of quality of an

optical fiber is its transmissivity, the fraction of the light transmitted into the fiber that is emitted

out the other end. Suppose you are a fiber optics vendor, with an order in hand for a single 10 km

strand of optic fiber, with a required transmissivity of at least .9875 per kilometer at a certain

specified wave length of light. You have in stock two types of optic fiber, a) a very expensive one

with a transmissivity of .992, and b) a relatively cheap one with a transmissivity of .982. It has

occurred to you that you could sell more of your fiber optic production if you could "blend" some

of the lower quality fiber with the high quality. This is in fact possible by splicing a segment of

one to the other, e.g., 8 km of the .992 fiber spliced onto 2 km of the .982 fiber. Suppose these

splices are very high quality, i.e., no transmission loss across the splice. Let XH and XL be the

length of high quality and low quality fiber you propose to use for the above request for 10 km of

fiber. Write a constraint to ensure satisfaction of the customer's transmissivity requirement.

271

11

Formulating and Solving
Integer Programs

“To be or not to be” is true.

-G. Boole

11.1 Introduction
In many applications of optimization, one would really like the decision variables to be restricted to

integer values. One is likely to tolerate a solution recommending GM produce 1,524,328.37 Chevrolets.

No one will mind if this recommendation is rounded up or down. If, however, a different study

recommends the optimum number of aircraft carriers to build is 1.37, then a lot of people around the

world will be very interested in how this number is rounded. It is clear the validity and value of many

optimization models could be improved markedly if one could restrict selected decision variables to

integer values.

 All good commercial optimization modeling systems are augmented with a capability that allows

the user to restrict certain decision variables to integer values. The manner in which the user informs the

program of this requirement varies from program to program. In LINGO, for example, one way of

indicating variable X is to be restricted to integer values is to put it in the model the declaration as:

@GIN(X). The important point is it is straightforward to specify this restriction. We shall see later that,

even though easy to specify, sometimes it may be difficult to solve problems with this restriction. The

methods for formulating and solving problems with integrality requirements are called integer

programming.

11.1.1 Types of Variables
One general classification is according to types of variables:

Pure vs. mixed. In a pure integer program, all variables are restricted to integer values. In a

mixed formulation, only certain of the variables are integer; whereas, the rest are allowed

to be continuous.

0/1 vs. general. In many applications, the only integer values allowed are 0/1. Therefore, some

integer programming codes assume integer variables are restricted to the values 0 or 1.

 The integrality enforcing capability is perhaps more powerful than the reader at first realizes. A

frequent use of integer variables in a model is as a zero/one variable to represent a go/no-go decision. It

is probably true that the majority of real-world integer programs are of the zero/one variety.

272 Chapter 11 Formulating & Solving Integer Programs

11.2 Exploiting the IP Capability: Standard Applications
You will frequently encounter LP problems with the exception of just a few combinatorial

complications. Many of these complications are fairly standard. The next several sections describe many

of the standard complications along with the methods for incorporating them into an IP formulation.

Most of these complications only require the 0/1 capability rather than the general integer capability.

Binary variables can be used to represent a wide variety of go/no-go, or make-or-buy decisions. In the

latter use, they are sometimes referred to as “Hamlet” variables as in: “To buy or not to buy, that is the

question”. Binary variables are sometimes also called Boolean variables in honor of the logician George

Boole. He developed the rules of the special algebra, now known as Boolean algebra, for manipulating

variables that can take on only two values. In Boole’s case, the values were “True” and “False”.

However, it is a minor conceptual leap to represent “True” by the value 1 and “False” by the value 0.

The power of these methods developed by Boole is undoubtedly the genesis of the modern compliment:

“Strong, like Boole.”

11.2.1 Binary Representation of General Integer Variables
Some algorithms apply to problems with only 0/1 integer variables. Conceptually, this is no limitation,

as any general integer variable with a finite range can be represented by a set of 0/1 variables. For

example, suppose X is restricted to the set [0, 1, 2,...,15]. Introduce the four 0/1 variables: y1, y2, y3, and

y4. Replace every occurrence of X by y1 + 2 y2 + 4 y3 + 8 y4. Note every possible integer in [0, 1,

2, ..., 15] can be represented by some setting of the values of y1, y2, y3, and y4. Verify that, if the maximum

value X can take on is 31, you will need 5 0/1 variables. If the maximum value is 63, you will need 6 0/1

variables. In fact, if you use k 0/1 variables, the maximum value that can be represented is 2k-1. You can

write: VMAX = 2k-1. Taking logs, you can observe that the number of 0/1 variables required in this

so-called binary expansion is approximately proportional to the log of the maximum value X can take

on.

 Although this substitution is valid, it should be avoided if possible. Most integer programming

algorithms are not very efficient when applied to models containing this substitution.

11.2.2 Minimum Batch Size Constraints
When there are substantial economies of scale in undertaking an activity regardless of its level, many

decision makers will specify a minimum “batch” size for the activity. For example, a large brokerage

firm may require that, if you buy any bonds from the firm, you must buy at least 100. A zero/one variable

can enforce this restriction as follows. Let:

x = activity level to be determined (e.g., no. of bonds purchased),

y = a zero/one variable = 1, if and only if x > 0,

B = minimum batch size for x (e.g., 100), and

U = known upper limit on the value of x.

The following two constraints enforce the minimum batch size condition:

x Uy

By x.

 If y = 0, then the first constraint forces x = 0. While, if y = 1, the second constraint forces x to be at

least B. Thus, y acts as a switch, which forces x to be either 0 or greater than B. The constant U should

be chosen with care. For reasons of computational efficiency, it should be as small as validly possible.

Formulating & Solving Integer Problems Chapter 11 273

 Some IP packages allow the user to directly represent minimum batch size requirements by way of

so-called semi-continuous variables. A variable x is semi-continuous if it is either 0 or in the range

B x . No binary variable need be explicitly introduced.

11.2.3 Fixed Charge Problems
A situation closely related to the minimum batch size situation is one where the cost function for an

activity is of the fixed plus linear type indicated in Figure 11.1:

Figure 11.1 A Fixed Plus Linear Cost Curve

 Define x, y, and U as before, and let K be the fixed cost incurred if x > 0. Then, the following

components should appear in the formulation:

Minimize Ky + cx + . . .

subject to

 x Uy
 .

 .

 .

 The constraint and the term Ky in the objective imply x cannot be greater than 0 unless a cost K is

incurred. Again, for computational efficiency, U should be as small as validly possible.

11.2.4 The Simple Plant Location Problem
The Simple Plant Location Problem (SPL) is a commonly encountered form of fixed charge problem. It

is specified as follows:

n = the number of sites at which a plant may be located or opened,

m = the number of customer or demand points, each of which must be assigned to a plant,

k = the number of plants which may be opened,

fi = the fixed cost (e.g., per year) of having a plant at site i, for i = 1, 2, . . . , n,

cij = cost (e.g., per year) of assigning customer j to a plant at site i, for i = 1, 2, . . . , n and

j = 1, 2, ..., m.

Figure 11.1 A FIxed Plus Linear Cost Curve

Slope c

x
U

K

0
0

Cost

274 Chapter 11 Formulating & Solving Integer Programs

 The goal is to determine the set of sites at which plants should be located and which site should

service each customer.

 A situation giving rise to the SPL problem is the lockbox location problem encountered by a firm

with customers scattered over a wide area. The plant sites, in this case, correspond to sites at which the

firm might locate a postal lockbox that is managed by a bank at the site. The customer points would

correspond to the, 100 say, largest metropolitan areas in the firm’s market. A customer would mail his

or her monthly payments to the closest lockbox. The reason for resorting to multiple lockboxes rather

than having all payments mailed to a single site is several days of mail time may be saved. Suppose a

firm receives $60 million per year through the mail. The yearly cost of capital to the firm is 10% per

year, and it could reduce the mail time by two days. This reduction has a yearly value of about $30,000.

 The fi for a particular site would equal the yearly cost of having a lockbox at site i regardless of the

volume processed through the site. The cost term cij would approximately equal the product: (daily cost

of capital) (mail time in days between i and j) (yearly dollar volume mailed from area j).

 Define the decision variables:

 yi = 1 if a plant is located at site i, else 0,

xij = 1 if the customer j is assigned to a plant site i, else 0.

A compact formulation of this problem as an IP is:

Minimize fi yi + cij xij
(1)

subject to xij = 1 for j = 1 to m, (2)

 xij myi
for i = 1 to n, (3)

 yi = k, (4)

 yi = 0 or 1 for i = 1 to n, (5)

 xij = 0 or 1 for i = 1 to n, j = 1 to m. (6)

 The constraints in (2) force each customer j to be assigned to exactly one site. The constraints in (3)

force a plant to be located at site i if any customer is assigned to site i.

 The reader should be cautioned against trying to solve a problem formulated in this fashion because

the solution process may require embarrassingly much computer time for all, but the smallest problem.

The difficulty arises because, when the problem is solved as an LP (i.e., with the conditions in (5) and

(6) deleted), the solution tends to be highly fractional and with little similarity to the optimal IP solution.

 A “tighter” formulation, which frequently produces an integer solution naturally when solved as an

LP, is obtained by replacing (3) by the formula:

xij yi for i = 1 to n, j = 1 to m. (3')

 At first glance, replacing (3) by (3') may seem counterproductive. If there are 20 possible plant sites

and 60 customers, then the set (3) would contain 20 constraints, whereas set (3') would contain

20 60 = 1,200 constraints. Empirically, however, it appears to be the rule rather than the exception

that, when the problem is solved as an LP with (3') rather than (3), the solution is naturally integer.

i
n
= 1 i

n
= 1 j

m
= 1

i
n
= 1

j
m
= 1

i
n
= 1

Formulating & Solving Integer Problems Chapter 11 275

11.2.5 The Capacitated Plant Location Problem (CPL)
The CPL problem arises from the SPL problem if the volume of demand processed through a particular

plant is an important consideration. In particular, the CPL problem assumes each customer has a known

volume and each plant site has a known volume limit on total volume assigned to it. The additional

parameters to be defined are:

Dj = volume or demand associated with customer j,

Ki = capacity of a plant located at i

The IP formulation is:

Minimize fi yi + cij xij
(7)

subject to xij = 1 for j = 1 to m (8)

 Djxij Kiyi
for i = 1 to n (9)

 xij yi for i = 1 to n, j = 1 to m. (10)

 yi = 0 or 1 for i = 1 to n (11)

 xij = 0 or 1 for i = 1 to n, j = 1 to m. (12)

 This is the “single-sourcing” version of the problem. Because the variables xi j are restricted to 0 or

1, each customer must have all of its volume assigned to a single plant. If “split-sourcing” is allowed,

then the variables xi j are allowed to be fractional with the interpretation that xi j is the fraction of customer

j’s volume assigned to plant site i. In this case, condition (12) is dropped. Split sourcing, considered

alone, is usually undesirable. An example is the assignment of elementary schools to high schools.

Students who went to the same elementary school prefer to be assigned to the same high school.

Example: Capacitated Plant Location

Some of the points just mentioned will be illustrated with the following example.

 The Zzyzx Company of Zzyzx, California currently has a warehouse in each of the following cities:

(A) Baltimore, (B) Cheyenne, (C) Salt Lake City, (D) Memphis, and (E) Wichita. These warehouses

supply customer regions throughout the U.S. It is convenient to aggregate customer areas and consider

the customers to be located in the following cities: (1) Atlanta, (2) Boston, (3) Chicago, (4) Denver, (5)

Omaha, and (6) Portland, Oregon. There is some feeling that Zzyzx is “overwarehoused”. That is, it may

be able to save substantial fixed costs by closing some warehouses without unduly increasing

transportation and service costs. Relevant data has been collected and assembled on a “per month” basis

and is displayed below:

Cost per Ton-Month Matrix

Warehouse

Demand City Monthly
Supply

Capacity
in Tons

Monthly
Fixed
Cost

1

2

3

4

5

6

A $1675 $400 $685 $1630 $1160 $2800 18 $7,650
B 1460 1940 970 100 495 1200 24 3,500
C 1925 2400 1425 500 950 800 27 3,500
D 380 1355 543 1045 665 2321 22 4,100
E 922 1646 700 508 311 1797 31 2,200

Monthly Demand in Tons 10 8 12 6 7 11

i
n
= 1 i

n
= 1 j

m
= 1

i
n
= 1

j
m
= 1

276 Chapter 11 Formulating & Solving Integer Programs

 For example, closing the warehouse at A (Baltimore) would result in a monthly fixed cost saving of

$7,650. If 5 (Omaha) gets all of its monthly demand from E (Wichita), then the associated transportation

cost for supplying Omaha is 7 311 = $2,177 per month. A customer need not get all of its supply from

a single source. Such “multiple sourcing” may result from the limited capacity of each warehouse

(e.g., Cheyenne can only process 24 tons per month. Should Zzyzx close any warehouses and, if so,

which ones?)

 We will compare the performance of four different methods for solving, or approximately solving,

this problem:

1) Loose formulation of the IP.

2) Tight formulation of the IP.

3) Greedy open heuristic: start with no plants open and sequentially open the plant giving the

greatest reduction in cost until it is worthless to open further plants.

4) Greedy close heuristic: start with all plants open and sequentially close the plant saving the

most money until it is worthless to close further plants.

 The advantage of heuristics 3 and 4 is they are easy to apply. The performance of the four methods

is as follows:

Method

Objective
value: Best

Solution

Computing
Time in

Seconds

Plants
Open

Objective
value: LP
Solution

Loose IP 46,031 3.38 A,B,D 35,662

Tight IP 46,031 1.67 A,B,D 46,031

Greedy Open Heuristic 46,943 nil A,B,D,E —

Greedy Close Heuristic 46,443 nil A,C,D,E —

 Notice, even though the loose IP finds the same optimum as the tight formulation (as it must), it

takes about twice as much computing time. For large problems, the difference becomes much more

dramatic. Notice for the tight formulation, however, the objective function value for the LP solution is

the same as for the IP solution. When the tight formulation was solved as an LP, the solution was

naturally integer.

 The single product dynamic lotsizing problem is described by the following parameters:

n = number of periods for which production is to be planned for a product;

Dj = predicted demand in period j, for j = 1, 2, . . . , n;

fi = fixed cost of making a production run in period i;

hi = cost per unit of product carried from period i to i + 1.

This problem can be cast as a simple plant location problem if we define:

ci j = Dj t i

j

=

−

1

ht.

 That is, cij is the cost of supplying period j’s demand from period i production. Each period can be

thought of as both a potential plant site (period for a production run) and a customer.

 If, further, there is a finite production capacity, Ki, in period i, then this capacitated dynamic lotsizing

problem is a special case of the capacitated plant location problem.

Formulating & Solving Integer Problems Chapter 11 277

Dual Prices and Reduced Costs in Integer Programs

Dual prices and reduced costs in solution reports for integer programs have a restricted interpretation.

For first time users of IP, it is best to simply disregard the reduced cost and dual price column in the

solution report. For the more curious, the dual prices and reduced costs in a solution report are obtained

from the linear program that remains after all integer variables have been fixed at their optimal values

and removed from the model. Thus, for a pure integer program (i.e., all variables are required to be

integer), you will generally find:

• all dual prices are zero, and

• the reduced cost of a variable is simply its objective function coefficient (with sign reversed

if the objective is MAX).

 For mixed integer programs, the dual prices may be of interest. For example, for a plant location

problem where the location variables are required to be integer, but the quantity-shipped variables are

continuous, the dual prices reported are those from the continuous problem where the locations of plants

have been specified beforehand (at the optimal locations).

11.2.6 Modeling Alternatives with the Scenario Approach
We may be confronted by alternatives in two different ways: a) we have to choose among two or more

alternatives and we want to figure out which is best, or b) nature or the market place will choose one of

two or more alternatives, and we are not sure which alternative nature will choose, so we want to

analyze all alternatives so we will be prepared to react optimally once we learn which alternative was

chosen by nature. Here we consider only situation (a). We call the approach the scenario approach or

the disjunctive formulation, see for example Balas(1979) or section 16.2.3 of Martin(1999).

Suppose that if we disregard the alternatives, our variables are simply called x1, x2, …, xn. We call

the conditions that must hold if alternative s is chosen, scenario s. Without too much loss of generality,

we assume all variables are non-negative. The scenario/disjunctive approach to formulating a discrete

decision problem proceeds as follows:

 For each scenario s:

 1) Write all the constraints that must hold if scenario s is chosen.

 2) For all variables in these constraints add a subscript s, to distinguish them from

 equivalent variables in other scenarios. So xj in scenario s becomes xsj.

 3) Add a 0/1 variable, ys, to the model with the interpretation that ys = 1 if scenario

 s is chosen, else 0.

 4) Multiply the RHS constant term of each constraint in scenario s by ys.

 5) For each variable xsj that appears in any of the scenario s constraints,

 add the constraint:

 xsj M* ys , where M is a large positive constant. The purpose of this

 step is to force all variables in scenario s to be 0 if scenario s is not chosen.

 Finally, we tie all the scenarios together with:

 s ys = 1, i.e., we must choose one scenario;

 For each variable xj, add the constraint:

 xj = s xsj , so xj takes on the value appropriate to which scenario was

 chosen.

For example, if just after step 1 we had a constraint of the form:

278 Chapter 11 Formulating & Solving Integer Programs

 j asj*xj as0,

then steps 2-4 would convert it to:

 j asj*xsj as0*ys,

The forcing constraints in step 5 are not needed if ys = 0 implies xsj = 0, e.g., if all the asj are nonnegative

and the xj are constrained to be nonnegative.

A somewhat similar approach to the disjunctive/scenario approach is the RLT approach developed by

Adams and Sherali(2005). The next section illustrates the scenario approach for representing a decision

problem.

11.2.7 Linearizing a Piecewise Linear Function, Discontinuous Case
If you ask a vendor to provide a quote for selling you some quantity of material, the vendor will typically

offer a quantity discount function that looks something like that shown in Figure 11.2

Figure 11.2 Quantity Discount Piecewise Linear Discontinuous Cost Curve

 h1 h2 h3 h4

 quantity

Define:

 cs = slope of piecewise linear segment s,

 hs, vs = horizontal and vertical coordinates of the rightmost point of segment s.

v2

v1

v3

v4
c4

c3

c2
cost

Formulating & Solving Integer Problems Chapter 11 279

Note that segment 1 is the degenerate segment of buying nothing. This example illustrates that we do

not require that a piecewise linear function be continuous.

Let us consider the following situation:

 We pay $50 if we buy anything in a period, plus

 $2.00/unit if quantity < 100,

 $1.90/unit if quantity 100 but < 1000,

 $1.80/unit if 1000 but 5000.

We assume hs, vs, cs are constants, and hs hs+1 . It then follows that:

 h v c =

 0 0 0

 100 250 2

 1000 1950 1.90

 5000 9050 1.80;

We will describe two ways of representing picecewise linear functions: first the disjunctive method, and

then the convex weighting or lambda method. Let x denote the amount we decide to purchase. Using

step 1 of the scenario or disjunctive formulation approach,

 if segment/scenario 1 is chosen, then

 cost = 0;

 x = 0;

 If segment/scenario 2 is chosen, then

 cost = v2 – c2*(h2 - x); [or 250 – 2*(100 - x)],

 x h2; [or x 100],

 x h1; [or x 0],

Similar constraints apply for scenario/segments 3 and 4. We assume that fractional values, such as x =

99.44 are allowed, else we would write x 99 rather than x 100 above.

If we apply steps 2-4 of the scenario formulation method, then we get:

 For segment/scenario 1 is chosen, then

 cost1 = 0;

 x1 = 0;

 If segment/scenario 2 is chosen, then

 cost2 = v2*y2 – c2*h2*y2 + c2*x2; [or cost2 = 50*y2 + 2*x2],

 x2 h2*y2; [or x2 100*y2],

 x2 h1*y2; [or x2 0*y2],

 If segment/scenario 3 is chosen, then

 cost3 = v3*y3 – c3*h3*y3 + c3*x3; [or cost3 = 50*y3 + 1.9*x3],

 x3 h3*y3; [or x3 1000*y3],

 x3 h2*y3; [or x3 100*y3],

 If segment/scenario 4 is chosen, then

280 Chapter 11 Formulating & Solving Integer Programs

 cost4 = v4*y4 – c4*h4*y4 + c4*x4; [or cost4 = 50*y3 + 1.8*x4]

 x4 h4*y4; [or x3 5000*y4],

 x4 h3*y4; [or x3 1000*y4],

 We must choose one of the four segments, so:

 y1 + y2 + y3 + y4 = 1;

 y1, y2, y3, y4 = 0 or 1;

 and the true quantity and cost are found with:

 x1+ x2+ x3+ x4 = x;

 cost1 + cost2 +cost3 + cost4 = cost;

11.2.8 Linearizing a Piecewise Linear Function, Continuous Case
The previous quantity discount example illustrated what is called an “all units discount”. Sometimes, a

vendor will instead quote an incremental units discount, in which the discount applies only to the units

above a threshold. The following example illustrates. The first 1,000 liters of the product can be

purchased for $2 per liter. The price drops to $1.90 per liter for units beyond 1000, $1.80 for units above

3500, and $1.75 for units beyond 5000. At most 7000 liters can be purchased.

Figure 11.3 Continuous Piecewise Linear Cost Curve

 h0 h1 h2 h3 h4

 quantity

v1

v0

v2

v3

v4

cost

Formulating & Solving Integer Problems Chapter 11 281

Verify that the corresponding values for the hi and vi are:

 i h v

 0 0 0

 1 1000 2000

 2 3500 6750

 3 5000 9450

 4 7000 12950

Such continuous piecewise linear functions are found not only in purchasing but also are frequently used

in the modeling of energy conversion processes such as the generation of electricity. The amount of

electrical energy produced by a hydro-electric or fossil fuel burning generator may be a nonlinear

function of the input volume of water or fuel.

Define the variables:

 wi = nonnegative weight to be applied to point i, for i = 0, 1, 2, 3, 4.

 x = amount purchased,

 cost = total cost of the purchase.

 We can cause x and cost to almost be calculated correctly by writing the constraints:

 x = w0h0 + w1h1 + w2h2 + w3h3 + w4h4;

 cost = w0v0 + w1v1 + w2v2 + w3v3 + w4v4;

 1 = w0 + w1 + w2 + w3 + w4v4;

Any point on the line segment connecting the two points (hi, vi) and (hi+1, vi+1) can be represented by

choosing appropriate values for wi and wi+1 so that wi + wi+1 = 1, and wi, wi+1 ≥ 0. This method is

sometimes called the lambda method because the Greek symbol lambda was used originally to represent

the weights. To ensure that the point corresponding to a particular set of values for the wi lies on the

curve, we need to require that if two or more of the wi are > 0, they must be adjacent. We said “almost”

in the earlier sentence because there is nothing in the three constraints above that enforce this adjacency

condition. There are two ways of enforcing this adjacency condition: a) declare the wi to be members of

an SOS2 set in LINGO, or b) add a number of binary variables to enforce the condition.

 The following code fragment illustrates how to use the SOS2 feature in LINGO.

 ! Representing a continuous piecewise linear

 function in LINGO using the SOS2 feature;

 x = w0*0 + w1*1000 + w2*3500 + w3*5000 + w4* 7000;

 cost = w0*0 + w1*2000 + w2*6750 + w3*9450 + w4*12950;

 1 = w0 + w1 + w2 + w3 + w4;

 ! The ordering/adjacency of the variables in the SOS2 set

 is determined by the order of declarations. The SOS2 feature

 restricts the number of nonzero values in the set to be at

 most 2, and if 2, they must be adjacent;

 @SOS2('MySOS2',w0); @SOS2('MySOS2',w1); @SOS2('MySOS2',w2);

 @SOS2('MySOS2',w3); @SOS2('MySOS2',w4);

282 Chapter 11 Formulating & Solving Integer Programs

If you arbitrarily add the constraint, X = 6000, and solve, you get the solution:

 Variable Value

 X 6000.000

 W0 0.000000

 W1 0.000000

 W2 0.000000

 W3 0.5000000

 W4 0.5000000

 COST 11200.00

If for some reason you do not want to use the SOS2 feature, you can introduce 4 binary variables:

 yi = 1 if x is in the interval with endpoints hi-1 and hi, for i = 1, 2, 3, 4. We would replace the SOS2

declarations by the constraints:

 ! The y's must be binary;

 @BIN(y1); @BIN(y2); @BIN(y3); @BIN(y4);

 ! Some interval must be chosen;

 y1 + y2 + y3 + y4 = 1;

 ! If point i has any weight, then one of the adjacent

 intervals must be chosen;

 w0 <= y1;

 w1 <= y1 + y2;

 w2 <= y2 + y3;

 w3 <= y3 + y4;

 w4 <= y4;

11.2.9 An n Interval Piecewise Linear Function Using Log(n) Binaries

 The previous example used n binary variables to enforce the choosing of one alternative out of n. With

a little ingenuity this “choose one out of n” requirement can be enforced with only order of log2(n) binary

variables. We illustrate for the case of eight intervals, for which we need three binary variables, y1, y2,

y3. Denote the 8 intervals by 0, 1, …,7, with point vi being the left boundary of interval i. We will assign

binary variables to intervals thus:

 If the interval is one of 4, 5, 6, 7, then y3 = 1 , else 0,

 If the interval is one of 2, 3, 4, 5, then y2 = 1 , else 0,

 If the interval is one of 1, 2, 5, 6, then y1 = 1 , else 0;

Thus, we also need the constraints:

 w0+w1+w2+w3 ≤ 1- y3;

 w5+w6+w7+w8 ≤ y3;

 w0+w1+w7+w8 ≤ 1- y2;

 w3+w4+w5 ≤ y2;

 w0+w4+w8 ≤ 1- y1;

 w2+ w6 ≤ y1;

 y1, y2, y3 = 0 or 1;

Formulating & Solving Integer Problems Chapter 11 283

Notice that if:

 y1 = y2 = y3= 0, then w2 + w3 + w4 + w5 + w6 + w7 + w8 = 0, i.e., the interval is 0,

 y1 = 1, y2 = y3 = 0, then w0 + w3 + w4 + w5 + w6 + w7 + w8 = 0, i.e., the interval is 1, etc.

It may be of interest to note that this is a “Gray” binary coding of 0, 1, …,7, in that exactly 1 “bit” of y1,

y2, y3 changes in the binary representation as one moves from i to i+1.

Piecewise Linear Approximations to Multivariate Functions
 Suppose we have a function of two variables:

 cost = f (x,y).

 We can construct a piecewise linear approximation to this function if we

 choose n points, (xbari,ybari) for i = 1, 2, …, n,

 e.g., corner points of the triangles in Figure 11.4, and,

 introduce the n nonnegative variables, wi, and

 add the constraints:

 Σi wi = 1,

 cost = Σi wi f (xbari,ybari),

 x = Σi wi xbari,

 y = Σi wi ybari,

 If we are lucky, e.g., f (x,y) is convex in the appropriate way then: a) at most three of the wi will be

nonzero, and b) the nonzero wi will correspond to adjacent points, that is, corner points of a triangle

containing no other points.

Figure 11.4 Triangulation of x,y Space

 y

 x

 If we are unlucky, then we have to introduce 0/1 variables. If we are lazy and are willing to restrict

the solution to one of the n sampled points, then all we have to do is declare the wi variables to be 0/1.

 If we want to allow any possible combination of x and y, then we have to make sure the n points

describe a triangulation of the x,y space, as in Figure 11.4, introduce a 0/1 variable zj for each triangle,

and then force exactly one triangle to be chosen with the constraint:

 Σi zi = 1;

We must also add constraints that say that if any weight is applied to point i, then the chosen (x,y) must

be in one of the triangles for which point i is a corner. More formally:

 wi ≤ Σj in T(i) zj , for each point i, where T(i) is the

 set of triangles(there should be at most 6) for which point i is a corner point.

284 Chapter 11 Formulating & Solving Integer Programs

11.2.10 Converting Multivariate Functions to Separable Functions
The previous methods are applicable only to piecewise linear functions. There are some standard

methods available for transforming certain functions of several variables, so a function is obtained that

is additively separable in the transformed variables. The most common such transformation is for

converting a product of two variables into separable form. For example, given the function:

x1 * x2 ,

add the linear constraints:

y1 = (x1 + x2)/2

y2 = (x1 − x2)/2.

Then, replace every instance of x1 * x2 by the term y1
2 − y2

2. That is, the claim is:

x1 * x2 = y1
2 − y2

2.

The justification is observed by noting:

y1
2 − y2

2 = (x1
2+ 2 * x1 * x2 + x2

2)/4

− (x1
2 − 2 * x1 * x2 + x2

2)/4

= 4 * x1 * x2 /4 = x1 * x2

 This example suggests that, any time you have a product of two variables, you can add two new

variables to the model and replace the product term by a sum of two squared variables. If you have n

original variables, you could have up to n(n−1)/2 cross product terms. This suggests that you might need

up to n(n−1) new variables to get rid of all cross product terms. In fact, the above ideas can be

generalized, using various factorization techniques such as Cholesky and others, so only n new variables

are needed.

11.3 Outline of Integer Programming Methods
The time a computer requires to solve an IP may depend dramatically on how you formulated it. It is,

therefore, worthwhile to know a little about how IPs are solved. There are two general approaches for

solving IPs: “cutting plane” methods and “branch-and-bound” (B & B) method. For a comprehensive

introduction to integer programming solution methods, see Nemhauser and Wolsey (1988), and Wolsey

(1998). Most commercial IP programs use the B & B method, but aided by some cutting plane features.

We will first describe the B & B method. In most general terms, B & B is a form of intelligent

enumeration.

 More specifically, B & B first solves the problem as an LP. If the LP solution is integer valued in

the integer variables, then no more work is required. Otherwise, B & B resorts to an intelligent search

of all possible ways of rounding the fractional variables.

 We shall illustrate the application of the branch-and-bound method with the following problem:

 MAX= 75 * X1 + 6 * X2 + 3 * X3 + 33 * X4;

 774 * X1 + 76 * X2 + 22 * X3 + 42 * X4 <= 875;

 67 * X1 + 27 * X2 + 794 * X3 + 53 * X4 <= 875;

 @BIN(X1); @BIN(X2); @BIN(X3); @BIN(X4);

Formulating & Solving Integer Problems Chapter 11 285

 The search process a computer might follow in finding an integer optimum is illustrated in

Figure 11.5. First, the problem is solved as an LP with the constraints X1, X2, X3, X4 1. This solution

is summarized in the box labeled 1. The solution has fractional values for X2 and X3 and is, therefore,

unacceptable. At this point, X2 is arbitrarily selected and the following reasoning is applied. At the

integer optimum, X2 must equal either 0 or 1.

Figure 11.5 Branch-and-Bound Search Tree

 Therefore, replace the original problem by two new subproblems. One with X2 constrained to equal

1 (box or node 2) and the other with X2 constrained to equal 0 (node 8). If we solve both of these new

IPs, then the better solution must be the best solution to the original problem. This reasoning is the

motivation for using the term “branch”. Each subproblem created corresponds to a branch in an

enumeration tree.

 The numbers to the upper left of each node indicate the order in which the nodes (or equivalently,

subproblems) are examined. The variable Z is the objective function value. When the subproblem with

X2 constrained to 1 (node 2) is solved as an LP, we find X1 and X3 take fractional values. If we argue

as before, but now with variable X1, two new subproblems are created:

Node 7) one with X1 constrained to 0 , and

Node 3) one with X1 constrained to 1.

 This process is repeated with X4 and X3 until node 5. At this point, an integer solution with Z = 81

is found. We do not know this is the optimum integer solution, however, because we must still look at

subproblems 6 through 10. Subproblem 6 need not be pursued further because there are no feasible

solutions having all of X2, X1, and X4 equal to 1. Subproblem 7 need not be pursued further because it

has a Z of 42, which is worse than an integer solution already in hand.

286 Chapter 11 Formulating & Solving Integer Programs

 At node 9, a new and better integer solution with Z = 108 is found when X3 is set to 0. Node 10

illustrates the source for the “bound” part of “branch-and-bound”. The solution is fractional. However,

it is not examined further because the Z-value of 86.72 is less than the 108 associated with an integer

solution already in hand. The Z-value at any node is a bound on the Z-value at any offspring node. This

is true because an offspring node or subproblem is obtained by appending a constraint to the parent

problem. Appending a constraint can only hurt. Interpreted in another light, this means the Z-values

cannot improve as one moves down the tree. The tree presented in the preceding figure was only one

illustration of how the tree might be searched. Other trees could be developed for the same problem by

playing with the following two degrees of freedom:

(a) Choice of next node to examine, and

(b) Choice of how the chosen node is split into two or more subnodes.

 For example, if nodes 8 and then 9 were examined immediately after node 1, then the solution with

Z = 108 would have been found quickly. Further, nodes 4, 5, and 6 could then have been skipped because

the Z-value at node 3 (100.64) is worse than a known integer solution (108), and, therefore, no offspring

of node 3 would need examination.

 In the example tree, the first node is split by branching on the possible values for X2. One could

have just as well chosen X3 or even X1 as the first branching variable.

 The efficiency of the search is closely related to how wisely the choices are made in (a) and (b)

above. Typically, in (b) the split is made by branching on a single variable. For example, if, in the

continuous solution, x = 1.6, then the obvious split is to create two subproblems. One with the constraint

x 1, and the other with the constraint x 2. The split need not be made on a single variable. It could

be based on an arbitrary constraint. For example, the first subproblem might be based on the constraint

x1 + x2 + x3 0, while the second is obtained by appending the constraint x1 + x2 + x3 1. Also, the split

need not be binary. For example, if the model contains the constraint y1 + y2 + y3 = 1, then one could

create three subproblems corresponding to either y1 = 1, or y2 = 1, or y3 = 1.

 If the split is based on a single variable, then one wants to choose variables that are “decisive.” In

general, the computer will make intelligent choices and the user need not be aware of the details of the

search process. The user should, however, keep the general B & B process in mind when formulating a

model. If the user has a priori knowledge that an integer variable x is decisive, then for the LINGO

program it is useful to place x early in the formulation to indicate its importance. This general

understanding should drive home the importance of a “tight” LP formulation. A tight LP formulation is

one which, when solved, has an objective function value close to the IP optimum. The LP solutions at

the subproblems are used as bounds to curtail the search. If the bounds are poor, many early nodes in

the tree may be explicitly examined because their bounds look good even though, in fact, these nodes

have no good offspring.

 Cutting planes are very important for solving certain classes of IP’s. Some of these difficult IP’s

would take prohibitively long to solve with just B&B, without the use of cutting planes. A cutting plane

is an additional constraint that is added to the formulation to remove fractional points from the LP

relaxation. Thus, if some good cuts have been added, the chance is much higher that when the LP

relaxation is solved, a much higher fraction of the integer variables will take on naturally integer values.

 There is a wide variety of cuts that are implemented in commercial IP solvers, an even wider variety

of cuts that have been described in the optimization literature. One of the most general types of cuts is

the Mixed Integer Rounding, or MIR, cut. A very similar cut described in the literature is the Gomory

Mixed Integer cut. We will illustrate the MIR cut with a little example. Suppose we want to solve the

little mixed integer program:
 MIN = 5*y + 3*u + 4*v;

Formulating & Solving Integer Problems Chapter 11 287

 8*y + u - v = 13;

 @GIN(y)

As usual, by default, all variables are restricted to be ≥ 0. If you delete the requirement that y be integer

and solve the resulting LP, you get the fractional solution y = 1.625, u = v = 0. Now we reason that in

any feasible integer solution, either :

 Case 1: y ≤ 1 and u ≥ 5, or

 Case 2: y ≥ 2 and v ≥ 3.

So, in any integer feasible solution, we must have either:

 u ≥ 5, or

 v ≥ 3.

Multiplying by either 3 or 5, we must have either:

 3*u ≥ 3*5, or

 5*v ≥ 3*5.

Because v, u ≥ 0, we can add 5*v to the first constraint, and 3*u to the second constraint without

destroying their validity, so we must have either:

 3*u + 5*v ≥ 3*5, or

 3*u + 5*v ≥ 3*5,

so the single constraint or cut is justified:

 3*u + 5*v ≥ 3*5.

Notice that this cut cuts off the fractional solution y = 1.625, u = v = 0. With this cut added, when we

solve the LP:
 MIN = 5*y + 3*u + 4*v;
 8*y + u - v = 13;

 3*u + 5*v ≥ 15;

We get the naturally integer solution;

 Global optimal solution found.

 Objective value: 20.000000

 Variable Value

 Y 1.000000

 U 5.000000

 V 0.000000

With a little bit of imagination, e.g., by replacing y by a sum of integer variables with integer coefficients,

and replacing u and v by positive weighted sums of nonnegative variables, a wide variety of MIR type

cuts are possible.

11.4 Computational Difficulty of Integer Programs
Integer programs can be very difficult to solve. This is in marked contrast to LP problems. The solution

time for an LP is fairly predictable. For an LP, the time increases approximately proportionally with the

number of variables and approximately with the square of the number of constraints. For a given IP

problem, the time may in fact decrease as the number of constraints is increased. As the number of

integer variables is increased, the solution time may increase dramatically. Some small IPs (e.g., 6

constraints, 60 variables) are extremely difficult to solve.

288 Chapter 11 Formulating & Solving Integer Programs

 Just as with LPs, there may be alternate IP formulations of a given problem. With IPs, however, the

solution time generally depends critically upon the formulation. Producing a good IP formulation

requires skill. For many of the problems in the remainder of this chapter, the difference between a good

formulation and a poor formulation may be the difference between whether the problem is solvable or

not.

11.4.1 NP-Complete Problems
Integer programs belong to a class of problems known as NP-hard. We may somewhat loosely think of

NP as meaning "not polynomial". This means that there is no known algorithm of solving these problems

such that the computational effort at worst increases as a polynomial in the problem size. For our

purposes, we will say that the computational complexity of an algorithm is polynomial if there is a

positive constant k, such that the time to solve a problem of size n is proportional to nk. For example,

sorting a set of n numbers can easily be done in (polynomial) time proportional to n2,(n log(n) if one is

careful), whereas solving an integer program in n zero/one variables may, in the worst case, take

(exponential) time proportional to 2n. There may be a faster way, but no one has published an algorithm

for integer programs that is guaranteed to take polynomial time on every problem presented to it. The

terms NP-complete and P-complete apply to problems that can be stated as "yes/no" or feasibility

problems. The yes/no variation of an optimization problem would be a problem of the form: Is there a

feasible solution to this problem with cost less-than-or-equal-to 1250. In an optimization problem, we

want a feasible solution with minimum cost. Khachian (1979) showed that the feasibility version of LP

is solvable in polynomial time. So, we say LP is in P. Integer programming stated in feasibility form,

and a wide range of similar problems, belong to a class of problems called NP-complete. These problems

have the feature that it is possible to convert any one of these problems into any other NP-complete

problem in time that is polynomial in the problem size. Thus, if we can convert problem A into problem

B in polynomial time, then solve B in polynomial time, and then convert the solution to B to a valid

solution to A in polynomial time, we then have a way of solving A in polynomial time.

 The notable thing about NP-complete problems is that, if someone develops a guaranteed fast

(e.g., polynomial worst case) time method for solving one of these problems, then that someone also has

a polynomial time algorithm for every other NP-complete problem. An important point to remember is

that the NP-completeness classification is defined in terms of worst-case behavior, not average case

behavior. For practical purposes, one is interested mainly in average case behavior. The current situation

is that the average time to solve many important practical integer programming problems is quite short.

The fact that someone may occasionally present us with an extremely difficult integer programming

problem does not prevent us from profiting from the fact that a large number of practical integer

programs can be solved rapidly. Perhaps the biggest open problem in modern mathematics is whether

the problems in the NP-complete class are inherently difficult. This question is cryptically phrased as is:

P = NP? Are these problems really difficult, or is it that we are just not smart enough to discover the

universally fast algorithm? In fact, a “Millenium prize” of $1,000,000 is offered by the Clay Mathematics

Institute, www.claymath.org, for an answer to this question. For a more comprehensive discussion of

the NP-complete classification, see Martin (1999).

11.5 Problems with Naturally Integer Solutions and the Prayer
Algorithm

The solution algorithms for IP are generally based on first solving the IP as an LP by disregarding the

integrality requirements and praying the solution is naturally integer. For example, if x is required to be

0 or 1, the problem is first solved by replacing this requirement by the requirement that simply 0 x 1.

Formulating & Solving Integer Problems Chapter 11 289

When initiating the analysis of a problem in which integer answers are important, it is useful to know

beforehand whether the resulting IP will be easy to solve. After the fact, one generally observes the IP

was easy to solve if the objective function values for the LP optimum and the IP optimum were close.

About the only way we can predict beforehand the objective function values of the LP and IP will be

close is if we know beforehand the LP solution will be almost completely integer valued. Thus, we are

interested in knowing what kinds of LPs have naturally integer solutions.

 The classes of LP problems for which we know beforehand there is a naturally integer optimum

have integer right-hand sides and are in one of the classes:

(a) Network LPs,

(b) MRP or Integral Leontief LPs,

(c) Problems that can be transformed to (a) or (b) by either row operations or taking the dual.

We first review the distinguishing features of network and MRP LPs.

11.5.1 Network LPs Revisited
A LP is said to be a network LP if: 1) disregarding simple upper and lower bound constraints (such as

x 3), each variable appears in at most two constraints, and 2) if each variable appears in two constraints,

its coefficients in the two are +1 and -1. If the variable appears in one constraint, its coefficient is either

+1 or -1.

 Result: If the right-hand side is integer, then there is an integer optimum. If the objective coefficients

are all integer, then there is an optimum with integral dual prices.

11.5.2 Integral Leontief Constraints
A constraint set is said to be integral Leontief or MRP (for Material Requirements Planning) if (see

Jeroslow, Martin, et al. (1992)):

• Each constraint is an equality,

• Every column has exactly one positive coefficient and it is a +1,

• Each column has 0 or more negative coefficients, every one of which is integer,

• Each RHS coefficient is a nonnegative integer.

 Result: An LP whose complete constraint set is an MRP set has an optimal solution that is integer.

Further, if the objective coefficients are all integer, then there is an optimal solution with integral dual

prices.

290 Chapter 11 Formulating & Solving Integer Programs

11.5.3 Example: A One-Period MRP Problem
The Schwindle Cycle Company makes three products: Unicycles (U), Regular Bicycles (R), and

Twinbikes (T). Each product is assembled from a variety of components including: seats (S), wheels

(W), hubs (H), spokes (P), chains (C), and links (L). The full bills of materials for each product are

shown below. The numbers in parentheses specify how many units of the child are required per parent:

Figure 11.6 MRP Structure for Bicycles

U

 Current inventories are zero. Schwindle needs to supply 100 Unicycles, 500 Regular bicycles, and

200 Twinbikes. Finished products and complete sub-assemblies can be either manufactured or bought

at the following prices:

Item: U R T S W C H P L

Bought Price: 2.60 5.2 3.10 0.25 1.40 0.96 0.19 0.07 0.05

Assembly Cost: 1.04 1.16 1.90 0.20 0.22 0.26 0.16 0.04 0.03

 Note the assembly cost is the immediate cost at the level of assembly. It does not include the cost

of the components going into the assembly. How many units of each item should be made or bought to

satisfy demand at minimum price?

Formulating & Solving Integer Problems Chapter 11 291

 An LP formulation is:

MODEL:

SETS:

TYPES/U, R, T/:M, B, MP, BP, NEED;

MATERIALS/S, W, C/:MM, MB, MMP, MBP;

SUBMATS/H, P, L/:SMM, SMB, SMP, SBP;

REQ(TYPES, MATERIALS): MATREQ;

MREQ(MATERIALS, SUBMATS): SMATREQ;

ENDSETS

DATA:

NEED = 100 500 200;

MP = 1.04 1.16 1.9;

BP = 2.6 5.2 3.1;

MMP = .2 .22 .26;

MBP = .25 1.4 .96;

SMP = .16 .04 .03;

SBP = .19 .07 .05;

MATREQ = 1 1 0

 1 2 1

 2 2 2;

SMATREQ = 0 0 0

 1 36 0

 0 0 84;

ENDDATA

MIN = @SUM(TYPES : M * MP + B * BP)

 + @SUM(MATERIALS : MM * MMP + MB * MBP)

 + @SUM(SUBMATS: SMM * SMP + SMB * SBP);

@FOR(TYPES: M + B = NEED);

@FOR(MATERIALS(I): MM(I) + MB(I) =

 @SUM(TYPES(J): M(J) * MATREQ(J, I)));

@FOR(SUBMATS(I): SMM(I) + SMB(I) =

 @SUM(MATERIALS(J): MM(J) * SMATREQ(J, I)));

END

 In the PICTURE of the formulation below, notice it has the MRP structure:

 U U R R T T S S W W C C H H P P L L

 M B M B M B M B M B M B M B M B M B

 1: A A A A A A T T T A T T T T U U U U MIN

UNICYCLE: 1 1 ' ' ' ' ' = B

 REGULAR: ' '1 1 ' ' ' ' ' ' ' ' ' = C

TWINBIKE: ' 1 1 ' ' = C

 SEATS:-1 -1 '-2 1 1 ' ' ' =

 WHEELS:-1 -2 '-2' ' '1 1 ' ' ' ' ' =

 CHAINS: -1 '-2 ' ' 1 1 ' ' =

 HUBS: ' ' -1 ' 1 1 ' =

 SPOKES: ' ' ' ' ' -B ' ' ' '1 1 ' =

 LINKS: ' ' '-B ' ' 1 1 =

292 Chapter 11 Formulating & Solving Integer Programs

The solution is:

Optimal solution found at step: 0

Objective value: 3440.000

Variable Value Reduced Cost

 M(R) 500.0000 0.0000000

 B(U) 100.0000 0.0000000

 B(T) 200.0000 0.0000000

 MM(S) 500.0000 0.0000000

 MB(W) 1000.000 0.0000000

 MB(C) 500.0000 0.0000000

 Notice it is naturally integer. Thus, we should buy all the unicycles and twin bikes (and paste our

own brand name on them). We assemble our own regular bicycles. They are assembled from

manufactured seats and bought wheels and chains.

 If we put an upper limit of 300 on the number of links manufactured by adding the constraint

LM 300, we will get a fractional solution because this constraint violates the MRP structure.

11.5.4 Transformations to Naturally Integer Formulations
A row operation consists of either of the following:

• multiplication through an equation by some non-zero constant,

• adding a finite multiple of one equation to another.

 A row operation changes neither the feasible region nor the set of optimal solutions to a problem.

Thus, if we can show a model can be transformed to either a network LP or an MRP LP by row

operations, then we know there is an integer optimum. We do not actually need to do the transformation

to get the solution.

 Similarly, if we have a model with an integer right-hand side and we can show it is the dual of either

a network LP or an MRP LP, then we know the model has an integer optimum.

Example

Consider the following LP that arose in planning how much to produce in each of four periods:

 P P P P P P P P P P

 1 1 1 1 2 2 2 3 3 4

 4 3 2 1 4 3 2 4 3 4

1: 9 6 4 3 6 4 3 4 3 3 MIN

2: 1 1 1 1 = 1

3: 1 1 1 1 1 1 = 1

4: 1 1 1 1 1 1 = 1

5: 1 1 1 1 = 1

When solved as an LP, we obtained the following naturally integer solution:

P12 = P34 = 1; all others 0.

Formulating & Solving Integer Problems Chapter 11 293

 Could we have predicted a naturally integer solution beforehand? If we perform the row operations:

(5') = (5) − (4); (4') = (4) − (3); (3') = (3) − (2), we obtain the equivalent LP:

 P P P P P P P P P P

 1 1 1 1 2 2 2 3 3 4

 4 3 2 1 4 3 2 4 3 4

 1: 9 6 4 3 6 4 3 4 3 3 MIN

 2: 1 1 1 1 = 1

3': -1 1 1 1 = 0

4': -1 -1 1 1 = 0

5': -1 -1 -1 1 = 0

This is a network LP, so it has a naturally integer solution.

Example

In trying to find the minimum elapsed time for a certain project composed of seven activities, the

following LP was constructed (in PICTURE form):

 A B C D E F

 1:-1 ' 1 MIN

AB:-1 1 ' >= 3

AC:-1 '1 ' ' >= 2

BD: -1 1 >= 5

BE: -1 ' 1 >= 6

CF: ' -1 ' '1 >= 4

DF: -1 1 >= 7

EF: '-1 1 >= 6

 This is neither a network LP (e.g., consider columns A, B, or F) nor an MRP LP (e.g., consider

columns A or F). Nevertheless, when solved, we get the naturally integer solution:

Optimal solution found at step: 0

Objective value: 15.00000

Variable Value Reduced Cost

 A 0.0000000 0.0000000

 B 3.000000 0.0000000

 C 2.000000 0.0000000

 D 8.000000 0.0000000

 E 9.000000 0.0000000

 F 15.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 15.00000 1.000000

 AB 0.0000000 -1.000000

 AC 0.0000000 0.0000000

 BD 0.0000000 -1.000000

 BE 0.0000000 0.0000000

 CF 9.000000 0.0000000

 DF 0.0000000 -1.000000

 EF 0.0000000 0.0000000

 Could we have predicted a naturally integer solution beforehand? If we look at the PICTURE of the

model, we see each constraint has exactly one +1 and one −1. Thus, its dual model is a network LP and

expectation of integer answers is justified.

294 Chapter 11 Formulating & Solving Integer Programs

11.6 The Assignment Problem and Related Sequencing and
Routing Problems

The assignment problem is a simple LP problem, which is frequently encountered as a major component

in more complicated practical problems.

 The assignment problem is:

Given a matrix of costs:

cij = cost of assigning object i to person j,

and variables:

xij = 1 if object i is assigned to person j.

Then, we want to:

Minimize cijxij

subject to

i xij = 1 for each object i,

j xij = 1 for each person i,

xij > 0.

This problem is easy to solve as an LP and the xij will be naturally integer.

 There are a number of problems in routing and sequencing that are closely related to the assignment

problem.

11.6.1 Example: The Assignment Problem
Large airlines tend to base their route structure around the hub concept. An airline will try to have a large

number of flights arrive at the hub airport during a certain short interval of time (e.g., 9 A.M. to 10 A.M.)

and then have a large number of flights depart the hub shortly thereafter (e.g., 10 A.M. to 11 A.M.). This

allows customers of that airline to travel between a large combination of origin/destination cities with

one stop and at most one change of planes. For example, United Airlines uses Chicago as a hub, Delta

Airlines uses Atlanta, and American uses Dallas/Fort Worth.

 A desirable goal in using a hub structure is to minimize the amount of changing of planes (and the

resulting moving of baggage) at the hub. The following little example illustrates how the assignment

model applies to this problem.

 A certain airline has six flights arriving at O’Hare airport between 9:00 and 9:30 A.M. The same six

airplanes depart on different flights between 9:40 and 10:20 A.M. The average numbers of people

transferring between incoming and leaving flights appear below:

 L01 L02 L03 L04 L05 L06

I01 20 15 16 5 4 7

I02 17 15 33 12 8 6

I03 9 12 18 16 30 13

I04 12 8 11 27 19 14 Flight I05 arrives too late to

I05 0 7 10 21 10 32 connect with L01. Similarly I06 is

I06 0 0 0 6 11 13 too late for flights L01, L02, and L03.

ji

Formulating & Solving Integer Problems Chapter 11 295

 All the planes are identical. A decision problem is which incoming flight should be assigned to

which outgoing flight. For example, if incoming flight I02 is assigned to leaving flight L03, then 33

people (and their baggage) will be able to remain on their plane at the stop at O’Hare. How should

incoming flights be assigned to leaving flights, so a minimum number of people need to change planes

at the O’Hare stop?

 This problem can be formulated as an assignment problem if we define:

xij = 1 if incoming flight i is assigned to outgoing flight j,

 0 otherwise.

The objective is to maximize the number of people not having to change planes. A formulation is:

MODEL: ! Assignment model(ASSIGNMX);

SETS:

 FLIGHT;

 ASSIGN(FLIGHT, FLIGHT): X, CHANGE;

ENDSETS

DATA:

 FLIGHT = 1..6;

! The value of assigning i to j;

 CHANGE = 20 15 16 5 4 7

 17 15 33 12 8 6

 9 12 18 16 30 13

 12 8 11 27 19 14

 -999 7 10 21 10 32

 -999 -999 -999 6 11 13;

ENDDATA

!---------------------------------;

! Maximize value of assignments;

MAX = @SUM(ASSIGN: X * CHANGE);

@FOR(FLIGHT(I):

! Each I must be assigned to some J;

 @SUM(FLIGHT(J): X(I, J)) = 1;

! Each I must receive an assignment;

 @SUM(FLIGHT(J): X(J, I)) = 1;

);

END

Notice, we have made the connections that are impossible prohibitively unattractive. A solution is:

Optimal solution found at step: 9

Objective value: 135.0000

Variable Value Reduced Cost

X(1, 1) 1.000000 0.0000000

X(2, 3) 1.000000 0.0000000

X(3, 2) 1.000000 0.0000000

X(4, 4) 1.000000 0.0000000

X(5, 6) 1.000000 0.0000000

X(6, 5) 1.000000 0.0000000

 Notice, each incoming flight except I03 is able to be assigned to its most attractive outgoing flight.

The solution is naturally integer even though we did not declare any of the variables to be integer.

296 Chapter 11 Formulating & Solving Integer Programs

11.6.2 The Traveling Salesperson Problem
One of the more famous optimization problems is the traveling salesperson problem (TSP). It is an

assignment problem with the additional condition that the assignments chosen must constitute a tour.

The objective is to minimize the total distance traveled. Lawler et al. (1985) presents a tour-de-force on

this fascinating problem. One example of a TSP occurs in the manufacture of electronic circuit boards.

Danusaputro, Lee, and Martin-Vega (1990) discuss the problem of how to optimally sequence the

drilling of holes in a circuit board, so the total time spent moving the drill head between holes is

minimized. A similar TSP occurs in circuit board manufacturing in determining the sequence in which

components should be inserted onto the board by an automatic insertion machine. Another example is

the sequencing of cars on a production line for painting: each time there is a change in color, a setup cost

and time is incurred.

 A TSP is described by the data:

 cij = cost of traveling directly from city i to city j, e.g., the distance.

A solution is described by the variables:

 yij = 1 if we travel directly from i to j, else 0.

The objective is:

 Min ij cij yij ;

We will describe several different ways of specifying the constraints.

Subtour Elimination Formulation:
(1) We must enter each city j exactly once:

 i j
n
 yij = 1 for j = 1 to n,

(2) We must exit each city i exactly once:

yij = 1 for i = 1 to n,

 (3) yij = 0 or 1, for i = 1, 2, …, n, j = 1, 2, …, n, i j:

 (4) No subtours are allowed for any subset of cities S not including city 1:

yij < |S| − 1 for every subset S,

 where |S| is the size of S.

The above formulation is usually attributed to Dantzig, Fulkerson, and Johnson(1954). An unattractive

feature of the Subtour Elimination formulation is that if there are n cities, then there are approximately

2n constraints.

Cumulative Load Formulation:

 We can reduce the number of constraints substantially if we define: uj = the sequence number of

city j on the trip. Equivalently, if each city requires one unit of something to be picked up(or delivered),

then uj = cumulative number of units picked up(or delivered) after the stop at j. We replace constraint

set (4) by:

j i
n

i j S,

Formulating & Solving Integer Problems Chapter 11 297

(5) uj > ui + 1 − (1 − yij)n for i = 1, 2, ..., j = 2, 3, 4, . . . ; j i.

 The approach of constraint set (5) is due to Miller, Tucker, and Zemlin(1960). There are only

approximately n2 constraints of type (5), however, constraint set (4) is much tighter than (5). Large

problems may be computationally intractable if (4) is not used. Even though there are a huge number of

constraints in (4), only a few of them may be binding at the optimum. Thus, an iterative approach that

adds violated constraints of type (4) as needed works surprisingly well. Padberg and Rinaldi (1987) used

essentially this iterative approach and were able to solve to optimality problems with over 2000 cities.

The solution time was several hours on a large computer.

Multi-commodity Flow Formulation:

 Similar to the previous formulation, imagine that each city needs one unit of some commodity

distinct to that city. Define:

 xijk = units of commodity carried from i to j, destined for ultimate delivery to k.

If we assume that we start at city 1 and there are n cities, then we replace constraint set (4) by:

 For k = 1, 2, 3, …, n:

 j >1 x1jk = 1; (Each unit must be shipped out of the origin.)

 i k xikk = 1; (Each city k must get its unit.)

 For j = 2, 3, …, n, k =1, 2, 3, …, n, j k:

 i xijk = t j xjtk
 (Units entering j, but not destined for j, must depart j to some city t.)

 A unit cannot return to 1, except if its final destination is 1:

 i k > 1 xi1k = 0,

 For i = 1, 2, …, n, j = 1, 2, …, n, k = 1, 2, …, n, i j:

 xijk yij (If anything shipped from i to j, then turn on yij.)

The drawback of this formulation is that it has approximately n3 constraints and variables. A remarkable

feature of the multicommodity flow formulation is that it is just as tight as the Subtour Elimination

formulation. The multi-commodity formulation is due to Claus(1984).

Heuristics
 For practical problems, it may be important to get good, but not necessarily optimal, answers in just

a few seconds or minutes rather than hours. The most commonly used heuristic for the TSP is due to Lin

and Kernighan (1973). This heuristic tries to improve a given solution by clever re-orderings of cities in

the tour. For practical problems (e.g., in operation sequencing on computer controlled machines), the

heuristic seems always to find solutions no more than 2% more costly than the optimum. Bland and

Shallcross (1989) describe problems with up to 14,464 “cities” arising from the sequencing of operations

on a computer-controlled machine. In no case was the Lin-Kernighan heuristic more than 1.7% from the

optimal for these problems.

298 Chapter 11 Formulating & Solving Integer Programs

Example of a Traveling Salesperson Problem
P. Rose, currently unemployed, has hit upon the following scheme for making some money. He will

guide a group of 18 people on a tour of all the baseball parks in the National League. He is betting his

life savings on this scheme, so he wants to keep the cost of the tour as low as possible. The tour will start

and end in Cincinnati. The following distance matrix has been constructed:

 Atl Chi Cin Hou Lax Mon NYk Phi Pit StL SnD SnF

Atlanta 0 702 454 842 2396 1196 864 772 714 554 2363 2679

Chicago 702 0 324 1093 2136 764 845 764 459 294 2184 2187

Cinci. 454 324 0 1137 2180 798 664 572 284 338 2228 2463

Houston 842 1093 1137 0 1616 1857 1706 1614 1421 799 1521 2021

L.A. 2396 2136 2180 1616 0 2900 2844 2752 2464 1842 95 405

Montreal 1196 764 798 1857 2900 0 396 424 514 1058 2948 2951

New York 864 845 664 1706 2844 396 0 92 386 1002 2892 3032

Phildpha. 772 764 572 1614 2752 424 92 0 305 910 2800 2951

Pittsbrg. 714 459 284 1421 2464 514 386 305 0 622 2512 2646

St. Louis 554 294 338 799 1842 1058 1002 910 622 0 1890 2125

San Diego 2363 2184 2228 1521 95 2948 2892 2800 2512 1890 0 500

San Fran. 2679 2187 2463 2021 405 2951 3032 2951 2646 2125 500 0

Solution

We will illustrate the subtour elimination approach, exploiting the fact that the distance matrix is

symmetric. Define the decision variables:

Yij = 1 if the link between cities i and j is used, regardless of the direction of travel; 0

otherwise.

 Thus, Y(CHI, ATL) = 1 if the link between Chicago and Atlanta is used. Each city or node must be

connected to two links. In words, the formulation is:

Minimize the cost of links selected

subject to:

For each city, the number of links connected to it that are selected = 2

Each link can be selected at most once.

Formulating & Solving Integer Problems Chapter 11 299

The LINGO formulation is shown below:

MODEL:

SETS:

CITY;

ROUTE(CITY, CITY)|&1 #GT# &2:COST, Y;

ENDSETS

DATA:

 CITY=

 ATL CHI CIN HOU LA MON NY PHI PIT STL SD SF;

COST=

 702

 454 324

 842 1093 1137

 2396 2136 2180 1617

 1196 764 798 1857 2900

 864 845 664 1706 2844 396

 772 764 572 1614 2752 424 92

 714 459 284 1421 2464 514 386 305

 554 294 338 799 1842 1058 1002 910 622

 2363 2184 2228 1521 95 2948 2892 2800 2512 1890

 2679 2187 2463 2021 405 2951 3032 2951 2646 2125 500;

ENDDATA

MIN = @SUM(ROUTE: Y * COST);

@SUM(CITY(I)|I #GE# 2: Y(I, 1)) = 2;

@FOR(CITY(J)|J #GE# 2: @SUM(CITY(I)| I #GT# J:

 Y(I, J)) + @SUM(CITY(K)|K #LT# J: Y(J, K))=2);

@FOR(ROUTE: Y <= 1);

 END

When this model is solved as an LP, we get the solution:

Optimal solution found at step: 105

Objective value: 5020.000

 Variable Value

Y(CIN, ATL) 1.000000

Y(CIN, CHI) 1.000000

Y(HOU, ATL) 1.000000

Y(NYK, MON) 1.000000

Y(PHI, NYK) 1.000000

Y(PIT, MON) 1.000000

Y(PIT, PHI) 1.000000

Y(STL, CHI) 1.000000

Y(STL, HOU) 1.000000

Y(SND, LAX) 1.000000

Y(SNF, LAX) 1.000000

Y(SNF, SND) 1.000000

This has a cost of 5020 miles. Graphically, it corresponds to Figure 11.7.

300 Chapter 11 Formulating & Solving Integer Programs

Figure 11.7

SNF

LAX

SND

HOU

ATL

STL

CHI

MON

CIN

PIT PHI

NYK

 Unfortunately, the solution has three subtours. We would like to cut off the smallest subtour by

adding the constraint that looks like:

!SUBTOUR ELIMINATION;

 Y(SNF, LAX) + Y(SND, LAX) + Y(SNF, SND) <= 2;

LINGO, however, works only with numeric subscripts, so if we want to use subscripts like SNF and

LAX, we have to first tell LINGO their index values. The follow statements in the LINGO model

equations will do this.

 ! A Trick: To make it easier to add problem specific cuts, give ourselves

 some constants equal to index number of city with same name;

 ATL=1; CHI=2; CIN=3; HOU=4; LAX=5; MON=6;

 NYK=7; PHI=8; PIT=9; STL=10; SND=11; SNF=12;

 ! A longer, less clever approach uses the @INDEX() function.

 E.g., LAX = @INDEX(LAX) would achieve the same effect.

 Now we can add cuts, using names directly.;

Formulating & Solving Integer Problems Chapter 11 301

Now, when we solve it as an LP, we get a solution with cost 6975, corresponding to Figure 11.8:

Figure 11.8

SNF

LAX

SND

HOU

ATL

STL

CHI

MON

CIN

PIT PHI

NYK

We cut off the subtour in the southwest by appending the constraint that says at most 3 arcs can be used

involving the cities HOU, LAX, SND, and SNF:

 Y(LAX, HOU) + Y(SND, HOU) + Y(SNF, HOU)

 + Y(SND, LAX) + Y(SNF, LAX) + Y(SNF, SND)<= 3;

We continue in this fashion appending subtour elimination cuts:

 Y(NYK, MON) + Y(PHI, MON) + Y(PIT, MON) +

 Y(PHI, NYK) + Y(PIT, NYK) + Y(PIT, PHI) <= 3;

 Y(NYK, MON) + Y(PHI, MON) + Y(PHI, NYK) <= 2;

302 Chapter 11 Formulating & Solving Integer Programs

 After the above are all appended, we get the solution shown in Figure 11.9. It is a complete tour

with cost $7,577.

Figure 11.9

SNF

LAX

SND

HOU

ATL

STL

CHI

MON

CIN

PIT PHI

NYK

Note only LPs were solved. No branch-and-bound was required, although in general branching may be

required.

 Could P. Rose have done as well by trial and error? The most obvious heuristic is the “closest

unvisited city” heuristic. If one starts in Cincinnati and next goes to the closest unvisited city at each

step and finally returns to Cincinnati, the total distance is 8015 miles, about 6% worse than the optimum.

The Optional Stop TSP

If we drop the requirement that every stop must be visited, we then get the optional stop TSP. This might

correspond to a job sequencing problem where vj is the profit from job j if we do it and cij is the cost of

switching from job i to job j. Let:

yj = 1 if city j is visited, 0 otherwise.

If vj is the value of visiting city j, then the objective is:

Minimize
i

j
 cij xij − vj yj .

The constraint sets are:

(1) Each city j can be visited at most once

i j
 xij = yj

Formulating & Solving Integer Problems Chapter 11 303

(2) If we enter city j, then we must exit it:

k j
 xjk = yj

(3) No subtours allowed for each subset, S, of cities not including the home base 1.

i j S,
 xij < |S| − 1, where |S| is the size of S.

For example, if there are n cities, including the home base, then there are

(n − 1) (n − 2)/(3 2) subsets of size 3.

(4) Alternatively, (3) may be replaced by

uj > ui + 1 − (1 − xij)n for j = 2, 3, . . . , n.

 Effectively, uj is the sequence number of city j in its tour. Constraint set (3) is much tighter than (4).

11.6.3 Capacitated Multiple TSP/Vehicle Routing Problems
An important practical problem is the routing of vehicles from a central depot, the so-called Vehicle

Routing Problem (VRP). An example is the routing of delivery trucks for a parcel delivery service. You

can think of this as a multiple traveling salesperson problem with finite capacity for each salesperson.

This problem is sometimes called the LTL(Less than TruckLoad) routing problem because a typical

recipient receives less than a truck load of goods. A formulation is:

 Given:

V = capacity of a vehicle

dj = demand of city or stop j

Each city, j, must be visited once for j > 1:

j
 xij = 1

Each city i > 1, must be exited once:

i
 xij = 1

No subtours:

i j s,
 xij < |S| − 1,

No overloads: For each set of cities T, including 1, which constitute more than a truckload:

i j T,
 xij < |T| −k,

where k = minimum number of cities that must be dropped from T to reduce it to one load.

 This formulation can solve to optimality modest-sized problems of say, 25 cities. For larger or more

complicated practical problems, the heuristic method of Clarke and Wright (1964) is a standard starting

point for quickly finding good, but not necessarily optimal, solutions.

 The following is a generic LINGO model for vehicle routing problems:

MODEL: ! (VROUTE);

304 Chapter 11 Formulating & Solving Integer Programs

! The Vehicle Routing Problem (VRP) occurs in many service

systems such as delivery, customer pick-up, repair and

maintenance. A fleet of vehicles, each with fixed

capacity, starts at a common depot and returns to the

depot after visiting locations where service is demanded.

Problems with more than a dozen cities can take lots of

time.

This instance involves delivering the required amount of

goods to 9 cities from a depot at city 1;

SETS:

CITY/ Chi Den Frsn Hous KC LA Oakl Anah Peor Phnx/: Q, U;

! Q(I) = amount required at city I(given),

must be delivered by just 1 vehicle.

U(I) = accumulated deliveries at city I ;

CXC(CITY, CITY): DIST, X;

! DIST(I,J) = distance from city I to city J

X(I,J) is 0-1 variable,

= 1 if some vehicle travels from city I to J,

else 0 ;

ENDSETS

DATA:

! city 1 represents the common depot, i.e. Q(1) = 0;

Q= 0 6 3 7 7 18 4 5 2 6;

! distance from city I to city J is same from J to I,

distance from city I to the depot is 0,

because vehicle need not return to the depot ;

DIST= ! To City;

!Chi Den Frsn Hous KC LA Oakl Anah Peor Phnx From;

0 996 2162 1067 499 2054 2134 2050 151 1713! Chicago;

0 0 1167 1019 596 1059 1227 1055 904 792! Denver;

0 1167 0 1747 1723 214 168 250 2070 598! Fresno;

0 1019 1747 0 710 1538 1904 1528 948 1149! Houston;

0 596 1723 710 0 1589 1827 1579 354 1214! K. City;

0 1059 214 1538 1589 0 371 36 1943 389! L. A.;

0 1227 168 1904 1827 371 0 407 2043 755! Oakland;

0 1055 250 1528 1579 36 407 0 1933 379! Anaheim;

0 904 2070 948 354 1943 2043 1933 0 1568! Peoria;

0 792 598 1149 1214 389 755 379 1568 0;! Phoenix;

! VCAP is the capacity of a vehicle ;

VCAP = 18;

ENDDATA

!--;

! The objective is to minimize total travel distance;

MIN = @SUM(CXC: DIST * X);

! for each city, except depot....;

@FOR(CITY(K)| K #GT# 1:

! a vehicle does not travel inside itself,...;

X(K, K) = 0;

! a vehicle must enter it,... ;

@SUM(CITY(I)| I #NE# K #AND# (I #EQ# 1 #OR#

Q(I) + Q(K) #LE# VCAP): X(I, K)) = 1;

Formulating & Solving Integer Problems Chapter 11 305

! a vehicle must leave it after service ;

@SUM(CITY(J)| J #NE# K #AND# (J #EQ# 1 #OR#

Q(J) + Q(K) #LE# VCAP): X(K, J)) = 1;

! U(K) = amount delivered on trip up to city K

>= amount needed at K but <= vehicle capacity;

@BND(Q(K), U(K), VCAP);

! If K follows I, then can bound U(K) - U(I);

@FOR(CITY(I)| I #NE# K #AND# I #NE# 1: U(K) >=

U(I) + Q(K) - VCAP + VCAP*(X(K, I) + X(I, K))

- (Q(K) + Q(I)) * X(K, I);

);

! If K is 1st stop, then U(K) = Q(K);

U(K) <= VCAP - (VCAP - Q(K)) * X(1, K);

! If K is not 1st stop...;

U(K) >=

Q(K)+ @SUM(CITY(I)| I #GT# 1: Q(I) * X(I, K));

);

! Make the X's binary;

@FOR(CXC(I, J): @BIN(X(I, J)) ;);

! Must send enough vehicles out of depot;

@SUM(CITY(J)| J #GT# 1: X(1, J)) >=

@FLOOR((@SUM(CITY(I)| I #GT# 1: Q(I))/ VCAP) + .999);

END

 Optimal solution found at step: 973

 Objective value: 6732.000

 Variable Value

 X(CHI, HOUS) 1.000000

 X(CHI, LA) 1.000000

 X(CHI, PEOR) 1.000000

 X(CHI, PHNX) 1.000000

 X(DEN, CHI) 1.000000

 X(FRSN, OAKL) 1.000000

 X(HOUS, CHI) 1.000000

 X(KC, DEN) 1.000000

 X(LA, CHI) 1.000000

 X(OAKL, CHI) 1.000000

 X(ANAH, FRSN) 1.000000

 X(PEOR, KC) 1.000000

 X(PHNX, ANAH) 1.000000

By following the links, you can observe that the trips are:

Chicago - Houston;

Chicago - LA;

Chicago - Peoria - KC - Denver;

Chicago - Phoenix - Anaheim - Fresno - Oakland.

306 Chapter 11 Formulating & Solving Integer Programs

The solvability of practical VRP’s depends upon a variety of typical complications: a) average

number of stops per vehicle: 2 or 3 stops/vehicle is easily solved. Unlimited stops is essentially the

Traveling Sales Person problem, which is moderately easy to solve; b) number of vehicle types and

limits on the number of each. All identical vehicles is the easier; c) number of dimensions to capacity.

Just 1, e.g., just a weight limit, is easier, but in practice there may also be constraints on volume

(cube), total drive time, etc.; d) time windows. If there are limits on when each customer can be

visited, then the problem may be a lot more difficult; e) sparsity of the distance matrix. If many of the

possible arcs are prohibited, this tends to make the problem easier; f) static distance matrix. If the

travel time on an arc depends upon the time of day, this makes the problem more difficult; g) split

deliveries. If the demand at a customer is greater than vehicle capacity, then a split delivery is

unavoidable. If split deliveries are optional, then this may reduce the total distance in some instances;

h) symmetric distance matrix. If it is symmetric, this may make the problem slightly easier; i)

geometry of the region. VRP's in Chile are much easier to solve than VRP's in the U.S.; j) number of

depots. It is typically 1, but if there is additionally the choice of which depot serves which customer,

that may make the problem harder.

Combined DC Location/Vehicle Routing

Frequently, there is a vehicle routing problem associated with opening a new plant or distribution center

(DC). Specifically, given the customers to be served from the DC, what trips are made, so as to serve

the customers at minimum cost. A “complete” solution to the problem would solve the location and

routing problems simultaneously. The following IP formulation illustrates one approach:

Parameters

Fi = fixed cost of having a DC at location i,

Cj = cost of using route j,

aijk = 1 if route j originates at DC i and serves customer k. There is exactly one DC associated

with each route.

Decision variables

yi = 1 if we use DC i, else 0,

xj = 1 if we use route j, else 0

The Model

Minimize
i
 Fi yi +

j
 cj xj

subject to

(Demand constraints)

For each customer k:

ji
 aijk xj = 1

(Forcing constraints)

For each DC i and customer k:

j
 aijk xj yi

11.6.4 Minimum Spanning Tree
A spanning tree of n nodes is a collection of n − 1 arcs, so there is exactly one path between every pair

of nodes. A minimum cost spanning tree might be of interest, for example, in designing a

communications network.

Formulating & Solving Integer Problems Chapter 11 307

 Assume node 1 is the root of the tree. Let xij = 1 if the path from 1 to j goes through node i

immediately before node j, else xij = 0.

 A formulation is:

Minimize
i

j
 cijxij

subject to

(1)
ji
 xij = n − 1,

(2)
i j S,
 xij < |S| − 1 for every strict subset S of {1, 2,…,n},

xij = 0 or 1.

 An alternative to (1) and (2) is the following set of constraints based on assigning a unique sequence

number uj to each node:

 1,ij

i j

x

= for j = 2, 3, 4,…,n,

uj > ui + xij − (n –2) (1 − xij)+(n-3)xji, for j = 2, 3, 4, . . . , n.

uj > 0.

 In this case, uj is the number of arcs between node j and node 1. A numeric example of the sequence

numbering formulation is in section 8.9.8.

 If one has a pure spanning tree problem, then the “greedy” algorithm of Kruskal (1956) is a fast way

of finding optimal solutions.

11.6.5 The Linear Ordering Problem
A problem superficially similar to the TSP is the linear ordering problem. One wants to find a strict

ordering of n objects. Applications are to ranking in sports tournaments, product preference ordering in

marketing, job sequencing on one machine, ordering of industries in an input-output matrix, ordering of

historical objects in archeology, and others. See Grötschel et al. (1985) for a further discussion. The linear

ordering problem is similar to the approach of conjoint analysis sometimes used in marketing. The

crucial input data are cost entries cij. If object i appears anywhere before object j in the proposed ordering,

then cij is the resulting cost. The decision variables are:

xij = 1 if object i precedes object j, either directly or indirectly for all i j.

The problem is:

Minimize
ji
 cij xij

subject to

(1) xij + xji = 1 for all i j

 If i precedes j and j precedes k, then we want to imply that i precedes k. This is enforced with the

constraints:

(2) xij + xjk + xki < 2 for all i, j, k with i j, i k, j k.

308 Chapter 11 Formulating & Solving Integer Programs

 The size of the formulation can be cut in two by noting that xji = 1 − xij. Thus, we substitute out xji

for j > i. Constraint set (1) becomes simply 0 < xij < 1. Constraint set (2) becomes:

(2') xij + xjk − xik + sijk = 1 for all i < j < k

0 < sijk < 1

 There are n!/((n − 3)! 3!) = n (n − 1) (n − 2)/6 ways of choosing 3 objects from n, so the number

of constraints is approximately n3/6.

Example

Ten Czech, German, and North American beverages were subject to taste tests by unbiased German

testers. Each of the 10 9/2 = 45 possible pairs was subject to a taste test by six judges. The element C(

I, J) in the C matrix in the model below is the number of times out of six beverage I was preferred to

beverage J. If we want to have a complete ranking for the beverages, a reasonable objective is to

maximize the number of pairwise comparisons for which our ranking agrees with the pairwise ranking

of the judges:

MODEL:

! Linear ordering of objects or products,

 based on pairwise comparisons(LINERORD);

SETS:

 PROD: RANK; ! Each product will get a rank;

 PXP(PROD, PROD): C;

ENDSETS

DATA:

 PROD = KONIG, FURST, PILSURQ, GUNZB, RIEGELE,

 PAULA, JEVER, BECKS, WARST, BUD;

! Some data on German beverages;

 C= ! Times that object I was preferred over J;

0 2 2 3 3 5 5 5 4 4

4 0 3 3 4 3 2 3 2 2

4 3 0 3 5 4 3 2 4 4

3 3 3 0 5 6 3 4 4 3

3 2 1 1 0 1 4 4 5 3

1 3 2 0 5 0 5 4 1 4

1 4 3 3 2 1 0 2 1 3

1 3 4 2 2 2 4 0 4 2

2 4 2 2 1 5 5 2 0 4

2 4 2 3 3 2 3 4 2 0;

ENDDATA

!---;

SETS:

PIP(PROD, PROD)| &1 #LT# &2:

 X; ! X(I,J) = 1 if I precedes J in our ranking;

PIPIP(PROD, PROD, PROD)

 | &1 #LT# &2 #AND# &2 #LT# &3: S;

ENDSETS

! Maximize the number of times our pairwise

 ordering matches that of our testers;

MAX =

@SUM(PIP(I, J): C(I, J) * X(I, J)

 + C(J, I) *(1 - X(I, J)));

Formulating & Solving Integer Problems Chapter 11 309

! The rankings must be transitive, that is,

 If I->J and J->K, then I->K;

@FOR(PIPIP(I, J, K):

! Note N*(N-1)*(N-2)/6 of these!;

X(I, J) + X (J, K) - X(I, K)

 + S(I, J, K) = 1;

 @BND(0, S(I, J, K), 1);

);

@FOR(PIP: @BIN(X);); ! Make X's 0 or 1;

! Count number products before product I(+ 1);

@FOR(PROD(I):

 RANK(I) = 1 + @SUM(PIP(K, I): X(K, I))

 + @SUM(PIP(I, K): 1 - X(I, K));

);

END

 When solved, we get an optimal objective value of 168. This means out of the (10 * 9/2)* 6 = 270

pairwise comparisons, the pairwise rankings agreed with LINGO's complete ranking 168 times:

Optimal solution found at step: 50

Objective value: 168.0000

Branch count: 0

 Variable Value Reduced Cost

 RANK(KONIG) 3.000000 0.0000000

 RANK(FURST) 10.00000 0.0000000

RANK(PILSURQ) 2.000000 0.0000000

 RANK(GUNZB) 1.000000 0.0000000

RANK(RIEGELE) 7.000000 0.0000000

 RANK(PAULA) 5.000000 0.0000000

 RANK(JEVER) 9.000000 0.0000000

 RANK(BECKS) 8.000000 0.0000000

 RANK(WARST) 4.000000 0.0000000

 RANK(BUD) 6.000000 0.0000000

 According to this ranking, GUNZB comes out number 1 (most preferred), while FURST comes out

tenth (least preferred). It is important to note that there may be alternate optima. This means there may

be alternate orderings, all of which match the input pairings 168 times out of 270. In fact, you can show

that there is another ordering with a value of 168 in which PILSURQ is ranked first.

310 Chapter 11 Formulating & Solving Integer Programs

11.6.6 Quadratic Assignment Problem
The quadratic assignment problem has the same constraint set as the linear assignment problem.

However, the objective function contains products of two variables. Notationally, it is:

Min
lkji
 ci j k l xi j xk l

subject to:

For each j:

i
 xi j = 1

For each i:

j
 xi j = 1

Some examples of this problem are:

(a) Facility layout. If djl is the physical distance between room j and room l; sik is the

communication traffic between department i and k; and xij = 1 if department i is assigned

to room j, then we want to minimize:

lkji
 xij xkl djl sik

(b) Vehicle to gate assignment at a terminal. If djl is the distance between gate j and gate l at an

airline terminal, passenger train station, or at a truck terminal; sik is the number of passengers

or tons of cargo that needs to be transferred between vehicle i and vehicle k; and xij = 1 if

vehicle i (incoming or outgoing) is assigned to gate j, then we again want to minimize:

lkji
 xij xkl djl sik

(c) Radio frequency assignment. If dij is the physical distance between transmitters i and j; skl

is the distance in frequency between k and l; and pi is the power of transmitter i, then we

want cijkl = max{pi, pj} (1/dij)(1/skl) to be small if transmitter i is assigned frequency k and

transmitter j is assigned frequency l.

(d) VLSI chip layout. The initial step in the design of a VLSI (very large scale integrated) chip

is typically to assign various required components to various areas on the chip. See

Sarrafzadeh and Wong (1996) for additional details. Steinberg (1961) describes the case of

assigning electronic components to a circuit board, so as to minimize the total interconnection

wire length. For the chip design case, typically the chip area is partitioned into 2 to 6 areas. If

djl is the physical distance between area j and area l; sik is the number of connections

required between components i and k; and xij = 1 if component i is assigned to area j, then

we again want to minimize:

lkji
 xij xkl djl sik

 (e) Disk file allocation. If wij is the interference if files i and j are assigned to the same disk,

we want to assign files to disks, so total interference is minimized.

(f) Type wheel design. Arrange letters and numbers on a type wheel, so (a) most frequently

used ones appear together and (b) characters that tend to get typed together (e.g., q u)

appear close together on the wheel.

Formulating & Solving Integer Problems Chapter 11 311

 The quadratic assignment problem is a notoriously difficult problem. If someone asks you to solve

such a problem, you should make every effort to show the problem is not really a quadratic assignment

problem. One indication of its difficulty is the solution is not naturally integer.

 One of the first descriptions of quadratic assignment problems was by Koopmans and Beckmann

(1957). For this reason, this problem is sometimes known as the Koopmans-Beckmann problem. They

illustrated the use of this model to locate interacting facilities in a large country. Elshafei (1977)

illustrates the use of this model to lay out a hospital. Specifically, 19 departments are assigned to 19

different physical regions in the hospital. The objective of Elshafei was to minimize the total distance

patients had to walk between departments. The original assignment used in the hospital required a

distance of 13,973,298 meters per year. An optimal assignment required a total distance of 8,606,274

meters. This is a reduction in patient travel of over 38%.

 Small quadratic assignment problems can be converted to linear integer programs by the

transformation:

 Replace the product xij xkl by the single variable zijkl. The objective is then:

Min
lkji
 ci j k l zi jk l

 Notice if there are N departments and N locations, then there are NN variables of type xij, and

NNNN variables of type zijkl variables. This formulation can get large quickly. Several reductions are

possible:

1) The terms cijkl xij xkl and c klij xkl xij can be combined into the term:

(cijkl + c klij) xkl xij

to reduce the number of z variables and associated constraints needed by a factor of 2.

2) Certain assignments can be eliminated beforehand (e.g., a large facility to a small location).

Many of the cross terms, cijkl , are zero (e.g., if there is no traffic between facility i and facility

k), so the associated z variables need not be introduced.

 The non-obvious thing to do now is to ensure that zijkl = 1 if and only if both xij and xkl = 1. Sherali

and Adams(1999) point out that constraints of the following type will enforce this requirement:

 For a given i, k, l:

,

kl ijkl

j j l

x z

=

 In words, if object k is assigned to location l, then for any other object i, i k, there must be some

other location j, j l, to which i is assigned.

312 Chapter 11 Formulating & Solving Integer Programs

 The following is a LINGO implementation of the above for deciding which planes should be

assigned to which gates at an airport, so that the distance weighted cost of changing planes for the

passengers is minimized:

MODEL:

! Quadratic assignment problem(QAP006);

! Given number of transfers between flights,

 distance between gates,

 assign flights to gates to minimize total transfer cost;

 SETS:

 FLIGHT/1..6/;

 GATE/ E3 E4 E5 F3 F4 F5/;! Gates at terminal 2 of O'Hare;

 GXG(GATE, GATE)| &1 #LT# &2: T; ! Inter gate times(symmetric);

 FXF(FLIGHT, FLIGHT)| &1 #LT# &2: N; ! Transfers between flights;

 FXG(FLIGHT, GATE): X; ! Flight to gate assignment variable;

 ENDSETS

 DATA:

 T = 70 40 60 90 90 ! Time between gates;

 50 100 80 110

 100 90 130

 60 40

 30;

 N = 12 0 12 0 5

 30 35 20 13 ! No. units between flights;

 40 20 10

 0 6

 14;

 ENDDATA

!--;

! Warning: may be very slow for no. objects > 7;

 SETS: ! Warning: this set gets big fast!;

 TGTG(FLIGHT, GATE, FLIGHT, GATE)| &1 #LT# &3: Z;

 ENDSETS

! Min the cost of transfers * distance;

 MIN = @SUM(TGTG(B, J, C, K)| J #LT# K:

 Z(B, J, C, K) * N(B, C) * T(J, K))

 + @SUM(TGTG(B, J, C, K)| J #GT# K:

 Z(B, J, C, K) * N(B, C) * T(K, J));

! Each flight, B, must be assigned to a gate;

 @FOR(FLIGHT(B):

 @SUM(GATE(J): X(B, J)) = 1;

);

! Each gate, J, must receive one flight;

 @FOR(GATE(J):

 @SUM(FLIGHT(B): X(B, J)) = 1;

);

! Make the X's binary;

 @FOR(FXG: @BIN(X);

);

Formulating & Solving Integer Problems Chapter 11 313

! Force the Z() to take the correct value relative to the X();

 @FOR(FXG(C, K):

 @FOR(GATE(J)| J #NE# K:

! If C is assigned to K, some B must be assigned to J...;

 X(C, K) = @SUM(TGTG(B, J, C, K)| B #NE# C : Z(B, J, C, K))

 + @SUM(TGTG(C, K, B, J)| B #NE# C : Z(C, K, B, J));

);

 @FOR(FLIGHT(B)| B #NE# C:

! and B must be assigned to some J;

 X(C, K) = @SUM(TGTG(B, J, C, K)| J #NE# K : Z(B, J, C, K))

 + @SUM(TGTG(C, K, B, J)| J #NE# K : Z(C, K, B, J));

);

);

 END

The solution is:

 Global optimal solution found at step: 1258

 Objective value: 13490.00

 Branch count: 0

 Variable Value

 X(1, E4) 1.000000

 X(2, F4) 1.000000

 X(3, F3) 1.000000

 X(4, F5) 1.000000

 X(5, E3) 1.000000

 X(6, E5) 1.000000

 Thus, flight 1 should be assigned to gate E4, flight 2 to gate F4, etc. The total passenger travel time

in making the connections will be 13,490. Notice that this formulation was fairly tight. No branches

were required to get an integer solution from the LP solution.

11.7 Problems of Grouping, Matching, Covering, Partitioning, and
Packing

There is a class of problems that have the following essential structure:

1) There is a set of m objects, and

2) They are to be grouped into subsets, so some criterion is optimized.

314 Chapter 11 Formulating & Solving Integer Programs

Some example situations are:

 Objects Group Criteria for a Group

(a) Dormitory

inhabitants

 Roommates At most two to a room; no smokers with nonsmokers.

(b) Deliveries to

customers

 Trip Total weight assigned to trip is less-than-or-equal-to

vehicle capacity. Customers in same trip are close

together.

(c) Sessions at a

scientific

meeting

 Sessions scheduled

for same time slot

 No two sessions on same general topic. Enough

rooms of sufficient size.

(d) Exams to be

scheduled

 Exams scheduled

for same time slot

 No student has more than one exam in a given time

slot.

(e) Sportsmen Foursome (e.g., in

golf or tennis

doubles).

 Members are of comparable ability, appropriate

combination of sexes as in tennis mixed doubles.

(f) States on

map to be

colored.

 All states of a given

color

 States in same group/color cannot be adjacent.

(g) Finished

good widths

needed in a

paper plant

 Widths cut from a

single raw paper

roll.

 Sum of finished good widths must not exceed raw

material width.

 (h) Pairs of

points to

connect on a

circuit board

 Connection layers

underneath the

circuit board

 Connection paths in a layer should not intersect.

Total lengths of paths are small.

 (i) Financial

instruments,

e.g.,

mortgages

 Package of

instruments, e.g.,

mortgage backed

securities

 Package must be approximately of a target size,

target credit worthiness, target interest rate.

If each object can belong to at most one group, it is called a packing problem. For example, in a delivery

problem, as in (ii) above, it may be acceptable that a low priority customer not be included in any trip

today if we are confident the customer could be almost as well served by a delivery tomorrow. If each

object must belong to exactly one group, it is called a partitioning problem. For example, in circuit board

routing as in (vii) above, if a certain pair of points must be connected, then that pair of points must be

assigned to exactly one connection layer underneath the board. If each object must belong to at least one

group, it is called a covering problem. A packing or partitioning problem with group sizes limited to two

or less is called a matching problem. Specialized and fast algorithms exist for matching problems. A

problem closely related to covering problems is the cutting stock problem. It arises in paper, printing,

textile, and steel industries. In this problem, we want to determine cutting patterns to be used in cutting

up large pieces of raw material into finished-good-size pieces.

 Although grouping problems may be very easy to state, it may be very difficult to find a provably

optimal solution if we take an inappropriate approach. There are two common approaches to formulating

Formulating & Solving Integer Problems Chapter 11 315

grouping problems: (1) assignment style, or (2) the partition method. The former is convenient for small

problems, but it quickly becomes useless as the number of objects gets large.

11.7.1 Formulation as an Assignment Problem
The most obvious formulation for the general grouping problem is based around the following definition

0/1 decision variables:

Xij = 1 if object j is assigned to group i, 0 otherwise.

 A drawback of this formulation is that it has a lot of symmetry. There are many alternate optimal

solutions. All of which essentially are identical. For example, assigning golfers A, B, C, and D to group

1 and golfers E, F, G, and H to group 2 is essentially the same as assigning golfers E, F, G, and H to

group 1 and golfers A, B, C and D to group 2. These alternate optima make the typical integer

programming algorithm take much longer than necessary.

 We can eliminate this symmetry and the associated alternate optima with no loss of optimality if we

agree to the following restrictions: (a) object 1 can only be assigned to group 1; (b) object 2 can only be

assigned to groups 1 or 2 and only to 1 if object 1 is also assigned to 1; (c) and in general, object j can

be assigned to group i < j, only if object i is also assigned to group i. This implies in particular that:

Xii = 1, if and only if object i is the lowest indexed object in its group, and

Xij is defined only for i j.

Now we will look at several examples of grouping problems and show how to solve them.

11.7.2 Matching Problems, Groups of Size Two
The roommate assignment problem is a simple example of a grouping problem where the group size is

two. An example of this is a problem solved at many universities at the start of the school year before

the first-year or freshman students arrive. The rooms in a freshman dormitory typically take exactly two

students. How should new incoming students be paired up? One approach that has been used is that for

every possible pair of students, a score is calculated which is a measure of how well the school thinks

this particular pair of students would fare as roommates. Considerations that enter into a score are things

such as: a smoker should not be matched with a nonsmoker, a person who likes to study late at night

should not be paired with a student who likes to get up early and study in the morning. Let us suppose

we have computed the scores for all possible pairs of the six students: Joe, Bob, Chuck, Ed, Evan, and

Sean. A scaler model for this problem might be:

! Maximize total score of pairs selected;

 MAX= 9*X_JOE_BOB + 7*X_JOE_CHUCK + 4*X_JOE_ED

 + 6*X_JOE_EVAN + 3*X_JOE_SEAN + 2*X_BOB_CHUCK

 + 8*X_BOB_ED + X_BOB_EVAN + 7*X_BOB_SEAN

 + 3*X_CHUCK_ED + 4*X_CHUCK_EVAN + 9*X_CHUCK_SEAN

 + 5*X_ED_EVAN + 5*X_ED_SEAN + 6*X_EVAN_SEAN;

 ! Each student must be in exactly one pair;

 [JOE] X_JOE_BOB + X_JOE_CHUCK + X_JOE_ED

 + X_JOE_EVAN + X_JOE_SEAN = 1;

 [BOB] X_JOE_BOB + X_BOB_CHUCK + X_BOB_ED

 + X_BOB_EVAN+ X_BOB_SEAN = 1;

 [CHUCK] X_JOE_CHUCK + X_BOB_CHUCK + X_CHUCK_ED

316 Chapter 11 Formulating & Solving Integer Programs

 + X_CHUCK_EVAN+ X_CHUCK_SEAN = 1;

 [ED] X_JOE_ED + X_BOB_ED + X_CHUCK_ED + X_ED_EVAN

 + X_ED_SEAN = 1;

 [EVAN] X_JOE_EVAN + X_BOB_EVAN + X_CHUCK_EVAN + X_ED_EVAN

 + X_EVAN_SEAN = 1;

 [SEAN] X_JOE_SEAN + X_BOB_SEAN + X_CHUCK_SEAN

 + X_ED_SEAN + X_EVAN_SEAN = 1;

 ! Assignments must be binary, not fractional;

 @BIN(X_JOE_BOB); @BIN(X_JOE_CHUCK); @BIN(X_JOE_ED);

 @BIN(X_JOE_EVAN); @BIN(X_JOE_SEAN); @BIN(X_BOB_CHUCK);

 @BIN(X_BOB_ED); @BIN(X_BOB_EVAN); @BIN(X_BOB_SEAN);

 @BIN(X_CHUCK_ED); @BIN(X_CHUCK_EVAN); @BIN(X_CHUCK_SEAN);

 @BIN(X_ED_EVAN); @BIN(X_ED_SEAN); @BIN(X_EVAN_SEAN);

Notice that there is a variable X_JOE_BOB, but not a variable X_BOB_JOE. This is because we do not

care whose name is listed first on the door. We only care about which two are paired together. We say

we are interested in unordered pairs.

A typical dormitory may have 60, or 600, rather than 6 students, so a general, set based formulation

would be useful. The following formulation shows how to do this in LINGO. One thing we want to do

in the model is to tell LINGO that we do not care about the order of persons in a pair. LINGO

conveniently allows us to put conditions on which of all possible members (pairs in this case) of a set

are to be used in a specific model. The key statement in the model is:

 PXP(PERSON, PERSON)| &1 #LT# &2: VALUE, X;

The fragment, PXP(PERSON, PERSON), by itself, tells LINGO that the set PXP should consist of

all possible combinations, 6*6 for this example, of two persons. The conditional phrase, | &1 #LT#

&2 , however, tells LINGO to restrict the combinations to those in which the index number, &1, of the

first person in a pair should be strictly less than the index number, &2, of the second person.

MODEL: ! (roomates.lng);

 SETS:

 PERSON;

! Joe rooms with Bob means the same as

 Bob rooms with Joe, so we need only the

 upper triangle;

 PXP(PERSON, PERSON)| &1 #LT# &2: VALUE, X;

 ENDSETS

 DATA:

 PERSON = Joe Bob Chuck Ed Evan Sean;

 Value = 9 7 4 6 3 ! Joe;

 2 8 1 7 ! Bob;

 3 4 9 ! Chuck;

 5 5 ! Ed;

 6 ; ! Evan;

Formulating & Solving Integer Problems Chapter 11 317

 ENDDATA

! Maximize the value of the matchings;

 MAX = @SUM(PXP(I,J): Value(i,j)* X(I,J));

! Each person appears in exactly one match;

 @FOR(PERSON(K):

 @SUM(PXP(K,J): X(K,J)) + @SUM(PXP(I,K): X(I,K)) = 1;

);

! No timesharing;

 @FOR(PXP(I,J): @BIN(X(I,J)));

END

The constraint, @SUM(PXP(K,J): X(K,J)) + @SUM(PXP(I,K): X(I,K))= 1 has two

terms, the first where student K is the first person in the pair, the second summation is over the

variables where student K is the second person in the pair. For example, in the scaler formulation,

notice that ED is the first person in two of the pairs, and the second person of three of the pairs.

The following solution, with value 23, is found.

 Variable Value

 X(JOE, EVAN) 1.000000

 X(BOB, ED) 1.000000

 X(CHUCK, SEAN) 1.000000

So Joe is to be paired with Evan, Bob with Ed, and Chuck with Sean. This model scales up well in that

it can be easily solved for large numbers of objects, e.g., many hundreds.

 For a different perspective on matching, see the later section on “stable matching”.

11.7.3 Groups with More Than Two Members
 The following example illustrates a problem recently encountered by an electricity generating firm

and its coal supplier. You are a coal supplier and you have a nonexclusive contract with a consumer

owned and managed electric utility, Power to the People (PTTP). You supply PTTP by barge. Your

contract with PTTP stipulates that the coal you deliver must have at least 13000 BTU’s per ton, no more

than 0.63% sulfur, no more than 6.5% ash, and no more than 7% moisture. Historically, PTTP would

not accept a barge if it did not meet the above requirements.

318 Chapter 11 Formulating & Solving Integer Programs

 You currently have the following barge loads available.

Barge BTU/ton Sulfur% Ash% Moisture%

1 13029 0.57 5.56 6.2

2 14201 0.88 6.76 5.1

3 10630 0.11 4.36 4.6

4 13200 0.71 6.66 7.6

5 13029 0.57 5.56 6.2

6 14201 0.88 6.76 5.1

7 13200 0.71 6.66 7.6

8 10630 0.11 4.36 4.6

9 14201 0.88 6.76 5.1

10 13029 0.57 5.56 6.2

11 13200 0.71 6.66 7.6

12 14201 0.88 6.76 5.1

This does not look good. Only barges 1, 5, and 10 satisfy PTTP’s requirement. What can we do?

Suppose that after reading the fine print of your PTTP contract carefully, you initiate some discussions

with PTTP about how to interpret the above requirements. There might be some benefits if you could

get PTTP to reinterpret the wording of the contract so that the above requirements apply to collections

of up to three barges. That is, if the average quality taken over a set of N barges, N less than four, meets

the above quality requirements, then that set of N barges is acceptable. You may specify how the sets of

barges are assembled. Each barge can be in at most one set. All the barges in a set must be in the same

shipment.

Looking at the original data, we see, even though there are twelve barges, there are only four distinct

barge types represented by the original first four barges. In reality, you would expect this: each barge

type corresponding to a specific mine with associated coal type.

Formulating & Solving Integer Problems Chapter 11 319

 Modeling the barge grouping problem as an assignment problem is relatively straightforward. The

essential decision variable is defined as X (I, J) = number of barges of type I assigned to group J. Note

we have retained the convention of not distinguishing between barges of the same type. Knowing there

are twelve barges, we can restrict ourselves to at most six groups without looking further at the data. The

reasoning is: Suppose there are seven nonempty groups. Then, at least two of the groups must be

singletons. If two singletons are feasible, then so is the group obtained by combining them. Thus, we

can write the following LINGO model:

MODEL:

SETS:

 MINE: BAVAIL;

 GROUP;

 QUALITY: QTARG;

! Composition of each type of MINE load;

 MXQ(MINE, QUALITY): QACT;

!assignment of which MINE to which group;

!no distinction between types;

 MXG(MINE, GROUP):X;

ENDSETS

DATA:

 MINE = 1..4;

 ! Barges available of each type(or mine);

 BAVAIL = 3 4 2 3;

 QUALITY = BTU, SULF, ASH, MOIST;

 ! Quality targets as upper limits;

 QTARG = - 13000 0.63 6.5 7;

 ! Actual qualities of each mine;

 QACT = -13029 0.57 5.56 6.2

 -14201 0.88 6.76 5.1

 -10630 0.11 4.36 4.6

 -13200 0.71 6.66 7.6;

! We need at most six groups;

 GROUP = 1..6;

 GRPSIZ = 3;

ENDDATA

! Maximize no. of barges assigned;

MAX = @SUM(MXG: X);

! Upper limit on group size;

 @FOR(GROUP(J): @SUM(MINE(I): X(I, J))

 <= GRPSIZ;);

! Assign no more of a type than are available;

 @FOR(MINE(I): @SUM(GROUP(J): X(I, J))

 <= BAVAIL(I));

! The blending constraints for each group;

 @FOR(GROUP(J):

 @FOR(QUALITY (H):

 @SUM(MINE(I): X(I, J) * QACT(I, H)) <=

 @SUM(MINE(I): X(I, J) * QTARG(H));

));

! barges must be integers;

@FOR(MXG: @GIN(X));

END

320 Chapter 11 Formulating & Solving Integer Programs

 The following solution shows that you can now sell ten barges, rather than three, to PTTP.

Objective value: 10.00000

Variable Value

X(1, 1) 1.000000

X(2, 2) 2.000000

X(3, 2) 1.000000

X(1, 4) 2.000000

X(4, 4) 1.000000

X(2, 5) 2.000000

X(3, 5) 1.000000

For example, group 1 is simply one barge of type 1. Group 2 consists two barges of type 2 and one

barge of type 3. The above formulation may not scale well. The actual application typically had about

60 barges in a candidate set. The above formulation may be slow to solve problems of that size. The

next section discusses how the partitioning approach can be efficiently used for such problems.

Solving with a Partitioning Formulation

Modest-sized integer programs can nevertheless be very difficult to solve. There are a number of rules

that are useful when facing such problems. Two useful rules for difficult integer programs are:

 1) Do Not Distinguish the Indistinguishable;

 2) Presolve subproblems.

 The barge matching example can be solved almost “by hand” with the matching or grouping (as

opposed to the assignment) approach. Applying the rule “Presolve subproblems,” we can enumerate all

feasible combinations of three or less barges selected from the four types. Applying the “Don’t

distinguish” rule again, we do not have to consider combinations such as (1,1) and (2,2,2), because such

sets are feasible if and only if the singleton sets (e.g., (1) and (2)) are also feasible. Thus, disregarding

quality, there are four singleton sets, six doubleton sets, four distinct triplets (e.g., (1,2,3)) and twelve

paired triplets (e.g., (1,1,2)) for a total of 26 combinations. It is not hard to show, even manually, that

the only feasible combinations are (1), (1,1,4), and (2,2,3). Thus, the matching-like IP we want to solve

to maximize the number of barges sold is:

Max = S001 + 3 * S114 + 3 * S223;

 S001 + 2 * S114 <= 3 ;

 !(No. of type 1 barges);

 2 * S223 <= 4 ;

 !(No. of type 2 barges);

 S223 <= 2 ;

 !(No. of type 3 barges);

 S114 <= 3 ;

 !(No. of type 4 barges);

This is easily solved to give S001 = 1, S114 = 1, and S223 = 2, with an objective value of 10.

Formulating & Solving Integer Problems Chapter 11 321

 For the given data, we can ship at most ten barges. One such way of matching them, so each set

satisfies the quality requirements is as follows:

 Average Quality of the Set

Barges in set BTU% Sulfur% Ash% Moisture%

1 13029 0.57 5.56 6.2

4, 5, 10 13086 0.6167 5.927 6.667

2, 3, 6 13010 0.6233 5.96 4.933

8, 9, 12 13010 0.6233 5.96 4.933

This matches our LINGO derived solution.

11.7.4 Groups with a Variable Number of Members, Assignment Version
In many applications of the grouping idea, the group size may be variable. The following example from

the financial industry illustrates. A financial services firm has financial objects (e.g., mortgages) it wants

to “package” and sell. One of the features of a package is that it must contain a combination of objects

whose values total at least one million dollars. For our purposes, we will assume this is the only

qualification in synthesizing a package. We want to maximize the number of packages we form. We

first give an assignment formulation. The key declaration in this formulation is:

 OXO(OBJECT, OBJECT)| &1 #LE# &2: X;

This implies there will be a variable of the form X(I,J) with always the index I J. Our

interpretation of this variable will be:

 X(I,J) = 1 means object J is assigned to the same group as object I, and further,

 X(I,I) = 1 means object I is the lowest indexed object in that group.

MODEL:

! Object bundling model. (OBJBUNDL);

!A broker has a number of loans of size from $55,000 to $946,000.

 The broker would like to group the loans into packages

 so that each package has at least $1M in it,

 and the number of packages is maximized;

! Keywords: bundling, financial, set packing;

 SETS: OBJECT: VALUE, OVER;

 OXO(OBJECT, OBJECT)| &1 #LE# &2: X;

 ENDSETS

 DATA:

 OBJECT= A B C D E F G H I J K L M N P Q R;

 VALUE=910 870 810 640 550 250 120 95 55 200 321 492 567 837 193 364 946;

! The value in each bundle must be >= PKSIZE;

 PKSIZE = 1000;

 ENDDATA

!--;

! Definition of variables;

! X(I, I) = 1 if object I is lowest numbered

 object in its package;

! X(I, J) = 1 if object j is assigned to package I;

! Maximize number of packages assembled;

 MAX = @SUM(OBJECT(I): X(I, I));

322 Chapter 11 Formulating & Solving Integer Programs

 @FOR(OBJECT(K):

! Each object can be assigned to at most one package;

 @SUM(OXO(I, K): X(I, K)) <= 1;

! A package must be at least PSIZE in size;

 @SUM(OXO(K, J): VALUE(J) * X(K, J))

 - OVER(K) = PKSIZE * X(K, K);

);

! The X(I, J) must = 0 or 1;

 @FOR(OXO(I, J): @BIN(X(I, J)););

END

A solution is:

Variable Value

X(A, A) 1.000000

X(A, H) 1.000000

X(B, B) 1.000000

X(B, F) 1.000000

X(C, C) 1.000000

X(C, J) 1.000000

X(D, D) 1.000000

X(D, Q) 1.000000

X(E, E) 1.000000

X(E, L) 1.000000

X(G, G) 1.000000

X(G, K) 1.000000

X(G, M) 1.000000

X(I, I) 1.000000

X(I, R) 1.000000

X(N, N) 1.000000

X(N, P) 1.000000

 Thus, eight packages are constructed. Namely: AH, BF, CJ, DQ, EL, IR, JN, GKM, and NP. It

happens that every object appears in some package. There are alternate packings of all the objects into

eight groups. Thus, one may wish to consider secondary criteria for choosing one alternate optimum

over another (e.g., the largest package should be as close as possible to one million in size). The worst

package in the fairness sense in the above solution is BF. It is over the target of 1,000,000 by 120,000.

11.7.5 Groups with A Variable Number of Members, Packing Version
An alternative approach is first to enumerate either all possible or all interesting feasible groups and then

solve an optimization problem of the form:

Maximize value of the groups selected

subject to:

Each object is in at most one of the selected groups.

 The advantage of this formulation is, when it can be used, it typically can be solved more easily

than the assignment formulation. The disadvantages are it may have a huge number of decision variables,

especially if the typical group size is more than three. If there are n distinct objects, and all groups are

of size k, then there are n!/(k! (n-k)!) distinct groups. For example, if n = 50 and k = 3, then there are

19,600 candidate groups.

Formulating & Solving Integer Problems Chapter 11 323

 This formulation uses the idea of composite variables. This is frequently a useful approach for a

problem for which the original or “natural” formulation is difficult to solve. Setting a particular

composite variable to 1 represents setting a particular combination of the original variables to 1. We

generate only those composite variables that correspond to feasible combinations of the original

variables. This effectively eliminates many of the fractional solutions that would appear if one solved

the LP relaxation of the original formulation. The composite variable idea is a form of what is sometimes

called column generation. The path formulation in network models is also an example of the use of

composite variables.

Example: Packing Financial Instruments, revisited.

The packing approach to formulating a model for this problem constructs all possible packages or groups

that just satisfy the one million minimum. The general form of the LP/IP is:

Maximize value of packages selected

subject to:

Each object appears in at most one selected package.

 In the formulation below, we will use sparse sets to represent our packages. We assume that we

need not consider packages of more than four objects. An attractive feature of the packing/partitioning

formulation is that we can easily attach an essentially arbitrary score to each possible group. In

particular, the following formulation applies a squared penalty to the extent to which a package of loans

exceeds the target of $1M.

MODEL:

! Object bundling model. (OBJBUNDH);

! A broker has a number of loans of size from $55,000 to

$946,000.

 The broker would like to group the loans into packages

 so that each package has at least $1M in it, preferably

 not much more,

 and the number of packages is maximized;

! Keywords: bundling, financial, set packing;

 SETS:

 OBJECT: VALUE;

 ENDSETS

 DATA:
 OBJECT = A B C D E F G H I J K L M N P Q R;

 VALUE = 910 870 810 640 550 250 120 95 55 200 321 492 567 837 193 364

946;

! The value in each bundle must be >= PKSIZE;

 PKSIZE = 1000;

 ENDDATA

 SETS:

 !Enumerate all 2,3, and 4 object unordered sets package
size;

 BNDL2(OBJECT, OBJECT) | &1 #LT# &2

 #AND# (VALUE(&1) + VALUE(&2)) #GE# PKSIZE: X2, OVER2;

 BNDL3(OBJECT, OBJECT, OBJECT) | &1 #LT# &2 #AND# &2 #LT#

&3

324 Chapter 11 Formulating & Solving Integer Programs

 #AND# (VALUE(&1) + VALUE(&2) + VALUE(&3) #GE# PKSIZE):

 X3, OVER3;

 BNDL4(OBJECT, OBJECT, OBJECT, OBJECT) | &1 #LT# &2

 #AND# &2 #LT# &3 #AND# &3 #LT# &4 #AND# ((VALUE(&1) +

 VALUE(&2) + VALUE(&3) + VALUE(&4)) #GE# PKSIZE): X4,

OVER4;

 ENDSETS

!--;

!Compute the overage of each bundle;

 @FOR(BNDL2(I,J):

 OVER2(I,J) = VALUE(I) + VALUE(J) - PKSIZE;

);

 @FOR(BNDL3(I,J,K):

 OVER3(I,J,K) = VALUE(I)+VALUE(J)+VALUE(K) - PKSIZE

);

 @FOR(BNDL4(I,J,K,L):

 OVER4(I,J,K,L) = VALUE(I)+VALUE(J)+VALUE(K)+VALUE(L)-

PKSIZE;

);

! Maximize score of packages assembled. Penalize a package

that

 is over the minimum package size;

 MAX= @SUM(BNDL2(I,J): X2(I,J) * (1-(OVER2(I,J)/PKSIZE)^2))

 +@SUM(BNDL3(I,J,K):

 X3(I, J,K) * (1-(OVER3(I,J,K)/PKSIZE)^2))

 + @SUM(BNDL4(I,J,K,L):

 X4(I,J,K,L) * (1-

(OVER4(I,J,K,L)/PKSIZE)^2));

 @FOR(OBJECT(M):

! Each object M can be in at most one of the selected bundles;

 @SUM(BNDL2(I, J)| I #EQ# M #OR# J #EQ# M: X2(I, J))

 + @SUM(BNDL3(I, J, K)| I #EQ# M #OR# J #EQ# M #OR# K #EQ#

M:

 X3(I, J, K))

 + @SUM(BNDL4(I, J, K, L)|

 I #EQ# M #OR# J #EQ# M #OR# K #EQ# M #OR# L #EQ# M:

 X4(I, J, K, L)) <= 1;

);

! The X's must = 0 or 1;

 @FOR(BNDL2(I, J): @BIN(X2(I, J)););

 @FOR(BNDL3(I, J, K): @BIN(X3(I, J, K)););

 @FOR(BNDL4(I, J, K, L): @BIN(X4(I, J, K, L)););

END

Formulating & Solving Integer Problems Chapter 11 325

 Global optimal solution found at iteration: 19

 Objective value: 7.989192

 Variable Value

 X2(A, H) 1.000000

 OVER2(A, H) 5.000000

 X2(B, P) 1.000000

 OVER2(B, P) 63.00000

 X2(C, F) 1.000000

 OVER2(C, F) 60.00000

 X2(D, Q) 1.000000

 OVER2(D, Q) 4.000000

 X2(E, L) 1.000000

 OVER2(E, L) 42.00000

 X2(I, R) 1.000000

 OVER2(I, R) 1.000000

 X2(J, N) 1.000000

 OVER2(J, N) 37.00000

 X3(G, K, M) 1.000000

 OVER3(G, K, M) 8.000000

 Notice that this allocation is slightly more balanced than the previous solution based on the

assignment formulation. The largest “overage” is 63,000 rather than 120,000. This is because the

grouping formulation provided an easy way to penalize large packages.

11.7.6 Groups with A Variable Number of Members, Cutting Stock Problem
Another application in which the partitioning or packing approach has worked well is the cutting stock

problem in the paper and steel industry. We revisit the example introduced in chapter 7. There we

manually enumerated all possible patterns or packings drawn from 8 different finished good widths into

each of three different raw material widths. The formulation below automatically enumerates all

possible patterns. For each raw material width, the formulation automatically enumerates all possible

groupings of 1, 2, …,7 finished good widths so that the sum of the finished good widths is less than or

equal to the raw material width.

 One notable feature of this formulation is that it introduces a shortcut that may be important in

keeping computation time low when there are many, e.g., more than 20, objects. To illustrate the

shortcut, consider the three declarations:

! Enumerate all possible cutting patterns with 1 fg;

 rxf(rm,fg)| lenf(&2) #le# lenr(&1): x1;

! Enumerate all possible patterns with 2 fg;

 rxf2(rxf, fg) |

 &2 #le# &3 #and# (lenf(&2) + lenf(&3) #le# lenr(&1)): x2;

! Enumerate all possible patterns with 3 fg;

 rxf3(rxf2, fg)| &3 #le# &4

 #and# (lenf(&2) + lenf(&3)+ lenf(&4) #le# lenr(&1)): x3;

 The declaration rxf(rm,fg), by itself, tells LINGO to generate all combinations of one raw

material and one finished good. The condition | lenf(&2) #le# lenr(&1) , however, tells

326 Chapter 11 Formulating & Solving Integer Programs

LINGO to not generate a combination of a raw material(the index &1) and finished good(index &2) for

which the length(or width depending upon your orientation) of the finished good is greater than that of

the raw material. So, for example, the combination (R36, F38) will not be a member of rxf. There

will be four elements in rxf for which the first item of the pair is R36, namely (R36, F34), (R36,

F24), (R36, F15), and (R36, F10).

 Now consider how to generate all feasible combinations containing two finished good widths.

The obvious declaration would be: rxf2(rm, fg, fg) | &2 #le# &3 #and#
(lenf(&2) + lenf(&3) #le# lenr(&1))

The condition &2 #le# &3 says we do not care about the order of the finished goods in the

pattern, so we might as well restrict ourselves to listing the finished goods in the pattern in sorted

order. The condition lenf(&2) + lenf(&3) #le# lenr(&1) restricts the elements of set

rxf2 to feasible ones. This declaration would be valid, but we did not do it. Why? Instead we used

the declaration rxf2(rxf, fg). The latter was used mainly for computational reasons. With the

latter, LINGO considers every combination of the elements of the set rxf and each finished good.

Consider the case when the raw material is r36. If the declaration rxf2(rm, fg, fg) is used,

then LINGO would look at 8 * 8 = 64 combinations of two finished goods and keep only the four

combinations (r36, f24, f10), (r36, f15, f15), (r36, f15, f10), and (r36, f10,

f10). If on the other hand, the declaration rxf2(rxf, fg) is used, then when the raw material

is R36, LINGO will only consider 4*8 = 32 combinations. The 4 arises because set rxf contains

only 4 elements for which the first member of the pair is R36. For sets rxf3, and higher, the

computational savings can be even higher.

! Cutting stock solver(cutgent);

! Keywords: cutting stock;

SETS:

! Each raw material has a size(length) and quantity;

 rm: lenr, qr;

! Ditto for each finished good;

 fg: lenf, qf;

ENDSETS

DATA:

! Describe the raw materials available;

 rm, lenr, qr =

 R72 72 9999

 R45 48 9999

 R36 36 9999;

! Describe the finished goods needed;

 fg, lenf, qf =

 F60 60 500

 F56 56 400

 F42 42 300

 F38 38 450

 F34 34 350

 F24 24 100

 F15 15 800

 F10 10 1000;

ENDDATA

Formulating & Solving Integer Problems Chapter 11 327

SETS:

! Enumerate all possible cutting patterns with 1 fg;

 rxf(rm,fg)| lenf(&2) #le# lenr(&1): x1;

! Enumerate all possible patterns with 2 fg;

 rxf2(rxf, fg) |

 &2 #le# &3 #and# (lenf(&2) + lenf(&3) #le# lenr(&1)):

x2;

! Enumerate all possible patterns with 3 fg;

 rxf3(rxf2, fg)| &3 #le# &4 #and#

 (lenf(&2) + lenf(&3)+ lenf(&4) #le# lenr(&1)):

x3;

! Enumerate all possible patterns with 4 fg;

 rxf4(rxf3, fg)| &4 #le# &5 #and#

 (lenf(&2) + lenf(&3) + lenf(&4)+lenf(&5) #le# lenr(&1)):

x4;

! Enumerate all possible patterns with 5 fg;

 rxf5(rxf4, fg)| &5 #le# &6 #and# (lenf(&2) + lenf(&3)+

lenf(&4)+lenf(&5)+lenf(&6)

 #le# lenr(&1)): x5;

! Enumerate all possible patterns with 6 fg;

 rxf6(rxf5, fg)| &6 #le# &7 #and# (lenf(&2) + lenf(&3)+

lenf(&4)+lenf(&5)

 +lenf(&6)+lenf(&7) #le# lenr(&1)): x6;

ENDSETS

! Minimize length of material used;

 MIN = @SUM(rxf(r,f1): lenr(r)*x1(r,f1))

 + @SUM(rxf2(r,f1,f2): lenr(r)*x2(r,f1,f2))

 + @SUM(rxf3(r,f1,f2,f3): lenr(r)*x3(r,f1,f2,f3))

 + @SUM(rxf4(r,f1,f2,f3,f4): lenr(r)*x4(r,f1,f2,f3,f4))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5):

lenr(r)*x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6):

lenr(r)*x6(r,f1,f2,f3,f4,f5,f6));

! We have to satisfy each finished good demand;

 @FOR(fg(f):

 @SUM(rxf(r,f): x1(r,f))

 + @SUM(rxf2(r,f1,f2)| f #eq# f1: x2(r,f1,f2))

 + @SUM(rxf2(r,f1,f2)| f #eq# f2: x2(r,f1,f2))

 + @SUM(rxf3(r,f1,f2,f3)| f #eq# f1: x3(r,f1,f2,f3))

 + @SUM(rxf3(r,f1,f2,f3)| f #eq# f2: x3(r,f1,f2,f3))

 + @SUM(rxf3(r,f1,f2,f3)| f #eq# f3: x3(r,f1,f2,f3))

 + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f1: x4(r,f1,f2,f3,f4))

 + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f2: x4(r,f1,f2,f3,f4))

 + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f3: x4(r,f1,f2,f3,f4))

328 Chapter 11 Formulating & Solving Integer Programs

 + @SUM(rxf4(r,f1,f2,f3,f4)| f #eq# f4: x4(r,f1,f2,f3,f4))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f1:

x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f2:

x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f3:

x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f4:

x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5)| f #eq# f5:

x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f1:

 x6(r,f1,f2,f3,f4,f5,f6))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f2:

 x6(r,f1,f2,f3,f4,f5,f6))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f3:

 x6(r,f1,f2,f3,f4,f5,f6))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f4:

 x6(r,f1,f2,f3,f4,f5,f6))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f5:

 x6(r,f1,f2,f3,f4,f5,f6))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6)| f #eq# f6:

 x6(r,f1,f2,f3,f4,f5,f6))

 >= qf(f);

);

! We cannot use more raw material than is available;

 @FOR(rm(r):

 @SUM(rxf(r,f): x1(r,f))

 + @SUM(rxf2(r,f1,f2): x2(r,f1,f2))

 + @SUM(rxf3(r,f1,f2,f3): x3(r,f1,f2,f3))

 + @SUM(rxf4(r,f1,f2,f3,f4): x4(r,f1,f2,f3,f4))

 + @SUM(rxf5(r,f1,f2,f3,f4,f5): x5(r,f1,f2,f3,f4,f5))

 + @SUM(rxf6(r,f1,f2,f3,f4,f5,f6): x6(r,f1,f2,f3,f4,f5,f6))

 <= qr(r);

);

 ! Can only run integer quantities of each pattern;

 @FOR(rxf: @GIN(x1));

 @FOR(rxf2: @GIN(x2));

 @FOR(rxf3: @GIN(x3));

 @FOR(rxf4: @GIN(x4));

 @FOR(rxf5: @GIN(x5));

 @FOR(rxf6: @GIN(x6));

If you click on LINGO | Generate menu item, to display the scaler version of the model, you can see

that the constraint for the 56 inch width is(hopefully reassuringly):

Formulating & Solving Integer Problems Chapter 11 329

 X2_R72_F56_F15 + X2_R72_F56_F10 + X1_R72_F56 >= 400 ;

When we click on the Solve icon we get the solution:

Global optimal solution found at iteration: 31

 Objective value: 119832.0

 Variable Value

 X2(R72, F60, F10) 500.0000

 X2(R72, F56, F15) 400.0000

 X2(R72, F38, F34) 350.0000

 X3(R72, F42, F15, F15) 186.0000

 X3(R72, F38, F24, F10) 100.0000

 X4(R72, F42, F10, F10, F10) 114.0000

 X4(R45, F15, F10, F10, F10) 2.000000

 X6(R72, F15, F15, F10, F10, F10, F10) 13.00000

11.7.7 Groups with A Variable Number of Members, Vehicle Routing
The following vehicle routing example demonstrates that you can in fact perform a little optimization

computation as part of the column or group generation. The example we use is a variation of the vehicle

routing problem considered in section 11.6.3. The first and major part of this model is devoted to

enumerating all minimal feasible trips with at most seven stops. By feasible trip, we mean that the

amount of material to be delivered to the stops in the trip does not exceed the vehicle capacity of 18

pallets. By minimal we mean that for a trip that visits a given set of stops, the trip visits the stops in a

sequence that minimizes the distance traveled.

 Given that all minimal feasible trips have been generated, the following simple integer program is

solved:

 Minimize Cost of trips selected;

 Subject to:

 For each stop:

 Exactly one trip includes this stop.

This little example has 15 stops, so the integer program has 15 constraints, and a large number of 0/1

variables(about 7300 in fact) , equal in number to the number of minimal feasible trips.

The tricky part is how we generate the sets of minimal feasible trips, PSET2, PSET3, etc. and

the assocated minimal distances, D2(), D3(), etc. To start understanding ideas, consider the variable

D4(I,J,K,L). It has the following definition.

D4(I,J,K,L) = minimum distance required to start at the depot, visit stops I, J, and K in

any order and then visit stop L. If DIST(I,J) is the distance matrix, then Held and Karp(1962)

observed that if D3 is defined in similar fashion, then D4 can be computed by the dynamic

programming recursion:
 D4(I,J,K,L) = min[D3(I,J,K)+DIST(K,L),

 D3(I,K,J)+DIST(J,L),

 D3(J,K,I)+DIST(I,L)]

The complete formulation follows.

MODEL: ! (vrgenext);

330 Chapter 11 Formulating & Solving Integer Programs

! The Vehicle Routing Problem (VRP) occurs in many service

systems such as delivery, customer pick-up, repair and

maintenance. A fleet of vehicles, each with fixed

capacity, starts at a common depot and returns to the

depot after visiting locations where service is demanded.

This LINGO model generates all feasible one vehicle routes

and then chooses the least cost feasible multi-vehicle

combination;

SETS:

 CITY: Q;

 ! Q(I) = amount required at city I(given),

 must be delivered by just 1 vehicle;

 CXC(CITY, CITY): DIST;

 ! DIST(I,J) = distance from city I to city J;

ENDSETS

DATA:
CITY= Chi Den Frsn Hous KC LA Oakl Anah Peor Phnx Prtl Rvrs Sacr SLC Sntn SBrn;

! Amount to be delivered to each customer;

 Q= 0 6 3 7 7 18 4 5 2 6 7 2 4 3 3 2 ;

! city 1 represents the common depot, i.e. Q(1) = 0;

! Distance from city I to city J is same(but need not be) from J to I;

DIST= ! To City;

!Chi Den Frsn Hous KC LA Oakl Anah Peor Phnx Prtl Rvrs Sacr SLC Sntn SBrn From;

 0 996 2162 1067 499 2054 2134 2050 151 1713 2083 2005 2049 1390 1187 1996 ! Chcago;

 996 0 1167 1019 596 1059 1227 1055 904 792 1238 1010 1142 504 939 1001 ! Denver;

2162 1167 0 1747 1723 214 168 250 2070 598 745 268 162 814 1572 265 ! Fresno;

1067 1019 1747 0 710 1538 1904 1528 948 1149 2205 1484 1909 1438 197 1533 ! Huston;

 499 596 1723 710 0 1589 1827 1579 354 1214 1809 1535 1742 1086 759 1482 ! K-City;

2054 1059 214 1538 1589 0 371 36 1943 389 959 54 376 715 1363 59 ! L. A.;

2134 1227 168 1904 1827 371 0 407 2043 755 628 425 85 744 1729 422 ! Oaklnd;

2050 1055 250 1528 1579 36 407 0 1933 379 995 45 412 711 1353 55 ! Anahm;

 151 904 2070 948 354 1943 2043 1933 0 1568 2022 1889 1958 1299 1066 1887 ! Peoria;

1713 792 598 1149 1214 389 755 379 1568 0 1266 335 760 648 974 333 ! Phnix;

2083 1238 745 2205 1809 959 628 995 2022 1266 0 1001 583 767 2086 992 ! Prtlnd;

2005 1010 268 1484 1535 54 425 45 1889 335 1001 0 430 666 1309 10 ! Rvrsde;

2049 1142 162 1909 1742 376 85 412 1958 760 583 430 0 659 1734 427 ! Scrmto;

1390 504 814 1438 1086 715 744 711 1299 648 767 666 659 0 1319 657 ! SLC;

1187 939 1572 197 759 1363 1729 1353 1066 974 2086 1309 1734 1319 0 1307 ! SAnt;

1996 1001 265 1482 1533 59 422 55 1887 333 992 10 427 657 1307 0 ! SBrn;;

! VCAP is the capacity of a vehicle in 40”x48” pallets;

VCAP = 18;

ENDDATA

SETS:

! Enumerate all sets of various sizes of cities that are load

feasible;

 SET2(CITY,CITY)|&1 #GT# 1 #AND# &1 #LT# &2

 #AND# (Q(&1)+Q(&2)#LE# VCAP):;

 SET3(SET2,CITY)|&2 #LT# &3

 #AND# (Q(&1)+Q(&2)+Q(&3)#LE# VCAP):;

 SET4(SET3,CITY)|&3 #LT# &4

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)#LE# VCAP):;

 SET5(SET4,CITY)|&4 #LT# &5

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)#LE# VCAP):;

 SET6(SET5,CITY)|&5 #LT# &6

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)#LE# VCAP):;

 SET7(SET6,CITY)|&6 #LT# &7

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)+Q(&7)#LE# VCAP):;

Formulating & Solving Integer Problems Chapter 11 331

! Enumerate all partially ordered sets with a

 specific city as the last one;

 PSET2(CITY,CITY)| &1 #GT# 1 #AND# &1#NE#&2

 #AND# (Q(&1)+Q(&2)#LE# VCAP): D2,X2;

 PSET3(SET2,CITY)| &1#NE#&3 #AND# &2#NE#&3

 #AND# (Q(&1)+Q(&2)+Q(&3)#LE# VCAP): D3,X3;

 PSET4(SET3,CITY)| &1#NE#&4 #AND# &2#NE#&4 #AND# &3 #NE# &4

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)#LE# VCAP): D4,X4;

 PSET5(SET4,CITY)| &1#NE#&5 #AND# &2#NE#&5 #AND# &3 #NE# &5

 #AND# &4 #NE# &5

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)#LE# VCAP): D5,X5;

 PSET6(SET5,CITY)| &1#NE#&6 #AND#

 &2#NE#&6 #AND# &3 #NE# &6 #AND# &4 #NE# &6 #AND# &5 #NE# &6

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)#LE# VCAP): D6,X6;

 PSET7(SET6,CITY)| &1#NE#&7 #AND# &2#NE#&7 #AND# &3#NE#&7 #AND#

 &4#NE#&7 #AND# &5#NE#&7 #AND# &6#NE#&7

 #AND# (Q(&1)+Q(&2)+Q(&3)+Q(&4)+Q(&5)+Q(&6)+Q(&7)#LE# VCAP): D7,X7;

ENDSETS

! Compute shortest distance to visit all cities in PSET, and

 ending up at last city in each

 partially ordered set, using Held&Karp DP.

 Essential idea:

 DS(S,t) = minimum distance to visit all cities in

 S and then end up at t. The recursion is:

 DS(S, t) = min{k in S: DS(S-k,k) + DIST(k,t)};

@FOR(PSET2(I,J):

 D2(I,J) = DIST(1,I) + DIST(I,J);

 @BIN(X2);

);

@FOR(PSET3(I,J,K):

 ! @SMIN is the min of a list of scalers. D3(I,J,K) = min cost of

 starting at 1, visiting I and J in some order, and then K;

 D3(I,J,K) = @SMIN(D2(I,J) + DIST(J,K), D2(J,I) + DIST(I,K));

 @BIN(X3);

);

@FOR(PSET4(I,J,K,L):

 !D4(I,J,K,L) = min cost of starting at 1, visiting I, J, & K

 in some order, and then L;

 D4(I,J,K,L) =

 @SMIN(D3(I,J,K)+DIST(K,L),

 D3(I,K,J)+DIST(J,L),

 D3(J,K,I)+DIST(I,L));

 @BIN(X4);

);

@FOR(PSET5(I,J,K,L,M):

 D5(I,J,K,L,M) =

 @SMIN(D4(I,J,K,L)+DIST(L,M),

 D4(I,J,L,K)+DIST(K,M),

 D4(I,K,L,J)+DIST(J,M),

 D4(J,K,L,I)+DIST(I,M));

332 Chapter 11 Formulating & Solving Integer Programs

 @BIN(X5);

);

@FOR(PSET6(I,J,K,L,M,N):

 D6(I,J,K,L,M,N) =

 @SMIN(D5(I,J,K,L,M)+DIST(M,N),

 D5(I,J,K,M,L)+DIST(L,N),

 D5(I,J,L,M,K)+DIST(K,N),

 D5(I,K,L,M,J)+DIST(J,N),

 D5(J,K,L,M,I)+DIST(I,N));

 @BIN(X6);

);

@FOR(PSET7(I,J,K,L,M,N,P):

 D7(I,J,K,L,M,N,P) =

 @SMIN(D6(I,J,K,L,M,N)+DIST(N,P),

 D6(I,J,K,L,N,M)+DIST(M,P),

 D6(I,J,K,M,N,L)+DIST(L,P),

 D6(I,J,L,M,N,K)+DIST(K,P),

 D6(I,K,L,M,N,J)+DIST(J,P),

 D6(J,K,L,M,N,I)+DIST(I,P));

 @BIN(X7);

);

! and finally, the optimization model...

 Min cost of routes chosen, over complete routes ending back at 1;

 Min =

 + @SUM(PSET2(I,J)| J #EQ# 1: D2(I,J)*X2(I,J))

 + @SUM(PSET3(I,J,K)| K #EQ# 1: D3(I,J,K)*X3(I,J,K))

 + @SUM(PSET4(I,J,K,L)| L #EQ# 1: D4(I,J,K,L)*X4(I,J,K,L))

 + @SUM(PSET5(I,J,K,L,M)| M #EQ# 1: D5(I,J,K,L,M)*X5(I,J,K,L,M))

 + @SUM(PSET6(I,J,K,L,M,N)| N #EQ# 1:

 D6(I,J,K,L,M,N)*X6(I,J,K,L,M,N))

 + @SUM(PSET7(I,J,K,L,M,N,P)| P #EQ# 1:

 D7(I,J,K,L,M,N,P)*X7(I,J,K,L,M,N,P));

! Each city must be on exactly one complete route;

 @FOR(CITY(I1)| I1 #GT# 1:

 + @SUM(PSET2(I,J) | J #EQ# 1 #AND# (I #EQ# I1): X2(I,J))

 + @SUM(PSET3(I,J,K) |K #EQ# 1 #AND# (I#EQ#I1 #OR# J#EQ# I1):

 X3(I,J,K))

 + @SUM(PSET4(I,J,K,L) |L #EQ# 1 #AND#

 (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1): X4(I,J,K,L))

 + @SUM(PSET5(I,J,K,L,M) |M #EQ# 1 #AND#

 (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1 #OR# L#EQ#I1):

 X5(I,J,K,L,M))

 + @SUM(PSET6(I,J,K,L,M,N) |N #EQ# 1 #AND#

 (I#EQ#I1 #OR# J#EQ# I1 #OR# K#EQ# I1 #OR# L#EQ#I1

 #OR# M#EQ#I1): X6(I,J,K,L,M,N))

 + @SUM(PSET7(I,J,K,L,M,N,P) |P #EQ# 1 #AND#

 (I#EQ#I1 #OR# J#EQ#I1 #OR# K#EQ#I1 #OR# L#EQ#I1

 #OR# M#EQ#I1 #OR# N#EQ#I1)

 : X7(I,J,K,L,M,N,P)) = 1;

Formulating & Solving Integer Problems Chapter 11 333

);

 It takes about 4 seconds to get the following solution

Global optimal solution found at iteration: 134

 Objective value: 17586.00

 Variable Value

 X2(LA, CHI) 1.000000

 X3(KC, PEOR, CHI) 1.000000

 X4(DEN, HOUS, SNTN, CHI) 1.000000

 X5(FRSN, OAKL, PRTL, SACR, CHI) 1.000000

 X6(ANAH, PHNX, RVRS, SLC, SBRN, CHI) 1.000000

The obvious question is, how well does this formulation scale up? The final set partitioning integer

program is not too challenging. The big challenge is generating and storing the possibly huge number

of trips. A crucial consideration is the number of stops per trip. If this is small, e.g., three, then the

number of trips will be manageable. A typical vehicle routing problem may have around 100 stops.

The number of possible minimal distance trips, each of which visit three out of 100 stops, is

100!/[3!97!] = 161,700. This is a manageable number of variables for an efficient IP solver.

11.8 Linearizing Products of Variables
We have previously seen products of 0/1 variables, such as y1 y2 and y1

2 can be represented by linear

expressions by means of a simple transformation. This transformation generalizes to the case of the

product of a 0/1 variable and a continuous variable.

 To illustrate, suppose the product x y appears in a model, where y is 0/1 while x is nonnegative

continuous. We want to replace this nonlinear component by a (somewhat bigger) linear component. If

we have an upper bound (Mx) on the value of x, an upper bound (My) on the product x y, and we define

P = x y, then the following linear constraints will cause P to take on the correct value:

P x

P My y

P x − Mx (1 − y)

 Hanson and Martin (1990) show how this approach is useful in setting prices for products when we

allow bundling of products. Bundle pricing is a form of quantity discounting. Examples of products that

might be bundled are (a) airfare, hotel, rental car, tours, and meals or (b) computer, monitor, printer, and

hard disk. Stigler (1963) showed how a movie distributor might improve profits by leasing bundles of

movies rather than leasing individual movies. Bundling assumes it is easy for the seller to assemble the

bundle and difficult for a buyer to unbundle. Otherwise, a reseller could buy the bundle at a discount

and then sell the individual components at a markup.

334 Chapter 11 Formulating & Solving Integer Programs

11.8.1 Example: Bundling of Products
Microland Software has recently acquired an excellent word processing product to complement its own

recently developed spreadsheet product. Microland is contemplating offering the combination of the two

products for a discount. After demonstrating the products at a number of diverse professional meetings,

Microland developed the following characterization of the market:

 Maximum Price Market Segment is Willing
To Pay for Various Bundles

Market
Segment

Size in
10,000

Spreadsheet
Only

Wordprocessor
Only

Both

Business/

Scientific

7 450 110 530

Legal/

Administrative

5 75 430 480

Educational 6 290 250 410

Home 4.5 220 380 390

 We will refer to each market segment as simply a “customer”. Economic theory suggests a customer

will buy the product that gives the greatest consumer surplus, where consumer surplus is defined as the

price the customer is willing to pay for the product (the “reservation price”) minus the market price for

the product. For example, if the prices for the three bundles, spreadsheet only, word processor only, and

both together, were set respectively at 400, 150, and 500, then the business/scientific market would buy

the spreadsheet alone because the consumer surplus is 50 vs. −40 and 30 for the other two bundles.

 To give a general model of this situation, define:

Rij = reservation price of customer i for bundle j,

Ni = “size of customer” i (i.e., number of individual customers in segment i),

si = consumer surplus achieved by customer i,

yij = 1 if customer i buys bundle j, 0 otherwise,

xj = price of bundle j set by the seller.

 We will treat the empty bundle as just another bundle, so we can say every customer buys exactly

one bundle.

 The seller, Microland, would like to choose the xj to:

Maximize
ji
 Ni yij xj

The fact that each customer will buy exactly one bundle is enforced with:

For each customer i:

j
 yij = 1

For each customer i, its achieved consumer surplus is:

si =
j
 (Rij − xj)yij

Formulating & Solving Integer Problems Chapter 11 335

 Customer i will buy only the bundle j for which its consumer surplus, si, is the maximum. This is

enforced by the constraints:

For each customer i and bundle j:

si Rij − xj

 A difficulty with the objective function and the consumer surplus constraints is they involve the

product yijxj. Let us follow our previous little example and replace the product yijxj by Pij. If Mj is an

upper bound on xj, then, proceeding as before, to enforce the definition Pij = yijxj, we need the constraints:

Pij xj

Pij Rij yij

Pij xj − (1 − yij)Mj.

Making these adjustments to the model, we get:

Maximize
ji
 Ni Pij

subject to:

For each customer i

j
 yij = 1;

For each customer i, bundle j:

si Rij − xj;

For each customer i:

si =
j
 (Rij yij − Pij);

To enforce the nonlinear condition Pij = yij xj, we have for each i and j:

Pij xj

Pij Rij yij

Pij xj − (1 − yij)Mj.

For all i and j:

yij = 0 or 1

In explicit form, the LINGO model is:

MODEL:

SETS:

 MARKET/B, L, E, H/:S, N;

 ITEM/NONE, SO, WO, BOTH/:X;

 MXI(MARKET, ITEM):R, Y, P;

ENDSETS

DATA:

 N = 7, 5, 6, 4.5; ! Market size;

 R = 0 450 110 530 ! Reservation;

 0 75 430 480 ! prices;

 0 290 250 410

 0 220 380 390;

 M = 600; !Max price of any bundle;

ENDDATA

336 Chapter 11 Formulating & Solving Integer Programs

! Maximize our total revenue = price * market size.

 P(i,j) = price customer i pays for product or item j,

 if i buys j, else = 0;

 MAX = @SUM(MXI(I, J): P(I, J) * N(I));

!Make the pick variables 0/1;

 @FOR(MXI:@BIN(Y));

!Each customer or market i picks or buys exactly one bundle;

 @FOR(MARKET(I): @SUM(ITEM(J): Y(I, J)) = 1);

! Each customer i's achieved surplus, S(i), must be at

 least as good as from every possible bundle;

 @FOR(ITEM(I): @FOR(MARKET(J):

 S(I) >= R(I,J) - X(J)));

!Customer i's achieved surplus = reservations price

 of item purchased - its price;

 @FOR(MARKET(I):

 S(I) = @SUM(ITEM(J): R(I, J) * Y(I, J)- P(I, J))

) ;

! Each price variable Pij must be.. ;

! <= Xj , (the published price);

! <= Rij * Yij (less than reservation price if bought);

! >= Xj - M + M * Yij ;

 @FOR(MXI(I, J): P(I, J) <= X(J);

 P(I, J) <= Y(I, J) * R(I, J);

 R(I, J) >= X(J) - M + M * Y(I, J););

! Price of bundle should be <= sum of component prices;

 X(@INDEX(BOTH)) <= X(@INDEX(SO)) + X(@INDEX(WO));

! Price of bundle should be >= any one component;

 X(@INDEX(BOTH)) >= X(@INDEX(SO)); X(@INDEX(BOTH)) >= X(@INDEX(WO));

END

For the Microland problem, the solution is to set the following prices:

 Spreadsheet Only Word Processing Only Both

Bundle Price: 410 380 410

 Thus, the business, legal and educational markets will buy the bundle of both products. The home

market will buy only the word processor. Total revenues obtained by Microland are 90,900,000. The

interested reader may show that, if bundling is not possible, then the highest revenue that Microland can

achieve is only 67,150,000.

11.9 Representing Logical Conditions
For some applications, it may be convenient, perhaps even logical, to state requirements using logical

expressions. A logical variable can take on only the values TRUE or FALSE. Likewise, a logical

expression involving logical variables can take on only the values TRUE or FALSE. There are two major

logical operators, #AND# and #OR#, that are useful in logical expressions.

 The logical expression:

A #AND# B

is TRUE if and only if both A and B are true.

Formulating & Solving Integer Problems Chapter 11 337

 The logical expression:

A #OR# B

is TRUE if and only if at least one of A and B is true.

 It is sometimes useful also to have the logical operator implication () written as follows:

A B

with the meaning that if A is true, then B must be true.

 Logical variables are trivially representable by binary variables with:

TRUE being represented by 1, and

FALSE being represented by 0.

 If A, B, and C are 0/1 variables, then the following constraint combinations can be used to represent

the various fundamental logical expressions:

Logical Expression Mathematical Constraints

C = A #AND# B C A

C B

C A + B − 1

C = A #OR# B C A

C B

C A + B

A C A C

11.10 Problems
1. The following problem is known as a segregated storage problem. A feed processor has various

amounts of four different commodities, which must be stored in seven different silos. Each silo can

contain at most one commodity. Associated with each commodity and silo combination is a loading

cost. Each silo has a finite capacity, so some commodities may have to be split over several silos.

For a similar problem arising in the loading of fuel tank trucks at Mobil Oil Company, see Brown,

Ellis, Graves, and Ronen (1987). The following table contains the data for this problem.

Loading Cost per Ton

Silo

Amount of
Commodity

Commodity

1

2

3

4

5

6

7

To Be
Stored

A $1 $2 $2 $3 $4 $5 $5 75 tons

B 2 3 3 3 1 5 5 50 tons

C 4 4 3 2 1 5 5 25 tons

D 1 1 2 2 3 5 5 80 tons

Silo Capacity

in Tons

25

25

40

60

80

100

100

338 Chapter 11 Formulating & Solving Integer Programs

a) Present a formulation for solving this class of problems.

b) Find the minimum cost solution for this particular example.

c) How would your formulation change if additionally there was a fixed cost associated with

each silo that is incurred if anything is stored in the silo?

2. You are the scheduling coordinator for a small, growing airline. You must schedule exactly one

flight out of Chicago to each of the following cities: Atlanta, Los Angeles, New York, and Peoria.

The available departure slots are 8 A.M., 10 A.M., and 12 noon. Your airline has only two departure

lounges, so at most two flights can be scheduled per slot. Demand data suggest the following

expected profit contribution per flight as a function of departure time:

Expected Profit Contribution in $1000’s
 Time

Destination 8 10 12

Atlanta 10 9 8.5

Los Angeles 11 10.5 9.5

New York 17 16 15

Peoria 6.4 2.5 −1

Formulate a model for solving this problem.

3. A problem faced by an electrical utility each day is that of deciding which generators to start up at

which hour based on the forecast demand for electricity each hour. This problem is also known as

the unit commitment problem. The utility in question has three generators with the following

characteristics:

Generator

Fixed
Startup

Cost

Fixed Cost
per Period

of Operation

Cost per Period
per Megawatt

Used

Maximum Capacity
in Megawatts Each

Period

A 3000 700 5 2100

B 2000 800 4 1800

C 1000 900 7 3000

 There are two periods in a day and the number of megawatts needed in the first period is 2900.

The second period requires 3900 megawatts. A generator started in the first period may be used in

the second period without incurring an additional startup cost. All major generators (e.g., A, B, and

C above) are turned off at the end of each day.

a) First, assume fixed costs are zero and thus can be disregarded. What are the decision

variables?

b) Give the LP formulation for the case where fixed costs are zero.

c) Now, take into account the fixed costs. What are the additional (zero/one) variables to

define?

d) What additional terms should be added to the objective function? What additional

constraints should be added?

Formulating & Solving Integer Problems Chapter 11 339

4. Crude Integer Programming. Recently, the U.S. Government began to sell crude oil from its Naval

Petroleum Reserve in sealed bid auctions. There are typically six commodities or products to be

sold in the auction, corresponding to the crude oil at the six major production and shipping points.

A “bid package” from a potential buyer consists of (a) a number indicating an upper limit on how

many barrels (bbl.) the buyer is willing to buy overall in this auction and (b) any number of “product

bids”. Each product bid consists of a product name and three numbers representing, respectively,

the bid price per barrel of this product, the minimum acceptable quantity of this product at this price,

and the maximum acceptable quantity of this product at this price. Not all product bids of a buyer

need be successful. The government usually places an arbitrary upper limit (e.g., 20%) on the

percentage of the total number of barrels over all six products one firm is allowed to purchase.

 To illustrate the principal ideas, let us simplify slightly and suppose there are only two supply

sources/products, which are denoted by A and B. There are 17,000 bbls. available at A while B has

13,000. Also, there are only two bidders, the Mobon and the Exxil companies. The government

arbitrarily decides either one can purchase at most 65% of the total available crude. The two bid

packages are as follows:

Mobon:
Maximum desired = 16,000 bbls. total.

Product

Bid per
Barrel

Minimum
Barrels

Accepted

Maximum
Barrels
Wanted

 A 43 9000 16,000

 B 51 6000 12,000

Exxil:
Maximum desired = No limit.

Product

Bid per
Barrel

Minimum
Barrels

Accepted

Maximum
Barrels
Wanted

 A 47 5000 10,000

 B 50 5000 10,000

Formulate and solve an appropriate IP for the seller.

340 Chapter 11 Formulating & Solving Integer Programs

5. A certain state allows a restricted form of branch banking. Specifically, a bank can do business in

county i if the bank has a “principal place of business” in county i or in a county sharing a

nonzero-length border with county i. Figure 11.10 is a map of the state in question:

Figure 11.10 Districts in a State

 Formulate the problem of locating a minimum number of principal places of business in the

state, so a bank can do business in every county in the state. If the problem is formulated as a

covering problem, how many rows and columns will it have? What is an optimal solution? Which

formulation is tighter: set covering or simple plant location?

6. Data Set Allocation Problem. There are 10 datasets or files, each of which is to be allocated to 1 of

3 identical disk storage devices. A disk storage device has 885 cylinders of capacity. Within a

storage device, a dataset will be assigned to a contiguous set of cylinders. Dataset sizes and

interactions between datasets are shown in the table below. Two datasets with high interaction rates

should not be assigned to the same device. For example, if datasets C and E are assigned to the same

disk, then an interaction cost of 46 is incurred. If they are assigned to different disks, there is no

interaction cost between C and E.

Formulating & Solving Integer Problems Chapter 11 341

Dataset for Interaction (Seek Transition) Rates

A

B

C

D

E

F

G

H

I

J

Dataset
Size in

Cylinders

A 110

B 43 238

C 120 10 425

D 57 111 188 338

E 96 78 46 88 55

F 83 58 421 60 63 391

G 77 198 207 109 73 74 267

H 31 50 43 47 51 21 88 105

I 38 69 55 21 36 391 47 96 256

J 212 91 84 53 71 40 37 35 221 64

 2249

 Find an assignment of datasets to disks, so total interaction cost is minimized and no disk

capacity is exceeded.

7. The game or puzzle of mastermind pits two players, a “coder” and a “decoder”, against each other.

The game is played with a pegboard and a large number of colored pegs. The pegboard has an array

of 4 12 holes. For our purposes, we assume there are only six colors: red, blue, clear, purple, gold,

and green. Each peg has only one color. The coder starts the game by selecting four pegs and

arranging them in a fixed order, all out of sight of the decoder. This ordering remains fixed

throughout the game and is appropriately called the code. At each play of the game, the decoder

tries to match the coder’s ordering by placing four pegs in a row on the board. The coder then

provides two pieces of information about how close the decoder’s latest guess is to the coder’s order:

1) The number of pegs in the correct position (i.e., color matching the coder’s peg in that

position), and

2) The maximum number of pegs that would be in correct position if the decoder were

allowed to permute the ordering of the decoder’s latest guess.

 Call these two numbers m and n. The object of the decoder is to discover the code in a minimum

number of plays.

342 Chapter 11 Formulating & Solving Integer Programs

The decoder may find the following IP of interest.

MAX = XRED1;

 XRED1 + XBLUE1 + XCLEAR1 + XPURP1 + XGOLD1

 + XGREEN1 = 1;

 XRED2 + XBLUE2 + XCLEAR2 + XPURP2 + XGOLD2

 + XGREEN2 = 1;

 XRED3 + XBLUE3 + XCLEAR3 + XPURP3 + XGOLD3

 + XGREEN3 = 1;

 XRED4 + XBLUE4 + XCLEAR4 + XPURP4 + XGOLD4

 + XGREEN4 = 1;

 XRED1 + XRED2 + XRED3 + XRED4 - RED = 0;

 XBLUE1 + XBLUE2 + XBLUE3 + XBLUE4 - BLUE = 0;

 XCLEAR1 + XCLEAR2 + XCLEAR3 + XCLEAR4 - CLEAR = 0;

 XPURP1 + XPURP2 + XPURP3 + XPURP4 - PURP = 0;

 XGOLD1 + XGOLD2 + XGOLD3 + XGOLD4 - GOLD = 0;

 XGREEN1 + XGREEN2 + XGREEN3 + XGREEN4 - GREEN = 0;

END

 All variables are required to be integer. The interpretation of the variables is as follows.

XRED1 = 1 if a red peg is in position 1, otherwise 0, etc.; XGREEN4 = 1 if a green peg is in position

4, otherwise 0. Rows 2 through 5 enforce the requirement that exactly one peg be placed in each

position. Rows 6 through 11 are simply accounting constraints, which count the number of pegs of

each color. For example, RED = the number of red pegs in any position 1 through 4. The objective

is unimportant. All variables are (implicitly) required to be nonnegative.

 At each play of the game, the decoder can add new constraints to this IP to record the

information gained. Any feasible solution to the current formulation is a reasonable guess for the

next play. An interesting question is what constraints can be added at each play.

 To illustrate, suppose the decoder guesses the solution

XBLUE1 = XBLUE2 = XBLUE3 = XRED4 = 1, and the coder responds with the information that

m = 1 and m − n = 1. That is, one peg is in the correct position and, if permutations were allowed,

at most two pegs would be in the correct position. What constraints can be added to the IP to

incorporate the new information?

8. The Mathematical Football League (MFL) is composed of M teams (M is even). In a season of 2(M

− 1) consecutive Sundays, each team will play (2M − 1) games. Each team must play each other

team twice, once at home and once at the other team’s home stadium. Each Sunday, k games from

the MFL are televised. We are given a matrix {vij} where vij is the viewing audience on a given

Sunday if a game between teams i and j playing at team j’s stadium is televised.

a) Formulate a model for generating a schedule for the MFL that maximizes the viewing

audience over the entire season. Assume viewing audiences are additive.

b) Are some values of k easier to accommodate than others? How?

Formulating & Solving Integer Problems Chapter 11 343

9. The typical automobile has close to two dozen electric motors. However, if you examine these

motors, you will see that only about a half dozen distinct motor types are used. For inventory and

maintenance reasons, the automobile manufacturer would like to use as few distinct types as

possible. For cost, quality, and weight reasons, one would like to use as many distinct motor types

as possible, so the most appropriate motor can be applied to each application. The table below

describes the design possibilities for a certain automobile:

24-Month Failure Probability

 Number
Required

Motor type

Application A B C D E

Head lamps 2 0.002 0.01 0.01 0.007

Radiator fan 2 0.01 0.002 0.004

Wipers 2 0.007

Seat 4 0.003 0.006 0.008

Mirrors 2 0.004 0.001

Heater fan 1 0.006 0.001

Sun roof 1 0.002 0.003 0.009

Windows 4 0.004 0.008 0.005

Antenna 1 0.003 0.003 0.002

 Weight 2 3 1.5 1 4

 Cost per

Motor
24 20 36 28 39

 For example, two motors are required to operate the headlamps. If type D motors are used for

headlamps, then the estimated probability of a headlamp motor failure in two years is about 0.01. If

no entry appears for a particular combination of motor type and application, it means the motor type

is inappropriate for that application (e.g., because of size).

 Formulate a solvable linear integer program for deciding which motor type to use for each

application, so at most 3 motor types are used, the total weight of the motors used is at most 36,

total cost of motors used is at most 585, and probability of any failure in two years is approximately

minimized.

10. We have a rectangular three-dimensional container that is 30 50 50. We want to pack in it

rectangular three-dimensional boxes of the three different sizes: (a) 5 5 10, (b) 5 10 10, and

(c) 5 15 25.

 A particular packing of boxes into the container is undominated if there is no other packing that

contains at least as many of each of the three box types and strictly more of one of the box types.

Show there are no more than 3101 undominated packings.

344 Chapter 11 Formulating & Solving Integer Programs

11. Given the following:

Checkerboard and domino

 If two opposite corners of the checkerboard are made unavailable, prove there is no way of

exactly covering the remaining grid with 31 dominoes.

12. Which of the following requirements could be represented exactly with linear constraints? (You are

allowed to use transformations if you wish.)

(a) (3 x + 4 y)/(2 x + 3 y) 12;

(b) MAX (x, y) < 8;

(c) 3 x + 4 y y 11; where y is 0 or 1;

(d) ABS (10 − x) 7 (Note ABS means absolute value);

(e) MIN (x, y) < 12.

13. A common way of controlling access in many systems, such as information systems or the military,

is with priority levels. Each user i is assigned a clearance level Ui. Each object j is assigned a security

level Lj. A user i does not have access to object j if the security level of j is higher than the clearance

level of i. Given a set of users; and, for each user, a list of objects to which that user does not to

have access; and a list of objects to which the user should have access, can we assign Ui’s and Lj’s,

so these access rights and denials are satisfied? Formulate as an integer program.

14. One of the big consumption items in the U.S. is automotive fuel. Any petroleum distributor who

can deliver this fuel reliably and efficiently to the hundreds of filling stations in a typical distribution

region has a competitive advantage. This distribution problem is complicated by the fact that a

typical customer (i.e., filling station) requires three major products: premium gasoline, an

intermediate octane grade (e.g., “Silver”), and regular gasoline. A typical situation is described

below. A delivery tank truck has four compartments with capacities in liters of 13,600, 11,200,

10,800, and 4400. We would like to load the truck according to the following limits:

 Liters of

 Premium Intermediate Regular

At least: 8,800 12,000 12,800

At most: 13,200 17,200 16,400

 Only one gasoline type can be stored per compartment in the delivery vehicle. Subject to the

previous considerations, we would like to maximize the amount of fuel loaded on the truck.

(a) Define the decision variables you would use in formulating this problem as an IP.

(b) Give a formulation of this problem.

(c) What allocation do you recommend?

Formulating & Solving Integer Problems Chapter 11 345

15. Most lotteries are of the form:

Choose n numbers (e.g., n = 6) from the set of numbers {1, 2, ..., m} (e.g., m = 54).

 You win the grand prize if you buy a ticket and choose a set of n numbers identical to the n

numbers eventually chosen by lottery management. Smaller prizes are awarded to people who match

k of the n numbers. For n = 6, typical values for k are 4 and 5. Consider a modest little lottery with

m = 7, n = 3, and k = 2. How many tickets would you have to buy to guarantee winning a prize?

Can you set this up as a grouping/covering problem?

16. A recent marketing phenomenon is the apparent oxymoron, “mass customization”. The basic idea

is to allow each customer to design his/her own product, and yet do it on an efficient, high-volume

scale. A crucial component of the process is to automate the final design step involving the

customer. As an example, IBM and Blockbuster recently announced a plan to offer “on-demand”

production of customized music products at retail stores. Each store would carry an electronic

“master” for every music piece a customer might want. The physical copy for the customer would

then be produced for the customer while they wait. This opens up all manners of opportunities for

highly customized musical products. Each customer might provide a list of songs to be placed on

an audiocassette. A design issue when placing songs on a two-sided medium such as a cassette is

how to allocate songs to sides. A reasonable rule is to distribute the songs, so the playing times on

the two sides are as close to equal as possible. For an automatic tape player, this will minimize the

“dead time” when switching from one side to another. As an example, we mention that Willie

Nelson has recorded the following ten songs in duets with other performers:

Song Time (min:secs) Other Performer

1) Pancho and Lefty 4:45 Merle Haggard

2) Slow Movin Outlaw 3:35 Lacy J. Dalton

3) Are There any More Real

Cowboys

3:03 Neil Young

4) I Told a Lie to My Heart 2:52 Hank Williams

5) Texas on a Saturday Night 2:42 Mel Tillis

6) Seven Spanish Angels 3:50 Ray Charles

7) To All the Girls I’ve Loved

Before

3:30 Julio Iglesias

8) They All Went to Mexico 4:45 Carlos Santana

9) Honky Tonk Women 3:30 Leon Russell

10) Half a Man 3:02 George Jones

You want to collect these songs on a two-sided tape cassette album to be called “Half Nelson.”

(a) Formulate and solve an integer program for minimizing the dead time on the shorter side.

(b) What are some of the marketing issues of allowing the customer to decide which song goes

on which side?

346 Chapter 11 Formulating & Solving Integer Programs

17. Bill Bolt is hosting a party for his daughter Lydia on the occasion of her becoming of college age.

He has reserved a banquet room with 18 tables at the Racquet Club on Saturday night. Each table

can accommodate at most 8 people. A total of 140 young people are coming, 76 young men and 64

young ladies. Lydia and her mother, Jane, would like to have the sexes as evenly distributed as

possible at the tables. They want to have at least 4 men and at least 3 women at each table.

(a) Is it possible to have an allocation satisfying the above as well as the restriction there be at

most 4 men at each table?

(b) Provide a good allocation of the sexes to the tables.

18. The game or puzzle of Clue is played with a deck of 21 cards. At the beginning of a game, three of

the cards are randomly selected and placed face down in the center of the table. The remaining cards

are distributed face down as evenly as possible to the players. Each player may look at his or her

own cards. The object of the game is to correctly guess the three cards in the center. At each player’s

turn, the player is allowed to either guess the identity of the three cards in the center or ask any other

player a question of the form: “Do you have any of the following three cards?” (The asking player

then publicly lists the three cards.) If the asked player has one of the three identified cards, then the

asked player must show one of the cards to the asking player (and only to the asking player).

Otherwise, the asked player simply responds “No”. If a player correctly guesses the three cards in

the center, then that player wins. If a player incorrectly guesses the three cards in the center, the

player is out of the game.

Deductions about the identity of various cards can be made if we define:

X (i, j) = 1 if player i has card j, else 0.

 Arbitrarily define the three cards in the center as player 1. Thus, we can initially start with the

constraints:

X j
j

(,)1
1

21

=
 = 3.

For each card, j = 1, 2, …, 21:

X i j
i

(,) = 1.

(a) Suppose player 3 is asked: “Do you have either card 4, 8, or 17?” and player 3 responds

“No.” What constraint can be added?

(b) Suppose in response to your question in (a), player 3 shows you card 17. What constraint

can be added?

(c) What LP would you solve in order to determine whether card 4 must be one of the cards

in the center?

 Note, in the “implementation” of the game marketed in North America, the 21 cards are actually

divided into three types: (i) six suspect cards with names like “Miss Scarlet,” (ii) six weapons cards

with names like “Revolver,” and (c) nine room cards with names like “Kitchen.” This has essentially

no effect on our analysis above.

347

12

Decision making Under
Uncertainty and Stochastic

Programs

If you come to a fork in the road, take it.

-Y. Berra

12.1 Introduction
A big reason multiperiod planning is difficult is because of uncertainty about the future. For example,

next year, if the demand for your new product proves to be large and the cost of raw material increases

markedly, then buying a lot of raw material today would win you a lot of respect next year as a wise and

perceptive manager. On the other hand, if the market disappears for both your product and your raw

material, the company stockholders would probably not be so kind as to call your purchase of lots of

raw material bad luck.

We apply the term stochastic program or scenario planning (SP) to any optimization problems (linear,

nonlinear or mixed-integer) in which some of the model parameters are not known with certainty, and

the uncertainty can be expressed with known probability distributions. Applications arise in a variety

of industries:

 Financial portfolio planning over multiple periods for insurance and other financial

companies, in face of uncertain prices, interest rates, and exchange rates,

 Exploration planning for petroleum companies,

 Fuel purchasing when facing uncertain future fuel demand,

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand,

 Electricity generator unit commitment in face of uncertain demand,

 Hydro management and flood control in face of uncertain rainfall,

 Optimal time to exercise for options in face of uncertain prices,

 Capacity and Production planning in face of uncertain future demands and prices,

 Foundry metal blending in face of uncertain input scrap qualities,

 Product planning in face of future technology uncertainty,

 Revenue management in the hospitality and transport industries.

348 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

12.1.1 Identifying Sources of Uncertainty
In a discussion with the author, the chief financial officer of a large petroleum company made the

comment: “The trouble with you academics is that you assume the probabilities add up to one. In the

real world, they do not. You may think the possible outcomes are: ‘hit oil’, ‘hit gas’, or ‘dry hole’. In

reality, the drilling rig catches fire and causes a major disaster.” The point of the comment is that an

important part of managing uncertainty is identifying as many sources of uncertainty as possible. The

following is a typical list with which to start:

1. Weather related:

• decisions about how much and where to stockpile supplies of fuel and road salt in

preparation for the winter;

• water release decisions in the spring for a river and dam system, taking into account

hydroelectric, navigation, and flooding considerations.

2. Financial uncertainty:

• market price movements (e.g., stock price, interest rate, and foreign exchange rate

movements);

• defaults by business partner (e.g., bankruptcy of a major customer).

3. Political events:

• changes of government;

• outbreaks of hostilities.

4. Technology related:

• whether a new technology is useable by the time the next version of a product is

scheduled to be released.

5. Market related:

• shifts or fads in tastes;

• population shifts.

6. Competition:

• incomplete knowledge of the kinds of strategies used by the competition next year.

7. Acts of God:

• hurricane, tornado, earthquake, or fire;

• equipment failure.

 In an analysis of a decision under uncertainty, we would proceed through a list such as the above

and identify those items that might interact with our decision. Weather, in particular, can be a big source

of uncertainty. Hidroeléctrica Española, for example (see Dembo et al. (1990)), reports available power

output per year from one of its hydroelectric facilities varied from 8,350 Gwh (Giga-watt-hours) to 2,100

Gwh over a three-year period simply because of rainfall variation.

 Methods very similar to those described here have been used in the automotive industry to make

plant opening and closing decisions in the face of uncertainty about future demand. These methods have

also been used in the utilities industry to make fuel purchase decisions in the face of uncertainties about

weather in the next few years.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 349

12.2 The Scenario Planning (SP)Approach
We will start by considering planning problems with two periods. These situations consist of the

following sequence of events:

1) We make a first-period decision.

2) Nature (frequently known as the marketplace) makes a random decision.

3) We make a second-period decision that attempts to repair the havoc wrought by nature in

(2).

 The scenario approach assumes there are a finite number of decisions nature can make. We call each

of these possible states of nature a “scenario”. For example, in practice, most people are satisfied with

classifying demand for a product as being low, medium, or high; or classifying a winter as being severe,

normal, or mild, rather than requiring a statement of the average daily temperature and total snowfall

measured to six decimal places. General Motors has historically used low, medium, and high scenarios

to represent demand uncertainty. The type of model we will describe for representing uncertainty in the

context of LPs is called a “stochastic program”. For a survey of applications and methodology, see Birge

(1997). For an extensive introduction to stochastic programming ideas, see Kall and Wallace (1994).

For a good discussion of some of the issues in applying stochastic programming to financial decisions,

see Infanger (1994).

12.2.1 Formulation and Structure of an SP Problem
In decisionmaking under uncertainty, it is important to take into account the sequence in which

information becomes available and we make decisions. We use the term stage to described the sequence

pair: [1) new information becomes available, 2) we make a decision]. Usually, one can think of a stage

as a ‘time period’, however there are situations where a stage may consist of several time periods. A

stage: a) begins with one or more random events, e.g., some demands occur, and b) ends with our making

one or more decisions, e.g., sell some excess product or order some more product.

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon

before uncertain events (random parameters) are revealed while trying to protect against unfavorable

outcomes that could be observed in the future.

In its most general form, a multistage decision process with T+1 stages follows an alternating sequence

of random events and decisions. Slightly more explicitly:

0.1) in stage 0, we make some initial decision, e.g., how much to order, taking into

account that…

1.0) at the beginning of stage 1, “Nature” takes a set of random decisions, e.g., how

much customers want to buy, leading to realizations of all random events in stage 1,

and…

1.1) at the end of stage 1, having seen nature’s decision, as well as our previous

decision, we make a recourse decision, e.g., sell off excess product or order even

more, taking into account that …

2.0) at the beginning of stage 2, “Nature” takes a set of random decisions, leading

to realizations of all random events in stage-2, and…

350 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

2.1) at the end of stage 2, having seen nature’s decision, as well as our previous

decisions, we make another recourse decision taking into account that …

 .

 .

 .

T.0) At the beginning of stage T, “Nature” takes a random decision, leading to

realizations of all random events in stage T, and…

T.1) at the end of stage T, having seen all of nature’s T previous decisions, as well

as all our previous decisions, we make the final recourse decision.

The decision taken in stage 0 is called the initial decision, whereas decisions taken

in succeeding stages are sometimes called recourse decisions. Recourse decisions

are interpreted as corrective actions that are based on the actual values the random

parameters realized so far, as well as the past decisions taken thus far.

The essential steps in formulating an SP in LINGO are:

 1) Write a standard deterministic model (the core model) as if the random variables

are variables or parameters.

 2) Identify the random variables, and decision variables,and their staging. This is

done using a statement like @SPSTGVAR(0, Q) to declare that Q is a stage 0

decision variable, and a statement like @SPSTGRNDV(1, DEMAND) to declare that

DEMAND is a random variable in stage 1.

 3) Provide the distributions describing the random variables. Distribution

specification is specific using a function of the form @SPDIST*(parameters,

randomvariable). For example, @SPDISTPOIS(60, DEMAND) means that

DEMAND is a random variable from a Poisson distribution with mean 60.

 4) Specify manner of sampling from the distributions, (mainly the sample size).

This information is provided via a statement like: @SPSAMPSIZE(1, 200),

meaning that in stage 1 a sample size of 200 should be used.

 5) List the variables for which we want a scenario by scenario report or a

histogram: WBSP_REP(cell_list) for scenario list of values, or

Decision Making Under Uncert. & Stoch. Programs Chapter 12 351

 WBSP_HIST(bins, cell) for histograms.

12.3 Single Stage Decisions Under Uncertainty
The simplest problems of decision making under uncertainty involve the case where there is but a single

stage with randomness.

12.3.1 The News Vendor Problem

The simplest problem of decision making under uncertainty is the News Vendor problem, i.e., we must

decide how much to stock in anticipation of demand, before knowing exactly what the demand will be.

Below we see how the Newsvendor problem is set up as a LINGO model.

MODEL: !(SP_NBsimpleL.lg4);

 ! Newsvendor problem as a stochastic program in LINGO.

 How much should we stock, Q,

 in anticipation of uncertain DEMAND?

 Parameters:

 10 = cost/unit purchased and stocked,

 15 = revenue/unit sold;

! Step 1: Core model definition--------------------------------+;

 [R_OBJ] MAX = PROFIT;

 ! (Expected) Profit =

 sales - purchase cost;

 PROFIT = 15 * SALES - 10 * Q;

 @FREE(PROFIT); ! Allow negative PROFIT because

 might have a loss in some scenarios;

 ! Set excess inventory or shortage ;

 EXCESS - SHORT = Q - DEMAND;

 SALES = DEMAND - SHORT;

! SP related declarations --------------------------------------+;

! Step 2: staging info;

 @SPSTGVAR(0, Q); ! Amount to purchase, Q, is a stage 0 decision;

 @SPSTGRNDV(1, DEMAND); ! Demand is a random variable observed

 in stage 1, at the beginning;

! Step 3: Distribution info;

 @SPDISTPOIS(60, DEMAND); ! Demand has a Poisson distribution;

 ! @SPDISTNORM(60, 12, DEMAND); ! Demand has Normal distribution;

! Step 4: Sampling structure;

 @SPSAMPSIZE(1, 200); ! Specify the stage 1 sample size;

END

Part of the solution report is shown below.

 Global optimal solution found.

352 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 Objective value: 257.8500

 Infeasibilities: 0.000000

 Total solver iterations: 134

 Elapsed runtime seconds: 0.49

 Expected value of:

 Objective (EV): 257.8500

 Wait-and-see model's objective (WS): 299.8000

 Perfect information (EVPI = |EV - WS|): 41.95000

 Policy based on mean outcome (EM): 253.5880

 Modeling uncertainty (EVMU = |EM - EV|): 4.262000

 Stage 0 Solution

 Variable Value

 Q 57.00000

 Staging Report

 Random Variable Stage

 DEMAND 1

 Variable Stage

 PROFIT 1*

 SALES 1*

 Q 0

 EXCESS 1*

 SHORT 1*

 (*) Stage was inferred

 Random Variable Distribution Report

 Sample Sample

 Random Variable Mean StdDev Distribution

 DEMAND 59.96000 7.740052 POISSON,60

 Scenario: 1 Probability: 0.5000000E-02 Objective: -45.00000

 Random Variable Value

 DEMAND 35.00000

 Variable Value

 PROFIT -45.00000

 SALES 35.00000

 Q 57.00000

 EXCESS 22.00000

 SHORT 0.000000

 Scenario: 2 Probability: 0.5000000E-02 Objective: 285.0000

 --

Decision Making Under Uncert. & Stoch. Programs Chapter 12 353

 Random Variable Value

 DEMAND 66.00000

 Variable Value

 PROFIT 285.0000

 SALES 57.00000

 Q 57.00000

 EXCESS 0.000000

 SHORT 9.000000

 . . .

12.3.2 Multi-product Inventory with Repositioning
This is example is a very simplified illustration of an inventory management approach used by some

apparel retailers. The general sequence of events is:

 Stage 0) Before the selling season starts

 the retailer commits inventory to a number of locations and/or products.

 Stage 1, beginning) Demands at the various locations or products are observed.

 Stage 1, end) Product can be repositioned to some extent, at some additional cost, among the various

 locations/products, generally moving inventory to the locations/products with higher than

 expected demand.

 This is a very crude simplified representation of an inventory allocation system with reallocation used

at the clothing retailers Sport Obermeyer, see Fisher and Raman(1996) and at the Spanish firm Zara, see

Caro and Gallien (2010). Our example below is closer to that of Sport Obermeyer, where the secondary

reallocation is over products, whereas at Zara, the reallocation is over locations. In the example below,

in stage 0 we need to decide what initial quantities should be produced to inventory of three types of

parkas, the “Anita”, “Daphne”, and “Electra”. After this initial production run, we observe the demands

for the three parkas. Once we see the demands, we have access to a fast backup production facility of

limited capacity that can produce any of the three products. Although this backup facility is fast, it is

also very expensive per unit produced, and it has limited capacity, so if we had perfectly accurate

forecasts, we would not use the backup facility. We would produce just the right amount of each product

from the outset. In the real world where perfect forecasts are the exception, the main question is: How

much should we produce of each product initially, taking into account that we can use the somewhat

expensive backup facility to partially compensate for our forecast errors.

 In the previous example, we sampled from a standard distribution, e.g., the Poisson. In this example,

we illustrate using a table of demand scenarios. There are four possible scenarios with associated

probabilities.

! Capacity Planning with Re-positioning Under Uncertainty (SP_Cap_Plan_Gen);

! Stage 0: We decide what inventories or capacities

 to place at various origins.

 Stage 1 beginning: Demands at various demand points observed.

 Stage 1 end: We satisfy demands from available quantities

 (by solving a transportation problem.);

SETS:

 ORIGIN: CPERU, ULCAP, Q;

 DESTN: DEMAND;

 OXD(ORIGIN, DESTN): PROFC, X;

 SCENE: PROB;

354 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 SXD(SCENE, DESTN): RDEM;

ENDSETS

DATA:

! These data are based very loosely on the Sport Obermeyer apparel

problem studied by Fisher and Raman, Operations Research, vol. 44, no. 1;

 ORIGIN = OANITA, ODAPHNE, OELECTRA, OGENRIC; ! Sources of production;

 CPERU = 80 90 65 5; ! Cost per unit to commit;

 ULCAP = 9999 9999 9999 150; ! Upper limit on production;

 DESTN = DANITA, DDAPHNE, DELECTRA; ! Demand points;

 PROFC = 180 0 0 ! Incremental profit from satisfying a ;

 0 160 0 ! particular demand point from a ;

 0 0 140 ! particular supply point;

 90 50, 60; ! Generic is a quick response source;

 ! E.g., OANITA can satisfy only DANITA, ODAPHNE only DDAPHNE, etc.,

 OGENERIC can satisfy any demand but is not as profitable and

 has limited capacity;

 PROB = 0.2 0.3 0.4 0.1; ! Probabilities of various scenarios;

 RDEM = 300 400 400 ! The demand scenarios;

 320 370 433

 333 383 460

 500 320 610;

ENDDATA

! Decision variables:

 Q(i) = amount of initial inventory or capacity we put at or in

 source i before seeing demand.

 X(i,j) = amount we reposition from source i to destinantion j

 after seeing demand. Some destinations may also be sources;

! 1) Define core model;

 ! Maximize revenue from sales minus cost of producing inventory;

 MAX = @SUM(OXD(i,j): PROFC(i,j)*X(i,j))

 - @SUM(ORIGIN(i): CPERU(i)* Q(i));

 ! Cannot install/produce more than upper limit;

 @FOR(ORIGIN(i):

 Q(i) <= ULCAP(i);

);

 ! Cannot sell more than we stock;

 @FOR(ORIGIN(i):

 @SUM(DESTN(j): X(i,j)) <= Q(i);

);

 ! Cannot sell more than demand;

 @FOR(DESTN(j):

 @SUM(ORIGIN(i): X(i,j)) <= DEMAND(j);

);

 ! 2) Specify staging of decisions. Click on

 Edit | Paste function | Stochastic Programming

 to see choices and syntax;

 @FOR(ORIGIN(i):

 @SPSTGVAR(0, Q(i)); ! The Q's are a stage 0 decision;

);

 ! ... and demands (stage 1);

Decision Making Under Uncert. & Stoch. Programs Chapter 12 355

 @FOR(DESTN(j):

 @SPSTGRNDV(1, DEMAND(j)); ! Demands observed in stage 1 beginning;

);

 ! 3) Specify distribution of demands.

 Demand scenarios come from a table;

 @SPDISTTABLE(RDEM, DEMAND, PROB);

 ! 4) Number of scenarios;

 @SPSAMPSIZE(1, 10);

A portion of the solution report appears below. Notice that all of the available generic capacity is committed.

 Global optimal solution found.

 Objective value: 90207.00

 Stage 0 Solution

 Variable Value

 Q(OANITA) 320.0000

 Q(ODAPHNE) 370.0000

 Q(OELECTRA) 433.0000

 Q(OGENRIC) 150.0000

 Scenario: 1 Probability: 0.1000000 Objective: 82905.00

 --

 Random Variable Value

 DEMAND(DANITA) 300.0000

 DEMAND(DDAPHNE) 400.0000

 DEMAND(DELECTRA) 400.0000

 Variable Value

 X(OGENRIC, DDAPHNE) 30.00000

 Scenario: 2 Probability: 0.1000000 Objective: 93065.00

 --

 Random Variable Value

 DEMAND(DANITA) 333.0000

 DEMAND(DDAPHNE) 383.0000

 DEMAND(DELECTRA) 460.0000

 Variable Value

 X(OGENRIC, DANITA) 13.00000

 X(OGENRIC, DDAPHNE) 13.00000

 X(OGENRIC, DELECTRA) 27.00000

 Scenario: 3 Probability: 0.1000000 Objective: 89625.00

 --

 Random Variable Value

356 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 DEMAND(DANITA) 320.0000

 DEMAND(DDAPHNE) 370.0000

 DEMAND(DELECTRA) 433.0000

 Variable Value

 Scenario: 4 Probability: 0.1000000 Objective: 93065.00

 --

 Random Variable Value

 DEMAND(DANITA) 333.0000

 DEMAND(DDAPHNE) 383.0000

 DEMAND(DELECTRA) 460.0000

 Variable Value

 X(OGENRIC, DANITA) 13.00000

 X(OGENRIC, DDAPHNE) 13.00000

 X(OGENRIC, DELECTRA) 27.00000

 Scenario: 8 Probability: 0.1000000 Objective: 95125.00

 --

 Random Variable Value

 DEMAND(DANITA) 500.0000

 DEMAND(DDAPHNE) 320.0000

 DEMAND(DELECTRA) 610.0000

 Variable Value

 X(OGENRIC, DANITA) 150.0000

12.4 Multi-Stage Decisions Under Uncertainty
 Our examples thus far have been at most two stages. In stage 0, we make a decision, and then in stage

1 at the beginning there is one occurrence of a random event, and then finally we make one recourse

decision. A slightly more complicated class of problems is the set of problems in which there are two or

more separate random stages, with an intervening set of decisions. Perhaps the simplest multi-stage

problems of decision making under risk are “stopping “ problems, examined next.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 357

12.4.1 Stopping Rule and Option to Exercise Problems
 Some sequential decision problems are of the form: a) Each period we have to make an accept or

reject decision; b) once we accept, the “game is over”. We then have to live with that decision. Our

next example is the simplest example of a problem known variously as a stopping problem, the college

acceptance problem, the secretary problem, or the dating game. The general situation is as follows.

Each period we are offered an object of known quality. We have a choice of either a) accept the object

and end the game, or b) reject the object and continue in the hope that a better object will become

available in a future period. The problem is nontrivial because we do not know the qualities in

advance. The following illustrates. Each period we will see either a 2, a 7, or a 10, where 10 is the best

possible, and 2 is the worst. It is clear that once we see a 10, we might as well accept. We can never

do better. If we see a 2, we should never accept unless it is the last period. Whether we should accept

or reject a 7 in intermediate periods is at the moment a puzzle, depending upon the probabilities of the

various outcomes. There are four periods, i.e., we have 4 chances. The completely deterministic “core”

model is quite simple, namely:

 Maximize v1*y1 + v2*y2 + v3*y3+ v4*y4;

 subject to:

 y1 + y2 + y3+ y4 ≤ 1;

 yj = 0 or 1, for j = 1, 2, 3, 4;

The complication is that we do not know the vj in advance. In particular, we must choose the value for

yj immediately after seeing vj, without knowing the future vj ‘s. If we follow the simple rule of

accepting the first candidate, i.e., setting = 1, then the expected value of the objective function is

(2+7+10)/3 = 6.3333. To check our understanding, we might ask ourselves several questions. How

much better than 6.3333 can we do by being more thoughtful? What will the optimal policy look like?

We can deduce certain features of it, such as: 1) If we see a 10, then accept it immediately. We can do

no better; 2) If we see a 2, reject it, except if it is the last period, then accept. The big question is what

to do when we see a 7 in any period before the last. The model formulated in LINGO appears below.

! The Dating Game (SP_DatinGame)

 We interview one prospect per stage or period.

 The quality of a prospect is a random variable.

 After interviewing a prospect we must make an Accept or Reject decision.

 Once we Accept, the game is over.

 We want to maximize the expected quality of the accepted prospect;

SETS:

 PERIOD: QUALITY, Y, SAMP_SZ;

 QPOSS: QOFP;

ENDSETS

DATA:

 PERIOD = P1 P2 P3 P4; ! The view and accept/reject periods);

 SAMP_SZ= 3 3 3 3; ! Sample size for each period;

 QOFP = 2 7 10; ! Possible qualities of prospects;

358 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

ENDDATA

! 1) Core Model ---+;

 ! Y(p) = 1 if we accept the prospect we see in stage p;

! Maximize the quality of the accepted prospect;

 MAX = @SUM(PERIOD(p): QUALITY(p)*Y(p));

! We can accept only once;

 @SUM(PERIOD(P): Y(P)) <= 1;

! We either accept or reject, no halfsies;

 @FOR(PERIOD(p): @BIN(Y(p)));

!LS*** These redundant constraints are added just to make the solver happy;

 @SPSTGVAR(0, Y0); ! In case LINGO wants a decision variable in stage 0;

 Y0 + Y(1) <= 1;

 Y0 + Y(2) <= 1;

 Y0 + Y(3) <= 1;

! SP Related Declarations -----------------------------+;

! 2) Staging information;

! QUALITY is a random variable;

@FOR(PERIOD(p):

 @SPSTGRNDV(p, QUALITY(p));

! The decision variables;

 @SPSTGVAR(p, Y(p));

);

! 3) Declare a table distribution;

@FOR(PERIOD(P) :

 ! Quality is chosen randomly from table QOFP;

 @SPDISTTABLE(QOFP, QUALITY(p));

);

 ! 4) Declare sample size for each stage/period;

@FOR(PERIOD(P):

 ! Set the sample size for the stage;

 @SPSAMPSIZE(P, SAMP_SZ(P));

);

When solved, we see that the expected objective value is 9.012346, quite a bit better than the 5.333333

we would get by taking the first offer.

With regard to the policy, in particular, what to do when we are offered a “7”, we can look Scenario 51

below.

 Global optimal solution found.

 Objective value: 9.012346

 Scenario: 61 Probability: 0.1234568E-01 Objective: 7.000000

Decision Making Under Uncert. & Stoch. Programs Chapter 12 359

 Random Variable Value

 QUALITY(P1) 7.000000

 QUALITY(P2) 7.000000

 QUALITY(P3) 7.000000

 QUALITY(P4) 10.00000

 Variable Value

 Y(P3) 1.000000

360 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

Notice from the highlighted row, for the given probabilities, if we see a 7 in stage 1 or 2, we do not

accept (0) it, however, when we see a 7 in stage 3, whe accept (1).

12.4.2. An Option Exercise Stopping Problem
In financial markets it is frequently possible to buy options to buy or sell some financial instrument at

an agreed upon “strike” price. This is a type of stopping problem. Once we have exercised the option,

the game is over. The option exercise problem differs from our previous stopping problem example

only in the manner in which the random variables, in this case the price of the financial instrument, is

determined. In this particular example we will have five periods/stages/decision points, so the core

model is similar to before:

 Maximize v1y1 + v2y2 + v3y3+ v3y3 +v5y5;

 subject to:

 y1 + y2 + y3+ y4 + y5 ≤ 1;

 yj = 0 or 1, for j = 1, 2, 3, 4, 5;

The difference is the manner in which the vj are determined. In this particular example, we assume that

with equal probability the financial instrument, say a stock, changes each period by either 1) increasing

by 6%, or 2) increases, by 1%, or 3) decreases by 4%. Further, we have to pay for the option up front,

however, if and when we exercise the option, we get paid (difference between the strike price minus

the then current price) only later at the point of exercise. Therefore, we want to discount the future

cash inflow back to the point in time that we purchase the option. Figure 5.8 shows the setup in

What’sBest!.

When solved, from the WB! Status tab, we see that the expected value of the objective is 1.669324.

This means, that we would be we be willing to pay up to about 1.67 for this option. One of the

attractive features of using stochastic programming is that you get to see the distribution of the profit.

If we look on the WB!_Histogram tab, we see the histogram in Figure 5.9. The interesting message

from this histogram is that even though the expected profit contribution from exercising the option is

about 1.67, we should expect a profit contribution of zero about 70% of the time.

With regard the policy of when to sell, recall that the strike price was 99, so we would never sell if the

price > 99. From looking at the WB_Stochastic tab in Figure 5.10, we see that the policy is:

 Sell at Strike Price

 Stage if Market Price ≤

 1 never

 2 92.16

 3 93.08

 4 94.01

 5 99.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 361

12.5 Expected Value of Perfect Information (EVPI)
Uncertainty has its costs. Therefore, it may be worthwhile to invest in research to reduce the uncertainty.

This investment might be in better weather forecasts for problems like the one just considered or it might

be in test markets or market surveys for problems relating to new product investment. A bound on the

value of better forecasts is obtainable by considering the possibility of getting perfect forecasts, so-called

perfect information.

 We have sufficient information on the snow removal problem to calculate the value of perfect

information. For example, if we knew beforehand the winter would be warm, then we saw from the

solution of the warm winter model the total cost would be $583,333.3. On the other hand, if we knew

beforehand that the winter would be cold, we saw the total cost would be $970,000. Having perfect

forecasts will not change the frequency of warm and cold winters. They will presumably still occur with

respective probabilities 0.4 and 0.6. Thus, if we had perfect forecasts, the expected cost per season would

be:

0.4 583,333.3 + 0.6 970,000 = 815,333.3

 From the solution of the complete model, we see the expected cost per season without any additional

information is $819,888.3. Thus, the expected value of perfect information is

819,888.3 − 815,333.3 = $4,555.0. Therefore, if a well-dressed weather forecaster claims prior

knowledge of the severity of the coming winter, then an offer of at most $4,555 should be made to learn

his forecast. We say the expected value of perfect information in this case is $4,555. In reality, his

forecast is probably worth considerably less because it is probably not a perfect forecast.

12.6 Expected Value of Modeling Uncertainty
Suppose the EVPI is high. Does this mean it is important to use stochastic programming, or the scenario

approach? Definitely not. Even though the EVPI may be high, it may be a very simple deterministic

model does just as well (e.g., recommends the same decision as a sophisticated stochastic model). The

Expected Value of Modeling Uncertainty (EVMU) measures the additional profit possible by using a

“correct” stochastic model. EVMU is always measured relative to some simpler deterministic model.

12.6.1 Certainty Equivalence
An interesting question is: are there some situations in which we know in advance EVMU = 0?. A

roughly equivalent question is: “Under what conditions can we replace a random variable in a model by

its expected value without changing the action recommended by the model?” If we can justify such a

replacement, then we have a priori determined that the EVMU is zero for that random variable. The

following gives a sufficient condition:

Certainty Equivalence Theorem: If the randomness or unpredictability in problem data

exists solely in the objective function coefficients of a linear objective function, then

362 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

it is correct to solve the model in regular form after simply using the expected values

for the random coefficients in the objective.

 If the randomness exists in a right-hand side or a constraint coefficient, then it is generally not

correct to simply replace the random element by its average or expected value. We can be slightly more

precise if we define:

X = the set of decision variables,

Yi = some random variable in the model,

i = all other random variables in the model, except Yi,

i = all other random variables that are independent of Yi.

 We are justified in replacing Yi by its expected value, E(Yi), if Yi appears only in the objective

function, and each term containing Yi either:

is not a function of X, or

is linear in Yi and contains no random variables dependent upon Yi.

Equivalently, we must be able to write the objective as:

Min F1(X, i) + F2(X, i) * Yi + F3(i,Yi).

If we take expected values:

E[F1(X,Yi) + F2(X, i) * Yi + F3(i,Yi)]

= E[F1(X, i)] + E[F2(X, I)] * E(Yi) + E[F3(i,Yi)].

The third term is a constant with respect to the decision variables, so it can be dropped.

 Thus, any X that minimizes E[F1(X i) + F2(X, i) * Yi] also minimizes:

E[F1(X, i) + F2(X, i) * E(Yi)].

 As an example, consider a farmer who must decide how much corn, beans, and milo to plant in the

face of random yields and random prices for the crops. Further, suppose the farmer receives a

government subsidy that is a complicated function of current crop prices and the farmer’s total land

holdings, but not a function of current yield or planting decisions. Suppose the price for corn at harvest

time is independent of the yield. The farmer’s income can be written (income from beans and milo) +

(acreage devoted to corn) (corn yield) (price of corn) + (subsidy based on prices).

 The third term is independent of this year’s decision, so it can be disregarded. In the middle term,

the random variable, “price of corn”, can be replaced by its expected value because it is independent of

the two other components of the middle term.

12.7 Risk Aversion
Thus far, we have assumed the decision maker is strictly an expected profit maximizer and is neither

risk averse nor risk preferring. Casino gamblers who play games such as roulette must be risk preferring

Y
_

Y
~

Y
_

Y
~

Y
_

Y
~

Y
_

Y
_

Y
~

Y
_

Y
_

Y
~

Y
_

Y
~

Decision Making Under Uncert. & Stoch. Programs Chapter 12 363

if the roulette wheel is not defective, because their expected profits are negative. A person is risk averse

if he or she attaches more weight to a large loss than expected profits maximization would dictate.

 In the context of the snow removal problem, the Streets Manager might be embarrassed by a high

cost of snow removal in a cold winter even though long run expected cost minimization would imply an

occasional big loss. From the optimal policy for the snow removal problem, we can see the sum of

first-period plus second-period costs if the winter is cold is:

70*BF1 + 20*BS1 + KC = 977591.

 On the other hand, if it is known beforehand the winter will be cold, then we have seen this cost can

be reduced to $970,000.

 For fear of attracting the attention of a political opponent, the Streets Manager might wish to prevent

the possibility of a cost more than $5,000 greater than the minimum possible for the cold winter outcome.

 The Manager can incorporate his risk aversion into the LP by adding the constraint:

70 * BF1 + 20 * BS1 + KC 975000.

When this is done, the solution is:

Optimal solution found at step: 11

Objective value: 820061.1

Variable Value Reduced Cost

 BF1 3780.556 0.0000000

 BS1 2916.667 0.0000000

 KW 264680.6 0.0000000

 KC 652027.8 0.0000000

 BFW 0.0000000 3.200000

 XFW 863.8889 0.0000000

 PW 0.0000000 4.611115

 SW 2916.667 0.0000000

 BSW 0.0000000 3.533334

 XSW 0.0000000 8.466666

 BFC 1027.778 0.0000000

 XFC 0.0000000 5.333333

 PC 1891.667 0.0000000

 SC 2916.667 0.0000000

 BSC 0.0000000 8.466667

 XSC 0.0000000 2.866666

 The expected cost has increased by about 820,061 − 819,888 = 173 dollars. A politician might

consider this a price worth paying to reduce his worst case (cold winter) cost almost $2,600. Notice,

however, performance in the event of a warm winter does not look as good. The value of XFW indicates

there will be almost 864 units of fuel to be disposed of at the end of a warm winter.

12.7.1 Downside Risk
There is a variety of ways of measuring risk. Variance is probably the most common measure of risk.

The variance measure gives equal weight to deviations above the mean as well as below. For a symmetric

distribution, this is fine, but for nonsymmetrical distributions, this is not attractive. Most people worry

a lot more about returns that are below average than ones above average.

364 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 Downside risk is a reasonably intuitive way of quantifying risk that looks only at returns lower than

some threshold. In words, downside risk is the expected amount by which return falls short of a specified

target. To explain it more carefully, define:

 Ps = probability that scenario s occurs

 T = a target return threshold that we specify

 Rs = the return achieved if scenario s occurs

 Ds = the down side if scenario s occurs

 = max {0, T − Rs}

ER = expected downside risk

 = p1D1 + p2D2 + ...

12.7.2 Example
Suppose the farmer of our earlier acquaintance has made two changes in his assessment of things: (a) he

assesses the probability of a wet season as 0.7 and (b) he has eliminated beans as a possible crop, so he

has only two choices (corn and sorghum). A reformulation of his model is:

MAX = 0.7 * RW + 0.3 * RD;

RW - 100 * C - 70 * S = 0;

RD + 10 * C - 40 * S = 0;

C + S = 1;

@FREE(RW);

@FREE(RD);

 The variables RW and RD are the return (i.e., profit) if the season is wet or dry, respectively. Notice

both RW and RD were declared as FREE, because RD in particular could be negative.

 When solved, the recommendation is to plant 100% corn with a resulting expected profit of 67:

Optimal solution found at step: 0

Objective value: 67.00000

Variable Value Reduced Cost

 RW 100.0000 0.0000000

 RD -10.00000 0.0000000

 C 1.000000 0.0000000

 S 0.0000000 6.000000

 Row Slack or Surplus Dual Price

 1 67.00000 1.000000

 2 0.0000000 0.7000000

 3 0.0000000 0.3000000

 4 0.0000000 67.00000

 The solution makes it explicit that, if the season is dry, our profits (RD) will be negative. Let us

compute the expected downside risk for a solution to this problem. We must choose a target threshold.

A plausible value for this target is one such that the most conservative decision available to us just barely

has an expected downside risk of zero. For our farmer, the most conservative decision is sorghum. A

target value of 40 would give sorghum a downside risk of zero. To compute the expected downside risk

for our problem, we want to add the following constraints:

DW > 40 − RW

DD > 40 − RD
ER = .7 DW + .3 DD

Decision Making Under Uncert. & Stoch. Programs Chapter 12 365

The constraint DW > 40 − RW effectively sets DW = max (0, 40 − RW).

 When converted to standard form and appended to our model, we get:

MAX = 0.7 * RW + 0.3 * RD;

RW - 100 * C - 70 * S = 0;

RD + 10 * C - 40 * S = 0;

C + S = 1;

RW + DW > 40;

RD + DD > 40;

- 0.7 * DW - 0.3 * DD + ER = 0;

@FREE(ER);

@FREE(RW);

@FREE(RD);

The solution is:

Optimal solution found at step: 2

Objective value: 67.00000

Variable Value Reduced Cost

 RW 100.0000 0.0000000

 RD -10.00000 0.0000000

 C 1.000000 0.0000000

 S 0.0000000 6.000000

 DW 0.0000000 0.0000000

 DD 50.00000 0.0000000

 ER 15.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 67.00000 1.000000

 2 0.0000000 0.7000000

 3 0.0000000 0.3000000

 4 0.0000000 67.00000

 5 60.00000 0.0000000

 6 0.0000000 0.0000000

 7 0.0000000 0.0000000

 Because we put no constraint on expected downside risk, we get the same solution as before, but

with the additional information that the expected downside risk is 15.

 What happens as we become more risk averse? Suppose we add the constraint ER < 10. We then

get the solution:

Optimal solution found at step: 2

Objective value: 65.00000

Variable Value Reduced Cost

 RW 90.00000 0.0000000

 RD 6.666667 0.0000000

 C 0.6666667 0.0000000

 S 0.3333333 0.0000000

 DW 0.0000000 0.2800000

 DD 33.33333 0.0000000

 ER 10.00000 0.0000000

366 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 Notice the recommendation is now to put 1/3 of the land into sorghum. The profit drops modestly

to 65 from 67. If the season is dry, the profit is now 6.67 rather than −10 as before. Finally, let’s constrain

the expected downside risk to zero with ER < 0. Then the solution is:

Optimal solution found at step: 2

Objective value: 61.00000

Variable Value Reduced Cost

 RW 70.00000 0.0000000

 RD 40.00000 0.0000000

 C 0.0000000 0.0000000

 S 1.000000 0.0000000

 DW 0.0000000 0.2800000

 DD 0.0000000 0.0000000

 ER 0.0000000 0.0000000

 Row Slack or Surplus Dual Price

 1 61.00000 1.000000

 2 0.0000000 0.7000000

 3 0.0000000 0.4200000

 4 0.0000000 65.80000

 5 30.00000 0.0000000

 6 0.0000000 -0.1200000

 7 0.0000000 -0.4000000

 8 0.0000000 0.4000000

Now, all the land is planted with sorghum and expected profit drops to 61.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 367

12.8 Dynamic Programming and Financial Option Models
The term dynamic programming is frequently applied to the solution method described above. We

illustrate it with three examples in the area of financial options. One in the stock market, one in the bond

market, and the third in foreign exchange. A stock option is a right to buy a specified stock at a specified

price (the so-called strike price) either on a specified date (a so-called European option) or over a

specified interval of time (a so-called American option). An interesting problem in finance is the

determination of the proper price for such an option. This problem was “solved” by Black and Scholes

(1973). Below is a LINGO implementation of the “binomial pricing” version of the Black/Scholes

model:

MODEL:

SETS: !(OPTONB);

! Binomial option pricing model: We assume that

a stock can either go up in value from one period

to the next with probability PUP, or down with

probability (1 - PUP). Under this assumption,

a stock's return will be binomially distributed.

 We can then build a

dynamic programming recursion to

determine the option's value;

! No. of periods, e.g., weeks;

 PERIOD /1..20/:;

ENDSETS

DATA:

! Current price of the stock;

 PNOW = 40.75;

! Exercise price at option expiration;

 STRIKE = 40;

! Yearly interest rate;

 IRATE = .163;

! Weekly variance in log of price;

 WVAR = .005216191 ;

ENDDATA

SETS:

!Generate our state matrix for the DP.STATE(S,T) may

be entered from STATE(S,T-1)if the stock lost value,

or it may be entered from STATE(S-1,T-1) if stock

 gained;

 STATE(PERIOD, PERIOD)| &1 #LE# &2:

 PRICE, ! There is a stock price, and ;

 VAL; ! a value of the option;

ENDSETS

! Compute number of periods;

 LASTP = @SIZE(PERIOD);

! Get the weekly interest rate;

 (1 + WRATE) ^ 52 = (1 + IRATE);

! The weekly discount factor;

 DISF = 1/(1 + WRATE);

! Use the fact that if LOG(P) is normal with

 mean LOGM and variance WVAR, then P has

 mean EXP(LOGM + WVAR/2), solving for LOGM...;

 LOGM = @LOG(1 + WRATE) - WVAR/ 2;

368 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

! Get the log of the up factor;

 LUPF = (LOGM * LOGM + WVAR) ^ .5;

! The actual up move factor;

 UPF = @EXP(LUPF);

! and the down move factor;

 DNF = 1/ UPF;

! Probability of an up move;

 PUP = .5 * (1 + LOGM/ LUPF);

! Initialize the price table;

 PRICE(1, 1) = PNOW;

! First the states where it goes down every period;

 @FOR(PERIOD(T) | T #GT# 1:

 PRICE(1, T) = PRICE(1, T - 1) * DNF);

! Now compute for all other states S, period T;

 @FOR(STATE(S, T)| T #GT# 1 #AND# S #GT# 1:

 PRICE(S, T) = PRICE(S - 1, T - 1) * UPF);

! Set values in the final period;

 @FOR(PERIOD(S):

 VAL(S, LASTP)= @SMAX(PRICE(S, LASTP) - STRIKE,0)

);

! Do the dynamic programming;

 @FOR(STATE(S, T) | T #LT# LASTP:

 VAL(S, T) = @SMAX(PRICE(S, T) - STRIKE,

 DISF * (PUP * VAL(S + 1, T + 1) +

 (1 - PUP) * VAL(S, T + 1))));

! Finally, the value of the option now;

 VALUE = VAL(1, 1);

END

 The @SMAX function in the dynamic programming section corresponds to the decision in period T

to either exercise the option and make an immediate profit of PRICE(S, T) – STRIKE, or wait (at least)

until next period. If we wait until next period, the price can go up with probability PUP or down with

probability 1- PUP. In either case, to convert next period’s value to this period’s value, we must multiply

by the discount factor, DISF. The interesting part of the solution to this model gives:

Variable Value

 VALUE 6.549348

 The actual price of this option in the Wall Street Journal when there were 19 weeks until expiration

was $6.625. So, it looks like this option is not a good buy if we are confident in our input data.

12.8.1 Binomial Tree Models of Interest Rates
Financial options based on interest rates are becoming widely available, just as options on stock prices

have become widely available. In order to evaluate an interest rate option properly, we need a model of

the random behavior of interest rates.

 Interest rates behave differently than stock prices. Most notably, interest rates tend to hover in a

finite interval (e.g., 2% to 20% per year); whereas, stock prices continue to increase year after year. Not

surprisingly, a different model must be used to model interest rates. One of the simpler, yet realistic,

methods for evaluating interest rate based options was developed by Black, Derman, and Toy (1990).

Heath, Jarrow, and Morton (1992) present another popular model of interest rate movements.

 The Black/Derman/Toy (BDT) model tries to fit two sets of data: a) the yield curve for bonds, and b)

the volatility in the yield to maturity (YTM) for bonds. For a T period problem, the random variable of

Decision Making Under Uncert. & Stoch. Programs Chapter 12 369

interest is the forward interest rate in each period 1, 2, …, T. For period 1, the forward rate is known. For

periods t = 2, 3, …, T, the BDT model chooses t forward rates, so these rates are consistent with: a) the

YTM curve, and b) the observed volatility in YTM. The BDT model assumes the probability of an increase

in the interest rate in a period = probability of a decrease = .5. The possible rates in a period for the BDT

model are determined by two numbers: a) a base rate, which can be thought of as chosen to match the mean

YTM, and b) a rate ratio chosen to match the volatility in the YTM. Specifically, the BDT model assumes

ri+1,t / ri,t = ri,t / ri-1,t for the ith forward rate in period t. Thus, if r1,t and r2,t are specified in period t, then all

the other rates for period t are determined.

 Below is a LINGO implementation of the BDT model:

MODEL:

SETS:

! Black/Derman/Toy binomial interest rate model(BDTCALB);

! Calibrate it to a given yield curve and volatilities;

 PORM/1..5/: ! (INPUTS:)For each maturity;

 YTM, ! Yield To Maturity of Zero Coupon Bond;

 VOL; ! Volatility of Yield To Maturity of ZCB;

 STATE(PORM, PORM)| &1 #GE# &2:

 FSRATE; ! (OUTPUT:)Future short rate in period j, state k;

ENDSETS

DATA:

 YTM = .08, .0812, .0816, .0818, .0814;

 VOL = 0, .1651, .1658, .1688, .1686;

! Write the forward rates to a file;

 @TEXT('forwrdr.dat') = FSRATE;

ENDDATA

!---;

SETS:

 TWO/1..2/:;

 VYTM(PORM, TWO): YTM2; ! Period 2 YTM's;

 MXS(PORM, PORM, PORM)|&1#GE# &2 #AND# &2 #GE# &3:

 PRICE; ! Price of a ZCB of maturity i, in period j, state k;

ENDSETS

! Short rate ratios must be constant

 (Note: C/B=B/A <=> C=BB/A);

 @FOR(STATE(J, K)| K #GT# 2:

 FSRATE(J, K) =

FSRATE(J, K -1) * FSRATE(J, K-1)/ FSRATE(J, K-2);

 @FREE(FSRATE(J, K));

);

! Compute prices for each maturity in each period and state;

@FOR(MXS(I, J, K)| J #EQ# I:

 @FREE(PRICE(I, I, K));

 PRICE(I, I, K) = 1/(1 + FSRATE(I, K)););

@FOR(MXS(I, J, K) | J #LT# I:

 @FREE(PRICE(I, J, K));

 PRICE(I, J, K) = .5 * (PRICE(I, J + 1, K) + PRICE(I, J + 1, K +

1))/(1 + FSRATE(J, K));

);

!For each maturity, price in period 1 must be consistent with its YTM;

@FOR(PORM(I):

 PRICE(I, 1, 1)*(1 + YTM(I))^I = 1;

);

370 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 ! Compute period 2 YTM's for each maturity;

@FOR(VYTM(I, K)| I #GT# 1:

 YTM2(I, K) = (1/ PRICE(I, 2, K)^(1/(I-1))) - 1;

);

 ! Match the volatilities for each maturity;

@FOR(PORM(I)| I #GT# 1:

 .5 * @LOG(YTM2(I, 2)/ YTM2(I, 1)) = VOL(I);

);

END

When solved, we get the following forward interest rates:

 Variable Value

FSRATE(1, 1) 0.8000000E-01

FSRATE(2, 1) 0.6906015E-01

FSRATE(2, 2) 0.9607968E-01

FSRATE(3, 1) 0.5777419E-01

FSRATE(3, 2) 0.8065491E-01

FSRATE(3, 3) 0.1125973

FSRATE(4, 1) 0.4706528E-01

FSRATE(4, 2) 0.6690677E-01

FSRATE(4, 3) 0.9511292E-01

FSRATE(4, 4) 0.1352100

FSRATE(5, 1) 0.3900926E-01

FSRATE(5, 2) 0.5481167E-01

FSRATE(5, 3) 0.7701470E-01

FSRATE(5, 4) 0.1082116

FSRATE(5, 5) 0.1520465

We can display these forward rates in a more intuitive tree form:

 Period

 1 2 3 4 5

 0.1520482

 0.1352100 0.1082116

 0.1125973 0.0951129 0.0770147

 0.0960797 0.0806549 0.0669068 0.0548117

 0.0800000 0.0690602 0.0577742 0.0470653 0.0390093

 Thus, the BDT model implies that, at the start of period 1, the interest rate is .08. At the start of

period 2 (end of period 1), the interest rate will be with equal probability, either .0690602 or .0960797,

etc.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 371

 Now, let us suppose we want to compute the value of an interest rate cap of 10% in period 5. That

is, we would like to buy insurance against the interest rate being greater than .10 in period 5. We see

there are two possible interest rates, .1520482 and .1082116, that would cause the insurance to “kick

in”. Assuming interest is paid at the end of each period, it should be clear such a cap is worth either 0,

.0082116, or .0520482 at the end of period 5. We can calculate the expected value in earlier periods with

the following dynamic programming value tree:

 Period

 1 2 3 4 5

 .0520482

 .026294 .008212

 .013273 .003705 0

 .006747 .001692 0 0

 .003440 .000783 0 0 0

 These values apply to the end of each year. At the beginning of the first year, we would be willing

to pay .003440/ 1.08 = .003189 per dollar of principal for this cap on interest rate at the end of year five.

The following LINGO model will read in the FSRATE data computed by the previous model and

compute the above table of values. Note the FSRATE’s need be computed only once. It can then be used

to evaluate or price various CAP’s, or caplets as they are sometimes known:

MODEL:

SETS:

! Black/Derman/Toy binomial interest rate model.

 Compute value of a cap.(BDTCMP);

 PORM/1..5/: ;

 STATE(PORM, PORM)| &1 #GE# &2:

 FSRATE,

 !(OUTPUT:)Future short rate in period j,state k;

 VALUE; ! Value of the option in this state;

ENDSETS

DATA:

 CAP = .10;

 FSRATE = @TEXT(forwrdr.dat);

ENDDATA

!---;

 LASTP = @SIZE(PORM);

 @FOR(PORM(K):

VALUE(LASTP, K) = @SMAX(0, FSRATE(LASTP, K) - CAP);

);

 @FOR(STATE(J, K) | J #LT# LASTP:

 VALUE(J, K) =

.5 * (VALUE(J + 1, K + 1)/(1 + FSRATE(J + 1, K + 1))

 + VALUE(J + 1, K)/(1 + FSRATE(J + 1, K)));

);

! The value at the beginning of period 1;

 VALUE0 = VALUE(1, 1)/(1 + FSRATE(1, 1));

END

372 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

12.8.2 Binomial Tree Models of Foreign Exchange Rates
DeRosa (1992) describes a simple binomial tree model of foreign exchange rates. The following LINGO

model illustrates the valuation of an option on the German Mark when there were 36 days until its

expiration. This model illustrates the case of an American style option. That is, the option may be

exercised any time before its expiration. It is a simple matter to simplify the model to the case of a

European style option, which can be exercised only at maturity.

MODEL:

SETS: !(OPTONFX);

! Binomial option pricing model on foreign exchange:

 What is the value in $ of an option to buy one unit

 Of a foreign currency at specified/strike exchange

 rate? The binomial model assumes the exchange rate

 can either go up from one period to the next by a

 fixed factor, or down by another fixed factor;

! No. of discrete periods to use, including time now

 (6 means 5 future periods);

 PERIOD /1..6/:;

ENDSETS

DATA:

! Current exchange rate, $ per foreign unit;

 XCURR = .5893;

! Strike exchange rate, i.e., right to exchange

 $1 for one foreign unit at this rate;

 XSTRK =.58;

! Yearly interest rate in $ country;

 IRD = .0581;

! Yearly interest rate in foreign country;

 IRF = .0881;

! Years to maturity for the option;

 MATRT = .098630137; !(= 36/365);

! Yearly variance in exchange rate;

 SIG = .13;

ENDDATA

!--;

SETS:

!Generate state matrix for the DP. STATE(S, T) may

be entered from STATE(S, T-1) if FX rate went down,

or from STATE(S - 1, T - 1) if FX rate went up;

 STATE(PERIOD, PERIOD)| &1 #LE# &2:

 FXRATE, ! There is an FX rate, and...;

 VAL; ! a value of the option;

ENDSETS

! Compute number of periods;

 LASTP = @SIZE(PERIOD);

! Initialize the FXRATE table;

 FXRATE(1, 1) = XCURR;

! Compute some constants;

! To avoid warning messages when IRDIFM < 0;

 @FREE(IRDIFM);

 IRDIFM = (IRD - IRF) * MATRT/(LASTP - 1);

 SIGMSR = SIG * ((MATRT/(LASTP - 1))^.5);

 DISF = @EXP(- IRD * MATRT/(LASTP - 1));

Decision Making Under Uncert. & Stoch. Programs Chapter 12 373

! The up factor;

 UPF = @EXP(IRDIFM + SIGMSR);

! The down factor;

 DNF = @EXP(IRDIFM - SIGMSR);

! Probability of an up move(assumes SIG > 0);

 PUP = (@EXP(IRDIFM)- DNF)/(UPF - DNF);

 PDN = 1 - PUP;

! First the states where it goes down every period;

 @FOR(PERIOD(T) | T #GT# 1:

 FXRATE(1, T) = FXRATE(1, T - 1) * DNF);

! Now compute for all other states S, period T;

 @FOR(STATE(S, T)| T #GT# 1 #AND# S #GT# 1:

 FXRATE(S, T) = FXRATE(S - 1, T - 1) * UPF);

! Do the dynamic programming;

! Set values in the final period;

 @FOR(PERIOD(S):

 VAL(S, LASTP) =

 @SMAX(FXRATE(S, LASTP) - XSTRK, 0));

! and for the earlier periods;

 @FOR(STATE(S, T) | T #LT# LASTP:

 VAL(S, T) = @SMAX(FXRATE(S, T) - XSTRK,

 DISF * (PUP * VAL(S + 1, T + 1) +

 PDN * VAL(S, T + 1))));

! Finally, the value of the option now;

 VALUE = VAL(1, 1);

END

It is of interest to look at all of the states computed by the model:

 Variable Value

 XCURR 0.5893000

 XSTRK 0.5800000

 IRD 0.5810000E-01

 IRF 0.8810000E-01

 MATRT 0.9863014E-01

 SIG 0.1300000

 LASTP 6.000000

 IRDIFM -0.5917808E-03

 SIGMSR 0.1825842E-01

 DISF 0.9988546

 UPF 1.017824

 DNF 0.9813264

 PUP 0.4954355

 PDN 0.5045645

 VALUE 0.1393443E-01

FXRATE(1, 1) 0.5893000

FXRATE(1, 2) 0.5782956

FXRATE(1, 3) 0.5674967

FXRATE(1, 4) 0.5568995

FXRATE(1, 5) 0.5465002

FXRATE(1, 6) 0.5362950

FXRATE(2, 2) 0.5998035

FXRATE(2, 3) 0.5886029

FXRATE(2, 4) 0.5776116

374 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

FXRATE(2, 5) 0.5668255

FXRATE(2, 6) 0.5562408

FXRATE(3, 3) 0.6104941

FXRATE(3, 4) 0.5990940

FXRATE(3, 5) 0.5879067

FXRATE(3, 6) 0.5769283

FXRATE(4, 4) 0.6213753

FXRATE(4, 5) 0.6097720

FXRATE(4, 6) 0.5983853

FXRATE(5, 5) 0.6324505

FXRATE(5, 6) 0.6206403

FXRATE(6, 6) 0.6437230

 VAL(1, 1) 0.1393443E-01

 VAL(1, 2) 0.6976915E-02

 VAL(1, 3) 0.2228125E-02

 VAL(1, 4) 0.0000000

 VAL(1, 5) 0.0000000

 VAL(1, 6) 0.0000000

 VAL(2, 2) 0.2105240E-01

 VAL(2, 3) 0.1182936E-01

 VAL(2, 4) 0.4502463E-02

 VAL(2, 5) 0.0000000

 VAL(2, 6) 0.0000000

 VAL(3, 3) 0.3049412E-01

 VAL(3, 4) 0.1931863E-01

 VAL(3, 5) 0.9098311E-02

 VAL(3, 6) 0.0000000

 VAL(4, 4) 0.4137534E-01

 VAL(4, 5) 0.2977199E-01

 VAL(4, 6) 0.1838533E-01

 VAL(5, 5) 0.5245049E-01

 VAL(5, 6) 0.4064034E-01

 VAL(6, 6) 0.6372305E-01

 Thus, the value of this option is VAL (1, 1) = $0.01393443. For example, the option to buy 100

Marks for $58 any time during the next 36 days is worth $1.393443. The actual option on which the

above was based had a price of $1.368 per 100 Marks. The actual option also happened to be a European

style option, rather than American. An American option can be exercised at any point during its life. A

European option can be exercised only at its maturity. Thus, it is not surprising the above model should

attribute a higher value to the option.

12.9 Decisions Under Uncertainty with an Infinite Number of
Periods

We can consider the case of an infinite number of periods if we have a system where:

a) we can represent the state of the system as one of a finite number of possible states,

b) we can represent our possible actions as a finite set,

c) given that we find the system in state s and take action x in a period, nature moves the

system to state j the next period with probability p(x, j),

d) a cost c(s,x) is incurred when we take action x from state s.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 375

 Such a system is called a Markov decision process and is, in fact, quite general. Our goal is to find

the best action to take for each state to minimize the average cost per period. Puterman (1994) provides

an excellent introduction to applications of Markov Decision Processes, as well as a thorough

presentation of the theory. Manne (1960) showed how to formulate the problem of determining the best

action for each state as a linear program. He defined:

w(s,x) = probability that in the steady state the state is s and we take action x.

 This implicitly allows for randomized policies. That is, the decision maker could flip a coin to

determine his decision. It turns out, however, that there is always an optimal policy that is deterministic.

Allowing randomized policies is simply a convenient computational approach.

 Manne’s LP is then:

min =
s, x
c(s, x) w(s, x)

subject to:

s, x
 w(s, x) = 1,

For each state s:

 x
w(s, x) =

r, x
w(r, x) p(x, s).

 Notice the probability of going to state s depends only upon the action taken, x. Some descriptions

of Markov Decision Processes give an apparently more general definition of the state transition process

by letting the probability of state s depend not only upon the decision x, but also the previous state r.

Thus, the transition matrix would be a three dimensional array, p(r, x,s). By giving a suitably general

definition of “decision”, however, the format where the next state depends only upon the current decision

can represent any situation representable with the three dimensional notation. For many practical

problems, the p(x,s) notation is more natural. For example, in an inventory system, if we decide to raise

the inventory level to 15, the probability that the next state is 7 is usually independent of whether we

raised the inventory level to 15 from an inventory level of 5 or of 6. Similarly, in a maintenance system,

if we completely overhaul the system, the probability of the next state should be independent of the state

before the overhaul. Another way of thinking about a decision is that it chooses the probability

distribution from which nature chooses the next state.

 Wang and Zaniewski (1996) describe a system based on a Markov decision process model for

scheduling maintenance on highways in Arizona and a number of other states. It has been in use since

1982. A state in this application corresponds to a particular condition of a section of roadway. Transition

probabilities describe the statistical manner in which a road deteriorates. Actions correspond to possible

road repairs, such as patch, resurface, or completely replace. Electrical distribution companies have

similar maintenance problems. With time, tree branches near power lines get longer and equipment

deteriorates. The actions available to the electrical distribution company are things like tree trimming,

installing squirrel guards, replacing old equipment, etc.

376 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

12.9.1 Example: Cash Balance Management
Suppose we are managing a cash account for which each evening there is a random input or output of

cash as revenue arrives and/or bills get paid. Each morning, we observe the account level. If the cash

level gets too high, we want to transfer some of the cash to a longer term investment account that pays

a higher interest rate. However, if the cash account gets too low, we want to transfer funds from a longer

term account into the cash account, so we always have sufficient cash on hand. Because we require

discrete scenarios, let us represent the cash-on-hand status as multiples of $1000. In order to avoid

negative subscripts, let us make the following correspondence between cash on hand and state:

Cash on
hand:

−2000

−1000

0

1000

2000

3000

4000

5000

State: 1 2 3 4 5 6 7 8

Cost: 14 7 0 2 4 6 8 10

Given a state, we can move to any other state by transferring funds if we incur:

1) a fixed cost of $3 for making any transfer, and

2) a variable cost of $5 per thousand dollars transferred.

 Further, suppose that over night only three transitions are possible: go down one state, stay put, or

go up one state. Their probabilities are: Prob{down one state} = .4; Prob{no change} = .1; Prob{up one

state} = .5.

 In state 1, we assume the probability of no change is .5; whereas, in state 8, the probability of no

change is .6. We can think of the sequence of events each day as:

i. we observe the cash level in the morning,

ii. we make any transfers deemed appropriate,

iii. overnight the cash level either increases by $1000, stays the same, or decreases by $1000.

A "scalar" model is:

MIN = 10 * W88 + 18 * W87 + 23 * W86 + 28 * W85

+ 33 * W84 + 38 * W83 + 43 * W82 + 48 * W81 + 16 * W78

+ 8 * W77 + 16 * W76 + 21 * W75 + 26 * W74 + 31 * W73

+ 36 * W72 + 41 * W71 + 19 * W68 + 14 * W67 + 6 * W66

+ 14 * W65 + 19 * W64 + 24 * W63 + 29 * W62 + 34 * W61

+ 22 * W58 + 17 * W57 + 12 * W56 + 4 * W55 + 12 * W54

+ 17 * W53 + 22 * W52 + 27 * W51 + 25 * W48 + 20 * W47

+ 15 * W46 + 10 * W45 + 2 * W44 + 10 * W43 + 15 * W42

+ 20 * W41 + 28 * W38 + 23 * W37 + 18 * W36 + 13 * W35

+ 8 * W34 + 8 * W32 + 13 * W31 + 40 * W28 + 35 * W27

+ 30 * W26 + 25 * W25 + 20 * W24 + 15 * W23 + 7 * W22

+ 15 * W21 + 52 * W18 + 47 * W17 + 42 * W16 + 37 * W15

+ 32 * W14 + 27 * W13 + 22 * W12 + 14 * W11;

! Probabilities sum to 1;

 W88 + W87 + W86 + W85 + W84 + W83 + W82 + W81

 + W78 + W77 + W76 + W75 + W74 + W73 + W72 + W71

 + W68 + W67 + W66 + W65 + W64 + W63 + W62 + W61

 + W58 + W57 + W56 + W55 + W54 + W53 + W52 + W51

 + W48 + W47 + W46 + W45 + W44 + W43 + W42 + W41

Decision Making Under Uncert. & Stoch. Programs Chapter 12 377

 + W38 + W37 + W36 + W35 + W34 + W33 + W32 + W31

 + W28 + W27 + W26 + W25 + W24 + W23 + W22 + W21

 + W18 + W17 + W16 + W15 + W14 + W13 + W12 + W11 = 1;

! Prob{out of state 1}- Prob{ into state 1} = 0;

- .4 * W82 - .5 * W81 - .4 * W72 - .5 * W71 - .4 * W62

- .5 * W61 - .4 * W52 - .5 * W51 - .4 * W42 - .5 * W41

- .4 * W32 - .5 * W31 - .4 * W22 - .5 * W21 + W18 + W17

+ W16 + W15 + W14 + W13 + .6 * W12 + .5 * W11 = 0;

! Into state 2;

- .4 * W83 - .1 * W82 - .5 * W81 - .4 * W73 - .1 * W72

- .5 * W71 - .4 * W63 - .1 * W62 - .5 * W61 - .4 * W53

- .1 * W52 - .5 * W51 - .4 * W43 - .1 * W42 - .5 * W41

- .4 * W33 - .1 * W32 - .5 * W31 + W28 + W27 + W26 + W25 + W24 + .6 *

W23 + .9 * W22 + .5 * W21 - .4 * W13 - .1 * W12 - .5 * W11 = 0;

! Into state 3;

- .4 * W84 - .1 * W83 - .5 * W82 - .4 * W74 - .1 * W73

- .5 * W72 - .4 * W64 - .1 * W63 - .5 * W62 - .4 * W54

- .1 * W53 - .5 * W52 - .4 * W44 - .1 * W43 - .5 * W42 + W38 + W37 +

W36 + W35 + .6 * W34 + .9 * W33 + .5 * W32 + W31 - .4 * W24 - .1 * W23

- .5 * W22 - .4 * W14 - .1 * W13 - .5 * W12 = 0;

! Into state 4;

- .4 * W85 - .1 * W84 - .5 * W83 - .4 * W75 - .1 * W74

- .5 * W73 - .4 * W65 - .1 * W64 - .5 * W63 - .4 * W55

- .1 * W54 - .5 * W53 + W48 + W47 + W46 + .6 * W45 + .9 * W44 + .5 *

W43 + W42 + W41 - .4 * W35 - .1 * W34 - .5 * W33 - .4 * W25 - .1 * W24

- .5 * W23 - .4 * W15 - .1 * W14 - .5 * W13 = 0;

! Into state 5;

- .4 * W86 - .1 * W85 - .5 * W84 - .4 * W76 - .1 * W75

- .5 * W74 - .4 * W66 - .1 * W65 - .5 * W64 + W58 + W57

+ .6 * W56 + .9 * W55 + .5 * W54 + W53 + W52 + W51 - .4 * W46 - .1 *

W45 - .5 * W44 - .4 * W36 - .1 * W35 - .5 * W34 - .4 * W26 - .1 * W25

- .5 * W24 - .4 * W16 - .1 * W15 - .5 * W14 =0;

! Into state 6;

- .4 * W87 - .1 * W86 - .5 * W85 - .4 * W77 - .1 * W76

- .5 * W75 + W68 + .6 * W67 + .9 * W66 + .5 * W65 + W64 + W63 + W62 +

W61 - .4 * W57 - .1 * W56 - .5 * W55 - .4 * W47 - .1 * W46 - .5 * W45

- .4 * W37 - .1 * W36 - .5 * W35 - .4 * W27 - .1 * W26 - .5 * W25 - .4

* W17 - .1 * W16 - .5 * W15 = 0;

! Into state 7;

- .4 * W88 - .1 * W87 - .5 * W86 + .6 * W78 + .9 * W77 + .5 * W76 + W75

+ W74 + W73 + W72 + W71 - .4 * W68 - .1 * W67 - .5 * W66 - .4 * W58 -

.1 * W57 - .5 * W56 - .4 * W48 - .1 * W47 - .5 * W46 - .4 * W38 - .1 *

W37 - .5 * W36 - .4 * W28 - .1 * W27 - .5 * W26 - .4 * W18 - .1 * W17

- .5 * W16 = 0;

! Into state 8;

.4 * W88 + .5 * W87 + W86 + W85 + W84 + W83 + W82 + W81 - .6 * W78 -

.5 * W77 - .6 * W68 - .5 * W67 - .6 * W58 - .5 * W57 - .6 * W48 - .5 *

W47 - .6 * W38 - .5 * W37 - .6 * W28 - .5 * W27 - .6 * W18 - .5 * W17

= 0;

END

 Note in the objective, the term 23 * W86 can be thought of as (10 + 3 + 5 * 2)*W86. Similarly, the

term + .6 * W12 in the "into state 1" constraint, comes from the fact that the probability there is a change

378 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

out of state 1 in the morning is W12. At the same time, there is also a probability of changing into state

1 from state 1 the previous morning of W12 * Prob{down transition over night} = W12*.4. The net is

W12 - .4*W12 = .6*W12.

 Part of the solution report is reproduced below:

Obj. value= 5.633607

Variable Value Reduced Cost

 W64 0.1024590 0.0000000

 W55 0.2049180 0.0000000

 W44 0.2663934 0.0000000

 W22 0.1311475 0.0000000

 W13 0.5245902E-01 0.0000000

 W33 0.2426230 0.0000000

 For example, variable W64 = 0.1024590 means that, in a fraction 0.1024590 of the periods, we will

find the system in state 6 and we will (or should) take action 4. Note, there is no other positive variable

involving state 6. So, this implies, if the system is in state 6, we should always take action 4. The expected

cost per day of this policy is 5.633607.

Summarizing:

If the state is 1 or less, we should raise it to state 3.

If the state is 6 or more, we should drop it to state 4.

If the state is 2, 3, 4, or 5, we should stay put.

 Here is a general purpose sets formulation of a Markov decision problem, with data specific to our

cash balance problem:

SETS: ! Markov decision process model(MARKOVDP);

 STATE: H;

 DCSN:;

 SXD(STATE, DCSN): C, W;

 DXS(DCSN, STATE): P;

ENDSETS

DATA:

! Data for the cash balance problem;

! The states;

STATE= SN2K SN1K S000 SP1K SP2K SP3K SP4K SP5K;

! The cost of finding system in a given state;

 H = 14 7 0 2 4 6 8 10;

! Possible decisions;

 DCSN= DN2K DN1K D000 DP1K DP2K DP3K DP4K DP5K;

! The cost of explicitly changing to any other state;

 C = 0 8 13 18 23 28 33 38

 8 0 8 13 18 23 28 33

 13 8 0 8 13 18 23 28

 18 13 8 0 8 13 18 23

 23 18 13 8 0 8 13 18

 28 23 18 13 8 0 8 13

 33 28 23 18 13 8 0 8

 38 33 28 23 18 13 8 0;

Decision Making Under Uncert. & Stoch. Programs Chapter 12 379

! Prob{ nature moves system to state j| we made decision i};

 P = .5 .5 0 0 0 0 0 0

 .4 .1 .5 0 0 0 0 0

 0 .4 .1 .5 0 0 0 0

 0 0 .4 .1 .5 0 0 0

 0 0 0 .4 .1 .5 0 0

 0 0 0 0 .4 .1 .5 0

 0 0 0 0 0 .4 .1 .5

 0 0 0 0 0 0 .4 .6;

ENDDATA

!--;

!Minimize the average cost per period;

MIN=@SUM(SXD(S, X): (H(S) + C(S, X))* W(S, X));

!The probabilities must sum to 1;

 @SUM(SXD(S, X): W(S, X)) = 1;

!Rate at which we exit state S = rate of entry to S.

 Note, W(S, X) = Prob{ state is S and we make decision X};

 @FOR(STATE(S):

 @SUM(DCSN(X): W(S, X))=

 @SUM(SXD(R, K): W(R, K)* P(K, S));

);

 In the above example, the number of decision alternatives equaled the number of states, so the

transition matrix was square. In general, the number of decisions might be more or less than the number

of states, so the transition matrix need not be square.

 The above model minimizes the average cost per period in the long run. If discounted present value,

rather than average cost per period, is of concern, then see d’Epenoux (1963) for a linear programming

model, similar to the above, that does discounting.

12.10 Chance-Constrained Programs
A drawback of the methods just discussed is problem size can grow very large if the number of possible

states of nature is large. Chance-constrained programs do not apply to exactly the same problem and, as

a result, do not become large as the number of possible states of nature gets large. The stochastic

programs discussed thus far had the feature that every constraint had to be satisfied by some combination

of first- and second-period decisions. Chance-constrained programs, however, allow each constraint to

be violated with a certain specified probability. An advantage to this approach for tolerating uncertainty

is the chance-constrained model has essentially the same size as the LP for a corresponding problem

with no random elements.

380 Chapter 12 Decision Making Under Uncert. & Stoch. Programs

 We will illustrate the idea with the snow removal problem. Under the chance-constrained approach,

there are no second-stage decision variables, and we would have to specify a probability allowance for

each constraint. For example, we might specify that with probability at least 0.75 we must be able to

provide the snow removal capacity required by the severity of the winter. For our problem, it is very

easy to see that this means we must provide 5,100 truck-days of snow removal capacity. For example,

if only 4,400 truck-days of capacity were provided, then the probability of sufficient capacity would

only be 0.4. Let us assume one truck-day of operation costs $116, and one truck-day of salting equals

1.14 truck-days of plowing. Then, the appropriate chance-constrained LP is the simple model:

Min=70*BF1 + 20*BS1 + 116*P + 116*S;

 −BF1 + P + S = 0;

 −BS1 + S = 0;
 P + S >= 5000;

 P + 1.14 * S >= 5100;

12.11 Problems
1. What is the expected value of perfect information in the corn/soybean/sorghum planting problem?

2. The farmer in the corn/soybean/sorghum problem is reluctant to plant all soybeans because, if the

season is wet, he will make $20 less per acre than he would if he had planted all corn. Can you react

to his risk aversion and recommend a planting mix where the profit per acre is never more than $15

from the planting mix that in retrospect would have been best for the particular outcome?

3. Analyze the snow removal problem of this chapter for the situation where the cost of fuel in a cold

winter is $80 per truck-day rather than $73, and the cost of salt in a cold winter is $35 rather than

$32. Include in your analysis the derivation of the expected value of perfect information.

4. A farmer has 1000 acres available for planting to either corn, sorghum, or soybeans. The yields of

the three crops, in bushels per acre, as a function of the two possible kinds of season are:

 Corn Sorghum Beans

Wet 100 43 45

Dry 45 35 33

 The probability of a wet season is 0.6. The probability of a dry season is 0.4. Corn sells for

$2/bushel; whereas, sorghum and beans each sell for $4/bushel. The total production cost for any

crop is $100/acre, regardless of type of season. The farmer can also raise livestock. One unit of

livestock uses one hundred bushels of corn. The profit contribution of one unit of livestock,

exclusive of its corn consumption, is $215. Corn can be purchased at any time on the market for

$2.20/bushel. The decision of how much to raise of livestock and of each crop must be made before

the type of season is known.

a) What should the farmer do?

b) Formulate and solve the problem by the scenario-based stochastic programming approach.

Decision Making Under Uncert. & Stoch. Programs Chapter 12 381

5. A firm serves essentially two markets, East and West, and is contemplating the location of one or

more distribution centers (DC) to serve these markets. A complicating issue is the uncertainty in

demand in each market. The firm has enumerated three representative scenarios to characterize the

uncertainty. The table below gives (i) the fixed cost per year of having a DC at each of three

candidate locations, and (ii) the profit per year in each market as a function of the scenario and

which DC is supplying the market. Each market will be assigned to that one open DC that results in

the most profit. This assignment can be done after we realize the scenario that holds. The DC

location decision must be made before the scenario is known.

Profit by Scenario/Region and Supplier DC
 Scenario

One
Scenario

Two
Scenario

Three

DC
Location

Fixed
Cost

East

West

East

West

East

West

A 51 120 21 21 40 110 11

B 49 110 28 32 92 70 70

C 52 60 39 20 109 20 88

 For example, if Scenario Three holds and we locate DC’s at A and C, East would get served

from A, West from C, and total profits would be 110 + 88 − 51 − 52 = 95.

a) If Scenario One holds, what is the best combination of DC’s to have open?

b) If Scenario Two holds, what is the best combination of DC’s to have open?

c) If Scenario Three holds, what is the best combination of DC’s to have open?

d) If all three scenarios are equally likely, what is the best combination of DC’s to have open?

383

13

Portfolio Optimization

13.1 Introduction
Portfolio models are concerned with investment where there are typically two criteria: expected return

and risk. The investor wants the former to be high and the latter to be low. There is a variety of measures of

risk. The most popular measure of risk has been variance in return. Even though there are some problems

with it, we will first look at it very closely. All the nontrivial LINGO models shown here can be downloaded

from www.lindo.com, in the MODELS library.

13.2 The Markowitz Mean/Variance Portfolio Model
The portfolio model introduced by Markowitz (1959), see also Roy (1952), assumes an investor has two

considerations when constructing an investment portfolio: expected return and variance in return

(i.e., risk). Variance measures the variability in realized return around the expected return, giving equal

weight to realizations below the expected and above the expected return. The Markowitz model might

be mildly criticized in this regard because the typical investor is probably concerned only with variability

below the expected return, so-called downside risk. The Markowitz model requires two major kinds of

information: (1) the estimated expected return for each candidate investment and (2) the covariance

matrix of returns. The covariance matrix characterizes not only the individual variability of the return on

each investment, but also how each investment’s return tends to move with other investments. We

assume the reader is familiar with the concepts of variance and covariance as described in most

intermediate statistics texts. Part of the appeal of the Markowitz model is it can be solved by efficient

quadratic programming methods. Quadratic programming is the name applied to the class of models in

which the objective function is a quadratic function and the constraints are linear. Thus, the objective

function is allowed to have terms that are products of two variables such as x2 and x y.

 Quadratic programming is computationally appealing because the algorithms for linear programs can

be applied to quadratic programming with only modest modifications. Loosely speaking, the reason only

modest modification is required is the first derivative of a quadratic function is a linear function. Because

LINGO has a general nonlinear solver, the limitation to quadratic functions is helpful, but not crucial.

http://www.lindo.com/

384 Chapter 13 Portfolio Optimization

13.2.1 Example
We will use some publicly available data from Markowitz (1959). Eppen, Gould and Schmidt (1991)

use the same data. The following table shows the increase in price, including dividends, for three stocks

over a twelve-year period:

 Growth in
Year S&P500 ATT GMC USX

43 1.259 1.300 1.225 1.149

44 1.198 1.103 1.290 1.260

45 1.364 1.216 1.216 1.419

46 0.919 0.954 0.728 0.922

47 1.057 0.929 1.144 1.169

48 1.055 1.056 1.107 0.965

49 1.188 1.038 1.321 1.133

50 1.317 1.089 1.305 1.732

51 1.240 1.090 1.195 1.021

52 1.184 1.083 1.390 1.131

53 0.990 1.035 0.928 1.006

54 1.526 1.176 1.715 1.908

 For reference later, we have also included the change each year in the Standard and Poor’s/S&P 500

stock index. To illustrate, in the first year, ATT appreciated in value by 30%. In the second year, GMC

appreciated in value by 29%. Based on the twelve years of data, we can use any standard statistical

package to calculate a covariance matrix for three stocks: ATT, GMC, and USX. The matrix is:

 ATT GMC USX

ATT 0.01080754 0.01240721 0.01307513

GMC 0.01240721 0.05839170 0.05542639

USX 0.01307513 0.05542639 0.09422681

 From the same data, we estimate the expected return per year, including dividends, for ATT, GMC,

and USX as 0.0890833, 0.213667, and 0.234583, respectively.

 The correlation matrix makes it more obvious how two random variables move together. The

correlation between two random variables equals the covariance between the two variables, divided by

the product of the standard deviations of the two random variables. For our three investments, the

correlation matrix is as follows:

 ATT GMC USX

ATT 1.0

GMC 0.493895589 1.0

USX 0.409727718 0.747229121 1.0

 The correlation can be between −1 and +1 with +1 being a high correlation between the two. Notice

GMC and USX are highly correlated. ATT tends to move with GMC and USX, but not nearly so much as

GMC moves with USX.

Portfolio Optimization Chapter 13 385

 Let the symbols ATT, GMC, and USX represent the fraction of the portfolio devoted to each of the

three stocks. Suppose, we desire a 15% yearly return. The entire model can be written as:

MODEL:

!Minimize end-of-period variance in portfolio value;

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC + .01307513

* ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC +.05542639

* GMC * USX +.01307513 * USX * ATT +.05542639 * USX * GMC +.09422681

* USX * USX;

! Use exactly 100% of the starting budget;

[BUD] ATT + GMC + USX = 1;

! Required wealth at end of period;

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15;

END

 Note the two constraints are effectively in the same units. The first constraint is effectively a

“beginning inventory” constraint, while the second constraint is an “ending inventory” constraint. We

could have stated the expected return constraint just as easily as:

.0890833 * ATT + .213667 * GMC + .234583 * USX >= .15

 Although perfectly correct, this latter style does not measure end-of-period state in quite the same

way as start-of-period state. Fans of consistency may prefer the former style.

 The equivalent sets-based formulation of the model follows:

MODEL:

 SETS:

 ASSET: AMT, RET;

 COVMAT(ASSET, ASSET): VARIANCE;

 ENDSETS

 DATA:

 ASSET = ATT GMC USX;

!Covariance matrix and expected returns;

 VARIANCE = .01080754 .01240721 .01307513

 .01240721 .05839170 .05542639

 .01307513 .05542639 .09422681;

 RET = 1.0890833 1.213667 1.234583;

 TARGET = 1.15;

 ENDDATA

! Minimize the end-of-period variance in portfolio value;

[VAR] MIN = @SUM(COVMAT(I, J): AMT(I) * AMT(J) * VARIANCE(I, J));

! Use exactly 100% of the starting budget;

[BUDGET] @SUM(ASSET: AMT) = 1;

! Required wealth at end of period;

[RETURN] @SUM(ASSET: AMT * RET) >= TARGET;

END

386 Chapter 13 Portfolio Optimization

When we solve the model, we get:

Optimal solution found at step: 4

Objective value: 0.2241375E-01

 Variable Value Reduced Cost

 TARGET 1.150000 0.0000000

AMT(ATT) 0.5300926 0.0000000

AMT(GMC) 0.3564106 0.0000000

AMT(USX) 0.1134968 0.0000000

RET(ATT) 1.089083 0.0000000

RET(GMC) 1.213667 0.0000000

RET(USX) 1.234583 0.0000000

 Row Slack or Surplus Dual Price

 VAR 0.2241375E-01 1.000000

 BUDGET 0.0000000 0.3621387

 RETURN 0.0000000 -0.3538836

 The solution recommends about 53% of the portfolio be put in ATT, about 36% in GMC and just

over 11% in USX. The expected return is 15%, with a variance of 0.02241381 or, equivalently, a standard

deviation of about 0.1497123.

 We based the model simply on straightforward statistical data based on yearly returns. In practice,

it may be more typical to use monthly rather than yearly data as a basis for calculating a covariance.

Also, rather than use historical data for estimating the expected return of an asset, a decision maker might

base the expected return estimate on more current, proprietary information about expected future

performance of the asset. One may also wish to use considerable care in estimating the covariances and the

expected returns. For example, one could use quite recent data to estimate the standard deviations. A large

set of data extending further back in time could be used to estimate the correlation matrix. Then, using the

relationship between the correlation matrix and the covariance matrix, one could derive a covariance matrix.

13.3 Dualing Objectives: Efficient Frontier and Parametric Analysis
There is no precise way for an investor to determine the “correct” tradeoff between risk and return. Thus,

one is frequently interested in looking at the tradeoff between the two. If an investor wants a higher

expected return, she generally has to “pay for it” with higher risk. In finance terminology, we would like

to trace out the efficient frontier of return and risk. If we solve for the minimum variance portfolio over

Portfolio Optimization Chapter 13 387

a range of values for the expected return, ranging from 0.0890833 to 0.234583, we get the following plot

or tradeoff curve for our little three-asset example:

Figure 13.1 Efficient Frontier

 Notice the “knee” in the curve as the required expected return increases past 1.21894. This is the

point where ATT drops out of the portfolio. This graph was generated using model PortEfFront12.lng

13.3.1 Portfolios with a Risk-Free Asset
When one of the investments available is risk free, then the optimal portfolio composition has a

particularly simple form. Suppose the opportunity to invest money risk free (e.g., in government treasury

bills) at 5% per year has just become available. Working with our previous example, we now have a

fourth investment instrument that has zero variance and zero covariance. There is no limit on how much

can be invested at 5%. We ask the question: How does the portfolio composition change as the desired

rate of return changes from 15% to 5%?

388 Chapter 13 Portfolio Optimization

 We will use the following slight generalization of the original Markowitz example model. Notice a

fourth instrument, treasury bills (TBILL), has been added:

MODEL:

! Add a riskless asset, TBILL;

! Minimize end-of-period variance in portfolio value;

[VAR] MIN = .01080754* ATT * ATT +.01240721* ATT * GMC +.01307513*

ATT * USX +.01240721* GMC * ATT +.05839170* GMC * GMC +.05542639*

GMC * USX +.01307513* USX * ATT +.05542639* USX * GMC +.09422681*

USX * USX;

! Use exactly 100% of the starting budget;

[BUD] ATT + GMC + USX + TBILL = 1;

! Required wealth at end of period;

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX + 1.05 *

TBILL >= 1.15;

END

Alternatively, this can be also modeled using the sets formulation:

MODEL:

SETS:

 ASSET: AMT, RET;

 COVMAT(ASSET, ASSET): VARIANCE;

ENDSETS

DATA:

 ASSET= ATT, GMC, USX, TBILL;

!Covariance matrix;

 VARIANCE = .01080754 .01240721 .01307513 0

 .01240721 .05839170 .05542639 0

 .01307513 .05542639 .09422681 0

 0 0 0 0;

 RET = 1.0890833 1.213667 1.234583, 1.05;

 TARGET = 1.15;

ENDDATA

! Minimize the end-of-period variance in portfolio value;

[VAR] MIN= @SUM(COVMAT(I, J): AMT(I)* AMT(J) * VARIANCE(I, J));

! Use exactly 100% of the starting budget;

[BUDGET] @SUM(ASSET: AMT) = 1;

! Required wealth at end of period;

[RETURN] @SUM(ASSET: AMT * RET) >= TARGET;

END

Portfolio Optimization Chapter 13 389

When solved, we find:
Optimal solution found at step: 8

Objective value: 0.2080344E-01

Variable Value Reduced Cost

 ATT 0.8686550E-01 -0.2093725E-07

 GMC 0.4285285 0.0000000

 USX 0.1433992 -0.2218303E-07

 TBILL 0.3412068 0.0000000

 Row Slack or Surplus Dual Price

 VAR 0.2080344E-01 1.000000

 BUD 0.0000000 0.4368723

 RET 0.0000000 -0.4160689

 Notice more than 34% of the portfolio was invested in the risk-free investment, even though its

return rate, 5%, is less than the target of 15%. Further, the variance has dropped to about 0.0208 from

about 0.0224.

 What happens as we decrease the target return towards 5%? Clearly, at 5%, we would put zero in

ATT, GMC, and USX. A simple form of solution would be to keep the same proportions in ATT, GMC,

and USX, but just change the allocation between the risk-free asset and the risky ones. Let us check an

intermediate point. When we decrease the required return to 10%, we get the following solution:

Optimal solution found at step: 8

Objective value: 0.5200865E-02

Variable Value Reduced Cost

 ATT 0.4342898E-01 0.0000000

 GMC 0.2142677 0.2857124E-06

 USX 0.7169748E-01 0.1232479E-06

 TBILL 0.6706058 0.0000000

 Row Slack or Surplus Dual Price

 VAR 0.5200865E-02 1.000000

 BUD 0.0000000 0.2184348

 RET 0.2384186E-07 -0.2080331

This solution supports our conjecture:

as we change our required return, the relative proportions devoted to risky

investments do not change. Only the allocation between the risk-free asset and the

risky assets change.

 From the above solution, we observe that, except for round-off error, the amount invested in ATT,

GMC, and USX is allocated in the same way for both solutions. Thus, two investors with different risk

preferences would nevertheless both carry the same mix of risky stocks in their portfolio. Their portfolios

would differ only in the proportion devoted to the risk-free asset. Our observation from the above

example in fact holds in general. Thus, the decision of how to allocate funds among stocks, given the

amount to be invested, can be separated from the questions of risk preference. Tobin received the Nobel

Prize in 1981, largely for noticing the above feature, the so-called Separation Theorem. So, if you noticed

it, you must be Nobel Prize caliber.

390 Chapter 13 Portfolio Optimization

13.3.2 The Sharpe Ratio
For some portfolio p, of risky assets, excluding the risk-free asset, let:

Rp = its expected return,

sp = its standard deviation in return, and

r0 = the return of the risk-free asset.

 A plausible single measure (as opposed to the two measures, risk and return) of attractiveness of

portfolio p is the Sharpe ratio:

(Rp - r0) / sp

 In words, it measures how much additional return we achieved for the additional risk we took on,

relative to putting all our money in the risk-free asset.

 It happens the portfolio that maximizes this ratio has a certain well-defined appeal. Suppose:

t = our desired target return,

wp = fraction of our wealth we place in portfolio p (the rest placed in the risk-free asset).

To meet our return target, we must have:

(1 - wp) * r0 + wp * Rp = t.

The standard deviation of our total investment is:

wp * sp.

Solving for wp in the return constraint, we get:

wp = (t – r0) /(Rp – r0).

Thus, the standard deviation of the portfolio is:

wp * sp = [(t – r0) /(Rp – r0)] * sp.

Minimizing the portfolio standard deviation means:

Min [(t – r0) /(Rp – r0)] * sp

or

Min [(t – r0) * sp /(Rp – r0)].

This is equivalent to:

Max (Rp – r0) /sp.

 So, regardless of our risk/return preference, the money we invest in risky assets should be invested

in the risky portfolio that maximizes the Sharpe ratio.

Portfolio Optimization Chapter 13 391

 The following illustrates for when the risk free rate is 5%:

MODEL:

! Maximize the Sharpe ratio;

 MAX =

(1.089083*ATT + 1.213667*GMC + 1.234583*USX - 1.05)/

 ((.01080754 * ATT * ATT + .01240721 * ATT * GMC

 + .01307513 * ATT * USX + .01240721 * GMC * ATT

 + .05839170 * GMC * GMC + .05542639 * GMC * USX

 + .01307513 * USX * ATT + .05542639 * USX * GMC

 + .09422681 * USX * USX)^.5);

! Use exactly 100% of the starting budget;

 [BUD] ATT + GMC + USX = 1;

END

The solution is:

Optimal solution found at step: 7

Objective value: 0.6933179

Variable Value Reduced Cost

 ATT 0.1319260 0.1263448E-04

 GMC 0.6503984 0.0000000

 USX 0.2176757 0.1250699E-04

 Notice the relative proportions of ATT, GMC, and USX are the same as in the previous model where

we explicitly included a risk free asset with a return of 5%. For example, notice that, except for round-off

error:

.1319262/ .6503983 = 0.08686515/ .4285286.

13.4 Important Variations of the Portfolio Model
There are several issues that may concern you when you think about applying the Markowitz model in

its simple form:

a) As we increase the number of assets to consider, the size of the covariance matrix becomes

overwhelming. For example, 1000 assets implies 1,000,000 covariance terms, or at least

500,000 if symmetry is exploited.

b) If the model were applied every time new data become available (e.g., weekly), we would

“rebalance” the portfolio frequently, making small, possibly unimportant adjustments in

the portfolio.

c) There are no upper bounds on how much can be held of each asset. In practice, there might

be legal or regulatory reasons for restricting the amount of any one asset to no more than,

say, 5% of the total portfolio. Some portfolio managers may set the upper limit on a stock

to one day’s trading volume for the stock. The reasoning being, if the manager wants to

“unload” the stock quickly, the market price would be affected significantly by selling so

much.

 Two approaches for simplifying the covariance structure have been proposed: the scenario approach

and the factor approach. For the issue of portfolio “nervousness”, the incorporation of transaction costs

is useful.

392 Chapter 13 Portfolio Optimization

13.4.1 Portfolios with Transaction Costs
The models above do not tell us much about how frequently to adjust our portfolio as new information

becomes available (i.e., new estimates of expected return and new estimates of variance). If we applied

the above models every time new information became available, we would be constantly adjusting our

portfolio. This might make our broker happy because of all the commission fees, but that should be a

secondary objective at best. The important observation is that there are costs associated with buying and

selling. There are the obvious commission costs, and the not so obvious bid-ask spread. The bid-ask

spread is effectively a transaction cost for buying and selling.

 The method we will describe assumes transaction costs are paid at the beginning of the period. It is

a straightforward exercise to modify the model to handle the case of transaction costs paid at the end of

the period. The major modifications to the basic portfolio model are:

a) We must introduce two additional variables for each asset, an “amount bought” variable

and an “amount sold” variable.

b) The budget constraint must be modified to include money spent on commissions.

c) An additional constraint must be included for each asset to enforce the requirement:

amount invested in asset i = (initial holding of i) + (amount bought of i) − (amount

sold of i).

Example

Suppose we have to pay a 1% transaction fee on the amount bought or sold of any stock and our current

portfolio is 50% ATT, 35% GMC, and 15% USX. This is pretty close to the optimal mix. Should we incur

the cost of adjusting? The following is the relevant model:

MODEL:

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC +.01307513 *

ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC +.05542639

* GMC * USX +.01307513 * USX * ATT +.05542639 * USX * GMC +.09422681

* USX * USX;

[BUD] ATT + GMC + USX + .01 * (BA + BG + BU + SA + SG + SU) = 1;

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15;

[NETA] ATT = .50 + BA - SA;

[NETG] GMC = .35 + BG - SG;

[NETU] USX = .15 + BU - SU;

END

 The BUD constraint says the total uses of funds must equal 1. Another way of interpreting the BUD

constraint is to subtract each of the NET constraints from it. We then get:

[BUD].01 * (BA + BG + BU + SA + SG + SU) + BA + BG + BU=SA + SG + SU;

It says any purchases plus transaction fees must be funded by selling.

Portfolio Optimization Chapter 13 393

The solution follows:

Optimal solution found at step: 4

Objective value: 0.2261146E-01

Variable Value Reduced Cost

 ATT 0.5264748 0.0000000

 GMC 0.3500000 0.0000000

 USX 0.1229903 0.0000000 .9994651

 BA 0.2647484E-01 0.0000000

 BG 0.0000000 0.4824887E-02

 BU 0.0000000 0.6370753E-02

 SA 0.0000000 0.6370753E-02

 SG 0.0000000 0.1545865E-02

 SU 0.2700968E-01 0.0000000

 The solution recommends buying a little bit more ATT, neither buy nor sell any GMC, and sell a

little USX.

For reference, the following is the sets formulation of the above model:

MODEL:

SETS:

 ASSET: AMT, RETURN, BUY, SELL, START;

 COVMAT(ASSET, ASSET):VARIANCE;

ENDSETS

DATA:

 ASSET = ATT, GMC, USX;

 VARIANCE = .0108075 .0124072 .0130751

 .0124072 .0583917 .0554264

 .0130751 .0554264 .0942268;

 RETURN = 1.089083 1.213667 1.234583;

 START = .5 .35 .15;

 TARGET = 1.15;

ENDDATA

[VAR] MIN = @SUM(COVMAT(I, J): AMT(I) * AMT(J) * VARIANCE(I, J));

[BUD] @SUM(ASSET(I): AMT(I) + .01 * (BUY(I) + SELL(I))) = 1;

[RET] @SUM(ASSET: AMT * RETURN) >= TARGET;

@FOR(ASSET(I): [NET] AMT(I) = START(I) + BUY(I) - SELL(I););

END

13.4.2 Nonlinear Transaction Costs
If we look more closely at transaction costs, we will probably find that they are nonlinear. There may

be: i) a volume-independent fixed cost of doing a transaction, and ii) a market impact cost. The latter

corresponds to the effect that if we try to buy a lot of something it will tend to drive up the price, and if

we try to sell a lot of something it will tend to drive down the price. In this section, we will consider only

market impact costs. If we buy an amount Bj of stock j, one representation of the cost per dollar purchased

of stock j is:

 cj*Bj + mj*Bj p, where 1 < p, and

 cj = proportional transaction cost. E.g., if the bid and ask prices are 99.5 and 100.5, we might state

394 Chapter 13 Portfolio Optimization

 the list price as 100. If the commission rate is 0.0025, we would then set

 cj = 0.5/100 + 0.0025 = 0.0075.

 mj = the market impact coefficient. We expect this coefficient to be inversely related to the daily

 trading volume of stock j, and directly related to the average daily price spread. E.g., if the

 average trading volume is high, then our trade will tend to not have a big impact on price.

Example: Below is an model, PortMimpact.lng, that is an extension of our previous transaction cost

example, but with a market impact term in the transaction cost computation.

MODEL:

! Portfolio model with a market impact component in

computeing transaction costs; !(PortMimpact.lng);

SETS:

 ASSET: AMT, RETURN, STD, BUY, SELL, START, C, M, BOS;

 TMAT(ASSET, ASSET) | &1 #GE# &2: CORR;

ENDSETS

DATA:

 ASSET = ATT GMC USX TBILL;

 RETURN= 1.089083 1.213667 1.234583 1.00;

 START= 0.5 0.35 0.15 0.0;

! Proportional transaction costs;

 C = 0.01 0.01 0.01 0.005;

! Market impact coefficients;

 M = 0.008 0.009 0.001 0.0;

 POW = 1.5; ! Power to use in approximating market impact;

! Standard deviation in return;

 STD = 0.10395932 0.24164375 0.30696386 0;

! Correlation matrix;

 CORR = 1

 0.493895589 1

 0.409727718 0.747229121 1

 0 0 0 1;

 TARGET = 1.15; ! Target growth factor;

ENDDATA

! Minimize variance of portfolio;

 MIN = (@SUM(ASSET(I): STD(I)*STD(I)*AMT(I)^2) +

 2 * @SUM(TMAT(I, J) | I #GT# J:

 AMT(I) * AMT(J)* CORR(I, J) *(STD(I) * STD(J)))) ;

@FOR(ASSET(I):

! Post transaction amount for each stock I;

 [NET] AMT(I) = START(I) + BUY(I) - SELL(I);

 BOS(I) = BUY(I) + SELL(I); ! Amount bought or sold;

);

! Overall budget constraint: Ending amount + transaction costs = Sources of

funds;

[BUD] @SUM(ASSET(I): AMT(I) + C(I)*BOS(I) + M(I)*BOS(I)^POW)

 = @SUM(ASSET(i): START(I));

! Expected return target;

Portfolio Optimization Chapter 13 395

[RET] @SUM(ASSET(J): AMT(J) * RETURN(J)) >= TARGET*@SUM(ASSET(J):

START(J));

END

The interesting part of the solution is:

 Global optimal solution found.

 Objective value: 0.022633

 Variable Value

 AMT(ATT) 0.525970

 AMT(GMC) 0.350000

 AMT(USX) 0.123436 .999406

 AMT(TBILL) 0.000000

 BUY(ATT) 0.025970

 BUY(GMC) 0.000000

 BUY(USX) 0.000000

 BUY(TBILL) 0.000000

 SELL(ATT) 0.000000

 SELL(GMC) 0.000000

 SELL(USX) 0.026564

 SELL(TBILL) 0.000000

Notice the effect of the market impact term. We bought slightly less of ATT (0.02597 vs. 0.026475),

and sold a little less of USX (0.026564 vs. 0.027010). In the model we treated buying and selling in the

same way. This seems reasonable, but it is not required. The nonlinear transactions cost model provides

some guidance with regard to either unloading a large quantity of a stock, or accumulating a large

quantity of a stock.

13.4.3 Portfolios with Taxes
Taxes are an unpleasant complication of investment analysis that should be considered. The effect of

taxes on a portfolio is illustrated by the following results during one year for two similar

“growth-and-income” portfolios from the Vanguard company. Portfolio S was managed without (Sans)

regard to taxes. Portfolio T was managed with after-tax performance in mind:

 Distributions Initial

Portfolio Income Gain-from-sales Share-price Return

S $0.41 $2.31 $19.85 33.65%

T $0.28 $0.00 $13.44 34.68%

 The tax managed portfolio, probably just by chance, in fact had a higher before tax return. It looks

even more attractive after taxes. If the tax rate for both dividend income and capital gains is 30%, then

the tax paid at year end per dollar invested in portfolio S is .3 (.41 + 2.31) /19.85 = 4.1 cents; whereas,

the tax per dollar invested in portfolio S is .3 .28/13.44 = 0.6 of a cent.

 Below is a generalization of the Markowitz model to take into account taxes. As input, it requires

in particular:

a) number of shares held of each kind of asset,

b) price per share paid for each asset held, and

c) estimated dividends per share for each kind of asset.

396 Chapter 13 Portfolio Optimization

 The results from this model will differ from a model that does not consider taxes in that this model,

when considering equally attractive assets, will tend to:

i. purchase the asset that does not pay dividends, so as to avoid the immediate tax on

dividends,

ii. sell the asset that pays dividends, and

iii. sell the asset whose purchase cost was higher, so as to avoid more tax on capital gains.

 This is all given that two assets are otherwise identical (presuming rates of return are computed

including dividends). For completeness, this model also includes transaction costs and illustrates how a

correlation matrix can be used instead of a covariance matrix to describe how assets move together:

MODEL:

! Generic Markowitz portfolio model that takes into account

 bid/ask spread and taxes. (PORTAX)

 Keywords: Markowitz, portfolio, taxes, transaction costs;

 SETS:

 ASSET: RET, START, BUY, SEL, APRICE, BUYAT, SELAT, DVPS, STD, X;

 ENDSETS

 DATA:

! Data based on original Markowitz example;

 ASSET = TBILL ATT GMC USX;

! The expected returns as growth factors;

 RET = 1.05 1.089083 1.21367 1.23458;

! S. D. in return for each asset;

 STD = 0 .103959 .241644 .306964;

! Starting composition of the portfolio in shares;

 START = 10 50 70 350;

! Price per share at acquisition;

 APRICE = 1000 80 89 21;

! Current bid/ask price per share;

 BUYAT = 1000 87 89 27;

 SELAT = 1000 86 88 26;

! Dividends per share(estimated);

 DVPS = 0 .5 0 0;

! Tax rate;

 TAXR = .32;

! The desired growth factor;

 TARGET = 1.15;

 ENDDATA

Portfolio Optimization Chapter 13 397

 SETS:

 TMAT(ASSET, ASSET) | &1 #GE# &2: CORR;

 ENDSETS

 DATA:

! Correlation matrix;

 CORR= 1.0

 0 1.000000

 0 0.4938961 1.000000

 0 0.4097276 0.7472293 1.000000 ;

 ENDDATA

!---;

! Min the var in portfolio return;

 [OBJ] MIN =

 @SUM(ASSET(I): (X(I)*SELAT(I)* STD(I))^2) +

 2 * @SUM(TMAT(I, J) | I #NE# J:

 CORR(I, J) * X(I)* SELAT(I) * STD(I)

 * X(J)* SELAT(J) * STD(J)) ;

! Budget constraint, sales must cover purchases + taxes;

 [BUDC] @SUM(ASSET(I):

 SELAT(I) * SEL(I) - BUYAT(I) * BUY(I)) >= TAXES;

 [TAXC] TAXES >= TAXR * @SUM(ASSET(I):

 DVPS(I)* X(I) + SEL(I) * (SELAT(I) - APRICE(I)));

! After tax return requirement. This assumes we do not pay

 tax on appreciation until we sell;

 [RETC] @SUM(ASSET(I):

 RET(I)* X(I)* SELAT(I)) - TAXES >=

 TARGET * @SUM(ASSET(I): START(I) * SELAT(I));

! Inventory balance for each asset;

 @FOR(ASSET(I):

 [BAL] X(I) = START(I) + BUY(I) - SEL(I););

 END

13.4.4 Factors Model for Simplifying the Covariance Structure
Sharpe (1963) introduced a substantial simplification to the modeling of the random behavior of stock

market prices. He proposed that there is a “market factor” that has a significant effect on the movement

of a stock. The market factor might be the Dow-Jones Industrial average, the S&P 500 average, or the

Nikkei index. If we define:

M = the market factor,

m0 = E(M),

s0
2 = var(M),

ei = random movement specific to stock i,

si
2 = var(ei).

Sharpe’s approximation assumes (where E() denotes expected value):

E(ei) = 0

E(ei ej) = 0 for i j,

E(ei M) = 0.

398 Chapter 13 Portfolio Optimization

 Then, according to the Sharpe single factor model, the return of one dollar invested in stock or asset

i is:

ui + bi M + ei.

 The parameters ui and bi are obtained by regression (e.g., least squares, of the return of asset i on the

market factor). The parameter bi is known as the “beta” of the asset. Let:

Xi = amount invested in asset i and

define the variance in return of the portfolio as:

var[Xi(ui + bi M + ei)]

 = var(Xi bi M) + var(Xi ei)

 = (Xi bi)2 so
2 + Xi

2si
2.

Thus, our problem can be written:

Minimize Z 2 so
2 + Xi

2 si
2

subject to

Z − Xi bi = 0

 Xi = 1

 Xi (ui + bi mo) r.

 So, at the expense of adding one constraint and one variable, we have reduced a dense covariance

matrix to a diagonal covariance matrix.

 In practice, perhaps a half dozen factors might be used to represent the “systematic risk”. That is,

the return of an asset is assumed to be correlated with a number of indices or factors. Typical factors

might be a market index such as the S&P 500, interest rates, inflation, defense spending, energy prices,

gross national product, correlation with the business cycle, various industry indices, etc. For example,

bond prices are very affected by interest rate movements.

13.4.5 Example of the Factor Model
The Factor Model represents the variance in return of an asset as the sum of the variances due to the

asset’s movement with one or more factors, plus a factor-independent variance.

Portfolio Optimization Chapter 13 399

 To illustrate the factor model, we used multiple regression to regress the returns of ATT, GMC, and

USX on the S&P 500 index for the same period. The model with solution is:

MODEL:

! Multi factor portfolio model;

 SETS:

 ASSET: ALPHA, SIGMA, X;

 FACTOR: RETF, SIGFAC, Z;

 AXF(ASSET, FACTOR): BETA;

 ENDSETS

 DATA:

! The factor(s);

 FACTOR = SP500;

! Mean and s.d. of factor(s);

 RETF = 1.191460;

 SIGFAC = .1623019;

! The stocks were multi-regressed on the factors;

! i.e.: Return(i) = Alpha(i) + Beta(i) * SP500 + error(i);

 ASSET = ATT GMC USX;

 ALPHA = .563976 -.263502 -.580959;

 BETA = .4407264 1.23980 1.52384;

 SIGMA = .075817 .125070 .173930;

! The desired return;

 TARGET = 1.15;

 ENDDATA

!--;

! Min the var in portfolio return;

 [OBJ] MIN

 = @SUM(FACTOR(J):(SIGFAC(J) * Z(J))^2)

 + @SUM(ASSET(I): (SIGMA(I) * X(I))^2) ;

! Compute portfolio betas;

 @FOR(FACTOR(J):

 Z(J) = @SUM(ASSET(I): BETA(I, J) * X(I));

);

! Budget constraint;

 @SUM(ASSET: X) = 1;

! Return requirement;

 @SUM(ASSET(I): X(I)* ALPHA(I))

 + @SUM(FACTOR(J): Z(J) * RETF(J)) >= TARGET;

 END

Part of the solution is:

 Variable Value Reduced Cost

 TARGET 1.150000 0.0000000

 X(ATT) 0.5276550 0.0000000

 X(GMC) 0.3736851 0.0000000

 X(USX) 0.9865990E-01 0.0000000

 Z(SP500) 0.8461882 0.0000000

 Row Slack or Surplus Dual Price

 OBJ 0.0229409 1.000000

 2 0.0000000 0.3498846

 3 0.0000000 0.3348567

 4 0.0000000 -0.3310770

400 Chapter 13 Portfolio Optimization

 Notice the portfolio makeup is slightly different. However, the estimated variance of the portfolio

is very close to our original portfolio.

13.4.6 Scenario Model for Representing Uncertainty
The scenario approach to modeling uncertainty assumes the possible future situations can be represented

by a small number of “scenarios”. The smallest number used is typically three (e.g., “optimistic,” “most

likely,” and “pessimistic”). Some of the original ideas underlying the scenario approach come from the

approach known as stochastic programming; see Madansky (1962), for example. For a discussion of the

scenario approach for large portfolios, see Markowitz and Perold (1981) and Perold (1984). For a

thorough discussion of the general approach of stochastic programming, see Infanger (1992). Eppen,

Martin, and Schrage (1988) use the scenario approach for capacity planning in the automobile industry.

 Let:

Ps = Probability scenario s occurs,

uis = return of asset i if the scenario is s,

Xi = investment in asset i,

Ys = deviation of actual return from the mean if the scenario is s;

 = i Xi(uis − q Pq uiq).

Our problem in algebraic form is:

Minimize s Ps Ys
2

subject to

Ys − i Xi(ui s − q Pq uiq) = 0 (deviation from mean of each scenario, s)

i Xi = 1 (budget constraint)

i Xi s Ps uis r (desired return).

If asset i has an inherent variability vi
2, the objective generalizes to:

Min i Xi
2 vi

2 + s PsYs
2

 The key feature is that, even though this formulation has a few more constraints, the covariance

matrix is diagonal and, thus, very sparse.

 You will generally also want to put upper limits on what fraction of the portfolio is invested in each

asset. Otherwise, if there are no upper bounds or inherent variabilities specified, the optimization will

tend to invest in only as many assets as there are scenarios.

13.4.7 Example: Scenario Model for Representing Uncertainty
We will use the original data from Markowitz once again. We simply treat each of the 12 years as being

a separate scenario, independent of the other 11 years. Because of the amount of data involved, it is

convenient to use the ‘sets’ form of LINGO in the following model:

MODEL:

! Scenario portfolio model;

SETS:

 SCENE/1..12/: PRB, R, DVU, DVL;

 ASSET/ ATT, GMT, USX/: X;

 SXI(SCENE, ASSET): VE;

ENDSETS

Portfolio Optimization Chapter 13 401

DATA:

 TARGET = 1.15;

! Data based on original Markowitz example;

 VE =

 1.300 1.225 1.149

 1.103 1.290 1.260

 1.216 1.216 1.419

 0.954 0.728 0.922

 0.929 1.144 1.169

 1.056 1.107 0.965

 1.038 1.321 1.133

 1.089 1.305 1.732

 1.090 1.195 1.021

 1.083 1.390 1.131

 1.035 0.928 1.006

 1.176 1.715 1.908;

! All scenarios considered to be equally likely;

 PRB= .08333 .08333 .08333 .08333 .08333 .08333

 .08333 .08333 .08333 .08333 .08333 .08333;

ENDDATA

! Target ending value;

 [RET] AVG >= TARGET;

! Compute expected value of ending position;

 AVG = @SUM(SCENE: PRB * R);

 @FOR(SCENE(S):

! Measure deviations from average;

 DVU(S) - DVL(S) = R(S) - AVG;

! Compute value under each scenario;

 R(S) = @SUM(ASSET(J): VE(S, J) * X(J)));

! Budget;

 [BUD] @SUM(ASSET: X) = 1;

 [VARI] VAR = @SUM(SCENE: PRB * (DVU + DVL)^2);

 [SEMIVARI] SEMIVAR = @SUM(SCENE: PRB * (DVL) ^2);

 [DOWNRISK] DNRISK = @SUM(SCENE: PRB * DVL);

! Set objective to VAR, SEMIVAR, or DNRISK;

 [OBJ] MIN = VAR;

END

When solved, (part of) the solution is:

Optimal solution found at step: 4

Objective value: 0.2056007E-01

Variable Value Reduced Cost

 X(ATT) 0.5297389 0.0000000

 X(GMT) 0.3566688 0.0000000

 X(USX) 0.1135923 0.0000000

 Row Slack or Surplus Dual Price

 RET 0.0000000 -0.3246202

 BUD 0.0000000 0.3321931

 OBJ 0.2056007E-01 1.000000

 The solution should be familiar. The alert reader may have noticed the solution suggests the same

portfolio (except for round-off error) as our original model based on the covariance matrix (based on the

402 Chapter 13 Portfolio Optimization

same 12 years of data as in the above scenario model). This, in fact, is a general result. In other words,

if the covariance matrix and expected returns are calculated directly from the original data by the

traditional statistical formulae, then the covariance model and the scenario model, based on the same

data, will recommend exactly the same portfolio.

 The careful reader will have noticed the objective function from the scenario model (0.02056) is

slightly less than that of the covariance model (.02241). The exceptionally perceptive reader may have

noticed that except for round-off error, 12 0.02054597/11 = 0.002241. The difference in objective

value is a result simply of the fact that standard statistics packages tend to divide by N − 1 rather than N

when computing variances and covariances, where N is the number of observations. Thus, a slightly

more general statement is, if the covariance matrix is computed using a divisor of N rather than N − 1,

then the covariance model and the scenario model will give the same solution, including objective value.

13.5 Measures of Risk other than Variance
The most common measure of risk is variance (or its square root, the standard deviation). This is a

reasonable measure of risk for assets that have a symmetric distribution and are traded in a so-called

“efficient” market. If these two features do not hold, however, variance has some drawbacks. Consider

the four possible growth distributions in Figure 13.2.

 Investments A, B, and C are equivalent according to the variance measure because each has an

expected growth of 1.10 (an expected return of 10%) and a variance of 0.04 (standard deviation around

the mean of 0.20). Risk-averse investors would, however, probably not be indifferent among the three.

Under distribution (A), you would never lose any of your original investment, and there is a 0.2

probability of the investment growing by a factor of 1.5 (i.e., a 50% return). Distribution (C), on the

other hand, has a 0.2 probability of an investment decreasing to 0.7 of its original value (i.e., a negative

30% return). Risk-averse investors would tend to prefer (A) most and to prefer (C) least. This illustrates

variance need not be a good measure of risk if the distribution of returns is not symmetric:

Figure 13.2 Possible Growth Factor Distributions

(A)

(B)

(C)

(D)

Growth Factor

P
r
o
b
a
b
i
l
i
t
y

1.0 1.1 1.5

1.1

1.1

1.11.0

.9 1.3

.7 1.2

 Investment (D) is an inefficient investment. It is dominated by (A). Suppose the only investments

available are (A) and (D) and our goal is to have an expected return of at least 5% (i.e., a growth factor

Portfolio Optimization Chapter 13 403

of 1.05) and the lowest possible variance. The solution is to put 50% of our investment in each of (A)

and (D). The resulting variance is 0.01 (standard deviation = 0.1). If we invested 100% in (A), the

standard deviation would be 0.20. Nevertheless, we would prefer to invest 100% in (A). It is true the

return is more random. However, our profits are always at least as high under every outcome. (If the

randomness in profits is an issue, we can always give profits to a worthy educational institution when

our profits are high to reduce the variance.) Thus, the variance objective may cause us to choose

inefficient investments.

 In active and efficient markets such as major stock markets, you will tend not to find investments

such as (D) because investors will realize (A) dominates (D). Thus, the market price of (D) will drop

until its return approaches competing investments. In investment decisions regarding new physical

facilities, however, there are no strong market forces making all investment candidates “efficient”, so

the variance risk measure may be less appropriate in such situations.

13.5.1 Value at Risk(VaR)
In 1994, J.P. Morgan popularized the "Value at Risk" (VaR) concept with the introduction of their

RiskMetrics™ system. To use VaR, you must specify two numbers: 1) an interval of time, typically one

day or ten days, over which you are concerned about losing money, and 2) a probability threshold,

typically 5% (or 1%), beyond which you care about harmful outcomes. VaR is then defined as that

amount of loss in one day that has at most a 5% (or 1%) probability of being exceeded. A comprehensive

survey of VaR is Jorion (2001). Some of the popularity of VaR results from the fact that it is a method

recommended as part of the Basel Accord for measuring the risk of the portfolios of European banks.

Banks must hold capital reserves proportional to their risk, e.g., as measured by VaR.

Example

Suppose that one day from now we think that our portfolio will have appreciated in value by $12,000.

The actual value, however, has a Normal distribution with a standard deviation of $10,000. From a

Normal table, we can determine that a left tail probability of 5% corresponds to an outcome that is

1.644853 standard deviations below the mean. Now:

12000 -1.644853 * 10000 = -4448.50.

So, we would say that the value at risk is $4448.50.

404 Chapter 13 Portfolio Optimization

13.5.2 Example of VaR
Let us apply the VaR approach to our standard example, the ATT/GMC/USC model. Suppose that our

risk tolerance is 5% and we want to minimize the value at risk of our portfolio. This is equivalent to

maximizing that threshold, so the probability our wealth is below this threshold is at most .05.

Analysis:

If the end-of-year portfolio value has a Normal distribution, then a left tail probability of 5% corresponds

to a point that is 1.64485 standard deviations below the mean. Minimizing the value at risk corresponds

to choosing the mean and standard deviation of the portfolio, so the (mean – 1.64485 * (standard

deviation)) is maximized. The following model will do this:

MODEL: ! Markowitz Value at Risk Portfolio Model(PORTVAR);

 SETS:

 STOCKS: X, RET;

 COVMAT(STOCKS, STOCKS): VARIANCE;

 ENDSETS

 DATA:

 STOCKS = ATT GMC USX;

!Covariance matrix and expected returns;

 VARIANCE = .01080754 .01240721 .01307513

 .01240721 .05839170 .05542639

 .01307513 .05542639 .09422681 ;

 RET = 1.0890833 1.213667 1.234583 ;

 STARTW = 1.0; ! How much we start with;

 RHO = .05;! Risk tolerance, must be < .5;

 ENDDATA

!--;

! Get the s.d. corresponding to this risk threshold;

 RHO = @PSN(Z);

 @FREE(Z);

! Maximize value not at risk;

[VAR] Max = ARET + Z * SD;

 ARET = @SUM(STOCKS: X * RET) ;

! The variance (or SD^2) of the portfolio must be this large;

 SD^2 >= @SUM(COVMAT(I, J): X(I) * X(J) * VARIANCE(I, J));

! Use exactly 100% of the starting budget;

[BUDGET] @SUM(STOCKS: X) = STARTW;

END

With solution:

 Global optimal solution found.

 Objective value: 0.9257590

 Elapsed runtime seconds: 0.16

 Model is a second-order cone

Portfolio Optimization Chapter 13 405

 Variable Value Reduced Cost

 RHO 0.050000 0.0000000

 Z -1.644853 0.0000000

 ARET 1.109300 0.0000000

 SD 0.111585 0.0000000

 X(ATT) 0.843034 0.0000000

 X(GMC) 0.125330 0.0000000

 X(USX) 0.031636 0.0000000

RET(ATT) 1.089083 0.0000000

RET(GMC) 1.213667 0.0000000

RET(USX) 1.234583 0.0000000

 Row Slack or Surplus Dual Price

 1 -0.4163336E-16 -1.081707

 VAR 0.9257590 1.000000

 3 -0.2220446E-15 1.000000

 4 0.0000000 -1.644853

 BUDGET 0.0000000 0.9257590

 Note that, if we invested solely in ATT, the portfolio variance would be .01080754. So, the standard

deviation would be .103959, and the VAR would be 1 - (1.089083 - 1.644853 * .103959) = .0818.

 The portfolio is efficient because it is maximizing a weighted combination of the expected return

and (a negatively weighted) standard deviation. Thus, if there is a portfolio that has both higher expected

return and lower standard deviation, then the above solution would not maximize the objective function

above.

 Note, if you use a risk tolerance: RHO = .1988, then you get essentially the original portfolio

considered for the ATT/GMC/USX problem.

 There are two things to note about the heading of the solution report: 1) The solution is labelled with

the heading “Global optimal solution found” and 2) the model type is described as “second-order cone.

The constraint
 SD^2 >= @SUM(COVMAT(I, J): X(I) * X(J) * VARIANCE(I, J));

is a form of what is called a second-order cone constraint, or SOC for short. LINGO is able to identify

such constraints, and if all the constraints are either linear or second-order cone constraints, then LINGO

can solve large problems of that type fast and solve them to a global, not just local optimum.

406 Chapter 13 Portfolio Optimization

13.5.3 VaR Anomalies
If you want just a single number to describe risk, VaR is a useful, easy to understand metric. You should

not, however, use VaR without considering its anomalous features. The most obvious criticism of VaR

is that it gives attention to only one percentile point of the portfolio return distribution. It does not pay

attention to how really bad a low probability event might be. Two portfolios P1 and P2 may each have

a probability of at most 5% of losing $1M or more, so the VaR is the same for them. Suppose, however,

that P1 has a probability of 5% of losing exactly $1M and no more, whereas P2 has a probability of 1%

of losing exactly $1M and a probability of 4% of losing $10M. Most people would consider P2 as the

riskier one. This “narrow-mindedness” of VaR leads to several questionable features: a) [Good News

anomaly] If we change a parameter of a candidate investment for our portfolio so that the investment

now pays off more, then a VaR objective may suggest that we invest less in that investment after the

change; b) [Diversification is Bad anomaly] If bank 1, with portfolio X1 takes over bank 2 with its

portfolio X2, then we may find that VaR(X1 + X2) > VaR(X1) + VaR(X2), i.e., diversification may

appear to increase risk according to the VaR measure.

 We first illustrate anomally (a) above. A very conservative investor might react to risk by

maximizing the minimum return over scenarios. This is equivalent to the VaR approach in which we

set the risk tolerance to arbitrarily close to 0. There are some curious implications from this. Suppose

the only investments available are A and C above and the two scenarios are:

Scenario Probability Payoff from A Payoff from C

1 0.8 1.0 1.2

2 0.2 1.5 0.7

 If we wish to maximize the minimum possible wealth, the probability of a scenario does not matter,

as long as the probability is positive. Thus, the following LP is appropriate:

 MAX = WMIN;
! Initial budget constraint;

 A + C = 1;

! Wealth under scenario 1;

- WMIN + A + 1.2 * C >= 0;

! Wealth under scenario 2;

- WMIN + 1.5 * A + 0.7 * C >= 0;

The solution is:

Objective value: 1.100000

Variable Value Reduced Cost

 WMIN 1.100000 0.0000000

 A 0.5000000 0.0000000

 C 0.5000000 0.0000000

 Given that both investments have an expected return of 10%, it is not surprising the expected growth

factor is 1.10. That is, a return of 10%. The possibly surprising thing is there is no risk. Regardless of

which scenario occurs, the $1 initial investment will grow to $1.10 if 50 cents is placed in each of A and

C.

Portfolio Optimization Chapter 13 407

 Now, suppose an extremely reliable friend provides us with the interesting news that, “if scenario 1

occurs, then investment C will payoff 1.3 rather than 1.2”. This is certainly good news. The expected

return for C has just gone up, and its downside risk has certainly not gotten worse. How should we react

to it? We make the obvious modification in our model:

MAX = WMIN;

! Initial budget constraint;

 A + C = 1;

! Wealth under scenario 1;

- WMIN + A + 1.3 * C > 0;

! Wealth under scenario 2;

- WMIN + 1.5 * A + 0.7 * C > 0;

and re-solve it to find:

Objective value: 1.136364

Variable Value Reduced Cost

 WMIN 1.136364 0.0000000

 A 0.5454545 0.0000000

 C 0.4545455 0.0000000

 This is a bit curious. We have decreased our investment in C. This is as if our friend had continued

on: “I have this very favorable news regarding stock C. Let’s sell it before the market has a chance to

react”. Why the anomaly? The problem is we are basing our measure of goodness on a single point

among the possible payoffs. In this case, it is the worst possible. For a further discussion of these issues,

see Clyman (1995).

 Now let’s illustrate feature (b), the “Diversification is Bad anomaly”. Suppose that both portfolios

X1 and X2 have a beginning wealth of 100 and have independent, identically distributed distributions of

ending wealth, w, of Prob{w = 80} = .04, and Prob{w = 110} = .96. Thus, at a risk tolerance of 5%,

both portfolios have a VaR = 0, i.e., the probability of losing 0 money or more is less than or equal to

5%. If the two portfolios are combined, the beginning value is 200, and the possible ending values and

probabilities are Prob{w = 160} = .0016; Prob{w = 190} = .0768; and Prob{w = 220} = .9216. Now

the VaR at the 5% level is 200 – 190 = 10. The VaR of the merged bank is greater than the sum of the

VaRs of the individual banks. The amount of safety capital the two banks would have to carry would

be greater in total after the merger according to VaR rules.

13.5.4 Conditional Value at Risk(CVaR)
We saw that a weakness of VaR is that it does not pay attention to how bad a low probability event can

be. CVaR, see Palmquist, Uryasev, and Krokhmal(2002), corrects this deficiency. Once again, suppose

portfolio P1 has a probability of 5% of losing exactly $1M and no more, whereas P2 has a probability of

1% of losing exactly $1M and a probability of 4% of losing $10M. According to VaR, we would be

indifferent between P1 and P2 because at the 5% risk tolerance, they both have a VaR of $1M.

Conditional Value at Risk(CVaR) explicitly takes into account the amount by which the loss exceeds the

VaR threshold. Similar to VaR, CVaR requires us to specify a risk tolerance , e.g., 5%. Optionally,

we may specify an expected return preference ≥ 0. If the random variable w is the final wealth of the

portfolio, then CVaR chooses a portfolio and VaR threshold, t, so as to maximize a weighted

combination of: the final portfolio value, the VaR value, and minus the expected amount by which the

final portfolio falls short of the VaR target. Algebraically, the CVaR objective is:

 Max E(w) + t – E(max[0, t – w]).

408 Chapter 13 Portfolio Optimization

The variable t should not appear in any other constraints. It is fairly easy to show that at an optimum, t

will have the feature that Prob{w < t} Prob{w t}. That is, for the optimal portfolio, its VaR will

be: initial wealth – t. The following model illustrates the determination of a CVaR portfolio:

MODEL:

! Scenario portfolio model;

! Minimize the Conditional Value at Risk;

 SETS:

 SCENE: PRB, W, DVU, DVL;

 ASSET: X;

 SXI(SCENE, ASSET): VE;

 ENDSETS

DATA:

 RHO = .1; ! Risk tolerance;

 ALPHA = 0;

 TARGET = 1.15;

 SCENE = 1..12;

 ASSET =

 ATT GMC USX;

! Data based on original Markowitz example;

VE =

 1.300 1.225 1.149

 1.103 1.290 1.260

 1.216 1.216 1.419

 0.954 0.728 0.922

 0.929 1.144 1.169

 1.056 1.107 0.965

 1.038 1.321 1.133

 1.089 1.305 1.732

 1.090 1.195 1.021

 1.083 1.390 1.131

 1.035 0.928 1.006

 1.176 1.715 1.908;

! All scenarios happen to be equally likely;

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333;

ENDDATA

! Compute portfolio value under each scenario;

 @FOR(SCENE(S):W(S) = @SUM(ASSET(J):VE(S,J) * X(J));

! Measure deviations from CVaR target T;

 DVL(S) - DVU(S) = T - W(S) ;

);

! Budget;

 [BUD] @SUM(ASSET(i): X(i)) = 1;

! Compute expected value of ending position;

 [DEFAVG] AVG = @SUM(SCENE(s): PRB(s) * W(s));

! Ending value >= target ;

 [RET] AVG >= TARGET;

! Minimize conditional value at risk;

 [OBJ] MAX = ALPHA*AVG + RHO*T - @SUM(SCENE(s): PRB(s)* DVL(s));

END

Portfolio Optimization Chapter 13 409

Part of the solution is:

 Objective value: 0.09534855

 Variable Value

 RHO 0.1000000

 ALPHA 0.000000

 TARGET 1.150000

 T 1.017901

 AVG 1.150000

 W(1) 1.236780

 W(2) 1.168732

 W(3) 1.300991

 W(4) 0.940602

 W(5) 1.029482

 W(6) 1.017901

 W(7) 1.077774

 W(8) 1.358208

 W(9) 1.061111

 W(10) 1.103096

 W(11) 1.022858

 W(12) 1.482470

 X(ATT) 0.581326

 X(GMC) 0.000000

 X(USX) 0.418674

The initial value of this portfolio was 1, so the VaR of this portfolio is 1 – T = -.017901. There are 12

scenarios. Notice that in only 1 of the 12, scenario 4, is the final wealth less than T = 1.017901. Thus,

in 1 outcome out of 12, or less than 10% of the outcomes, would the final value be less than 1.017901.

13.6 Scenario Model and Minimizing Downside Risk
Minimizing the variance in return is appropriate if either:

1) the actual return is Normal-distributed or

2) the portfolio owner has a quadratic utility function.

 In practice, it is difficult to show either condition holds. Thus, it may be of interest to use a more

intuitive measure of risk. One such measure is the downside risk, which intuitively is the expected

amount by which the return is less than a specified target return. The approach can be described if we

define:

T = user specified target threshold. When risk is disregarded, this is typically less than the

maximum expected return and greater than the return under the worst scenario.

Ys = amount by which the return under scenario s falls short of target.

 = max{0, T − Xi uis}

410 Chapter 13 Portfolio Optimization

The model in algebraic form is then:

Min Ps Ys ! Minimize expected downside risk

subject to

(compute deviation below target of each scenario, s):

Ys − T + Xi uis 0

 Xi = 1 (budget constraint)

 Xi Ps uis r (desired return).

Notice this is just a linear program.

13.6.1 Semi-variance and Downside Risk
The most common alternative suggested to variance as a measure of risk is some form of downside risk.

One such measure is semi-variance. It is essentially variance, except only deviations below the mean are

counted as risk. The scenario model is well suited to such measures. The previous scenario model needs

only a slight modification to convert it to a semi-variance model. The Y variables are redefined to

measure the deviation below the mean only, zero otherwise. The resulting model is:

MODEL:

! Scenario portfolio model;

! Minimize the semi-variance;

 SETS:

 SCENE/1..12/: PRB, R, DVU, DVL;

 ASSET/ ATT, GMT, USX/: X;

 SXI(SCENE, ASSET): VE;

 ENDSETS

DATA:

 TARGET = 1.15;

! Data based on original Markowitz example;

VE =

 1.300 1.225 1.149

 1.103 1.290 1.260

 1.216 1.216 1.419

 0.954 0.728 0.922

 0.929 1.144 1.169

 1.056 1.107 0.965

 1.038 1.321 1.133

 1.089 1.305 1.732

 1.090 1.195 1.021

 1.083 1.390 1.131

 1.035 0.928 1.006

 1.176 1.715 1.908;

! All scenarios happen to be equally likely;

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333;

ENDDATA

! Compute value under each scenario;

 @FOR(SCENE(S):R(S) = @SUM(ASSET(J):VE(S,J) * X(J));

! Measure deviations from average;

 DVU(S) - DVL(S) = R(S) - AVG;);

Portfolio Optimization Chapter 13 411

! Budget;

 [BUD] @SUM(ASSET: X) = 1;

! Compute expected value of ending position;

 [DEFAVG] AVG = @SUM(SCENE: PRB * R);

! Target ending value;

 [RET] AVG > TARGET;

! Minimize the semi-variance;

 [OBJ] MIN = @SUM(SCENE: PRB * DVL^2);

END

The resulting solution is:

Optimal solution found at step: 4

Objective value: 0.8917110E-02

Variable Value Reduced Cost

 R(1) 1.238875 0.0000000

 R(2) 1.170760 0.0000000

 R(3) 1.294285 0.0000000

 R(4) 0.9329399 0.0000000

 R(5) 1.029848 0.0000000

 R(6) 1.022875 0.0000000

 R(7) 1.085554 0.0000000

 R(8) 1.345299 0.0000000

 R(9) 1.067442 0.0000000

 R(10) 1.113355 0.0000000

 R(11) 1.019688 0.0000000

 R(12) 1.479083 0.0000000

 DVU(1) 0.8887491E-01 0.0000000

 DVU(2) 0.2076016E-01 0.0000000

 DVU(3) 0.1442846 0.0000000

 DVU(4) 0.0000000 0.3617666E-01

 DVU(5) 0.0000000 0.2002525E-01

 DVU(6) 0.0000000 0.2118756E-01

 DVU(7) 0.0000000 0.1074092E-01

 DVU(8) 0.1952993 0.0000000

 DVU(9) 0.0000000 0.1375965E-01

DVU(10) 0.0000000 0.6107114E-02

DVU(11) 0.0000000 0.2171863E-01

DVU(12) 0.3290833 0.0000000

 DVL(1) 0.0000000 0.8673617E-09

 DVL(2) 0.0000000 0.8673617E-09

 DVL(3) 0.0000000 0.8673617E-09

 DVL(4) 0.2170601 0.0000000

 DVL(5) 0.1201515 0.0000000

 X(ATT) 0.5757791 0.0000000

 X(GMT) 0.3858243E-01 0.0000000

 X(USX) 0.3856385 0.0000000

 Row Slack or Surplus Dual Price

 BUD 0.0000000 0.1198420

 DEFAVG 0.0000000 -0.9997334E-02

 RET 0.0000000 -0.1197184

 OBJ 0.8917110E-02 1.000000

412 Chapter 13 Portfolio Optimization

 Notice the objective value is less than half that of the variance model. We would expect it to be at

most half, because it considers only the down (not the up) deviations. The most noticeable change in the

portfolio is substantial funds have been moved to USX from GMC. This is not surprising if you look at

the original data. In the years in which ATT performs poorly, USX tends to perform better than GMC.

13.6.2 Downside Risk and MAD
If the threshold for determining downside risk is the mean return, then minimizing the downside risk is

equivalent to minimizing the mean absolute deviation (MAD) about the mean. This follows easily

because the sum of deviations (not absolute) about the mean must be zero. Thus, the sum of deviations

above the mean equals the sum of deviations below the mean. Therefore, the sum of absolute deviations

is always twice the sum of the deviations below the mean. Thus, minimizing the downside risk below

the mean gives exactly the same recommendation as minimizing the sum of absolute deviations below

the mean. Konno and Yamazaki (1991) use the MAD measure to construct portfolios from stocks on the

Tokyo stock exchange.

13.6.3 Power and Log Utility Functions
Downside risk and semi-variance are examples of utility functions. The basic idea is that the utility of

having an extra dollar of wealth depends upon the amount of wealth we already have. Almost all people

feel that: a) more wealth is better. Many people are risk averse in the sense that they feel that: b) not

losing a dollar is more important than gaining an extra dollar. One of the simplest utility functions that

can capture (a) and (b) is the power utility function, wherein the value of having wealth w is essentially

proportional to w raised to the power γ. Usually the function is “normalized” by subtracting 1 and

dividing by γ, so the utility of having wealth w is:

 U(w) = (wγ -1)/γ;

An investor is said to be risk averse if 0 ≤ γ < 1, risk neutral if γ = 1, and risk preferring if γ > 1. As γ

approaches 0, the power utility function approaches the log utility:

 U(w) = LN(w), where LN is the natural logarithm.

Recalling our little four alternatives from Figure 13.2, the utilities for various γ are shown below.

 γ=1 γ =0.5 γ =0.1 γ =0.01 Log
 A) 0.1 0.089898 0.082759 0.081258 0.081093

 B) 0.1 0.088859 0.080514 0.078702 0.078502

 C) 0.1 0.087376 0.077117 0.074782 0.074522

 D) 0 0

For example, 0.089898 = 0.8*(1^0.5 -1)/0.5 + 0.2*(1.5^0.5-1)/0.5. Notice that when γ < 1, alternative

A is the preferred alternative, which is consistent with what most people would choose. Also notice that

as γ approaches 0, the power utility approaches the Log utility.

A utility function such as the power utility provides some advice for the “bet sizing” or “how much of

our wealth should we put at risk” problem. Suppose our current wealth is $1000 and we have two

alternatives: i) put money in the mattress, or ii) a bet for which for every $1 invested, our investment

either grows to $2 with probability 0.6, or we lose our entire investment with probability 0.4. Note that

this is essentially equivalent to our offering an insurance policy where the premium is $1 and the amount

insured is $2, and the probability we will have to pay out the insured amount is 0.4. The expected net

return is 0.6*2 + 0.4*0 – 1 = 0.2. This is positive, so if we are risk neutral we put all of money in the

Portfolio Optimization Chapter 13 413

risky alternative. If we lose, however, we are out of business, so we may want to rethink this. The relevant

portfolio model if we use a power utility function is:

 ! The bet sizing problem, using Power Utility;

 GAMMA = 0.01; ! We are rather risk averse;

 WEALTH = 1000; ! Our current wealth;

 PWIN = 0.6; ! Prob(Win bet);

 ! Some of our money goes in the Matress,

 some goes to the Bet;

 M + B = WEALTH;

 ! We want to maximize our expected utility, using a Power utility;

 MAX = PWIN*((M+2*B)^GAMMA - 1)/GAMMA ! Bet pays off;

 + (1-PWIN)*((M+0*B)^GAMMA - 1)/GAMMA; !Lose bet;

The solution is:

 Global optimal solution found.

 Objective value: 7.173722

 Variable Value

 M 798.0349

 B 201.9651

So we risk about 20% of our wealth on the bet. You can verify that if you increase your risk tolerance to

γ = 0.63, then we would invest about $500 of our $1000 in the bet.

13.6.4 Scenarios Based Directly Upon a Covariance Matrix
If only a covariance matrix is available, rather than original data, then, not surprisingly, it is nevertheless

possible to construct scenarios that match the covariance matrix. The following example uses just four

scenarios to represent the possible returns from the three assets: ATT, GMC, and USX. These scenarios

have been constructed, using the methods of section 12.8.2, so they mimic behavior consistent with the

original covariance matrix:

MODEL:

SETS:

! Each asset has a variable value and an average return;

 ASSET: X, RET;

! the variance of return at each scenario (which can be negative), and

the probability of it happening;

 SCEN: Y, P;

! Return for each asset under each scenario;

 COVMAT(SCEN, ASSET):ENTRY;

ENDSETS

DATA:

 P = .25 .25 .25 .25; ! Four equi-likely scenarios;

 ASSET = ATT GMC USX;

 ENTRY =0.9851237 1.304437 1.097669

 1.193042 1.543131 1.756196

 0.9851237 0.8842088 1.119948

 1.193042 1.122902 0.9645076;

 RET = 1.089083 1.213667 1.234583;

414 Chapter 13 Portfolio Optimization

ENDDATA

! Minimize the variance;

MIN = @SUM(SCEN(s): Y(s) * Y(s) * P(s));

! Compute the deviation from mean under each scenario;

@FOR(SCEN(s):Y(s) = @SUM(ASSET(J): ENTRY(s,J)* X(J)) - MEAN

);

! The Budget constraint;

@SUM(ASSET(j): X(j)) = 1;

! Define or compute the mean;

@SUM(ASSET(j): X * RET) = MEAN;

MEAN > 1.15;! Target return;

! The variance of each return can be negative;

@FOR(SCEN: @FREE(Y));

END

Portfolio Optimization Chapter 13 415

When solved, we get the familiar solution:

Optimal solution found at step: 4

Objective value: 0.2241380E-01

 Variable Value Reduced Cost

 MEAN 1.150000 0.0000000

 X(ATT) 0.5300912 0.0000000

 X(GMC) 0.3564126 0.0000000

 X(USX) 0.1134962 0.0000000

 RET(ATT) 1.089083 0.0000000

 RET(GMC) 1.213667 0.0000000

 RET(USX) 1.234583 0.0000000

 Y(1) -0.3829557E-01 0.0000000

 Y(2) 0.2317340 0.0000000

 Y(3) -0.1855416 0.0000000

 Y(4) -0.7894565E-02 0.0000000

 P(1) 0.2500000 0.0000000

 P(2) 0.2500000 0.0000000

 P(3) 0.2500000 0.0000000

 P(4) 0.2500000 0.0000000

ENTRY(1, ATT) 0.9851237 0.0000000

ENTRY(1, GMC) 1.304437 0.0000000

ENTRY(1, USX) 1.097669 0.0000000

ENTRY(2, ATT) 1.193042 0.0000000

ENTRY(2, GMC) 1.543131 0.0000000

ENTRY(2, USX) 1.756196 0.0000000

ENTRY(3, ATT) 0.9851237 0.0000000

ENTRY(3, GMC) 0.8842088 0.0000000

ENTRY(3, USX) 1.119948 0.0000000

ENTRY(4, ATT) 1.193042 0.0000000

ENTRY(4, GMC) 1.122902 0.0000000

ENTRY(4, USX) 0.9645076 0.0000000

 Row Slack or Surplus Dual Price

 1 0.2241380E-01 1.000000

 2 0.0000000 0.1914778E-01

 3 0.0000000 -0.1158670

 4 0.0000000 0.9277079E-01

 5 0.0000000 0.3947280E-02

 6 0.0000000 0.3621391

 7 0.0000000 -0.3538852

 8 0.0000000 -0.3538841

 Notice the objective function value and the allocation of funds over ATT, GMC, and USX are

essentially identical to our original portfolio example.

416 Chapter 13 Portfolio Optimization

13.7 Hedging, Matching and Program Trading

13.7.1 Portfolio Hedging
Given a “benchmark” portfolio B, we say we hedge B if we construct another portfolio C such that, taken

together, B and C have essentially the same return as B, but lower risk than B. Typically, our portfolio B

contains certain components that cannot be removed. Thus, we want to buy some components negatively

correlated with the existing ones. Examples are:

a) An airline knows it will have to purchase a lot of fuel in the next three months. It would like to

be insulated from unexpected fuel price increases.

b) A farmer is confident his fields will yield $200,000 worth of corn in the next two months. He

is happy with the current price for corn. Thus, would like to “lock in” the current price.

13.7.2 Portfolio Matching, Tracking, and Program Trading
Given a benchmark portfolio B, we say we construct a matching or tracking portfolio if we construct a

new portfolio C that has stochastic behavior very similar to B, but excludes certain instruments in B.

Example situations are:

a) A portfolio manager does not wish to look bad relative to some well-known index of

performance such as the S&P 500, but for various reasons cannot purchase certain instruments

in the index.

b) An arbitrageur with the ability to make fast, low-cost trades wants to exploit market

inefficiencies (i.e., instruments mispriced by the market). If he can construct a portfolio that

perfectly matches the future behavior of the well-defined portfolio, but costs less today, then he

has an arbitrage profit opportunity (if he can act before this “mispricing” disappears).

c) A retired person is concerned mainly about inflation risk. In this case, a portfolio that tracks

inflation is desired.

 As an example of (a), a certain so-called “green” mutual fund will not include in its portfolio

companies that derive more than 2% of their gross revenues from the sale of military weapons, own

directly or operate nuclear power plants, or participate in business related to the nuclear fuel cycle.

 The following table, for example, compares the performance of six Vanguard portfolios with the

indices the portfolios were designed to track; see Vanguard (1995):

Total Return Six Months Ended June 30, 1995

Vanguard Portfolio Comparative Index
Portfolio Name Growth Growth Index Name

500 Portfolio +20.1% +20.2% S&P500

Growth Portfolio +21.1 +21.2 S&P500/BARRA Growth

Value Portfolio +19.1 +19.2 S&P500/BARRA Value

Extended Market Portfolio +17.1% +16.8% Wilshire 4500 Index

SmallCap Portfolio +14.5 +14.4 Russell 2000 Index

Total Stock Market

Portfolio

+19.2% +19.2% Wilshire 5000 Index

 Notice, even though there is substantial difference in the performance of the portfolios, each matches

its benchmark index quite well.

Portfolio Optimization Chapter 13 417

13.8 Methods for Constructing Benchmark Portfolios
A variety of approaches has been used for constructing hedging and matching portfolios. For matching

portfolios, an intuitive approach has been to generalize the Markowitz model, so the objective is to

minimize the variance in the difference in return between the target portfolio and the tracking portfolio.

 A useful way to think about hedging or matching of a benchmark is to think of it as our being forced

to include the benchmark or its negative in our portfolio. Suppose the benchmark is a simple index such

as the S&P500. If our measure of risk is variance, then proceed as follows:

1. Include the benchmark in the covariance matrix just like any other instrument, except do

not include it in the budget constraint. We presume we have a budget of $1 to invest in the

controllable, non-benchmark portion of our portfolio.

2. To get a “matching” portfolio (e.g., one that mimics the S&P 500), set the value of the

benchmark factor to −1. The essential effect is the off diagonal covariance terms are

negated in the row/column of the benchmark factor. Effectively, we have shorted the factor.

If we can get the total variance to zero, we have perfectly matched the randomness of the

benchmark.

3. To get a “hedging” portfolio (e.g., one as negatively correlated with the S&P 500 as

possible), set the value of the benchmark factor to +1. Thus, we will compose the rest of

the portfolio to counteract the effect of the factor we are stuck with having in the portfolio.

 One might even want to drop the budget constraint. The solution will then tell you how much to

invest in the controllable portfolio to get the best possible hedge or match per $ of the benchmark.

418 Chapter 13 Portfolio Optimization

 The following model illustrates the extension of the Markowitz approach to the hedging case where

we want to “cancel out” some benchmark. In the case of GMC, it could be that our decision maker works

for GMC and thus has his fortunes unavoidably tied to those of GMC. He might wish to find a portfolio

negatively correlated with GMC:

MODEL:

!Generic Markowitz portfolio Hedging model(PORTHEDG);

! We want to hedge the first or "benchmark" asset

 with the remaining ones;

 SETS:

 ASSET/ GMC ATT USX/: RET, X;

 TMAT(ASSET, ASSET) | &1 #GE# &2: COV;

 ENDSETS

 DATA:

! The expected returns;

 RET = 1.21367, 1.089083, 1.23458;

! Covariance matrix;

 COV =

 .05839170

 .01240721 .01080754

 .05542639 .01307513 .09422681;

 ! The desired return;

 TARGET = 1.15;

 ENDDATA

!---;

! Min the var in portfolio return;

 [OBJ] MIN= (@SUM(ASSET(I):

 COV(I, I) * X(I)^2) +

 2 * @SUM(TMAT(I, J) | I #NE# J:

 COV(I, J) * X(I) * X(J))) ;

!We are stuck with the first asset in the portfolio;

 X(1) = 1;

! Budget constraint(applies to remaining assets);

 [BUDGET] @SUM(ASSET(I)| I #GT# 1: X(I)) = 1;

! Return requirement(applies to remaining assets);

 [RETURN] @SUM(ASSET(I)| I #GT# 1:

 RET(I) * X(I)) >= TARGET;

END

The solution is:

Optimal solution found at step: 4

Objective value: 0.1457632

Variable Value Reduced Cost

 X(GMC) 1.000000 0.0000000

 X(ATT) 0.5813178 0.0000000

 X(USX) 0.4186822 0.0000000

 Thus, our investor puts more of the portfolio in ATT than in USX (whose fortunes are more closely

tied to those of GMC).

Portfolio Optimization Chapter 13 419

 The following model illustrates the extension of the Markowitz approach to the matching case where

we want to construct a portfolio that mimics or matches a benchmark portfolio. In this case, we want to

match the S&P500, but limit ourselves to investing in only ATT, GMC, and USX:

MODEL:

!Gen. Markowitz portfolio Matching model(PORTMTCH);

! We want to match the first or "benchmark" asset

 with the remaining ones;

 SETS:

 ASSET/ SP500 ATT GMC USX/: RET, X;

 TMAT(ASSET, ASSET) | &1 #GE# &2: COV;

 ENDSETS

 DATA:

! The expected returns;

 RET = 1.191458 1.089083, 1.21367, 1.23458;

! Covariance matrix;

 COV =

 .02873661

 .01266498 .01080754

 .03562763 .01240721 .05839170

 .04378880 .01307513 .05542639 .09422681;

 ! The desired return;

 TARGET = 1.191458;

 ENDDATA

!---;

! Min the var in portfolio return;

 [OBJ] MIN = (@SUM(ASSET(I): COV(I, I) * X(I)^2)

 + 2 * @SUM(TMAT(I, J) | I #NE# J:

 COV(I, J) * X(I) * X(J))) ;

!Matching is equivalent to being short the benchmark;

 X(1) = -1;

 @FREE(X(1));

! Budget constraint(applies to remaining assets);

 [BUDGET] @SUM(ASSET(I)| I #GT# 1: X(I)) = 1;

! Return requirement(applies to remaining assets);

 [RETURN] @SUM(ASSET(I)| I #GT# 1:

 RET(I) * X(I)) >= TARGET;

END

The solution is:

Optimal solution found at step: 4

Objective value: 0.5245968E-02

 Variable Value Reduced Cost

X(SP500) -1.000000 0.0000000

 X(ATT) 0.2276635 0.0000000

 X(GMC) 0.4781277 0.0000000

 X(USX) 0.2942089 -0.1266506E-07

420 Chapter 13 Portfolio Optimization

13.8.1 Scenario Approach to Benchmark Portfolios

If we use the scenario approach, then the hedging model looks as follows:

MODEL: ! (PRTSHDGE);

! Scenario portfolio model, Hedge 1st asset;

! Minimize the variance;

 SETS:

 SCENE/1..12/: PRB, R, DVU, DVL;

 ASSET/ GMT, ATT, USX/: X;

 SXA(SCENE, ASSET): VE;

 ENDSETS

 DATA:

! Data based on original Markowitz example;

 VE =

 1.225 1.300 1.149

 1.290 1.103 1.260

 1.216 1.216 1.419

 0.728 0.954 0.922

 1.144 0.929 1.169

 1.107 1.056 0.965

 1.321 1.038 1.133

 1.305 1.089 1.732

 1.195 1.090 1.021

 1.390 1.083 1.131

 0.928 1.035 1.006

 1.715 1.176 1.908;

! All scenarios happen to be equally likely;

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333;

! The desired return;

 TARGET = 1.15;

ENDDATA

! Minimize risk;

 [OBJ] MIN = @SUM(SCENE: PRB * (DVL + DVU) ^ 2);

!We are stuck with having asset 1 in the portfolio;

 X(1) = 1;

!Compute hedging portfolio value under each scenario;

 @FOR(SCENE(S):

 R(S)=

 @SUM(ASSET(J)| J #GT# 1: VE(S, J) * X(J));

! Measure deviations hedge + benchmark from target;

 DVU(S) - DVL(S) =

 (R(S) + VE(S, 1))/ 2 - TARGET;

);

! Budget constraint(applies to remaining assets);

 [BUDGET] @SUM(ASSET(J)| J #GT# 1: X(J)) = 1;

! Compute expected value of ending position;

 [DEFAVG] AVG = @SUM(SCENE: PRB * R);

! Target ending value;

 [RET] AVG > TARGET;

END

Portfolio Optimization Chapter 13 421

With a solution:

Optimal solution found at step: 4

Objective value: 0.3441714E-01

Variable Value Reduced Cost

 X(GMT) 1.000000 0.0000000

 X(ATT) 0.5813256 0.0000000

 X(USX) 0.4186744 0.0000000

Notice we get the same portfolio as with the Markowitz model.

 A scenario model for constructing a portfolio matching the S&P500 looks as follows:

 MODEL:
 ! Scenario model, Match 1st asset(PRTSMTCH);

 ! Minimize the variance;

 SETS:

 SCENE/1..12/: PRB, R, DVU, DVL;

 ASSET/ SP500 ATT GMT USX/: X;

 SXA(SCENE, ASSET): VE;

 ENDSETS

 DATA:

 ! Data based on original Markowitz example;

 VE =

 ! S&P500 ATT GMC USX;

 1.258997 1.3 1.225 1.149

 1.197526 1.103 1.29 1.26

 1.364361 1.216 1.216 1.419

 0.919287 0.954 0.728 0.922

 1.05708 0.929 1.144 1.169

 1.055012 1.056 1.107 0.965

 1.187925 1.038 1.321 1.133

 1.31713 1.089 1.305 1.732

 1.240164 1.09 1.195 1.021

 1.183675 1.083 1.39 1.131

 0.990108 1.035 0.928 1.006

 1.526236 1.176 1.715 1.908;

 ! All scenarios happen to be equally likely;

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333 .0833333 .0833333 .0833333

 .0833333 .0833333;

 ! The desired return;

 TARGET = 1.191458;

 ENDDATA

 ! Minimize risk;

 [OBJ] MIN = @SUM(SCENE: PRB * (DVL + DVU) ^ 2);

 ! Compute portfolio value under each scenario;

 @FOR(SCENE(S):

 R(S) =

 @SUM(ASSET(J)| J #GT# 1: VE(S, J) * X(J));

 ! Measure deviations of portfolio from benchmark;

 DVU(S) - DVL(S) = (R(S) - VE(S, 1));

);

 ! Budget constraint(applies to remaining assets);

 [BUDGET] @SUM(ASSET(J)| J #GT# 1: X(J)) = 1;

422 Chapter 13 Portfolio Optimization

 ! Compute expected value of ending position;

 [DEFAVG] AVG = @SUM(SCENE: PRB * R);

 ! Target ending value;

 [RET] AVG > TARGET;

 END

The solution is:

Optimal solution found at step: 7

Objective value: 0.4808974E-02

 Variable Value Reduced Cost

X(SP500) 0.0000000 0.0000000

 X(ATT) 0.2276583 0.0000000

 X(GMT) 0.4781151 0.0000000

 X(USX) 0.2942266 0.0000000

Notice we get the same portfolio as with the Markowitz model.

 The two scenario models both used variance for the measure of risk relative to the benchmark. It is

easy to modify them, so more asymmetric risk measures, such as downside risk, could be used.

13.8.2 Efficient Benchmark Portfolios
We say a portfolio is on the efficient frontier if there is no other portfolio that has both higher expected

return and lower risk.

 Let:

ri = expected return on asset i,

t = an arbitrary target return for the portfolio.

 A portfolio, with weight mi on asset i, is efficient if there exists some target t for which the portfolio

is a solution to the problem:

Minimize risk

subject to

i

n

=

0

mi = 1 (budget constraint)

i

m

=

0
ri mi t (return target constraint).

 Portfolio managers are frequently evaluated on their performance relative to some benchmark

portfolio. Let bi = the weight on asset i in the benchmark portfolio. If the benchmark portfolio is not on

the efficient frontier, then an interesting question is: What are the weights of the portfolio on the efficient

frontier that is closest to the benchmark portfolio in the sense that the risk of the efficient portfolio

relative to the benchmark is minimized?

Portfolio Optimization Chapter 13 423

 There is a particularly simple answer when the measure of risk is portfolio variance, there is a

risk-free asset, borrowing is allowed at the risk-free rate, and short sales are permitted. Let m0 = the

weight on the risk-free asset. An elegant result, in this case, is that there is a so-called “market” portfolio

with weights mi on asset i, such that effectively only m0 varies as the return target varies. Specifically,

there are constants mi, for i = 1, 2, . . . , n, such that the weight on asset i is simply (1 − m0) mi. Define:

q = 1 − m0 = weight to put on the market portfolio,

Ri = random return on asset i.

Then the variance of any efficient portfolio relative to the benchmark portfolio can be written as:

var(
i

n

=

1
Ri[qmi − bi])

=
i

n

=

1

 (qmi − bi)2 var (Ri) + 2
 j

i
 (qmi − bi)(qm j − bj) Cov(Ri,R j).

Setting the derivative of this expression with respect to q equal to zero gives the result:

q =
i

n

=

1

mi bi var (Ri) +
 j

i
 (mi bj mj bi) Cov (Ri, R j)

__

i

n

=

1

mi
2 var (Ri) + 2

 j

i
mi mj Cov (Ri, Rj)

 For example, if the benchmark portfolio is on the efficient frontier with weight b0 on the risk-free

asset, then bi = (1 − b0)mi and therefore q = 1 − b0.

 Thus, a manager who is told to outperform the benchmark portfolio {b0, b1, . . ., bn} should perhaps,

in fact, be compensated according to his performance relative to the efficient portfolio given by q above.

13.8.3 Efficient Formulation of Portfolio Problems
The amount of time it takes to solve a mathematical model may depend dramatically on how the model

is formulated. This phenomenon is well known in integer programming circles. Below, we illustrate the

same phenomenon for nonlinear programs. We give several different, but mathematically equivalent,

formulations of a portfolio optimization model.

Formulation 1

Minimize
j

n

i

n

==

11

qij xi xj

subject to

 j

n

=

1
xj = 1

 j

n

=

1
rj xj = r0

424 Chapter 13 Portfolio Optimization

Formulation 2

We can exploit the fact that the covariance matrix is symmetric to rewrite the objective as:

Min
i

n

=

1

xi (qii xi + 2
 j=i+1

n

 qij xj)

subject to

 j

n

=

1

xj = 1

 j

n

=

1

rj xj = r0

Formulation 3

We can separately compute the term multiplying xi in the objective to get the formulation:

Minimize
i

n

=

1
xi wi

subject to

For each i;

wi = qii xi + 2
 j=i+1

n

 qij xj, wi a free variable

 j

n

=

1
xj = 1

 j

n

=

1
rj xj = r0

 We solved a specific instance of these formulations for a data set based on the performance of 19

stocks on the New York Stock exchange (IBM, Xerox, ATT, etc.). These models were solved as general

nonlinear programs. The fact they were quadratic programs was not exploited.

 The solution time in seconds for each formulation was:

Formulation Time in seconds

1 2.16

2 1.5

3 0.82

Why the dramatic differences in solution time?

 The advantage of formulation (2) over (1) is relatively obvious. Each function evaluation of the

objective in (1) requires approximately 2 n n multiplications (2 multiplications for each of

approximately n n terms). For (2), the equivalent figure is about n + n n/2 multiplications.

 Formulation (3) has essentially the same number of multiplications as (2). However, about n n/2

of them appear in linear constraints. The number of constraints has dramatically increased. However,

these constraints are linear and the technology for efficiently processing linear constraints is well

developed.

Portfolio Optimization Chapter 13 425

13.9 Cholesky Factorization for Quadratic Programs
There is another formulation comparable to formulation (3), but even more compact. Given a covariance

matrix {qij}, one can compute its “square root,” the so-called Cholesky factorization, to give a lower

triangular matrix {Lij}. The new formulation is then:

Minimize
 j

n

=

1
wj

2

subject to

For each j:

wj =
 i=j+1

n

 Lij xj, wj a free variable

 j

n

=

1
xj = 1

 j

n

=

1
rj xj = r0

 Notice it is approximately identical in structure to formulation (3) except it has only n rather than

2n variables in the objective.

 For the reader comfortable with matrix notation, the transformation is easy to explain. Given the

covariance matrix Q and a lower triangular matrix L such that:

L L' = Q, where L' denotes transpose,

our objective is to:

Minimize x Q x' = x L L' x'

If we set w = x L, then our objective is simply:

Minimize w w'

subject to

w = x L.

 A LINGO model using Cholesky decomposition and applied to our three-asset example is shown

below:

MODEL:! Cholesky factorization Portfolio model;

SETS:

 ASSET: AMT, RET, CW;

 COVMAT(ASSET, ASSET): VARIANCE;

 MAT(ASSET,ASSET)| &1 #GE# &2: L; !Cholesky factor;

ENDSETS

DATA:

 ASSET = ATT GMC USX;

!Covariance matrix and expected returns;

VARIANCE = .01080754 .01240721 .01307513

 .01240721 .05839170 .05542639

 .01307513 .05542639 .09422681;

 RET = .0890833 .213667 .234583;

ENDDATA

426 Chapter 13 Portfolio Optimization

! Minimize variance;

[VAR] MIN = @SUM(ASSET(I): CW(I) * CW(I));

! Use exactly 100% of the starting budget;

[BUDGET] @SUM(ASSET: AMT) = 1;

! Required wealth at end of period;

[RETURN] @SUM(ASSET: AMT * RET) > .15;

! Compute contributions to variance, CW();

@FOR(ASSET(J):

 @FREE(CW(J));

 CW(J) = @SUM(MAT(I, J): L(I, J) * AMT(I));

);

!Compute the Cholesky factor L, so LL'= VARIANCE;

@FOR(ASSET(I):

 @FOR(MAT(I, J)| J #LT# I:

L(I,J) = (VARIANCE(I, J) - @SUM(MAT(I, K)|

 K #LT# J: L(I, K) * L(J, K)))/ L(J, J);

);

L(I,I) = (VARIANCE(I, I) - @SUM(MAT(I, K)|

 K #LT# I: L(I, K) * L(I, K)))^.5;

);

END

Portfolio Optimization Chapter 13 427

Part of the solution report is shown below:

Optimal solution found at step: 4

Objective value: 0.2241375E-01

 Variable Value Reduced Cost

 AMT(ATT) 0.5300926 0.0000000

 AMT(GMC) 0.3564106 0.0000000

 AMT(USX) 0.1134968 0.4492217E-08

 RET(ATT) 0.8908330E-01 0.0000000

 RET(GMC) 0.2136670 0.0000000

 RET(USX) 0.2345830 0.0000000

 CW(ATT) 0.1119192 0.0000000

 CW(GMC) 0.9671834E-01 0.0000000

 CW(USX) 0.2309568E-01 0.0000000

VARIANCE(ATT, ATT) 0.1080754E-01 0.0000000

VARIANCE(ATT, GMC) 0.1240721E-01 0.0000000

VARIANCE(ATT, USX) 0.1307513E-01 0.0000000

VARIANCE(GMC, ATT) 0.1240721E-01 0.0000000

VARIANCE(GMC, GMC) 0.5839170E-01 0.0000000

VARIANCE(GMC, USX) 0.5542639E-01 0.0000000

VARIANCE(USX, ATT) 0.1307513E-01 0.0000000

VARIANCE(USX, GMC) 0.5542639E-01 0.0000000

VARIANCE(USX, USX) 0.9422681E-01 0.0000000

 L(ATT, ATT) 0.1039593 0.0000000

 L(GMC, ATT) 0.1193468 0.0000000

 L(GMC, GMC) 0.2101144 0.0000000

 L(USX, ATT) 0.1257716 0.0000000

 L(USX, GMC) 0.1923522 0.0000000

 L(USX, USX) 0.2034919 0.0000000

 Row Slack or Surplus Dual Price

 VAR 0.2241375E-01 -1.000000

 BUDGET 0.0000000 0.8255034E-02

 RETURN 0.0000000 -0.3538836

13.10 Positive Definiteness Constraints
 An important feature of a valid covariance matrix is that it must be positive semi-definite.

Loosely speaking, this means the diagonal of the matrix must be large relative to the off-diagonal

elements. More precisely, if Q is a square matrix, e.g., a covariance matrix, then for any vector x, we

must have, in matrix notation, x’Qx ≥ 0. In terms of portfolio optimization, if the x vector represents the

amount invested in a set of assets, and Q is the covariance matrix, then x’Qx is the variance of the

portfolio and we expect, and in fact require, that this variane be ≥ 0. Now suppose that the Q matrix is

not given in advance, but rather the the elements of Q are decision variables, and we are constraining

these elements of the matrix so that Q is positive semi-definite. A mathematical program in which we

allow such constraints is called a Semi-Definite Program, or SDP for short. LINGO has a simple

constraint type to indicate that a matrix Q must be positive semi-definite, namely, @POSD(Q);.

 To illustrate the usefulness of this capability, suppose that we asked three experts to estimate

the three covariances between three stocks and we obtained the following “guesstimate” of the

correlation matrix:
 1.000000 0.6938961 -0.1097276

 0.6938961 1.000000 0.7972293

428 Chapter 13 Portfolio Optimization

 -0.1097276 0.7972293 1.000000 ;

Although not immediately obvious, it happens to be the case that this matrix is not quite positive-semi-

definte, so it is not a valid correlation matrix. So a reasonable thing to try to do is to make minimal

adjustments to the off-diagonal elements to convert this matrix to a positive semi-definite matrix. The

following LINGO model witll do this. Notice the following: 1) Because the matrix is symmetric,

LINGO only requires that you enter the lower triangle of the matrix. 2) The last statement in the model

is @POSD(QFIT), i.e., we want the fitted matrix to be positive semi-definite, and 3) Our objective is

to minimize the sum of the squared differences between the original guessed matrix and the fitted

matrix.

SETS:

 VEC;

 MAT(VEC,VEC) | &1 #GE# &2: QINI, QADJ, QFIT;

ENDSETS

DATA:

 VEC = 1..3;

! Our initial estimate of the correlation matrix,

 (May not be positive semi-definite);

 QINI =

 1.000000

 0.6938961 1.000000

 -0.1097276 0.7972293 1.000000 ;

ENDDATA

! Minimize the amount of adjustments we have

 to make to the off-diagonal terms of

 our initial estimated matrix...;

 MIN = @SUM(MAT(i,j) | i #GT# j: QADJ(i,j)^2);

! Fitted matrix = initial + adjustment;

 @FOR(MAT(i,j) | i #GT# j:

 QFIT(i,j) = QINI(i,j) + QADJ(i,j);

! Off diagonal adjustments or fitted

 might be < 0;

 @FREE(QADJ(i,j));

 @FREE(QFIT(i,j));

);

! Diagonal terms stay at 1;

 @FOR(VEC(i):

 QFIT(i,i) = QINI(i,i);

 QADJ(i,i) = 0;

);

! The adusted/fitted matrix must be

 Positive semi-definite;

 @POSD(QFIT);

When solved, we get the fitted matrix:

 1.000000

Portfolio Optimization Chapter 13 429

 0.6348391 1.000000

 -0.0640226 0.7304152 1.000000

Notice that in the fitted matrix, the off-diagonal elements have been moved closer to 0. There are a

number of other applications of the @POSD() or SDP capability. Look at the MODELS library at

www.lindo.com under the keyword of @POSD.

13.11 Problems
1. You are considering three stocks, IBM, GM, and Georgia-Pacific (GP), for your stock portfolio. The

covariance matrix of the yearly percentage returns on these stocks is estimated to be:

 IBM GM GP

IBM 10 2.5 1

GM 2.5 4 1.5

GP 1 1.5 9

 Thus, if equal amounts were invested in each, the variance would be proportional to 10 + 4 + 9

+ 2 (2.5 + 1 + 1.5). The predicted yearly percentage returns for IBM, GM, and GP are 9, 6 and 5,

respectively. Find a minimum variance portfolio of these three stocks for which the yearly return is

at least 7, at most 80% of the portfolio is invested in IBM, and at least 10% is invested in GP.

2. Modify your formulation of problem 1 to incorporate the fact that your current portfolio is 50% IBM

and 50% GP. Further, transaction costs on a buy/sell transaction are 1% of the amount traded.

3. The manager of an investment fund hypothesizes that three different scenarios might characterize

the economy one year hence. These scenarios are denoted Green, Yellow and Red and subjective

probabilities 0.7, 0.1, and 0.2 are associated with them. The manager wishes to decide how a model

portfolio should be allocated among stocks, bonds, real estate and gold in the face of these possible

scenarios. His estimated returns in percent per year as a function of asset and scenario are given in

the table below:

 Stocks Bonds Real Estate Gold

Green 9 7 8 -2

Yellow −1 5 10 12

Red 10 4 -1 15

 Formulate and solve the asset allocation problem of minimizing the variance in return subject

to having an expected return of at least 6.5.

4. Consider the ATT/GMC/USX portfolio problem discussed earlier. The desired or target rate of

return in the solved model was 15%.

a) Suppose we desire a 16% rate of return. Using just the solution report, what can you predict

about the standard deviation in portfolio return of the new portfolio?

http://www.lindo.com/

430 Chapter 13 Portfolio Optimization

b) We illustrated the situation where the opportunity to invest money risk-free at 5% per year

becomes available. That is, this fourth option has zero variance and zero covariance. Now,

suppose the risk-free rate is 4% per year rather than 5%. As before, there is no limit on how

much can be invested at 4%. Based on only the solution report available for the original

version of the problem (where the desired rate of return is 15% per year), discuss whether

this new option is attractive when the desired return for the portfolio is 15%.

c) You have $100,000 to invest. What modifications would need to be made to the original

ATT/GMC/USX model, so the answers in the solution report would come in the

appropriate units (e.g., no multiplying of the numbers in the solution by 100,000)?

d) What is the estimated standard deviation in the value of your end-of-period portfolio in (c)

if invested as the solution recommends?

431

14

Multiple Criteria and Goal
Programming

14.1 Introduction
Until now, we have assumed a single objective or criterion. In reality, however, there may be two or

more measures of goodness. Our life becomes more difficult, or at least more interesting, if these

multiple criteria are incommensurate (i.e., it is difficult to combine them into a single criterion). The

overused phrase for lamenting the difficulty of such situations is “You can’t mix apples and oranges”.

 Some examples of incommensurate criteria are:

• risk vs. return on investment,

• short-term profits vs. long-term growth of a firm,

• cost vs. service by a government agency,

• the treatment of different individuals under some policy of an administrative agency

(e.g., rural vs. urban citizens, residents near an airport vs. travelers using an airport, and

fishermen vs. water transportation companies vs. farmers using irrigation near a large

lake).

Multi-criteria situations can be classified into several categories:

1. Criteria are intrinsically different (e.g., risk vs. return, cost vs. service).

a) Weights or trade-off rates can be determined;

b) Criteria can be strictly ordered by importance. We have so-called preemptive

objectives.

2. Criteria are intrinsically similar (i.e., in some sense they should have equal weight).

 A rich source of multi-criteria problems is the design and operation of public works. A specific

example is the huge “Three Gorges” dam on the Yangtze River in China. Interested parties include: (a)

industrial users of electricity, who would like the average water level in the dam to be high, so as to

maximize the amount of electricity that can be generated; (b) farmers downstream from the dam, who

would like the water level in the dam to be maintained at a low level, so unexpected large rainfalls can

be accommodated without overflow and flooding; (c) river shipping interests, who would like the lake

level to be allowed to fluctuate as necessary, so as to maintain a steady flow rate out of the dam, thereby

432 Chapter 14 Multiple Criteria & Goal Programming

allowing year round river travel by large ships below the dam; (d) lake fishermen and recreational

interests, who would like the flow rate out of the dam to be allowed to fluctuate as necessary, so as to

maintain a steady lake level; e) irrigation water users who would like the lake level to be high and to be

allowed to use water for irrigation than for power generation, and (f) environmental interests, who did

not want the dam built in the first place. For the Three Gorges dam in particular, flood control interests

have argued for having the water level behind the dam held at 459 feet above sea level just before the

rainy season, so as to accommodate storm runoff (see, for example, Fillon (1996)). Electricity generation

interests, however, have argued for a water level of 574 feet above sea level to generate more electricity.

14.1.1 Alternate Optima and Multicriteria
If you have a model with alternate optimal solutions, this is nature’s way of telling you that you have

multiple criteria. You should probably look at your objective function more closely and add more detail.

Users do not like alternate optima. If there are alternate optima, the typical solution method will

essentially choose among them randomly. If people’s jobs or salaries depend upon the “flip of a coin”

in your analysis, they are going to be unhappy. Even if careers are not at stake, alternate optima are at

least a nuisance. People find it disconcerting if they get different answers (albeit with the same objective

value) when they solve the same problem on different computers.

 One resolution of alternate optima that might occur to some readers is to take the average of all

distinct alternate optima and use this average solution as the final, unique, well-defined answer.

Unfortunately, this is usually not practical because:

a) it may be difficult to enumerate all alternate optima, and

b) the average solution may be unattractive or even infeasible if the model involves integer

variables.

14.2 Approaches to Multi-criteria Problems
There is a variety of approaches to dealing with multiple criteria. Some of the more practical ones are

described below.

14.2.1 Pareto Optimal Solutions and Multiple Criteria
A solution to a multi-criteria problem is said to be Pareto optimal if there is no other solution that is at

least as good according to all criteria and strictly better according to at least one criterion. A Pareto

optimal solution is not dominated by any other solution. Clearly, we want to consider only Pareto optimal

solutions. If we do not choose our criteria carefully, we might find ourselves recommending solutions

that are not Pareto optimal. There are computer programs for multi-criteria linear programming that will

generate all the undominated extreme solutions. For a small problem, a decision maker could simply

choose the most attractive extreme solution based on subjective criteria. For large problems, the number

of undominated extreme solutions may easily exceed 100, so this approach may be overwhelming.

14.2.2 Utility Function Approach
A superficially attractive solution of the multi-criteria problem is the definition of a utility function. If

the decision variables are x1, x2, …, xn, we “simply” construct the utility function u(x1, x2, …., xn) which

computes the value or utility of any possible combination of values for the vector x1, x2, …., xn. This is

a very useful approach for thinking about optimization. However, it has several practical limitations: (a)

it may take a lot of work to construct it, and (b) it will probably be highly nonlinear. Feature (b) means

we probably cannot use LP to solve the problem.

Multiple Criteria & Goal Programming Chapter 14 433

14.2.3 Trade-off Curves
If we have only two or three criteria, then the trade-off curve approach has most of the attractive features

of the utility function approach, but is also fairly practical. We simply construct a curve, the so-called

“efficient frontier”, which shows how we can trade off one criterion for another. One of the most well

known settings using a trade-off curve is to describe the relationship between two criteria in a financial

portfolio. The two criteria are expected return on investment and risk. We want return to be high and

risk to be low. Figure 14.1 shows the typical relationship between risk and return. Each point on the

curve is Pareto optimal. That is, for any point on the curve, there is no other point with higher expected

return and lower risk.

 Even though a decision maker has not gone through the trouble of constructing his utility function,

he may be able to look at this trade-off curve and perhaps say: “Gee, I am comfortable with an expected

return of 8% with standard deviation of 3%.”

Figure 14.1 Trade-off Curve for Risk and Expected Return

Expected

Return

Risk(e.g., Standard Deviation in Return)

0

0

14.2.4 Example: Ad Lib Marketing
Ad Lib is a freewheeling advertising agency that wants to solve a so-called media selection problem for

one of its clients. It is considering placing ads in five media: late night TV (TVL), prime time TV (TVP),

billboards (BLB), newspapers (NEW), and radio (RAD). These ads are intended to reach seven different

demographic groups.

434 Chapter 14 Multiple Criteria & Goal Programming

 The following table gives the number of exposures obtained in each of the seven markets per dollar

of advertising in each of five media. The second to last row of the table lists the minimum required

number of exposures in each of the seven markets. The feeling is that we must reach this minimum

number of readers/viewers, regardless of the cost. The last row of numbers is the saturation level for

each market. The feeling is that exposure beyond this level is of no value. Exposures between these two

limits will be termed useful exposures.

Exposure Statistics for Ad Lib Marketing
 Exposure in 1000’s per $1000 Spent

 Market Group
 1 2 3 4 5 6 7

TVL 10 4 50 5 2

TVP 10 30 5 12

BLB 20 5 3

NEW 8 6 10

RAD 6 5 10 11 4

Minimum Number of Exposures
Needed in 1,000’s

25 40 60 120 40 11 15

Saturation Level in 1,000’s of
Exposures

60 70 120 140 80 25 55

 How much money should be spent on advertising in each medium? There are really two criteria: (a)

cost (which we want to be low), and (b) useful exposures (which we want to be high). At the outset, we

arbitrarily decided we would spend no more than $11,000.

 A useful model can be formulated if we define:

Decision variables:

TVL, TVP, etc. = dollars spent in 1,000’s on advertising in TVL, TVP, etc.;

UX1, UX2, etc. = number of useful excess exposures obtained in market 1, 2, etc., beyond the

minimum (i.e., min {saturation level, actual exposures} − minimum

required);

COST = total amount spent on advertising;

USEFULX = total useful exposures.

There will be two main sets of constraints. One set that says:

exposures in a market minimum required + useful excess exposure beyond minimum.

The other says:

useful excess exposures in a market saturation level − minimum required.

Multiple Criteria & Goal Programming Chapter 14 435

An explicit formulation is:

[UEXP] MAX = USEFULX ; ! Maximize useful exposures;

[LIMCOST] COST <= 11; !Limit (in $1,000) on cost;

[LIMEXP] USEFULX >= 0;! Required exposures;

[DEFCOST] TVL + TVP + BLB + NEW + RAD = COST;

[DEFEXP] UX1 + UX2 + UX3 + UX4 + UX5 + UX6 + UX7 =

 USEFULX;

[MKT1] 20 * BLB + 8 * NEW - UX1 >= 25;

[MKT2] 10 * TVL + 10 * TVP + 6 * RAD - UX2>= 40;

[MKT3] 4 * TVL + 30 * TVP + 5 * RAD - UX3>= 60;

[MKT4] 50 * TVL + 5 * TVP + 10 * RAD - UX4>= 120;

[MKT5] 5 * TVL + 12 * TVP + 11 * RAD- UX5>= 40;

[MKT6] 5 * BLB + 6 * NEW + 4 * RAD - UX6>= 11;

[MKT7] 2 * TVL + 3 * BLB + 10 * NEW - UX7>= 15;

[RANGE1] UX1 <= 35;

[RANGE2] UX2 <= 30;

[RANGE3] UX3 <= 60;

[RANGE4] UX4 <= 20;

[RANGE5] UX5 <= 40;

[RANGE6] UX6 <= 14;

[RANGE7] UX7 <= 40;

The following is part of the solution to this model:

Optimal solution found at step: 15

Objective value: 196.7626

Variable Value Reduced Cost

 USEFULX 196.7626 0.0000000

 COST 11.00000 0.0000000

 TVL 1.997602 0.0000000

 TVP 3.707434 0.0000000

 BLB 2.908873 0.0000000

 NEW 0.2278177 0.0000000

 RAD 2.158273 0.0000000

 UX1 35.00000 0.0000000

 UX2 30.00000 0.0000000

 UX3 60.00000 0.0000000

 UX4 20.00000 0.0000000

 UX5 38.21823 0.0000000

 UX6 13.54436 0.0000000

 UX7 0.0000000 0.7194281E-02

 Row Slack or Surplus Dual Price

 UEXP 196.7626 1.000000

 LIMCOST 0.0000000 21.43885

 LIMEXP 196.7626 0.0000000

 DEFCOST 0.0000000 21.43885

 DEFEXP 0.0000000 -1.000000

 Notice we advertise up to the saturation level in markets 1 to 4. In market 7, we advertise just enough

to achieve the minimum required.

436 Chapter 14 Multiple Criteria & Goal Programming

 If you change the cost limit (initially at 11) to various values ranging from 6 to 14 and plot the

maximum possible number of useful exposures, you get a trade-off curve, or efficient frontier, shown in

the Figure 14.2:

Figure 14.2 Trade-off Between Exposures and Advertising

Useful

Excess

Exposures

Advertising Expenditure

6 7 8 9 10 11 12 13 14

30

60

90

120

150

180

210

240

14.2.5 Computing Trade-off Curves/Pareto Optimal Points: Pitfalls

Suppose we have two criteria, obj1 and obj2, to be maximized. Two methods of attempting to compute

trade-off curves, or Pareto optimal points are:

 a) Objective parametrics: For a range of values for 0 ≤ α ≤ 1, solve the problem:
 max = alpha*obj1 + (1-alpha)*obj2,

 subject to other relevant constraints, or

 b) Right hand side parametrics: For a range of values for k, solve the problem:
max = obj2,

subject to

 obj1 ≥ k, and

 other relevant constraints.

 For many problems, these two approaches are essentially equivalent, although method (b) is

slightly more general. The weaknesses of (a) are:

 * when α = 0 or 1, it may produce solutions not Pareto optimal, i.e., perhaps dominated.

 * it may be unable to identify certain solutions that are Pareto optimal if there are integer variables.

 * when α is close to 0 or 1, there may be numerical/computational difficulties.

 The weaknesses of (b) are:

 * unless performed in “double-check” mode, it may produce solutions not Pareto optimal. We

illustrate these problems with the following little model.

Multiple Criteria & Goal Programming Chapter 14 437

 alpha = 0.5;

 max = alpha*obj1 + (1-alpha)*obj2;

 @free(obj1); @free(obj2);

 obj1 = 0*z1 + 1*z2 + 1.00001*z3 + 5*z4 + 10*z5;

 obj2 = 10*z1 + 10*z2 + 10*z3 + 5*z4 + 1*z5;

 z1 + z2 + z3 + z4 + z5 = 1;

 @bin(z1); @bin(z2); @bin(z3); @bin(z4); @bin(z5);

 With a little bit of inspection you can verify that there are three Pareto optimal points corresponding to

z3 = 1, or z4 = 1, or z5 = 1. Points z1 and z2 are dominated by z3.

 To illustrate the first weakness of (a), observe that if alpha = 0, then each of the three solutions: z1

= 1, or z2 = 1, or z3 = 1, are alternate optima. The solver will arbitrarily/randomly choose one

of them.

 To illustrate the second weakness of (a), observe that there is no alpha that will produce z4 as a

solution. If we choose alpha = 0.50001, we get the solution z5 = 1. If we choose alpha =

.49999, we get the solution z3 = 1. The difficulty arises because method (a) chooses only solution

that are on the convex hull of the Pareto optimal points. Under method (a), point z4 is dominated by a

pseudo point consisting of half of point z3 and half of point z5. If the real world allows fractional

solutions, then excluding z4 may be OK, but if only discrete allocations are allowed in the real world,

then one wants to include z4 as a Pareto optimal/efficient point.

 Trying to avoid the first weakness of (a), introduces the third weakness. To make z3 slightly (and

rightfully) more attractive than z1 and z2, suppose we set alpha = 0.000001. If we write out the

objective in simplest form, it is:
 max= 9.99999*Z1 + 9.999991*Z2 + 9.99999100001*Z3 + 5*Z4 + 1.000009*Z5;

The coefficients of z2 and z3 differ only in the 12th decimal place. This is less that the default

optimality tolerance of most solvers, so most solvers would not distinguish between z2 and z3, and so

might suggest that z2 is Pareto optimal.

 For method (b), to illustrate the first weakness suppose we set k = 0.5 and solve:
 max = obj2;

 obj1 >= 0.5;

 obj1 = 0*z1 + 1*z2 + 1.00001*z3 + 5*z4 + 10*z5;

 obj2 = 10*z1 + 10*z2 + 10*z3 + 5*z4 + 1*z5;

 z1 + z2 + z3 + z4 + z5 = 1;

 @bin(z1); @bin(z2); @bin(z3); @bin(z4); @bin(z5);

There are two alternate optima, z2 = 1 and z3 = 1. The solver might arbitrarily choose the

dominated point z2 = 1. This flaw can be avoided if at each step we “double check” the solution by

solving the series of two problems, given k1, first solve:

 1) max = obj2;

 obj1 >= k1;

We get the solution obj2 = 10;

Now set k2 = 10, and solve:
 2) max = obj1;

 Obj2 >= k2;

Giving the solution obj1 = 1.00001, so (obj1, obj2) = (1.00001, 10) is an undominated

point.

438 Chapter 14 Multiple Criteria & Goal Programming

14.3 Goal Programming and Soft Constraints
Goal Programming is closely related to the concept of multi-criteria as well as a simple idea that we dub

“soft constraints”. Soft constraints and Goal Programming are a response to the following two “laws of

the real world”.

 In the real world:

1) there is always a feasible solution;

2) there are no alternate optima.

 In practical terms, (1) means a good manager (or one wishing to at least keep a job) never throws

up his or her hands in despair and says “no feasible solution”. Law (2) means a typical decision maker

will never be indifferent between two proposed courses of action. There are always sufficient criteria to

distinguish some course of action as better than all others.

 From a model perspective, these two laws mean a well-formulated model (a) always has a feasible

solution and (b) does not have alternate optima.

14.3.1 Example: Secondary Criterion to Choose Among Alternate Optima
Here is a standard, seven-day/week staffing problem similar to that discussed in Chapter 7. The

variables: M, T, W, R, F, S, N, denote the number of people starting their five-day work week on Monday,

Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, respectively:

MIN = 9*M + 9*T + 9*W + 9*R + 9*F + 9*S + 9*N;

 [MON] M + R + F + S + N = 3;

 [TUE] M + T + F + S + N = 3;

 [WED] M + T + W + S + N = 8;

 [THU] M + T + W + R + N = 8;

 [FRI] M + T + W + R + F = 8;

 [SAT] T + W + R + F + S = 3;

 [SUN] W + R + F + S + N = 3;
END

Multiple Criteria & Goal Programming Chapter 14 439

When solved, we get the following solution:

Optimal solution found at step: 6

Objective value: 72.00000

Variable Value Reduced Cost

 M 5.000000 0.0000000

 T 0.0000000 0.0000000

 W 3.000000 0.0000000

 R 0.0000000 0.0000000

 F 0.0000000 9.000000

 S 0.0000000 9.000000

 N 0.0000000 0.0000000

 Row Slack or Surplus Dual Price

 1 72.00000 1.000000

 MON 2.000000 0.0000000

 TUE 2.000000 0.0000000

 WED 0.0000000 0.0000000

 THU 0.0000000 -9.000000

 FRI 0.0000000 0.0000000

 SAT 0.0000000 0.0000000

 SUN 0.0000000 0.0000000

 Notice there may be alternate optima (e.g., the slack and dual price in row “WED” are both zero).

This solution puts all the surplus capacity on Saturday and Sunday. The different optima might distribute

the surplus capacity in different ways over the days of the week. Saturday and Sunday have a lot of

excess capacity while the very similar days, Monday and Tuesday, have no surplus capacity.

 In terms of multiple criteria, we might say:

a) our most important criterion is to minimize total staffing cost;

b) our secondary criterion is to have a little extra capacity, specifically one unit, each day if

it will not hurt criterion 1.

440 Chapter 14 Multiple Criteria & Goal Programming

 To encourage more equitable distribution, we add some “excess” variables (XM, XT, etc.) that give

a tiny credit of −1 for each surplus up to at most 1 on each day. The modified formulation is:

MODEL:

MIN = 9*M + 9*T + 9*W + 9*R + 9*F + 9*S + 9*N

 - XM - XT - XW - XR - XF - XS - XN;

[MON] M + R + F + S + N - XM 3;

[TUE] M + T + F + S + N - XT 3;

[WED] M + T + W + S + N - XW 8;

[THU] M + T + W + R + N - XR 8;

[FRI] M + T + W + R + F - XF 8;

[SAT] T + W + R + F + S - XS 3;

[SUN] W + R + F + S + N - XN 3;

 [N9] XM 1;

 [N10] XT 1;

 [N11] XW 1;

 [N12] XR 1;

 [N13] XF 1;

 [N14] XS 1;

 [N15] XN 1;
END

The solution now is:

Optimal solution found at step: 19

Objective value: 68.00000

Variable Value Reduced Cost

 M 4.000000 0.0000000

 T 0.0000000 0.0000000

 W 4.000000 0.0000000

 R 0.0000000 1.000000

 F 0.0000000 8.000000

 S 0.0000000 8.000000

 N 0.0000000 1.000000

 XM 1.000000 0.0000000

 XT 1.000000 0.0000000

 XW 0.0000000 0.0000000

 XR 0.0000000 6.000000

 XF 0.0000000 0.0000000

 XS 1.000000 0.0000000

 XN 1.000000 0.0000000

 Notice, just as before, we still hire a total of eight people, but now the surplus is evenly distributed

over the four days M, T, S, and N. This should be a more attractive solution.

Multiple Criteria & Goal Programming Chapter 14 441

14.3.2 Preemptive/Lexico Goal Programming
The above approach required us to choose the proper relative weights for our two objectives, cost and

service. In some situations, it may be clear that one objective is orders of magnitude more important

than the other. One could choose weights to reflect this (e.g., 99999999 for the first and 0.0000001 for

the second), but there are a variety of reasons for not using this approach. First of all, there would

probably be numerical problems, especially if there are more than two objectives. A typical computer

cannot accurately add numbers that differ by more than 15 orders of magnitude (e.g., 100,000,000 and

.0000001).

 More importantly, it just seems more straightforward simply to say: “This first objective is far more

important than the remaining objectives, the second objective is far more important than the remaining

objectives,” etc. This approach is sometimes called Preemptive or Lexico goal programming. The

following illustrates for our previous staff-scheduling example. The first model solved places a weight

of 1.0 on the more important objective, COST, and no weight on the secondary objective, EXTRA credit

for useful overstaffing:

!Example of Lexico-goal programming

 MIN = 1 * COST - 0 * EXTRA;

 [MON] M + R + F + S + N - XM >= 3;

 [TUE] M + T + F + S + N - XT >= 3;

 [WED] M + T + W + S + N - XW >= 8;

 [THU] M + T + W + R + N - XR >= 8;

 [FRI] M + T + W + R + F - XF >= 8;

 [SAT] T + W + R + F + S - XS >= 3;

 [SUN] W + R + F + S + N - XN >= 3;

 ! Upper limit on creditable excess;

 [EXM] XM <= 1;

 [EXT] XT <= 1;

 [EXW] XW <= 1;

 [EXR] XR <= 1;

 [EXF] XF <= 1;

 [EXS] XS <= 1;

 [EXN] XN <= 1;

 ! Define the two objectives;

 [OBJCOST] COST = M + R + F + S + N + T + W;

 [OBJXTRA] EXTRA = XM + XT + XW + XR + XF + XS + XN;

 END

442 Chapter 14 Multiple Criteria & Goal Programming

The solution is:

Optimal solution found at step: 11

Objective value: 8.000000

Variable Value Reduced Cost

 COST 8.000000 0.0000000

 EXTRA 0.0000000 0.0000000

 M 3.000000 0.0000000

 R 0.0000000 0.0000000

 F 0.0000000 0.0000000

 S 0.0000000 1.000000

 N 0.0000000 1.000000

 XM 0.0000000 0.0000000

 T 0.0000000 0.0000000

 XT 0.0000000 0.0000000

 W 5.000000 0.0000000

 XW 0.0000000 0.0000000

 XR 0.0000000 0.0000000

 XF 0.0000000 1.000000

 XS 0.0000000 0.0000000

 XN 0.0000000 0.0000000

 Row Slack or Surplus Dual Price

 1 8.000000 1.000000

 MON 0.0000000 0.0000000

 TUE 0.0000000 0.0000000

 WED 0.0000000 0.0000000

 THU 0.0000000 0.0000000

 FRI 0.0000000 -1.000000

 SAT 2.000000 0.0000000

 SUN 2.000000 0.0000000

 EXM 1.000000 0.0000000

 EXT 1.000000 0.0000000

 EXW 1.000000 0.0000000

 EXR 1.000000 0.0000000

 EXF 1.000000 0.0000000

 EXS 1.000000 0.0000000

 EXN 1.000000 0.0000000

 OBJCOST 0.0000000 -1.000000

 OBJXTRA 0.0000000 0.0000000

Multiple Criteria & Goal Programming Chapter 14 443

 Notice because there is zero weight in the objective, it does not claim any EXTRA credit for

overstaffing by one unit. This solution starts 3 people on Monday, and 5 people on Wednesday. Thus,

there is no overstaffing on Monday, Tuesday, Wednesday, Thursday, and Friday, but both Saturday and

Sunday are overstaffed by two each. We can try to distribute the overstaffing more evenly by solving

the following model. It fixes the COST at the minimum we have just learned, and now maximizes (or

minimizes the negative of) the creditable extra staffing:

MIN = 0 * COST - 1 * EXTRA;

 [MON] M + R + F + S + N - XM >= 3;

 [TUE] M + T + F + S + N - XT >= 3;

 [WED] M + T + W + S + N - XW >= 8;

 [THU] M + T + W + R + N - XR >= 8;

 [FRI] M + T + W + R + F - XF >= 8;

 [SAT] T + W + R + F + S - XS >= 3;

 [SUN] W + R + F + S + N - XN >= 3;

 ! Upper limit on creditable excess;

 [EXM] XM <= 1;

 [EXT] XT <= 1;

 [EXW] XW <= 1;

 [EXR] XR <= 1;

 [EXF] XF <= 1;

 [EXS] XS <= 1;

 [EXN] XN <= 1;

 ! Define the two objectives;

 [OBJCOST] COST = M + R + F + S + N + T + W;

 [OBJXTRA] EXTRA = XM + XT + XW + XR + XF + XS + XN;

 ! Fix the cost at its minimum value;

 [FXCOST] COST = 8;

 END

This gives the solution:

Optimal solution found at step: 7

Objective value: -4.000000

Variable Value Reduced Cost

 COST 8.000000 0.0000000

 EXTRA 4.000000 0.0000000

 M 4.000000 0.0000000

 R 0.0000000 1.000000

 F 0.0000000 2.000000

 S 0.0000000 2.000000

 N 0.0000000 1.000000

 XM 1.000000 0.0000000

 T 0.0000000 0.0000000

 XT 1.000000 0.0000000

 W 4.000000 0.0000000

 XW 0.0000000 0.0000000

 XR 0.0000000 0.0000000

 XF 0.0000000 0.0000000

 XS 1.000000 0.0000000

 XN 1.000000 0.0000000

444 Chapter 14 Multiple Criteria & Goal Programming

 Row Slack or Surplus Dual Price

 1 -4.000000 -1.000000

 MON 0.0000000 0.0000000

 TUE 0.0000000 0.0000000

 WED 0.0000000 -1.000000

 THU 0.0000000 -1.000000

 FRI 0.0000000 -1.000000

 SAT 0.0000000 0.0000000

 SUN 0.0000000 0.0000000

 EXM 0.0000000 1.000000

 EXT 0.0000000 1.000000

 EXW 1.000000 0.0000000

 EXR 1.000000 0.0000000

 EXF 1.000000 0.0000000

 EXS 0.0000000 1.000000

 EXN 0.0000000 1.000000

 OBJCOST 0.0000000 -3.000000

 OBJXTRA 0.0000000 1.000000

 FXCOST 0.0000000 3.000000

 Notice this is a different solution. Nevertheless, still with a cost of 8, but with now an EXTRA credit

for slight overstaffing of 4. This solution starts 4 people on each of Monday and Wednesday. Thus,

Wednesday, Thursday, and Friday have no overstaffing, but Monday, Tuesday, Saturday, and Sunday

are overstaffed by one each.

14.4 Minimizing the Maximum Hurt, or Unordered Lexico
Minimization

There are some situations in which there are a number of parties that, in some sense, are equal. There

may be certain side conditions, however, that prevent us from treating them exactly equally. An example

is representation in a House of Representatives. Ideally, we would like to have the number of

representatives in a state be exactly proportional to the population of the state. Because the House of

Representatives is typically limited to a fixed size and we cannot have fractional representatives

(although some voters may feel they have encountered such an anomaly), we will find some states have

more citizens per representative than others.

 In more general settings, an obvious approach for minimizing such inequities is to choose things, so

we minimize the maximum inequity or “hurt.” Once we have minimized the worst hurt, the obvious thing

is to minimize the second greatest hurt, etc. We will refer to such a minimization as Unordered Lexico

Minimization. For example, if there are four parties, and (10, 13, 8, 9) is the vector of taxes to be paid, then

we would say the vector (13, 8, 9, 9) is better in the unordered Lexico-min sense. The highest tax is the

same for both solutions, but the second highest tax is lower for the second solution.

 Serafini (1996) uses this approach in scheduling jobs in a textile factory in northern Italy. Each job

has a due-date. If demand and capacity are such that not all jobs can be completed by their due date, then

a reasonable objective is to minimize the maximum lateness of any job. A reasonable sub-objective is to

minimize the lateness of the second latest job, etc.

Multiple Criteria & Goal Programming Chapter 14 445

14.4.1 Example
This example is based on one in Sankaran (1989). There are six parties and xi is the assessment to be

paid by party i to satisfy a certain community building project. The xi must satisfy the set of constraints:

A. X1 + 2 X2 + 4 X3 + 7 X4 16

B. 2.5 X1 + 3.5 X2 + 5.2 X5 17.5

C. 0.4 X2 + 1.3 X4 + 7.2 X6 12

D. 2.5 X2 + 3.5 X3 + 5.2 X5 13.1

E. 3.5 X1 + 3.5 X4 + 5.2 X6 18.2

 We would like to minimize the highest assessment paid by anyone. Given that, we would like to

minimize the second highest assessment paid by anyone. Given that, we would like to minimize the third

highest, etc. The interested reader may try to improve upon the following set of assessments:

 X1 = 1.5625

 X2 = 1.5625

 X3 = .305357

 X4 = 1.463362

 X5 = 1.5625

 X6 = 1.463362

There is no other solution in which:

a) the highest assessment is less than 1.5625, and

b) the second highest assessment is less than 1.5625, and

c) the third highest assessment is less than 1.5625, and

d) the fourth highest assessment is less than 1.463362, etc.

14.4.2 Finding a Unique Solution Minimizing the Maximum
A quite general approach to finding a unique unordered Lexico minimum exists when the feasible region

is convex (i.e. any solution that is a positively weighted average of two feasible solutions is also feasible).

Thus, problems with integer variables are not convex. Let the vector {x1, x2, …, xn} denote the cost

allocated to each of n parties.

 If the feasible region is convex, then there is a unique solution and the following algorithm will find

it. Maschler, Peleg, and Shapley (1979) discuss this idea in the game theory setting, where the

“nucleolus” is a closely related concept. If the feasible region is not convex (e.g., the problem has integer

variables), then the following method is not guaranteed to find the solution. Let S be the original set of

constraints on the x’s.

1) Let J = {1, 2, . . . , n}, and k = 0; (Note: J is the set of parties for whom we do not yet know

the final xi)

2) Let k = k + 1;

3) Solve the problem:

Minimize Z

subject to

x feasible to S and,

Z > xj for j in J

(Note: this finds the minimum, maximum hurt among parties for which we have not yet

fixed the xj’s.);

446 Chapter 14 Multiple Criteria & Goal Programming

4) Set Zk = Z of (3), and add to S the constraints:

xj < Zk for all j in J;

5) Set L = {j in J for which xj = Zk in (3)}:

For each j in L:

Solve:

Minimize xj

subject to

x feasible to S;

If xj = Zk, then set J = J − j, and append to S the constraint xj = Zk

6) If J is not empty, go to (2), else we are done.

 To find the minimum maximum assessment for our example problem, we solve the following

problem:

MODEL:

MIN = Z;

 ! The physical constraints on the X's;

 [A] X1 + 2*X2 + 4*X3 + 7*X4 >= 16;

 [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5;

 [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12;

 [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1;

 [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2;

 ! Constraints to compute the max hurt Z;

 [H1] Z - X1 >= 0;

 [H2] Z - X2 >= 0;

 [H3] Z - X3 >= 0;

 [H4] Z - X4 >= 0;

 [H5] Z - X5 >= 0;

 [H6] Z - X6 >= 0;

END

Its solution is:

Objective value: 1.5625000

Variable Value Reduced Cost

 Z 1.5625000 0.0000000

 X1 1.5625000 0.0000000

 X2 1.5625000 0.0000000

 X3 1.5625000 0.0000000

 X4 1.5625000 0.0000000

 X5 1.5625000 0.0000000

 X6 1.5625000 0.0000000

Thus, at least one party will have a “hurt” of 1.5625. Which party or parties will it be?

Multiple Criteria & Goal Programming Chapter 14 447

 Because all six xi’s equal 1.5625, we solve a series of six problems such as the following:

MODEL:

MIN = X1;

 ! The physical constraints on the X's;

 [A] X1 + 2*X2 + 4*X3 + 7*X4 >= 16;

 [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5;

 [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12;

 [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1;

 [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2;

! Constraints for finding the minmax hurt, Z;

 [H1] X1 <= 1.5625000;

 [H2] X2 <= 1.5625000;

 [H3] X3 <= 1.5625000;

 [H4] X4 <= 1.5625000;

 [H5] X5 <= 1.5625000;

 [H6] X6 <= 1.5625000;

END

The solution for the case of X1 is:

Objective value: 1.5625000

Variable Value Reduced Cost

 X1 1.5625000 0.0000000

 X2 1.5625000 0.0000000

 X3 0.3053573 0.0000000

 X4 1.5625000 0.0000000

 X5 1.5625000 0.0000000

 X6 1.3966350 0.0000000

 Thus, there is no solution with all the xi’s < 1.5625, but with X1 strictly less than 1.5625. So, we can

fix X1 at 1.5625. Similar observations turn out to be true for X2 and X5.

 So, now we wish to solve the following problem:

MODEL:

MIN = Z;

! The physical constraints on the X's;

 X1 + 2*X2 + 4*X3 + 7*X4 >= 16;

 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5;

 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12;

 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1;

 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2;

 ! Constraints for finding the minmax hurt, Z;

 X1 = 1.5625000;

 X2 = 1.5625000;

 - Z + X3 <= 0;

 - Z + X4 <= 0;

 X5 = 1.5625000;

 - Z + X6 <= 0;

END

448 Chapter 14 Multiple Criteria & Goal Programming

Upon solution, we see the second highest “hurt” is 1.4633621:

Objective value: 1.4633621

Variable Value Reduced Cost

 Z 1.4633621 0.0000000

 X1 1.5625000 0.0000000

 X2 1.5625000 0.0000000

 X3 1.4633621 0.0000000

 X4 1.4633621 0.0000000

 X5 1.5625000 0.0000000

 X6 1.4633621 0.0000000

 Any or all of X3, X4 or X6 could be at this value in the final solution. Which ones? To find out, we

solve the following kind of problem for X3, X4 and X6:

MODEL:

MIN = X3;

 ! The physical constraints on the X's;

 [A] X1 + 2*X2 + 4*X3 + 7*X4 >= 16;

 [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5;

 [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12;

 [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1;

 [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2;

 ! Constraints for finding the minmax hurt, Z;

 [H1] X1 = 1.5625000;

 [H2] X2 = 1.5625000;

 [H3] X3 <= 1.4633621;

 [H4] X4 <= 1.4633621;

 [H5] X5 = 1.5625000;

 [H6] X6 <= 1.4633621;

END

The solution, when we minimize X3, is:

Objective value: .3053571400

Variable Value Reduced Cost

 X3 .30535714 0.0000000

 X1 1.5625000 0.0000000

 X2 1.5625000 0.0000000

 X4 1.4633621 0.0000000

 X5 1.5625000 0.0000000

 X6 1.4633621 0.0000000

 Thus, X3 need not be as high as 1.4633621 in the final solution. We do find, however, that X4 and

X6 can be no smaller than 1.4633621.

Multiple Criteria & Goal Programming Chapter 14 449

 So, the final problem we want to solve is:

MODEL:

MIN = Z;

 ! The physical constraints on the X's;

 [A] X1 + 2*X2 + 4*X3 + 7*X4 >= 16;

 [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5;

 [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12;

 [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1;

 [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2;

 ! Constraints for finding the minmax hurt, Z;

 [H1] X1 = 1.5625000;

 [H2] X2 = 1.5625000;

 [H3] - Z + X3 = 0;

 [H4] X4 = 1.4633621;

 [H5] X5 = 1.5625000;

 [H6] + X6 = 1.4633621;

END

We already know the solution will be:

Objective value: .305357140

Variable Value Reduced Cost

 Z .30535714 0.0000000

 X1 1.5625000 0.0000000

 X2 1.5625000 0.0000000

 X3 .30535714 0.0000000

 X4 1.4633621 0.0000000

 X5 1.5625000 0.0000000

 X6 1.4633621 0.0000000

 The above solution minimizes the maximum X value, as well as the number of X’s at that value.

Given that maximum value (of 1.5625), it minimizes the second highest X value, as well as the number

at that value; etc.

 The approach described requires us to solve a sequence of linear programs. It would be nice if we

could formulate a single mathematical program for finding the unordered Lexico-min. There are a

number of such formulations. Unfortunately, all of them suffer from numerical problems when

implemented on real computers. The formulations assume arithmetic is done with infinite precision;

whereas, most computers do arithmetic with at most 15 decimal digits of precision.

450 Chapter 14 Multiple Criteria & Goal Programming

14.5 Identifying Points on the Efficient Frontier
Until now, we have considered the problem of how to generate a solution on the efficient frontier. Now,

let us take a slightly different perspective and consider the problem: Given a finite set of points,

determine which ones are on the efficient frontier. When there are multiple criteria, it is usually

impossible to find a single scoring formula to unambiguously rank all the points or players. The

following table comparing on-time performance of two airlines (see Barnett, 1994) illustrates some of

the issues:

Alaska Airlines

America West
Airlines

Destination %
Arrivals

 on
Time

No. of
Arrivals

%
Arrivals

 on
Time

No. of
Arrivals

Los Angeles 88.9 559 85.6 811

Phoenix 94.8 233 92.1 5,255

San Diego 91.4 232 85.5 448

San Francisco 83.1 605 71.3 449

Seattle 85.8 2,146 76.7 262

Weighted 5-

Airport Average
86.7 3,775 89.1 7,225

 The weighted average at the bottom is computed by applying a weight to the performance at airport

i proportional to the number of arrivals at that airport. For example,

86.7 = (88.9 559 + … + 85.8 2146)/(559 + … + 2146).

 According to this scoring, America West has a better on-time performance than Alaska Airlines. A

traveler considering flying into San Francisco, however, would almost certainly prefer Alaska Airlines

to America West with respect to on-time performance. In fact, the same argument applies to all five

airports. Alaska Airlines dominates America West. How could America West have scored higher? The

reason was a different scoring formula was used for each. Also, the airport receiving the most weight in

America West’s formula, sunny Phoenix, had a better on-time performance by America West than

Alaska Airline’s performance at its busiest airport, rainy Seattle. One should, in general, be suspicious

when different scoring formulae are used for different candidates. This paradox, whereby one

conclusion is supported if we look at individual groups, but the opposite conclusion is supported if we

aggregate all the groups into one big group, is sometimes called Simpson’s Paradox. See for example,

Wagner(1982).

14.5.1 Efficient Points, More-is-Better Case
The previous example was a case of multiple performance dimensions where, for each dimension, the

higher the performance number, the better the performance. We will now illustrate a method for

computing a single score or number, between 0 and 1, for each player. The interpretation of this number,

or efficiency score, will be that a score of 1.0 means the player or organization being measured is on the

efficient frontier. In particular, there is no other player better on all dimensions or even a weighted

combination of players, so the weighted averages of their performances surpass the given player on

every dimension. On the other hand, a score less than 1.0 means either there is some other player better

on all dimensions or there is a weighted combination of players having a weighted average performance

better on all dimensions.

Multiple Criteria & Goal Programming Chapter 14 451

Define:

rij = the performance (or reward) of player i on the jth dimension (e.g., the on-time performance

of Alaska Airlines in Seattle);

vj = the weight or value to be applied to the jth dimension in evaluating overall efficiency.

To evaluate the performance of player k, we will do the following in words:

Choose the vj so as to maximize score (k)

subject to

For each player i (including k):

score (i) 1.

More precisely, we want to:

Max j vj rkj

subject to

For every player i, including k:

 j vj rij 1

For every weight j:

 vj e,

where e is a small positive number.

 The reason for requiring every vj to be slightly positive is as follows. Suppose player k and some

other player t are tied for best on one dimension, say j, but player k is worse than t on all other dimensions.

Player k would like to place all the weight on dimension j, so player k will appear to be just as efficient

as player t. Requiring a small positive weight on every dimension will reveal these slightly dominated

players. Some care should be taken in the choice of the small “infinitesimal” constant e. If it is chosen

too large, it may cause the problem to be infeasible. If it is chosen too small, it may be effectively

disregarded by the optimization algorithm. From the above, you can observe that it should be bounded

by:

e 1/j rij.

See Mehrabian, Jahanshahloo, Alirezaee, and Amin(2000) for a more detailed discussion.

Example

The performance of five high schools in the “three R’s” of “Reading, Writing and Arithmetic” are

tabulated below (see Chicago Magazine, February 1995):

School Reading Writing Mathematics

Barrington 296 27 306

Lisle 286 27.1 322

Palatine 290 28.5 303

Hersey 298 27.3 312

Oak Park River Forest (OPRF) 294 28.1 301

 Hersey, Palatine, and Lisle are clearly on the efficient frontier because they have the highest scores

in reading, writing, and mathematics, respectively. Barrington is clearly not on the efficient frontier,

because it is dominated by Hersey. What can we say about OPRF?

452 Chapter 14 Multiple Criteria & Goal Programming

 We formulate OPRF’s problem as follows. Notice we have scaled both the reading and math scores,

so all scores are less than 100. This is important if one requires the weight for each attribute to be at least

some minimum positive value.

MODEL:

 MAX = 29.4*VR + 28.1*VW + 30.1*VM;

 [BAR] 29.6*VR + 27 *VW + 30.6*VM <= 1;

 [LIS] 28.6*VR + 27.1*VW + 32.2*VM <= 1;

 [PAL] 29 *VR + 28.5*VW + 30.3*VM <= 1;

 [HER] 29.8*VR + 27.3*VW + 31.2*VM <= 1;

 [OPR] 29.4*VR + 28.1*VW + 30.1*VM <= 1;

 [READ] VR >= 0.0005;

 [WRIT] VW >= 0.0005;

 [MATH] VM >= 0.0005;

END

When solved:

Optimal solution found at step: 2

Objective value: 1.000000

Variable Value Reduced Cost

 VR 0.1725174E-01 0.0000000

 VW 0.1700174E-01 0.0000000

 VM 0.5000000E-03 0.0000000

 Row Slack or Surplus Dual Price

 1 1.000000 1.000000

 BAR 0.1500157E-01 0.0000000

 LIS 0.2975313E-01 0.0000000

 PAL 0.0000000 0.0000000

 HER 0.6150696E-02 0.0000000

 OPR 0.0000000 1.000000

 READ 0.1675174E-01 0.0000000

 WRIT 0.1650174E-01 0.0000000

 MATH 0.0000000 0.0000000

 The value is 1.0, and thus, OPRF is on the efficient frontier. It should be no surprise OPRF puts the

minimum possible weight on the mathematics score (where it is the lowest of the five).

14.5.2 Efficient Points, Less-is-Better Case
Some measures of performance, such as cost, are of the “less-is-better” nature. Again, we would like to

have a measure of performance that gives a score of 1.0 for a player on the efficient frontier, less than

1.0 for one that is not.

 Define:

cij = performance of player i on dimension j;

wj = weight to be applied to the jth dimension.

To evaluate the performance of player k, we want to solve a problem of the following form:

Choose weights wj, so as to maximize the minimum weighted score,

subject to

the weighted score of player k = 1.

Multiple Criteria & Goal Programming Chapter 14 453

 If the objective function value from this problem is less than 1, then player k is inefficient, because

there is no set of weights such that player k has the best score. More precisely, we want to solve:

Max z

subject to

j wjckj = 1

For each player i, including k:

j wjcij z.

For every weight j:

wj e.

Example

The GBS Construction Materials Company provides steel structural materials to industrial contractors.

GBS recently did a survey of price, delivery performance, and quality in order to get an assessment of

how it compares with its four major competitors. The results of the survey, with the names of all

companies disguised, appears in the following table:

Company

Quality (based on freedom
from scale, straightness,
etc., based on mean rank,

where 1.0 is best)

Delivery time
(days)

Price (in
$/cwt)

A 1.8 14 $21

B 4.1 1 $26

C 3.2 3 $25

D 1.2 5 $23

E 2.4 7 $22

 For each of the three criteria, smaller is always better. Vendors A, B, and D are clearly competitive,

based on price, delivery time, and quality, respectively. For example, a customer for whom quality is

paramount will choose D. A customer for whom delivery time is important will choose B. Are C and E

competitive? Imagine a customer who uses a linear weighting system to identify the best bid (e.g., score

= WQ Quality + WT (delivery time) + WP price). Is there a set of weights (all nonnegative), so

Score (C) < Score (i), for i = A, B, D, E? Likewise, for E?

454 Chapter 14 Multiple Criteria & Goal Programming

The model for Company C is:

MODEL:

MAX = Z;

 [A] - Z + 1.8*WQ + 14*WT + 21*WP 0;

 [B] - Z + 4.1*WQ + WT + 26*WP 0;

 [C] - Z + 3.2*WQ + 3*WT + 25*WP 0;

 [D] - Z + 1.2*WQ + 5*WT + 23*WP 0;

 [E] - Z + 2.4*WQ + 7*WT + 22*WP 0;
 [CTARG] 3.2*WQ + 3*WT + 25*WP = 1;

 [QUAL] WQ 0.0005;

 [TIME] WT 0.0005;

 [PRICE] WP 0.0005;

END

The solution is:

Optimal solution found at step: 4

Objective value: 0.9814257

Variable Value Reduced Cost

 Z 0.9814257 0.0000000

 WQ 0.5000000E-03 0.0000000

 WT 0.2781147E-01 0.0000000

 WP 0.3659862E-01 0.0000000

 Row Slack or Surplus Dual Price

 1 0.9814257 1.000000

 A 0.1774060 0.0000000

 B 0.0000000 -0.5137615

 C 0.1857431E-01 0.0000000

 D 0.0000000 -0.4862385

 E 0.1962431E-01 0.0000000

 CTARG 0.0000000 0.9816514

 QUAL 0.0000000 -0.4513761

 TIME 0.2731147E-01 0.0000000

 PRICE 0.3609862E-01 0.0000000

 Company C has an efficiency rating of 0.981. Thus, it is not on the efficient frontier. With a similar

model, you can show Company E is on the efficient frontier.

14.5.3 Efficient Points, the Mixed Case
In many situations, there may be some dimensions where less is better, such as risk; whereas, there are

other dimensions where more is better, such as chocolate.

 In this case, unless we make additional restrictions on the weights, we cannot get a simple score of

efficiency between 0 and 1 for a company. We can nevertheless extend the previous approach to

determine if a point is on the efficient frontier.

 Define:

cij = level of the jth “less is better” attribute for player i, e.g., a cost,

rij = level of the jth “more is better” attribute for player i, e.g., a revenue or reward,

wj = weight to be applied to the jth “less is better” attribute,

vj = weight to be applied to the jth “more is better” attribute.

Multiple Criteria & Goal Programming Chapter 14 455

In words, to evaluate the efficiency of player or point k, we want to:

Max score (k) − (best score of any other player)

subject to

sum of the weights = 1

 If the objective value is nonnegative, then player k is efficient; whereas, if the objective is negative,

then there is no set of weights such that player k scores at least as well as every other player.

 If we denote the best score of any other player by z, then, more specifically, we want to solve:

Max j vj rkj − j wj ckj − z

subject to

For each player i, i k

z j vj rij − j wj ckj

and

j vj + j wj = 1,

vj e, wj e, z unconstrained in sign, where e is a small positive number as introduced in the “more-is-

better” case.

 The dual of this problem is to find a set of nonnegative weights, i, to apply to each of the other

players to:

Minimize g

subject to

i i = 1

For each “more is better” attribute j:

g + i k j rij rkj ,

For each “less is better” attribute j :

g − i k j cij − ckj ,

g unconstrained in sign.

 If g is nonnegative, it means no weighted combination of other points (or players) could be found,

so their weighted performance surpasses k on every dimension.

14.6 Comparing Performance with Data Envelopment Analysis
Data Envelopment Analysis (DEA) is a method for identifying efficient points in the mixed case. That

is, when there are both “less is better” and “more is better” measures. An attractive feature of DEA,

relative to the previous method discussed, is it does produce an efficiency score between 0 and 1. It does

this by making slightly stronger assumptions about how efficiency is measured. Specifically, DEA

assumes each performance measure can be classified as either an input or an output. For outputs, more

is better; whereas, for inputs, less is better. The “score” of a point or a decision-making unit is then the

ratio of an output score divided by an input score.

 DEA was originated by Charnes, Cooper, and Rhodes (1978) as a means of evaluating the

performance of decision-making units. Examples of decision-making units might be hospitals, banks,

airports, schools, and managers. For example, Bessent, Bessent, Kennington, and Reagan (1982) used

the approach to evaluate the performance of 167 schools around Houston, Texas. Simple comparisons

can be misleading because different units are probably operating in different environments. For example,

a school operating in a wealthy neighborhood will probably have higher test scores than a school in a

456 Chapter 14 Multiple Criteria & Goal Programming

poor neighborhood, even though the teachers in the poor school are working harder and require more

skill than the teachers in the wealthy school. Also, different decision makers may have different skills.

If the teachers in school (A) are well trained in science and those in school (B) are well trained in fine

arts, then a scoring system that applies a lot of weight to science may make the teachers in (B) appear to

be inferior, even though they are doing an outstanding job at what they do best.

 DEA circumvents both difficulties in a clever fashion. If the arts teachers were choosing the

performance measures, they would choose one that placed a lot of weight on arts. However, the science

teachers would probably choose a different one. DEA follows the philosophy of a popular fast food

chain, that is, “Have it your way.” DEA will derive an “efficiency” score between 0 and 1 for each unit

by solving the following problem:

For each unit k:

Choose a scoring function

so as to:

maximize score of unit k

subject to:

For every unit j (including k):

scorej < 1.

 Thus, unit k may choose a scoring function making it look as good as possible, so long as no other

unit gets a score greater than 1 when that same scoring function is applied to the other unit. If a unit k

gets a score of 1.0, it means there is no other unit strictly dominating k.

 In the version of DEA we consider, the allowed scoring functions are limited to ratios of weighted

outputs to weighted inputs. For example:

score = weighted sum of outputs

weighted sum of inputs

We can normalize weights, so:

weighted sum of inputs = 1;

then “score < 1” is equivalent to:

weighted sum of outputs < weighted sum of inputs.

Algebraically, the DEA model is:

Given

n = decision-making units,

m = number of inputs,

s = number of outputs.

Observed data:

cij = level of jth input for unit i,

rij = level of jth output for unit i.

Variables:

wj = weight applied to the jth input,

vj = weight (or value) applied to the jth output.

Multiple Criteria & Goal Programming Chapter 14 457

For unit k, the model to compute the best score is:

Maximize
 j

s

=

1
vj rkj

subject to

 j

m

=

1

wj ckj = 1

For each unit i (including k):

 j

s

=

1
vj rij <

 j

m

=

1
wj cij

 This model will tend to have more constraints than decision variables. Thus, if implementation

efficiency is a major concern, one may wish to solve the dual of this model rather than the primal.

 Sexton et al. (1994) describes the use of DEA to analyze the transportation efficiency of 100 county

level school districts in North Carolina. Examples of inputs were number of buses used and expenses.

The single output was the number of pupils transported per day. Various adjustments were made in the

analysis to take into account the type of district (e.g., population density). A savings of about $50 million

over a four-year period was claimed.

 Sherman and Ladino (1995) describe the use of DEA to analyze and improve the efficiency of

branches in a 33-unit branch banking system. They claimed annual savings of $6 million. Examples of

inputs for a branch unit were: number of tellers, office square feet, and expenses excluding personnel.

Examples of outputs were number of deposits, withdrawals, checks cashed, loans made, and new

accounts. Of the 33 units, ten obtained an efficiency score of 100%. An automatic result of the DEA

analysis for an inefficient unit is an identification of the one or two units that dominate the inefficient

unit. This dominating unit was then used as a “benchmark or best practices case” to help identify how

the inefficient unit could be improved.

Example

Below are four performance measures on six high schools: Bloom (BL), Homewood (HW), New Trier

(NT), Oak Park (OP), York (YK), and Elgin (EL). Cost/pupil is the number of dollars spent per year per

pupil by the school. Percent not-low-income is the fraction of the student body coming from homes not

classified as low income. The writing and science scores are the averages over students in a school on a

standard writing test and a standard science test. The first two measures are treated as inputs, over which

teachers and administrators have no control. The test scores are treated as outputs.

School Cost/pupil Percent not
low income

Writing
score

Science
score

BL 8939 64.3 25.2 223

HW 8625 99 28.2 287

NT 10813 99.6 29.4 317

OP 10638 96 26.4 291

YK 6240 96.2 27.2 295

EL 4719 79.9 25.5 222

458 Chapter 14 Multiple Criteria & Goal Programming

 Which schools would you consider “efficient”? New Trier has the highest score in both writing

(29.4) and science (317). However, it also spends the most per pupil, $10,813, and has the highest

fraction not-low-income. A DEA model for maximizing the score of New Trier appears below. Notice

we have scaled each factor, so it lies in the range (1,1000). This is important if one requires a strictly

positive minimum weight on each factor, as the last four constraints of the model imply. The motivation

for the strictly positive weight on each factor was given in the description of the “more-is-better” case:

MODEL:

MAX = SCORENT;

! Define the numerator for New Trier;

 [DEFNUMNT] SCORENT - 317*WNTSCIN - 29.4*WNTWRIT = 0;

! Fix the denominator for New Trier;

 [FIXDNMNT] 99.6*WNTRICH + 108.13*WNTCOST = 1;

! Numerator/ Denominator < 1 for every school,;

! or equivalently, Numerator < Denominator;

[BLNT]223*WNTSCIN+25.2*WNTWRIT-64.3*WNTRICH-89.39*WNTCOST<=0;

[HWNT]287*WNTSCIN+28.2*WNTWRIT-99*WNTRICH-86.25*WNTCOST <= 0;

[NTNT]317*WNTSCIN+29.4*WNTWRIT-99.6*WNTRICH-108.13*WNTCOST<=0;

[OPNT]291*WNTSCIN+26.4*WNTWRIT-96*WNTRICH-106.38*WNTCOST<=0;

[YKNT]295*WNTSCIN+27.2*WNTWRIT-96.2*WNTRICH-62.40*WNTCOST<=0;

[ELNT]222*WNTSCIN+25.5*WNTWRIT-79.9*WNTRICH-47.19*WNTCOST<=0;

! Each measure must receive a little weight;

 [SCINT] WNTSCIN >= 0.0005;

 [WRINT] WNTWRIT >= 0.0005;

 [RICNT] WNTRICH >= 0.0005;

 [COSNT] WNTCOST >= 0.0005;

END

The solution is:

Optimal solution found at step: 3

Objective value: 0.9615803

Variable Value Reduced Cost

 SCORENT 0.9615803 0.0000000

 WNTSCIN 0.2987004E-02 0.0000000

 WNTWRIT 0.5000000E-03 0.0000000

 WNTRICH 0.8204092E-02 0.0000000

 WNTCOST 0.1691228E-02 0.0000000

 Row Slack or Surplus Dual Price

 1 0.9615803 1.000000

DEFNUMNT 0.0000000 1.000000

FIXDNMNT 0.0000000 0.9635345

 BLNT 0.0000000 0.8795257

 HWNT 0.8670327E-01 0.0000000

 NTNT 0.3841965E-01 0.0000000

 OPNT 0.8508738E-01 0.0000000

 YKNT 0.0000000 0.4097145

 ELNT 0.5945104E-01 0.0000000

 SCINT 0.2487004E-02 0.0000000

 WRINT 0.0000000 -3.908281

 RICNT 0.7704092E-02 0.0000000

 COSNT 0.1191227E-02 0.0000000

Multiple Criteria & Goal Programming Chapter 14 459

 The score of New Trier is less than 1.0. Thus, according to DEA, New Trier is not efficient. Looking

at the solution report, one can deduce that NT is, according to DEA, strictly less efficient than BL and

YK. Notice their “score less-than-or-equal-to 1” constraints are binding. Thus, if NT wants to improve

its efficiency by doing a benchmark study, it should perhaps study the practices of BL and YK for insight.

 A sets-based model that evaluates all the schools in one model is given below:

MODEL:

! Data Envelopment Analysis of Decision Maker Efficiency ;

SETS:

 DMU: !The decisionmaking units;

 SCORE;! Each decision making unit has a

 score to be computed;

 FACTOR;

! There is a set of factors, input & output;

 DXF(DMU, FACTOR): F, ! F(I, J) = Jth factor of DMU I;

 W; ! Weights used to compute DMU I's score;

 ENDSETS

 DATA:

 DMU = BL HW NT OP YK EL;

! Inputs are spending/pupil, % not low income;

! Outputs are Writing score and Science score;

 NINPUTS = 2; ! The first NINPUTS factors are inputs;

 FACTOR= COST RICH WRIT SCIN;

! The inputs, the outputs;

 F = 89.39 64.3 25.2 223

 86.25 99 28.2 287

 108.13 99.6 29.4 317

 106.38 96 26.4 291

 62.40 96.2 27.2 295

 47.19 79.9 25.5 222;

 WGTMIN = .0005; ! Min weight applied to every factor;

 BIGM = 999999; ! Biggest a weight can be;

 ENDDATA

!--;

! The Model;

! Try to make everyone's score as high as possible;

 MAX = @SUM(DMU: SCORE);

! The LP for each DMU to get its score;

 @FOR(DMU(I):

 [CSCR] SCORE(I) = @SUM(FACTOR(J)|J #GT# NINPUTS:

 F(I, J)* W(I, J));

! Sum of inputs(denominator) = 1;

 [SUM21] @SUM(FACTOR(J)| J #LE# NINPUTS:

 F(I, J)* W(I, J)) = 1;

! Using DMU I's weights, no DMU can score better than 1,

 Note Numer/Denom <= 1 implies Numer <= Denom;

 @FOR(DMU(K):

 [LE1] @SUM(FACTOR(J)| J #GT# NINPUTS: F(K, J) * W(I, J))

 <= @SUM(FACTOR(J)| J #LE# NINPUTS: F(K, J) * W(I, J))

)

);

! The weights must be greater than zero;

 @FOR(DXF(I, J): @BND(WGTMIN, W, BIGM));

460 Chapter 14 Multiple Criteria & Goal Programming

END

Part of the output is:

 Variable Value Reduced Cost

SCORE(BL) 1.000000 0.0000000

SCORE(HW) 0.9095071 0.0000000

SCORE(NT) 0.9615803 0.0000000

SCORE(OP) 0.9121280 0.0000000

SCORE(YK) 1.000000 0.0000000

SCORE(EL) 1.000000 0.0000000

We see that the only efficient schools are Bloom, Yorktown, and Elgin.

14.7 Problems
1. In the example staffing problem in this chapter, the primary criterion was minimizing the number

of people hired. The secondary criterion was to spread out any excess capacity as much as possible.

The primary criterion received a weight of 9; whereas, the secondary criterion received a weight of

1. The minimum number of people required (primary criterion) was 8. How much could the weight

on the secondary criterion be increased before the number of people hired increases to more than 8?

2. Reconsider the advertising media selection problem of this chapter.

a) Reformulate it, so we achieve at least 197 (in 1000’s) useful exposures at minimum cost.

b) Predict the cost before looking at the solution.

3. A description of a “project crashing” decision appears in Chapter 8. There were two criteria, project

length and project cost. Trace out the efficient frontier describing the trade-off between length and

cost.

4. The various capacities of several popular sport utility vehicles, as reported by a popular consumer

rating magazine, are listed below:

Vehicle

Seats

Cargo Floor
Length (in.)

Rear Opening
Height (in.)

Cargo Volume
(cubic ft)

Blazer 6 75.5 31.5 42.5

Cherokee 5 62.0 33.5 34.5

Land Rover 7 49.5 42.0 42.0

Land Cruiser 8 65.5 38.5 44.5

Explorer 6 78.5 35.0 48.0

Trooper 5 57.0 36.5 42.5

 Assuming sport utility vehicle buyers sport a linear utility and more capacity is better, which

of the above vehicles are on the efficient frontier according to these four capacity measures?

5. The Rotorua Fruit Company sells various kinds of premium fruits (e.g., apples, peaches, and kiwi

fruit) in small boxes. Each box contains a single kind of fruit. The outside of the box specifies:

i) the kind of fruit,

ii) the number of pieces of fruit, and

iii) the approximate weight of the fruit in the box.

Multiple Criteria & Goal Programming Chapter 14 461

 Satisfying specification (iii) is nontrivial, because the per unit weight of fruit as it comes from

the orchard is a random variable. Consider the case of apples. Each apple box contains 12 apples.

The label on each apple box says the box contains 4.25 lbs. of apples. In fact, a typical apple weighs

from 5 to 6.5 ounces. At 16 ounces/lb., a box of 5-ounce apples would weigh only 3.75 lbs., whereas,

a box of 6.5-ounce apples would weigh 4.875 lbs. The approach Rotorua is considering is to have a

set of 24 automated scales on the box loading line. The 24 scales will be loaded with 24 apples.

Based on the weights of the apples, a set of 12 apples whose total weight comes close to 4.25 lbs.,

will be dropped into the current empty box. In the next cycle, the 12 empty scales will be reloaded

with new apples, a new empty box will be moved into position, and the process repeated. Rotorua

cannot always achieve the ideal of exactly 4.25 lbs. in a box. However, being underweight is worse

than being overweight. Rotorua has characterized its feeling/utility for this under/over issue by

stating that given the choice between loading a box one ounce under and one ounce over, it clearly

prefers to load it one ounce over. However, it would be indifferent between loading a box one ounce

under vs. five ounces over.

Suppose the scales currently contain apples with the following weights in ounces:

 5.6, 5.9, 6.0, 5.8, 5.9, 5.4, 5.0, 5.5, 6.3, 6.2, 5.1, 6.2,

 6.1, 5.2, 6.4, 5.7, 5.6, 5.5, 5.3, 6.0, 5.4, 5.3, 5.8, 6.1.

a) How would you load the next box?

b) Discuss some of the issues in implementing your approach.

462 Chapter 14 Multiple Criteria & Goal Programming

463

15

Economic Equilibria and
Pricing

Plus ce change, plus ce la meme chose.

-Alphonse Karr: "Les Guepes", 1849

15.1 What is an Equilibrium?
As East and West Germany were about to be re-united in the early 1990’s, there was considerable interest

in how various industries in the two regions would fare under the new economic structure. Similar

concerns existed about the same time in Canada, the United States, and Mexico, as trade barriers were

about to be dropped under the structure of the new North American Free Trade Agreement (NAFTA).

Some of the planners concerned with NAFTA used so-called economic equilibrium models to predict

the effect of the new structure on various industries. The basic idea of an equilibrium model is to predict

what the state of a system will be in the “steady state”, under a new set of external conditions. These

new conditions are typically things like new tax laws, new trading conditions, or dramatically new

technology for producing some product.

 Equilibrium models are of interest to at least two kinds of decision makers: people who set taxes,

and people who are concerned with appropriate prices to set. Suppose state X feels it would like to put a

tax on littering with, say, glass bottles. An explicit tax on littering is difficult to enforce. Alternatively,

the state X might feel it could achieve the same effect by putting a tax on bottles when purchased, and

then refunding the tax when the bottle is returned for recycling. Both of these are easy to implement and

enforce. If a neighboring state, Y, however, does not have a bottle refund, then citizens of the state Y will

be motivated to cross the border to X and turn their bottles in for refund. If the refund is high, then the

refund from state X may end up subsidizing bottle manufacturing in state Y. Is this the intention of state

X? A comprehensive equilibrium model takes into account all the incentives of the various sectors or

players.

 If one is modeling an economy composed of two or more individuals, each acting in his or her

self-interest, there is no obvious overall objective function that should be maximized. In a market, a

solution, or equilibrium point, is a set of prices such that supply equals demand for each commodity.

More generally, an equilibrium for a system is a state in which no individual or component in the system

is motivated to change the state. Thus, at equilibrium in an economy, there are no arbitrage possibilities

(e.g., buy a commodity in one market and sell it in another market at a higher price at no risk). Because

464 Chapter 15 Economic Equilibria

economic equilibrium problems usually involve multiple players, each with their own objective, these

problems can also be viewed as multiple criteria problems.

15.2 A Simple Simultaneous Price/Production Decision
A firm that has the choice of setting either price or quantity for its products may wish to set them

simultaneously. If the production process can be modeled as a linear program and the demand curves

are linear, then the problem of simultaneously setting price and production follows.

 A firm produces and sells two products A and B at price PA and PB and in quantities XA and XB.

Profit maximizing values for PA, PB, XA, and XB are to be determined. The quantities (sold) are related to

the prices by the demand curves:

XA = 60 − 21 PA + 0.1 PB ,

XB = 50 − 25 PB + 0.1 PA.

 Notice the two products are mild substitutes. As the price of one is raised, it causes a modest increase

in the demand for the other item.

 The production side has the following features:

 Product
 A B

Variable Cost per Unit $0.20 $0.30

Production Capacity 25 30

Further, the total production is limited by the constraint:

XA + 2XB 50.

The problem can be written in LINGO form as:

MIN = −(PA − 0.20) * XA − (PB − 0.30) * XB;

XA + 21 * PA − 0.1 * PB = 60;
! Demand curve definition;

XB + 25 * PB − 0.1 * PA = 50;
XA <= 25; !Supply restrictions;

XB <= 30;

XA + 2 * XB <= 50;

Economic Equilibria Chapter 15 465

The solution is:

Optimal solution found at step: 4

Objective value: -51.95106

Variable Value Reduced Cost

 PA 1.702805 0.0000000

 XA 24.39056 0.0000000

 PB 1.494622 0.0000000

 XB 12.80472 0.0000000

 Row Slack or Surplus Dual Price

 1 -51.95106 1.000000

 2 0.0000000 1.163916

 3 0.0000000 0.5168446

 4 0.6094447 0.2531134E-07

 5 17.19528 0.0000000

 6 0.0000000 0.3388889

 Note it is the joint capacity constraint XA + 2XB 50, which is binding. The total profit contribution

is $51.951058.

15.3 Representing Supply & Demand Curves in LPs
The use of smooth supply and demand curves has long been a convenient device in economics courses

for thinking about how markets operate. In practice, it may be more convenient to think of supply and

demand in more discrete terms. What is frequently done in practice is to use a sector approach for

representing demand and supply behavior. For example, one represents the demand side as consisting

of a large number of sectors with each sector having a fairly simple behavior. The most convenient

behavior is to think of each demand sector as being represented by two numbers:

the maximum price (its reservation price) the sector is willing to pay for a good, and

the amount the sector will buy if the price is not above its reservation price.

 The U.S. Treasury Department, when examining the impact of proposed taxes, has apparently

represented taxpayers by approximately 10,000 sectors, see Glover and Klingman (1977) for example.

 The methodology about to be described is similar to that used in the PIES (Project Independence

Evaluation System) model developed by the Department of Energy. This model and its later versions were

extensively used from 1974 onward to evaluate the effect of various U.S. energy policies.

 Consider the following example. There is a producer A and a consumer X who have the following

supply and demand schedules for a single commodity (e.g., energy):

Producer A Consumer X

Market Price
per Unit

Amount
Willing To Sell

Market Price
per Unit

Amount Willing
To Buy

$1 2 $9 2

2 4 4.5 4

3 6 3 6

4 8 2.25 8

 For example, if the price is less than $2, but greater than $1, then the producer will produce 2 units.

However, the consumer would like to buy at least 8 units at this price. By inspection, note the equilibrium

price is $3 and any quantity.

466 Chapter 15 Economic Equilibria

 It is easy to find an equilibrium in this market by inspection. Nevertheless, it is useful to examine

the LP formulation that could be used to find it. Although there is a single market clearing price, it is

useful to interpret the supply schedule as if the supplier is willing to sell the first 2 units at $1, the next

2 units at $2 each, etc. Similarly, the consumer is willing to pay $9 each for the first 2 units, $4.5 for the

next 2 units, etc. To find the market-clearing price such that the amount produced equals the amount

consumed, we act as if there is a broker who actually buys and sells at these marginal prices, and all

transactions must go through the broker. The broker maximizes his profits. The broker will continue to

increase the quantity of goods transferred as long as he can sell it at a price higher than his purchase

price. At the broker’s optimum, the quantity bought equals the quantity sold and the price offered by the

buyers equals the price demanded by the sellers. This satisfies the conditions for a market equilibrium.

 Graphically, the situation is as in Figure 15.1:

Figure 15.1 Demand and Supply Curves

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

P
r

i
c

e
Producer-Consumer
 Surplus

Supply Curve

Demand Curve

Quantity

 The area marked “producer-consumer surplus” is the profit obtained by the hypothetical broker. In

reality, this profit is allocated between the producer and the consumer according to the equilibrium price.

In the case where the equilibrium price is $3, the consumer’s profit or surplus is the portion of the

producer-consumer surplus area above the $3 horizontal line, while the producer’s profit or surplus is

the portion of the producer-consumer surplus area below $3.

 Readers with a mathematical bent may note the general approach we are using is based on the fact

that, for many problems of finding an equilibrium, one can formulate an objective function that, when

optimized, produces a solution satisfying the equilibrium conditions.

Economic Equilibria Chapter 15 467

 For purposes of the LP formulation, define:

A1 = units sold by producer for $1 per unit;

A2 = units sold by producer for $2 per unit;

A3 = units sold by producer for $3 per unit;

A4 = units sold by producer for $4 per unit;

X1 = units bought by consumer for $9 per unit;

X2 = units bought by consumer for $4.5 per unit;

X3 = units bought by consumer for $3 per unit;

X4 = units bought by consumer for $2.25 per unit.

The formulation is:

MAX = 9 * X1 + 4.5 * X2 + 3 * X3 + 2.25 * X4

 ! Maximize broker's revenue;

 - A1 - 2 * A2 - 3 * A3 - 4 * A4;

 ! minus cost;

 A1 + A2 + A3 + A4 - X1 - X2 - X3 - X4 = 0;

 ! Supply = demand;

 A1 <= 2;

 A2 <= 2;

 A3 <= 2;

 A4 <= 2;

 ! Steps in supply;

 X1 <= 2;

 X2 <= 2;

 X3 <= 2;

 X4 <= 2;

 ! and demand functions;

A solution is:

A1 = A2 = A3 = X1 = X2 = X3 = 2

A4 = X4 = 0

Note there is more than one solution, since A3 and X3 cancel each other when they are equal.

 The dual price on the first constraint is $3. In general, the dual price on the constraint that sets supply

equal to demand is the market-clearing price.

 Let us complicate the problem by introducing another supplier, B, and another consumer, Y. Their

supply and demand curves are, respectively:

Producer B Consumer Y

Market Price
per Unit

Amount
Willing To Sell

Market Price
per Unit

Amount Willing
To Buy

$2 2 $15 2

4 4 8 4

6 6 5 6

8 8 3 8

 An additional complication is shipping costs $1.5 per unit shipped from A to Y, and $2 per unit

shipped from B to X. What will be the clearing price at the shipping door of A, B, X, and Y? How much

will each participant sell or buy?

468 Chapter 15 Economic Equilibria

 The corresponding LP can be developed if we define B1, B2, B3, B4, Y1, Y2, Y3 and Y4 analogous

to A1, X1, etc. Also, we define AX, AY, BX, and BY as the number of units shipped from A to X, A to Y,

B to X, and B to Y, respectively. The formulation is:

MAX = 9 * X1 + 4.5 * X2 + 3 * X3 + 2.25 * X4

 + 15 * Y1 + 8 * Y2 + 5 * Y3 + 3 * Y4

 - 2 * BX - 1.5 * AY - A1 - 2 * A2 - 3 * A3

 - 4 * A4 - 2 * B1 - 4 * B2 - 6 * B3 - 8 * B4;

! Maximize revenue - cost for broker;

 - AY + A1 + A2 + A3 + A4 - AX = 0;

! amount shipped from A;

 - BX + B1 + B2 + B3 + B4 - BY = 0;

! amount shipped from B;

 - X1 - X2 - X3 - X4 + BX + AX = 0;

! amount shipped from X;

 - Y1 - Y2 - Y3 - Y4 + AY + BY = 0;

! amount shipped from Y;

 A1 <= 2;

 A2 <= 2;

 A3 <= 2;

 A4 <= 2;

 B1 <= 2;

 B2 <= 2;

 B3 <= 2;

 B4 <= 2;

 X1 <= 2;

 X2 <= 2;

 X3 <= 2;

 X4 <= 2;

 Y1 <= 2;

 Y2 <= 2;

 Y3 <= 2;

 Y4 <= 2;

 Notice from the objective function that the broker is charged $2 per unit shipped from B to X and

$1.5 per unit shipped from A to Y. Most of the constraints are simple upper bound (SUB) constraints. In

realistic-size problems, several thousand SUB-type constraints can be tolerated without adversely

affecting computational difficulty.

Economic Equilibria Chapter 15 469

The original solution is:

Optimal solution found at step: 3

Objective value: 21.00000

Variable Value Reduced Cost

 X1 2.000000 0.0000000

 X2 2.000000 0.0000000

 X3 2.000000 0.0000000

 X4 0.0000000 0.7500000

 A1 2.000000 0.0000000

 A2 2.000000 0.0000000

 A3 2.000000 0.0000000

 A4 0.0000000 1.000000

 Row Slack or Surplus Dual Price

 1 21.00000 1.000000

 2 0.0000000 -3.000000

 3 0.0000000 2.000000

 4 0.0000000 1.000000

 5 0.0000000 0.0000000

 6 2.000000 0.0000000

 7 0.0000000 6.000000

 8 0.0000000 1.500000

 9 0.0000000 0.0000000

 10 2.000000 0.0000000

 From the dual prices on rows 2 through 5, we note the prices at the shipping door of A, B, X, and Y

are $3.5, $5, $3.5, and $5, respectively. At these prices, A and B are willing to produce 6 and 4 units,

respectively. While, X and Y are willing to buy 4 and 6 units, respectively. A ships 2 units to Y, where

the $1.5 shipping charge causes them to sell for $5 per unit. A ships 4 units to X, where they sell for $3.5

per unit. B ships 4 units to Y, where they sell for $5 per unit.

15.4 Auctions as Economic Equilibria
The concept of a broker who maximizes producer-consumer surplus can also be applied to auctions. LP

is useful if features that might be interpreted as bidders with demand curves complicate the auction. The

example presented here is based on a design by R. L. Graves for a course registration system used since

1981 at the University of Chicago in which students bid on courses. See Graves, Sankaran, and Schrage

(1993).

 Suppose there are N types of objects to be sold (e.g., courses) and there are M bidders

(e.g., students). Bidder i is willing to pay up to bij, bij 0 for one unit of object type j. Further, a bidder

is interested in at most one unit of each object type. Let Sj be the number of units of object type j available

for sale.

 There is a variety of ways of holding the auction. Let us suppose it is a sealed-bid auction and we

want to find a single, market-clearing price, pj, for each object type j, such that:

a) at most, Sj units of object j are sold;

b) any bid for j less than pj does not buy a unit;

c) pj = 0 if less than Sj units of j are sold;

d) any bid for j greater than pj does buy a unit.

 It is easy to determine the equilibrium pj’s by simply sorting the bids and allocating each unit to the

higher bidder first. Nevertheless, in order to prepare for more complicated auctions, let us consider how

470 Chapter 15 Economic Equilibria

to solve this problem as an optimization problem. Again, we take the view of a broker who sells at as

high a price as possible (buys at as low) and maximizes profits.

 Define:

xij = 1 if bidder i buys a unit of object j, else 0.

The LP is:

Maximize
 i

M

=

1 j

N

=

1
xij bij

subject to
 i

M

=

1
xij Sj for j = 1 to N

 xij 1 for all i and j.

 The dual prices on the first N constraints can be used, with minor modification, as the clearing prices

pj. The possible modifications have to do with the fact that, with step function demand and/or supply curves,

there is usually a small range of acceptable clearing prices. The LP solution will choose one price in this

range, usually at one end of the range. One may wish to choose a price within the interior of the range to

break ties.

 Now, we complicate this auction slightly by adding the condition that no bidder wants to buy more

than 3 units total. Consider the following specific situation:

Maximum Price Willing To Pay
 Objects

 1 2 3 4 5

Bidders

1 9 2 8 6 3

2 6 7 9 1 5

3 7 8 6 3 4

4 5 4 3 2 1

Capacity 1 2 3 3 4

 For example, bidder 3 is willing to pay up to 4 for one unit of object 5. There are only 3 units of

object 4 available for sale.

 We want to find a “market clearing” price for each object and an allocation of units to bidders, so

each bidder is willing to accept the units awarded to him at the market-clearing price. We must generalize

the previous condition d to d': a bidder is satisfied with a particular unit if he cannot find another unit

with a bigger difference between his maximum offer price and the market clearing price. This is

equivalent to saying each bidder maximizes his consumer surplus.

Economic Equilibria Chapter 15 471

 The associated LP is:

MAX = 9 * X11 + 2 * X12 + 8 * X13 + 6 * X14

 + 3 * X15 + 6 * X21 + 7 * X22 + 9 * X23

 + X24 + 5 * X25 + 7 * X31 + 8 * X32 + 6 * X33

 + 3 * X34 + 4 * X35 + 5 * X41 + 4 * X42

 + 3 * X43 + 2 * X44 + X45;

 !(Maximize broker revenues);

X11 + X21 + X31 + X41 <= 1;

 !(Units of object 1 available);

X12 + X22 + X32 + X42 <= 2; ! .;

X13 + X23 + X33 + X43 <= 3; ! .;

X14 + X24 + X34 + X44 <= 3; ! .;

X15 + X25 + X35 + X45 <= 4;

 !(Units of object 5 available);

X11 + X12 + X13 + X14 + X15 <= 3;

 !(Upper limit on buyer 1 demand);

X21 + X22 + X23 + X24 + X25 <= 3; ! .;

X31 + X32 + X33 + X34 + X35 <= 3; ! .;

X41 + X42 + X43 + X44 + X45 <= 3;

 !(Upper limit on buyer 2 demand);

X11 <= 1;

X21 <= 1;

X31 <= 1;

X41 <= 1;

X12 <= 1;

X22 <= 1;

X32 <= 1;

X42 <= 1;

X13 <= 1;

X23 <= 1;

X33 <= 1;

X43 <= 1;

X14 <= 1;

X24 <= 1;

X34 <= 1;

X15 <= 1;

X25 <= 1;

X35 <= 1;

X45 <= 1;

The solution is:

Optimal solution found at step: 23

Objective value: 67.00000

Variable Value Reduced Cost

 X11 1.000000 0.0000000

 X12 0.0000000 4.000000

 X13 1.000000 0.0000000

 X14 1.000000 0.0000000

 X15 0.0000000 0.0000000

 X21 0.0000000 0.0000000

 X22 1.000000 0.0000000

 X23 1.000000 0.0000000

472 Chapter 15 Economic Equilibria

 X24 0.0000000 0.0000000

 X25 1.000000 0.0000000

 X31 0.0000000 3.000000

 X32 1.000000 0.0000000

 X33 1.000000 0.0000000

 X34 0.0000000 2.000000

 X35 1.000000 0.0000000

 X41 0.0000000 2.000000

 X42 0.0000000 0.0000000

 X43 0.0000000 0.0000000

 X44 2.000000 0.0000000

 X45 1.000000 0.0000000

 Row Slack or Surplus Dual Price

 1 67.00000 1.000000

 2 0.0000000 6.000000

 3 0.0000000 3.000000

 4 0.0000000 2.000000

 5 0.0000000 1.000000

 6 1.000000 0.0000000

 7 0.0000000 3.000000

 8 0.0000000 0.0000000

 9 0.0000000 4.000000

 10 0.0000000 1.000000

 11 0.0000000 0.0000000

 12 1.000000 0.0000000

 13 1.000000 0.0000000

 14 1.000000 0.0000000

 15 1.000000 0.0000000

 16 0.0000000 4.000000

 17 0.0000000 1.000000

 18 1.000000 0.0000000

 19 0.0000000 3.000000

 20 0.0000000 7.000000

 21 0.0000000 0.0000000

 22 1.000000 0.0000000

 23 0.0000000 2.000000

 24 1.000000 0.0000000

 25 1.000000 0.0000000

 26 1.000000 0.0000000

 27 0.0000000 5.000000

 28 0.0000000 0.0000000

 29 0.0000000 0.0000000

 The dual prices on the first five constraints essentially provide us with the needed market clearing

prices. To avoid ties, we may wish to add or subtract a small number to each of these prices. We claim that

acceptable market clearing prices for objects 1, 2, 3, 4 and 5 are 5, 5, 3, 0, and 0, respectively.

 Now note that, at these prices, the market clears. Bidder 1 is awarded the sole unit of object 1 at a

price of $5.00. If the price were lower, bidder 4 could claim the unit. If the price were more than 6, then

bidder 1’s surplus on object 1 would be less than 9 − 6 = 3. Therefore, he would prefer object 5 instead.

Where his surplus is 3 − 0 = 3. If object 2’s price were less than 4, then bidder 4 could claim the unit. If

the price were greater than 5, then bidder 3 would prefer to give up his type-2 unit (with surplus 8 − 5 =

Economic Equilibria Chapter 15 473

3) and take a type-4 unit, which has a surplus of 3 − 0 = 3. Similar arguments apply to objects 3, 4, and

5.

15.5 Multi-Product Pricing Problems
When a vendor sets prices, they should take into account the fact that a buyer will tend to purchase a

product or, more generally, a bundle of products that gives the buyer the best deal. In economics

terminology, the vendor should assume buyers will maximize their utility. A reasonable way of

representing buyer behavior is to make the following assumptions:

1. Prospective buyers can be partitioned into market segments (e.g., college students, retired

people, etc.). Segments can be defined sufficiently small, so individuals in the same

segment have the same preferences.

2. Each buyer has a reservation price for each possible combination (or bundle) of products

he or she might buy.

3. Each buyer will purchase that single bundle for which his reservation price minus his cost

is maximized.

 A smart vendor will set prices to maximize his profits, subject to customers maximizing their utility

as described in (1-3).

 The following is a general model that allows a number of features:

a) some segments (e.g., students) may get a discount from the list price;

b) there may be a customer segment specific cost of selling a product (e.g., because of a tax

or intermediate dealer commission);

c) the vendor incurs a fixed cost if he wishes to sell to a particular segment;

d) the vendor incurs a fixed cost if he wishes to sell a particular product, regardless of whom

it is sold to.

 Analyses or models such as we are about to consider, where we take into account how customers

choose products based on prices that vendors set, or which products vendors make available, are

sometimes known as consumer choice models.

 The model is applied to an example involving a vendor wishing to sell seven possible bundles to

three different market segments: the home market, students, and the business market. The vendor has

474 Chapter 15 Economic Equilibria

decided to give a 10% discount to the student segment and incurs a 5% selling fee for products sold in

the home market segment:

MODEL:

 !Product pricing (PRICPROD);

 !Producer chooses prices to maximize producer

 surplus;

!Each customer chooses the one

 product/bundle that maximizes consumer surplus;

SETS:

 CUST:

 SIZE, ! Each cust/market has a size;

 DISC, ! Discount off list price willing to

 give to I;

 DISD, ! Discount given to dealer(who sells

 full price);

 FM, ! Fixed cost of developing market I;

 YM, ! = 1 if we develop market I, else 0;

 SRP; ! Consumer surplus achieved by customer

 I;

 BUNDLE:

 COST, ! Each product/bundle has a cost/unit to

 producer;

 FP, ! Fixed cost of developing product J;

 YP, ! = 1 if we develop product J, else 0;

 PRICE, ! List price of product J;

 PMAX; ! Max price that might be charged;

 CXB(CUST, BUNDLE): RP, ! Reservation

 price of customer I for product J;

 EFP, ! Effective price I pays for J, = 0

 if not bought;

 X; ! = 1 if I buys J, else 0;

ENDSETS

DATA:

! The customer/market segments;

 CUST = HOME STUD BUS;

! Customer sizes;

 SIZE = 4000 3000 3000;

! Fixed market development costs;

 FM = 15000 12000 10000;

! Discount off list price to each customer, 0 <= DISC < 1;

 DISC = 0 .1 0;

! Discount/tax off list to each dealer, 0

 <= DISD < 1;

 DISD = .05 0 0;

 BUNDLE = B1 B2 B3 B12 B13 B23 B123;

! Reservation prices;

 RP = 400 50 200 450 650 250 700

 200 200 50 350 250 250 400

 500 100 100 550 600 260 600;

! Variable costs of each product bundle;

 COST = 100 20 30 120 130 50 150;

! Fixed product development costs;

Economic Equilibria Chapter 15 475

 FP = 30000 40000 60000 10000 20000 8000 0;

ENDDATA

!---;

! The seller wants to maximize the profit

 contribution;

 [PROFIT] MAX =

 @SUM(CXB(I, J):

 SIZE(I) * EFP(I, J) ! Revenue;

 - COST(J)* SIZE(I) * X(I, J)

 ! Variable cost;

 - EFP(I, J) * SIZE(I) * DISD(I))

 ! Discount to dealers;

 - @SUM(BUNDLE: FP * YP)

 ! Product development cost;

 - @SUM(CUST: FM * YM);

 ! Market development cost;

! Each customer can buy at most 1 bundle;

 @FOR(CUST(I):

 @SUM(BUNDLE(J) : X(I, J)) <= YM(I);

 @BIN(YM(I));

);

! Force development costs to be incurred

 if in market;

 @FOR(CXB(I, J): X(I, J) <= YP(J);

 ! for product J;

! The X's are binary, yes/no, 1/0 variables;

 @BIN(X(I, J));

);

! Compute consumer surplus for customer I;

 @FOR(CUST(I): SRP(I)

 = @SUM(BUNDLE(J): RP(I, J) * X(I, J)

 - EFP(I, J));

! Customer chooses maximum consumer surplus;

 @FOR(BUNDLE(J):

 SRP(I) >= RP(I, J)

 - (1 - DISC(I)) * PRICE(J)

);

);

! Force effective price to take on proper value;

 @FOR(CXB(I, J):

! zero if I does not buy J;

 EFP(I, J) <= X(I, J) * RP(I, J);

! cannot be greater than price;

 EFP(I, J) <= (1 - DISC(I)) * PRICE(J);

! cannot be less than price if bought;

 EFP(I, J) >= (1 - DISC(I))* PRICE(J)

 - (1 - X(I, J))* PMAX(J);

);

! Compute upper bounds on prices;

 @FOR(BUNDLE(J): PMAX(J)

 = @MAX(CUST(I): RP(I, J)/(1 - DISC(I)));

);

END

476 Chapter 15 Economic Equilibria

The solution, in part, is:

Global optimal solution found at step: 146

Objective value: 3895000.

Branch count: 0

 Variable Value Reduced Cost

 PRICE(B1) 500.0000 0.0000000

 PRICE(B2) 222.2222 0.0000000

 PRICE(B3) 200.0000 0.0000000

 PRICE(B12) 550.0000 0.0000000

 PRICE(B13) 650.0000 0.0000000

 PRICE(B23) 277.7778 0.0000000

 PRICE(B123) 700.0000 0.0000000

X(HOME, B123) 1.000000 -2060000.

 X(STUD, B23) 1.000000 -592000.0

 X(BUS, B12) 1.000000 -1280000.

 In summary, the home segment buys product bundle B123 at a price of $700. The student segment

buys product bundle B23 at a list price of $277.78, (i.e., a discounted price of $250). The business

segment buys product bundle B12 at a price of $550.

 The prices of all other bundles can be set arbitrarily large. You can verify each customer is buying

the product bundle giving the best deal:

Cust

Reservation price minus actual price

B12 B23 B123

Hom 450 – 550 = -100 250 - 277.78 = -27.78 700 – 700 = 0

Std 350 - 9*550 = -145 250 -.9 * 277.78 = 0 400 - .9 * 700 = -230

Bus 550 – 550 = 0 260 - 277.78 = -17.78 600 – 700 = -100

 The vendor makes a profit of $3,895,000. In contrast, if no bundling is allowed, the vendor makes

a profit of $2,453,000.

 There may be other equilibrium solutions. However, the above solution is one that maximizes the

profits of the vendor. An equilibrium such as this, where one of the players is allowed to select the

equilibrium most favorable to that player, is called a Stackelberg equilibrium.

 An implementation issue that one should be concerned with when using bundle pricing is the

emergence of third party brokers who will buy your bundle, split it, and sell the components for a profit.

For our example, a broker might buy the full bundle B123 for $700, sell the B1 component for $490 to

the Business market, sell the B2 component for $190 (after discount) to the student market, sell the B3

component to the Home market for $190, and make a profit of 490 + 190 + 190 - 700 = $170. The

consumers should be willing to buy these components from the broker because their consumer surplus

is $10, as compared to the zero consumer surplus when buying the bundles. This generally legal

(re-)selling of different versions of the products to consumers in ways not intended by the seller is

sometimes known as a "gray market", as compared to a black market where clearly illegal sales take

place. Bundle pricing is a generalization of quantity discount pricing (e.g., "buy one, get the second one

for half price") where the bundle happens to contain identical products. The same sort of gray market

possibility exists with quantity discounts. The seller's major protection against gray markets is to make

sure that the transaction costs of breaking up and reselling the components are too high. For example, if

the only way of buying software is pre-installed on a computer, then the broker would have to setup an

extensive operation to uninstall the bundled software and then reinstall the reconfigured software.

Economic Equilibria Chapter 15 477

15.6 General Equilibrium Models of An Economy
When trade agreements are being negotiated between countries, each country is concerned with how the

agreement will affect various industries in the country. A tool frequently used for answering such

questions is the general equilibrium model. In a general equilibrium model of an economy, one wants to

simultaneously determine prices and production quantities for several goods. The goods are consumed

by several market sectors. Goods are produced by a collection of processes. Each process produces one

or more goods and consumes one or more goods. At an equilibrium, a process will be used only if the

value of the goods produced at least equals the cost of the goods required by the process.

 When two or more countries are contemplating lowering trade barriers, they may want to look at

general equilibrium models to get some estimates of how various industries will fare in the different

countries as the markets open up.

 An example based on two production processes producing four goods for consumption in four

consumption sectors is shown below. Each sector has a demand curve for each good, based on the price

of each good. Each production process in the model below is linear (i.e., it produces one or more goods

from one or more of the other goods in a fixed proportion). A production process will not be used if the

cost of raw materials and production exceeds the market value of the goods produced. The questions

are: What is the clearing price for each good, and how much of each production process will be used?

MODEL:

 ! General Equilibrium Model of an economy, (GENEQLB1);

 ! Data based on Kehoe, Math Prog, Study 23(1985);

 ! Find clearing prices for commodities/goods and

 equilibrium production levels for processes in

 an economy;

 SETS:

 GOOD: PRICE, H;

 SECTOR;

 GXS(GOOD, SECTOR): ALPHA, W;

 PROCESS: LEVEL, RC;

 GXP(GOOD, PROCESS): MAKE;

 ENDSETS

478 Chapter 15 Economic Equilibria

 DATA:

 GOOD = 1..4; SECTOR = 1..4;

 ! Demand curve parameter for each good i & sector j;

 ALPHA =

 .5200 .8600 .5000 .0600

 .4000 .1 .2 .25

 .04 .02 .2975 .0025

 .04 .02 .0025 .6875;

 ! Initial wealth of good i by for sector j;

 W =

 50 0 0 0

 0 50 0 0

 0 0 400 0

 0 0 0 400;

 PROCESS= 1 2; ! There are two processes to make goods;

 !Amount produced of good i per unit of process j;

 MAKE =

 6 -1

 -1 3

 -4 -1

 -1 -1;

 ! Weights for price normalization constraint;

 H = .25 .25 .25 .25;

 ENDDATA

 !-----------------------;

 ! Variables:

 LEVEL(p) = level or amount at which we operate

 process p.

 RC(p) = reduced cost of process p,

 = cost of inputs to process p - revenues from outputs

 of process p, per unit.

 PRICE(g) = equilibrium price for good g;

 ! Constraints;

 ! Supply = demand for each good g;

 @FOR(GOOD(G):

 @SUM(SECTOR(M): W(G, M))

 + @SUM(PROCESS(P): MAKE(G, P) * LEVEL(P))

 = @SUM(SECTOR(S):

 ALPHA(G, S) *

 @SUM(GOOD(I): PRICE(I) * W(I, S))/ PRICE(G));

);

 ! Each process at best breaks even;

 @FOR(PROCESS(P):

 RC(P) = @SUM(GOOD(G): - MAKE(G, P) * PRICE(G));

 ! Complementarity constraints. If process p

 does not break even(RC > 0), then do not use it;

 RC(P)*LEVEL(P) = 0;

);

 ! Prices scale to 1;

 @SUM(GOOD(G): H(G) * PRICE(G)) = 1;

 ! Arbitrarily maximize some price to get a unique solution;

 Max = PRICE(1);

END

Economic Equilibria Chapter 15 479

The complementarity constraints, RC(P)*LEVEL(P)=0 , make this model difficult to solve for a

traditional nonlinear solver. If the Global Solver option in LINGO is used, then this model is easily

solved, giving the clearing prices:
 PRICE(1) 1.100547

 PRICE(2) 1.000000

 PRICE(3) 1.234610

 PRICE(4) 0.6648431

and the following production levels for the two processes:
 LEVEL(1) 53.18016

 LEVEL(2) 65.14806

This model in fact has three solutions, see Kehoe (1985). The other two are

PRICE(1) 0.6377

PRICE(2) 1.0000

PRICE(3) 0.1546

PRICE(4) 2.2077

and:

Variable Value

PRICE(1) 1.0000

PRICE(2) 1.0000

PRICE(3) 1.0000

PRICE(4) 1.0000

Which solution you get may depend upon the objective function provided.

15.7 Transportation Equilibria
When designing a highway or street system, traffic engineers usually use models of some sophistication

to predict the volume of traffic and the expected travel time on each link in the system. For each link,

the engineers specify estimated average travel time as a nondecreasing function of traffic volume on the

link.

 The determination of the volume on each link is usually based upon a rule called Wardrop’s

Principle: If a set of commuters wish to travel from A to B, then the commuters will take the shortest

route in the travel time sense. The effect of this is, if there are alternative routes from A to B, commuters

will distribute themselves over these two routes, so either travel times are equal over the two alternates

or none of the A to B commuters use the longer alternate.

 As an example, consider the network in Figure 15.2. Six units of traffic (e.g., in thousands of cars)

want to get from A to B.

480 Chapter 15 Economic Equilibria

 This is a network with congestion, that is, travel time on a link increases as the volume of traffic

increases. The travel time on any link as a function of the traffic volume is given in the following table:

For All Traffic Volumes
Less-Than-or-Equal-To

Link Travel Time in Minutes

AB AC BC BD CD

2 20 52 12 52 20

3 30 53 13 53 30

4 40 54 14 54 40

 The dramatically different functions for the various links might be due to such features as number

of lanes or whether a link has traffic lights or stop signs.

 We are interested in how traffic will distribute itself over the three possible routes ABD, ACD, and

ABCD if each unit behaves individually optimally. That is, we want to find the flows for which a user is

indifferent between the three routes:

Figure 15.2 A Transportation Network

6 U n i t s 6 U n i t s A

B

C

D

 This can be formulated as an LP analogous to the previous equilibrium problems if the travel time

schedules are interpreted as supply curves.

 Define variables as follows. Two-letter variable names (e.g., AB or CD) denote the total flow along

a given arc (e.g., the arc AB or the arc CD). Variables with a numeric suffix denote the incremental flow

along a link. For example, AB2 measures flow up to 2 units on link A→B. AB3 measures the incremental

flow above 2, but less than 3.

Economic Equilibria Chapter 15 481

 The formulation is then:

MIN = 20 * AB2 + 30 * AB3 + 40 * AB4 + 52 * AC2

 + 53 * AC3 + 54 * AC4 + 12 * BC2 + 13 * BC3

 + 14 * BC4 + 52 * BD2 + 53 * BD3 + 54 * BD4

 + 20 * CD2 + 30 * CD3 + 40 * CD4;

 ! Minimize sum of congestion of incremental units;

 - AB2 - AB3 - AB4 + AB = 0;

 !Definition of AB;

- AC2 - AC3 - AC4 + AC = 0;

- BC2 - BC3 - BC4 + BC = 0;

- BD2 - BD3 - BD4 + BD = 0;

- CD2 - CD3 - CD4 + CD = 0;

 AB + AC = 6;

!Flow out of A;

 AB - BC - BD = 0;

!Flow through B;

 AC + BC - CD = 0;

!Flow through C;

 BD + CD = 6;

!Flow into D;

 AB2 <= 2;

 !Definition of the steps in;

 AB3 <= 1;

 !supply cost schedule;

 AB4 <= 1;

 AC2 <= 2;

 AC3 <= 1;

 AC4 <= 1;

 BC2 <= 2;

 BC3 <= 1;

 BC4 <= 1;

 BD2 <= 2;

 BD3 <= 1;

 BD4 <= 1;

 CD2 <= 2;

 CD3 <= 1;

 CD4 <= 1;

 The objective requires a little bit of explanation. It minimizes the incremental congestion seen by

each incremental individual unit as it “selects” its route. It does not take into account the additional

congestion that the incremental unit imposes on units already taking the route. Because additional traffic

typically hurts rather than helps, this suggests this objective will understate true total congestion costs.

Let us see if this is the case.

482 Chapter 15 Economic Equilibria

 The solution is:

Objective Value 452.0000000

Variable Value Reduced Cost

 AB2 2.000000 0.000000

 AB3 1.000000 0.000000

 AB4 1.000000 0.000000

 AC2 2.000000 0.000000

 AC3 0.000000 1.000000

 AC4 0.000000 2.000000

 BC2 2.000000 0.000000

 BC3 0.000000 1.000000

 BC4 0.000000 2.000000

 BD2 2.000000 0.000000

 BD3 0.000000 1.000000

 BD4 0.000000 2.000000

 CD2 2.000000 0.000000

 CD3 1.000000 0.000000

 CD4 1.000000 0.000000

 AB 4.000000 0.000000

 AC 2.000000 0.000000

 BC 2.000000 0.000000

 BD 2.000000 0.000000

 CD 4.000000 0.000000

 Row Slack Dual Prices

 2) 0.000000 40.000000

 3) 0.000000 52.000000

 4) 0.000000 12.000000

 5) 0.000000 52.000000

 6) 0.000000 40.000000

 7) 0.000000 -92.000000

 8) 0.000000 52.000000

 9) 0.000000 40.000000

 10) 0.000000 0.000000

 11) 0.000000 20.000000

 12) 0.000000 10.000000

 13) 0.000000 0.000000

 14) 0.000000 0.000000

 15) 1.000000 0.000000

 16) 1.000000 0.000000

 17) 0.000000 0.000000

 18) 1.000000 0.000000

 19) 1.000000 0.000000

 20) 0.000000 0.000000

 21) 1.000000 0.000000

 22) 1.000000 0.000000

 23) 0.000000 20.000000

 24) 0.000000 10.000000

 25) 0.000000 0.000000

 Notice 2 units of traffic take each of the three possible routes: ABD, ABCD, and ACD. The travel time

on each route is 92 minutes. This agrees with our understanding of an equilibrium (i.e., no user is motivated

to take a different route). The total congestion is 6 92 = 552, which is greater than the 452 value of the

Economic Equilibria Chapter 15 483

objective of the LP. This is, as we suspected, because the objective measures the congestion incurred by

the incremental unit. The objective function value has no immediate practical interpretation for this

formulation. In this case, the objective function is simply a device to cause Wardrop’s principle to hold

when the objective is optimized.

 The solution approach based on formulating the traffic equilibrium problem as a standard LP was

presented mainly for pedagogical reasons. For larger, real-world problems, there are highly specialized

procedures (cf., Florian (1977)).

15.7.1 User Equilibrium vs. Social Optimum
We shall see, for this problem, the solution just displayed does not minimize total travel time. This is a

general result: the so-called user equilibrium, wherein each player in a system behaves optimally, need

not result in a solution as good as a social optimum, which is best overall in some sense. Indeed, the user

equilibrium need not even be Pareto optimal. In order to minimize total travel time, it is useful to prepare

a table of total travel time incurred by users of a link as a function of link volume. This is done in the

following table, where “Total” is the product of link volume and travel time at that volume:

Total and Incremental Travel Time Incurred on a Link
 AB AC BC BD CD

Traffic
Volume

Total

Rate/
Unit

Total

Rate/
Unit

Total

Rate/
Unit

Total

Rate/
Unit

Total

Rate/
Unit

2 40 20 104 52 24 12 104 52 40 20

3 90 50 159 55 39 15 159 55 90 50

4 160 70 216 57 56 17 216 57 160 70

The appropriate formulation is:

MIN = 20 * AB2 + 50 * AB3 + 70 * AB4 + 52 * AC2

 + 55 * AC3 + 57 * AC4 + 12 * BC2 + 15 * BC3

 + 17 * BC4 + 52 * BD2 + 55 * BD3 + 57 * BD4

 + 20 * CD2 + 50 * CD3 + 70 * CD4;

 ! Minimize total congestion;

 - AB2 - AB3 - AB4 + AB = 0 ;

 !Definition of AB;

 - AC2 - AC3 - AC4 + AC = 0 ;

 ! and AC;

 BC2 - BC3 - BC4 + BC = 0 ;

 ! BC;

 - BD2 - BD3 - BD4 + BD = 0 ;

 ! BD;

 - CD2 - CD3 - CD4 + CD = 0 ;

 ! and CD;

 AB + AC = 6;

 ! Flow out of A;

 AB - BC - BD = 0;

 ! Flow through B;

 AC + BC - CD = 0 ;

 ! Flow through C;

 BD + CD = 6 ;

484 Chapter 15 Economic Equilibria

! Flow into D;

 AB2 <= 2;

 ! Steps in supply schedule;

 AB3 <= 1;

 AB4 <= 1;

 AC2 <= 2;

 AC3 <= 1;

 AC4 <= 1;

 BC2 <= 2;

 BC3 <= 1;

 BC4 <= 1;

 BD2 <= 2;

 BD3 <= 1;

 BD4 <= 1;

 CD2 <= 2;

 CD3 <= 1;

 CD4 <= 1;

The solution is:

Optimal solution found at step: 16

Objective value: 498.0000

Variable Value Reduced Cost

 AB2 2.000000 0.0000000

 AB3 1.000000 0.0000000

 AB4 0.0000000 0.0000000

 AC2 2.000000 0.0000000

 AC3 1.000000 0.0000000

 AC4 0.0000000 0.0000000

 BC2 0.0000000 0.0000000

 BC3 0.0000000 27.00000

 BC4 0.0000000 29.00000

 BD2 2.000000 0.0000000

 BD3 1.000000 0.0000000

 BD4 0.0000000 0.0000000

 CD2 2.000000 0.0000000

 CD3 1.000000 0.0000000

 CD4 0.0000000 0.0000000

 AB 3.000000 0.0000000

 AC 3.000000 0.0000000

 BC 0.0000000 1.000000

 BD 3.000000 0.0000000

 CD 3.000000 0.0000000

 Row Slack or Surplus Dual Price

 1 498.0000 1.000000

 2 0.0000000 70.00000

 3 0.0000000 57.00000

 4 0.0000000 -12.00000

 5 0.0000000 57.00000

 6 0.0000000 70.00000

 7 0.0000000 -70.00000

 8 0.0000000 0.0000000

 9 0.0000000 13.00000

Economic Equilibria Chapter 15 485

 10 0.0000000 -57.00000

 11 0.0000000 50.00000

 12 0.0000000 20.00000

 13 1.000000 0.0000000

 14 0.0000000 5.000000

 15 0.0000000 2.000000

 16 1.000000 0.0000000

 17 2.000000 0.0000000

 18 1.000000 0.0000000

 19 1.000000 0.0000000

 20 0.0000000 5.000000

 21 0.0000000 2.000000

 22 1.000000 0.0000000

 23 0.0000000 50.00000

 24 0.0000000 20.00000

 25 1.000000 0.0000000

 An interesting feature is no traffic uses link BC. Three units each take routes ABD and ACD. Even

more interesting is the fact that the travel time on both routes is 83 minutes. This is noticeably less than

the 92 minutes for the previous solution. With this formulation, the objective function measures the total

travel time incurred. Note 498/6 = 83.

 If link BC were removed, this latest solution would also be a user equilibrium because no user would

be motivated to switch routes. The interesting paradox is that, by adding additional capacity, in this case

link BC, to a transportation network, the total delay may actually increase. This is known as Braess’s

Paradox (cf., Braess (1968) or Murchland (1970)). Murchland claims that this paradox was observed in

Stuttgart, Germany when major improvements were made in the road network of the city center. When

a certain cross street was closed, traffic got better.

 To see why the paradox occurs, consider what happens when link BC is added. One of the 3 units

taking route ABD notices that travel time on link BC is 12 and time on link CD is 30. This total of 42

minutes is better than the 53 minutes the unit is suffering in link BD, so the unit replaces link BD in its

route by the sequence BCD. At this point, one of the units taking link AC observes it can reduce its delay

in getting to C by replacing link AC (delay 53 minutes) with the two links AB and BC (delay of 30 + 12

= 42). Unfortunately (and this is the cause of Braess’s paradox), neither of the units that switched took

into account the effect of their actions on the rest of the population. The switches increased the load on

links AB and CD, two links for which increased volume dramatically increases the travel time of

everyone. The general result is, when individuals each maximize their own objective function, the

obvious overall objective function is not necessarily maximized. Braess Paradox is a variation of the

Prisoner’s Dilemma. If the travelers “cooperate” with each other and avoid link BC, then all travelers

would be better off.

15.8 Equilibria in Networks as Optimization Problems
For physical systems, it is frequently the case that the equilibrium state is one that minimizes the energy

loss or the energy level. This is illustrated in the model below for an electrical network. Given a set of

resistances in a network, if we minimize the energy dissipated, then we get the equilibrium flow. In the

network model corresponding to this model, a voltage of 120 volts is applied to node 1. The dual prices

at a node are the voltages at that node:

486 Chapter 15 Economic Equilibria

MODEL:

! Model of voltages and currents in a Wheatstone

 Bridge;

DATA:

 R12 = 10;

 R13 = 15;

 R23 = 8;

 R32 = 8;

 R24 = 20;

 R34 = 16;

ENDDATA

! Minimize the energy dissipated;

 MIN = (I12 * I12 * R12 + I13 * I13 * R13

 + I23 * I23 * R23 + I24 * I24 * R24

 + I32 * I32 * R32 + I34 * I34 * R34)/ 2

 - 120 * I01;

 [NODE1] I01 = I12 + I13;

 [NODE2]I12 + I32 = I23 + I24;

 [NODE3]I13 + I23 = I32 + I34;

 [NODE4]I24 + I34 = I45;

END

Optimal solution found at step: 13

Objective value: -479.5393

Variable Value Reduced Cost

 R12 10.00000 0.0000000

 R13 15.00000 0.0000000

 R23 8.000000 0.0000000

 R32 8.000000 0.0000000

 R24 20.00000 0.0000000

 R34 16.00000 0.0000000

 I12 4.537428 0.0000000

 I13 3.454894 0.0000000

 I23 0.8061420 0.1504372E-05

 I24 3.731286 0.2541348E-05

 I32 0.0000000 6.449135

 I34 4.261036 0.1412317E-05

 I01 7.992322 0.0000000

 I45 7.992322 0.0000000

 Row Slack or Surplus Dual Price

 1 -479.5393 1.000000

 NODE1 0.0000000 120.0000

 NODE2 0.0000000 74.62572

 NODE3 0.0000000 68.17658

 NODE4 0.0000000 0.0000000

Economic Equilibria Chapter 15 487

15.8.1 Equilibrium Network Flows
Another network setting involving nonlinearities is in computing equilibrium flows in a network.

Hansen, Madsen, and H.B. Nielsen (1991) give a good introduction. The laws governing the flow depend

upon the type of material flowing in the network (e.g., water, gas, or electricity). Equilibrium in a

network is described by two sets of values:

a) flow through each arc;

b) pressure at each node (e.g., voltage in an electrical network).

 At an equilibrium, the values in (a) and (b) must satisfy the rules or laws that determine an

equilibrium in a network. In general terms, these laws are:

i. for each node, standard conservation of flow constraints apply to the flow values;

ii. for each arc, the pressure difference between its two endpoint nodes is related to the flow

over the arc and the resistance of the arc.

 In an electrical network, for example, condition (ii) says the voltage difference, V, between two

points connected by a wire with resistance in ohms, R, over which a current of I amperes flows, must

satisfy the constraint: V = I R.

 The constraints (ii) tend to be nonlinear. The following model illustrates by computing the

equilibrium in a simple water distribution network for a city. Pumps apply a specified pressure at two

nodes, G and H. At the other nodes, water is removed at specified rates. We want to determine the

implied flow rate on each arc and the pressure at each node:

MODEL:

! Network equilibrium NETEQL2:based on

 Hansen et al., Mathematical Programming, vol. 52, no.1;

 SETS:

 NODE: DL, DU, PL, PU, P, DELIVER; ! P = Pressure at this node;

 ARC(NODE, NODE): R, FLO; ! FLO = Flow on this arc;

 ENDSETS

 DATA:

 NODE = A, B, C, D, E, F, G, H;

 ! Lower & upper limits on demand at each node;

 DL = 1 2 4 6 8 7 -9999 -9999;

 DU = 1 2 4 6 8 7 9999 9999;

 ! Lower & upper limits on pressure at each node;

 PL = 0 0 0 0 0 0 240 240;

 PU = 9999 9999 9999 9999 9999 9999 240 240;

 ! The arcs available and their resistance parameter;

 ARC = B A, C A, C B, D C, E D, F D, G D, F E, H E, G F, H F;

 R = 1, 25, 1, 3, 18, 45, 1, 12, 1, 30, 1;

PPAM = 1; ! Compressibility parameter;

!For incompressible fluids and electricity: PPAM = 1, for gases: PPAM

= 2;

FPAM = 1.852; !Resistance due to flow parameter;

! electrical networks: FPAM = 1;

! other fluids: 1.8 <= FPAM <= 2;

! For optimization networks: FPAM=0, for arcs with flow>=0;

ENDDATA

488 Chapter 15 Economic Equilibria

 @FOR(NODE(K): ! For each node K;

 ! Bound the pressure;

 @BND(PL(K), P(K), PU(K));

 ! Flow in = amount delivered + flow out;

 @SUM(ARC(I, K): FLO(I, K)) = DELIVER(K) +

 @SUM(ARC(K, J): FLO(K, J));

 ! Bound on amount delivered at each node;

 @BND(DL(K), DELIVER(K), DU(K));

);

 @FOR(ARC(I, J):

 ! Flow can go either way;

 @FREE(FLO(I,J));

! Relate pressures at 2 ends to flow over arc;

 P(I)^ PPAM - P(J)^ PPAM =

 R(I,J)* @SIGN(FLO(I,J))* @ABS(FLO(I,J))^ FPAM;);

END

 Verify the following solution satisfies conservation of flow at each node and the pressure drop over

each arc satisfies the resistance equations of the model:

Feasible solution found at step: 22

 Variable Value

 PPAM 1.000000

 FPAM 1.852000

 P(A) 42.29544

 P(B) 42.61468

 P(C) 48.23412

 P(D) 158.4497

 P(E) 188.0738

 P(F) 197.3609

 P(G) 240.0000

 P(H) 240.0000

FLO(B, A) 0.5398153

FLO(C, A) 0.4601847

FLO(C, B) 2.539815

FLO(D, C) 7.000000

FLO(E, D) 1.308675

FLO(F, D) 0.9245077

FLO(F, E) 0.8707683

FLO(G, D) 10.76682

FLO(G, F) 1.209051

FLO(H, E) 8.437907

FLO(H, F) 7.586225

Economic Equilibria Chapter 15 489

15.9 Problems
1. Producer B in the two-producer, two-consumer market at the beginning of the chapter is actually a

foreign producer. The government of the importing country is contemplating putting a $0.60 per

unit tax on units from Producer B.

a) How is the formulation changed?

b) How is the equilibrium solution changed?

2. An organization is interested in selling five parcels of land, denoted A, B, C, D, and E, which it

owns. It is willing to accept offers for subsets of the five parcels. Three buyers, x, y, and z are

interested in making offers. In the privacy of their respective offices, each buyer has identified the

maximum price he would be willing to pay for various combinations. This information is

summarized below:

Buyer

Parcel
Combination

Maximum Price

x A, B, D 95

x C, D, E 80

y B, E 60

y A, D 82

z B, D, E 90

z C, E 71

 Each buyer wants to buy at most one parcel combination. Suppose the organization is a

government and would like to maximize social welfare. What is a possible formulation based on an

LP for holding this auction?

3. Commuters wish to travel from points A, B, and C to point D in the network shown in Figure 15.3:

Figure 15.3 A Travel Network

D

B

C

A

490 Chapter 15 Economic Equilibria

 Three units wish to travel from A to D, two units from B to D, and one from C to D. The travel

times on the five links as a function of volume are:

For All Volumes Link Travel Time in Minutes

Less-Than-or-Equal-To: AC AD BC BD CD

2 21 50 17 40 12

3 31 51 27 41 13

4 41 52 37 42 14

a) Display the LP formulation corresponding to a Wardrop’s Principle user equilibrium.

b) Display the LP formulation useful for the total travel time minimizing solution.

c) What are the solutions to (a) and (b)?

4. In the sale of real estate and in the sale of rights to portions of the radio frequency spectrum, the

value of one item to a buyer may depend upon which other items the buyer is able to buy. A method

called a combinatorial auction is sometimes used in such cases. In such an auction, a bidder is

allowed to submit a bid on a combination of items. The seller is then faced with the decision of

which combination of these “combination” bids to select. Consider the following situation. The

Duxbury Ranch is being sold for potential urban development. The ranch has been divided into four

parcels, A, B, C, and D for sale. Parcels A and B both face major roads. Parcel C is a corner parcel

at the intersection of the two roads. D is an interior parcel with a narrow access to one of the roads.

The following bids have been received for various combinations of parcels:

Bid No. Amount Parcels Desired

1 $380,000 A, C

2 $350,000 A, D

3 $800,000 A, B, C, D

4 $140,000 B

5 $120,000 B, C

6 $105,000 B, D

7 $210,000 C

8 $390,000 A, B

9 $205,000 D

10 $160,000 A

 Which combination of bids should be selected to maximize revenues, subject to not selling any

parcel more than once?

Economic Equilibria Chapter 15 491

5. Perhaps the greatest German writer ever was Johann Wolfgang von Goethe. While trying to sell one

of his manuscripts to a publisher, Vieweg, he wrote the following note to the publisher: "Concerning

the royalty, we will proceed as follows: I will hand over to Mr. Counsel Bottiger a sealed note,

which contains my demand, and I wait for what Mr. Vieweg will suggest to offer for my work. If

his offer is lower than my demand, then I take my note back, unopened, and the negotiation is

broken. If, however, his offer is higher, then I will not ask for more than what is written in the note

to be opened by Mr. Bottiger."(see Moldovanu and Tietzel (1998)). If you were the publisher, how

would you decide how much to bid?

493

16

Game Theory and Cost
Allocation

16.1 Introduction
In most decision-making situations, our profits (and losses) are determined not only by our decisions,

but by the decisions taken by outside forces (e.g., our competitors, the weather, etc.). A useful

classification is whether the outside force is indifferent or mischievous. We, for example, classify the

weather as indifferent because its decision is indifferent to our actions, in spite of how we might feel

during a rainstorm after washing the car and forgetting the umbrella. A competitor, however, generally

takes into account the likelihood of our taking various decisions and as a result tends to make decisions

that are mischievous relative to our welfare. In this chapter, we analyze situations involving a

mischievous outside force. The standard terminology applied to the problem to be considered is game

theory. Situations in which these problems might arise are in the choice of a marketing or price strategy,

international affairs, military combat, and many negotiation situations. For example, the probability a

competitor executes an oil embargo against us probably depends upon whether we have elected a

strategy of building up a strategic petroleum reserve. Frequently, the essential part of the problem is

deciding how two or more cooperating parties “split the pie”. That is, allocate costs or profits of a joint

project. For a thorough introduction to game theory, see Fudenberg and Tirole (1993).

16.2 Two-Person Games
In so-called two-person game theory, the key feature is each of the two players must make a crucial

decision ignorant of the other player’s decision. Only after both players have committed to their

respective decisions does each player learn of the other player’s decision and each player receives a

payoff that depends solely on the two decisions. Two-person game theory is further classified according

to whether the payoffs are constant sum or variable sum. In a constant sum game, the total payoff

summed over both players is constant. Usually this constant is assumed to be zero, so one player’s gain

is exactly the other player’s loss. The following example illustrates a constant sum game.

494 Chapter 16 Game Theory and Cost Allocation

 A game is to be played between two players called Blue and Gold. It is a single simultaneous move

game. Each player must make her single move in ignorance of the other player’s move. Both moves are

then revealed and then one player pays the other an amount specified by the payoff table below:

Payoff from Blue to Gold
 Blue’s Move
 a b

 a 4 −6

Gold’s Move b −5 8

 c 3 −4

 Blue must choose one of two moves, (a) or (b), while Gold has a choice among three moves, (a),

(b), or (c). For example, if Gold chooses move (b) and Blue chooses move (a), then Gold pays Blue 5

million dollars. If Gold chooses (c) and Blue chooses (a), then Blue pays Gold 3 million dollars.

16.2.1 The Minimax Strategy
This game does not have an obvious strategy for either player. If Gold is tempted to make move (b) in

the hopes of winning the 8 million dollar prize, then Blue will be equally tempted to make move (a), so

as to win 5 million from Gold. For this example, it is clear each player will want to consider a random

strategy. Any player who follows a pure strategy of always making the same move is easily beaten.

Therefore, define:

BMi = probability Blue makes move i, i = a or b,

GMi = probability Gold makes move i, i = a, b, or c.

How should Blue choose the probabilities BMi? Blue might observe that:

If Gold chooses move (a), my expected loss is:

 4 BMA − 6 BMB.

If Gold chooses move (b), my expected loss is:

−5 BMA + 8 BMB.

If Gold chooses move (c), my expected loss is:

 3 BMA − 4 BMB.

 So, there are three possible expected losses depending upon which decision is made by Gold. If

Blue is conservative, a reasonable criterion is to choose the BMi, so as to minimize the maximum

expected loss. This philosophy is called the minimax strategy. Stated another way, Blue wants to choose

the probabilities BMi, so, no matter what Gold does, Blue’s maximum expected loss is minimized. If LB

is the maximum expected loss to Blue, the problem can be stated as the LP:

MIN = LB;

! Probabilities must sum to 1;

 BMA + BMB = 1;

! Expected loss if Gold chooses (a);

 -LB + 4 * BMA - 6 * BMB <= 0;

! Expected loss if Gold chooses (b);

 -LB - 5 * BMA + 8 * BMB <= 0;

! Expected loss if Gold chooses (c);

 -LB + 3 * BMA - 4 * BMB <= 0;

Game Theory and Cost Allocation Chapter 16 495

The solution is:

Optimal solution found at step: 2

Objective value: 0.2000000

Variable Value Reduced Cost

 LB 0.2000000 0.0000000

 BMA 0.6000000 0.0000000

 BMB 0.4000000 0.0000000

 Row Slack or Surplus Dual Price

 1 0.2000000 1.000000

 2 0.0000000 -0.2000000

 3 0.2000000 0.0000000

 4 0.0000000 0.3500000

 5 0.0000000 0.6500000

 The interpretation is, if Blue chooses move (a) with probability 0.6 and move (b) with probability

0.4, then Blue’s expected loss is never greater than 0.2, regardless of Gold’s move.

 If Gold follows a similar argument, but phrases the argument in terms of maximizing the minimum

expected profit, PG, instead of minimizing maximum loss, then Gold’s problem is:

MAX = PG;

! Probabilities sum to 1;

 GMA + GMB + GMC = 1;

! Expected profit if Blue chooses (a);

-PG + 4 * GMA - 5 * GMB + 3 * GMC >= 0;

! Expected profit if Blue chooses (b);

-PG - 6 * GMA + 8 * GMB - 4 * GMC >= 0;

The solution to Gold’s problem is:

Optimal solution found at step: 1

Objective value: 0.2000000

Variable Value Reduced Cost

 PG 0.2000000 0.0000000

 GMA 0.0000000 0.1999999

 GMB 0.3500000 0.0000000

 GMC 0.6500000 0.0000000

 Row Slack or Surplus Dual Price

 1 0.2000000 1.000000

 2 0.0000000 0.2000000

 3 0.0000000 -0.6000000

 4 0.0000000 -0.4000000

 The interpretation is, if Gold chooses move (b) with probability 0.35, move (c) with probability 0.65

and never move (a), then Gold’s expected profit is never less than 0.2. Notice Gold’s lowest expected

profit equals Blue’s highest expected loss. From Blue’s point of view the expected transfer to Gold is at

least 0.2. The only possible expected transfer is then 0.2. This means if both players follow the random

strategies just derived, then on every play of the game there is an expected transfer of 0.2 units from

Blue to Gold. The game is biased in Gold’s favor at the rate of 0.2 million dollars per play. The strategy

of randomly choosing among alternatives to keep the opponent guessing, is sometimes also known as a

mixed strategy.

 If you look closely at the solutions to Blue’s LP and to Gold’s LP, you will note a surprising

similarity. The dual prices of Blue’s LP equal the probabilities in Gold’s LP and the negatives of Gold’s

496 Chapter 16 Game Theory and Cost Allocation

dual prices equal the probabilities of Blue’s LP. Looking more closely, you can note each LP is really

the dual of the other one. This is always true for a two-person game of the type just considered and

mathematicians have long been excited by this fact.

16.3 Two-Person Non-Constant Sum Games
There are many situations where the welfare, utility, or profit of one person depends not only on his

decisions, but also on the decisions of others. A two-person game is a special case of the above in which:

1. there are exactly two players/decision makers,

2. each must make one decision,

3. in ignorance of the other’s decision, and

4. the loss incurred by each is a function of both decisions.

 A two-person constant sum game (frequently more narrowly called a zero sum game) is the special

case of the above where:

(4a) the losses to both are in the same commodity (e.g., dollars) and

(4b) the total loss is a constant independent of players’ decisions.

 Thus, in a constant sum game the sole effect of the decisions is to determine how a “constant sized

pie” is allocated. Ordinary linear programming can be used to solve two-person constant sum games.

 When (1), (2) and (3) apply, but (4b) does not, then we have a two-person non-constant sum game.

Ordinary linear programming cannot be used to solve these games. However, closely related algorithms,

known as linear complementarity algorithms, are commonly applied. Sometimes a two-person

non-constant sum game is also called a bimatrix game.

 As an example, consider two firms, each of which is about to introduce an improved version of an

already popular consumer product. The versions are very similar, so one firm’s profit is very much

affected by its own advertising decision as well as the decision of its competitor. The major decision for

each firm is presumed to be simply the level of advertising. Suppose the losses (in millions of dollars)

as a function of decision are given by Figure 16.1. The example illustrates that each player need not have

exactly the same kinds of alternatives.

Game Theory and Cost Allocation Chapter 16 497

Figure 16.1 Two Person, Non-constant Sum Game

Firm B

Firm A

No

Advertise Medium High

Advertise Advertise

No

Advertise

Advertise

-4

-4

-1

-5

-2

-3

1

-5

-1

-2

0

-1

Negative losses correspond to profits.

16.3.1 Prisoner’s Dilemma
This cost matrix has the so-called prisoner’s dilemma cost structure. This name arises from a setting in

which two accomplices in crime find themselves in separate jail cells. If neither prisoner cooperates with

the authorities (thus the two cooperate), both will receive a medium punishment. If one of them provides

evidence against the other, the other will get severe punishment while the one who provides evidence

will get light punishment, if the other does not provide evidence against the first. If each provides

evidence against the other, they both receive severe punishment. Clearly, the best thing for the two as a

group is for the two to cooperate with each other. However, individually there is a strong temptation to

defect.

 The prisoner's dilemma is common in practice, especially in advertising. The only way of getting to

Mackinac Island in northern Michigan is via ferry from Mackinaw City. Three different companies,

Sheplers, the Arnold Line, and the Star Line operate such ferries. As you approach Mackinaw City by

car, you may notice up to a mile before the ferry landing, that each company has one or more small

roadside stands offering to sell ferry tickets for their line. Frequent users of the ferry service proceed

directly to the well-marked dock area and buy a ticket after parking the car and just before boarding the

ferry (no cars are allowed on Mackinac Island). No reserved seats are sold, so there is no advantage to

buying the tickets in advance at the stands. First time visitors, however, are tempted to buy a ticket at a

company specific stand because the signs suggest that this is the safe thing to do. The "socially" most

efficient arrangement would be to have no advanced ticket booths. If a company does not have a stand,

however, while its competitors do, then this company will lose a significant fraction of the first time

visitor market.

 The same situation exists with the two firms in our little numerical example. For example, if A does

not advertise, but B does, then A makes 1 million and B makes 5 million of profit. Total profit would be

498 Chapter 16 Game Theory and Cost Allocation

maximized if neither advertised. However, if either knew the other would not advertise, then the one

who thought he had such clairvoyance would have a temptation to advertise.

 Later, it will be useful to have a loss table with all entries strictly positive. The relative attractiveness

of an alternative is not affected if the same constant is added to all entries. Figure 16.2 was obtained by

adding +6 to every entry in Figure 16.1:

Figure 16.2 Two Person, Non-constant Sum Game

Firm B

Firm A

No

Advertise Medium High

Advertise Advertise

No

Advertise

Advertise

2

2

5

1

4

3

7

1

5

6

4

5

We will henceforth work with the data in Figure 16.2.

16.3.2 Choosing a Strategy
Our example illustrates that we might wish our own choice to be:

i. somewhat unpredictable by our competitor, and

ii. robust in the sense that, regardless of how unpredictable our competitor is, our expected

profit is high.

 Thus, we are lead (again) to the idea of a random or mixed strategy. By making our decision random

(e.g., by flipping a coin) we tend to satisfy (i). By biasing the coin appropriately, we tend to satisfy (ii).

 For our example, define a1, a2, a3 as the probability A chooses the alternative “No advertise”,

“Advertise Medium”, and “Advertise High”, respectively. Similarly, b1 and b2 are the probabilities that

B applies to alternatives “No Advertise” and “Advertise”, respectively. How should firm A choose a1,

a2, and a3? How should firm B choose b1 and b2?

 For a bimatrix game, it is difficult to define a solution that is simultaneously optimum for both. We

can, however, define an equilibrium stable set of strategies. A stable solution has the feature that, given

B’s choice for b1 and b2, A is not motivated to change his probabilities a1, a2, and a3. Likewise, given a1,

a2, and a3, B is not motivated to change b1 and b2. Such a solution, where no player is motivated to

unilaterally change his or her strategy, is sometimes also known as a Nash equilibrium. There may be

bimatrix games with several stable solutions.

Game Theory and Cost Allocation Chapter 16 499

 What can we say beforehand about a strategy of A’s that is stable? Some of the ai’s may be zero

while for others we may have ai > 0. An important observation which is not immediately obvious is the

following: the expected loss to A of choosing alternative i is the same over all i for which ai > 0. If this

were not true, then A could reduce his overall expected loss by increasing the probability associated with

the lower loss alternative. Denote the expected loss to A by vA. Also, the fact that ai = 0 must imply the

expected loss from choosing i is > vA. These observations imply that, with regard to A’s behavior, we

must have:

2b1 + 5b2 vA (with equality if a1 > 0),

3b1 + 4b2 vA (with equality if a2 > 0),

 b1 + 5b2 vA (with equality if a3 > 0).

Symmetric arguments for B imply:

2a1 + 4a2 + 7a3 vB (with equality if b1 > 0),

 a1 + 5a2 + 6a3 vB (with equality if b2 > 0).

We also have the nonnegativity constraints:

ai 0 and bi 0, for all alternatives i.

Because the ai and bi are probabilities, we wish to add the constraints a1 + a2 + a3 = 1 and b1 + b2 = 1.

 If we explicitly add slack (or surplus if you wish) variables, we can write:

2b1 + 5b2 - slka1 = vA

3b1 + 4b2 - slka2 = vA

 b1 + 5b2 - slka3 = vA

2a1 + 4a2 + 7a3 − slkb1 = vB

a1 + 5a2 + 6a3 − slkb2 = vB

a1 + a2 + a3 = 1

b1 + b2 = 1

ai 0, bi 0, slkai 0, and slkbi 0, for all alternatives i.

slka1* a1 = 0

slka2* a2 = 0

slka3* a3 = 0

slkb1* b1 = 0

slkb2* b2 = 0

 The last five constraints are known as the complementarity conditions. The entire model is known

as a linear complementarity problem.

500 Chapter 16 Game Theory and Cost Allocation

 Rather than use a specialized linear complementarity algorithm, we will simply use the integer

programming capabilities for LINGO to model the problem as follows:

MODEL: ! Two person nonconstant sum game.(BIMATRX);

 SETS:

 OPTA: PA, SLKA, NOTUA, COSA;

 OPTB: PB, SLKB, NOTUB, COSB;

 BXA(OPTB, OPTA): C2A, C2B;

 ENDSETS

 DATA:

 OPTB = BNAD BYAD;

 OPTA = ANAD AMAD AHAD;

 C2A = 2 3 1 ! C2A(I, J) = cost to A if B;

 5 4 5; ! chooses row I, A chooses col J;

 C2B = 2 4 7 ! C2B(I, J) = cost to B if B;

 1 5 6; ! chooses row I, A chooses col J;

 ENDDATA

!---;

! Conditions for A, for each option J;

 @FOR(OPTA(J):

! Set CBSTA= cost of strategy J, if J is used by A;

 CBSTA = COSA(J) - SLKA(J);

 COSA(J) = @SUM(OPTB(I): C2A(I, J) * PB(I));

! Force SLKA(J) = 0 if strategy J is used;

 SLKA(J) <= NOTUA(J) * @MAX(OPTB(I):

 C2A(I, J));

! NOTUA(J) = 1 if strategy J is not used;

 PA(J) <= 1 - NOTUA(J);

! Either strategy J is used or it is not used;

 @BIN(NOTUA(J));

);

! A must make a decision;

 @SUM(OPTA(J): PA(J)) = 1;

! Conditions for B;

 @FOR(OPTB(I):

! Set CBSTB = cost of strategy I, if I is used by

 B;

 CBSTB = COSB(I) - SLKB(I);

 COSB(I) = @SUM(OPTA(J): C2B(I, J) * PA(J));

! Force SLKB(I) = 0 if strategy I is used;

 SLKB(I) <= NOTUB(I) * @MAX(OPTA(J):

 C2B(I, J));

! NOTUB(I) = 1 if strategy I is not used;

 PB(I) <= 1 - NOTUB(I);

! Either strategy I is used or it is not used;

 @BIN(NOTUB(I));

);

! B must make a decision;

 @SUM(OPTB(I): PB(I)) = 1;

 END

Game Theory and Cost Allocation Chapter 16 501

A solution is:

 Variable Value

 CBSTA 3.666667

 CBSTB 5.500000

 PA(AMAD) 0.5000000

 PA(AHAD) 0.5000000

 SLKA(ANAD) 0.3333333

NOTUA(ANAD) 1.000000

 COSA(ANAD) 4.000000

 COSA(AMAD) 3.666667

 COSA(AHAD) 3.666667

 PB(BNAD) 0.3333333

 PB(BYAD) 0.6666667

 COSB(BNAD) 5.500000

 COSB(BYAD) 5.500000

 The solution indicates that firm A should not use option 1(No ads) and should randomly choose with

equal probability between options 2 and 3. Firm B should choose its option 2(Advertise) twice as

frequently as it chooses its option 1(Do not advertise).

 The objective function value, reduced costs and dual prices can be disregarded. Using our original

loss table, we can calculate the following:

 Weighted Contribution
Situation To Total Loss of

A B Probability A B

No Ads No Ads 0 1/3 0 0

No Ads Ads 0 2/3 0 0

Advertise Medium No Ads 1/2 1/3 (1/6) (−3) (1/6) (−2)

Advertise Medium Ads 1/2 2/3 (1/3) (−2) (1/3) (−1)

Advertise High No Ads 1/2 1/3 (1/6) (−5) (1/6) (1)

 Advertise High Ads 1/2 2/3 (1/3) (−1) (1/3) (0)

 −2.3333 −0.5

 Thus, following the randomized strategy suggested, A would have an expected profit of 2.33

million; whereas, B would have an expected profit of 0.5 million. Contrast this with the fact that, if A

and B cooperated, they could each have an expected profit of 4 million.

16.3.3 Bimatrix Games with Several Solutions
When a nonconstant sum game has multiple or alternative stable solutions, life gets more complicated.

The essential observation is we must look outside our narrow definition of “stable solution” to decide

which of the stable solutions, if any, would be selected in reality.

502 Chapter 16 Game Theory and Cost Allocation

 Consider the following nonconstant sum two-person game:

Figure 16.3 Bimatrix Games

As before, the numbers represent losses.

 First, observe the one solution that is stable according to our definition: (I) Firm A always

chooses option 1 and Firm B always chooses option 2. Firm A is not motivated to switch to 2 because

its losses would increase to 100 from 10. Similarly, B would not switch to 1 from 2 because its

losses would increase to 200 from 160. The game is symmetric in the players, so similar arguments

apply to the solution (II): B always chooses 1 and A always chooses 2.

 Which solution would result in reality? It probably depends upon such things as the relative

wealth of the two firms. Suppose:

i. A is the wealthier firm,

ii. the game is repeated week after week, and

iii. currently the firms are using solution II.

 After some very elementary analysis, A concludes it much prefers solution I. To move things

in this direction, A switches to option 1. Now, it becomes what applied mathematicians call a game

of “chicken”. Both players are taking punishment at the rate of 200 per week. Either player could

improve its lot by 200 − 160 = 40 by unilaterally switching to its option 2. However, its lot would

be improved a lot more (i.e., 200 − 10 = 190) if its opponent unilaterally switched. At this point, a

rational B would probably take a glance at A’s balance sheet and decide B switching to option 2 is

not such a bad decision. When a game theory problem has multiple solutions, any given player

would like to choose that stable solution which is best for it. If the player has the wherewithal to

force such a solution (e.g., because of its financial size), then this solution is sometimes called a

Stackelberg equilibrium.

 If it is not clear which firm is wealthier, then the two firms may decide a cooperative solution

is best (e.g., alternate between solutions I and II in alternate weeks). At this point, however, federal

antitrust authorities might express a keen interest in this bimatrix game.

Firm A

1

1
200

200

10

160

2

2

160

10

100

100

Firm B

Game Theory and Cost Allocation Chapter 16 503

 We conclude a “stable” solution is stable only in a local sense. When there are multiple stable

solutions, we should really look at all of them and take into account other considerations in addition

to the loss matrix.

 The above two-player non-cooperative game analysis involved only two players. It can be

extended to three or more players, however, the number of variables and constraints increases

multiplicatively. For three players you will need three cubes rather than two matrices in order to

describe the payoffs to a given player X, given that X chose alternative i, and player Y chose

alternative j, and player Z chose alternative k.

16.4 Nonconstant-Sum Cooperative Games with > 2 Players
The most unrealistic assumption underlying classical two-person constant-sum game theory is the sum

of the payoffs to all players must sum to zero (actually a constant, without loss of generality). In reality,

the total benefits are almost never constant. Usually, total benefits increase if the players cooperate, so

these situations are sometimes called cooperative games. In these nonconstant-sum games, the difficulty

then becomes one of deciding how these additional benefits due to cooperation should be distributed

among the players.

 There are two styles for analyzing nonconstant sum games. If we restrict ourselves to two persons,

then so-called bimatrix game theory extends the methods for two-person constant sum games to

nonconstant sum games. If there are three or more players, then n-person game theory can be used in

selecting a decision strategy. The following example illustrates the essential concepts of n-person game

theory.

 Three property owners, A, B, and C, own adjacent lakefront property on a large lake. A piece of

property on a large lake has higher value if it is protected from wave action by a seawall. A, B, and C

are each considering building a seawall on their properties. A seawall is cheaper to build on a given

piece of property if either or both of the neighbors have seawalls. For our example, A and C already have

expensive buildings on their properties. B does not have buildings and separates A from C (i.e., B is

between A and C). The net benefits of a seawall for the three owners are summarized below:

Owners Who Cooperate, Net Benefit to
i.e., Build While Others Do Not Cooperating Owners

A alone 1.2

B alone 0

C alone 1

A and B 4

A and C 3

B and C 4

A, B, and C 7

 Obviously, all three owners should cooperate and build a unified seawall because then their total

benefits will be maximized. It appears B should be compensated in some manner because he has no

motivation to build a seawall by himself. Linear programming can provide some help in selecting an

acceptable allocation of benefits.

504 Chapter 16 Game Theory and Cost Allocation

 Denote by vA, vB, and vC the net benefits, which are to be allocated to owners A, B, and C. No owner

or set of owners will accept an allocation that is less than that, which they would enjoy if they acted

alone. Thus, we can conclude:

vA 1.2

vB 0

vC 1

vA + vB 4

vA + vC 3

vB + vC 4

vA + vB + vC 7

 That is, any allocation satisfying the above constraints should be self-enforcing. No owner would

be motivated to not cooperate. He cannot do better by himself. The above constraints describe what is

called the “core” of the game. Any solution (e.g., vA = 3, vB = 1, vC = 3) satisfying these constraints is

said to be in the core.

 Various objective functions might be appended to this set of constraints to give an LP. The objective

could take into account secondary considerations. For example, we might choose to maximize the

minimum benefit. The LP in this case is:

Maximize z

subject to z vA; z vB; z vC

vA 1.2

vC 1

vA + vB 4

vA + vC 3

vA + vB + vC 7

A solution is vA = vB = vC = 2.3333.

 Note the core can be empty. That is, there is no feasible solution. This would be true, for example,

if the value of the coalition A, B, C was 5.4 rather than 7. This situation is rather interesting. Total

benefits are maximized by everyone cooperating. However, total cooperation is inherently unstable

when benefits are 5.4. There will always be a pair of players who find it advantageous to form a

subcoalition and improve their benefits (at the considerable expense of the player left out). As an

example, suppose the allocations to A, B, and C under full cooperation are 1.2, 2.1, and 2.1, respectively.

At this point, A would suggest to B the two of them exclude C and cooperate between the two of them.

A would suggest to B the allocation of 1.8, 2.2, and 1. This is consistent with the fact that A and B can

achieve a total of 4 when cooperating. At this point, C might suggest to A that the two of them cooperate

and thereby select an allocation of 1.9, 0, 1.1. This is inconsistent with the fact that A and C can achieve

a total of 3 when cooperating. At this point, B suggests to C etc. Thus, when the core is empty, it may

be everyone agrees that full cooperation can be better for everyone. There nevertheless must be an

enforcement mechanism to prevent “greedy” members from pulling out of the coalition.

Game Theory and Cost Allocation Chapter 16 505

16.4.1 Shapley Value
Another popular allocation method for cooperative games is the Shapley Value. The rule for the Shapley

Value allocation is that each player should be awarded his average marginal contribution to the coalition

if one considers all possible sequences for forming the full coalition. The following table illustrates for

the previous example:

 Marginal value of player

Sequence A B C

 A B C 1.2 2.8 3

 A C B 1.2 4 1.8

 B A C 4 0 3

 B C A 3 0 4

 C A B 2 4 1

 C B A 3 3 1

 Total: 14.4 13.8 13.8

 Average: 2.4 2.3 2.3

Thus, the Shapley value allocates slightly more, 2.4, to Player A in our example. For this example, as

with most typical cooperative games, the Shapley Value allocation is in the core if the core is non-empty.

16.5 The Stable Marriage/Assignment Problem
The stable marriage problem is the multi-person interpretation of the assignment problem. Although the

major application of the stable marriage model is in college admissions and large scale labor markets, the

problem historically has been explained as the “marriage” problem of assigning each of n men to exactly

one of n women, and vice versa. Instead of there being a single objective function, each man provides a

preference ranking of each of the women, and each woman provides a ranking of each of the men. An

assignment is said to be stable if for every man i, and woman j, either: a) man i prefers the woman he

currently is assigned to over woman j, or b) woman j prefers the man she is currently assigned to over man

i. Otherwise, man i and woman j would be motivated to abandon their current partners and “elope”. The

stable marriage assignment method has been used for assigning medical residents and interns to hospitals in

the U.S. since 1952. Each year, thousands of prospective interns rank each of the hospitals in which they

are interested, and each hospital ranks each of the interns in which they are interested. Then a neutral agency,

the National Resident Matching Program (NRMP) assigns interns to hospitals using methods described

below. A similar system is used in Canada and Scotland. Norway and Singapore use a similar approach to

assign students to schools and universities. Roth (1984) gives a very interesting history of how the U.S.

medical profession came to use the stable marriage assignment method embodied in NRMP. Roth, Sonmez,

and Unver(2005) describe the establishment of a system, based on the marriage assignment method, for

matching kidney donors with people needing kidneys.

 In any multi-player problem, the following questions should always be asked: a) Is there always a stable

assignment or more generally an equilibrium solution? b) Can there be multiple stable solutions?

c) If yes, what criterion should we use for choosing among the multiple solutions? d) Is the solution Pareto

optimal, i.e., undominated? e) Is our method for solving the problem, in particular how we answer (c),

incentive compatible? That is, does the method motivate the players to provide accurate input information,

e.g., rankings, for our method?

 We illustrate ideas with the following 3-man, 3-woman example from Gale and Shapley(1962). A 1

means most attractive. A 3 means least attractive.

506 Chapter 16 Game Theory and Cost Allocation

 MAN = ADAM BOB CHUCK;

 WOMAN= ALICE BARB CARMEN;

 ! Men(row) preference for women(col);

 MPREF =

 1 2 3 !ADAM;

 3 1 2 !BOB;

 2 3 1; !CHUCK;

 ! Women(col) preference for men(row);

 WPREF =

 3 2 1 !ADAM;

 1 3 2 !BOB;

 2 1 3;!CHUCK;

! Thus, Adam's first choice is Alice.

 Alice's first choice is Bob;

 We shall see from this example that the answer to question (b) is that, yes, there can be multiple stable

solutions. In this example, giving each man his first choice (and incidentally, each woman her third choice)

is feasible, giving the assignment: Adam with Alice, Bob with Barb, and Chuck with Carmen. It is stable

because no man is motivated to switch. A second stable solution is possible by giving each woman her first

choice (and incidentally, each man his third choice), namely: Adam with Carmen, Bob with Alice, and

Chuck with Barb. It is stable because no woman is motivated to switch. A third, less obvious stable solution

is to give everyone their second choice: Adam with Barb, Bob with Carmen, and Chuck with Alice. All

other assignments are unstable.

How to solve the problem?

Gale and Shapley (1962) show that an intuitive iterative courtship type of method can be made into a rigorous

algorithm for finding a stable assignment. The algorithm proceeds as follows:

1) Each man proposes, or is tentatively assigned, to his first choice woman.

2) If every woman has exactly one man assigned to her, then stop. We have a stable assignment.

3) Else, each woman who has two or more men assigned to her rejects all but one of the men assigned

to her, tentatively keeping the one most attractive to her of the men that just proposed to her.

4) Each man just rejected in (3) proposes/is assigned to the next most attractive woman on his list.

5) Go to (2).

 This version of the algorithm will produce the first solution mentioned above in which all men get there

first choice. Obviously, there is the female version of this algorithm in which the roles of men and woman

or exchanged. That version gives the second solution above. Gale and Shapley(1962) make the following

observations: i) Regarding our question (a) above, this algorithm will always find a stable solution; ii) If

both the male and the female versions of the algorithm give the same assignment, then that is the unique

stable solution; iii) When men propose first, the solution is optimal for the men in the sense that there is no

other stable solution in which any man does better. Similarly, the version in which women propose first,

results in a solution that is optimal for women.

 The two Gale/Shapley algorithms can only give a solution in which men are treated very well, or a

solution in which women are treated very well. What about a solution in which everyone is treated

“moderately well”? Vande Vate(1989) showed that it is possible to formulate the stable marriage assignment

problem as a linear program. The key observation is: if we consider any man i and woman j in a stable

solution, then one of the following must hold: a) i and j are assigned to each other, or b) man i is assigned

Game Theory and Cost Allocation Chapter 16 507

to some other woman k whom he prefers to j, or c) woman j is assigned to some man k whom she prefers

to i. If none of (a), (b), and (c) hold, then i and j both prefer each other to their current mates and they are

tempted to elope.

Define the parameters and sets:

 mprefij = the preference position of woman j for man i,

 e.g., if man 2’s first choice is woman 3, then mpref23 = 1,

 wprefij = the preference position of man i for woman j,

 e.g., if woman 3’s second choice is man 1, then wpref13 = 2,

 SM(i,j) = the set of women that man i prefers to woman j,

 = { k : mprefik < mprefij },

 SW(i,j) = the set of men that woman j prefers to man i,

 = { k : mprefkj < mprefij },

Define the variables:

 yij = 1 if man i and woman j are assigned to each other.

The “no eloping” stability conditions (a), (b), and (c) above correspond to the linear constraints:

 For all men i and women j:

 yij + k in SM(i,j) yik + k in SW(k,j) ykj.

 A remaining question is, what objective function should we use? We already saw a solution above in

which men were treated well but women were treated poorly, and a solution in which women were treated

well but men were treated poorly. How about a solution in which minimizes the worst that anyone gets

treated? The following LINGO model illustrates.

! Stable Marriage Assignment(stable_marriage3);

SETS:

 MAN: AM;

 WOMAN: AW;

 MXW(MAN,WOMAN): MPREF, WPREF, Y, RM, RW;

ENDSETS

DATA:

! Example from Gale and Shapley(1962);

 MAN = ADAM BOB CHUCK;

 WOMAN= ALICE BARB CARMEN;

 ! Men(row) preference for women(col);

 MPREF =

 1 2 3 !ADAM;

 3 1 2 !BOB;

 2 3 1;!CHUCK;

 ! Women(col) preference for men(row);

 WPREF =

 3 2 1 !ADAM;

 1 3 2 !BOB;

 2 1 3;!CHUCK;

508 Chapter 16 Game Theory and Cost Allocation

! Thus, Adam's first choice is Alice.

 Alice's first choice is Bob;

! This data set has 3 stable assignments;

ENDDATA

! Y(i,j) = 1 if man i is assigned to woman j;

! Each man must be assigned;

 @FOR(MAN(i):

 @SUM(WOMAN(j): Y(i,j)) = 1;

);

! Each woman must be assigned;

 @FOR(WOMAN(j):

 @SUM(MAN(i): Y(i,j)) = 1;

);

! Stability conditions: Either man i and woman are

 assigned to each other, or

 man i gets a woman k he prefers to j, or

 woman j, gets a man k she prefers to i;

 @FOR(MXW(i,j):

 Y(i,j)

 + @SUM(WOMAN(k)| MPREF(i,k) #LT# MPREF(i,j): Y(i,k))

 + @SUM(MAN(k)| WPREF(k,j) #LT# WPREF(i,j): Y(k,j)) >= 1

);

! Compute actual assigned rank for each man and woman;

@FOR(MAN(i):

 AM(i) = @SUM(WOMAN(k): MPREF(i,k)*Y(i,k));

 PWORST >= AM(i);

);

@FOR(WOMAN(j):

 AW(j) = @SUM(MAN(k): WPREF(k,j)*Y(k,j));

 PWORST >= AW(j);

);

! Minimize the worst given to anyone;

 MIN = PWORST;

When solved, we get the solution:

 Variable Value

 Y(ADAM, BARB) 1.000000

 Y(BOB, CARMEN) 1.000000

 Y(CHUCK, ALICE) 1.000000

 In the “Men first” solution, every woman got her third choice. In the “Woman first” solution, every

man got his third choice. In this solution, the worst anyone gets is their second choice. In fact, everyone

gets their second choice. McVitie and Wilson(1971) present an algorithm for efficiently enumerating

all stable solutions.

 For this example, we have an answer to question (d) above. It is easy to see that each of the three

solutions is Pareto optimal. In the “Women first” solution, clearly the women cannot do any better, and

Game Theory and Cost Allocation Chapter 16 509

the men cannot do any better without hurting one of the women. Similar comments apply to the other

two solutions.

 With regard to the incentive compatibility question, (e) above, Roth, Rothblum, and Vande Vate

provide a partial answer, namely, if the “Men first” algorithm is used then there is nothing to be gained

by a man misrepresenting his preferences. This is somewhat intuitive in that if the “Men first” rule is

used, then the resulting solution gives each man the best solution possible among all stable solutions.

We may reasonably restrict ourselves to stable solutions. Thus, if some man misrepresents his

preferences, this might cause a different stable solution to result in which this man might be treated

worse, but definitely no better. Abdulkadiroglu, Pathak, and Roth(2005), mention that New York City,

when assigning students to highschools, uses a “Students first” variant of the marriage assignment

algorithm so as to motivate students to state their true preferences among highschools they are

considering attending.

16.5.1 The Stable Room-mate Matching Problem
The stable room-mate problem is the multi-person interpretation of the 2-matching optimization problem.

A college wants to match incoming freshman, two to a room in a freshman dormitory. Each student provides

a ranking of all other potential room-mates. A matching is stable if there are no two students, i and j, who

are not room-mates such that i prefers j to his current room-mate, and j prefers i to his current room-mate.

The stable marriage problem can be interpreted as a special case of the room-mate matching problem in

which people give very unattractive rankings to people of the same sex.

 In contrast to the stable marriage problem, there need not be a stable solution to a stable room-mate

problem. The following 4-person example due to Gale and Shapley(1962) illustrates a situation with no

stable matching.

! Example from Gale and Shapley;

 PERSON = AL BOB CAL DON;

! Row preference for col;

 PREF =

 99 1 2 3

 2 99 1 3

 1 2 99 3

 1 2 3 99;

 ! E.g., AL

 ! The 99 is to indicate that a person cannot be

 matched to himself.

 Consider, for example, the solution: AL with BOB, and CAL with DON. It is not stable because BOB

is matched with his second choice and CAL is matched with his third choice, whereas if BOB and CAL got

together, BOB would get his first choice and CAL would get his second choice. That would give us the

solution BOB with CAL, and AL with DON. This is solution is not stable, however, because then AL and

CAL would discover that they could improve their lot by getting together to give: AL with CAL, and BOB

with DON. This solution is not stable, etc. In the terminology of game theory, the marriage assignment

problem always has a core. The room-mate matching problem may not have a core.

 Irving(1985) gives an efficient algorithm for detecting whether a room-mates problem has a stable

matching, and if yes, finding a stable matching. The room-mates problem can also be solved by formulating

it as a mathematical program as illustrated by the following LINGO model for finding a stable room-mate

matching among 8 potential room-mates. This example from Irving(1985) has three stable matchings.

510 Chapter 16 Game Theory and Cost Allocation

! Stable Roommate Matching(stable_roommate8);

! Each of 2n people specify a rank, 1, 2,..., 2n-1, for

 each other person. We want to pair up the people into

 a stable set of pairs, i.e., there are no two people

 i and j who are not paired up, but would prefer to be

 paired up rather than be paired with their current partner.

 It may be that there is no such a stable pairing. This

 LINGO model will find such a pairing if one exists, and

 will minimize the worst that any person gets treated under

 this pairing.

SETS:

 PERSON: AP;

 PXP(PERSON,PERSON): PREF, Y, R, NOSTAB;

ENDSETS

DATA:

! Example from Irving(1985);

 PERSON = 1..8;

! Row preference for col;

 PREF=!1 2 3 4 5 6 7 8;

 99 1 7 3 2 4 5 6

 3 99 1 7 6 2 4 5

 7 3 99 1 5 6 2 4

 1 7 3 99 4 5 6 2

 2 4 5 6 99 1 7 3

 6 2 4 5 3 99 1 7

 5 6 2 4 7 3 99 1

 4 5 6 2 1 6 3 99;

 ! E.g., the first choice of 1 is 2. The first choice

 of 8 is 5.

 ! The 99 is to indicate that a person cannot be

 matched to himself.

 ! This data set has 3 stable matchings;

ENDDATA

! Y(i,j) = 1 if PERSON i and j are matched, for i < j;

 NP = @SIZE(PERSON);

! Each person must be assigned;

 @FOR(PERSON(i):

 @SUM(PERSON(k)| k #GT# i: Y(i,k))

 + @SUM(PERSON(k)| k #LT# i: Y(k,i)) = 1;

);

! Turn off the lower diagonal part of Y;

 @SUM(PXP(i,j)| i #GT# j: Y(i,j)) = 0;

! Enforce monogamy by making the Y(i,j) = 0 or 1;

 @FOR(PXP(i,j):

 @BIN(Y(i,j))

);

! Stability conditions: Either person i and person j

 are assigned to each other, or

Game Theory and Cost Allocation Chapter 16 511

 person i gets a person k he prefers to j, or

 person j gets a person k he prefers to i, or

 there is no stable solution;

 @FOR(PXP(i,j)| i #LT# j:

 Y(i,j)

 +@SUM(PERSON(k)| k #LT# i #AND# PREF(i,k) #LT# PREF(i,j): Y(k,i))

 +@SUM(PERSON(k)| k #GT# i #AND# PREF(i,k) #LT# PREF(i,j): Y(i,k))

 +@SUM(PERSON(k)| k #LT# j #AND# PREF(j,k) #LT# PREF(j,i): Y(k,j))

 +@SUM(PERSON(k)| k #GT# j #AND# PREF(j,k) #LT# PREF(j,i): Y(j,k))

 + NOSTAB(i,j) >= 1

);

! Compute actual assigned rank for each person;

@FOR(PERSON(i):

 AP(i) = @SUM(PERSON(k)| i #LT# k: PREF(i,k)*Y(i,k))

 + @SUM(PERSON(k)| k #LT# i: PREF(i,k)*Y(k,i));

 PWORST >= AP(i);

);

! Compute number of instabilities;

 NUMUSTAB = @SUM(PXP(i,j): NOSTAB(i,j));

! Apply most weight to getting a stable solution;

 MIN = NP*NP*NUMUSTAB + PWORST;

Notice in the resulting solution below, there is a stable matching, i.e. NUMUSTAB = 0, and, no participant

received worse than his second choice.

 Variable Value

 NUMUSTAB 0.000000

 Y(1, 5) 1.000000

 Y(2, 6) 1.000000

 Y(3, 7) 1.000000

 Y(4, 8) 1.000000

16.6 Should We Behave Non-Optimally to Obtain Information?
One of the arts of modeling is knowing which details to leave out of the model. Unfortunately, the most

likely details left out of a model are the things that are difficult to quantify. One kind of

difficult-to-quantify feature is the value of information. There are a number of situations where, if value

of information is considered, then one may wish to behave non-optimally, at least in the short run. Three

situations to consider are: 1) We would like to gain information about a customer or supplier, e.g., a

more precise description of the customer’s demand curve or credit-worthiness, 2) We do not want to

communicate too much information to a competitor, or 3) We want to communicate information to a

business partner, e.g., a supplier.

 As an example of (1) suppose we extend credit to some customers. If our initial credit optimization

model says “never extend credit to customers with profile X”, then we may nevertheless wish to

occasionally extend credit to such customers in order to have up-to-date information of the credit

worthiness of customers with profile X. In the inventory setting where unsatisfied demand is lost and

not observed, Ding and Puterman(2002) suggest that it may be worthwhile to stock a little more than

“optimal” so as to get a better estimate of customer demand.

512 Chapter 16 Game Theory and Cost Allocation

Regarding (2), we may wish to behave non-optimally so as to not reveal too much information. Any

good poker player knows that one should occasionally bluff by placing a large bet, even though the odds

associated with the current hand do not justify a large bet. If other players know you never bluff, then

they will drop out early and not give you the chance of winning large bets, any time you make a large

bet. Similarly, there was a rumor at the end of World War II that Britain allowed a bombing attack on

Coventry on one occasion even though Britain knew in advance of the attack, thanks to its code-breaking.

The argument was that if Britain had sent up a large fleet of fighter in advance to meet the incoming

German bombers, the Germans would have known, earlier than Britain desired that Britain had broken

the German communications code.

An example of (3) comes from inventory control. An optimal inventory model may recommend using a

very large order size. If we use a smaller order size, however, we will be giving more timely information

to our supplier about retail demand for his product. In between orders, the supplier has no additional

information about how his product is selling. In the extreme, if we used an order size of 1, then the

supplier would have very up-to-date information about retail demand and could do better planning.

In probability theory there is a problem class known as the multi-armed bandit problem that is similar to

case (1). A decision maker (DM) must decide which one of several slot machines (one armed bandits)

should be selected for the next bet. The DM strongly suspects that the expected payoff is different for

different machines. From a simple pure optimization perspective, the DM would bet only on the machine

with the highest expected payoff. From an information perspective, however, the DM wants to scatter

the bets a little bit in order to better estimate the expected payoff of each machine. This trade-off between

optimization vs. experimentation is sometimes called the explore vs. exploit decision.

16.7 Problems
1. Both Big Blue, Inc. and Golden Apple, Inc. are “market oriented” companies and feel market share

is everything. The two of them have 100% of the market for a certain industrial product. Blue and

Gold are now planning the marketing campaigns for the upcoming selling season. Each company

has three alternative marketing strategies available for the season. Gold’s market share as a function

of both the Blue and Gold decisions are tabulated below:

Payment To Blue by Gold as a Function
of Both Decisions

 Blue Decision

 A B C

 X .4 .8 .6

Gold Decision Y .3 .7 .4

 Z .5 .9 .5

 Both Blue and Gold know the above matrix applies. Each must make their decision before

learning the decision of the other. There are no other considerations.

a) What decision do you recommend for Gold?

b) What decision do you recommend for Blue?

Game Theory and Cost Allocation Chapter 16 513

2. Formulate an LP for finding the optimal policies for Blue and Gold when confronted with the

following game:

Payment To Blue By Gold as a Function of
Both Decisions

 Blue Decision

 A B C D

Gold Decision X 2 −2 1 6

 Y −1 4 5 −1

3. Two competing manufacturing firms are contemplating their advertising options for the upcoming

season. The profits for each firm as a function of the actions of both firms are shown below. Both

firms know this table:

Profit Contributions
 Fulcher Fasteners

 Option A Option B Option C

 Option Y 4 8 6

Repicky 10 4 6

Rivets Option X 8 12 10

 8 2 4

a) Which pair of actions is most profitable for the pair?

b) Which pairs of actions are stable?

c) Presuming side payments are legal, how much would which firm have to pay the other firm

in order to convince them to stick with the most profitable pair of actions?

4. The three neighboring communities of Parched, Cactus and Tombstone are located in the desert and

are analyzing their options for improving their water supplies. An aqueduct to the mountains would

satisfy all their needs and cost in total $730,000. Alternatively, Parched and Cactus could dig and

share an artesian well of sufficient capacity, which would cost $580,000. A similar option for Cactus

and Tombstone would cost $500,000. Parched, Cactus and Tombstone could each individually

distribute shallow wells over their respective surface areas to satisfy their needs for respective costs

of $300,000, $350,000 and $250,000.

 Formulate and solve a simple LP for finding a plausible way of allocating the $730,000 cost of

an aqueduct among the three communities.

5. Sportcasters say Team I is out of the running if the number of games already won by I plus the

number of remaining games for Team I is less than the games already won by the league leader. It

is frequently the case that a team is mathematically out of the running even before that point is

reached. By Team I being mathematically out of the running, we mean there is no combination of

wins and losses for the remaining games in the season such that Team I could end the season having

won more games than any other team. A third-place team might find itself mathematically though

not obviously out of the running if the first and second place teams have all their remaining games

against each other.

 Formulate a linear program that will not have a feasible solution if Team I is no longer in the

running.

514 Chapter 16 Game Theory and Cost Allocation

The following variables may be of interest:

xjk = number of times Team j may beat Team k in the season’s remaining games and Team I

still win more games than anyone else.

The following constants should be used:

Rjk = number of remaining games between Team j and Team k. Note the number of times j

beats k plus the number of times k beats j must equal Rjk.

Tk = total number of games won by Team k to date. Thus, the number of games won at

season’s end by Team k is Tk plus the number of times it beat other teams.

6. In the 1983 NBA basketball draft, two teams were tied for having the first draft pick, the reason

being that they had equally dismal records the previous year. The tie was resolved by two flips of a

coin. Houston was given the opportunity to call the first flip. Houston called it correctly and

therefore was eligible to call the second flip. Houston also called the second flip correctly and

thereby won the right to negotiate with the top-ranked college star, Ralph Sampson. Suppose you

are in a similar two-flip situation. You suspect the special coin used may be biased, but you have

no idea which way. If you are given the opportunity to call the first flip, should you definitely accept,

be indifferent, or definitely reject the opportunity (and let the other team call the first flip). State

your assumptions explicitly.

7. A recent auction for a farm described it as consisting of two tracts as follows:

Tract 1: 40 acres, all tillable, good drainage.

Tract 2: 35 acres, of which 30 acres are tillable, 5 acres containing pasture, drainage ditch and

small pond.

 The format of the auction was described as follows. First Tract 1 and Tract 2 will each be

auctioned individually. Upon completion of bidding on Tract 1 and Tract 2, there will be a 15 minute

intermission. After that period of time, this property will be put together as one tract of farmland.

There will be a premium added to the total dollar price of Tract 1 and Tract 2. This total dollar

amount will be the starting price of the 75 acres. If, at that time, no one bids, then the property will

go to the highest bidders on Tracts 1 and 2. Otherwise, if the bid increases, then it will be sold as

one.

 Can you think of some modest changes in the auction procedure that might increase the total

amount received for the seller? What are some of the game theory issues facing the individual

bidders in this case?

515

17

Inventory, Production, and
Supply Chain Management

17.1 Introduction
One carries inventory for a variety of reasons:

a) protect against uncertainty in demand,

b) avoid high overhead costs associated with ordering or producing small quantities

frequently,

c) supply does not occur when demand occurs, even though both are predictable

(e.g., seasonal products such as agricultural products, or anti-freeze)

d) protect against uncertainty in supply,

e) unavoidable “pipeline” inventories resulting from long transportation times (e.g., shipment

of oil by pipeline, or grain by barge)

f) for speculative reasons because of an expected price rise.

 We will illustrate models useful for choosing appropriate inventory levels for situations (a), (b), (c)

and (d).

17.2 One Period News Vendor Problem
For highly seasonal products, such as ski parkas, the catalog merchant, L. L. Bean makes an estimate for

the upcoming season, of the mean and standard deviation of the demand for each type of parka. Because

of the short length of the season, L.L. Bean has to make the decision of how much to produce of each

parka type before it sees any of the demand. There are many other products for which essentially the

same decision process applies, for example, newspapers, Christmas trees, anti-freeze, and road salt. This

kind of problem is sometimes known as the one-period newsvendor problem.

 To analyze the problem, we need the following data:

c = purchase cost/unit.

v = revenue per unit sold.

h = holding cost/unit purchased, but not sold. It may be negative if leftovers have a positive

salvage value.

p = explicit penalty per unit of unsatisfied demand, beyond the lost revenue.

516 Chapter 17 Inventory, Production & Supply Chain Mgt.

 In addition, we need some information about the demand distribution (e.g., its mean and standard

deviation). For the general case, we will presume for any value x:

F(x) = probability demand (D) is less-than-or-equal-to x.

17.2.1 Analysis of the Decision
We want to choose:

S = the stock-up-to level (i.e., the amount to stock in anticipation of demand).

 We can determine the best value for S by marginal analysis as follows. Suppose we are about to

produce S units, but we ask, “What is the expected marginal value of producing one more unit?” It is:

 -c + (v + p) * Prob{ demand > S} – h * Prob{ demand S}

 = -c + (v + p) * (1 – F(S)) – h * F(S)

 = - c + v + p – (v + p + h) * F(S).

 If this expression is positive, then it is worthwhile to increase S by at least one unit. In general, if

this expression is zero, then the current value of S is optimal. Thus, we are interested in the value of S

for which:

-c + v + p – (v + p + h) * F(S) = 0

or re-arranging:

F(S) = (v + p – c) / (v + p + h)

 = (v + p – c) / [(v + p – c) + (c + h)].

Rephrasing the last line in words:

Probability of not stocking out should = (opportunity shortage cost)/[(opportunity shortage

cost) + (opportunity holding cost)].

This formula is sometimes known as the news vendor formula.

Example 1, News vendor with discrete demand distribution:

Suppose L.L. Bean can purchase or produce a parka for $60, sell it for $140 during the regular season,

and sell any leftovers for $40. Thus:

c = 60,

v = 140,

p = 0,

h = - 40.

 The opportunity shortage cost is 140 – 60 = 80, and the opportunity holding cost is 60 – 40 = 20.

Therefore, the newsvendor ratio is 80/(80 + 20) = 0.8.

 To determine S, we must know the demand distribution. First, suppose this is not a big selling parka

and we have the distribution in tabular form as follows:

Demand, D: 2 3 4 5 6 7 8 9 11 12 13 14 15

Prob{demand=D}: .04 .06 .09 .10 .11 .12 .10 .09 .09 .07 .06 .05 .02

Cumulative, F():.04 .10 .19 .29 .40 .52 .62 .71 .80 .87 .93 .98 1.0

Thus, we should stock S = 11 units.

Inventory, Production & Supply Chain Mgt. Chapter 17 517

Example 2, News vendor with Normal distribution:

Suppose we have the same cost structure as before, but this item has a forecasted demand of 1000 and

standard deviation of 300. We will make the standard assumption demand is Normal distributed. We

must find the number of standard deviations above the mean such that the “left tail” probability is 0.80.

From a Normal table, we see this occurs at about z = .84. The general form for the stock-up-to point is:

S = mean + (standard deviation) * z,

 = 1000 + 300 * .84 = 1252.

 It would be nice to know the expected amount of lost sales. The “linear loss function”, or @PSL()

in LINGO gives us this, specifically:

(expected lost sales) = (standard deviation) * @PSL(z)

= (standard deviation) * @PSL((S – mean)/(standard deviation))

= 300 * @PSL(.84)

= 300 * .1120 = 33.6

 Alternatively, if we are lazy, we can use LINGO to do all the computations for us with the following

model:

MODEL:

! Newsboy inventory model(NUSBOYGN);

! Calculate: optimal order up to stock level, S,

 and re-order point, R, for a

 product with a normally distributed demand;

DATA:

MU = 1000; ! Mean demand;

SD = 300; ! Standard deviation in demand;

 V = 140; ! Revenue/unit sold;

 C = 60; ! Cost/unit purchased;

 P = 0; ! Penalty/unit unsatisfied demand;

 H = -40; !Holding cost/unit left in inventory;

 K = 1000; ! Fixed cost of placing an order;

ENDDATA

!--;

! Compute the newsvendor ratio;

RATIO = (P + V - C)/(P + V - C + C + H);

! Calculate the order up to point, S;

@PSN(ZS) = RATIO;

@FREE(ZS);

S = MU + SD * ZS;

! Compute expected profit of being there, PS;

! Note if D = demand, then profit is:

V * D - V * MAX(0, D-S) - C * S

- P * MAX(0,D-S) - H * (S-D) - H*MAX(0,D-S);

! Taking expectations and collecting terms...;

PS = V * MU - C * S - H * (S - MU)

 - (V + P + H) * SD* @PSL(ZS) ;

! Expected profit at reorder point should differ

 from expected profit at S by fixed order cost, K;

 PR = PS - K;

518 Chapter 17 Inventory, Production & Supply Chain Mgt.

! Solve for ZR;

PR = V * MU - C* R - H * (R - MU)

 - (V + P + H) * SD* @PSL(ZR) ;

@FREE(ZR);

ZR <= ZS; ! Do not want the way over solution;

! Finally, compute the re-order point;

ZR = (R - MU)/ SD;

END

A solution is:

Variable Value

 MU 1000.000

 SD 300.0000

 V 140.0000

 C 60.00000

 P 0.0000000

 H -40.00000

 K 1000.000

 RATIO 0.8000000

 ZS 0.8416211

 S 1252.486

 PS 71601.14

 PR 70601.14

 R 1114.215

 ZR 0.3807171

 The above examples assume the distribution of demand is known. In fact, getting a good estimate

of the demand distribution is probably the most challenging aspect of using the news vendor model. The

sports clothing retailer, Sport Obermeyer, see Fisher and Raman (1996), derive a demand distribution

by soliciting forecasts from six experts. The average of these forecasts is used as the mean of the demand

distribution. The standard deviation in the six forecasts is multiplied by an empirically derived

adjustment factor (e.g., 1.75) to obtain the standard deviation used in the model. L.L. Bean apparently

uses a slightly different approach to estimate the demand distribution for some of its products. A single

point estimate forecast for a product is provided by either a single expert, typically a “buyer”, or by a

consensus forecast from a group. An estimate of the standard deviation is obtained by assuming the

coefficient of variation (i.e., standard deviation/mean) remains constant from year to year. The forecast

errors from previous years are retained, and thus the coefficient of variation over previous years can be

calculated.

17.3 Multi-Stage News Vendor
Advertisements for Lands End Outlet stores typically stress that items being sold in these stores are

being sold at a very low price because they are left over from a catalog. Lands End stocked more units

than catalog customers were interested in buying. The suggestion is that store customers can benefit

from the poor inventory management of the catalog operation.

 Similar examples are items carried in a “Christmas” catalog, then offered at a lower price in a

“White” sale after the Christmas selling season, and perhaps offered at an even lower price at a third

selling opportunity, if there are units still left in stock after the “White” sale. For example, a men’s long

sleeve plaid shirt that was listed for $36 in a recent L.L. Bean Spring catalog, was listed for $25 in the

subsequent Summer Sale catalog. Such multi-level selling situations are here referred to as multi-stage

newsvendor problems.

Inventory, Production & Supply Chain Mgt. Chapter 17 519

 When making the initial stocking decision, one should take into account the selling price and likely

demand at each of the downstream levels. It is, in fact, relatively easy to do a fairly accurate analysis of

the optimum amount to stock.

 For example, suppose a retailer can purchase a particular type of coat from a supplier for $100. The

retailer will offer the garment for sale in the fall selling season for $225. Any units left over from the

fall selling season will be offered in the winter catalog for $135. Any units still left over at that point

will be offered for sale in “outlet” stores for $95. Demands at the three levels are estimated to have

means and standard deviations of:

Label: Fall Winter catalog Outlet store

Mean 1200 300 400

Std. 500 150 190

 Intuitively, it seems one should stock about 1200 + 300 = 1500 units because it is profitable to sell

the items in the winter catalog at $135. However, sales in the outlet store are not profitable in retrospect.

Can we do a little better than intuition?

 Marginal analysis can be used quite nicely in this situation. It goes like this. We are contemplating

stocking S units (e.g., 1400 units). Is it, in fact, worthwhile to increase our stocking level to S+1? If yes,

we simply repeat until the answer is “no”. Let:

Di = the (not yet seen) demand at stage i, for i = 1, 2, 3;

vi = the revenue or selling price/unit at level i; and

c = cost/unit.

The expected value of stocking one more unit in the general case is:

− c + v3 * Prob{D1 + D2 + D3 > S}+ (v2 − v3) * Prob{D1 + D2 > S}+ (v1 − v2) * Prob{D1 > S}.

or in our specific example:

− 100 + 95 * Prob{D1 + D2 + D3 >1400}+ 40 * Prob{D1 + D2 > 1400}+ 90 * Prob{D1 >1400}.

The reasoning behind this expression is as follows:

Stocking the additional item costs $100.

If the total demand over the three levels is > S, then we clearly can sell the unit for at least $95.

If the total demand over the first two levels is > S, then we will receive not just $95, but an

additional 135 − 95 = $40.

If the total demand in the first level is > S, we will receive not just $135, but an additional

225 − 135 = $90.

At the optimum, this marginal cost expression should be essentially zero.

520 Chapter 17 Inventory, Production & Supply Chain Mgt.

 If we can assume the demands are Normally distributed at the three levels, then we can compute the

expected value of carrying one more unit, and in fact solve for the optimum amount to stock. Note, we

do not have to assume the demands are independent at the three levels. The analysis is still correct:

MODEL:

! Multi-echelon newsboy(MELNUBOY);

! Compute stock to carry, S;

DATA:

! The cost/unit of the item;

C = 100;

! Selling price/unit at the first level;

V1 = 225;

! Selling price/unit at the second level;

V2 = 135;

! Selling price/unit at the third level;

V3 = 95;

! Mean demands at the three levels;

MEAN1 = 1200;

MEAN2 = 300;

MEAN3 = 400;

! Standard deviations at the three levels;

SD1 = 500;

SD2 = 150;

SD3 = 190;

ENDDATA

!---;

! Compute means and s.d. of cumulative demands;

CUMD3 = MEAN1 + MEAN2 + MEAN3;

CUMD2 = MEAN1 + MEAN2;

! This assumes demands are independent;

CUMSD3 = (SD1 * SD1 + SD2 * SD2 + SD3 * SD3)^.5;

CUMSD2 = (SD1 * SD1 + SD2 * SD2)^.5;

! Compute S;

! Set to 0 marginal expected value of ordering

one more unit beyond S, assuming Normal demand.;

0 = - C

+ V3 * (1 - @PSN((S - CUMD3)/ CUMSD3))

+ (V2 - V3) * (1 - @PSN((S - CUMD2)/ CUMSD2))

+ (V1 - V2) * (1 - @PSN((S - MEAN1)/ SD1));

! Compute expected profit;

!If the demands are D1, D2, and D3, then profit =

V3* ((D1 + D2 + D3) - MAX(0, D1+ D2+ D3 - S))

+(V2 - V3) * ((D1 + D2)- MAX(0, D1+ D2 - S))

+ (V1 - V2) * (D1 - MAX(0, D1 - S))

- C * S;

! Taking expectations;

EPROFIT =

V3 * (CUMD3- CUMSD3* @PSL((S- CUMD3)/ CUMSD3))

+(V2- V3)* (CUMD2 -CUMSD2*@PSL((S-CUMD2)/CUMSD2))

+(V1- V2)* (MEAN1- SD1* @PSL((S- MEAN1)/ SD1))

- C * S;

END

Inventory, Production & Supply Chain Mgt. Chapter 17 521

A solution is:

Variable Value

 C 100.0000

 V1 225.0000

 V2 135.0000

 V3 95.00000

 MEAN1 1200.000

 MEAN2 300.0000

 MEAN3 400.0000

 SD1 500.0000

 SD2 150.0000

 SD3 190.0000

 CUMD3 1900.000

 CUMD2 1500.000

 CUMSD3 555.5178

 CUMSD2 522.0153

 S 1621.628

 EPROFIT 138339.6

We see that we should stock substantially more than 1500. Namely, about 1622 units.

17.3.1 Ordering with a Backup Option
One type of “supply chain” agreement used by a number of clothing suppliers (e.g., Liz Claiborne, Ann

Klein, and Benetton) is the “backup” supply agreement. A typical agreement is characterized by two

numbers, a backup or holdback fraction and a nonuse penalty. Under, say a (.2, .1) backup agreement, a

store that orders 100 units of an item from Anne Klein must take delivery of (1 − .2) 100 = 80 units

before the selling season begins. That is, the supplier holds back 20% of the order. During the selling

season, the store may additionally request quick delivery on up to .2 100 = 20 units at the same price.

The store pays a penalty of .1 (purchase cost) for each item in the backup for which it does not request

delivery. Essentially, the store requests delivery on additional backup items only when it is 100% sure

of being able to sell the additional items.

 Suppose your store is contemplating a (.2, .1) agreement for a particular item from Anne Klein that

has a purchase cost of $50 per unit. You sell it for $160. You were planning to order 100 units of this

item. Thus, you will definitely receive 80 and can sell up to 100 if the demand occurs. For any units of

the 100 for which you do not take delivery, you must pay .1 $50 = $5. You are now having second

thoughts and want to know the marginal value of ordering one more unit of this item.

 So, for example, if total demand is greater than the 100, then increasing order size by one is a smart

move ($160 − $50). If the demand is less-than-or-equal-to 100, but greater than 80, it is not so smart (−

.1 $50). If demand is less-than-or-equal-to 80, then it is a dumb move (about − $50, ouch!).

 Marginal analysis can be used to determine the best initial order size. We will, in this case, assume

any items left over are worthless. Define:

c = cost/unit from the supplier,

v = selling price/unit,

b = holdback fraction,

u = penalty/unit of unused holdback items, stated as a fraction of c,

h = holding cost/unit left over,

D = the (random) demand.

522 Chapter 17 Inventory, Production & Supply Chain Mgt.

The expected value of ordering one more unit beyond S is:

(v − c) * Prob {D > S}

− u * c * Prob {S * (1 − b) < D S}

− (c * (1 − b) + u * c * b + h (1 − b)) * Prob {D S * (1 − b)}

 If this expression is positive, S should be increased. At the optimal S, the above expression should

be approximately zero. The reasoning behind the three terms is:

If D > S, we will take delivery of all units ordered and make a profit of v − c on the extra item

ordered.

If S * (1 − b) < D S, with or without the extra unit, we take delivery of D units. We have to

pay a penalty of u * c on the extra unit ordered, but not delivered.

If D S * (1 − b), we must take delivery of (1 − b) additional units, for which we pay c and

incur a holding cost h. We must pay a penalty u * c on the additional units b on which we

did not take delivery.

 For our example data, suppose D has a Normal distribution with mean 400 and standard deviation

100. The following is a LINGO model for this case:

MODEL

! Newsboy with a holdback fraction(NUBOYBCK);

DATA:

! Cost/unit;

C = 50;

! Selling price/unit;

V = 160;

! Cost per item left over(<0 for salvage);

H = - 6;

! Holdback fraction;

B = .2;

! Fraction of cost paid on unused units;

U = .1;

! Mean demand;

MEAN = 400;

! Standard deviation in demand;

SD = 100;

ENDDATA

!Set to zero the marginal value of ordering an

additional unit beyond S;

(V - C) * (1 - @PSN((S - MEAN)/ SD))

- U * C * (@PSN((S - MEAN)/ SD)

- @PSN((S*(1 - B) - MEAN)/ SD))

- ((C + H) * (1 - B) + U * C * B)

* @PSN((S *(1 - B) - MEAN)/ SD) = 0;

END

Inventory, Production & Supply Chain Mgt. Chapter 17 523

A solution is:

Variable Value

 C 50.00000

 V 160.0000

 H -6.000000

 B 0.2000000

 U 0.1000000

 MEAN 400.0000

 SD 100.0000

 S 493.9043

 The optimal order quantity is S = 494. This means we will take delivery of 0.8 494 = 395 units,

and have the option to receive 99 more if needed.

17.3.2 Safety Lotsize
In the News vendor problem, we have to choose a number (e.g., S above) to try to match a random

variable (e.g., the demand). A problem that is closely related to the newsvendor problem is the safety

lotsize problem. The essential difference is that in the safety lotsize problem, we are given a target

number, and we want to choose a distribution, so the associated random variable matches the given

target number. The given number is typically a capacity, such as number of seats available on an aircraft,

or parking spots in a garage, or the number of units of some product ordered by a customer. In each of

these three cases, we may not be able to precisely control how many people show up for a flight, or

control how many of the units we put into production turn out to be acceptable. For example, in the

manufacture of semiconductor chips, the fraction of acceptable chips in a batch in the early stages of

production may be as low as 20%. For airlines, a “no-show” rate of 15% is not unusual. We can,

however, affect the number of “good outcomes” by such actions as how many reservations we give out

for a flight or a parking lot, or how many chips we start into production. In semi-conductor chip

manufacturing, even after considerable production experience is obtained, the yield may still be under

80%.

 The following illustrates for the case of the so-called overbooking problem in the airlines. This

model does the analysis for three different assumptions about the distribution of the number of customers

that do not show up: the Normal distribution, the binomial, and the Poisson.

MODEL:

! Safety lot size/ Over booking model(SLOTSIZE);

! Compute S = number reservations to make;

! Keywords: overbooking, safety lotsize, lotsize;

DATA:

! Capacity, e.g., seats available;

 M = 140;

! Prob{ unit is bad or no-show};

 Q = .1;

! Cost per unit put in production;

 C = - 188;

! Penalty per good unit short of target;

 P = 0;

! Holding cost per good unit over target;

 H = 420;

524 Chapter 17 Inventory, Production & Supply Chain Mgt.

ENDDATA

!--;

! Model: Define PROB =;

! Prob{ Bads <= S - M} = Prob{ Goods >= M};

! The marginal cost of ordering S+1 rather than S is:

 C - (1 - Q) * (P * (1 - PROB) - H * PROB) = 0;

! Setting to zero, gives;

 PROB = (P - C/(1 - Q))/(P + H);

! Note: can also write as newsboy ratio:

 (P*(1-Q) - C)/((P*(1-Q) - C) + (C + H*(1-Q)));

! Now determine units to put into production,

 reservations to sell, etc.;

! Binomial(Choose a sample of size SB, where,

 prob{unit is bad} = Q);

 PROB = @PBN(Q, SB, SB - M);

! Poisson approximation;

 PROB = @PPS(Q * SP, SP - M);

! Normal approximation. The .5 improves the

 approximation of the continuous Normal distribution

 to a discrete distribution. The variance of a

 binomial random variable is SN*Q*(1-Q);

 PROB =

 @PSN((SN - M + .5 - Q * SN)/

 ((SN * Q * (1 - Q))^.5));

END

The solution is:

Variable Value

 M 140.0000

 Q 0.1000000

 C -188.0000

 P 0.0000000

 H 420.0000

 PROB 0.4973545

 SB 154.8232

 SP 154.7852

 SN 154.9725

 Thus, given that 10% of reservation holders do not show up and we have 140 seats to fill, regardless

of our distribution assumption, we should sell 155 reservations (and hope exactly 140 customers show

up).

17.3.3 Multiproduct Inventories with Substitution
One of the most important issues in inventory management is the consideration of unsatisfied demand,

lost sales, or stockouts. When there are multiple related products, unsatisfied demand from one product

may be satisfied by some other similar product. General Motors (see for example Eppen, Martin, and

Schrage (1989)) has historically used a “diversion matrix” to represent the rate at which unsatisfied

demand for one kind of GM car gets satisfied by, or substituted for, some other car. Similar methods

have been used in the airlines in choosing capacities for various flights during the day. Here the process

may be referred to as “spill” and “recapture”. The problem also arises in planning vehicle fleets in the

Inventory, Production & Supply Chain Mgt. Chapter 17 525

face of uncertain demand for vehicles of various sizes and types. If there is a shortage of small vehicles

on a given day, surplus large vehicles may be substituted for the small.

 The model below illustrates the essential aspects of the demand diversion inventory model used in

the aforementioned GM study. The model is a one-period newsvendor type model, except there are

multiple products. Each product has a cost per unit for each unit stocked, a revenue per unit for each unit

sold, and a holding cost per unit left over. If there are n products, then shortage costs and the interaction

among products is modeled by:

• an n by n diversion matrix that specifies what fraction of the unsatisfied demand of product

i may be diverted to and satisfied by product j, and

• an n by n transfer cost matrix that specifies the cost per unit of transferring demand from

one product to another.

 For example, if a coach class passenger gets upgraded to first class because of lack of space in

coach, one can represent this as a sale of a first class seat with the transfer cost being the difference in

cost between a first class seat and a coach class seat. This model represents demands by scenarios. Each

scenario specifies the demand for all products for that scenario. It is generally convenient to have a n+1st

product class that represents the outside world. Demand transferred to it is truly lost.

Example

Multisys, Inc. provides maintenance under contract of desktop computers to industrial firms. Multisys,

has just received notice from its disk supplier that it is about to make its last production run for 1 Gig

and 2 Gig disk drives. These drives are becoming obsolete as larger capacity drives are becoming

available. Multisys still has a large number of computers under maintenance contract that have these 1

and 2 Gig drives. The two drives are plug-compatible physically (i.e., they are the same size and have

the same electrical connections). About one third of the computers under contract that have the 1 Gig

drive are software incompatible with the 2 Gig drive in that they cannot access or otherwise function

with a disk with more than 1 Gig of storage. Otherwise, a 2 Gig drive could be substituted for a 1 Gig

drive, and a customer receiving such a substitution would be happy. The 2 Gig drive costs more to

Multisys, $200, vs. $140 for the 1 Gig drive. When Multisys replaces a drive, it charges a customer a

service charge of either $20 or $30 depending upon whether the original disk is a 1 Gig or a 2 Gig disk.

Multisys has enumerated a half dozen scenarios of what its customer requirements might be for

replacement disks in the remaining life of their contracts (see the scenarios in the model). If Multisys is

short of disks, it will have to buy them on the open retail market, where it expects it would have to pay

$190 and $250 respectively for the 1 Gig and 2 Gig drives. Any drive left over after all maintenance

contracts have expired is expected to have a salvage value of about $30, regardless of size. How many

of each drive should Multisys order from its supplier?

526 Chapter 17 Inventory, Production & Supply Chain Mgt.

 For this problem, the scenario approach introduced in chapter 12 is very convenient. We identify a

number of scenarios of what the demands could be. This allows one to have rather arbitrary demand

distributions. In particular, demands among the products can be correlated, as is frequently the case in

reality. In the example below, we identify a modest six demand scenarios:

MODEL:

! Multi-product Newsboy inventory model(NUSBOYML),

 with substitution, diversion, or spill.

 For each product,

 calculate the optimal order up to stock level, S;

SETS:

 PROD/ G1 G2 SPOT/: C, V, H, S;

 PXP(PROD, PROD): FRAC, TC;

 SCEN/1..6/: PROB, PROF;

 SXP(SCEN, PROD): DEM, U, I;

 SXPXP(SCEN, PROD, PROD): T;

ENDSETS

DATA:

! Cost data for 1 Gig and 2 Gig disk drives.

 Third product is outside spot market;

 V = 20 30 0; ! Revenue/unit sold;

 C = 140 200 0; ! Cost/unit stocked;

 H = -30 -30 0; ! Holding cost/unit unused;

! The diversion matrix. FRAC(PR, PX) = upper limit

 on fraction of product PX unsatisfied demand that

 can be satisfied by product PR;

 FRAC =

 1 0 0 ! Upper limits on;

 .66667 1 0 ! substitution fractions;

 1 1 1; ! Sum over col should be >= 1;

! Transfer costs. TC(PR, PX) = cost per unit of

 satisfying a type PX demand with a type PR product;

 TC =

 0 0 0 ! Cost of transferring;

 0 0 0 ! or substituting one;

 190 250 0; ! product for another;

! The demand scenarios. 3rd product takes care of

 unsatisfied demand;

 DEM = 2100 3300 0

 900 2710 0

 1890 2256 0

 1994 1840 0

 2442 2334 0

 1509 2654 0;

! Prob of each scenario;

! (They are equally likely);

 PROB = .166667 .166667 .166667

 .166667 .166667 .166667;

ENDDATA

Inventory, Production & Supply Chain Mgt. Chapter 17 527

!--;

! Maximize expected profit;

 MAX = @SUM(SCEN(SC): PROB(SC) * PROF(SC));

! For each scenario;

 @FOR(SCEN(SC):

 ! profit =

 revenues - acquisition cost

 - holding cost - transfer costs;

! T(SC, PR, PX) = units of type PX demand satisfied

 by a type PR product;

 PROF(SC) =

 @SUM(PROD(PR):

 V(PR) * @SUM(PROD(PX): T(SC, PX, PR))

 - C(PR) * S(PR)

 - H(PR) * I(SC, PR)

 - @SUM(PROD(PX):

 TC(PR, PX) * T(SC, PR, PX)));

 @FREE(PROF(SC));

 @FOR(PROD(PR):

! Stock = inventory left + sent to various products;

 S(PR) = I(SC, PR) + @SUM(PROD(PX):

 T(SC, PR, PX));

! Directly satisfied + unsatisfied = original demand;

 T(SC, PR, PR) + U(SC, PR) = DEM(SC, PR);

! Unsatisfied demand must be covered from somewhere;

 U(SC, PR) = @SUM(PROD(PX)| PX #NE# PR:

 T(SC, PX, PR));

! Cannot send too much to any one place;

 @FOR(PROD(PX)| PX #NE# PR:

 T(SC, PX, PR) <= FRAC(PX, PR) * U(SC, PR);

! In case users find it confusing

 to transfer fractional items;

 @GIN(T(SC, PR, PX));

);

);

);

END

 When solved, we see the expected net cost is $694,806.4. Hopefully, the maintenance revenues to

Multisys are higher than this:

Objective value: -694806.

 We see Multisys should stock 1508 of the 1 Gig drives and 2334 of the 2 Gig drives. There is at

least one scenario in which it must buy 1558 drives on the spot market:

Variable Value

 S(G1) 1508.000

 S(G2) 2334.000

S(SPOT) 1558.000

528 Chapter 17 Inventory, Production & Supply Chain Mgt.

It is interesting to look at the transfers required under each scenario:

 T(1, G1, G1) 1508.000

 T(1, G2, G2) 2334.000

T(1, SPOT, G1) 592.000

T(1, SPOT, G2) 966.000

 T(2, G1, G1) 900.0000

 T(2, G2, G2) 2334.000

T(2, SPOT, G2) 376.000

 T(3, G1, G1) 1508.000

 T(3, G2, G1) 78.000

 T(3, G2, G2) 2256.000

T(3, SPOT, G1) 304.000

 T(4, G1, G1) 1508.000

 T(4, G2, G1) 324.000

 T(4, G2, G2) 1840.000

T(4, SPOT, G1) 162.000

 T(5, G1, G1) 1508.000

 T(5, G2, G2) 2334.000

T(5, SPOT, G1) 934.000

 T(6, G1, G1) 1508.000

 T(6, G2, G2) 2334.000

T(6, SPOT, G1) 1.000

T(6, SPOT, G2) 320.000

 Notice Multisys plans to go to the spot market under every scenario. In scenarios 3 and 4, surplus 2

Gig drives are substituted for 1 Gig drives.

17.4 Economic Order Quantity
The EOQ model assumes demand is constant over time and any order is satisfied instantly. Define:

D = demand/year,

K = fixed cost of placing an order,

H = holding cost per unit per year.

We want to determine:

Q = quantity to order each time we order.

For any Q chosen, the sum of setup and holding costs is:

K * D/ Q + h * Q /2.

The minimum of this function occurs when we set:

Q = (2 * K * D / h)0.5

 If we substitute this value for Q back into the cost function, we can find the cost per year if we

behave optimally is:

(2 * K * D * h)0.5

 This cost expression illustrates an interesting economy of scale in inventory management with

respect to demand volume, D.

Inventory, Production & Supply Chain Mgt. Chapter 17 529

 Inventory related costs increase with the square root of volume. Thus, if you have two independent

facilities, each incurring $1M per year in inventory related costs, combining them into a single facility

will reduce total system costs to $1.41 M from the original $2M.

17.5 The Q,r Model
The Q,r model extends the EOQ model with the additional realistic assumptions:

a) there is a positive lead time, and

b) the demand during the lead time is random.

 If not for (b), we could trivially extend the EOQ model with the simple observation that we should

place our order for the amount Q each time the inventory drops to r = demand during a lead time. Thus,

each order will arrive just as inventory hits zero.

 If the demand during a lead-time is random, then we will typically wish to increase r slightly to

reduce the probability of running out before the order arrives. The Q,r policy is fairly common. For

example, Dick Dauch, as Executive Vice President of Worldwide Manufacturing at Chrysler (see Dauch

(1993)), used a slight variant of the Q,r model on a wide range of products at Chrysler. Nahmias (1997)

gives a thorough introduction to the Q,r model.

17.5.1 Distribution of Lead Time Demand
Define:

L = mean lead time in years,

D = mean demand / year,

sdL = standard deviation in lead time,

sdD = standard deviation in demand / year,

MLD = L * D = mean lead time demand.

 If demands from one period to the next are independent and identically distributed, then the standard

deviation in demand during a lead time, sdo, is given by:

sdo = (L * sdD
2 + D * D * sdL

2) 0.5

 This formula assumes demands, or forecast errors, are independently distributed among periods. In

reality, demands (or at least forecast errors) tend to be positively correlated among periods. The result

is this formula will typically understate the true standard deviation in lead-time demand or forecast error

over the lead-time.

17.5.2 Cost Analysis of Q,r
Define:

F(r) = probability we do not run short in an order cycle if the reorder point is r,

b(r) = expected number of units short in an order cycle if the reorder point is r.

If it is safe to assume lead-time demand has a Normal distribution, then:

b(r) = sdo * @PSL((r – MLD)/ sdo).

530 Chapter 17 Inventory, Production & Supply Chain Mgt.

For a given Q, and r, the approximate expected cost per year is:

K * (number of orders per year) + h * (average inventory level) + p * b(r) * (number of orders

per year)

 The average inventory level can be approximated as follows. On average, the stock level expected

at the end of an order cycle (just before an order comes in) is:

r – MLD + b(r).

 The b(r) term is effectively a correction for the fact that r – MLD by itself would be an average over

situations, some of which correspond to negative inventory. When inventory is negative, we should not

be charging the holding cost h to it (thereby claiming an income rather than a cost). The b(r) term

effectively adds back in the negative inventory that would occur when the lead-time demand is greater

than r.

 When the replenishment order arrives, the stock level is the order quantity Q plus the average

quantity in stock at the end of the previous cycle (r − MLD + b(r)). The average stock level is the average

of these two quantities, [Q + (r − MLD + b(r)) + (r − MLD + b(r))]/2 = (Q/2 + r − MLD + b(r)). Note

r- MLD + b(r) is the average safety stock in the system.

 So, we can write the average cost per year as:

 = K * D/Q + h * (Q/2 + r – MLD + b(r)) + p * b(r) * D / Q

or

 = (K + p * b(r)) * D / Q + h * (Q/2 + r – MLD + b(r)).

 This cost expression does not contain a term for inventory in the pipeline (i.e., inventory ordered

but not yet on hand). For a given lead time, the average pipeline inventory is a constant equal to

D*L = MLD. A different holding cost rate may apply to pipeline inventory than to inventory on hand.

There may be several reasons why the carrying cost of inventory on order is less than the carrying cost

of physical inventory. For example, in the auto industry, a lead time of ten weeks is not unusual for the

time from when a dealer places an order with the manufacturer until the order arrives. Of these ten

weeks, the first nine weeks might be manufacturing time with only the last week being the time to ship

the automobile from the manufacturer to the dealer. The cars are typically shipped FOB (Free On

Board/From Our Base) the manufacturer's plant. The dealer thus pays for the car once it ships. So, the

dealer incurs inventory carrying costs (e.g., cost of capital, for only one tenth of the lead time).

 To minimize the cost, we can either note the similarity of the cost expression to that of the simple

EOQ model, or we can differentiate with respect to the parameters and set to zero to get:

Q = [2 * D(K + p * b(r))/ h] 0.5 , and

1 – F(r) = h * Q/(h * Q + p * D), or

F(r) = p * D/ (p * D + h * Q).

 Note the similarity of the above to the news vendor formula. The intuition is as follows. Suppose

we increase the reorder point, r, by one unit. If demand is high during the lead time, then the shortage

cost avoided is p. If demand is low, then we simply carried an extra unit in inventory for a cycle, incurring

a cost of h * (cycle length) = h * D/Q. Using the newsvendor-like arguments, we want to set:

F(r) = p/ (p + h*D/Q) = p * D/ (p * D + h * Q).

Inventory, Production & Supply Chain Mgt. Chapter 17 531

 Some textbooks, see Nahmias (1997) for a discussion, using a slightly different approximation to

expected inventory level just before an order arrives, get a slightly different expression for F(r), namely:

F(r) = (p * D – h * Q)/ (p * D).

 Both are the result of making approximations to the average inventory level. The latter is intuitively

less appealing because, for high values of h * Q, it can result in a negative value for F(r). Negative

probabilities are hard to comprehend. When h * Q is small relative to p * D, then the two expressions

result in approximately the same value for F(r). For example, if p * D = 1.0 and h * Q = .05, then:

1/1.05 = 0.952;

whereas:

(1 - .05)/ 1 = 0.95.

Example

When Hewlett-Packard first started supplying printers to Europe, the shipping time from its plant on the

west coast of the U.S. to Europe was about five weeks. Suppose the forecasted yearly demand for a

certain printer was 270,000 units, with a monthly standard deviation of about 6351. A monthly standard

deviation of 6351 implies a monthly variance of 6351 * 6351 = 40333333, a yearly variance (if monthly

demands are independent) of 12 * 40333333= 484000000, and a yearly standard deviation of

(484000000)^.5 = 22000. The yearly holding cost is $110/printer per year. We allow a separate cost term

for pipeline inventory of $5/unit. For example, if we do not have to pay for a product until we receive it,

then there would be no charge on pipeline inventory. The penalty for being out of stock when a demand

occurs is $200/printer. The fixed cost of placing an order is $300. Suppose the standard deviation in

lead-time is two weeks. What should be the re-order point and the re-order quantity? We can have

LINGO do all the work for us with the following model:

! Q,r inventory model(EOQRMODL);

! Find the order quantity, Q,

 and re-order point, R, for a product with...;

 DATA:

 D = 270000; ! Mean demand / year;

 H = 110; ! Holding cost/unit/year;

 HP= 5; ! Holding cost on pipeline inventory;

 K = 300; ! Fixed order cost;

 P = 200; ! Penalty cost/ unsatisfied demand;

 L = .0962; ! Lead time in years;

 SDL = .03846; ! S.D. in lead time in years;

 SDD = 22000; ! S.D. in yearly demand;

 ENDDATA

!---;

! The Q,R inventory model;

 MLD = L * D; ! Mean lead time demand;

! s.d. in lead time demand;

SLD=(SDD * SDD * L + D * D * SDL * SDL)^.5;

! Expected cost/ period is ECOST;

 MIN = ECOST;

ECOST = COSTORD + COSTCYC + COSTSFT + COSTPEN + COSTPIPE;

 COSTORD = (K * D/ Q);

 COSTCYC = H * Q/2;

 COSTSFT = H*(R - MLD + BR);

532 Chapter 17 Inventory, Production & Supply Chain Mgt.

 COSTPEN = P * D * BR/ Q;

 COSTPIPE = HP * MLD;

!Expected amount short/cycle. @PSL() is

 the standard Normal linear loss function;

 BR = SLD * @PSL(Z);

!@PSN()is the standard Normal left tail prob.;

 @PSN(Z) = P * D /(P * D + H * Q);

 R = MLD + SLD * Z; ! Reorder point;

! The following are all to help solve it faster;

 Q >= (2*K*D/H)^.5;

 @BND(- 3, Z, 3);

 @FREE(ECOST); @FREE(R);

 @FREE(COSTORD); @FREE(COSTCYC);

 @FREE(COSTSFT); @FREE(COSTPEN);

 @FREE(Z); @FREE(BR);

Note it breaks the total cost into five components:

1. ordering costs due to the $300 cost of placing an order,

2. cycle inventory due to carrying inventory between order points,

3. holding costs due to carrying safety stock,

4. penalty costs due to being out of stock, and

5. pipeline inventory costs due to product we have paid for, so-called FOB, but not yet

received.

It will be interesting to see which of the five is the most significant. A solution is:

Variable Value

 D 270000.0

 H 110.0

 HP 5.0

 K 300.0

 P 200.0

 L 0.0962

 SDL 0.03846

 SDD 22000.0

 MLD 25974.0

 SLD 12425.47

 ECOST 3995220.0

 COSTORD 8991.226

 COSTCYC 495483.0

 COSTSFT 2874377.0

 COSTPEN 486498.0

COSTPIPE 129870.0

 Q 9008.782

 R 52023.54

 BR 81.16215

 Z 2.096463

 Notice that, of the yearly cost of about $3,995,220, the major component is the safety stock cost of

$2,874,377. Comparing the order quantity of 9008 with the yearly demand of 270,000, we can observe

this corresponds essentially to ordering every 12 days. The high re-order point, 52,024, relative to the

order quantity is because of the long five-week delivery pipeline. Note, five weeks of demand is about

26,000 units.

Inventory, Production & Supply Chain Mgt. Chapter 17 533

 This model can answer a variety of “what-if” questions regarding how cost is affected by various

features of the supply chain. For example, suppose we could switch to a very reliable carrier, so the

lead-time is always exactly five weeks. We simply set SDL = 0 in the data section as follows:

DATA:

 D = 270000; ! Mean demand / year;

 H = 110; ! Holding cost/unit/year;

 HP= 5; ! Holding cost on pipeline inventory;

 K = 300; ! Fixed order cost;

 P = 200; ! Penalty cost/ unsatisfied demand;

 L = .0962; ! Lead time in years;

 SDL = 0.0; ! S.D. in lead time in years;

 SDD = 22000; ! S.D. in yearly demand;

 ENDDATA

And get the solution:

Variable Value

 D 270000.0

 H 110.0

 HP 5.0

 K 300.0

 P 200.0

 L 0.0962

 SDL 0.0

 SDD 22000.0

 MLD 25974.0

 SLD 6823.547

 ECOST 2419380.0

 COSTORD 16623.32

 COSTCYC 267997.1

 COSTSFT 1753502.0

 COSTPEN 251387.9

COSTPIPE 129870.0

 Q 4872.674

 R 41892.24

 BR 22.68391

 Z 2.33284

 So, it looks like the uncertainty in the lead-time is costing us about 3995220 - 2419380 = $1,575,840

a year, most of it in extra safety stock.

534 Chapter 17 Inventory, Production & Supply Chain Mgt.

 We might push the lead time improvement further. Suppose by using airfreight, we could reduce

the lead-time from 5 weeks to a reliable 1 week. Our transportation costs will be higher, but how much

could we save in inventory related costs? We set L = 1/52 = .01923. Thus:

DATA:

 D = 270000; ! Mean demand / year;

 H = 110; ! Holding cost/unit/year;

 HP= 5; ! Holding cost on pipeline inventory;

 K = 300; ! Fixed order cost;

 P = 200; ! Penalty cost/ unsatisfied demand;

 L = .01923; ! Lead time in years;

 SDL = 0.0; ! S.D. in lead time in years;

 SDD = 22000; ! S.D. in yearly demand;

ENDDATA

Now, the solution is:

Variable Value

 D 270000.0

 H 110.0000

 HP 5.000000

 K 300.0000

 P 200.0000

 L 0.0192300

 SDL 0.0000000

 SDD 22000.00

 MLD 5192.100

 SLD 3050.790

 ECOST 1164946.

 COSTORD 32286.60

 COSTCYC 137982.9

 COSTSFT 863009.1

 COSTPEN 105707.1

COSTPIPE 25960.50

 Q 2508.780

 R 13032.73

 BR 4.911033

 Z 2.570031

 This looks very promising. Total costs are cut to less than half. Most of the savings, about $900,000,

comes from a reduction in safety stock, about $400,000 from reduction in pipeline inventory, and about

$100,000 savings each from a reduction in penalty costs and cycle or pipeline stock.

17.6 Base Stock Inventory Policy
If the fixed cost of placing an order is very low relative to the cost of carrying inventory and the cost of

being out of stock, then the optimal policy is to reorder one unit whenever a demand occurs. From the

Q, r model perspective, the optimal solution has Q = 1. Thus, the only decision is R, the reorder point.

R is said to be the base stock. An order is placed every time the stock level drops below R. In other

words, as soon as demand is observed. Clearly, such a model is interesting only when replenishment

lead times are greater than zero. The main tradeoff in the system is between the cost of holding versus

the expected cost of backorders or lost sales, just as in the news vendor problem. Base stock policies are

very common in aircraft maintenance systems, where spare parts, such as engines, are very valuable

Inventory, Production & Supply Chain Mgt. Chapter 17 535

relative to the fixed cost of shipping a part to a location where it is needed. Periodic base stock policies

are also used for many items in a grocery store. A typical product in a grocery store has a fixed amount

of shelf space allocated to it. Early each day, a supplier will stop by the store and fill up the space. The

major decision is how much space to allot to each item.

17.6.1 Base Stock — Periodic Review
A slight variation of the basic base stock system is one in which inventory is not checked at every instant,

but only periodically. For example, if the product is supplied by ship and the ship arrives only every two

weeks, then there is not much benefit in checking inventory constantly. The most typical review period

might be weekly (e.g., on Monday mornings after big weekend demand in a retail store). The

Newsvendor analysis can then be used to determine the best order-up-to level. Let:

L = lead time in periods,

h = holding cost per unit left in stock at end of period,

p = penalty per unit of demand not satisfied from inventory immediately,

S = pipeline order up to level (also = the reorder point R),

Dt = demand in period t.

 We want to determine the best value for S, given known values for L, h, and p, with the Dt’s being

random variables.

17.6.2 Policy
At the beginning of each period, we observe the pipeline inventory, y, and place an order for S − y. Thus,

an order placed in period t arrives just before demand occurs in period t + L (but after demand occurs in

t + L - 1). So, L = 0 corresponds to instant delivery. We assume unsatisfied demand is backlogged.

17.6.3 Analysis
Just before demand occurs in period t + L, the physical inventory available to immediately satisfy

demand is:

S D j
 j t

t L

−
=

+ −

1

(e.g., if L = 0, the physical inventory is simply S).

 If the demands are randomly distributed, let:

F(x) = Prob {
 j t

t L

=

+

 Dj x}

Then, by marginal analysis, the expected profit contribution of increasing S by one unit is:

p(1 - F(S)) - h F(S).

Setting this to zero gives:

p = (p + h)F(S)

or

F(S) = p/(p + h)

Note, we did not require the assumption that Dt be independently distributed.

536 Chapter 17 Inventory, Production & Supply Chain Mgt.

 The expected holding and shortage cost per period is:

E [h * max (0, S -
 j t

t L

=

+

 Dt) + p * max (0,
 j t

t L

=

+

 Dt - S)]

= E [h * (S -
 j t

t L

=

+

 Dt) + (p + h) * max (0,
 j t

t L

=

+

 Dt - S)]

 In the case that
 j t

t L

=

+

 Dt is Normal with mean and s.d. , the expected holding and shortage cost

can be written as:

= h (S -) + (p + h) * @PSL ((S -) /).

 The lost sales case is very difficult to analyze. The backlogging case as an approximation to the lost

sales case will tend to set S too high, understate holding costs, and overstate shortage costs.

Example

An item at a food store is restocked daily. It has a mean demand of 18 units per day with a standard

deviation of 4.243. There is a lead-time of two days before an order gets replenished. The holding cost

per unit is $0.005 per day. The shortage penalty per unit is $0.05 per day.

! Base stock policy

 with periodic review and Normal demand(BASESTP)

 DATA:

 H = .005; ! Holding cost/day;

 P = .05; ! Shortage penalty/day;

 MEAN = 18; ! Mean demand/day;

 SD = 4.243;! Std. Dev. in demand/day;

 LEADT = 2; !Lead time in days;

ENDDATA

!---;

 MU = LEADT * MEAN;

 SIG = (LEADT * SD * SD)^.5;

 MIN = H * (S - MU) +

 (H + P) * SIG * @PSL((S - MU)/ SIG);

The solution is:

Optimal solution found at step: 11

Objective value: 0.5399486E-01

Variable Value Reduced Cost

 H 0.5000000E-02 0.0000000

 P 0.5000000E-01 0.0000000

 MEAN 18.00000 0.0000000

 SD 4.243000 0.0000000

 LEADT 2.000000 0.0000000

 MU 36.00000 0.0000000

 SIG 6.000508 0.0000000

 S 44.01758 0.8759009E-05

 So, we should carry a base stock of 44 units and expect holding plus penalty costs to be about $0.054

per day.

Inventory, Production & Supply Chain Mgt. Chapter 17 537

17.6.4 Base Stock — Continuous Review
We say we have continuous review if we review inventory continuously and place an order at any instant

that the inventory level drops below the reorder point. Under continuous review, it is convenient to

assume demand has a Poisson distribution. In fact, the Poisson distribution is a very appropriate

distribution to use for slow moving items. A useful definition of a slow moving item is one for which

the mean demand in a period is less than two times its standard deviation. Just as @PSL() is the linear

loss function for the Normal distribution, @PPL() is the linear loss function for the Poisson distribution.

Arguing much as before, the relevant model for the Poisson distribution is:

! Base stock policy

 with continuous review and Poisson demand(BASESTC);

 DATA:

 H = .005; ! Holding cost/day;

 P = .05; ! Shortage penalty/day;

 MEAN = 18; ! Mean demand/day;

 LEADT = 2; !Lead time in days;

ENDDATA

!---;

 MU = LEADT * MEAN;

 MIN = H * (S - MU) + (H + P) * @PPL(MU, S);

For this set of data, we get essentially the same result as when the Normal distribution was used:

Optimal solution found at step: 66

Objective value: 0.5583237E-01

Variable Value Reduced Cost

 H 0.5000000E-02 0.0000000

 P 0.5000000E-01 0.0000000

 MEAN 18.00000 0.0000000

 LEADT 2.000000 0.0000000

 MU 36.00000 0.0000000

 S 43.99994 -0.4514980E-02

17.7 Multi-Echelon Base Stock, the METRIC Model
In 1997, the Wall Street Journal reported General Motors (GM) switched to a “distribution center”

structure for distributing some of its automobile lines, see Stern and Blumenstein (1996). Previously, all

of GM’s finished products were stored at retail car dealers. Under the new system, a significant fraction

of cars would be stored at distribution centers (DC) located strategically around the country. Under the

old system, if a given dealer did not have the exact style of car desired by a customer, then with high

probability that dealer would lose the sale. Even worse for GM, that potential customer might switch to

a competing manufacturer’s product.

 Under the DC structure, a dealer would typically be able to get, within one day’s time from a nearby

DC, the exact car desired by the customer. Under either system, GM must decide:

1) how much inventory to allocate to each dealer.

Under the DC system, GM must also decide:

2) how much inventory to allocate to each DC.

 A very similar problem is faced by a large airline. In order to maintain high on-time service, an

airline must be able to quickly replace any critical part that fails in an aircraft. For example, the author

538 Chapter 17 Inventory, Production & Supply Chain Mgt.

once had to wait five hours to board a flight because a safety exit chute on the aircraft was accidentally

deployed while the aircraft was at the gate. There was a five-hour delay while a replacement chute was

flown in from 1500 kilometers away. An airline must decide which parts to stock at which locations

around the country. Some high demand parts will be stocked at locations where the demand is likely to

occur, and some parts will be stored at centrally located DC’s, so they can be quickly flown to low

demand cities when demand occurs there.

 A key feature of many of these “inventory positioning” problems involving high value items is the

appropriate replenishment policy to use as a base stock policy. That is, whenever a demand removes a unit

from inventory, an order for a replacement unit is placed immediately. When there are two or more levels in

the distribution system (e.g., retail outlets served by one or more DC’s), the most widely used model for

analyzing this inventory positioning problem is some variation of the METRIC model developed by

Sherbrooke (1992) for managing spare parts inventories for the U.S. Air Force. The following model

illustrates for the case of five outlets served by a single DC or “depot”. In this version, the user specifies,

among other parameters, how much stock to carry at the DC and how much stock to allocate over all outlets.

The model decides how to best allocate the stock over the outlets and reports the total expected units on

backorder.

 We look at a situation of how to allocate five units of inventory, say spare engines for an airline, at

either a central depot and at each of five demand points:

MODEL:

! Two level inventory model with possible

repair at outlet(METRICX);

! Compute average units on backorder, TBACK, for

given limit on depot stock and stock available

for outlets, using a base stock policy;

SETS:

OUTLET/1..5/: ! Each outlet has a...;

D2OUTL, ! Resupply time from depot to outlet;

DEM, ! Demand rate at outlet;

PREP, ! Prob item can be repaired at outlet;

REPT, ! Repair time at outlet;

SOUTLET, ! Stock level;

ERT, ! Effective resupply time from depot;

AL; ! Average level of backlogged demand;

ENDSETS

DATA:

! Delivery time to outlet from depot(days);

D2OUTL = 3 7 3 3 9;

! Expected demand/day;

DEM = .068 .05 .074 .063 .038;

! Probability item can be repaired at outlet;

PREP= .2 .2 .2 .25 .1;

! Repair time at outlet, if repairable;

REPT= 3 3 3 3 3;

! Stock levels to allocate over all outlets;

SOUTOTL = 5; ! at the depot;

SDEPOT = 0; ! Resupply time at depot;

RDEPOT = 9;

ENDDATA

Inventory, Production & Supply Chain Mgt. Chapter 17 539

!---;

! Compute total demand at depot;

DEM0 = @SUM(OUTLET: DEM * (1 - PREP));

! Effective expected wait at depot;

EWT0 = @PPL(DEM0 * RDEPOT, SDEPOT)/ DEM0;

@FOR(OUTLET(I):

! Estimate resupply time including depot delay;

ERT(I) = D2OUTL(I) + EWT0;

! Expected demand on backorder;

AL(I) =

@PPL(DEM(I)* (1 - PREP(I)) * ERT(I)

+ DEM(I) * PREP(I) * REPT(I), SOUTLET(I));

! Can stock only integer quantities;

@GIN(SOUTLET(I));

);

! Total expected demand on backorder;

TBACK = @SUM(OUTLET: AL);

! Limit on stock at outlets;

@SUM(OUTLET(I): SOUTLET(I)) <= SOUTOTL;

! Minimize expected backorders;

MIN = TBACK;

END

Case 0: All inventory at outlets:
 Variable Value

 SDEPOT 0.000000

SOUTLET(1) 1.000000

SOUTLET(2) 1.000000

SOUTLET(3) 1.000000

SOUTLET(4) 1.000000

SOUTLET(5) 1.000000

 TBACK .9166685

 ERT(1) 12.00000

 ERT(2) 16.00000

 ERT(3) 12.00000

 ERT(4) 12.00000

 ERT(5) 18.00000

Case 1: One unit at the depot:
 Variable Value

 SDEPOT 1.000000

SOUTLET(1) 1.000000

SOUTLET(2) 1.000000

SOUTLET(3) 1.000000

SOUTLET(4) 0.000000

SOUTLET(5) 1.000000

 TBACK .8813626

 ERT(1) 8.258586

 ERT(2) 12.25859

 ERT(3) 8.258586

 ERT(4) 8.258586

 ERT(5) 14.25859

540 Chapter 17 Inventory, Production & Supply Chain Mgt.

Case 2: Two units at the depot:
 Variable Value

 SDEPOT 2.000000

SOUTLET(1) 0.000000

SOUTLET(2) 1.000000

SOUTLET(3) 1.000000

SOUTLET(4) 0.000000

SOUTLET(5) 1.000000

 TBACK .8683596

 ERT(1) 5.602399

 ERT(2) 9.602399

 ERT(3) 5.602399

 ERT(4) 5.602399

 ERT(5) 11.60240

Case 3: Three units at the depot:
 Variable Value

 SDEPOT 3.000000

SOUTLET(1) 0.000000

SOUTLET(2) 1.000000

SOUTLET(3) 0.000000

SOUTLET(4) 0.000000

SOUTLET(5) 1.000000

 TBACK .9041468

 ERT(1) 4.094082

 ERT(2) 8.094082

 ERT(3) 4.094082

 ERT(4) 4.094082

 ERT(5) 10.09408

 Observe that, from the expected number of units on backorder, the best solution is to put two units

at the depot, and one unit at each of locations 2, 3, and 5. This version deals with only a single product

and a single DC. See Sherbrooke (1992) for various extensions to this simple version.

Inventory, Production & Supply Chain Mgt. Chapter 17 541

17.8 DC With Holdback Inventory/Capacity
Fisher and Raman (1996) describe an approach, called “accurate response” used at the apparel firm,

Sport Obermeyer, to help reduce inventories for style goods. The basic setting is two periods with

multiple outlets. In the first period, some inventory or production capacity may be held back in order to

be allocated in the second period to the outlets that look like they might otherwise run out in the second

period. This model has an upper limit, HBLIM, on the amount of inventory or capacity that can be held

back. In the Sport Obermeyer case, this corresponds to the limited production capacity available at the

end of the first period to react to demands observed during the first period. The model allows demands

in the second period to be correlated with demands in the first period via the SHIFT parameter in the

same manner Fisher and Raman (1996) do for Sport Obermeyer. SHIFT(R, S) is the amount by which

all demands for retail point (or product) R, are shifted up if the demand scenario in the first period was

S.

MODEL:

! Holdback inventory model(HOLDBACK). A central facility

can holdback some inventory or capacity after the first

period to allocate to outlets likely to run out in

the second period;

SETS:

 RETAILP/1..2/: C, V, S1, P1, P2, H1, H2;

 SCENE1/1..4/:;

 SCENE2/1..3/:;

 RXS1(RETAILP, SCENE1): DEM1, SHIFT, Z1, ALLOC;

 RXS2(RETAILP, SCENE2): DEM2;

 RXS1XS2(RETAILP, SCENE1, SCENE2): Z2;

ENDSETS

DATA:

 C = 50 60; ! Cost/unit for each retail point;

 HBLIM = 80; ! Max available for period 2;

 V = 120 160;! Selling price at each retail point;

 P1=10 11; ! Shortage penalty, lost sales, period 1;

 P2=12 17; ! Shortage penalty, lost sales, period 2;

 H0 = 4; ! Holding cost per unit in holdback;

 H1 = 5 6; ! Holding cost at end of period 1;

 H2 = -18 -23; ! At end of period 2;

 DEM1 = 90 60 100 210 ! Demands by scenario;

 50 102 87 45;

 DEM2 = 50 60 100

 70 45 87;

 SHIFT= 12 -10 13 19 ! Shift in period 2 demand;

 -11 14 -8 -15; ! based on period 1 demand;

ENDDATA

!---;

! Count number of scenarios;

NS1 = @SIZE(SCENE1);

NS2 = @SIZE(SCENE2);

MAX = REVENUE - PCOST - SHORT1 - SHORT2 - HOLD0 - HOLD1 - HOLD2;

PCOST = @SUM(RXS1(I, K1):

 C(I) * (S1(I) + ALLOC(I, K1))/NS1;

);

! Amount ordered = held back + initial allocation;

S = HOLDBK + @SUM(RETAILP(I): S1(I));

542 Chapter 17 Inventory, Production & Supply Chain Mgt.

! Limits on amount available for second period;

@BND(0, HOLDBK, HBLIM);

! Set Z1 = lost sales in period 1;

@FOR(RXS1(I, K1):

 Z1(I, K1) >= DEM1(I, K1) - S1(I);

);

! Set Z2 = lost sales in period 2;

@FOR(RXS1XS2(I, K1, K2):

 Z2(I, K1, K2) >= DEM2(I, K2) + SHIFT(I, K1) -

 (S1(I) - DEM1(I, K1) + Z1(I, K1) + ALLOC(I, K1));

);

! Cannot allocate more than was held back;

@FOR(SCENE1(K1):

 @SUM(RETAILP(I): ALLOC(I, K1)) <= HOLDBK;

);

! Compute various average costs;

HOLD0 = H0 * HOLDBK;

HOLD1 = @SUM(RXS1(I, K1):

H1(I)* (S1(I) - DEM1(I, K1) + Z1(I, K1)))/ NS1;

! If there is a salvage value, HOLD2 could be < 0;

@FREE(HOLD2);

HOLD2 = @SUM(RXS1XS2(I, K1, K2): H2(I) *

 (S1(I) - DEM1(I, K1) + Z1(I, K1) + ALLOC(I, K1)

 - DEM2(I, K2) - SHIFT(I, K1) + Z2(I, K1, K2)))

 /(NS1 * NS2);

SHORT1 = @SUM(RXS1(I, K1): P1(I) * Z1(I, K1))/NS1;

SHORT2 = @SUM(RXS1XS2(I, K1, K2):

P2(I) * Z2(I, K1, K2))/(NS1 * NS2);

REVENUE = @SUM(RXS1XS2(I, K1, K2): V(I) *

 (DEM1(I, K1) - Z1(I, K1)

 + DEM2(I, K2) + SHIFT(I, K1) - Z2(I, K1, K2)))

 /(NS1 * NS2);

END

Part of the solution is:

Optimal solution found at step: 78

Objective value: 23496.58

 Variable Value Reduced Cost

 REVENUE 44060.00 0.0000000

 PCOST 20600.00 0.0000000

 SHORT1 0.0000000 0.1000000

 SHORT2 49.91667 0.0000000

 HOLD0 320.0000 0.0000000

 HOLD1 745.0000 0.0000000

 HOLD2 -1151.500 0.0000000

 S 406.0000 0.0000000

 HOLDBK 80.00000 -2.000000

 S1(1) 210.0000 0.0000000

 S1(2) 116.0000 0.0000000

 Z1(1, 1) 0.0000000 29.00000

 Z1(1, 2) 0.0000000 29.00000

 Z1(1, 3) 0.0000000 21.00000

 Z1(1, 4) 0.0000000 0.0000000

Inventory, Production & Supply Chain Mgt. Chapter 17 543

 Z1(2, 1) 0.0000000 28.97500

 Z1(2, 2) 0.0000000 25.39167

 Z1(2, 3) 0.0000000 28.97500

 Z1(2, 4) 0.0000000 26.55833

ALLOC(1, 1) 0.0000000 8.000000

ALLOC(1, 2) 0.0000000 11.58333

ALLOC(1, 3) 3.000000 0.0000000

ALLOC(1, 4) 79.00000 0.0000000

ALLOC(2, 1) 10.00000 0.0000000

ALLOC(2, 2) 80.00000 0.0000000

ALLOC(2, 3) 50.00000 0.0000000

ALLOC(2, 4) 1.000000 0.0000000

Z2(1, 1, 1) 0.0000000 9.500000

Z2(1, 1, 2) 0.0000000 9.500000

Z2(1, 1, 3) 0.0000000 9.500000

Z2(1, 2, 1) 0.0000000 9.500000

Z2(1, 2, 2) 0.0000000 9.500000

Z2(1, 2, 3) 0.0000000 9.500000

Z2(1, 3, 1) 0.0000000 9.500000

Z2(1, 3, 2) 0.0000000 9.500000

Z2(1, 3, 3) 0.0000000 1.500000

Z2(1, 4, 1) 0.0000000 9.500000

Z2(1, 4, 2) 0.0000000 8.583333

Z2(1, 4, 3) 40.00000 0.0000000

Z2(2, 1, 1) 0.0000000 12.83333

Z2(2, 1, 2) 0.0000000 12.83333

Z2(2, 1, 3) 0.0000000 3.583333

Z2(2, 2, 1) 0.0000000 12.83333

Z2(2, 2, 2) 0.0000000 12.83333

Z2(2, 2, 3) 7.000000 0.0000000

Z2(2, 3, 1) 0.0000000 12.83333

Z2(2, 3, 2) 0.0000000 12.83333

Z2(2, 3, 3) 0.0000000 3.583333

Z2(2, 4, 1) 0.0000000 12.83333

Z2(2, 4, 2) 0.0000000 12.83333

Z2(2, 4, 3) 0.0000000 1.166666

 The solution recommends ordering 406 units in total and holding back 80 units to allocate out later

to the outlets that appear to need it. From the ALLOC variables, you can see that if scenario 4 occurs,

then retail point 1 gets most of the held back units, otherwise retail point 2 gets most of the held back

units.

17.9 Multiproduct, Constrained Dynamic Lot Size Problems
In many production settings, we know demand is not stationary. That is, the demand varies in a

predictable way. If we are willing to disregard uncertainty, then efficient methods exist for scheduling

production of products over time. One of the earliest occurrences of this problem was the case of a single

product with no capacity constraints by Wagner and Whitin (1958). They referred to this problem as the

dynamic lot size problem.

 We will look at the more general case of multiple products. The most common interaction between

products is competition for scarce resources. We first consider the case where each product has

essentially the same cost and demand structure as a single product dynamic lot size problem. The

544 Chapter 17 Inventory, Production & Supply Chain Mgt.

products interact by competing for scarce production capacity. This situation can be thought of as a

single stage material requirements planning (MRP) problem where production capacities, setup costs,

and holding costs are explicitly considered and optimum solutions are sought.

 Examples might be the scheduling of production runs of different types of home appliances on an

appliance assembly line or the scheduling of different types of automotive tires onto a tire production

line. In the applications described by Lasdon and Terjung (1971) and King and Love (1981), several

dozen tire types compete for scarce capacity on a few expensive tire molding machines.

 The general situation can be described formally by the following example.

17.9.1 Input Data
P = number of products;

T = number of time periods;

dit = demand for product i in period t, for i = 1, 2, ..., P; t = 1, 2, ..., T;

hit = holding cost charged for each unit of product i in stock at end of period t;

cit = cost per unit of each product i produced in period t;

sit = setup cost charged if there is any production of product i in period t;

at = production capacity in period t. We assume the units (e.g., ounces, pounds, grams, etc.)

have been chosen for each product, so producing one unit of any product uses one unit of

production capacity.

 There have been many mathematical programming formulations of this problem. Many of them bad

from a computational viewpoint. Lasdon and Terjung (1971) describe a good formulation that has been

profitably used for many years at the Kelly-Springfield Tire Company. The following formulation due

to Eppen and Martin (1987) appears to be one of the best and enjoys the additional benefit of being

moderately easy to describe. The decision variables used in this formulation are:

xist = fraction of demand in periods s through t of product I, which is produced in period s,

where:

 1 s t T;

 = 0 otherwise.

yit = 1 if any product i is produced in period t,

 = 0 otherwise.

It is useful to compute the variable cost associated with variable xist. It is:

gist = cis * (dis di,s+1 + ... + dit) + di,s+1 * his + di,s+2 * (his + hi,s+1) + ...+ dit * (his + hi,s+1 + ...

+ hi,t-1)

 Similarly, it is useful to compute the amount of production, pist, in period s associated with using

variable xist:

pist = dis + di,s+1 + ... + dit

The objective function can now be written:

Min s yit
t

T

i

P

it
==

11

+
 s

T

=

1 t

T

=

2
)g xist ist

Inventory, Production & Supply Chain Mgt. Chapter 17 545

There will be three types of constraints. Specifically:

constraints that cause demand to be met each period for each product,

constraints that, for each product and period, force a setup cost to be incurred if there was any

production of that product, and

constraints that force total production to be within capacity each period.

The constraints can be written as:

a) x ilt
t

T

=

1

 = 1, for i = 1, 2, …, P,

1

1

1

0
T s

ist irs

t s r

x x
−

−

= =

− = , for i = 1, 2, …, P and s = 2, 3, …, T

b) yis − xiss − xis,s+1 − … − xis,T 0, for i = 1, 2, …, P, and s = 1, 2, …, T,

c) p +xist
t

T

i

P

ist
==

s1

 for s = 1, 2, …, T

All variables are required to be nonnegative. yit is required to be either 0 or 1.

 If any of the dit = 0, then there must be a slight modification in the formulation. In particular, if pist

= 0, then xist should not appear in constraint set (b). Also, if pist = 0 and s < t, then variable xist may be

dropped completely from the formulation.

17.9.2 Example
The parameters of a two-product, constrained, dynamic lotsize problem are as follows:

Demand May June July August September October

Product A: 40 60 100 40 100 200

Product B: 20 30 40 30 25 35

Setup Cost

Product A: 100 100 150 150 205 200

Product B: 30 40 30 55 45 45

Variable

Cost/Unit

Product A: 5 6 7 8 9 10

Product B: 2 4 4 5 5 5

Unit holding

cost/period

Product A: 1 1 2 2 3 2

Product B: 2 1 1 2 1 2

 Production capacity is 200 units per period, regardless of product. Two products can be produced

in a period.

546 Chapter 17 Inventory, Production & Supply Chain Mgt.

 An LP/IP formulation for this example appears as follows:

MODEL:

! Two Product Capacitated Lotsizing Problem.

! Yit = 1 if product i is produced in period t,

! XAst = 1 if demands in periods s through t are

! satisfied from production in period s, for product

! A,

! XBst = 1 etc. for product B;

MIN = 100* YA1 + 100* YA2 + 150* YA3

 + 150* YA4 + 205* YA5 + 200* YA6

 + 30* YB1 + 40* YB2 + 30* YB3

 + 55* YB4 + 45* YB5 + 45* YB6

 + 200* XA11 + 560* XA12 + 1260* XA13

 + 1620* XA14 + 2720* XA15 + 5520* XA16

 + 360* XA22 + 1060* XA23 + 1420* XA24

 + 2520* XA25 + 5320* XA26 + 700* XA33

 + 1060* XA34 + 2160* XA35 + 4960* XA36

 + 320* XA44 + 1320* XA45 + 3920* XA46

 + 900* XA55 + 3300* XA56 + 2000* XA66

 + 40* XB11 + 160* XB12 + 360* XB13

 + 540* XB14 + 740* XB15 + 1055* XB16

 + 120* XB22 + 320* XB23 + 500* XB24

 + 700* XB25 + 1015* XB26 + 160* XB33

 + 310* XB34 + 485* XB35 + 765* XB36

 + 150* XB44 + 325* XB45 + 605* XB46

 + 125* XB55 + 335* XB56 + 175* XB66;

! For product A:

! If a production lot was depleted in period

! i-1 (the - terms), then a production run of some !sort must be started

in period i (the + terms);

[A1] + XA11 + XA12 + XA13 + XA14 + XA15 + XA16 = + 1;

[A2] - XA11 + XA22 + XA23 + XA24 + XA25 + XA26 = 0;

[A3] - XA12 - XA22 + XA33 + XA34 + XA35 + XA36 = 0;

[A4] - XA13 - XA23 - XA33 + XA44 + XA45 + XA46 = 0;

[A5] - XA14 - XA24 - XA34 - XA44 + XA55 + XA56 = 0;

[A6] - XA15 - XA25 - XA35 - XA45 - XA55 + XA66 = 0;

! The setup forcing constraints for A;

[FA1] YA1 - XA11 - XA12 - XA13 - XA14 - XA15

 - XA16 >= 0;

[FA2] YA2 - XA22 - XA23 - XA24 - XA25 - XA26 >= 0;

[FA3] YA3 - XA33 - XA34 - XA35 - XA36 >= 0;

[FA4] YA4 - XA44 - XA45 - XA46 >= 0;

[FA5] YA5 - XA55 - XA56 >= 0;

[FA6] YA6 - XA66 >= 0;

! Same constraints for product B;

[B1] + XB11 + XB12 + XB13 + XB14 + XB15 + XB16 = + 1;

[B2] - XB11 + XB22 + XB23 + XB24 + XB25 + XB26 = 0;

[B3] - XB12 - XB22 + XB33 + XB34 + XB35 + XB36 = 0;

[B4] - XB13 - XB23 - XB33 + XB44 + XB45 + XB46 = 0;

[B5] - XB14 - XB24 - XB34 - XB44 + XB55 + XB56 = 0;

[B6] - XB15 - XB25 - XB35 - XB45 - XB55 + XB66 = 0;

Inventory, Production & Supply Chain Mgt. Chapter 17 547

! The setup forcing constraints;

[FB1] YB1 - XB11 - XB12 - XB13 - XB14 - XB15

 - XB16 >= 0;

[FB2] YB2 - XB22 - XB23 - XB24 - XB25 - XB26 >= 0;

[FB3] YB3 - XB33 - XB34 - XB35 - XB36 >= 0;

[FB4] YB4 - XB44 - XB45 - XB46 >= 0;

[FB5] YB5 - XB55 - XB56 >= 0;

[FB6] YB6 - XB66 >= 0;

! Here are the capacity constraints for each period;

!The coefficent of a variable is the associated lotsize;

[CAP1] 40* XA11 + 100* XA12 + 200* XA13

 + 240* XA14 + 340* XA15 + 540* XA16

 + 20* XB11 + 50* XB12 + 90* XB13 + 120* XB14

 + 145* XB15 + 180* XB16 <= 200;

[CAP2] 60* XA22 + 160* XA23 + 200* XA24

 + 300* XA25 + 500* XA26 + 30* XB22

 + 70* XB23 + 100* XB24 + 125* XB25 + 160* XB26

 <= 200;

[CAP3] 100* XA33 + 140* XA34 + 240* XA35

 + 440* XA36 + 40* XB33 + 70* XB34

 + 95* XB35 + 130* XB36 <= 200;

[CAP4] 40* XA44 + 140* XA45 + 340* XA46

 + 30* XB44 + 55* XB45 + 90* XB46 <= 200;

[CAP5] 100* XA55 + 300* XA56 + 25* XB55

 + 60* XB56 <= 200;

[CAP6] 200* XA66 + 35* XB66 <= 200;

! Declare the setup variables integer;

@BIN(YA1); @BIN(YA2);

@BIN(YA3); @BIN(YA4);

@BIN(YA5); @BIN(YA6);

@BIN(YB1); @BIN(YB2);

@BIN(YB3); @BIN(YB4);

@BIN(YB5); @BIN(YB6);

END

 The interpretation of the Xijk variables and the constraint rows 2 through 7 can perhaps be better

understood with the picture in the figure below:

Example Solution

548 Chapter 17 Inventory, Production & Supply Chain Mgt.

 The demand constraints, 2 through 7, force us to choose a set of batch sizes to exactly cover the

interval from 1 to 6. If an arrow from period 1 terminates at the end of period 3 (production run in period

1 is sufficient for only the first three periods), then another arrow must start at the end of period 3.

 If we solve it as an LP (i.e., with the constraints Yit = 0 or relaxed to 0 < Yit < 1), we get a solution

with cost $5,968.125.

 When solved as an IP, we get the following solution:

Objective Function Value 6030.00000

 Variable Value

 YA1 1.000000

 YA2 1.000000

 YA6 1.000000

 YB1 1.000000

 YB3 1.000000

 YB5 1.000000

 XA11 0.666667

 XA15 0.333333

 XA25 0.666667

 XA66 1.000000

 XB12 1.000000

 XB34 1.000000

 XB56 1.000000

 The production amounts can be read off the coefficients of the nonzero X variables in the capacity

constraints of the LP. This solution can be summarized as follows:

Product A Product B

Period Production Period Production

1 140

(0.6667 40 + 0.3333 340)

1 50

2 200

(0.6667 300)

2 0

3 0 3 70

4 0 4 0

5 0 5 60

6 200 6 0

Inventory, Production & Supply Chain Mgt. Chapter 17 549

A general, set-based formulation for this example follows:

MODEL:

SETS: ! Multiproduct capacitated lotsizing (CAPLOT);

 TIME ;

 PROD: ST, ! Setup time for product I;

 PT; ! Production time/unit for product I;

 PXT(PROD, TIME):

 D, ! Demand for prod I in period S;

 K, ! Setup cost for prod I in period S;

 C, ! Cost/unit for prod I in period S;

 H, ! Holding cost/unit for prod I, end of period S;

 MAKE, ! Amount to make of I in period S;

 Y; ! = 1 if produce I in period S, else 0;

 PXTXT(PROD, TIME, TIME)| &2 #LE# &3:

 X, ! Fraction of demands in S through T satisfied

 by production in period S;

 VC, ! Variable cost of getting an item from S to T;

 TP; ! Total production in the batch: (I,S,T);

ENDSETS

DATA:

 CAP = 200; ! Capacity each period;

 PROD= A, B; ! The products;

 ST = 0 0; ! Setup time for each product;

 PT = 1 1; ! Production time/unit for each product;

 TIME= MAY JUN JUL AUG SEP OCT;

 D = 40 60 100 40 100 200

 20 30 40 30 25 35;

 K = 100 100 150 150 205 200

 30 40 30 55 45 45;

 H = 1 1 2 2 3 2

 2 1 1 2 1 2;

 C = 5 6 7 8 9 10

 2 4 4 5 5 5;

ENDDATA

!--;

@FOR(PXT(I, S):

 VC(I, S, S) = C(I, S);

 TP(I, S, S) = D(I, S);

);

@FOR(PXTXT(I, S, T) | S #LT# T:

! Variable cost of getting product I from S to T;

VC(I, S, T) = VC(I, S, T-1) + H(I, T - 1);

! Total demand for I over S to T;

TP(I, S, T) = TP(I, S, T-1) + D(I, T);

);

MIN = @SUM(PXT(I, T): K(I, T) * Y(I, T))

 + @SUM(PXTXT(I, S, T):

 X(I, S, T) *

 @SUM(PXT(I, J) | S #LE# J #AND# J #LE# T:

 D(I, J) * VC(I, S, J)));

! Capacity constraints;

@FOR(TIME(S):

 @SUM(PXT(I, S): ST(I) * Y(I, S)) +

550 Chapter 17 Inventory, Production & Supply Chain Mgt.

 @SUM(PXTXT(I, S, T):

 TP(I, S, T) * PT(I) * X(I, S, T)) <= CAP;);

! Demand constraints;

@FOR(PROD(I):

! First period must be covered;

 @SUM(PXTXT(I, S, T)| S #EQ# 1: X(I, 1, T)) = 1;

! For subsequent periods, if a run ended in S-1, then

we must start a run in S;

 @FOR(TIME(S)| S #GT# 1:

 @SUM(PXT(I, J)| J #LT# S: X(I, J, S - 1)) =

 @SUM(PXTXT(I, S, J): X(I, S, J));

););

! Setup forcing constraints;

@FOR(PXT(I, S):

 @BIN(Y(I, S));

 Y(I, S) >= @SUM(PXTXT(I, S, T):

 @SIGN(TP(I, S, T)) * X(I, S, T));

);

! Compute amount made in each period;

@FOR(PXT(I, S):

 @FREE(MAKE(I, S));

 MAKE(I, S) =

 @SUM(PXTXT(I, S, T): TP(I, S, T) * X(I, S, T));

);

END

With comparable solution:

Optimal solution found at step: 110

Objective value: 6030.000

Branch count: 2

 Variable Value Reduced Cost

MAKE(A, 1) 150.0000 0.0000000

MAKE(A, 2) 190.0000 0.0000000

MAKE(A, 6) 200.0000 0.0000000

MAKE(B, 1) 50.00000 0.0000000

MAKE(B, 3) 70.00000 0.0000000

MAKE(B, 5) 60.00000 0.0000000

 Thus, we make production runs for product A in periods 1, 2, and 6. Production runs for product B

are made in periods 1, 3, and 5.

17.9.3 Extensions
There are a variety of extensions to this model that may be of practical interest, such as:

Carry-over-setups. It may be a setup cost is incurred in period s only if there was production in

period s, but no production in period s - 1. A straightforward, though not necessarily good, way

of handling this is by introducing a new variable, zit, related to yit by the relationship: zi

yit − yi,t-1. The setup cost is charged to zit rather than yit.

Inventory, Production & Supply Chain Mgt. Chapter 17 551

Multiple machines in parallel. There may be a choice among M machines on which a product can

be run. This may be handled by appending an additional subscript m, for m = 1, 2, ..., M, to the

xist and yit variables. The constraints become:

(a')
 t

T

=

1
x i tm

m

M

1
1=

 = 1 for i = 1, 2, …, P,

 t

T

=

s
x i tm

m

m

s
1=

 −
r

s

=

−

1

1

xi, r, s-1, m
m

M

=

1
= 0 for i = 1, 2, …, P;

 s = 2, …, T.

(b') yism − xissm − xi,s,s+1,m − … − xi,s,T,m 0 for i = 1, 2, …, P;

 s = 1, 2, …, T;

 m = 1, 2, …, m.

(c')
 i

P

=

I
p x apstm

t s

T

istm sm
=

 for s = 1, 2, …, T, and

 m = 1, 2, …, M.

 If the machines are non-identical, then the manner in which pistm is calculated will be machine

dependent.

17.10 Problems
1. The Linear Products Company (LPC) of Gutenborg, Iowa, distributes a folding bicycle called the

Brompton. Demand for the Brompton over the past year has been at the rate of 5.9 per month, fairly

uniformly distributed over the year. The Brompton is imported from a manufacturer in the United

Kingdom. For a variety of reasons, including customs processing, small size of the manufacturer,

averages of ocean shipping, and getting the shipment from the port of entry to Iowa, the lead time

from the manufacturer to LPC is two months. The fixed cost of placing an order, taking into account

international phone calls, shipping cost structure, and general order processing is $200. The cost

and selling price per bicycle vary depending upon the features included, but a typical Brompton

costs LPC $500. LPC sells a typical Brompton for $900. LPC uses a cost of capital of 12% per year.

a) What order size do you recommend for LPC?

b) LPC did a statistical analysis of their sales data for the past year and found the standard

deviation in monthly demand to be 2.1. LPC estimates a customer who is ready to buy, but

finds LPC out of stock, will buy from someone else with probability .8, rather than wait.

What reorder point do you recommend for LPC?

c) LPC did an analysis of their inbound shipments and found that the lead time has a standard

deviation of 3 weeks. Extending (b) above, how much is this lead time uncertainty costing

LPC?

d) Suppose LPC could reduce lead time to a reliable one month. Compared to (c) above, how

much would this change be worth?

552 Chapter 17 Inventory, Production & Supply Chain Mgt.

2. A company keeps fleets of vehicles at a number of sites around the country. At each site, the vehicles

can be classified into two types, light and heavy. A heavy vehicle costs more per day, but it can do

any task that a light vehicle can do. A question of some concern is what mix of vehicles should the

company have at each site. If the firm does not have enough vehicles of the appropriate size to meet

the demand on a given day, it rents the vehicles. Some cost data were collected on the cost of various

vehicle types:

Vehicle

type

Daily
fixed
cost

Daily
variable

cost(if used)

Owned Light $32 $40

Owned Heavy $44 $54

Rented Light 0 $175

Rented Heavy 0 $225

 At a particular site, the company collected demand data for the number of vehicles required on

each of seven days:

Day Lights Heavies

1 6 0

2 3 2

4 8 3

5 2 1

6 4 4

7 1 2

 Based on just the above data, what is your recommendation for the number of vehicles to own

of each type?

3) A recent option in U.S. tax law is the flexible spending account. If you exploit this option, you are

allowed to specify before the year begins, an amount of your salary to be withheld and placed into

a "flexible spending" account. During the year, you may withdraw from this account to pay medical

expenses that are neither covered by your regular medical insurance, nor deductible on your income

tax return as expenses. This account has a "use or lose it" nature in that any money left over in the

account at the end of the year is lost to you. You are otherwise not taxed on the amount of money

you set aside in this account.

 a) Suppose your tax rate is 35% and you estimate that your uncovered medical expenses

during next year have an expected amount of $2400 with a standard deviation of $1100.

You are contemplating setting aside S before tax dollars. Write an expression for the

expected after tax value of setting aside one more dollar.

 b) How much money should you set aside?

 c) How would you go about estimating the distribution of your medical expenses for next

year?

553

18

Design & Implementation of

Service and Queuing Systems

"If you think you have reservations, you're at the wrong place."

-Sign in Ed Debevec's Restaurant

18.1 Introduction
The distinctive feature of a service system is that it cannot stock its product in anticipation of impending

demand. An organization whose main product is a service can prepare for increased demand only by

increasing its capacity. A major question in planning a service system is capacity sizing. How many

cashiers, ticket takers, staffers at a toll plaza, phone lines, computers at an internet service provider,

runways at an airport, tables at a restaurant, fire stations, beds in a hospital, police cars in a region,

restroom facilities, elevators, or machine maintenance personnel are needed so as to provide acceptable

service?

 Capacity planning for a service facility involves three steps:

1. Data collection. Assemble all relevant historical data or set up a system for the on-going

collection of demand data.

2. Data analysis. Forecast demand; ascertain the probabilistic components of the demand;

determine the minimum acceptable capacity for each demand period.

3. Requirements recommendation. Taking into account such factors as the probabilistic

nature of demand, cost of poorly served demand, capacity change costs and standard work

shift patterns, recommend a capacity plan that minimizes all relevant expected costs.

18.2 Forecasting Demand for Services
Standard forecasting methods apply as well to demand for services as to the demand for goods.

Long-range forecasting of demand for services must incorporate the fact that demand for services does

not react to changes in the health of the economy in the same way as demand for goods. For example,

demand for goods such as food is relatively unaffected by the health of the economy; whereas, demand

for luxury services such as restaurant dining tends to be diminished by economic recessions. Demand

for fast food dining service has been increased by the advent of the working mother.

554 Chapter 18 Queuing Systems

 Shorter range forecasting of the demand for services is concerned in large part with the measurement

of the cyclical components of demand. In particular, one wants to identify (say for a service that

processes phone calls) the:

 - hour of the day effect,

 - day of the week effect (e.g., the number of calls per day to the 911 emergency number in

New York City has been found to vary somewhat predictably almost by a factor of two

based on the day of the week),

 - week of year effect,

 - moveable feast effect (e.g., Mother's Day, Labor Day, Easter, etc),

 - advertising promotions.

18.3 Waiting Line or Queuing Theory
Queuing theory is a well-developed branch of probability theory that has long been used in the telephone

industry to aid capacity planning. A. K. Erlang performed the first serious analysis of waiting lines or

queues for the Copenhagen telephone system in the early 20th century. Erlang's methods are still widely

used today in the telephone industry for setting various capacities such as operator staffing levels. For

application at the mail order firm, L.L. Bean, see Andrews and Parsons (1993). Gaballa and Pearce

(1979) describe applications at Qantas Airline. An important recent application of queuing models is in

telephone call centers. There are two kinds of call centers: 1) In-bound call centers that handle incoming

calls, such as orders for a catalog company, or customer support for a product; and 2) Out-bound call

centers where telephones place calls to prospective customers to solicit business, or perhaps to remind

current customers to pay their bills.

 It is useful to note that a waiting line or queue is usually the negative of an inventory. Stock carried

in inventory allows an arriving customer to be immediately satisfied. When the inventory is depleted,

customers must wait until units of product arrive. The backlogged or waiting customers constitute a

negative inventory, but they can also be thought of as a queue. A more explicit example is a taxi stand.

Sometimes taxi cabs will be in line at the stand waiting for customers. At other times, customers may be

in line waiting for cabs. What you consider a queue and what you consider an inventory depends upon

whether you are a cab driver or a cab customer.

 In queuing theory, a service system has three components:

1) an arrival process,

2) a queue discipline, and

3) a service process.

The figure below illustrates:

Arrival Process → Queue discipline → Service Process

(e.g., One

arrival every 7

minutes on

average.)

 (e.g., First-come

first-serve), but

if 10 are waiting,

then arrivals are

lost.

 (e.g., 3 identical

servers). Mean

service time is 9

minutes.

A good introduction to queuing theory can be found in Gross and Harris (1998).

Queuing Systems Chapter 18 555

18.3.1 Arrival Process
We distinguish between two types of arrival process: i) finite source and ii) infinite source. An example

of finite source is 10 machines being watched over by a single repair person. When a machine breaks

down, it corresponds to the arrival of a customer. The number of broken down machines awaiting repair

is the number of waiting customers. We would say this system has a finite source of size ten. With a

finite population, the arrival rate is reduced as more customers enter the system. When there are already

8 of 10 machines waiting for repairs or being repaired, then the arrival rate of further customers (broken

machines) is only 2/10 of the arrival rate if all the machines were up and running and thus eligible to

breakdown.

 An airline telephone reservation system, on the other hand, would typically be considered as having

an infinite calling population. With an infinite population, the arrival rate is unaffected by the number

of customers already in the system.

 In addition to the type of arrival process, a second piece of information we need to supply is the

mean time between calls. If the calling population is infinite, then this is a single number independent

of the service process. However, for a finite population, there is a possibility for ambiguity because the

arrival rate at any moment depends upon the number waiting. The ambiguity is resolved by concentrating

on only one of the supposedly identical customers. It is sufficient to specify the mean time until a given

customer generates another call, given that he just completed service. We call this the mean time between

failures or MTBF for short.

 A fine point that we are glossing over is the question of the distribution (as opposed to the mean) of

the time between calls. Two situations may have the same mean time between calls, but radically

different distributions. For example, suppose that in situation 1 every interval between calls is exactly

10 minutes, while, in situation 2, 10% of the intervals are 1 minute long and 90% of the intervals are 11

minutes. Both have the same mean, but it seems plausible that system 2 will be more erratic and will

incur more waiting time. The standard assumption is that the distribution of the time between calls is the

so-called exponential. Happily, it appears that this assumption is not far off the mark for most real

situations.

 The exponential distribution plays a key role in the models we will consider. For the infinite source

case, we assume that the times between successive arrivals are distributed according to the exponential

distribution. An exponential density function is graphed in the figure 18.1:

Figure 18.1. An exponential distribution with mean 2.

556 Chapter 18 Queuing Systems

 If r is the arrival rate, x is a value of the random variable, and e is the number 2.718284, then the

frequency or density function plotted in Figure 18.1, is given by f(x) = re-rx. The mean and standard

deviation are both 1/r. The key assumption underlying the exponential distribution is that the probability

that the event of interest (e.g., the arrival of a customer or the breakdown of a specified machine) is a

constant is independent of when the previous event occurred. Another way of stating this feature is via

the “memoryless property”. That is, regardless of how long it has been since the previous arrival, the

distribution of the time until the next arrival has the exponential distribution with mean 1/r.

18.3.2 Queue Discipline
All the models we consider use a first-come first-serve queue discipline. The only other piece of

information required is the waiting capacity of the system. Calls or customers that arrive while there is

waiting space join the system and, if necessary, wait for service. A demand or customer that finds all

waiting spaces filled is lost. Examples are: a reservation office that has 10 incoming phone lines, but

only four reservationists. A reservationist puts an incoming call on "hold" if all reservationists are

already occupied. If all 10 lines are occupied, a caller will get a "busy" signal. An analogous system is

a gasoline station with 4 pumps and room for 6 cars to wait behind the 4 cars being served. A prospective

customer is said to balk if s/he refuses to join the queue. A somewhat similar action, reneging, is said to

occur if a customer decides to leave the queue while waiting.

18.3.3 Service Process
The service process is characterized by two attributes:

a) the number of servers (assumed identical).

b) the service time distribution.

The most common assumption is that service times follow the exponential distribution.

 An implication of this distribution is that the mean service time equals the standard deviation.

Therefore, comparing the mean with the standard deviation is a simple data check.

 In contrast to arrival processes, there is little a priori justification for expecting any particular type

of service time distribution. One must examine the data closely to select the appropriate approximate

distribution. If the standard deviation in service time is much smaller than the mean service time, then a

constant service time is a reasonable approximation. If the standard deviation approximately equals the

mean, then the exponential assumption is reasonable.

 The exponential distribution fits surprisingly well in many situations. Coffman and Wood (1969),

for example, found that job compute times on a computer had a standard deviation somewhat higher

than the mean. Nevertheless, the shape of the distribution was essentially exponential-like with the peak

close to zero and a long tail to the right.

18.3.4 Performance Measures for Service Systems
There is a variety of measures of performance of a service system. The three measures we will consider

are:

 1) Probability of immediate service.

 2) Average waiting time.

 3) Average number waiting.

Queuing Systems Chapter 18 557

18.3.5 Stationarity
In general, queuing models assume that demand is stationary (i.e., stable over time) or that the system

has reached steady state. Obviously, this cannot be true if demand is spread over a sufficiently long

period of time (e.g., an entire day). For example, it is usually obvious that the mean time between phone

calls at 11:00 a.m. on any given day is not the same as the mean time at 11:00 p.m. of that same day. We

define the load on a service system as the product of the mean arrival rate times the means service time

per customer. Load is a unit-less quantity, which is a lower bound on the number of servers one would

need to process the arriving work without having the queue grow without bound. We should probably

be careful about using a steady-state-based queuing model if load is not constant for a reasonably long

interval. What constitutes a “reasonable long interval”? To answer that question, let us define a notation

we will use henceforth:

R = mean arrival rate,

T = mean or expected service time,

S = number of servers.

 The quantity T/(S – R*T) is a simple definition of “a reasonably long interval”. Notice that it

becomes unbounded as the load approaches S.

18.3.6 A Handy Little Formula
There is a very simple yet general relationship between the average number in system and the average

time in system. In inventory circles, this relationship is known as the inventory turns equation. In the

service or queuing world, it is known as Little's Flow Equation, see Little (1961). In words, Little's

equation is:

(average number in systems) = (arrival rate) * (average time-in-system)

Reworded in inventory terminology, it is:

(average inventory level) = (sales rate) * (average time-in-system)

Inventory managers frequently measure performance in "inventory turns", where:

(inventory turns) = 1/(average time-in-system).

Rearranging the Little's Flow equation:

(average inventory level) = (sales rate)/(inventory turns)

or

(inventory turns) = (sales rate)/(average inventory level)

 Little's Equation is very general. The only essential requirement is that the system to which it is

applied cannot be drifting off to infinity. No particular probabilistic assumptions are required.

18.3.7 Example
Customers arrive at a rate of 25 per hour on average. Time-in-system averages out to 12 minutes. What

is the average number of customers in system?

Ans. (Average number in system) = (25/hour) * 12 minutes * 1 hour/60 minutes)

= 25 * (1/5) = 5

558 Chapter 18 Queuing Systems

18.4 Solved Queuing Models
There are five situations or models that we will consider. They are summarized in Table 1. The key

feature of these situations is that there are fairly simple formulae describing the performance of these

systems.

Table 1:

Solved Service System Models
Model

Feature

I

II

III

IV

V
Queue

Notation

(M/G/c/c) (M/M/c) (M/G/) (F/M/c) (M/G/1)

Population

Size

Infinite Infinite Infinite Finite Infinite

Arrival

Process

Poisson Poisson Poisson General Poisson

Waiting Space None Infinite Infinite Infinite Infinite

Number

of Servers

Arbitrary Arbitrary Infinite Arbitrary 1

Service

distribution

Arbitrary

/General

Exponential Arbitrary

/General

Exponential Arbitrary

/General

Solve

with

@PEL or B(s,a) @PEB or C(s,a) @PPS or

Poisson

@PFS Formula

 The five models are labeled by the notation typically used for them in queuing literature. The

notation is of the form (arrival process/service distribution/number of servers [/number spaces

available] where:

M = exponential (or Markovian) distributed,

G = general or arbitrary,

D = deterministic or fixed, and

F = finite source.

 The two “workhorse” models of this set of five are a) the M/G/c/c, also know as the Erlang loss or

Erlang-B model, and b) the M/M/c, also known as the Erlang C model. LINGO has two built-in

functions, @PEL() and @PEB() that “solve” these two cases. Their use is illustrated below.

18.4.1 Number of Outbound WATS lines via Erlang Loss Model
Some companies buy a certain number of outbound WATS (Wide Area Telephone Service) lines in

order to reduce their long distance charges. An outbound WATS line allows you to make an unlimited

number of long distance calls for a fixed fee. The fixed fee is low enough, so that, if you make a lot of

calls, the cost per call is much lower than if you paid the standard cost/minute rate. Suppose that our

company makes an average of 5 long distance calls per minute during the business day. The average

duration of a call is 4 minutes. The system can be set up, so that, if one of our employees dials a long

distance number, the call will be assigned to a WATS line if one of our WATS lines is available, else

the call will use a regular line at regular rates for the duration of the call. Suppose we acquire 20 WATS

Queuing Systems Chapter 18 559

lines. What fraction of the calls would find all WATS lines busy and thus use a regular line? An

appropriate model is:

 ! Erlang Loss Model;

 ! Any demands that find all servers busy,

 are lost;

 DATA:

 ! Arrival rate;

 R = 5;

 ! Average service time;

 T = 4;

 ! Number of servers;

 S = 20;

 ENDDATA

 LOAD = R * T;

 ! Compute fraction lost;

 FLOST = @PEL(LOAD, S);

The solution is:

Variable Value

 R 5.000000

 T 4.000000

 S 20.000000

 LOAD 20.000000

 FLOST 0.1588920

 Thus, even though we have enough WATS line capacity to handle the average demand, nevertheless

because of randomness, almost 16% of the demand is lost (i.e., overflows into the regular lines).

 There is a statistical economy of scale in service demand (i.e., twice the demand does not require us to

have twice the capacity). To illustrate, suppose we forecast great growth next year and expect the outbound

call rate to be 50 calls per minute rather than 5. If again we acquire just enough WATS lines to handle the

average demand, 50*4 = 200, what fraction of the demand will overflow? If we substitute R = 50 into the

model, we get the solution:

Variable Value

 R 50.00000

 T 4.000000

 S 200.0000

 LOAD 200.0000

 FLOST 0.05435242

 The fraction overflow has dropped to approximately, 5%, even though we are still setting capacity equal

to the average demand.

18.4.2 Evaluating Service Centralization via the Erlang C Model
The Ukallus Company takes phone orders at two independent offices and is considering combining the

two into a single office, which can be reached via an "800" number. Both offices have similar volumes

of 50 phone calls per hour (= .83333/minute) handled by 4 order takers in each office. Each office has

sufficient incoming lines that automatically queue calls until an order taker is available. The time to

process a call is exponentially distributed with mean 4 minutes.

560 Chapter 18 Queuing Systems

 How much would service improve if it were centralized to an office with 8 order takers? The results

are:

 Two-Office
System

One Central
Office

Fraction of calls finding
All servers busy

.6577 .533

Expected waiting time
for calls that wait

6 minutes 3 minutes

Expected waiting
overall (including calls
that do not wait)

3.95 minutes 1.60 minutes

 Thus, the centralized office provides noticeably better (almost twice as good depending upon your

measure), service with the same total resources. Alternatively, the same service level could be achieved

with somewhat fewer resources.

 The above statistics can be computed using the following LINGO model. Note that throughout, we

define a customer’s wait as the customer’s time in system until her service starts. The waiting time does

not include the service time.

 ! Compute statistics for a multi-server system with(QMMC)
 Poisson arrivals, exponential service time distribution.

 Get the system parameters;

 DATA:

 R = .8333333;

 T = 4;

 S = 4;

 ENDDATA

! The model;

! Average no. of busy servers;

 LOAD = R * T;

! Probability a given call must wait;

 PWAIT = @PEB(LOAD, S);

! Conditional expected wait, i.e., given must wait;

 WAITCND = T/(S - LOAD);

! Unconditional expected wait;

 WAITUNC = PWAIT * WAITCND;

The solution is:

Variable Value

 R .833333

 T 4.000000

 S 4.000000

 LOAD 3.333333

 PB .6577216

 CW 6.0000000

 UW 3.946329

Queuing Systems Chapter 18 561

18.4.3 A Mixed Service/Inventory System via the M/G/ Model
Suppose that it takes us 6 minutes to make a certain product (e.g., a hamburger). Demand for the product

arrives at the rate of 2 per minute. In order to give good service, we decide that we will carry 10 units in

stock at all times. Thus, whenever a customer arrives and takes one of our in-stock units, we immediately

place an order for another one. We have plenty of capacity, so that, even if we have lots of units in

process, we can still make a given one in an average time of 6 minutes. Customers who find us out of

stock will wait for a new one to be made. This is called a base stock policy with backlogging:

 Analysis: The number of units on order will have a Poisson

distribution with mean = 2*6 = 12. Thus, if a customer arrives and

there are 2 or less on order, it means there is at least one in stock.

The following model will compute the fraction of customers who have to

wait.

! The M/G/infinity or Base stock Model;

DATA:

 ! Arrival rate;

 R = 2;

 ! Average service time;

 T = 6;

 ! Number units in stock;

 S = 10;

ENDDATA

 LOAD = R * T;

! Compute fraction who have to wait;

 FWAIT = 1 - @PPS(LOAD, S - 1);

! Note, @PPS(LOAD, X) =

 Prob{ a Poisson random variable with mean = LOAD

 has a value less-than-or-equal-to X};

The solution is:

 Variable Value

 R 2.000000

 T 6.000000

 S 10.00000

 LOAD 12.00000

 FWAIT 0.7576077

Thus, more than 75% will have to wait.

18.4.4 Optimal Number of Repairmen via the Finite Source Model.
A textile firm has 10 semiautomatic machines, which occasionally need the services of a repairman,

(e.g., if a thread breaks) in order to put the machine back in service. The repair time has an exponential

distribution with a mean of 1 hour. Physical reasons imply that only one repairman work on a machine

at a time (i.e., a helper does not help). Once repaired, the mean time until the machine jams again is 5

hours. The cost of a fully equipped repairman is $30 per hour. The opportunity cost of a jammed machine

is $350 per hour. How many repairmen should be assigned to these 10 machines?

562 Chapter 18 Queuing Systems

 Using the @PFS function in LINGO, we can construct the following table of expected number of

inoperative machines as a function of the number of repairmen:

No. of
Repairmen

Expected
No. of

Inoperative
Machines

Expected
cost/hour of
Inoperative
Machines

Cost/hour of
Repairmen

Total

expected
cost/hour

0 10.0 $3500.00 $0 $3500.00

1 5.092 $1782.17 $30.00 $1812.17

2 2.404 $841.30 $60.00 $901.30

3 1.804 $631.50 $90.00 $721.50

4 1.689 $591.28 $120.00 $711.28

5 1.670 $584.38 $150.00 $734.38

Thus, it appears that optimum number of repairmen is 4.

 An example LINGO model for computing this table is as follows:

 ! Machine repair

 SETS:

 NREP/1..5/: ! Consider 5 possible no. of repair persons;

 NDOWN, ! Expected no. of down machines;

 CPERHR, ! Expected cost/hour of down machines;

 TCOST; ! Total expected cost/hour;

 ENDSETS

 ! For each configuration, compute the performance-

 @FOR(NREP(I):

 NDOWN(I) = @PFS(NMACH * RTIME / UPTIME, I, NMACH);

 CPERHR(I) = CM * NDOWN(I);

 TCOST(I) = CPERHR(I) + CR * I;

);

 ! The input data;

 NMACH = 10;

 RTIME = 1;

 UPTIME = 5;

 CR = 30;

 CM = 350;

END

Part of the solution is:

 Variable Value

TCOST(1) 1812.173

TCOST(2) 901.3025

TCOST(3) 721.5043

TCOST(4) 711.2829

TCOST(5) 734.3842

 A model similar to the machine repairman has been used by Samuelson (1999) to analyze predictive

dialing methods in an outbound call center. In a predictive dialing system, an automatic dialer may start

dialing the next client to be contacted even before there is an agent available to talk to the client. It takes

anywhere from 10 to 30 seconds to dial a number and have the person dialed answer the phone. So, the

Queuing Systems Chapter 18 563

automatic dialing is done in the anticipation that an agent will become available by the time that a called

party answers the phone. An automatic dialer can detect a busy signal or a call that is not answered, and

can move on to dial the next number. Samuelson (1999) indicates that a good predictive dialer can

increase the agent talk time (i.e., utilization) to 95% from less than 80%. The manager of a predictive

dialer has at least two decision variables in controlling the predictive dialer: a) how many additional

lines to use, beyond the number of agents, for dialing, and b) the delay time before starting dialing on a

line once it becomes available. These two decisions can be fit into the machine repairman as follows.

The number of agents equals the number of repairmen. The number of lines total is the population size.

The up time is the delay time before initiating dialing + the dialing time + time to answer.

18.4.5 Selection of a Processor Type via the M/G/1 Model
You are about to install an ATM (Automated Teller Machine) at a new location. You have a choice

between two machines. The type A is a highly automated machine with a mean time to process a

transaction of 3 minutes with a standard deviation of 4.5 minutes. The type M machine is less automated.

It has a mean processing time of 4 minutes with a standard deviation of 1 minute. The expected arrival

rate is 10 customers/hour at the location in question. Which machine has a lower expected waiting time?

Which machine has a lower expected time in system?

 There is a simple expression for the expected waiting time in a system with a single server for which

arrivals occur in a Poisson fashion and service times have a general distribution. If:

R = mean arrival rate,

T = mean service time,

SD = the standard deviation in service times, and

EW = expected waiting time,

then:

EW = R*(T*T + SD*SD)/[2*(1- R*T)].

The following LINGO model illustrates:

! Single server queue with Poisson(Markovian) arrivals

 and General service distribution, so-called M/G/1 queue;

DATA:

 R = .1666667; ! Arrival rate in minutes(10/hour);

 T = 3; ! Mean service time in minutes;

SD = 4.5; ! Standard deviation in service time;

ENDDATA

! Compute load(= Prob{ wait > 0});

 RHO = R*T;

! Expected waiting time;

 EW = R*(SD * SD + T * T)/(2*(1-RHO));

! Expected time in system;

 ET = EW + T;

! Expected number waiting;

 EN = R * EW;

! Expected number in system;

 ES = R * ET;

564 Chapter 18 Queuing Systems

The solution is:

Variable Value

 R 0.1666667

 T 3.000000

 SD 4.500000

 RHO 0.5000001

 EW 4.875002

 ET 7.875002

 EN 0.8125005

 ES 1.312501

To evaluate the slower, but less variable server, we change the data section to:

DATA:

 R = .1666667; ! Arrival rate in minutes(10/hour);

 T = 4; ! Mean service time in minutes;

SD = 1; ! Standard deviation in service time;

ENDDATA

Now, the solution is:

Variable Value

 R 0.1666667

 T 4.000000

 SD 1.000000

 RHO 0.6666668

 EW 4.250003

 ET 8.250003

 EN 0.7083339

 ES 1.375001

 This is interesting. Due to the lower variability of the second server, the expected wait time is lower

with it. The first server, however, because it is faster, has a lower total time in system, ET. There are

some situations in which customers would prefer the longer expected time in system if it results in a

lower expected waiting time. One such setting might be a good restaurant. A typical patron would like

a low expected wait time, but might actually prefer a long leisurely service.

18.4.6 Multiple Server Systems with General Distribution, M/G/c & G/G/c
There is no simple, “closed form” solution for a system with multiple servers, a service time distribution

that is non-exponential, and positive queue space. Whitt (1993), however, gives a simple approximation.

He gives evidence that the approximation is usefully accurate. Define:

 SCVA = squared coefficient of variation of the interarrival time distribution

 = (variance in interarrival times)/ (mean interarrival time squared)

 = (variance in interarrival times)*R*R,

SCVT = squared coefficient of variation of the service time distribution

 = (variance in service times)/(mean service time squared)

 = (variance in service times/(T*T).

EWM(R,T,S) = expected waiting time in an M/M/c system with arrival rate R,

 expected service time T, and S servers.

Queuing Systems Chapter 18 565

The approximation for the expected waiting time is then:

EWG(R,T,S,SCVA, SCVT)

= EWM(R,T,S)*(SCVA + SCVT)/2.

 Note that for the exponential distribution, the coefficient of variation is one. It is fairly easy to show

that this approximation is in fact exact for M/G/1, M/M/c, M/G/, and when the system becomes heavily

loaded.

Example

Suppose arrivals occur in a Poisson fashion at the rate of 50/hour (i.e., .8333333 per minute), there are

three servers, and the service time for each customer is exactly three minutes. A constant service time

implies that the service time squared coefficient of variation (SCVT) equals 0. Poisson arrivals implies

that the squared coefficient of variation of interarrival times (SCVA) equals 1. The model is:

! Compute approximate statistics for a (QGGC)

 multi-server system with general arrivals,

 and general service time distribution;

DATA:

 R = .8333333; ! Mean arrival rate;

 T = 3; ! Mean service time;

 S = 3; ! Number of servers;

 SCVA = 1; ! Squared coefficient of variation

 of interarrival times;

 SCVT = 0; ! Squared coefficient of variation

 of service times;

 ENDDATA

! The model;

! Average no. of busy servers;

 LOAD = R * T;

! Probability a given call must wait;

 PWAIT = @PEB(LOAD, S);

! Conditional expected wait, i.e., given must wait;

 WAITCND = T/(S - LOAD);

! Unconditional expected wait;

 WAITUNC = PWAIT * WAITCND;

! Unconditional approximate expected wait for

 general distribution;

 WAITG = WAITUNC * (SCVA + SCVT)/2;

The solution is:

Variable Value

 R 0.8333333

 T 3.000000

 S 3.000000

 SCVA 1.000000

 SCVT 0.0000000

 LOAD 2.500000

 PWAIT 0.7022471

 WAITCND 5.999999

 WAITUNC 4.213482

 WAITG 2.106741

566 Chapter 18 Queuing Systems

 Thus, the approximate expected wait time is about 2.1067. Later we will show that the expected

wait time can in fact be calculated exactly as 2.15. So, the approximation is not bad.

18.5 Critical Assumptions and Their Validity
The critical assumptions implicit in the models discussed can be classified into three categories:

1) Steady state or stationarity assumptions.

2) Poisson arrivals assumption.

3) Service time assumptions.

 The steady state assumption is that the system is not changing systematically over time (e.g., the

arrival rate is not changing over time in a cyclical fashion). Further, we are interested in performance

only after the system has been operating sufficiently long, so that the starting state has little effect on the

long run average. No real system strictly satisfies the steady state assumption. All systems start up at

some instant and terminate after some finite time. Arrival rates fluctuate in a predictable way over the course

of a day, week, month, etc. Nevertheless, the models discussed seemed to fit reality quite well in many

situations in spite of the lack of true stationarity in the real world. A very rough rule of thumb is that if the

system processing capacity is b customers/minute and the arrival rate is c customers/minute, then the steady

state formulae apply approximately after 1/(b - c) minutes. This corresponds roughly to one "busy period."

 The models discussed have assumed that service times are either constant or exponential distributed.

Performance tends to be relatively insensitive to the service time distribution (though still dependent

upon the mean service time) if either the system is lightly loaded or the available waiting space is very

limited. In fact, if there is no waiting space, then to compute the distribution of number in system the

only information needed about the service time distribution is its mean.

18.6 Networks of Queues
Many systems, ranging from an office that does paperwork to a manufacturing plant, can be thought of

as a network of queues. As a job progresses through the system, it successively visits various service or

processing centers. The main additional piece of information one needs in order to analyze such a system

is the routing transition matrix, that is, a matrix of the form:

P(i,j) = Prob{ a job next visits processing center j | given that it just finished at center i}.

 Jackson (1963) proved a remarkable result, essentially that if service times have an exponential

distribution and arrivals from the outside arrive according to a Poisson process, then each of the

individual queues in a network of queues can be analyzed by itself. The major additional piece of

information that one needs to analyze a given work center or station is the arrival rate to the station. If

we define REXT(j) = arrival rate to station j from the outside (or external) world, and R(j) = the arrival

rate at station j both from inside and outside, then it is fairly easy to show and also intuitive that the R(j)

should satisfy:

R(j) = REXT(j) + i R(i)* P(i,j).

Queuing Systems Chapter 18 567

 The following LINGO model illustrates how to solve this set of equations and then solve the queuing

problem at each station:

! Jackson queuing network model(qjacknet);

SETS:

 CENTER: S, T, REXT, R, NQ, LOAD;

 CXC(CENTER, CENTER): P;

ENDSETS

DATA:

! Get center name, number of servers,

 mean service time and external arrival rate;

 CENTER, S, T, REXT =

 C1 2 .1 4

 C2 1 .1 1

 C3 1 .1 3;

! P(i,j) = Prob{ job next goes to i| given just

 finished at j};

 P = 0 .6 .4

 .1 0 .4

 .3 .3 0;

ENDDATA

! Solve for total arrival rate at each center;

 @FOR(CENTER(I):

 R(I) = REXT(I) + @SUM(CENTER(J): R(J) * P(I, J));

);

! Now solve the queuing problem at each center;

 @FOR(CENTER(I):

! LOAD(I) = load on center I;

 LOAD(I) = R(I) * T(I);

! Expected number at I = expected number waiting

 + expected number in service;

 NQ(I) = (LOAD(I)/(S(I) - LOAD(I)))

 *@PEB(LOAD(I), S(I)) + LOAD(I);

! @PEB() = Prob{ all servers are busy at I};

);

! Expected time in system over all customers;

 WTOT = @SUM(CENTER: NQ)/@SUM(CENTER: REXT);

Part of the solution is:

 Variable Value

 WTOT 0.6666667

 R(C1) 10.00000

 R(C2) 5.000000

 R(C3) 7.500000

 NQ(C1) 1.333333

 NQ(C2) 1.000000

 NQ(C3) 3.000000

LOAD(C1) 1.000000

LOAD(C2) 0.5000000

LOAD(C3) 0.7500000

568 Chapter 18 Queuing Systems

18.7 Designer Queues
In preceding sections, we gave some “canned” queuing models for the most common waiting line

situations. In this section, we present details on the calculations behind the queuing models. Thus, if you

want to design your own queuing system that does not quite match any of the standard situations, you

may be able to model your situation using the methods here.

18.7.1 Example: Positive but Finite Waiting Space System
A common mode of operation for an inbound call center is to have, say 20 agents, but say, 30 phone

lines. Thus, a caller who finds a free phone line but all 20 agents busy, will be able to listen to soothing

music while waiting for an agent. A caller who finds 30 callers in the system will get a busy signal and

will have to give up.

First, define some general parameters:

r = arrival rate parameter. For the infinite source case, 1/r = mean time between successive

arrivals. For the finite source case, 1/r = mean time from when a given customer

finishes a service until it next requires service again (i.e., 1/r = mean up time),

T = mean service time,

S = number of servers,

 M = number of servers plus number of available waiting spaces.

We want to determine:

 Pk = Prob {number customers waiting and being served = k}

 If there are S servers, and M total lines or spaces, then the distribution of the number in system, the

Pk , satisfy the set of equations:

Pk = (rT/k)Pk-1 for k = 1, 2, ..., S

 = (rT/S)Pk-1 for k = S + 1, S + 2, ..., M

and

P0 + P1 + ... + PM = 1.

Queuing Systems Chapter 18 569

Here is a model that solves the above set of equations:

! M/M/c queue with limited space (qmmcf);

DATA:

! Number of servers;

 S = 9;

! Total number of spaces;

 M = 12;

! Arrival rate;

 R = 4;

! Mean service time;

 T = 2;

ENDDATA

SETS:

 STATE/1..500/: P;

ENDSETS

! The basic equation for a Markovian(i.e., the time

 til next transition has an exponential distribution) system,

 says:(expected transitions into state k per unit time)

 = (expected transitions out of state k per unit time);

! For state 1(P0 = prob{system is empty});

 P0* R + P(2)*2/T = (R + 1/T) * P(1);

! Remaining states with idle servers;

@FOR(STATE(K) | K #GT# 1 #AND# K #LT# S:

 P(K - 1)* R + P(K+1)*(K+1)/T = (R + K/T) * P(K)

);

! States with all servers busy;

@FOR(STATE(K) | K #GE# S #AND# K #LT# M:

 P(K - 1)* R + P(K+1)*S/T = (R + S/T) * P(K)

);

! All-full state is special;

 P(M - 1)* R = (S/T)* P(M);

! The P(k)'s are probabilities;

 P0 + @SUM(STATE(K)| K #LE# M: P(K)) = 1;

! Compute summary performance measures;

! Fraction lost;

 FLOST = P(M);

! Expected number in system;

 EN = @SUM(STATE(K)| K #LE# M: K * P(K));

! Expected time in system for those who enter;

 ET = EN/(R *(1-FLOST));

! Expected wait time for those who enter;

 EW = ET - T;

570 Chapter 18 Queuing Systems

The solution is:

Variable Value

 N 9.000000

 M 12.00000

 R 4.000000

 T 2.000000

 P0 0.3314540E-03

 FLOST 0.8610186E-01

 EN 7.872193

 ET 2.153466

 EW 0.153466

 P(1) 0.2651632E-02

 P(2) 0.1060653E-01

 P(3) 0.2828407E-01

 P(4) 0.5656815E-01

 P(5) 0.9050903E-01

 P(6) 0.1206787

 P(7) 0.1379185

 P(8) 0.1379185

 P(9) 0.1225942

 P(10) 0.1089727

 P(11) 0.9686459E-01

 P(12) 0.8610186E-01

 This model has three extra waiting spaces or lines beyond the nine servers. The fraction demand

lost is 0.08610186. By comparison, if there were no extra lines, the fraction lost would be more than

twice as much, 0.1731408.

 The above model is an example of balking. A prospective customer is said to balk if the customer

decides to not join the queue because the queue is too long. It is a common problem in systems where

the queue is visible (e.g., automotive fuel filling stations). More generalized forms of balking can be

modeled using methods of this chapter. One such form might be that an arriving customer balks with a

probability that is increasing in the length of the queue.

 A phenomenon similar to balking is reneging. A customer in the waiting queue is said to renege if

she departs the waiting queue before having received service. For example, at internet websites it is not

uncommon for more than 50% of customers to abandon their “shopping carts” before getting to the

checkout step. Again, reneging behavior can be easily modeled using the methods of this section by

having a reneging rate that is, say proportional to the number waiting.

Queuing Systems Chapter 18 571

18.7.2 Constant Service Time. Infinite Source. No Limit on Line Length
The special case when the service time is a constant can be solved numerically. If the service time is a

constant T, then we can exploit the fact that over any interval of time of length T: a) all customers in

service at the beginning of the interval will have finished at the end, and b) the number of arrivals during

the interval has a Poisson distribution. Define the Poisson probabilities:

ak = e-(rT)(rT)k/k! for k = 0, 1, 2, ..

 = ak-1 (rT)/k.

The Pk satisfy the equations:

1k

k=0

 = P

and if S is the number of servers:

0 1 2
S k+S

k j jk k- j+S

j=0 j=S+1

 = + for k = , , , ...a aP P P

18.7.3 Example Effect of Service Time Distribution
A firm uses 3 servers in parallel to process tasks that arrive at the mean rate of 50 per hour. The mean

time to service a task is 3 minutes (.05 hours). The service time distribution is exponential.

 The firm is considering switching to a more systemized processing approach in which there is no

variability in the service time (i.e., every task takes exactly 3 minutes). Will this switch substantially

reduce the average number in system?

572 Chapter 18 Queuing Systems

 The following is a LINGO model for solving these equations:

! Queue with constant service time (qmdc);

DATA:

 ! Arrival rate per minute;

 R = .833333;

 ! Service time in minutes;

 T = 3;

 ! Number of servers;

 S = 3;

ENDDATA

SETS:

 STATE/1..35/: A, P;

ENDSETS

 ! Probabilities must sum to 1;

@SUM(STATE: P) = 1;

 RHO = R * T;

! J and K will correspond to a state-1;

! Calculate probability of K-1 arrivals during a service time;

 A(1) = @EXP(- RHO);

@FOR(STATE(K)| K #GT# 1:

 A(K) = A(K-1) * RHO/(K-1);

);

 NLAST = @SIZE(STATE);

 @WARN(" S too large for approximation", A(NLAST) #GT# .1);

! Transition equations:

 Probability of having K-1 in system T minutes from now

 = Prob{ all in system finished and K-1 arrived} + Prob{ S finished and

just the proper number arrived to bring number in system back up to K-

1};

@FOR(STATE(K)| K #LT# @SIZE(STATE):

 P(K) = @SUM(STATE(J)| J #LE# S: A(K) * P(J))

 + @SUM(STATE(J)| J #GT# S #AND# J #LE# K + S: P(J)*A(K-

J+S+1));

);

! Because of the extra normalizing equation, we can drop

 one transition equation above;

! Compute average number in system;

 AVGNSYS = @SUM(STATE(K): (K-1)* P(K));

! By Little's equation, average time in system;

 AVGTSYS = AVGNSYS/ R;

! Average number waiting;

 AVGNWTN = AVGNSYS - RHO;

Queuing Systems Chapter 18 573

Part of the solution is:

Variable Value

 RHO 2.499999

 NLAST 35.00000

 AVGNSYS 4.291565

 AVGTSYS 5.149880

 AVGNWTN 1.791566

 P(1) 0.3936355E-01

 P(2) 0.1102164

 P(3) 0.1615349

 P(4) 0.1684308

 P(5) 0.1438250

 P(6) 0.1097549

 P(7) 0.7924944E-01

 P(8) 0.5598532E-01

 P(9) 0.3930554E-01

 P(10) 0.2757040E-01

 P(11) 0.1934223E-01

 P(12) 0.1357152E-01

 P(13) 0.9522611E-02

It is of interest to compare this result with the case of exponentially distributed service times:

 Exponential
Service Distribution

Constant

Average No. in System 6.01 4.29

Average No. Waiting 3.51 1.79

 Thus, there is a noticeable improvement associated with reducing the variability in service time. In

fact, in a heavily loaded system, reducing the variability as above will reduce the expected waiting time

by a factor of almost 2.

574 Chapter 18 Queuing Systems

18.8 Problems
1. The Jefferson Mint is a Philadelphia based company that sells various kinds of candy by mail. It has

recently acquired the Toute-de-Suite Candy Company of New Orleans and the Amber Dextrose

Candy Company of Cleveland. The telephone has been an important source of orders for all three

firms. In fact, during the busiest three hours of the day (1 pm to 4 pm), Jefferson has been taking

calls at the rate of .98 per minute, Toute-de-Suite at the rate of .65 calls per minute, and Dextrose at

the rate of .79 calls per minute. All three find that on average it takes about three minutes to process

a call.

 Jefferson would like to examine the wisdom of combining one or more of the three phone order

taking centers into a single order taking center in Philadelphia. This would require a phone line from

New Orleans to Philadelphia at a cost of $170 per day and/or a phone line from Cleveland to

Philadelphia at a cost of $140 per day. A phone order taker costs $75 per day. Regardless of the

configuration chosen, the desired service level is 95%. That is, at least 95% of the calls should be

answered immediately, else it is considered lost. This requirement is applicable to the busiest time

of the day in particular. This is considered reasonable for the kind of semi-impulse buying involved.

Note that only one phone line is needed to connect two cities. This dedicated line can handle several

dozen conversations simultaneously.

a) The New Orleans office could be converted first. What are the expected savings per day

of combining it with the Philadelphia office?

b) What is your complete recommendation?

c) The Cleveland office has been operating with four order takers. How might you wish to

question and possibly adjust the Cleveland call data?

2. Reliability is very important to a communications firm. The Exocom firm has a number of its large

digital communication switches installed around the country. It is concerned with how many spares

it should keep in inventory to quickly replace failed switches in the field. It estimates that failures

will occur in the field at the rate of about 1.5 per month. It is unattractive to keep a lot of spares

because the cost of each switch is $800,000. On the other hand, it is estimated that, if a customer is

without his switch, the cost is approximately $8,000 for each day out, including weekends. This

cost is borne largely by Exocom in the form of penalties and lost good will. Even though a faulty

switch can be replaced in about one hour, (once the replacement switch is on site), it takes about

one half month to diagnose and repair a faulty switch. Once repaired, a switch joins the spares to

hold. Exocom is anxious to get your advice because, if no more money need be invested in spares,

then there are about four other investment projects waiting in the wings, which pass the company's

1.5% per month cost of capital threshold. What is your recommendation?

Queuing Systems Chapter 18 575

3. Below is a record of long-distance phone calls made from one phone over an interval of time.

 DESTINATION NUMBER DESTINATION NUMBER

DATE CITY STATE MINUTES DATE CITY STATE MINUTES

03/04 MICHIGANCY IN 0.4 03/21 NEW YORK NY 12.6

03/07 PHILA PA 3.1 03/21 PRINCETON NJ 2.0

03/07 LAFAYETTE IN 3.9 03/21 PRINCETON NJ 0.2

03/07 OSSINING NY 1.4 03/21 PRINCETON NJ 0.3

03/07 LAFAYETTE IN 2.8 03/21 PRINCETON NJ 0.3

03/08 LAFAYETTE IN 2.8 03/25 SANTA CRUZ CA 1.4

03/08 SOSAN FRAN CA 2.0 03/25 FORT WAYNE IN 0.9

03/08 PHILA PA 0.9 03/27 SANTA CRUZ CA 0.9

03/11 BOSTON MA 5.1 03/27 SANTA CRUZ CA 8.1

03/11 NEW YORK NY 3.1 03/27 SOSAN FRAN CA 8.2

03/15 MADISON WI 0.3 03/27 CHARLOTSVL VA 0.7

03/19 PHILA PA 3.6 03/28 CHARLOTSVL VA 8.4

03/20 PALO ALTO CA 4.7 03/28 NEW YORK NY 0.8

03/20 PALO ALTO CA 9.2 03/29 NEW YORK NY 1.7

 DESTINATION NUMBER DESTINATION NUMBER

DATE CITY STATE MINUTES DATE CITY STATE MINUTES

03/29 BOSTON MA 0.6 04/16 CAMBRIDGE MA 0.9

04/01 HOUSTON TX 1.1 04/18 ROCHESTER NY 1.3

04/01 BOSTON MA 10.6 04/19 PALO ALTO CA 16.1

04/01 BRYAN TX 1.4 04/22 ROCHESTER NY 1.7

04/01 PEORIA IL 1.0 04/23 CHARLSTON IL 0.7

04/02 SANTA CRUZ CA 5.5 04/24 CHARLSTON IL 6.4

04/03 HOUSTON TX 1.4 04/24 WLOSANGLS CA 3.0

04/03 PEORIA IL 2.3 04/24 NEW YORK NY 5.1

04/09 NEW YORK NY 1.1 04/24 FORT WAYNE IN 0.9

04/11 LOS ALTOS CA 5.5 04/24 PORTAGE IN 2.2

a) How well does a Poisson distribution (perhaps appropriately modified) describe the call

per day behavior?

b) How well does an exponential distribution describe the number of minutes per call?

c) In what year were the calls made?

577

19

Design & Implementation of
Optimization-Based Decision

Support Systems

I don't want it perfect, I want it Thursday.

-John Pierpont Morgan

19.1 General Structure of the Modeling Process
The overall modeling process is one of:

1) Determining the need for a model.

2) Developing the model.

3) Implementing the model.

 One should not skip over step (1) in one’s enthusiasm to use a fancy model. Some questions to ask

before deciding to use a model are:

a) Are the expected savings from using the model greater than the cost of developing and

implementing the model?

b) Is there sufficient time to do (2) and (3) before the recommendation is needed?

c) Is it easier to do an experiment on the real system than to build a model? Sometime ago a

question arose in a telephone company about the effect of serving certain telephone calls

for information arising in city A from a central facility in city B, rather than from the

existing facility in A. It was more simple to make a five minute wiring change to see what

happened, than to construct an accurate statistical model. Similarly, Banks and Gibson

(1997) describe a situation in which one fast food restaurant chain built a detailed model

to evaluate the effect of a second drive-up window. In less time, a competitor tested the

same idea by stationing a second person in the drive-up lane with a remote hand-held

terminal and voice communication to the inside of the restaurant.

d) Do we have the input data needed to make plausible use of the model?

 If the purpose of the model is to do a one-time analysis (e.g., to decide whether or not to make a

certain investment), then step (3) will be relatively less laborious.

578 Chapter 19 Decision Support Systems

19.1.1 Developing the Model: Detail and Maintenance
Whether the model is intended for a one-time study or is to be used regularly has some influence on how

you develop the model. If the model is to be used regularly, then you want to worry especially about the

following:

Problem: The real world changes rapidly (e.g., prices, company structure, suppliers). We must be able

to update the model just as fast.

Resolution: There are two relevant philosophies.

1) Keep worthless detail out of the model, follow the KISS (Keep It Simple, ...) admonition.

2) Put as much of the model into data tables rather than hard coded into the model structure.

19.2 Verification and Validation
The term verification is usually applied to the process of verifying that the model as implemented is

actually doing what we think it should. Effectively, verification is checking the model has no

unintentional “bugs”. Validation is the process of demonstrating that all the approximations to reality

intentionally incorporated in the model are tolerable and do not sully the quality of the results from the

model. Stated simply, verification is concerned with "solving the equations right", and validation is

concerned with "solving the right equations", see Roache (1998). Several general approaches for

verifying a model are to:

i) check the model results against solved special cases,

ii) check the model results against known extreme cases,

iii) check the model results on small examples that can be solved by hand,

iv) check that model results change in the proper direction as model inputs are changed (e.g., if

the price of a raw material increases, we should not buy more of it), and

v) check that the model handles invalid cases robustly.

vi) if there are multiple dimensions, e.g. products, suppliers, customers, time periods,

scenarios, resources, transport modes, etc., the set of test cases should give good

coverage of all combinations.

 Many of the methods used for verifying the quality of computer software apply equally well to

verifying large models. For example, a useful concept in testing of computer software is that of

"coverage" by the test. A good test for software should exercise or cover all sections of code in a software

program. Similarly, good test data for a model should exercise all features of the model. If a model

allows up to N different products, say, one should have test data for the cases of: just 1 product (e.g., see

(i) above); exactly N products; an intermediate number of products, and more than N products.

Elaborating on (vi) above, we might want to have tests of all pairs of combination of: 1 and N productes,

1 and M suppliers, 1 and P periods, etc.

19.2.1 Appropriate Level of Detail and Validation
Validation should begin with understanding the real world to be modeled. A common problem is the

people who are willing to speak most authoritatively about the process to be modeled are not always the

most informed. A good rule of thumb is always to check your “facts” with a second source. Rothstein

(1985) mentions, in a conversation with a vice president of a major airline, the vice president assured

him the airline did not engage in overbooking of any kind. A short time later, in a discussion with

Decision Support Systems Chapter 19 579

operating personnel, he learned in fact the airline had a sophisticated overbooking system used

everywhere in that airline.

 If unimportant details are kept out of the model, the model should be not only easier to modify, but

also easier to use.

Example. In developing a long-range ship scheduling model, a question of appropriate unit of time arose.

Tides follow a roughly 13-hour cycle and this is an important consideration in the scheduling

of ships into shallow ports. Deep draft ships can enter a shallow port only at high tide. Thus,

in developing a multiperiod model for ship scheduling, it appeared 13 hours should be the

length of a period.

 However, we found ship travel times were sufficiently random, so scheduling to the day was

satisfactory. Thus, to model a month of activity, 30 time periods, rather than about 60, was satisfactory.

Halving the number of periods greatly simplified the computations. The moral perhaps is that, when it

comes to incorporating detail into the model, a little bit of selective laziness may be a good thing.

 If there is an art to modeling, this is it: identifying the simplifications or approximations that can be

made without sacrificing the useful accuracy of the model. Simplifying approximations can be

categorized roughly as follows:

1) Functional - Use a linear function to approximate a slightly nonlinear one.

2) Aggregation

(2.1) Temporal aggregation - All events occurring during a given day (or week, month,

etc.) are treated as having occurred at the end of the day.

(2.2) Cross-sectional aggregation - All customers in a given mail code region are lumped

together to be treated as one large customer. In a consumer products firm, all

detergents are treated as a single product.

3) Statistical - Replace a random variable by its expectation. For example, even though future

sales are a random variable, most planners use a single number forecast in planning.

4) Decomposition - If a system is overwhelming in its complexity, then decomposition is an

approach that may be useful for simplifying the structure. Under this approach, a sequence

of models are solved, each nailing down more detail of the complete solution.

 Rogers, Plante, Wong, and Evans (1991) give an extensive survey of techniques for aggregation in

optimization problems. The steps in using an approximate model can be summarized as follows:

1) Obtain detailed input data.

2) Derive the approximate (hopefully small) model.

3) Solve the approximate model.

4) Convert the solution of the approximate model back to the real world.

 The difficult step is (4). The worst thing that can happen is it is impossible to convert the

approximate solution back to a feasible real world solution.

19.2.2 When Your Model & the RW Disagree, Bet on the RW
As part of the validation process, you compare the output of your model with what happened in the real

world (RW). When there is a discrepancy, there are two possibilities: (a) People in the RW are not

behaving optimally and you have an opportunity to make some money by using your model; or (b) your

model still has some flaws.

580 Chapter 19 Decision Support Systems

 Black (1989) described the situation quite well while he was trying to validate an option pricing

model:

 “We estimated the volatility of the stock for each of a group of companies... We noticed

that several warrants looked like very good buys. The best buy of all seemed to be National

General... I and others jumped right in and bought a bunch... Then a company called American

Financial announced a tender offer for National General... the tender offer had the effect of

sharply reducing the value of the warrants... In other words, the market knew something that

our formula didn’t know... and that’s why the warrants seemed so low in price.”

19.3 Separation of Data and System Structure
There are two reasons for separating data from model structure:

a) It allows us to adjust the model easily and quickly to changes in the real world,

b) The person responsible for making day-to-day changes in the data need not be familiar

with the technical details of the model structure.

 A flexible system is table driven. In powerful systems such as LINGO and What’sBest!, factors

such as interest rates can be input at a single place by a clerk, even though they appear numerous places

in the model structure.

19.3.1 System Structure
In the typical case, a model will be used regularly (e.g., weekly in an operational environment). In this

case, the model system can be thought of as having the structure shown in Figure 19.1:

Figure 19.1 System Structure

 Input Data
User Interface and
 Formulation
 Generator

Solver Data Files

Report Writer
Results Interface

 Notice there is a double-headed arrow between the data files and the formulation generator. This is

because the generator may obtain parameters such as capacities from the data files. There is an arrow

from the data files to the report writer because there are data, such as addresses of customers, that are

needed for the output reports but are not needed in the formulation. The success of spreadsheet programs,

such as Lotus 1-2-3, is due in part to the fact they incorporate all the above components in a relatively

seamless fashion.

Decision Support Systems Chapter 19 581

19.4 Marketing the Model
It is important to keep in mind: Who will be the users/clients? Frequently, there are two types of clients

in a single organization:

1) The Model champion (e.g., a CEO),

2) Actual user (e.g., a foreman working 12 hours/day and whose major concern is getting the

work out and meeting deadlines).

 Client (1) will commit to model development based on expected profit improvement. Client (2) will

actually use the model if it simplifies his/her life. He may get fired if he misses a production deadline.

There is a modest probability of a raise if he improves profitability and takes the trouble to document it.

Thus, for client (2), the input and output user interfaces are very important.

19.4.1 Reports
A model has an impact largely via the reports it produces. If a standard report already exists in the

organization, try to use it. The model simply puts better numbers in it.

Example. An LP-based scheduling system was developed for shoe factories. It was a success in the

first factory where it was tried. Production improved by about 15%. The system never “got

off the ground” in a second factory. The reason for the difference in success was apparently

as follows. The first factory had an existing scheduling report or work order. This report

was retained. The results of the LP scheduling model simply put better numbers in it. The

second factory had been using an informal scheduling system. The combination of

installing both a new reporting system and a new scheduling system was too big a barrier

to change.

19.4.1.1 Designing Reports

The proper attitude in designing reports is to ask: How will the results be used?

 In operations settings, there frequently are three types of reports implied by the results of a model

run:

a) Raw material acquisition recommendations. For example, in extreme cases, the model

might generate purchase orders directly.

b) Production orders. For example, how are the raw materials to be processed into finished

goods?

c) Finished goods summaries. If the production process is complicated, (e.g., several different

alternative processes are used to achieve the total production of a specific product), then it

may not be clear from (a) and (b) how much of a particular finished good was produced.

582 Chapter 19 Decision Support Systems

Example. Reports in a Blending Facility. In a facility that blends raw materials into finished goods,

reports of the following type might be appropriate:

(a)

Raw Material Purchases
Raw Material Total

Required
Beginning
Inventory

Required
Purchases

(b)

Production

Batch 1 Product: Batch 1 Product:
Inputs:
 Raw Material Amount

Inputs:
 Raw Material Amount

(c)

Finished Goods Summary
Product Beginning

Inventory
Goods

Produced
Total

Required
Surplus

Decision Support Systems Chapter 19 583

19.4.1.2 Dimensional View of Reports

A more mechanical view of report generation is to take a dimensional view of a system (i.e., a problem

and its solution have a number of dimensions). Each report is a sort and summary by dimensions.

Example: Multiperiod Shipping

Dimensions: Origins, destinations, time periods. The major decision variables might be of

the form Xijt, where Xijt is the number of tons to be shipped from supplier i, to customer

j in time period t. The types of reports might be:

Supplier’s Report: Sorted by origin, time, destination (or summed over destination).

Shipping Manager’s Report: Sorted by time, origin, destination.

Customer’s Report: Sorted by destination, time, origin (or perhaps summed over

origin).

Most spreadsheets and database systems have multi-level sorting capability.

19.4.1.3 Report Details/Passing the Snicker Test

Results should be phrased in terms the user finds easy to use.

 For example, reporting a steel bar should be cut to a length of 58.36 inches may cause snickers in

some places because “everybody knows” this commodity (like U.S. stock prices) is measured in

multiples of 1/8 inches, or dollars, as the case may be. So, it would be better to round the result to 58.375

inches or, even better, report it as 58 and 3/8 inches.

 Other examples: Dates should be reported not only in day of the month (taking into account leap

years), but also day of the week. Different parts of the world use different formats for displaying dates

(e.g., 14 March 1991 or 3/14/1991). Use a format appropriate for the location where used.

Example: Vehicle Routing/Passing the Snicker Test

Customers are grouped into trips, so the same vehicle serves customers on the same trip. The

actual model decomposed the problem into two phases:

(1) Allocate to trips Big savings here.

(2) Sequence each trip Users notice this the most.

If your system does an excellent job of allocating customers to trips (where the big savings

exist), but does not always get the optimal sequence of customers within a trip, users may notice

the latter weakness. Even though there may be no big savings possible by improving the

sequence, users may have less faith in the system because of this small weakness.

19.4.1.4 Models Should Always Have Feasible Solutions

In a large model where the input data are prepared by many people, there may be no assurance the data

are perfectly consistent. For example, production capacity as estimated by the production department

may be insufficient to satisfy sales forecasts as estimated by the marketing department. If the model has

a constraint that requires production to equal forecasted sales, then there may be no feasible solution.

The terse message “No feasible solution” is not very helpful.

 A better approach is to have in the model a superworker or superfacility that can make any product

at infinite speed, but at a rather high cost. There will always be a feasible solution although some parts

of the solution may look somewhat funny.

 Another device is to allow demand to be backlogged at a high cost.

 In each case, the solution will give sensible indications of where one should install extra capacity

or cut back on projected sales, etc.

584 Chapter 19 Decision Support Systems

 A model may be fundamentally good, but incomplete in certain minor details. As a result, some of

its recommendations may be slightly, but blatantly, incorrect.

 For example, in reality almost every activity has a finite upper bound.

 Similarly, there may be obvious bounds on the dual prices of certain resources. For example, if land

is a scarce resource in the real world, then its dual price should never be zero. You should include sellout

or buy activities corresponding to such things as renting out excess land to put lower and upper bounds

on dual prices.

19.4.1.5 “Signing Off” on System Structure

If a prospective model (a) is likely to be complicated and (b) the group that will use the model is distinct

from the group that will design the model, then it will be worthwhile to have beforehand a written

document describing exactly what the model does. Effectively, the “User’s Manual” is written before

the system is implemented. The prospective users should “sign off” on the design (e.g., by providing a

letter that says “Yes, this is what we want and we will accept if it provides this”).

 This document might include the following:

a) Form in which input will be provided.

b) Form in which output will be provided.

c) Test data sets that must be successfully processed. The model will be accepted if and only

if these are satisfied.

19.4.2 Report Generation in LINGO
The default report format in LINGO is the three column: Variable, Value, Reduced Cost report format.

You can generate somewhat arbitrary customized reports by using several functions available in a DATA

section in LINGO. The functions are:

@TEXT() = output function. Allows you to specify a line to be output. If @TEXT() has no

argument, then the line is output to the terminal display, else it is output to the filename listed

in the argument as in @TEXT(myfile.txt) =.

@WRITEFOR output looping function. Analogous to the @FOR function in

 a model, it specifies looping over sets when generating output.

@WRITE(). Used for outputting a single line.

@NEWLINE(n) inserts n newlines or carriage returns in the output.

@FORMAT(field, value) specifies a field format, e.g., number of characters, and what value

 to insert in the field.

The following model based on the Sudoku puzzle illustrates how to use the above functions.

! The sudoku puzzle in LINGO. Fill out a 9x9 grid with the digits

 1,2,...9, so that each digit appears once in

 a) each column,

 b) each row,

 c) each of the nine 3x3 subsquares,

 d) the main diagonal,

 e) in the reflected diagonal;

! Some versions of the puzzle do not require (d) and (e)

! Keywords: sudoku, Puzzles;

Decision Support Systems Chapter 19 585

SETS:

 SIDE;

 SS(SIDE, SIDE): X;

 SSS(SIDE,SIDE,SIDE): Y;

ENDSETS

 DATA:

 SIDE = 1..9;

! Set diag = 1 if you want the diagonal constraints to be

 satisfied, else 0 if not required;

 diag = 0;

 ENDDATA

! Variables:

 X(i,j) = value in row i, col j of matrix,

 Y(i,j,k) = 1 if X(i,j) = k;

! Any pre-specified entries inserted here;

 X(1,1) = 5;

 X(2,6) = 8;

 X(3,4) = 5;

 X(3,9) = 1;

 X(4,2) = 1;

 X(4,7) = 6;

 X(4,8) = 3;

 X(9,1) = 9;

 X(9,2) = 8;

 X(9,5) = 6;

 ! Link X and Y;

 @FOR(SS(i,j):

 X(i,j) = @SUM(SIDE(k): k*y(i,j,k));

 ! Must choose something for cell i,j;

 @SUM(SIDE(k): y(i,j,k)) = 1;

 ! Make the Y's binary;

 @FOR(SIDE(k): @bin(y(i,j,k)));

);

 ! Force each number k to appear once in each column j;

 @FOR(SIDE(j):

 @FOR(SIDE(k):

 @SUM(SIDE(i): Y(i,j,k)) = 1;

););

 ! Force each number k to appear once in each row i;

 @FOR(SIDE(i):

 @FOR(SIDE(k):

 @SUM(SIDE(j): Y(i,j,k)) = 1;

););

 ! Force each number k to appear once in each 3x3 subsquare;

 @FOR(SIDE(k):

 ! Upper left;

 @SUM(SS(i,j) | i #le#3 #and# j #le# 3: y(i,j,k)) = 1;

 ! Upper middle;

 @SUM(SS(i,j) | i #le#3 #and# j #gt# 3 #and# j#le# 6: y(i,j,k)) = 1;

 ! Upper right;

586 Chapter 19 Decision Support Systems

 @SUM(SS(i,j) | i #le#3 #and# j #gt# 6: y(i,j,k)) = 1;

 ! Middle left;

 @SUM(SS(i,j) | i #gt#3 #and# i #le#6 #and# j #le# 3: y(i,j,k)) = 1;

 ! Middle middle;

 @SUM(SS(i,j) | i #gt#3 #and# i #le#6 #and# j #gt# 3 #and# j #le# 6:

y(i,j,k)) = 1;

 ! Middle right;

 @SUM(SS(i,j) | i #gt#3 #and# i #le#6 #and# j #gt# 6 #and# j #le# 9:

y(i,j,k)) = 1;

 ! Lower left;

 @SUM(SS(i,j) | i #gt#6 #and# i #le#9 #and# j #gt# 0 #and# j #le# 3:

y(i,j,k)) = 1;

 ! Lower middle;

 @SUM(SS(i,j) | i #gt#6 #and# i #le#9 #and# j #gt# 3 #and# j #le# 6:

y(i,j,k)) = 1;

 ! Lower right;

 @SUM(SS(i,j) | i #gt#6 #and# i #le#9 #and# j #gt# 6 #and# j #le# 9:

y(i,j,k)) = 1;

 ! Force each number k to appear once in the main diagonal;

 @SUM(SS(i,j) | i #eq# j: diag*y(i,j,k)) = diag;

 ! Force each number k to appear once in the reflected diagonal;

 @SUM(SS(i,j) | i + j #eq# 10: diag*y(i,j,k)) = diag;

);

 DATA:

 ! Write the solution in matrix form;

 @TEXT() =

 @WRITE(@NEWLINE(1), 25*' ', 'Sudoku Puzzle Solution',

 @NEWLINE(1));

 @TEXT() =

 @WRITEFOR(SIDE(i):

 @WRITEFOR(SIDE(j):

 @FORMAT('#8.0g', x(i, j))

) , @NEWLINE(1)

);

 @TEXT() = ' ';

 ENDDATA

19.5 Reducing Model Size
Practical LP models tend to be large. Thus, it makes sense to talk about the management of these models.

Some of the important issues are:

1. Choosing an appropriate formulation. Frequently, there are two conflicting considerations:

(a) the model should be large enough to capture all important details of reality, and (b) the

model should be solvable in reasonable time.

2. What input data are needed? How is it collected?

3. How do we create an explicit model from the current data? This process has traditionally

been called matrix generation.

4. How is the model solved? Is it solvable in reasonable time? In reality, some optimization

program must be selected.

Decision Support Systems Chapter 19 587

 In this section, we discuss issues (1) and (3). The selection of an appropriate formulation also has

implications for how easily a model is solved (issue 4).

 We begin our discussion with how to choose a formulation that is small and thus more easily solved

(usually).

 The computational difficulty of an LP is closely related to three features of the LP: the number of

rows, the number of columns, and the number of nonzeroes in the constraint matrix. For linear programs,

the computation time tends to increase with the square of the number of nonzeroes. Thus, there is some

motivation to (re)formulate LP models, so they are small in the above-mentioned three dimensions.

 Most commercial optimzation solvers have built-in routines, with names like REDUCE, that will

mechanically do simple kinds of algebraic substitutions and eliminations necessary for reduction.

Brearley, Mitra, and Williams (1975) give a thorough description of these reductions.

19.5.1 Reduction by Aggregation
We say we aggregate a set of variables if we replace a set of variables by a single variable. We aggregate

a set of constraints if we replace a set of constraints by a single constraint. If we do aggregation, we must

resolve several issues:

1. After solving the LP, there must be a postprocessing/disaggregation phase to deduce the

disaggregate values from the aggregate values.

2. If row aggregation was performed, the solution to the aggregate problem may not be

feasible to the true disaggregate problem.

3. If variable aggregation was performed, the solution to the aggregate problem may not be

optimal to the true disaggregate problem.

To illustrate (2), consider the LP:

Maximize 2x + y

subject to x 1

 y 1

 x, y 0

 The optimal solution is x = y = 1; with objective value equal to 3. We could aggregate the rows to

get:

Maximize 2x + y

subject to x + y 2

 x, y 0

 The optimal solution to this aggregate problem is x = 2, y = 0, with objective value equal to 4.

However, this solution is not feasible to the original problem.

 To illustrate (3), consider the LP:

Minimize x1 + x2

subject to x1 2

 x2 1

 x1, x2 0

588 Chapter 19 Decision Support Systems

 The optimal solution is x1 = 2, x2 = 1, with objective value equal to 3. We could aggregate variables

to get the LP:

Minimize 2x

subject to x 2

 x 1

 x 0

 The optimal solution to the aggregate problem is x = 2, with objective value equal to 4. This solution

is, however, not optimal for the original, disaggregate LP.

19.5.1.1 Example: The Room Scheduling Problem

We will illustrate both variable and constraint aggregation with a problem that confronts any large hotel

that has extensive conference facilities for business meetings. The hotel has r conference rooms available

of various sizes. Over the next t time periods (e.g., days), the hotel must schedule g groups of people

into these rooms. Each group has a hard requirement for a room of at least a certain size. Each group

may also have a preference of certain time periods over others. Each group requires a room for exactly

one time period. The obvious formulation is:

Vgtr = value of assigning group g to time period t in room r. This value is provided by group

g, perhaps as a ranking. The decision variables are:

Xgtr = 1 if group g is assigned to room r in time period t. This variable is defined for each

group g, each time period t, and each room r that is big enough to accommodate group

g.

 = 0 otherwise.

The constraints are:

rt

 xgtr = 1 for each group g

g

 xgtr

 1 for each room r, time period t

xgtr = 0 or 1 for all g, t, and r

The objective is:

Maximize
rt

g

 V gtr xgtr

 The number of constraints in this problem is g + r t. The number of variables is approximately

g t r/2. The 1/2 is based on the assumption that, for a typical group, about half of the rooms will be

big enough.

 A typical problem instance might have g = 250, t = 10, and r = 30. Such a problem would have 550

constraints and about 37,500 variables. A problem of that size is nontrivial to solve, so we might wish

to work with a smaller formulation.

 Aggregation of variables can be used validly if a group is indifferent between rooms b and c, as

long as both rooms b and c are large enough to accommodate the group. In terms of our notation,

Vgtb = Vgtc for every g and t if both rooms b and c are large enough for g. More generally, two variables

can be aggregated if, in each row of the LP, they have the same coefficients. Two constraints in an LP

can be validly aggregated if, in each variable, they have the same coefficients. We will do constraint

aggregation by aggregating together all rooms of the same size. This aggregation process is

Decision Support Systems Chapter 19 589

representative of a fundamental modeling principle: when it comes to solving the model, do not

distinguish things that do not need distinguishing.

 The aggregate formulation can now be defined:

K = number of distinct room sizes

Nk = number of rooms of size k or larger

Sk = the set of groups, which require a room of size k or larger

Vgt = value of assigning group g to time period t

xgt = 1 if group g is assigned to a room in time period t

 = 0 otherwise

The constraints are:

i

 xgt = 1 for each group g

g S k

 xgt Nk for each room size k.

The objective is:

Maximize
tg

 Vgt Xgt

 This formulation will have g + k t constraints and g t decision variables. For the case g = 250,

t = 10, and r = 30, we might have k = 4. Thus, the aggregate formulation would have 290 constraints and

2500 variables, compared with 550 constraints and 37,500 variables for the disaggregate formulation.

 The post processing required to extract a disaggregate solution from an aggregate solution to our

room scheduling problem is straightforward. For each time period, the groups assigned to that time

period are ranked from largest to smallest. The largest group is assigned to the largest room, the second

largest group to the second largest room, etc. Such an assignment will always be feasible as well as

optimal to the original problem.

19.5.1.2 Example 2: Reducing Rows by Adding Additional Variables

If two parties, A and B, to a financial agreement, want the agreement to be treated as a lease for tax

purposes, the payment schedule typically must satisfy certain conditions specified by the taxing agency.

Suppose Pi is the payment A is scheduled to make to B in month i of a seven-year agreement. Parties A

and B want to choose at the outset a set of Pj’s that satisfy a tax regulation that no payment in any given

month can be less than 2/3 of the payment in any earlier month. If there are T periods, the most obvious

way of writing these constraints is:

For i = 2, T:

For j = 1, i − 1:

 Pi 0.66666 Pj

590 Chapter 19 Decision Support Systems

 This would require T(T − 1)/2 constraints. A less obvious approach would be to define PMi as the

largest payment occurring any period before i. The requirement could be enforced with:

PM1 = 0

For i = 2 to T:

Pi 0.66666 PMi

PMi PMi-1

PMi Pi-1

 This would require 3T constraints rather than T(T − 1)/2. For T = 84, the difference is between 3486

constraints and 252.

19.5.2 Reducing the Number of Nonzeroes
If a certain linear expression is used more than once in a model, you may be able to reduce the number

of nonzeroes by substituting it out. For example, consider the two-sided constraints frequently

encountered in metal blending models:

Li

j qij Xj

j Xj
 Ui (for each quality characteristic i).

 In these situations, Lk and Uk are lower and upper limits on the ith quality requirement, and qij is

the quality of ingredient j with respect to the ith quality. The “obvious” way of writing this constraint in

linear form is:

 j

 (qij - Li) Xj 0,

 j

 (qij - Uk) Xj 0.

 By introducing a batch size variable B and a slack variable si, this can be rewritten:

B -

 j

 Xj = 0

 j

 qij Xj + si = Ui B

si (Uk - Li) B

 If there are m qualities and n ingredients, the original formulation had 2 m n nonzeroes. The

modified formulation has n + 1 + m (n + 2) + m 2 = n + 1 + m (n + 4) nonzeroes. For large n, the

modified formulation has approximately 50% fewer nonzeroes.

19.5.3 Reducing the Number of Nonzeroes in Covering Problems
A common feature in some covering and multiperiod financial planning models is each column will have

the same coefficient (e.g., + 1) in a large number of rows. A simple transformation may substantially

reduce the number of nonzeroes in the model. Suppose row i is written:

 j 1=

n

 aij Xj = ai0

Decision Support Systems Chapter 19 591

Now, suppose we subtract row i − 1 from row i, so row i becomes:

 j 1=

n

 (aij - ai-1, j) Xj = ai0 - ai-1, 0

If aij = ai-1,j 0 for most j, then the number of nonzeroes in row i is substantially reduced.

Example

Suppose we must staff a facility around the clock with people who work eight-hour shifts. A shift can

start at the beginning of any hour of the day. If ri is the number of people required to be on duty from

hour i to hour i + 1, Xi is the number of people starting a shift at the beginning of hour i, and si is the

surplus variable for hour i, then the constraints are:

X1 + X18 + X19 + X20 + X21 + X22 + X23 + X24 − s1 = r1

X1 + X2 + X19 + X20 + X21 + X22 + X23 + X24 − s2 = r2

X1 + X2 + X3 + X20 + X21 + X22 + X23 + X24 − s3 = r3

 .

 .

 .

 Suppose we subtract row 23 from row 24, row 22 from row 23, etc. The above constraints will be

transformed to:

X1 + X18 + X19 + X20 + X21 + X22 + X23 + X24 − s1 = r1

X2 − X18 + s1 − s2 = r2 − r1

X1 − X19 + s2 − s3 = r3 − r2

 .

 .

 .

Thus, a typical constraint will have four nonzeroes rather than nine.

 The pattern of nonzeroes for the X variables in the original formulation is shown in Figure 19.1. The

pattern of the nonzeroes for the X variables in the transformed formulation is shown in Figure 19.2. The

total constraint nonzeroes for X and s variables in the original formulation is 216. The analogous count

for the transformed formulation is 101, a very attractive reduction.

592 Chapter 19 Decision Support Systems

Figure 19.2
Nonzero Pattern for X Variables in Original Formulation.

X Variables

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 + + + + + + + +
2 + + + + + + + +
3 + + + + + + + +
4 + + + + + + + +
5 + + + + + + + +
6 + + + + + + + +
7 + + + + + + + +
8 + + + + + + + +
9 + + + + + + + +
10 + + + + + + + +
11 + + + + + + + +
12 + + + + + + + +
13 + + + + + + + +
14 + + + + + + + +
15 + + + + + + + +
16 + + + + + + + +
17 + + + + + + + +
18 + + + + + + + +
19 + + + + + + + +
20 + + + + + + + +
21 + + + + + + + +
22 + + + + + + + +
23 + + + + + + + +

24 + + + + + + + +

Figure 19.3
Nonzero Pattern for X Variables in Transformed Formulation

X Variables

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 + + + + + + + +

2 + -

3 + -

4 + -

5 + -

6 + -

7 + -

8 + -

9 - +

10 - +

11 - +

12 - +

13 - +

14 - +

15 - +

16 - +

17 - +

18 - +

19 - +

20 - +

21 - +

22 - +

23 - +

24 - +

19.6 On-the-Fly Column Generation
There are a number of generic LP models that have a modest number of rows (e.g., a hundred or so), but

a large number of columns (e.g., a million or so). This is frequently the case in cutting stock problems.

R
O
W
S

R
O
W
S

Decision Support Systems Chapter 19 593

This could also be the case in staffing problems, where there might be many thousands of different work

patterns people could work. Explicitly generating all these columns is not a task taken lightly. An

alternative approach is motivated by the observation that, at an optimum, there will be no more positive

columns than there are rows.

 The following iterative process describes the basic idea:

1. Generate and solve an initial LP that has all the rows of the full model defined, but only a

small number (perhaps even zero) of the columns explicitly specified.

2. Given the dual prices of the current solution, generate one or more columns that price out

attractively. That is, if a0j is the cost of column j, aij is its usage of resource i (i.e., its

coefficient in rows i for i = 1, ..., m), and pi is the dual price of row i, then generate or find

a new column a such that:

a0j + p1a1j + p2a2j + ... + pmamj < 0.

If no such column exists, then stop. The solution is optimal.

3. Solve the LP with the new column(s) from (2) added.

4. Go to (2).

 The crucial step is (2). To use column generation for a specific problem, you must be able to solve

the column generation subproblem in (2). In mathematical programming form, the subproblem in (2) is:

Given {pj}, solve

Min

subject to:

The aij satisfy the conditions defining a valid column.

19.6.1 Example of Column Generation Applied to a Cutting Stock Problem
A common problem encountered in flat goods industries, such as paper, textiles, and steel, is the cutting

of large pieces of raw material into smaller pieces needed for producing a finished product. Suppose raw

material comes in 72" widths and it must be cut up into eight different finished good widths described

by the following table:

Product

Width in
Inches

Linear feet
Required

1 60 500

2 56 400

3 42 300

4 38 450

5 34 350

6 24 100

7 15 800

8 10 1000

0 1 1 2 2j j j m mja p a p a p a+ + + +

594 Chapter 19 Decision Support Systems

 We start the process somewhat arbitrarily by defining the eight pure cutting patterns. A pure pattern

produces only one type of finished good width. Let Pi = number of feet of raw material to cut according

to the pattern i. We want to minimize the total number of feet cut. The LP with these patterns is:

MIN =P001 + P002 + P003 + P004 + P005 + P006 + P007 + P008;

 [W60] P001 >= 500; ! (60 inch width);

 [W56] P002 >= 400; ! (56 inch width);

 [W42] P003 >= 300; ! (42 inch width);

 [W38] P004 >= 450; ! (38 inch width);

 [W34] 2 * P005 >= 350; ! (34 inch width);

 [W24] 3 * P006 >= 100; ! (24 inch width);

 [W15] 4 * P007 >= 800; ! (15 inch width);

 [W10] 7 * P008 >= 1000; ! (10 inch width);

END

The solution is:

Optimal solution found at step: 0

Objective value: 2201.190

Variable Value Reduced Cost

 P001 500.0000 0.0000000

 P002 400.0000 0.0000000

 P003 300.0000 0.0000000

 P004 450.0000 0.0000000

 P005 175.0000 0.0000000

 P006 33.33333 0.0000000

 P007 200.0000 0.0000000

 P008 142.8571 0.0000000

 Row Slack or Surplus Dual Price

 1 2201.190 1.000000

 W60 0.0000000 -1.000000

 W56 0.0000000 -1.000000

 W42 0.0000000 -1.000000

 W38 0.0000000 -1.000000

 W34 0.0000000 -0.5000000

 W24 0.0000000 -0.3333333

 W15 0.0000000 -0.2500000

 W10 0.0000000 -0.1428571

 The dual prices provide information about which finished goods are currently expensive to produce.

A new pattern to add to the problem can be found by solving the problem:

Minimize

subject to

y1 = 0, 1, 2,... for i = 1,... 8.

Note the objective can be rewritten as:

Maximize

1 5 0 333333 0 25 0142857
1 2 3 4 5 6 7 8

− − − − − − − −y y y y y y y y. . . .

60 56 42 38 34 24 15 10 72
1 2 3 4 5 6 7 8y y y y y y y y+ + + + + + +

1 2 3 4 5 6 7 8
5 0 333333 0 25 0142857y y y y y y y y+ + + + + + +. . . .

Decision Support Systems Chapter 19 595

 This is a knapsack problem. Although knapsack problems are theoretically difficult to solve, there

are algorithms that are quite efficient on typical practical knapsack problems. An optimal solution to this

knapsack problem is y4 = 1, y7 = 2 (i.e., a pattern that cuts one 38” width and two 15” widths). When this

column, P009, is added to the LP, we get the formulation (in Picture form):

P P P P P P P P P

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

1: 1 1 1 1 1 1 1 1 1 MIN

2: 1 ' ' > C

3: ' 1' ' ' ' ' > C

4: 1 ' ' > C

5: 1 ' 1 > C

6: ' ' ' 2' ' ' > C

7: ' 3 ' > B

8: ' 4 2 > C

9: ' ' ' ' ' 7' > C

The solution is:

Optimal solution found at step: 3

Objective value: 2001.190

Variable Value Reduced Cost

 P001 500.0000 0.0000000

 P002 400.0000 0.0000000

 P003 300.0000 0.0000000

 P004 50.00000 0.0000000

 P005 175.0000 0.0000000

 P006 33.33333 0.0000000

 P007 0.0000000 1.000000

 P008 142.8571 0.0000000

 P009 400.0000 0.0000000

 Row Slack or Surplus Dual Price

 1 2001.190 1.000000

 W60 0.0000000 -1.000000

 W56 0.0000000 -1.000000

 W42 0.0000000 -1.000000

 W38 0.0000000 -1.000000

 W34 0.0000000 -0.5000000

 W24 0.0000000 -0.3333333

 W15 0.0000000 0.0000000

 W10 0.0000000 -0.1428571

The column generation subproblem is:

Minimize

subject to

y1 = 0, 1, 2,... for i = 1,... 8.

 An optimal solution to this knapsack problem is y4 = 1, y5 = 1 (i.e., a pattern that cuts one 38” width

and one 34” width).

1 2 3 4 5 6 8
5 0 333333 0142857y y y y y y y+ + + + + +. . .

60 56 42 38 34 24 15 10 72
1 2 3 4 5 6 7 8y y y y y y y y+ + + + + + +

596 Chapter 19 Decision Support Systems

 We continue generating and adding patterns for a total of eight iterations. At this point, the LP

formulation is:

P P P P P P P P P P P P P P P

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MIN

2: 1 ' ' ' ' 1 > C

3: ' 1' ' ' ' ' ' '1 ' ' > C

4: 1 ' ' ' 1 ' 1 > C

5: 1 ' 1 1 1 > C

6: ' ' ' 2' ' ' 1 ' ' ' > C

7: ' 3 ' ' 1 > B

8: ' 4 2 ' 2 1 ' > C

9: ' ' ' ' ' 7' ' ' 1 3'1 > C

The solution is:

Optimal solution found at step: 10

Objective value: 1664.286

Variable Value Reduced Cost

 P001 0.0000000 0.1428571

 P002 0.0000000 0.2142857

 P003 0.0000000 0.4285714

 P004 0.0000000 0.4285714

 P005 0.0000000 0.1428571

 P006 0.0000000 0.1428571

 P007 0.0000000 0.1428571

 P008 14.28571 0.0000000

 P009 0.0000000 0.0000000

 P010 350.0000 0.0000000

 P011 200.0000 0.0000000

 P012 400.0000 0.0000000

 P013 100.0000 0.0000000

 P014 100.0000 0.0000000

 P015 500.0000 0.0000000

 Row Slack or Surplus Dual Price

 1 1664.286 1.000000

 W60 0.0000000 -0.8571429

 W56 0.0000000 -0.7857143

 W42 0.0000000 -0.5714286

 W38 0.0000000 -0.5714286

 W34 0.0000000 -0.4285714

 W24 0.0000000 -0.2857143

 W15 0.0000000 -0.2142857

 W10 0.0000000 -0.1428571

Decision Support Systems Chapter 19 597

The relevant knapsack problem is:

Maximize

0.857143y1 + 0.785714y2 + 0.571429y3 + 0.523809y4

 + 0.476191y5 + 0.333333y6 + 0.214285y7 + 0.142857y8

 subject to

60y1 + 56y2 + 42y3 + 38y4 + 34y5 + 24y6 + 15y7 + 10y8 72

y1 = 0, 1, 2,... for i = 1,... 8.

 The optimal solution to the knapsack problem has an objective function value less-than-or-equal-to

one. Because each column, when added to the LP, has a “cost” of one in the LP objective, when the

proposed column is priced out with the current dual prices, it is unattractive to enter. Thus, the previous

LP solution specifies the optimal amount to run of all possible patterns. There are in fact 29 different

efficient patterns possible, where efficient means the edge waste is less than 10". Thus, the column

generation approach allowed us to avoid generating the majority of the patterns.

 If an integer solution is required, then a simple rounding up heuristic tends to work moderately well.

In our example, we know the optimal integer solution costs at least 1665. By rounding P008 up to 15,

we obtain a solution with cost 1665.

 The following is a LINGO program that automates this column generation process.

 MODEL: ! Loopcut72.lng;

 ! Uses Lingo's programming capability to do

 on-the-fly column generation for a

 cutting-stock problem;

 ! Keywords: Column Generation, Knapsack Model, Cutting Stock;

 SETS:

 PATTERN: COST, X;

 FG: WIDTH, DEM, PRICE, Y, YIELD;

 FXP(FG, PATTERN): NBR;

 ENDSETS

 DATA:

 PATTERN = 1..20; ! Allow up to 20 patterns;

 RMWIDTH = 72; ! Raw material width;

 FG = F60 F56 F42 F38 F34 F24 F15 F10;!Finished goods...;

 WIDTH= 60 56 42 38 34 24 15 10;!their widths...;

 DEM = 500 400 300 450 350 100 800 1000;!and demands;

 BIGM = 999;

 ENDDATA

 SUBMODEL MASTER_PROB:

 [MSTROBJ] MIN= @SUM(PATTERN(J)| J #LE# NPATS: COST(J)*X(J));

 @FOR(FG(I):

 [R_DEM] @SUM(PATTERN(J)| J #LE# NPATS:

 NBR(I, J) * X(J)) >= DEM(I);

);

 ENDSUBMODEL

 SUBMODEL INTEGER_REQ:

 @FOR(PATTERN: @GIN(X));

 ENDSUBMODEL

598 Chapter 19 Decision Support Systems

 SUBMODEL PATTERN_GEN:

 [SUBOBJ] MAX = @SUM(FG(I): PRICE(I)* Y(I));

 @SUM(FG(I): WIDTH(I)*Y(I)) <= RMWIDTH;

 @FOR(FG(I): @GIN(Y(I)));

 ENDSUBMODEL

 CALC:

 ! Set some parameters;

 @SET('DEFAULT'); ! Set all parameters to defaults;

 @SET('TERSEO', 2); ! Turn off default output;

 ! Max number of patterns we'll allow;

 MXPATS = @SIZE(PATTERN);

 ! Make first pattern an expensive super pattern;

 COST(1) = BIGM;

 @FOR(FG(I): NBR(I, 1) = 1);

 ! Loop as long as the reduced cost is

 attractive and there is space;

 NPATS = 1;

 RC = -1; ! Clearly attractive initially;

 @WHILE(RC #LT# 0 #AND# NPATS #LT# MXPATS:

 ! Solve for best patterns to run among ones

 generated so far;

 @SOLVE(MASTER_PROB);

 ! Copy dual prices to PATTERN_GEN submodel;

 @FOR(FG(I): PRICE(I) = -@DUAL(R_DEM(I)));

 ! Generate the current most attractive pattern;

 @SOLVE(PATTERN_GEN);

 ! Marginal value of current best pattern;

 RC = 1 - SUBOBJ;

 ! Add the pattern to the Master if it is attractive;

 @IFC(RC #LT# 0:

 NPATS = NPATS + 1;

 @FOR(FG(I): NBR(I, NPATS) = Y(I));

 COST(NPATS) = 1;

);

);

 ! Finally solve Master as an IP;

 @SOLVE(MASTER_PROB, INTEGER_REQ);

 ! This following calc section displays the

 solution in a tabular format;

 ! Compute yield of each FG;

 @FOR(FG(F): YIELD(F) =

 @SUM(PATTERN(J)| J #LE# NPATS:

 NBR(F, J) * X(J))

);

 ! Compute some stats;

 TOTAL_FT_USED = @SUM(PATTERN(j)| j #LE# NPATS: X(j)) * RMWIDTH;

 TOTAL_FT_YIELD = @SUM(FG: YIELD * WIDTH);

Decision Support Systems Chapter 19 599

 PERC_WASTE = 100 * (1 - (TOTAL_FT_YIELD / TOTAL_FT_USED)) ;

 ! Display the table of patterns and their usage;

 FW = 6;

 @WRITE(@NEWLINE(1));

 @WRITE(' Total raws used: ', @SUM(PATTERN(j) | j #LE# NPATS:

 X(j)), @NEWLINE(2),

 ' Total feet yield: ', TOTAL_FT_YIELD , @NEWLINE(1),

 ' Total feet used: ', TOTAL_FT_USED , @NEWLINE(2),

 ' Percent waste: ', @FORMAT(PERC_WASTE, '#5.2G'),

 '%', @NEWLINE(1));

 @WRITE(@NEWLINE(1), 24*' ', 'Pattern:', @NEWLINE(1));

 @WRITE(' FG Demand Yield');

 @FOR(PATTERN(I) | I #LE# NPATS: @WRITE(@FORMAT(I, '6.6G')));

 @WRITE(@NEWLINE(1));

 @WRITE(' ',FW*(NPATS+3)*'=', @NEWLINE(1));

 @FOR(FG(F):

 @WRITE((FW - @STRLEN(FG(F)))*' ', FG(F), ' ',

 @FORMAT(DEM(F), '6.6G'), @FORMAT(YIELD(F), '6.6G'));

 @FOR(FXP(F, P) | P #LE# NPATS:

 @WRITE(@IF(NBR(F, P) #GT# 0,

 @FORMAT(NBR(F, P), "6.6G"), ' .')));

 @WRITE(@NEWLINE(1))

);

 @WRITE(' ',FW*(NPATS+3)*'=', @NEWLINE(1));

 @WRITE(2*FW*' ', ' Usage:');

 @WRITEFOR(PATTERN(P) | P#LE# NPATS: @FORMAT(X(P), '6.6G'));

 @WRITE(@NEWLINE(1));

 ENDCALC

 END

19.6.2 Column Generation and Integer Programming
Column generation can be used to easily find an optimum solution to an LP. This is not quite true with

IP’s. The problem is, with an IP, there is no simple equivalent to dual price. Dual prices may be printed

in an IP solution, but they have an extremely limited interpretation. For example, it may be that all dual

prices are 0 in an IP solution.

 Thus, the usual approach, when column generation is used to attack IP’s, is to use column generation

only to solve the LP relaxation. A standard IP algorithm is then applied to the problem composed of only

the columns generated during the LP. However, it may be that a true IP optimum includes one or more

columns that were not generated during the LP phase. The LP solution, nevertheless, provides a bound

on the optimum LP solution. In our previous cutting stock example, this bound was tight.

 There is a fine point to be made with regard to the stopping rule. We stop, not when the previous

column added leads to no improvement in the LP solution, but when the latest column generated prices

out unattractively.

600 Chapter 19 Decision Support Systems

19.6.3 Row Generation
An analogous approach can be used if the problem intrinsically has many thousands of constraints even

though only a few of them will be binding. The basic approach is:

1. Generate some of the constraints.

2. Solve the problem with the existing constraints.

3. Find a constraint that has not been generated, but is violated. If none, we are done.

4. Add the violated constraint and go to (2)

Decision Support Systems Chapter 19 601

A

B

19.7 Problems
1. A rope, 30 meters long is suspended between two vertical poles, each 20 meters high. The lowest

point of the hanging rope is 5 meters above the (level) ground. How far apart are the two poles? Use

the model verification technique of checking extreme cases, to answer this question.

2. Consider the LP:

MAX = W + 20 * X;

 X + Z <= 70;

 Y + Z <= 55;

 W - 30 * Y - 46 * Z = 0;

 X + 2 * Y + 3.1 * Z <= 130;

END

 All variables are nonnegative. Show how this model can be reduced to a smaller, but equivalent

LP.

3. One of the most important and creative steps in analyzing or modeling a problem is identifying the

decision variables or, more generally, identifying the options available in solving the problem. Show

how paying close attention to the options available allows you to solve the following two problems:

a) On a sheet of paper, arrange nine dots in a 3 by 3 square grid. Without removing your pen

from the paper, draw four straight connected line segments that pass through all nine

points.

b) Rearrange the letters in "new door" to create one word.

4. Important skills in decision making and model formulation are identifying decision options and

constraints. Consider the figure below. Draw the shortest path from A to B.

602 Chapter 19 Decision Support Systems

5. A common footnote seen in financial reports is a phrase like: “numbers may not sum to 100 because

of rounding”. This is an example the rounding problem frequently encountered when preparing reports.

In its simplest form, one is given a column of numbers, some of which have fractional parts. One wants

to round the numbers to integers, or to numbers with fewer fractional digits, so that the sum of the

rounded numbers equals the sum of the original numbers. Some variations of this problem are: a) in

regulated utilities where a firm is allowed to round certain charges to a multiple of a nickel, subject to

having the total equal a certain quantity; b) in some parliaments, e.g., the U.S. House of Representatives,

each state is supposed to have an integer number of representatives(out of a fixed total of 435)

proportional to the state’s population. To illustrate, consider the following two sets of numbers and

their sums:

 Set 1 Set 2

 23.3 3.7

 15.4 11.6

 61.3 9.8

 100.0 47.7

 9.6

 11.5

 6.1

 100.0

Notice that for both examples, if you round each component to the nearer integer, the results will not

sum to 100.

 a) Specify a method for rounding the components of an arbitrary set of numbers, extolling the virtues

of your method.

 b) Illustrate your method on the two examples.

6. You have created a supply chain modeling system that can accommodate from 1 to 10 products,

from 1 to 6 suppliers, from 1 to 25 customers, and from 1 to 12 time periods. In order to test your

modeling system you want run at least one case for each extreme of each dimension. In case there is a

bug in your modeling system that depends upon interactions between two dimension you also want to

run at least one case for each pair of extremes. For example, considering products and suppliers, you

want to run at least four cases covering: 1) 1 product and 1 supplier, 2) 1 product and 6 suppliers, 3) 10

products and 1 supplier, 4) 10 products and 6 suppliers. Note that a given test case in fact covers one

product setting, one supplier setting, one customer setting, and one number-of-periods setting. What is

the minimum number of test cases you need to run, so that if you consider any pair of dimensions, each

of the four combinations of extreme cases have been run?

603

References
Adams, J.L. (1986), Conceptual Blockbusting, Addison-Wesley, Reading, MA.

Adams, W. and H. Sherali(2005), “A Hierarchy of Relaxations Leading to the Convex Hull Representation

for General Discrete Optimization Problems”, Annals of Operations Research, vol. 140, pp.21-

47.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin (1993), Network Flows, Theory, Algorithms, and Applications,

Prentice-Hall, Englewood Cliffs, NJ.

Andrews, B. and H. Parsons(1993), “Establishing Telephone-Agent Staffing Levels through Economic

Optimization”, Interfaces, Vol. 23, No. 2, pp. 14-20.

Arnold, L., and D. Botkin. “Portfolios to Satisfy Damage Judgement: A Linear Programming Approach”,

Interfaces, Vol. 8, No. 2 (Feb. 1978).

Aykin, T. (1996), “Optimal Shift Scheduling with Multiple Break Windows”, Management Science, Vol

. 42 No. 4 (April), pp. 591-602.

Baker, E. K. and M. L. Fisher (1981), “Computational Results for Very Large Air Crew Scheduling

Problems”, Omega, Vol. 9, pp. 613-618.

Balas, E. (1979), “Disjunctive Programming”, Annals of Discrete Mathematics, Vol. 5, pp. 3-51.

Banks, J. and R. Gibson (1997), “10 Rules for Determining When Simulation is Not Appropriate”, IIE

Solutions, Vol. 29, No. 9 (September), pp. 30-32.

Barnett, A. (1994), “How Numbers Can Trick You”, Technology Review, MIT, Vol. 97, No. 7(October),

pp. 38-45.

Belobaba, P.P.(1989),”Application of a Probabilistic Decision Model to Airline Seat Inventory Control”,

Operations Research, vol. 37, no. 2, (March-April) pp. 183-197.

Bessent, A., W. Bessent, J. Kennington, and B. Reagan (1982), “An Application of Mathematical

Programming to Assess Productivity in the Houston Independent School District”, Management

Science, Vol. 28, No. 12 (December), pp. 1355-1367.

Birge, J. R. (1997), “Stochastic Programming Computation and Applications”, INFORMS Journal on

Computing, Vol. 9, No. 2, pp.111-133.

Birge, J. and F. Louveaux (1997), Introduction to Stochastic Programming, Springer-Verlag, New York,

NY.

Black, F. (1989), “How We Came Up with the Option Formula”, The Journal of Portfolio Management,

Winter, pp. 4-8.

Black, F., E. Derman, and W. Toy (1990), “A One-Factor Model of Interest Rates and Its Application to

Treasury Bond Options”, Financial Analyst Journal, Vol. 46, pp. 33-39.

Black, F., and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities”, Journal of Political

Economy, Vol. 81, pp. 637-654.

Bland, R. G. and D. F. Shallcross (1989), “Large Traveling Salesman Problems Arising in X-ray

Crystallography: A Preliminary Report on Computation”, O.R. Letters, Vol. 8, No. 3, pp. 125-128.

604 References

Bosch, R.A.(1993), "Big Mac Attack, The Diet Problem revisited: Eating at McDonald's", OR/MS Today,

(August), pp. 30-31.

Bracken, J. and G.P. McCormick (1968), Selected Applications of Nonlinear Programming, John Wiley &

Sons, Inc., New York, NY.

Bradley, G. H., G. G. Brown and G. W. Graves (1977), “Design and Implementation of Large Scale Primal

Transshipment Algorithms”, Management Science, Vol. 24, pp. 1-34.

Bradley, S.P., A. C. Hax and T. L. Magnanti (1977), Applied Mathematical Programming, Addison-Wesley

Publishing Company, Reading, Mass..

Braess, D. (1968), “Uber ein Paradoxon aus der Verkehplanung”, Unternehmensforschung, Vol. 12,

pp. 258-268.

Brearley, A. L., G. Mitra and H. P. Williams (1975), “An Analysis of Mathematical Programming Problems

Prior to Applying the Simplex Algorithm”, Mathematical Programming, Vol. 8, pp. 54-83.

Brown, G.G., R.F. Dell, and R.K. Wood (1997), “Optimization and Persistence”, Interfaces, Vol. 27, No. 5,

(Sept-Oct), pp. 15-37.

Brown, G.G., C.J. Ellis, G.W. Graves, and D. Ronen (1987), “Real-Time, Wide Areas Dispatch of Mobil

Tank Trucks”, Interfaces, Vol. 17, No. 1, pp. 107-120.

Brown, G. G. and D. S. Thomen (1980), “Automatic Identification of Generalized Upper Bounds in

Large-Scale Optimization Models”, Management Science, Vol. 26, No. 11, pp. 1166-1184.

Carino, D.R., T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe, and W.T. Ziemba

(1994), “The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance

Company Using Multistage Stochastic Programming”, Interfaces, Vol. 24, No. 1, pp. 29-49.

Charnes, A., W.W. Cooper and E. Rhodes (1978), “Measuring the Efficiency of Decision Making Units”,

European Journal of Operational Research, Vol. 2 (1978) pp. 429-444.

Chinneck, J. (2008), Feasibility and Infeasibility in Optimization, Springer,

Ciriani, T.A. and R. C. Leachman (1993), Optimization in Industry, John Wiley & Sons, Chichester.

Clarke, G. and J. W. Wright (1964), “Scheduling of Vehicles from a Central Depot to a Number of Delivery

Points”, Operations Research, Vol. 12, No. 4 (July-Aug.), pp. 568-581.

Claus, A.(1984), “A New Formulation for the Travelling Salesman Problem”, SIAM Journal on Algebraic

and Discrete Methods, vol. 5, no. 1, pp. 21-25.

Clyman, D.R. (1995), “Unreasonable Rationality?”, Management Science, Vol 41, No. 9 (Sept.),

pp. 1538-1548.

Craven, J. P.(2001), The Silent War: the Cold War Battle Beneath the Sea, Simon & Schuster, New York.

Dantzig, G. (1963), Linear Programming and Extensions, Princeton University Press, Princeton.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson(1954), “Solution of a Large-Scale Traveling-Salesman

Problem”, Operations Research, vol. 2, no. 4, pp. 393-410.

Dantzig, G. and N. N. Thapa (1997), Linear Programming, Vol. 1, Springer, New York.

References 605

Dantzig, G. and B. Wolfe (1960), “Decomposition Principle for Linear Programs”, Operations Research,

Vol. 8, pp. 101-111.

Danusaputro, S., C. Lee, and L. Martin-Vega (1990), “An Efficient Algorithm for Drilling Printed Circuit

Boards”, Computers and Industrial Engineering, Vol. 18, pp. 145-151.

Dauch, R.E. (1993), Passion for Manufacturing, Society of Manufacturing Engineers, Dearborn, MI.

Davis, L. S. and K. N. Johnson (1987), Forest Management, 3rd ed., McGraw-Hill Company.

Dembo, R.S., A. Chiarri, J.G. Martin, and L. Paradinas (1990), “Managing Hidroeléctrica Española's

Hydroelectric Power System”, Interfaces, Vol. 20, No. 1 (Jan.-Feb.), pp. 115-135.

d'Epenoux, F. (1963), “A Probabilistic Production and Inventory Problem”, Management Science, Vol. 10,

No. 1 (Oct), pp. 98-108.

DeRosa, D. (1992), Options on Foreign Exchange, Irwin Professional Publishing, New York.

DeWitt, C. W., L. Lasdon, A. Waren, D. Brenner and S. Melhem (1989), “OMEGA: An Improved Gasoline

Blending System for Texaco,” Interfaces, Vol. 19, No. 1 (Jan.-Feb.), pp. 85-101.

Dikin, I. I. (1967), “Iterative Solution of Problems of Linear and Quadratic Programming”, Soviet

Mathematics Doklady, Vol. 8, pp. 674-675.

Dial, R.B. (1994), “Minimizing Trailer-on-Flat-Car Costs: A Network Optimization Model”, Transportation

Science, Vol. 28, pp. 24-35.

Ding, X. and M. Puterman(2002), “The Censored Newsvendor and the Optimal Acquisition of Information”,

Operations Research, vol. 50, no. 3, pp. 517-527.

Dutton, R., G. Hinman and C. B. Millham (1974), “The Optimal Location of Nuclear-Power Facilities in the

Pacific Northwest”, Operations Research, Vol. 22, No. 3 (May-June), pp. 478-487.

Dyckhoff, H. (1981), “A New Linear Programming Approach to the Cutting Stock Problem”, Operations

Research, Vol. 29, No. 6 (Nov.-Dec.), pp. 1092-1104.

Edie, L. C. (1954), “Traffic Delays at Toll Booths”, Operations Research, Vol. 2, No. 2 (May),

pp. 107-138.

Elshafei, A. (1977), “Hospital Lay-out as a Quadratic Assignment Problem”, Operational Research

Quarterly, Vol. 28, pp. 167-169.

Emmelhainz, L. W., M. A. Emmelhainz, and J. R. Stock (1991), “Logistics Implications of Retail

Stockouts”, Journal of Business Logistics, Vol. 12, No. 2, pp. 129-142.

Eppen, G., K. Martin, and L. Schrage (1988), “A Scenario Approach to Capacity Planning”, Operations

Research, Vol. 37, No. 4 (July-August), pp. 517-530.

Eppen, G. D. and R. K. Martin (1987), “Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable

Redefinition.” Operations Research, Vol. 35, No. 6 (Nov.-Dec.), pp. 832-848.

Fahim, M., . Al-Sahhaf, and A. Elkilani (2010), Fundamentals of Petroleum Refining, 1st ed., Elsevier B.V.,

The Netherlands.

Farley, A. A. (1990), “A Note on Bounding a Class of Linear Programming Problems, Including Cutting

Stock Problems”, Operations Research, Vol. 38, No. 5 (Sept.-Oct.), pp. 922-923.

606 References

Fields, C., J. F. Hourican and E. A. McGee (1978), “Developing a Minimum Cost Feed Blending System

for Intensive Use”, Joint National TIMS/ORSA Meeting, New York, NY.

Fieldhouse, M. (1993), “The Pooling Problem”, Optimization in Industry, (Eds.) T. A. Ciriani and R. C.

Leachman, John Wiley & Sons.

Fillon, M. (1996), “Taming the Yangtze”, Popular Mechanics, Vol. 173, No. 7 (July), pp. 52-56.

Fisher, M. and A. Raman (1996), “Reducing the Cost of Demand Uncertainty Through Accurate Response

to Early Sales”, Operations Research, Vol. 44, No. 1 (Jan.-Feb.), pp. 87-99.

Florian, M (1977), “An Improved Linear Approximation Algorithm for the Network Equilibrium (Packet

Switching) Problem”, Proceedings 1977 IEEE Conference Decision and Control.

Fudenberg, D. and J. Tirole (1993) Game Theory, The MIT Press, Cambridge, MA.

Gaballa, A. and W. Pearce(1979), “Telephone Sales Manpower Planning at Qantas”, Interfaces, Vol. 9, No.

3,(May), pp. 1-9.

Geoffrion, A. (1976), “The Purpose of Mathematical Programming is Insight, Not Numbers”, Interfaces,

Vol. 7, No. 1 (November), pp. 81-92.

Geoffrion, A. and G. W. Graves (1974), “Multicommodity Distribution System Design by Benders

Decomposition”, Management Science, Vol. 20, No. 5 (January), pp. 822-844.

Glover, F. and D. Klingman (1977), “Network Applications in Industry and Government”, AIIE

Transactions, Vol. 9, pp. 363-376.

Golabi, K., R.B. Kulkarni, and G.B. Way (1982), “A Statewide Pavement Management System”, Interfaces,

Vol. 12, No. 6 (Nov.-Dec.), pp. 5-21.

Gomory, R. E. (1958), “Outline of an Algorithm for Integer Solutions to Linear Programs”, Bulletin of the

American Mathematical Society, Vol. 64, pp. 275-278.

Grandine, T.A.(1998), "Assigning Season Tickets Fairly", Interfaces, Vol. 28, No. 4(July-August),

pp. 15-20.

Graves, R., J. Sankaran, and L. Schrage (1993), “An Auction Method for Course Registration", Interfaces,

Vol. 23, No. 5 (1993), pp. 81-92.

Greenberg, H.J.(1978), Design and Implementation of Optimization Software, Sijthoff & Noordhoff.

Grinold, R.C. (1983), “Model Building Techniques for the Correction of End Effects in Multistage Convex

Programs”, Operations Research, Vol. 31, No. 3, pp. 407-431.

Gross, D. and C. Harris(1998), Fundamentals of Queueing Theory, 3rd ed., Wiley Interscience,

New York.

Grötschel, M., M. Jünger and G. Reinelt (1985), “Facets of the Linear Ordering Polytope”, Mathematical

Programming, Vol. 33, pp. 43-60.

Gunawardane, G., S. Hoff and L. Schrage (1981), “Identification of Special Structure Constraints in Linear

Programs”, Mathematical Programming, Vol. 21, pp. 90-97.

Hadley, G. (1962), Linear Programming, Addison-Wesley.

References 607

Hane, C.A., C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, G. Sigismondi (1995), “The Fleet

Assignment Problem: Solving a Large Scale Integer Program”, Mathematical Programming, Vol.

70, pp. 211-232.

Hansen, C.T., K. Madsen, and H.B. Nielsen (1991), “Optimization of Pipe Networks”, Mathematical

Programming, Vol. 52, pp. 45-58.

Hanson, W. and R. K. Martin (1990), “Optimal Bundle Pricing”, Management Science, Vol. 36, No. 2

(February), pp. 155-174.

Haverly, C. A. (1978), “Studies of the Behavior of Recursion for the Pooling Problem”, SIGMAP Bulletin,

Association for Computing Machinery, no. 25 (Dec.).

Heath, D., R. Jarrow, and A. Morton (1992), “Bond Pricing and the Term Structure of Interest Rates: A New

Methodology for Contingent Claims Valuation”, Econometrica, Vol. 60, No. 1, pp. 77-105.

Held, M. and R. Karp(1962), “A Dynamic Programming Approach to Sequencing Problems”, SIAM Journal

of Applied Math, vol. 10, no. 1, pp. 196-210.

Infanger, G. (1994), Planning Under Uncertainty: Solving Large-Scale Stochastic Linear Programs, Boyd

& Fraser, Danvers, MA.

Jackson, J.R.(1963), “Jobshop-Like Queueing Systems”, Management Science, Vol. 10, No. 1,

pp. 131-142.

Jenkins, L. (1982), “Parametric Mixed Integer Programming: An Application to Solid Waste Management”,

Management Science, Vol 28, No. 11 (Nov.), pp. 1270-1284.

Jeroslow, R.G., K. Martin, R.L. Rardin, J. Wang (1992),“Gainfree Leontief Substitution Flow Problems”,

Mathematical Programming, Vol. 57, pp. 375-414.

Jorion, P. (2001), Value at Risk, 2nd ed., McGraw-Hill.

Kaiser, M., A. de Klerk, J. Gary, and G. Handwerk, (2020). Petroleum Refining, Technology, Economics

and Markets, 6th ed., CRC Press/Taylor Francis, Boca Raton, FL.

Kall, P. and S.W. Wallace (1994), Stochastic Programming, John Wiley & Sons, New York, NY.

Karmarkar, N. K. (1985), “A New Polynomial Time Algorithm for Linear Programming”, Combinatorica,

Vol. 4, pp. 373-395.

Kehoe, T.J. (1985), “A Numerical Investigation of Multiplicity of Equilibria”, Mathematical Programming

Study 23, pp. 240-258.

Khachian, L. G. (1979), “A Polynomial Algorithm in Linear Programming”, Soviet Mathematics Doklady,

Vol. 20, No. 1, pp. 191-194.

King, R. H. and Love, R. R. (1980), “Coordinating Decisions for Increased Profits”, Interfaces, Vol. 10, No.

6 (December), pp. 4-19.

Konno, H. and H. Yamazaki (1991), “Mean-Absolute Deviation Portfolio Optimization Model and Its

Applications to Tokyo Stock Market”, Management Science, Vol. 37, No. 5 (May), pp. 519-531.

Kontogiorgis, S. and S. Acharya (1999), "US Airways Automates Its Weekend Fleet Assignment",

Interfaces, Vol. 29, No. 3(May-June), pp. 52-62).

608 References

Koopmans, T. and M. Beckmann (1957), “Assignment Problems and the Location of Economic Activities”,

Econometrica, Vol. 25, pp. 53-76.

Kruskal, Jr., J. B. (1956), “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem”, Proc. Amer. Math. Soc., Vol. 7, pp. 48-50.

Lasdon, L. S., and Terjung, R. C. (1971), “An Efficient Algorithm for Multi-Item Scheduling”, Operations

Research, Vol. 19, No. 4, pp. 946-69.

Lawler, E. L. (1963), “The Quadratic Assignment Problem”, Management Science, Vol. 19, pp. 586-599.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys (1985), “The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization”, John Wiley & Sons.

Leontief, W. (1951), The Structure of American Economy, 1919-1931, Oxford University Press, New York,

NY.

Levy, F. K. (1978), “Portfolios to Satisfy Damage Judgements: A Simple Approach”, Interfaces, Vol. 9, No.

1 (Nov.), pp. 106-107.

Lin, S. and B. Kernighan (1973), “An Effective Heuristic Algorithm for the Traveling Salesman Problem”,

Operations Research, Vol. 21, pp. 498-516.

Little, J. D. C. (1961), "A Proof of the Queuing Formula L = W", Operations Research, Vol. 9, No. 3 (May-

June), pp. 383-387.

Madansky, A. (1962), “Methods of Solution of Linear Programs Under Uncertainty”, Operations Research,

Vol. 10, pp. 463-471.

Mangasarian, O.L. (1993), “Mathematical Programming in Neural Networks”, ORSA Journal on

Computing, Vol. 5, No. 4, pp. 349-360.

Manne, A. (1960), “Linear Programming and Sequential Decisions”, Management Science, Vol. 6, No. 3

(April), pp. 259-267.

Markowitz, H. M. (1959), Portfolio Selection, Efficient Diversification of Investments, John Wiley & Sons,

Inc..

Markowitz, H. and A. Perold (1981), “Portfolio Analysis with Scenarios and Factors”, Journal of Finance,

Vol. 36, pp. 871-877.

Marsten, R. E., M. P. Muller and C. L. Killion (1979), “Crew Planning at Flying Tiger: A Successful

Application of Integer Programming”, Management Science, Vol. 25, No. 12 (Dec.),

pp. 1175-1183.

Marsten, R. E., M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F. Ballintijn (1989), “Implementation of a

Dual Affine Interior Point Algorithm for Linear Programming”, ORSA J. on Computing, Vol. 1,

No. 4, pp. 287-297.

Martin, R. K.(1999) Large Scale Linear and Integer Optimization: A Unified Approach, Kluwer Academic

Publishers, Boston.

Maschler, M., B. Peleg, and L. S. Shapley (1979), “Geometric Properties of the Kernel, Nucleolus, and

Related Solution Concepts”, Mathematics of Operations Research, Vol. 4, No. 4 (Nov.),

pp. 303-338.

References 609

Mehrabian, S. G. Jahanshahloo, M. Alirezaee, and G. Amin (2000) “An Assurance Interval for the

non_Archimedean Epsilon in DEA Models”, Operations Research, Vol. 48, No. 2, pp. 344-347.

Miller, H. E., W. P. Pierskalla and G. J. Rath (1976), “Nurse Scheduling using Mathematical Programming”,

Operations Research, Vol. 24, pp. 857-870.

Miller, C. E., A. W. Tucker, and R. A. Zemlin(1960), ”Integer Programming Formulations and Travelng

Salesman Problems”, Journal of ACM, pp. 326-329.

Moldovanu, B. and M. Tietzel (1998) "Goethe's Second-Price Auction", Journal of Political Economy, Vol.

106, No. 4, pp. 854-858

Murchland, J. D. (1970), “Braess's Paradox of Traffic Flow”, Transportation Research, Vol. 4, pp. 391-394.

Nahmias, S.(1997) Production and Operations Analysis, 3rd ed., Irwin Publishing, Homewood, IL.

Nauss, R. M. (1986), “True Interest Cost in Municipal Bond Bidding: An Integer Programming Approach”,

Management Science, Vol. 32, No. 7, pp. 870-877.

Nauss, R. M. and B. R. Keeler (1981), “Minimizing Net Interest Cost in Municipal Bond Bidding”,

Management Science, Vol. 27, No. 4 (April), pp. 365-376.

Nauss, R. M. And R. Markland (1981), “Theory and Application of an Optimization Procedure for Lock

Box Location Analysis”, Management Science, Vol. 27, No. 8 (August), pp. 855-865.

Neebe, A. W. (1987), “An Improved, Multiplier Adjustment Procedure for the Segregated Storage Problem”,

Journal of the Operational Research Society, Vol. 38, No. 9, pp. 1-11.

Orlin, J.B. (1982), “Minimizing the Number of Vehicles to Meet a fixed Periodic Schedule: An Application

of Periodic Posets”, Operations Research, Vol. 30, No. 4, pp. 760-776.

Nemhauser, G. L. and L. A. Wolsey (1988), Integer and Combinatorial Optimization, John Wiley & Sons,

Inc.

Padberg, M. and G. Rinaldi (1987), “Optimization of a 532-City Symmetric Traveling Salesman Problem

by Branch and Cut”, Operations Research Letters, Vol. 6, No. 1.

Palmquist, J., Uryasev, S., and Krokhmal, P.(2002), “Portfolio Optimization with Conditional Value-at-Risk

Objective and Constraints”, The Journal of Risk, vol. 4, pp. 11-27.

Parker, R.G. and R.L. Rardin (1988), Discrete Optimization, Academic Press, San Diego.

Peiser, R.B. and S.G. Andrus (1983), “Phasing of Income-Producing Real Estate”, Interfaces, Vol. 13, No. 5

(Oct), pp. 1-9.

Perold, A. F. (1984), “Large Scale Portfolio Optimization”, Management Science, Vol. 30, pp. 1143-1160.

Plane, D. R. and T. E. Hendrick (1977), “Mathematical Programming and the Location of Fire Companies

for the Denver Fire Department”, Operations Research, Vol. 25, No. 4 (July-August), pp. 563-578.

Pritzker, A., L. Watters, and P. Wolfe (1969), “Multiproject Scheduling with Limited Resources: a Zero-

One Programming Approach”, Management Science, Vol. 16, No. 1 (Sept.), pp. 93-108.

Puterman, M. L. (1994), Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley.

Quinn, P., B. Andrews, and H. Parsons(1991) “Allocating Telecommunications Resources at L.L. Bean,

Inc., Interfaces, vol. 21, no. 1, pp. 75-91.

610 References

Rardin, R. L. (1998), Optimization in Operations Research, Prentice Hall, New Jersey.

Rigby, B., L. Lasdon, and A. Waren (1995),“The Evolution of Texaco’s Blending Systems: From Omega to

StarBlend”, Interfaces, Vol. 25, No. 5, pp. 64-83.

Roache, P. J.(1998), Verification and Validation in Computational Science and Engineering, Hermosa, NM.

ISBN 0-913478-08-3.

Rogers, D.F., R.D. Plante, R.T. Wong, and J.R. Evans (1991), “Aggregation and Disaggregation Techniques

and Methodology in Optimization”, Operations Research, Vol. 39, No. 4 (July-August), pp.

553-582.

Ross, G. T. and R. M. Soland (1975), “Modeling Facility Location Problems as Generalized Assignment

Problems”, Management Science, Vol. 24, pp. 345-357.

Rosenthal, R. and R. Riefel (1994), "Optimal Order-Picking", Bulletin for the ORSA/TIMS Detroit Meeting,

INFORMS, Baltimore, MD.

Rothstein, M. (1985), “OR and the Airline Overbooking Problem”, Operations Research, Vol. 33, No. 2

(March-April), pp. 237-248.

Roy, A. D. (1952), “Safety First and the Holding of Assets”, Econometrica, Vol. 20 (July), pp. 431-439.

Samuelson, D.(1999), “Predictive Dialing for Outbound Telephone Call Centers”, Interfaces, vol. 29, no.

5,(Sept-Oct), pp. 66-81.

Sankaran, J. (1989), Bidding Systems for Certain Nonmarket Allocations of Indivisible Items, Ph.D.

dissertation, University of Chicago.

Schrage, L. (1975), “Implicit Representation of Variable Upper Bounds in Linear Programming”,

Mathematical Programming, Study 4, pp. 118-132.

Schrage, L. (1978), “Implicit Representation of Generalized Variable Upper Bounds in Linear

Programming”, Mathematical Programming, Vol. 14, No. 1, pp. 11-20.

Schrage, L. and L. Wolsey (1985), “Sensitivity Analysis for Branch-and-bound Integer Programming”,

Operations Research, Vol. 33, No. 5 (Sept., Oct.), pp. 1008-1023.

Schrage, L. (1989), “A Debugging Aid for Constrained Optimization Models”, Technical report, University

of Chicago.

Schrijver, A. (1986), Theory of Linear and Integer Programming, John Wiley & Sons, Ltd.

Schuster, E.W. and S.J. Allen (1998), “Raw Material Management at Welch's, Inc.” Interfaces, vol. 28, no.

5, pp. 13-24.

Serafini, P. (1996), “Scheduling Jobs on Several Machines with the Job Splitting Property”, Operations

Research, Vol. 44, No. 4, (July-August), pp. 617-628.

Sexton, T.R., S. Sleeper, and R. E. Taggart, Jr. (1994), “Improving Pupil Transportation in North Carolina”,

Interfaces, Vol. 24, No. 1 (Jan.-Feb.), pp. 87-103.

Sharpe, W. F. (1963), “A Simplified Model for Portfolio Analysis”, Management Science, Vol. 9 (Jan.), pp.

277-293.

References 611

Sherali, H., and W. Adams(1999), A Reformulation-Linearization Technique for Solving Discrete and

Continuous Nonconvex Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Sherbrooke, C.C. (1992), Optimal Inventory Modeling of Systems, Multi-echelon Techniques, John Wiley &

Sons, New York, NY.

Sherman, H. D., and G. Ladino (1995), “Managing Bank Productivity Using Data Envelopment Analysis

(DEA)”, Interfaces, Vol. 25, No. 2 (March-April), pp. 60-73.

Shlifer, E. and Y. Vardi (1975), "An Airline Overbooking Policy," Transportation Science, Vol. 9, No.

2 (May), pp. 101-114.

Srinivasan, V. (1976), “Linear Programming Computational Procedures for Ordinal Regression”, Journal

of ACM, Vol. 23, No. 3 (July), pp. 475-487.

Steinberg, L. (1961), “The Backboard Wiring Problem: A Placement Algorithm”, SIAM Review, Vol. 3, pp.

37-50.

Stern, G. and R. Blumenstein (1996), “GM Expands Plan to Speed Cars to Buyers”, Wall Street Journal, 21

October, p. A3.

Stigler, G. (1963), “United States vs. Loew's, Inc: A Note on Block Booking”, Supreme Court Review, p.

152.

Stigler, G. J (1945), “The Cost of Subsistence”, Journal of Farm Economics, Vol. 27, No. 2 (May), pp.

303-314.

Stone, J.C. (1988), “Formulation and Solution of Economic Equilibrium Problems”, Tech. Report. SOL.

88-7. Stanford University.

Strevell, M. and P. Chong (1985), “Gambling on Vacation”, Interfaces, Vol. 15, No. 2 (March-April), pp.

63-67.

Stroup, J.S., and R.D. Wollmer (1992), “A Fuel Management Model for the Airline Industry”, Operations

Research, Vol. 40, No. 2 (March-April), pp. 229-237.

Subramanian, R.A., R.P. Scheff, J.D. Quillinan, D.S. Wiper, and R.E. Marsten (1994), “Coldstart: Fleet

Assignment at Delta Air Lines”, Interfaces, Vol. 24, No. 1 (Jan.-Feb.), pp. 104-120.

Sze, D. Y. (1984), "A Queueing Model for Telephone Operator Staffing," Operations Research, Vol.

32, No. 2 (March-April), pp. 229-249.

Thompson, R. G., F. D. Singleton, R. M. Thrall and B. A. Smith (1986), “Comparative Site Evaluations for

Locating a High-Energy Physics Lab in Texas”, Interfaces, Vol. 16, pp. 35-49.

Tomlin, J. and J. S. Welch (1985), “Integration of a Primal Simplex Algorithm with a Large Scale

Mathematical Programming System”, ACM Trans. Math. Software, Vol. 11, pp. 1-11.

Troutt, M.D (1985), “Spying on the Cost Structure of Naive Bidding Competitors via Linear Programming

Models”, Operations Research Letters, Vol. 4, No. 4, pp. 181-184.

Truemper, K. (1976), “An Efficient Scaling Procedure for Gains Networks”, Networks, Vol. 6, pp. 151-160.

Vickrey, W. (1961), “Counterspeculation, Auctions, and Competitive Sealed Tenders”, Journal of Finance,

Vol. 16, No. 1 (March), pp. 8-37.

603

References
Adams, J.L. (1986), Conceptual Blockbusting, Addison-Wesley, Reading, MA.

Adams, W. and H. Sherali(2005), “A Hierarchy of Relaxations Leading to the Convex Hull Representation

for General Discrete Optimization Problems”, Annals of Operations Research, vol. 140, pp.21-

47.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin (1993), Network Flows, Theory, Algorithms, and Applications,

Prentice-Hall, Englewood Cliffs, NJ.

Andrews, B. and H. Parsons(1993), “Establishing Telephone-Agent Staffing Levels through Economic

Optimization”, Interfaces, Vol. 23, No. 2, pp. 14-20.

Arnold, L., and D. Botkin. “Portfolios to Satisfy Damage Judgement: A Linear Programming Approach”,

Interfaces, Vol. 8, No. 2 (Feb. 1978).

Aykin, T. (1996), “Optimal Shift Scheduling with Multiple Break Windows”, Management Science, Vol

. 42 No. 4 (April), pp. 591-602.

Baker, E. K. and M. L. Fisher (1981), “Computational Results for Very Large Air Crew Scheduling

Problems”, Omega, Vol. 9, pp. 613-618.

Balas, E. (1979), “Disjunctive Programming”, Annals of Discrete Mathematics, Vol. 5, pp. 3-51.

Banks, J. and R. Gibson (1997), “10 Rules for Determining When Simulation is Not Appropriate”, IIE

Solutions, Vol. 29, No. 9 (September), pp. 30-32.

Barnett, A. (1994), “How Numbers Can Trick You”, Technology Review, MIT, Vol. 97, No. 7(October),

pp. 38-45.

Belobaba, P.P.(1989),”Application of a Probabilistic Decision Model to Airline Seat Inventory Control”,

Operations Research, vol. 37, no. 2, (March-April) pp. 183-197.

Bessent, A., W. Bessent, J. Kennington, and B. Reagan (1982), “An Application of Mathematical

Programming to Assess Productivity in the Houston Independent School District”, Management

Science, Vol. 28, No. 12 (December), pp. 1355-1367.

Birge, J. R. (1997), “Stochastic Programming Computation and Applications”, INFORMS Journal on

Computing, Vol. 9, No. 2, pp.111-133.

Birge, J. and F. Louveaux (1997), Introduction to Stochastic Programming, Springer-Verlag, New York,

NY.

Black, F. (1989), “How We Came Up with the Option Formula”, The Journal of Portfolio Management,

Winter, pp. 4-8.

Black, F., E. Derman, and W. Toy (1990), “A One-Factor Model of Interest Rates and Its Application to

Treasury Bond Options”, Financial Analyst Journal, Vol. 46, pp. 33-39.

Black, F., and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities”, Journal of Political

Economy, Vol. 81, pp. 637-654.

Bland, R. G. and D. F. Shallcross (1989), “Large Traveling Salesman Problems Arising in X-ray

Crystallography: A Preliminary Report on Computation”, O.R. Letters, Vol. 8, No. 3, pp. 125-128.

604 References

Bosch, R.A.(1993), "Big Mac Attack, The Diet Problem revisited: Eating at McDonald's", OR/MS Today,

(August), pp. 30-31.

Bracken, J. and G.P. McCormick (1968), Selected Applications of Nonlinear Programming, John Wiley &

Sons, Inc., New York, NY.

Bradley, G. H., G. G. Brown and G. W. Graves (1977), “Design and Implementation of Large Scale Primal

Transshipment Algorithms”, Management Science, Vol. 24, pp. 1-34.

Bradley, S.P., A. C. Hax and T. L. Magnanti (1977), Applied Mathematical Programming, Addison-Wesley

Publishing Company, Reading, Mass..

Braess, D. (1968), “Uber ein Paradoxon aus der Verkehplanung”, Unternehmensforschung, Vol. 12,

pp. 258-268.

Brearley, A. L., G. Mitra and H. P. Williams (1975), “An Analysis of Mathematical Programming Problems

Prior to Applying the Simplex Algorithm”, Mathematical Programming, Vol. 8, pp. 54-83.

Brown, G.G., R.F. Dell, and R.K. Wood (1997), “Optimization and Persistence”, Interfaces, Vol. 27, No. 5,

(Sept-Oct), pp. 15-37.

Brown, G.G., C.J. Ellis, G.W. Graves, and D. Ronen (1987), “Real-Time, Wide Areas Dispatch of Mobil

Tank Trucks”, Interfaces, Vol. 17, No. 1, pp. 107-120.

Brown, G. G. and D. S. Thomen (1980), “Automatic Identification of Generalized Upper Bounds in

Large-Scale Optimization Models”, Management Science, Vol. 26, No. 11, pp. 1166-1184.

Carino, D.R., T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe, and W.T. Ziemba

(1994), “The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance

Company Using Multistage Stochastic Programming”, Interfaces, Vol. 24, No. 1, pp. 29-49.

Charnes, A., W.W. Cooper and E. Rhodes (1978), “Measuring the Efficiency of Decision Making Units”,

European Journal of Operational Research, Vol. 2 (1978) pp. 429-444.

Chinneck, J. (2008), Feasibility and Infeasibility in Optimization, Springer,

Ciriani, T.A. and R. C. Leachman (1993), Optimization in Industry, John Wiley & Sons, Chichester.

Clarke, G. and J. W. Wright (1964), “Scheduling of Vehicles from a Central Depot to a Number of Delivery

Points”, Operations Research, Vol. 12, No. 4 (July-Aug.), pp. 568-581.

Claus, A.(1984), “A New Formulation for the Travelling Salesman Problem”, SIAM Journal on Algebraic

and Discrete Methods, vol. 5, no. 1, pp. 21-25.

Clyman, D.R. (1995), “Unreasonable Rationality?”, Management Science, Vol 41, No. 9 (Sept.),

pp. 1538-1548.

Craven, J. P.(2001), The Silent War: the Cold War Battle Beneath the Sea, Simon & Schuster, New York.

Dantzig, G. (1963), Linear Programming and Extensions, Princeton University Press, Princeton.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson(1954), “Solution of a Large-Scale Traveling-Salesman

Problem”, Operations Research, vol. 2, no. 4, pp. 393-410.

Dantzig, G. and N. N. Thapa (1997), Linear Programming, Vol. 1, Springer, New York.

References 605

Dantzig, G. and B. Wolfe (1960), “Decomposition Principle for Linear Programs”, Operations Research,

Vol. 8, pp. 101-111.

Danusaputro, S., C. Lee, and L. Martin-Vega (1990), “An Efficient Algorithm for Drilling Printed Circuit

Boards”, Computers and Industrial Engineering, Vol. 18, pp. 145-151.

Dauch, R.E. (1993), Passion for Manufacturing, Society of Manufacturing Engineers, Dearborn, MI.

Davis, L. S. and K. N. Johnson (1987), Forest Management, 3rd ed., McGraw-Hill Company.

Dembo, R.S., A. Chiarri, J.G. Martin, and L. Paradinas (1990), “Managing Hidroeléctrica Española's

Hydroelectric Power System”, Interfaces, Vol. 20, No. 1 (Jan.-Feb.), pp. 115-135.

d'Epenoux, F. (1963), “A Probabilistic Production and Inventory Problem”, Management Science, Vol. 10,

No. 1 (Oct), pp. 98-108.

DeRosa, D. (1992), Options on Foreign Exchange, Irwin Professional Publishing, New York.

DeWitt, C. W., L. Lasdon, A. Waren, D. Brenner and S. Melhem (1989), “OMEGA: An Improved Gasoline

Blending System for Texaco,” Interfaces, Vol. 19, No. 1 (Jan.-Feb.), pp. 85-101.

Dikin, I. I. (1967), “Iterative Solution of Problems of Linear and Quadratic Programming”, Soviet

Mathematics Doklady, Vol. 8, pp. 674-675.

Dial, R.B. (1994), “Minimizing Trailer-on-Flat-Car Costs: A Network Optimization Model”, Transportation

Science, Vol. 28, pp. 24-35.

Ding, X. and M. Puterman(2002), “The Censored Newsvendor and the Optimal Acquisition of Information”,

Operations Research, vol. 50, no. 3, pp. 517-527.

Dutton, R., G. Hinman and C. B. Millham (1974), “The Optimal Location of Nuclear-Power Facilities in the

Pacific Northwest”, Operations Research, Vol. 22, No. 3 (May-June), pp. 478-487.

Dyckhoff, H. (1981), “A New Linear Programming Approach to the Cutting Stock Problem”, Operations

Research, Vol. 29, No. 6 (Nov.-Dec.), pp. 1092-1104.

Edie, L. C. (1954), “Traffic Delays at Toll Booths”, Operations Research, Vol. 2, No. 2 (May),

pp. 107-138.

Elshafei, A. (1977), “Hospital Lay-out as a Quadratic Assignment Problem”, Operational Research

Quarterly, Vol. 28, pp. 167-169.

Emmelhainz, L. W., M. A. Emmelhainz, and J. R. Stock (1991), “Logistics Implications of Retail

Stockouts”, Journal of Business Logistics, Vol. 12, No. 2, pp. 129-142.

Eppen, G., K. Martin, and L. Schrage (1988), “A Scenario Approach to Capacity Planning”, Operations

Research, Vol. 37, No. 4 (July-August), pp. 517-530.

Eppen, G. D. and R. K. Martin (1987), “Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable

Redefinition.” Operations Research, Vol. 35, No. 6 (Nov.-Dec.), pp. 832-848.

Fahim, M., . Al-Sahhaf, and A. Elkilani (2010), Fundamentals of Petroleum Refining, 1st ed., Elsevier B.V.,

The Netherlands.

Farley, A. A. (1990), “A Note on Bounding a Class of Linear Programming Problems, Including Cutting

Stock Problems”, Operations Research, Vol. 38, No. 5 (Sept.-Oct.), pp. 922-923.

606 References

Fields, C., J. F. Hourican and E. A. McGee (1978), “Developing a Minimum Cost Feed Blending System

for Intensive Use”, Joint National TIMS/ORSA Meeting, New York, NY.

Fieldhouse, M. (1993), “The Pooling Problem”, Optimization in Industry, (Eds.) T. A. Ciriani and R. C.

Leachman, John Wiley & Sons.

Fillon, M. (1996), “Taming the Yangtze”, Popular Mechanics, Vol. 173, No. 7 (July), pp. 52-56.

Fisher, M. and A. Raman (1996), “Reducing the Cost of Demand Uncertainty Through Accurate Response

to Early Sales”, Operations Research, Vol. 44, No. 1 (Jan.-Feb.), pp. 87-99.

Florian, M (1977), “An Improved Linear Approximation Algorithm for the Network Equilibrium (Packet

Switching) Problem”, Proceedings 1977 IEEE Conference Decision and Control.

Fudenberg, D. and J. Tirole (1993) Game Theory, The MIT Press, Cambridge, MA.

Gaballa, A. and W. Pearce(1979), “Telephone Sales Manpower Planning at Qantas”, Interfaces, Vol. 9, No.

3,(May), pp. 1-9.

Geoffrion, A. (1976), “The Purpose of Mathematical Programming is Insight, Not Numbers”, Interfaces,

Vol. 7, No. 1 (November), pp. 81-92.

Geoffrion, A. and G. W. Graves (1974), “Multicommodity Distribution System Design by Benders

Decomposition”, Management Science, Vol. 20, No. 5 (January), pp. 822-844.

Glover, F. and D. Klingman (1977), “Network Applications in Industry and Government”, AIIE

Transactions, Vol. 9, pp. 363-376.

Golabi, K., R.B. Kulkarni, and G.B. Way (1982), “A Statewide Pavement Management System”, Interfaces,

Vol. 12, No. 6 (Nov.-Dec.), pp. 5-21.

Gomory, R. E. (1958), “Outline of an Algorithm for Integer Solutions to Linear Programs”, Bulletin of the

American Mathematical Society, Vol. 64, pp. 275-278.

Grandine, T.A.(1998), "Assigning Season Tickets Fairly", Interfaces, Vol. 28, No. 4(July-August),

pp. 15-20.

Graves, R., J. Sankaran, and L. Schrage (1993), “An Auction Method for Course Registration", Interfaces,

Vol. 23, No. 5 (1993), pp. 81-92.

Greenberg, H.J.(1978), Design and Implementation of Optimization Software, Sijthoff & Noordhoff.

Grinold, R.C. (1983), “Model Building Techniques for the Correction of End Effects in Multistage Convex

Programs”, Operations Research, Vol. 31, No. 3, pp. 407-431.

Gross, D. and C. Harris(1998), Fundamentals of Queueing Theory, 3rd ed., Wiley Interscience,

New York.

Grötschel, M., M. Jünger and G. Reinelt (1985), “Facets of the Linear Ordering Polytope”, Mathematical

Programming, Vol. 33, pp. 43-60.

Gunawardane, G., S. Hoff and L. Schrage (1981), “Identification of Special Structure Constraints in Linear

Programs”, Mathematical Programming, Vol. 21, pp. 90-97.

Hadley, G. (1962), Linear Programming, Addison-Wesley.

References 607

Hane, C.A., C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, G. Sigismondi (1995), “The Fleet

Assignment Problem: Solving a Large Scale Integer Program”, Mathematical Programming, Vol.

70, pp. 211-232.

Hansen, C.T., K. Madsen, and H.B. Nielsen (1991), “Optimization of Pipe Networks”, Mathematical

Programming, Vol. 52, pp. 45-58.

Hanson, W. and R. K. Martin (1990), “Optimal Bundle Pricing”, Management Science, Vol. 36, No. 2

(February), pp. 155-174.

Haverly, C. A. (1978), “Studies of the Behavior of Recursion for the Pooling Problem”, SIGMAP Bulletin,

Association for Computing Machinery, no. 25 (Dec.).

Heath, D., R. Jarrow, and A. Morton (1992), “Bond Pricing and the Term Structure of Interest Rates: A New

Methodology for Contingent Claims Valuation”, Econometrica, Vol. 60, No. 1, pp. 77-105.

Held, M. and R. Karp(1962), “A Dynamic Programming Approach to Sequencing Problems”, SIAM Journal

of Applied Math, vol. 10, no. 1, pp. 196-210.

Infanger, G. (1994), Planning Under Uncertainty: Solving Large-Scale Stochastic Linear Programs, Boyd

& Fraser, Danvers, MA.

Jackson, J.R.(1963), “Jobshop-Like Queueing Systems”, Management Science, Vol. 10, No. 1,

pp. 131-142.

Jenkins, L. (1982), “Parametric Mixed Integer Programming: An Application to Solid Waste Management”,

Management Science, Vol 28, No. 11 (Nov.), pp. 1270-1284.

Jeroslow, R.G., K. Martin, R.L. Rardin, J. Wang (1992),“Gainfree Leontief Substitution Flow Problems”,

Mathematical Programming, Vol. 57, pp. 375-414.

Jorion, P. (2001), Value at Risk, 2nd ed., McGraw-Hill.

Kaiser, M., A. de Klerk, J. Gary, and G. Handwerk, (2020). Petroleum Refining, Technology, Economics

and Markets, 6th ed., CRC Press/Taylor Francis, Boca Raton, FL.

Kall, P. and S.W. Wallace (1994), Stochastic Programming, John Wiley & Sons, New York, NY.

Karmarkar, N. K. (1985), “A New Polynomial Time Algorithm for Linear Programming”, Combinatorica,

Vol. 4, pp. 373-395.

Kehoe, T.J. (1985), “A Numerical Investigation of Multiplicity of Equilibria”, Mathematical Programming

Study 23, pp. 240-258.

Khachian, L. G. (1979), “A Polynomial Algorithm in Linear Programming”, Soviet Mathematics Doklady,

Vol. 20, No. 1, pp. 191-194.

King, R. H. and Love, R. R. (1980), “Coordinating Decisions for Increased Profits”, Interfaces, Vol. 10, No.

6 (December), pp. 4-19.

Konno, H. and H. Yamazaki (1991), “Mean-Absolute Deviation Portfolio Optimization Model and Its

Applications to Tokyo Stock Market”, Management Science, Vol. 37, No. 5 (May), pp. 519-531.

Kontogiorgis, S. and S. Acharya (1999), "US Airways Automates Its Weekend Fleet Assignment",

Interfaces, Vol. 29, No. 3(May-June), pp. 52-62).

608 References

Koopmans, T. and M. Beckmann (1957), “Assignment Problems and the Location of Economic Activities”,

Econometrica, Vol. 25, pp. 53-76.

Kruskal, Jr., J. B. (1956), “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem”, Proc. Amer. Math. Soc., Vol. 7, pp. 48-50.

Lasdon, L. S., and Terjung, R. C. (1971), “An Efficient Algorithm for Multi-Item Scheduling”, Operations

Research, Vol. 19, No. 4, pp. 946-69.

Lawler, E. L. (1963), “The Quadratic Assignment Problem”, Management Science, Vol. 19, pp. 586-599.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys (1985), “The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization”, John Wiley & Sons.

Leontief, W. (1951), The Structure of American Economy, 1919-1931, Oxford University Press, New York,

NY.

Levy, F. K. (1978), “Portfolios to Satisfy Damage Judgements: A Simple Approach”, Interfaces, Vol. 9, No.

1 (Nov.), pp. 106-107.

Lin, S. and B. Kernighan (1973), “An Effective Heuristic Algorithm for the Traveling Salesman Problem”,

Operations Research, Vol. 21, pp. 498-516.

Little, J. D. C. (1961), "A Proof of the Queuing Formula L = W", Operations Research, Vol. 9, No. 3 (May-

June), pp. 383-387.

Madansky, A. (1962), “Methods of Solution of Linear Programs Under Uncertainty”, Operations Research,

Vol. 10, pp. 463-471.

Mangasarian, O.L. (1993), “Mathematical Programming in Neural Networks”, ORSA Journal on

Computing, Vol. 5, No. 4, pp. 349-360.

Manne, A. (1960), “Linear Programming and Sequential Decisions”, Management Science, Vol. 6, No. 3

(April), pp. 259-267.

Markowitz, H. M. (1959), Portfolio Selection, Efficient Diversification of Investments, John Wiley & Sons,

Inc..

Markowitz, H. and A. Perold (1981), “Portfolio Analysis with Scenarios and Factors”, Journal of Finance,

Vol. 36, pp. 871-877.

Marsten, R. E., M. P. Muller and C. L. Killion (1979), “Crew Planning at Flying Tiger: A Successful

Application of Integer Programming”, Management Science, Vol. 25, No. 12 (Dec.),

pp. 1175-1183.

Marsten, R. E., M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F. Ballintijn (1989), “Implementation of a

Dual Affine Interior Point Algorithm for Linear Programming”, ORSA J. on Computing, Vol. 1,

No. 4, pp. 287-297.

Martin, R. K.(1999) Large Scale Linear and Integer Optimization: A Unified Approach, Kluwer Academic

Publishers, Boston.

Maschler, M., B. Peleg, and L. S. Shapley (1979), “Geometric Properties of the Kernel, Nucleolus, and

Related Solution Concepts”, Mathematics of Operations Research, Vol. 4, No. 4 (Nov.),

pp. 303-338.

References 609

Mehrabian, S. G. Jahanshahloo, M. Alirezaee, and G. Amin (2000) “An Assurance Interval for the

non_Archimedean Epsilon in DEA Models”, Operations Research, Vol. 48, No. 2, pp. 344-347.

Miller, H. E., W. P. Pierskalla and G. J. Rath (1976), “Nurse Scheduling using Mathematical Programming”,

Operations Research, Vol. 24, pp. 857-870.

Miller, C. E., A. W. Tucker, and R. A. Zemlin(1960), ”Integer Programming Formulations and Travelng

Salesman Problems”, Journal of ACM, pp. 326-329.

Moldovanu, B. and M. Tietzel (1998) "Goethe's Second-Price Auction", Journal of Political Economy, Vol.

106, No. 4, pp. 854-858

Murchland, J. D. (1970), “Braess's Paradox of Traffic Flow”, Transportation Research, Vol. 4, pp. 391-394.

Nahmias, S.(1997) Production and Operations Analysis, 3rd ed., Irwin Publishing, Homewood, IL.

Nauss, R. M. (1986), “True Interest Cost in Municipal Bond Bidding: An Integer Programming Approach”,

Management Science, Vol. 32, No. 7, pp. 870-877.

Nauss, R. M. and B. R. Keeler (1981), “Minimizing Net Interest Cost in Municipal Bond Bidding”,

Management Science, Vol. 27, No. 4 (April), pp. 365-376.

Nauss, R. M. And R. Markland (1981), “Theory and Application of an Optimization Procedure for Lock

Box Location Analysis”, Management Science, Vol. 27, No. 8 (August), pp. 855-865.

Neebe, A. W. (1987), “An Improved, Multiplier Adjustment Procedure for the Segregated Storage Problem”,

Journal of the Operational Research Society, Vol. 38, No. 9, pp. 1-11.

Orlin, J.B. (1982), “Minimizing the Number of Vehicles to Meet a fixed Periodic Schedule: An Application

of Periodic Posets”, Operations Research, Vol. 30, No. 4, pp. 760-776.

Nemhauser, G. L. and L. A. Wolsey (1988), Integer and Combinatorial Optimization, John Wiley & Sons,

Inc.

Padberg, M. and G. Rinaldi (1987), “Optimization of a 532-City Symmetric Traveling Salesman Problem

by Branch and Cut”, Operations Research Letters, Vol. 6, No. 1.

Palmquist, J., Uryasev, S., and Krokhmal, P.(2002), “Portfolio Optimization with Conditional Value-at-Risk

Objective and Constraints”, The Journal of Risk, vol. 4, pp. 11-27.

Parker, R.G. and R.L. Rardin (1988), Discrete Optimization, Academic Press, San Diego.

Peiser, R.B. and S.G. Andrus (1983), “Phasing of Income-Producing Real Estate”, Interfaces, Vol. 13, No. 5

(Oct), pp. 1-9.

Perold, A. F. (1984), “Large Scale Portfolio Optimization”, Management Science, Vol. 30, pp. 1143-1160.

Plane, D. R. and T. E. Hendrick (1977), “Mathematical Programming and the Location of Fire Companies

for the Denver Fire Department”, Operations Research, Vol. 25, No. 4 (July-August), pp. 563-578.

Pritzker, A., L. Watters, and P. Wolfe (1969), “Multiproject Scheduling with Limited Resources: a Zero-

One Programming Approach”, Management Science, Vol. 16, No. 1 (Sept.), pp. 93-108.

Puterman, M. L. (1994), Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley.

Quinn, P., B. Andrews, and H. Parsons(1991) “Allocating Telecommunications Resources at L.L. Bean,

Inc., Interfaces, vol. 21, no. 1, pp. 75-91.

610 References

Rardin, R. L. (1998), Optimization in Operations Research, Prentice Hall, New Jersey.

Rigby, B., L. Lasdon, and A. Waren (1995),“The Evolution of Texaco’s Blending Systems: From Omega to

StarBlend”, Interfaces, Vol. 25, No. 5, pp. 64-83.

Roache, P. J.(1998), Verification and Validation in Computational Science and Engineering, Hermosa, NM.

ISBN 0-913478-08-3.

Rogers, D.F., R.D. Plante, R.T. Wong, and J.R. Evans (1991), “Aggregation and Disaggregation Techniques

and Methodology in Optimization”, Operations Research, Vol. 39, No. 4 (July-August), pp.

553-582.

Ross, G. T. and R. M. Soland (1975), “Modeling Facility Location Problems as Generalized Assignment

Problems”, Management Science, Vol. 24, pp. 345-357.

Rosenthal, R. and R. Riefel (1994), "Optimal Order-Picking", Bulletin for the ORSA/TIMS Detroit Meeting,

INFORMS, Baltimore, MD.

Rothstein, M. (1985), “OR and the Airline Overbooking Problem”, Operations Research, Vol. 33, No. 2

(March-April), pp. 237-248.

Roy, A. D. (1952), “Safety First and the Holding of Assets”, Econometrica, Vol. 20 (July), pp. 431-439.

Samuelson, D.(1999), “Predictive Dialing for Outbound Telephone Call Centers”, Interfaces, vol. 29, no.

5,(Sept-Oct), pp. 66-81.

Sankaran, J. (1989), Bidding Systems for Certain Nonmarket Allocations of Indivisible Items, Ph.D.

dissertation, University of Chicago.

Schrage, L. (1975), “Implicit Representation of Variable Upper Bounds in Linear Programming”,

Mathematical Programming, Study 4, pp. 118-132.

Schrage, L. (1978), “Implicit Representation of Generalized Variable Upper Bounds in Linear

Programming”, Mathematical Programming, Vol. 14, No. 1, pp. 11-20.

Schrage, L. and L. Wolsey (1985), “Sensitivity Analysis for Branch-and-bound Integer Programming”,

Operations Research, Vol. 33, No. 5 (Sept., Oct.), pp. 1008-1023.

Schrage, L. (1989), “A Debugging Aid for Constrained Optimization Models”, Technical report, University

of Chicago.

Schrijver, A. (1986), Theory of Linear and Integer Programming, John Wiley & Sons, Ltd.

Schuster, E.W. and S.J. Allen (1998), “Raw Material Management at Welch's, Inc.” Interfaces, vol. 28, no.

5, pp. 13-24.

Serafini, P. (1996), “Scheduling Jobs on Several Machines with the Job Splitting Property”, Operations

Research, Vol. 44, No. 4, (July-August), pp. 617-628.

Sexton, T.R., S. Sleeper, and R. E. Taggart, Jr. (1994), “Improving Pupil Transportation in North Carolina”,

Interfaces, Vol. 24, No. 1 (Jan.-Feb.), pp. 87-103.

Sharpe, W. F. (1963), “A Simplified Model for Portfolio Analysis”, Management Science, Vol. 9 (Jan.), pp.

277-293.

References 611

Sherali, H., and W. Adams(1999), A Reformulation-Linearization Technique for Solving Discrete and

Continuous Nonconvex Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Sherbrooke, C.C. (1992), Optimal Inventory Modeling of Systems, Multi-echelon Techniques, John Wiley &

Sons, New York, NY.

Sherman, H. D., and G. Ladino (1995), “Managing Bank Productivity Using Data Envelopment Analysis

(DEA)”, Interfaces, Vol. 25, No. 2 (March-April), pp. 60-73.

Shlifer, E. and Y. Vardi (1975), "An Airline Overbooking Policy," Transportation Science, Vol. 9, No.

2 (May), pp. 101-114.

Srinivasan, V. (1976), “Linear Programming Computational Procedures for Ordinal Regression”, Journal

of ACM, Vol. 23, No. 3 (July), pp. 475-487.

Steinberg, L. (1961), “The Backboard Wiring Problem: A Placement Algorithm”, SIAM Review, Vol. 3, pp.

37-50.

Stern, G. and R. Blumenstein (1996), “GM Expands Plan to Speed Cars to Buyers”, Wall Street Journal, 21

October, p. A3.

Stigler, G. (1963), “United States vs. Loew's, Inc: A Note on Block Booking”, Supreme Court Review, p.

152.

Stigler, G. J (1945), “The Cost of Subsistence”, Journal of Farm Economics, Vol. 27, No. 2 (May), pp.

303-314.

Stone, J.C. (1988), “Formulation and Solution of Economic Equilibrium Problems”, Tech. Report. SOL.

88-7. Stanford University.

Strevell, M. and P. Chong (1985), “Gambling on Vacation”, Interfaces, Vol. 15, No. 2 (March-April), pp.

63-67.

Stroup, J.S., and R.D. Wollmer (1992), “A Fuel Management Model for the Airline Industry”, Operations

Research, Vol. 40, No. 2 (March-April), pp. 229-237.

Subramanian, R.A., R.P. Scheff, J.D. Quillinan, D.S. Wiper, and R.E. Marsten (1994), “Coldstart: Fleet

Assignment at Delta Air Lines”, Interfaces, Vol. 24, No. 1 (Jan.-Feb.), pp. 104-120.

Sze, D. Y. (1984), "A Queueing Model for Telephone Operator Staffing," Operations Research, Vol.

32, No. 2 (March-April), pp. 229-249.

Thompson, R. G., F. D. Singleton, R. M. Thrall and B. A. Smith (1986), “Comparative Site Evaluations for

Locating a High-Energy Physics Lab in Texas”, Interfaces, Vol. 16, pp. 35-49.

Tomlin, J. and J. S. Welch (1985), “Integration of a Primal Simplex Algorithm with a Large Scale

Mathematical Programming System”, ACM Trans. Math. Software, Vol. 11, pp. 1-11.

Troutt, M.D (1985), “Spying on the Cost Structure of Naive Bidding Competitors via Linear Programming

Models”, Operations Research Letters, Vol. 4, No. 4, pp. 181-184.

Truemper, K. (1976), “An Efficient Scaling Procedure for Gains Networks”, Networks, Vol. 6, pp. 151-160.

Vickrey, W. (1961), “Counterspeculation, Auctions, and Competitive Sealed Tenders”, Journal of Finance,

Vol. 16, No. 1 (March), pp. 8-37.

612 References

Wagner, C. H.(1982), “Simpson’s Paradox in Real Life”, The American Statistician, Vol. 36, No.

1(February), pp. 46-48.

Wagner, H. M. and T. M. Whitin (1958), “Dynamic Version of the Economic Lot-Size Model”,

Management Science, Vol. 5, No. 1, pp. 89-96.

Wall Street Journal, “UAL's United Alters Schedule, Cuts Costs, Boosts Flights in Face of Discount Fares”,

(19 June, 1978), p. 8.

Wang, K.C.P. and J.P. Zaniewski (1996), “20/30 Hindsight: The New Pavement Optimization in the Arizona

State Highway Network”, Interfaces, Vol. 26, No. 3 (May-June), pp. 77-89.

Warner, D. M. (1976), “Scheduling Nursing Personnel According to Nursing Preference: A Mathematical

Programming Approach”, Operations Research, Vol. 24, No. 5 (September-October), pp. 842-856.

Weingartner, H. M. (1972), “Municipal Bond Coupon Schedules with Limitations on the Number of

Coupons”, Management Science, Vol. 19, No. 4 (Dec.), pp. 369-378.

What's Best User Manual. LINDO Systems, Chicago, (1998).

Whitt, W.(1993), “Approximations for the GI/G/m Queue”, Production and Operations Management,

vol. 2. no. 2, pp. 114-161.

Wolsey, L.(1998), “Integer Programming”, Wiley Interscience, New York.

	Table_of_contents
	Optimization Modeling with
	LINGO
	Contents
	Preface
	Acknowledgments

	Chapter1
	1
	What Is Optimization?
	1.1 Introduction
	1.2 A Simple Product Mix Problem
	1.2.1 Graphical Analysis

	1.3 Linearity
	1.4 Analysis of LP Solutions
	1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices
	1.5.1 Reduced Costs
	1.5.2 Dual Prices

	1.6 Unbounded Formulations
	1.7 Infeasible Formulations
	1.8 Multiple Optimal Solutions and Degeneracy
	1.8.1 The “Snake Eyes” Condition
	1.8.2 Degeneracy and Redundant Constraints

	1.9 Nonlinear Models and Global Optimization
	1.10 Problems

	Chapter2
	2
	Solving Math Programs with LINGO
	2.1 Introduction
	2.2 LINGO for Windows, Apple Mac, and Linux
	2.2.1 LINGO Menu
	2.2.2 Windows Menu
	2.2.3 Help Menu
	2.2.4 Summary

	2.3 Getting Started on a Small Problem
	2.4 Integer Programming with LINGO
	2.4.1 Warning for Integer Programs

	2.5 Solving an Optimization Model
	2.6 Problems

	Chapter3
	3
	Analyzing Solutions
	3.1 Economic Analysis of Solution Reports
	3.2 Economic Relationship Between Dual Prices and Reduced Costs
	3.2.1 The Costing Out Operation: An Illustration
	3.2.2 Dual Prices, LaGrange Multipliers, KKT Conditions, and Activity Costing

	3.3 Range of Validity of Reduced Costs and Dual Prices
	3.3.1 Predicting the Effect of Simultaneous Changes in Parameters—The 100% Rule

	3.4 Sensitivity Analysis of the Constraint Coefficients
	3.5 The Dual LP Problem, or the Landlord and the Renter
	3.6 Problems

	Chapter4
	4
	The Model Formulation Process
	4.1 The Overall Process
	4.2 Approaches to Model Formulation
	4.3 The Template Approach
	4.3.1 Product Mix Problems
	4.3.2 Covering, Staffing, and Cutting Stock Problems
	4.3.3 Blending Problems
	4.3.4 Multiperiod Planning Problems
	4.3.5 Network, Distribution, and PERT/CPM Models
	4.3.6 Multiperiod Planning Problems with Random Elements
	4.3.7 Financial Portfolio Models
	4.3.8 Game Theory Models

	4.4 Constructive Approach to Model Formulation
	4.4.1 Example
	4.4.2 Formulating Our Example Problem

	4.5 Choosing Costs Correctly
	4.5.1 Sunk vs. Variable Costs
	4.5.2 Joint Products
	4.5.3 Book Value vs. Market Value

	4.6 Common Errors in Formulating Models
	4.7 The Nonsimultaneity Error
	4.8 Debugging a Model
	4.9 Problems

	Chapter5
	5
	The Sets View of the World
	5.1 Introduction
	5.1.1 Why Use Sets?
	5.1.2 What Are Sets?
	5.1.3 Types of Sets

	5.2 The SETS Section of a Model
	5.2.1 Defining Primitive Sets
	5.2.2 Defining Derived Sets
	5.2.3 Summary

	5.3 The DATA Section
	5.4 Set Looping Functions
	5.4.1 @SUM Set Looping Function
	5.4.2 @MIN and @MAX Set Looping Functions
	5.4.3 @FOR Set Looping Function
	5.4.4 Nested Set Looping Functions

	5.5 Set Based Modeling Examples
	5.5.1 Primitive Set Example
	5.5.2 Dense Derived Set Example
	5.5.3 Sparse Derived Set Example - Explicit List
	5.5.4 A Sparse Derived Set Using a Membership Filter
	5.5.5 Disabling Sections of Code Temporarily

	5.6 Domain Functions for Variables
	5.7 Spreadsheets and LINGO
	5.8 Programming in LINGO
	5.8.1 Building Blocks for Programming
	5.8.2 Generating Graphs and Charts

	5.9 Problems

	Chapter6
	6
	Product Mix Problems
	6.1 Introduction
	6.2 Example
	6.3 Process Selection Product Mix Problems
	6.4 Problems

	Chapter7
	7
	Covering, Staffing & Cutting Stock Models
	7.1 Introduction
	7.1.1 Staffing Problems
	7.1.2 Example: Northeast Tollway Staffing Problems
	7.1.3 Additional Staff Scheduling Features

	7.2 Cutting Stock and Pattern Selection
	7.2.1 Example: Cooldot Cutting Stock Problem
	7.2.2 Formulation and Solution of Cooldot
	7.2.3 Generalizations of the Cutting Stock Problem
	7.2.4 Two-Dimensional Cutting Stock Problems
	7.2.5 Paper Converting: A Rectangle Cutting Problem

	7.3 Crew Scheduling Problems
	7.3.1 Example: Sayre-Priors Crew Scheduling
	7.3.2 Solving the Sayre/Priors Crew Scheduling Problem
	7.3.3 Additional Practical Details

	7.4 A Generic Covering/Partitioning/Packing Model
	7.5 Problems

	Chapter8
	8
	Networks, Distribution and PERT/CPM
	8.1 What’s Special About Network Models
	8.1.1 Special Cases
	8.1.2 Fitting into Network Structure: Roads with No Left Turns

	8.2 PERT/CPM Networks and LP
	8.3 Activity-on-Arc vs. Activity-on-Node Network Diagrams
	8.4 Crashing of Project Networks
	8.4.1 The Cost and Value of Crashing
	8.4.2 The Cost of Crashing an Activity
	8.4.3 The Value of Crashing a Project
	8.4.4 Formulation of the Crashing Problem

	8.5 Resource Constraints in Project Scheduling
	8.6 Path Formulations
	8.6.1 Example

	8.7 Path Formulations of Undirected Networks
	8.7.1 Example

	8.8 Double Entry Bookkeeping: A Network Model of the Firm
	8.9 Extensions of Network LP Models
	8.9.1 Multicommodity Network Flows
	8.9.2 Reducing the Size of Multicommodity Problems
	8.9.3 Multicommodity Flow Example
	8.9.4 Fleet Routing and Assignment
	8.9.5 Fleet Assignment
	8.9.6 Leontief Flow Models
	8.9.7 Activity/Resource Diagrams
	8.9.8 Spanning Trees
	8.9.9 Steiner Trees

	8.10 Nonlinear Networks
	8.11 Problems

	Chapter9
	9
	Multi-period Planning Problems
	9.1 Introduction
	9.2 A Dynamic Production Problem
	9.2.1 Formulation
	9.2.2 Constraints
	9.2.3 Representing Absolute Values

	9.3 Multi-period Financial Models
	9.3.1 Example: Cash Flow Matching

	9.4 Financial Planning Models with Tax Considerations
	9.4.1 Formulation and Solution of the WSDM Problem
	9.4.2 Interpretation of the Dual Prices

	9.5 Present Value vs. LP Analysis
	9.6 Accounting for Income Taxes
	9.7 Dynamic or Multi-period Networks
	9.8 End Effects
	9.8.1 Perishability/Shelf Life Constraints
	9.8.2 Startup and Shutdown Costs

	9.9 Non-optimality of Cyclic Solutions to Cyclic Problems
	9.10 Problems

	Chapter10
	10
	Blending of Input Materials
	10.1 Introduction
	10.2 The Structure of Blending Problems
	10.2.1 Example: The Pittsburgh Steel Company Blending Problem
	10.2.2 Formulation and Solution of the Pittsburgh Steel Blending Problem

	10.3 A Blending Problem within a Product Mix Problem
	10.3.1 Formulation
	10.3.2 Representing Two-sided Quality Constraints
	10.3.3 Representing Soft Target Quality Constraints
	10.3.4 Discrete Blending/All-or-Nothing Usage
	10.3.5 Treatments vs. Ingredients in Blending Problems

	10.4 Choice of Alternate Interpretations of Quality Requirements
	10.5 How to Compute Blended Quality
	10.5.1 Example
	10.5.2 Generalized Mean

	10.6 Interpretation of Dual Prices for Blending Constraints
	10.7 Fractional or Hyperbolic Programming
	10.8 Multi-Level Blending: Pooling Problems
	10.9 Problems

	Chapter11
	11
	Formulating and Solving Integer Programs
	11.1 Introduction
	11.1.1 Types of Variables

	11.2 Exploiting the IP Capability: Standard Applications
	11.2.1 Binary Representation of General Integer Variables
	11.2.2 Minimum Batch Size Constraints
	11.2.3 Fixed Charge Problems
	11.2.4 The Simple Plant Location Problem
	11.2.5 The Capacitated Plant Location Problem (CPL)
	11.2.6 Modeling Alternatives with the Scenario Approach
	11.2.7 Linearizing a Piecewise Linear Function, Discontinuous Case
	11.2.8 Linearizing a Piecewise Linear Function, Continuous Case
	11.2.9 An n Interval Piecewise Linear Function Using Log(n) Binaries
	11.2.10 Converting Multivariate Functions to Separable Functions

	11.3 Outline of Integer Programming Methods
	11.4 Computational Difficulty of Integer Programs
	11.4.1 NP-Complete Problems

	11.5 Problems with Naturally Integer Solutions and the Prayer Algorithm
	11.5.1 Network LPs Revisited
	11.5.2 Integral Leontief Constraints
	11.5.3 Example: A One-Period MRP Problem
	11.5.4 Transformations to Naturally Integer Formulations

	11.6 The Assignment Problem and Related Sequencing and Routing Problems
	11.6.1 Example: The Assignment Problem
	11.6.2 The Traveling Salesperson Problem
	11.6.3 Capacitated Multiple TSP/Vehicle Routing Problems
	11.6.4 Minimum Spanning Tree
	11.6.5 The Linear Ordering Problem
	11.6.6 Quadratic Assignment Problem

	11.7 Problems of Grouping, Matching, Covering, Partitioning, and Packing
	11.7.1 Formulation as an Assignment Problem
	11.7.2 Matching Problems, Groups of Size Two
	11.7.3 Groups with More Than Two Members
	11.7.4 Groups with a Variable Number of Members, Assignment Version
	11.7.5 Groups with A Variable Number of Members, Packing Version
	11.7.6 Groups with A Variable Number of Members, Cutting Stock Problem
	11.7.7 Groups with A Variable Number of Members, Vehicle Routing

	11.8 Linearizing Products of Variables
	11.8.1 Example: Bundling of Products

	11.9 Representing Logical Conditions
	11.10 Problems

	Chapter12
	12
	Decision making Under Uncertainty and Stochastic Programs
	12.1 Introduction
	12.1.1 Identifying Sources of Uncertainty
	12.2 The Scenario Planning (SP)Approach
	12.2.1 Formulation and Structure of an SP Problem

	12.3 Single Stage Decisions Under Uncertainty
	12.3.1 The News Vendor Problem
	12.3.2 Multi-product Inventory with Repositioning

	12.4 Multi-Stage Decisions Under Uncertainty
	12.4.1 Stopping Rule and Option to Exercise Problems
	12.4.2. An Option Exercise Stopping Problem

	12.5 Expected Value of Perfect Information (EVPI)
	12.6 Expected Value of Modeling Uncertainty
	12.6.1 Certainty Equivalence

	12.7 Risk Aversion
	12.7.1 Downside Risk
	12.7.2 Example

	12.8 Dynamic Programming and Financial Option Models
	12.8.1 Binomial Tree Models of Interest Rates
	12.8.2 Binomial Tree Models of Foreign Exchange Rates

	12.9 Decisions Under Uncertainty with an Infinite Number of Periods
	12.9.1 Example: Cash Balance Management

	12.10 Chance-Constrained Programs
	12.11 Problems

	Chapter13
	13
	Portfolio Optimization
	13.1 Introduction
	13.2 The Markowitz Mean/Variance Portfolio Model
	13.2.1 Example

	13.3 Dualing Objectives: Efficient Frontier and Parametric Analysis
	13.3.1 Portfolios with a Risk-Free Asset
	13.3.2 The Sharpe Ratio

	13.4 Important Variations of the Portfolio Model
	13.4.1 Portfolios with Transaction Costs
	13.4.2 Nonlinear Transaction Costs
	13.4.3 Portfolios with Taxes
	13.4.4 Factors Model for Simplifying the Covariance Structure
	13.4.5 Example of the Factor Model
	13.4.6 Scenario Model for Representing Uncertainty
	13.4.7 Example: Scenario Model for Representing Uncertainty

	13.5 Measures of Risk other than Variance
	13.5.1 Value at Risk(VaR)
	13.5.2 Example of VaR
	13.5.3 VaR Anomalies
	13.5.4 Conditional Value at Risk(CVaR)

	13.6 Scenario Model and Minimizing Downside Risk
	13.6.1 Semi-variance and Downside Risk
	13.6.2 Downside Risk and MAD
	13.6.3 Power and Log Utility Functions
	13.6.4 Scenarios Based Directly Upon a Covariance Matrix

	13.7 Hedging, Matching and Program Trading
	13.7.1 Portfolio Hedging
	13.7.2 Portfolio Matching, Tracking, and Program Trading

	13.8 Methods for Constructing Benchmark Portfolios
	13.8.1 Scenario Approach to Benchmark Portfolios
	13.8.2 Efficient Benchmark Portfolios
	13.8.3 Efficient Formulation of Portfolio Problems

	13.9 Cholesky Factorization for Quadratic Programs
	13.10 Positive Definiteness Constraints
	13.11 Problems

	Chapter14
	14
	Multiple Criteria and Goal Programming
	14.1 Introduction
	14.1.1 Alternate Optima and Multicriteria

	14.2 Approaches to Multi-criteria Problems
	14.2.1 Pareto Optimal Solutions and Multiple Criteria
	14.2.2 Utility Function Approach
	14.2.3 Trade-off Curves
	14.2.4 Example: Ad Lib Marketing
	14.2.5 Computing Trade-off Curves/Pareto Optimal Points: Pitfalls

	14.3 Goal Programming and Soft Constraints
	14.3.1 Example: Secondary Criterion to Choose Among Alternate Optima
	14.3.2 Preemptive/Lexico Goal Programming

	14.4 Minimizing the Maximum Hurt, or Unordered Lexico Minimization
	14.4.1 Example
	14.4.2 Finding a Unique Solution Minimizing the Maximum

	14.5 Identifying Points on the Efficient Frontier
	14.5.1 Efficient Points, More-is-Better Case
	14.5.2 Efficient Points, Less-is-Better Case
	14.5.3 Efficient Points, the Mixed Case

	14.6 Comparing Performance with Data Envelopment Analysis
	14.7 Problems

	Chapter15
	15
	Economic Equilibria and Pricing
	15.1 What is an Equilibrium?
	15.2 A Simple Simultaneous Price/Production Decision
	15.3 Representing Supply & Demand Curves in LPs
	15.4 Auctions as Economic Equilibria
	15.5 Multi-Product Pricing Problems
	15.6 General Equilibrium Models of An Economy
	15.7 Transportation Equilibria
	15.7.1 User Equilibrium vs. Social Optimum

	15.8 Equilibria in Networks as Optimization Problems
	15.8.1 Equilibrium Network Flows

	15.9 Problems

	Chapter16
	16
	Game Theory and Cost Allocation
	16.1 Introduction
	16.2 Two-Person Games
	16.2.1 The Minimax Strategy

	16.3 Two-Person Non-Constant Sum Games
	16.3.1 Prisoner’s Dilemma
	16.3.2 Choosing a Strategy
	16.3.3 Bimatrix Games with Several Solutions

	16.4 Nonconstant-Sum Cooperative Games with > 2 Players
	16.4.1 Shapley Value

	16.5 The Stable Marriage/Assignment Problem
	16.5.1 The Stable Room-mate Matching Problem
	16.6 Should We Behave Non-Optimally to Obtain Information?

	16.7 Problems

	Chapter17
	17
	Inventory, Production, and Supply Chain Management
	17.1 Introduction
	17.2 One Period News Vendor Problem
	17.2.1 Analysis of the Decision

	17.3 Multi-Stage News Vendor
	17.3.1 Ordering with a Backup Option
	17.3.2 Safety Lotsize
	17.3.3 Multiproduct Inventories with Substitution

	17.4 Economic Order Quantity
	17.5 The Q,r Model
	17.5.1 Distribution of Lead Time Demand
	17.5.2 Cost Analysis of Q,r

	17.6 Base Stock Inventory Policy
	17.6.1 Base Stock — Periodic Review
	17.6.2 Policy
	17.6.3 Analysis
	17.6.4 Base Stock — Continuous Review

	17.7 Multi-Echelon Base Stock, the METRIC Model
	17.8 DC With Holdback Inventory/Capacity
	17.9 Multiproduct, Constrained Dynamic Lot Size Problems
	17.9.1 Input Data
	17.9.2 Example
	17.9.3 Extensions

	17.10 Problems

	Chapter18
	18
	Design & Implementation of Service and Queuing Systems
	Design & Implementation of Service and Queuing Systems
	18.1 Introduction
	18.2 Forecasting Demand for Services
	18.3 Waiting Line or Queuing Theory
	18.3.1 Arrival Process
	18.3.2 Queue Discipline
	18.3.3 Service Process
	18.3.4 Performance Measures for Service Systems
	18.3.5 Stationarity
	18.3.6 A Handy Little Formula
	18.3.7 Example

	18.4 Solved Queuing Models
	18.4.1 Number of Outbound WATS lines via Erlang Loss Model
	18.4.2 Evaluating Service Centralization via the Erlang C Model
	18.4.3 A Mixed Service/Inventory System via the M/G/(Model
	18.4.4 Optimal Number of Repairmen via the Finite Source Model.
	18.4.5 Selection of a Processor Type via the M/G/1 Model
	18.4.6 Multiple Server Systems with General Distribution, M/G/c & G/G/c

	18.5 Critical Assumptions and Their Validity
	18.6 Networks of Queues
	18.7 Designer Queues
	18.7.1 Example: Positive but Finite Waiting Space System
	18.7.2 Constant Service Time. Infinite Source. No Limit on Line Length
	18.7.3 Example Effect of Service Time Distribution

	18.8 Problems

	Chapter19
	19
	Design & Implementation of Optimization-Based Decision Support Systems
	19.1 General Structure of the Modeling Process
	19.1.1 Developing the Model: Detail and Maintenance

	19.2 Verification and Validation
	19.2.1 Appropriate Level of Detail and Validation
	19.2.2 When Your Model & the RW Disagree, Bet on the RW

	19.3 Separation of Data and System Structure
	19.3.1 System Structure

	19.4 Marketing the Model
	19.4.1 Reports
	19.4.2 Report Generation in LINGO

	19.5 Reducing Model Size
	19.5.1 Reduction by Aggregation
	19.5.2 Reducing the Number of Nonzeroes
	19.5.3 Reducing the Number of Nonzeroes in Covering Problems

	19.6 On-the-Fly Column Generation
	19.6.1 Example of Column Generation Applied to a Cutting Stock Problem
	19.6.2 Column Generation and Integer Programming
	19.6.3 Row Generation

	19.7 Problems

	References

	References
	References

