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What is spatial data and why is it special?

What is spatial data?

Spatial data contains information on the location of the observations,
in addition to the values of the variables

(48.585487,68.892044]
(34.000835,48.585487]
(20.048504,34.000835]
[.178269,20.048504]

Columbus, Ohio 1980 neighorhood data
Source: Anselin (1988)

Property crimes per thousand households
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What is spatial data and why is it special?

Modeling Spatial Correlation

Modeling correlation in unobservable errors

Efficiency and consistent standard errors

Allowing outcome in place i to depend on outcomes in nearby places

Also known as state dependence or spill-over effects
Correction required for consistent point estimates

Correlation is more complicated than time-series case

There is no natural ordering in space as there is in time
Space has, at least, two dimensions instead of one

Working on random fields complicates large-sample theory

Models use a-priori parameterizations of distance

Spatial-weighting matrices parameterize Tobler’s first law of geography
Tobler (1970)

”Everything is related to everything else, but near things are more
related than distant things.”
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Managing spatial data

Managing spatial data

Much spatial data comes in the form of shapefiles

US Census distributes shapefiles for the US at several resolutions as
part of the TIGER project

State level, zip-code level, and other resolutions are available

Need to translate shapefile data to Stata data
User-written (Crow and Gould ) shp2dta command

Mapping spatial data

Mauricio Pisati wrote spmap

http://www.stata.com/support/faqs/graphics/spmap.html

gives a great example of how to translate shapefiles and map data

Need to create spatial-weighting matrices that parameterize distance
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Managing spatial data

Shapefiles

Much spatial data comes in the form of ESRI shapefiles

Environmental Systems Research Institute (ESRI), Inc.
(http://www.esri.com/) make geographic information system (GIS)
software
The ESRI format for spatial data is widely used

The format uses three files
The .shp and the .shx files contain the map information
The .dbf information contains observations on each mapped entity

shp2dta translates ESRI shapefiles to Stata format
Some data is distributed in the MapInfo Interchange Format

User-written command (Crow and Gould) mif2dta translates MapInfo
files to Stata format
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Managing spatial data

The Columbus dataset

Anselin (1988) used a dataset containing information on property
crimes in 49 neighborhoods in Columubus, Ohio in 1980

Anselin now distributes a version of this dataset in ESRI shapefiles
over the web

There are three files columbus.shp, columbus.shx, and
columbus.dbf in the current working directory
To translate this data to Stata I used

. shp2dta using columbus, database(columbusdb) coordinates(columbuscoor) ///
> genid(id) replace

The above command created columbusdb.dta and
columbuscoor.dta

columbusdb.dta contains neighborhood-level data
columbuscoor.dta contains the coordinates for the neighborhoods in
the form required spmap the user-written command by Maurizio Pisati

See also
http://econpapers.repec.org/software/bocbocode/s456812.htm
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Managing spatial data

Columbus data part II

. use columbusdb, clear

. describe id crime hoval inc

storage display value
variable name type format label variable label

id byte %12.0g neighorhood id
crime double %10.0g residential burglaries and

vehicle thefts per 1000
households

hoval double %10.0g housing value (in $1,000)
inc double %10.0g household income (in $1,000)

. list id crime hoval inc in 1/5

id crime hoval inc

1. 1 15.72598 80.467003 19.531
2. 2 18.801754 44.567001 21.232
3. 3 30.626781 26.35 15.956
4. 4 32.38776 33.200001 4.477
5. 5 50.73151 23.225 11.252
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Managing spatial data

Visualizing spatial data

spmap is an outstanding user-written command for exploring spatial
data

. spmap crime using columbuscoor, id(id) legend(size(medium) ///

> position(11)) fcolor(Blues) ///
> title("Property crimes per thousand households") ///

> note("Columbus, Ohio 1980 neighorhood data" "Source: Anselin (1988)")

(48.585487,68.892044]
(34.000835,48.585487]
(20.048504,34.000835]
[.178269,20.048504]

Columbus, Ohio 1980 neighorhood data
Source: Anselin (1988)

Property crimes per thousand households
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Spatial autoregressive models

Modeling spatial data

Cliff-Ord type models are used in many social-sciences

So named for Cliff and Ord (1973, 1981); Ord (1975)
The model is given by

y = λWy + Xβ + u

u = ρMu + ǫ

where

y is the N × 1 vector of observations on the dependent variable
X is the N × k matrix of observations on the independent variables
W and M are N × N spatial-weighting matrices that parameterize the
distance between neighborhoods
u are spatially correlated residuals and ǫ are independent and
identically distributed disturbances
λ and ρ are scalars that measure, respectively, the dependence of yi on
nearby y and the spatial correlation in the errors
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Spatial autoregressive models

Cliff-Ord models II

y = λWy + Xβ + u

u = ρMu + ǫ

Relatively simple, tractable model

Allows for correlation among unobservables

Each ui depends on a weighted average of other observations in u

Mu is known as a spatial lag of u

Allows for yi to depend on nearby y

Each yi depends on a weighted average of other observations in y

Wy is known as a spatial lag of y

Growing amount of statistical theory for variations of this model
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Spatial autoregressive models

Spatial-weighting matrices

Spatial-weighting matrices parameterize Tobler’s first law of
geography Tobler (1970)
”Everything is related to everything else, but near things are more
related than distant things.”

Inverse-distance matrices and contiguity matrices are common
parameterizations for the spatial-weighting matrix

In an inverse-distance matrix W , wij = 1/D(i , j) where D(i , j) is the
distance between places i and j

In a contiguity matrix W ,

wi ,j =

{
di ,j if i and j are neighbors
0 otherwise

where di ,j is a weight
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Spatial autoregressive models

Parameterizing spatial-weighting matrices

Restricting the number of neighbors that affect any given place
reduces dependence

Restricting the extent to which neighbors affect any given place
reduces dependence

Contiguity matrices only allow contiguous neighbors to affect each
other

This structure naturally yields spatial-weighting matrices with limited
dependence

Inverse-distance matrices sometimes allow for all places to affect each
other

These matrices are normalized to limit dependence
Sometimes places outside a given radius are specified to have zero
affect, which naturally limits dependence

13 / 49



Spatial autoregressive models

Spatial-weighting matrices parameterize dependence

The spatial-weighting matrices parameterize the spatial dependence,
up to estimable scalars

If there is too much dependence, existing statistical theory is not
applicable

Older literature used a version of “stationarity”, newer literature uses
easier to interpret restrictions on W and M

1 All the diagonal elements of W and M are zero
2 The matrices (I− λW) and (I− ρM) are nonsingular for the λ and ρ in

specified intervals
3 The row and column sums of W, M, (I − λW), and (I − ρM) are

bounded uniformly in absolute value

Restriction 1 is just a normalization rule
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Spatial autoregressive models

Intuition for these restrictions on spatial-weighting matrices

The model is a pair of simultaneous equation systems

y = λWy + Xβ + u

u = ρMu + ǫ

To work with this model, we must be able solve these equations

y = (I − λW)−1Xβ + (I − λW)−1u

u = (I − ρM)−1ǫ

which clearly requires that I − λW and I − ρM be nonsingular

The restrictions on the row and column sums of the matrices ensures
that products of these matrices are finite
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Spatial autoregressive models

Normalization the spatial-weighting matrices

Normalizing the spatial-weighting matrices by a scalar fixes the scale
of λ and ρ

Normalizing by a vector, say a vector of row sums, changes more than
the scale of the parameters

In row-sum normalization, wij = (1/si)w
∗
ij , where si =

∑n

j=1 |w
∗
ij |

Each row is normalized by a different scalar, si

Spectral or min-max normalizations may be easier to interpret than
the traditional row normaliztion

Spectral normalization set w [i , i ] = (1/τ)w∗[i , j ] where τ is the largest
of the moduli of the eigenvalues of the unnormalized spatial-weighting
matrix W∗

Min-max normalization approximates the largest modulus

τ = min




 max
1≤i≤n

n∑

j

|w∗
ij |, max

1≤j≤n

n∑

j

|w∗
ij |
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Spatial autoregressive models

The no-uniform-weights condition

Kelejian and Prucha (2002) show that the spatial-weighting matrix
cannot be a uniform weight matrices in which wij = c

A uniform-weight matrix yields a spatial lag of y that is collinear with
the constant term

If wij = c , Wy =




nc

∑n

i=1 yi

...
nc

∑n

i=1 yi



 which is perfectly collinear with the

constant term

In practice, the result indicates that there must be sufficient variation
in the elements of W to ensure sufficience variation in Wy
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Spatial autoregressive models

Creating and Managing spatial weighting matrices in Stata

There is a forthcoming user-written command by David Drukker, Hua
Peng, and Rafal Raciborski called spmat for creating spatial weighting
matrices

spmat uses variables in the dataset to create a spatial-weighting matrix
spmat can create inverse-distance spatial-weighting matrices and
contiguity spatial-weighting matrices
spmat can also save spatial-weighting matrices to disk and read them
in again
spmat can also import spatial-weighting matrices from text files
spmat can provide intensity plots and summary statistics of
spatial-weighting matrices
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Spatial autoregressive models

Creating and Managing spatial weighting matrices in Stata

In the examples below, we create a contiguity matrix and two
inverse-distance matrices that differ only in the normalization

. spmat contiguity idmat_c using columbuscoor, id(id)

. spmat idistance idmat_mmax, id(id) coordinates(x y) normalize(row)

. spmat idistance idmat_spec, id(id) coordinates(x y) normalize(spectral)
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Spatial autoregressive models

Intensity plot

An intensity plot displays the intensity of the elements of a matrix in
a two-dimensional graph

The y-axis corresponds to the rows and the x-axis corresponds to the
columns

An x-y point identifies an element in the matrix
The intensity of the gray-scale color describes the size of the matrix
element
The intensity of the (1,1) element of the matrix is in the top-left of the
graph
The intensity of the (n,n) element of the matrix is in the bottom-right
of the graph
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Spatial autoregressive models

Intensity plot

Assign the matrix values to B bins

Zero values get their own bin , coded as white
The nonzero values are spread uniformly over the remaining bins,
higher values are assigned to darker colors

. spmat graph idmat_mmax, name(mmax)
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Spatial autoregressive models

Summarizing a spatial-weighting matrix

. spmat summarize idmat_mmax

Summary of spatial-weighting object idmat_mmax

Matrix Description

Dimensions 49 x 49
# of zeros 49

Minimum 0

Maximum .1758263
Mean .01881

Median .013461
Symmetric yes
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Spatial autoregressive models

Sorting induces banded structure

Most spatial-weighting matrices should be banded

Drukker et al. (2009b) show that sorting the data on the distance
from one place before creating the spatial-weighting matrix will cause
many spatial-wieghting matrices to have a banded structure

spmat will be able to store the matrix as banded

Reduces memory from N ∗ N elements to N ∗ (bu + bL + 1), where bU

and bL are the upper and lower bandwidths
Faster computation
You do not need sparse-matrices to do spatial statistics with many
places,

banded matrices solve storage problem
Computation with banded matrices is faster than with sparse matrices
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Spatial autoregressive models

Dense and banded matrices

Dense matrix Banded matrix




0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0









0 1 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1

0 0 0 1 1 0





Upper bandwidth of banded matrix is 1, lower bandwidth is 2
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Spatial autoregressive models

Example with US cities data

We have data on the distance between 125 US cities

This data is distributed with the cities in reverse alphabetical order

Making an inverse-distance spatial-weighting matrix from the data in
this order yields a matrix without any structure

. use us125

. spmat idistance C1 , id(pid) coordinates(x y) miles

. spmat graph C1, name(C1) title(US cities weight matrix) ///

> subtitle(Cities sorted in reverse alphabetical order)
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Spatial autoregressive models

Plot from default sort

There is no structure in this spatial-weighting matrix

The dark points near the north-east and south-west corners indicate
that the minimum bandwidth is about the same as the matrix
dimension

Cities sorted in reverse alphabetical order
US cities weight matrix
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Spatial autoregressive models

Value truncation

With large spatial-weighting matrices, we sometimes impose the
condition that distant places have zero effect on each other

This restriction changes the spatial-weighting matrices and the model
parameters

For example, we can impose the condition that US cities which are
more than 500 miles apart have zero effect on each other (instead of
.002 or smaller)
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Spatial autoregressive models

Bandwidths from default sort

. spmat summarize C1, vtruncate(.002)

Summary of spatial-weighting object C1

Current matrix Truncated matrix

Dimensions 125 x 125 125 x 125

# of zeros 125 12451
Minimum 0 0
Maximum .0482526 .0482526

Mean .0016527 .0008975
Median .001044 0

Symmetric yes yes
Banded no no

Truncation scenario summary

Lower band Upper band

Best 123 123

75% 87 79
Mean 56.584 55.264

Median 56 55
Tukey value 178.5 160

> Tukey value 0 0
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Spatial autoregressive models

The Worcester sort

. gen double dww = sqrt( (x-x[5])^2 + (y-y[5])^2 )

. sort dww

. spmat idistance C2 , id(pid) coordinates(x y) miles

. spmat graph C2, name(C2) title(US cities weight matrix) ///
> subtitle(Cities sorted by distance from Worcester, MA )
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Spatial autoregressive models

Plot from Worcester sort

The banded structure is clearly evident

We could save this spatial-weighting matrix as a banded matrix, use
less memory and perform the computations faster

Cities sorted by distance from Worcester, MA
US cities weight matrix
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Spatial autoregressive models

Bandwidths from Worcester sort

. spmat summarize C2, vtruncate(.002)

Summary of spatial-weighting object C2

Current matrix Truncated matrix

Dimensions 125 x 125 125 x 125

# of zeros 125 12451
Minimum 0 0
Maximum .0482526 .0482526

Mean .0016527 .0008975
Median .001044 0

Symmetric yes yes
Banded no no

Truncation scenario summary

Lower band Upper band

Best 33 33

75% 28 28
Mean 19.208 19.816

Median 20 21
Tukey value 53.5 50.5

> Tukey value 0 0
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Spatial autoregressive models

US county data (unsorted)

. use county2, clear

. spmat contiguity C1 using countyxy, id(id) replace

. spmat summarize C1, vtruncate(.5)

Summary of spatial-weighting object C1

Current matrix Truncated matrix

Dimensions 3109 x 3109 3109 x 3109

# of zeros 9648149 9648149

Minimum 0 0

Maximum 1 1

Mean .0018345 .0018345

Median 0 0

Symmetric yes yes

Banded no no

Truncation scenario summary

Lower band Upper band

Best 3082 3082

75% 1774 1843

Mean 1041.577 1048.394

Median 929 959

Tukey value 4222 4484.5

> Tukey value 0 0
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Spatial autoregressive models

. // observation 1425 is San Juan County, WA

. generate d0 = sqrt( (x- x[1425])^2 + (y - y[1425])^2 )

. sort d0 // d0 is distance from San Juan County, WA

. spmat contiguity C2 using countyxy, id(id) replace

. spmat summarize C2, vtruncate(.5)

Summary of spatial-weighting object C2

Current matrix Truncated matrix

Dimensions 3109 x 3109 3109 x 3109

# of zeros 9648149 9648149

Minimum 0 0

Maximum 1 1

Mean .0018345 .0018345

Median 0 0

Symmetric yes yes

Banded no no

Truncation scenario summary

Lower band Upper band

Best 356 356

75% 91 90

Mean 74.73046 74.93052

Median 65 65

Tukey value 160 156

> Tukey value 207 204
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Spatial autoregressive models

Some underlying statistical theory

Recall the model

y = λWy + Xβ + u

u = ρMu + ǫ

The model specifies that set of N simultaneous equations for y and
for u

The identification assumptions ensure that we can solve for u and y

Solving for u yields
u = (I − ρM)−1ǫ

If ǫ is IID with finite variance σ2, the spatial correlation among the
errors is given by

Ωu = E [uu′] = σ2(I − ρM)−1(I − ρM′)−1
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Spatial autoregressive models

Some underlying statistical theory II

Solving for y yields

y = (I − λW)−1Xβ + (I − λW)−1(I − ρM)−1ǫ

Wy is not an exogenous variable
Using the above solution for y we can see that

E [(Wy)u′] = W(I − λW)−1Ωu 6= 0
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Spatial autoregressive models

Maximum likelihood estimator

The above solution for y permits the derivation of the log-likelihood
function
In practice, we use the concentrated log-likelihood function

ln L∗
2(λ, ρ) = −

n

2

(
ln(2π) + 1 + ln σ̂2(λ, ρ)

)
+ ln ||I − λW|| + ln ||I − ρM||

where

σ̂2(λ, ρ) =
1

n
y∗∗(λ, ρ)′

[
I − X∗(ρ) [X∗(ρ)′X∗(ρ)]

−1
X∗(ρ)′

]
y∗∗(λ, ρ)

y∗(λ) = (I − λW)y,

y∗∗(λ, ρ) = (I − ρM)y∗(λ) = (I − ρM)(I − λW)y,

X∗(ρ) = (I − ρM)X,

Pluggin the values λ̂ and ρ̂ that maximize the above concentrated
log-likelihood function into equation σ̂2(λ, ρ) produces the ML
estimate of σ2.
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Spatial autoregressive models

Maximum likelihood estimator II

Substituing the values λ̂ and ρ̂ that maximize the above concentrated
log-likelihood function into

β̂(λ, ρ) =
[
X∗(ρ)′X∗(ρ)

]
−1

X∗(ρ)′y∗
∗
(λ, ρ)

produces the ML estimate of β.
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Spatial autoregressive models

Maximum likelihood estimator III

Three types problems remain

Numerical
Lack of general statistical theory
Quasi-maximum likelihood theory does not apply
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Spatial autoregressive models

Numerical problems with ML estimator

The ML estimator requires computing the determinants |I − λW| and
|I − ρM| for each iteration

Ord (1975) showed |I − ρW| =
∏n

i=1(1 − ρvi ) where (v1, v2, ..., vn)
are the eigenvalues of W

This reduces, but does not remove, the problem
For instance, with zip-code-level data, this would require obtaining the
eigenvalues of a 32,000 by 32,000 square matrix
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Spatial autoregressive models

Lack of general statistical theory

There is still no large-sample theory for the distribution of the ML for
the Cliff-Ord model

Special cases covered by Lee (2004)

Allows for spatially correlated errors, but no spatially lagged dependent
variable

This estimator is frequently used, even though there is no
large-sample theory for the distribution of the estimator
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Spatial autoregressive models

Quasi-maximum likelihood theory does not apply

Simple deviations from Normal IID can cause the ML estimator to
produce inconsistent estimates

Arraiz, Drukker, Kelejian, and Prucha (2009) provide simulation
evidence that the ML estimator produces inconsistent estimates when
the errors are heteroskedastic
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Spatial autoregressive models

spreg ml command

Forthcoming user-written Stata command spreg ml estimates the
parameters of Cliff-Ord models by ML

. spreg ml y lwage police , elmat(chess) dlmat(chess) pid(pid)

Iteration 0: log likelihood = -4120.2131

(output omitted )

Spatial autoregressive model Number of obs = 625

(Maximum likelihood estimates) Wald chi2(2) = 1224.99

Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y

lwage .9566215 .0314487 30.42 0.000 .8949833 1.01826

police 1.153248 .0709958 16.24 0.000 1.014099 1.292397

_cons .6261475 .0734968 8.52 0.000 .4820965 .7701985

lambda

_cons .7340299 .0036412 201.59 0.000 .7268932 .7411666

rho

_cons .7685249 .0030415 252.68 0.000 .7625637 .7744861

sigma

_cons 1.956339 .0562829 34.76 0.000 1.846026 2.066651
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Spatial autoregressive models

Generalized spatial Two-stage least squares (GS2SLS)

Kelejian and Prucha (1999, 1998, 2004, 2009) along with coauthors
Arraiz, Drukker, Kelejian, and Prucha (2009) derived an estimator
that uses instrumental variables and the
generalized-method-of-moments (GMM) to estimate the parameters
of cross-sectional Cliff-Ord models

Arraiz, Drukker, Kelejian, and Prucha (2009) show that the estimator
produces consistent estimates when the disturbances are
heteroskedastic and give simulation evidence that the ML estimator
produces inconsistent estimates in the case
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Spatial autoregressive models

GS2SLS II

The estimator is produced in four steps
1 Consistent estimates of β and λ are obtained by instrumental variables

Following Kelejian and Prucha (1998)
X,WX,W2X, . . . MX,MWX,MW2X, . . . are valid instruments,
By default, we use H = X,WX,W2X)

2 Estimate ρ and σ by GMM using sample constructed from functions of
the residuals

The moment conditions explicitly allow for heteroskedastic innovations
Drukker, Egger, and Prucha (2009a) work out the details for
homoskedastic case

3 Use the estimates of ρ and σ to perform a spatial Cochrane-Orcut
transformation of the data and obtain more efficient estimates of β

and λ
4 Use the efficient estimates of β and λ to obtain an efficient GMM

estimator of ρ

The authors derive the joint large-sample distribution of the
estimators
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Spatial autoregressive models

spreg g2sls command

Forthcoming user-written command spreg g2sls implements the
Arraiz et al. (2009) and the Drukker, Egger, and Prucha (2009a)
estimators

. spreg gs2sls y lwage police , dlmat(chess) elmat(chess) pid(id)

Estimating rho by GMM

Iteration 1: SSR = 14819.059

(output omitted )

GS2SLS regression Number of obs = 625

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
lwage 1.164297 .113891 10.22 0.000 .9410746 1.387519

police 1.400984 .1775355 7.89 0.000 1.053021 1.748947

_cons 1.510546 .4212849 3.59 0.000 .6848427 2.336249

lambda
_cons .9836465 .1101239 8.93 0.000 .7678076 1.199485

rho
_cons .7212283 .0188375 38.29 0.000 .6843075 .7581491
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Spatial autoregressive models

g2sls command II

. estimates table ml gs2sls

Variable ml gs2sls

y

lwage .95662152 1.164297
police 1.1532476 1.4009842

_cons .62614744 1.5105459

lambda

_cons .73402989 .98364646

rho
_cons .76852488 .72122828

sigma
_cons 1.9563386
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Spatial autoregressive models

Allowing for endogenous covariates

Kelejian and Prucha (2004); Drukker, Egger, and Prucha (2009a)
extend the estimation technique to allow for endogenous covariates

The model is now

y = λWy + Xxβ + Xnγ + u

u = ρMu + ǫ

where Xx contains exogenous covariates and Xn contains endogenous
covariates

We assume that we have additional instruments Z

The only important change in the estimation technique is to use
instruments
X,WX,W2X, . . .MX,MWX,MW2X, . . .
where X = [Xx ,Z]
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Spatial autoregressive models

spivreg

The forthcoming user-written command spivreg implements this
estimator

. spivreg y lwage (police = convict arrest) , dlmat(chess) elmat(chess) pid(id)

Estimating rho using 2SLS residuals
Iteration 0: GMM criterion = 145822.98

(output omitted )

Spatial regression with endogenous variables Number of obs = 625

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y

police .9782551 .0984056 9.94 0.000 .7853838 1.171127
lwage .9375394 .0533136 17.59 0.000 .8330467 1.042032
_cons .639005 .1981524 3.22 0.001 .2506335 1.027376

lambda

_cons .7078255 .052859 13.39 0.000 .6042238 .8114272

rho

_cons .7951642 .0676218 11.76 0.000 .662628 .9277004
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Spatial autoregressive models

Summary and further research

An increasing number of datasets contain spatial information

Modeling the spatial processes in a dataset can improve efficiency, or
be essential for consistency

The Cliff-Ord type models provide a useful parametric approach to
spatial data

There is reasonably general statistical theory for the GS2SLS
estimator for the parameters of cross-sectional Cliff-Ord type models

We are now working on extending the GS2SLS to panel-data Cliff-Ord
type models with large N and fixed T
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