

XIII Italian Stata Users Group Meeting

Time scales in Survival analysis: a review of definitions, methods and applications

Francesca Ghilotti, Sc.M Rino Bellocco, Sc.D

November 17, 2016

Francesca Ghilotti, Rino Bellocco

November 17, 2016 - Roma

Swedish National March Cohort Aim

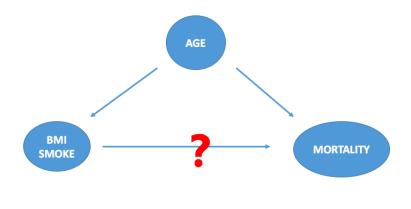
Swedish National March Cohort

Setting:

Swedish National March Cohort Aim

Aim

Study the relationship between BMI, smoke and overall Mortality



< 17 >

How to declare survival data Choice of the time-scale Models

How to declare survival data

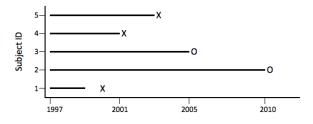
stset time_of_failure, failure(failure_var)

Some key concepts:

- Time origin defines time 0, when we start recording time
- Entry time defines when a subject starts being at risk
- Exit time defines when a subject stops being at risk
- Analysis time difference between exit and entry times
- Failure indicator defines if a subject has the event or is censored

How to declare survival data Choice of the time-scale Models

Follow-up as time-scale



Follow-up Date

< 1 →

How to declare survival data Choice of the time-scale Models

Follow-up as time-scale: stset

. stset endt_death, f(out_death) orig(beginf) scale(365.25)

failure event: out_death != 0 & out_death < .
obs. time interval: (origin, endt_death]
exit on or before: failure
 t for analysis: (time-origin)/365.25
 origin: time beginf</pre>

41647 total observations
0 exclusions

41647	observations remaining, representing				
4296	failures in single-record/single-failure data				
525471.316	total analysis time at risk and under observation				
	at risk from t =	0			
	earliest observed entry t =	0			
	last observed exit t =	13.24846			

(日) (同) (三) (三)

How to declare survival data Choice of the time-scale Models

Follow-up as time-scale: Likelihood

ID	t	a 0	а
1	2	60	62
2	13 +	64	77
3	8+	50	58
4	4	72	76
5	6	60	66

$$L(\beta) = \prod_{i=1}^{n} L_i = \left(\frac{\lambda_1(2)}{\lambda_1(2) + \lambda_2(2) + \lambda_3(2) + \lambda_4(2) + \lambda_5(2)}\right) \times \left(\frac{\lambda_4(4)}{\lambda_2(4) + \lambda_3(4) + \lambda_4(4) + \lambda_5(4)}\right) \times \left(\frac{\lambda_5(6)}{\lambda_2(6) + \lambda_3(6) + \lambda_5(6)}\right)$$

Francesca Ghilotti, Rino Bellocco

How to declare survival data Choice of the time-scale Models

Age as time-scale

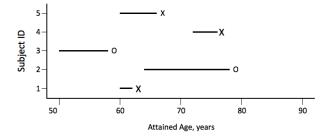
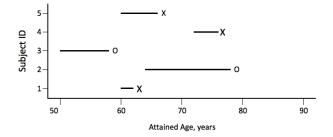


Image: Image:

How to declare survival data Choice of the time-scale Models

Age as time-scale



We have to deal with delayed entries and left truncation

How to declare survival data Choice of the time-scale Models

Age as time-scale: stset

. stset endt_death, f(out_death) orig(birthd) entry(beginf) scale(365.25)

failure event: out_death != 0 & out_death < .
obs. time interval: (origin, endt_death]
enter on or after: time beginf
exit on or before: failure
t for analysis: (time-origin)/365.25
origin: time birthd</pre>

41647 total observations
0 exclusions

41647	observations remaining, representing	
4296	failures in single-record/single-failure data	
525471.316	total analysis time at risk and under observation	
	at risk from t =	0
	earliest observed entry t =	18.00137
	last observed exit t =	107.5099

(日) (同) (三) (三)

How to declare survival data Choice of the time-scale Models

Age as time-scale: Likelihood

ID	t	a 0	а
1	2	60	62
2	13 +	64	77
3	8+	50	58
4	4	72	76
5	6	60	66

$$\mathcal{L}(\beta) = \prod_{i=1}^{n} \mathcal{L}_{i} = \left(\frac{\lambda_{1}(62)}{\lambda_{1}(62) + \lambda_{5}(62)}\right) \times \left(\frac{\lambda_{2}(66)}{\lambda_{2}(66) + \lambda_{5}(66)}\right) \times \left(\frac{\lambda_{4}(76)}{\lambda_{2}(76) + \lambda_{4}(76)}\right)$$

Francesca Ghilotti, Rino Bellocco November 17, 2016 - Roma

(日) (同) (三) (三)

How to declare survival data Choice of the time-scale Models

The hazard function

The hazard function is the instantaneous rate at which the event occurs:

$$\lambda_{T}(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} P(T \in [t, t + \Delta) | T \ge t)$$

How to declare survival data Choice of the time-scale Models

Choice of the Time-Scale

Follow-up as Time-Scale: $\lambda_T(t|a_0, z)$

Age as Time-Scale: $\lambda_A(a|a_0, z)$

Which time scale should be used and how do we make such a decision in general?

How to declare survival data Choice of the time-scale Models

Clinical trial:

- Subjects start to be followed for the outcome after random allocation
- Reasonable to assume subjects start to be at risk upon study entry
- Time-on-Study typically used as the time-scale

How to declare survival data Choice of the time-scale Models

Observational study:

- Subjects already at risk prior to study entry
- Unknown time or age when first at risk
- Example: Subjects with diabetes enter study, but unknown date or age when first diagnosed (prior to study entry)
- Attained age typically used as the time-scale

How to declare survival data Choice of the time-scale Models

Characteristics of the two time-scales

Follow-up as Time-Scale

- 1 Closed cohort
- 2 Risk-set decreases over time
- 3 Censoring occurs at the end of follow-up
- 4 Assumptions about the relationship between age and the outcome are needed
- 5 Preferable if time-on-study is a stronger determinant of the outcome than age at the event

Age as Time-Scale

- 1 Open cohort
- 2 Risk-sets are not nested
- 3 Censored observations are spread across the entire range of age
- 4 Adjustment for age is handled nonparametrically
- 5 Preferable if age is a much stronger determinant of the outcome than time-on-study

< □ > < 同 >

How to declare survival data Choice of the time-scale Models

Follow-up as Time-Scale

Model 0:
$$\lambda(t, Z) = \lambda_0(t) \cdot e^{\beta z}$$

Unadjusted for a_0

Model 1: $\lambda(t, Z, a_0) = \lambda_0(t) \cdot e^{\beta z + \gamma_1 a_0}$ Adjusted for a_0 as a linear covariate

Model 2: $\lambda(t, Z, a_0) = \lambda_0(t) \cdot e^{\beta z + \gamma_1 a_0 + \gamma_2 a_0^2}$ Adjusted for a_0 with quadratic covariate

Model 3: $\lambda(t, Z, a_0) = \lambda_0(t) \cdot e^{\beta z + \gamma_1 a_{65}}$ Adjusted for a_0 as binary (≥ 65 years)

Model 4: $\lambda_g(t, Z, a_0) = \lambda_{0g}(t) \cdot e^{\beta z}$ Stratified by a_0 or birth cohort, g=1,...,s

How to declare survival data Choice of the time-scale Models

Age as Time-Scale

Model 5: $\lambda(a, Z) = \lambda_0(a) \cdot e^{\beta z}$ Unadjusted for left truncation at a_0

Model 6: $\lambda(a, Z) = \lambda_0(a|a_0) \cdot e^{\beta z}$

Adjusted for left truncation at a_0

Model 7: $\lambda_g(a, Z) = \lambda_{0g}(a|a_0) \cdot e^{\beta z}$ Adjusted for left truncation at a_0 and stratified by birth cohort, g=1,...,s

・ロト ・ 同ト ・ ヨト ・ ヨト

Comparisons of the two time-scales How to deal with the effect modification of age

Comparisons among the estimated HR

HR estimates (BMI ≥ 25 vs BMI < 25) adjusted for age

Follow-up as Time-	Scale	Age as Time-Scale			
Model	HR	Model	HR		
(0) Unadjusted	1.286	(5) Unadjusted truncation	1.137		
(1) Linear age	1.082	(6) Adjusted truncation	1.117		
(2) Quadratic age	1.102	(7) Adjusted and stratified	1.109		
(3) Binary age	1.112				
(4) Stratified on age	1.107				

(日)

Comparisons of the two time-scales How to deal with the effect modification of age

Comparisons among the estimated HR

HR estimates (Smoke vs Non-Smoke) adjusted for age

Follow-up as Time-	Scale	Age as Time-Scale			
Model	HR	Model	HR		
(0) Unadjusted	1.036	(5) Unadjusted truncation	1.513		
(1) Linear age	1.374	(6) Adjusted truncation	1.401		
(2) Quadratic age	1.391	(7) Adjusted and stratified	1.400		
(3) Binary age	1.299				
(4) Stratified on age	1.385				

<ロト < 同ト < 三ト

Comparisons of the two time-scales How to deal with the effect modification of age

What if age is an effect modifier?

• Follow-up as time scale (Stratified analysis):

	Age < 65			Age ≥	<u>≥</u> 65	
	HR	se	p — value	HR	se	p — value
$BMI \geq 25$	1.81	0.10	< 0.001	0.90	0.03	0.005

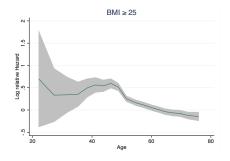
• Follow-up as time scale (Interaction term):

Var	HR	se	p — value
BMI ≥ 25	1.35	0.085	$< 0.001 \\ < 0.001 \\ < 0.001$
Centered Age	1.12	0.002	
Interaction	0.99	0.003	

Comparisons of the two time-scales How to deal with the effect modification of age

What if age is an effect modifier?

STEPP procedure:

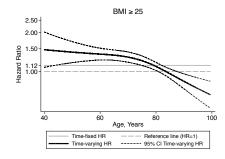


Comparisons of the two time-scales How to deal with the effect modification of age $\$

What if age is an effect modifier?

• Age as time scale:

If the effect of a risk factor changes with age the hazards would not be proportional.



Francesca Ghilotti, Rino Bellocco

Summary Acknowledgements References

Conclusions

- When analysing epidemiologic cohort data is better to use age as time-scale
- If adjustment for age at entry is made correctly the difference among the estimated regression coefficients depending on the time-scale chosen is minimal
- Pay attention to the calendar-period and/or birth cohort effects (stratified models)

Image: A matrix

Summary Acknowledgements References

November 17, 2016 - Roma

*ロ> *母> *ほ> *ほ>

æ

Summary Acknowledgements **References**

References

- Kleinbaum, D. G., & Klein, M. (2012). Survival analysis: a self-learning text. Springer Science & Business Media.
- 2 Klein, J. P., & Moeschberger, M. L. (2005). Survival analysis: techniques for censored and truncated data. Springer Science & Business Media.
- 3 Korn, E. L., Graubard, B. I., & Midthune, D. (1997). Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. American journal of epidemiology, 145(1), 72-80.
- 4 Ingram, D. D., Makuc, D. M., & Feldman, J. J. (1997). Re: Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale'. American journal of epidemiology, 146(6), 528-529.
- 5 Thiebaut, A., & Benichou, J. (2004). Choice of timescale in Cox's model analysis of epidemiologic cohort data: a simulation study. Statistics in medicine, 23(24), 3803-3820.
- 6 Cologne, J., Hsu, W. L., Abbott, R. D., Ohishi, W., Grant, E. J., Fujiwara, S., & Cullings, H. M. (2012). Proportional hazards regression in epidemiologic follow-up studies: an intuitive consideration of primary time scale. Epidemiology, 23(4), 565-573.
- 7 Pencina, M. J., Larson, M. G., & D'Agostino, R. B. (2007). Choice of time scale and its effect on significance of predictors in longitudinal studies. Statistics in medicine, 26(6), 1343-1359.
- 8 Gail, M. H., Graubard, B., Williamson, D. F., & Flegal, K. M. (2009). Comment on 'Choice of time scale and its effect on significance of predictors in longitudinal studies'. Statistics in medicine, 28(8), 1315.
- 9 Lamarca, R., Alonso, J., Gmez, G., & Muoz, A. (1998). Left-truncated data with age as time scale: an alternative for survival analysis in the elderly population. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 53(5), M337-M343.

(日) (同) (三) (三)