
Algorithmic
Derivatives 1.0

for GAUSSTM Mathematical and
Statistical System

Aptech Systems, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or nondis-
closure agreement. The software may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the
software for backup purposes. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose other than the purchaser’s
personal use without the written permission of Aptech Systems, Inc.

c©Copyright 2007-2010 by Aptech Systems, Inc., Black Diamond, WA.
All Rights Reserved.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech
Systems, Inc. Other trademarks are the property of their respective owners.

Part Number: 006000
Version 1.0
Documentation Revision: 1860 May 17, 2010

Contents

Contents

1 Installation

1.1 UNIX/Linux/Mac . 1-1
1.1.1 Download . 1-1
1.1.2 CD . 1-2

1.2 Windows . 1-2
1.2.1 Download . 1-2
1.2.2 CD . 1-2
1.2.3 64-Bit Windows . 1-3

1.3 Difference Between the UNIX and Windows Versions 1-3

2 Getting Started

2.0.1 README Files . 2-2
2.0.2 Setup . 2-2

3 Algorithmic Derivatives

3.1 Using Algorithmic Derivatives . 3-1
3.2 Naming Conventions for Procedures with Several Arguments 3-4
3.3 Adding a Derivative Function . 3-6

3.3.1 Calling Functions Returning Matrices with Dependent Columns 3-6
3.3.2 Calling Functions Returning Matrices with Independent Columns 3-7

3.4 Running the Test Example . 3-9
3.5 Disallowed GAUSS Constructions . 3-9
3.6 References . 3-10

4 Algorithmic Derivatives Reference

AD . 4-1

iii

AD 1.0 for GAUSS

gradp1d . 4-2
gradp4d . 4-3
gradp4d 2 1 . 4-5
gradp4d 2 2 . 4-7

Index

iv

Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

1-1

AD 1.0 for GAUSS

4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2

Installation

Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3

G
etting

S
tarted

Getting Started 2
GAUSS 6.0.25+ is required to use these routines. See _rtl_ver in src/gauss.dec.

AD needs the Java Runtime Enviroment (JRE) V1.4.1 or a later version in order to run. If
you do not already have JRE 1.4.1 installed, you can download it for free from Sun at
http://java.sun.com/j2se/1.4.1/download.html Follow the instructions to
install the JRE and add the bin directory containing the java.exe to your path; e.g., on a
Windows machine:

path=%path%;C:\Program Files\Java\j2re1.4.1\bin

The AD version number is stored in a global variable:

_ad_ver 3×1 matrix, the first element contains the major version number, the second
element the minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version of your copy of AD.

2-1

AD 1.0 for GAUSS

2.0.1 README Files

If there is a README.ad file, it contains any last minute information on the AD
procedures. Please read it before using them.

2.0.2 Setup

Algorithmic Derivatives or AD is a program which takes a GAUSS procedure that
computes a function and produces a GAUSS procedure for computing its derivative.

In order to use the procedures in AD, the AD library must be active. This is done by
including ad in the library statement at the top of your program or command file:

library ad;

This enables GAUSS to find the AD procedures.

You will also need to include the AD structure definition file

#include ad.sdf;

at the top of the command file.

2-2

A
D

Algorithmic Derivatives 3
3.1 Using Algorithmic Derivatives

AD is a program for generating a GAUSS procedure to compute derivatives from a
GAUSS procedure that computes a function value. If the input function procedure returns
a scalar value given a K × 1 input vector, the output derivative procedure computes a 1× K
gradient. If the input function returns an N × 1 vector given a K × 1 input vector, the
output derivative procedure computes an N × K Jacobian matrix.

First, copy the input function procedure to a separate file. Second, from the command line
enter

ad file_name d_file_name

where file_name is the name of the file containing the input function procedure, and
d_file_name is the name of the file containing the output derivative procedure.

3-1

AD 1.0 for GAUSS

If the input function procedure is named fct, the output derivative procedure has the
name d_fct if the function procedure has a single argument. If the function procedure has
two arguments, the derivative procedure is given the name d_1_fct where the addition to
the prefix indicates that the derivative is with respect to the first argument.

For example, put the following function into a file called lpr.fct:

proc lpr(x,z);

local s,m,u;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s))));

endp;

Then enter the following at the GAUSS command line

library ad;

ad lpr.fct d_lpr.fct;

If successful, the following is printed to the screen

java -jar d:\gauss6.0\src\gauss_ad.jar lpr.fct d_lpr.fct

and the derivative procedure is written to file named d_lpr.fct:

/* Version:1.0 - May 15, 2004 */

/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

Proc(1)=d_1_lpr(x, z);

3-2

A
D

Algorithmic Derivatives

Clearg _AD_fnValue;

Local s, m, u;

s = x[(4)] ;

Local _AD_t1;

_AD_t1 = x[(1):(3),.] ;

m = z[.,(2):(4)] * _AD_t1;

u = z[.,(1)] ./= 0;

_AD_fnValue = (u .* lnpdfmvn(z[.,(1)] - m, s)) + ((1 - u) .*

lncdfnc(m / sqrt(s)));

/* retp(_AD_fnValue); */

/* endp; */

struct _ADS_optimum _AD_d__AD_t1 ,_AD_d_x ,_AD_d_s ,_AD_d_m

,_AD_d__AD_fnValue;

/* _AD_d__AD_t1 = 0; _AD_d_s = 0; _AD_d_m = 0; */

_AD_d__AD_fnValue = _ADP_d_x_dx(_AD_fnValue);

_AD_d_s = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn(z[.,(1)] - m, s),

(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_2_lnpdfmvn(z[.,(1)] - m,

s)), _ADP_d_x_dx(s)))), _ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(

z[.,(1)] - m, s), (1 - u) .* lncdfnc(m / sqrt(s))),

_ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s))),

_ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_ydivx_dx(m,

sqrt(s)), _ADP_DtimesD(_ADP_d_sqrt(s), _ADP_d_x_dx(s))))))));

_AD_d_m = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn(z[.,(1)] - m, s),

(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_1_lnpdfmvn(z[.,(1)] - m,

s)), _ADP_DtimesD(_ADP_d_yminusx_dx(z[.,(1)] , m), _ADP_d_x_dx(m))))),

_ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(z[.,(1)] - m, s), (1 - u) .*

lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s)

)), _ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_xdivy_dx(m,

sqrt(s)), _ADP_d_x_dx(m)))))));

/* u = z[.,(1)] ./= 0; */

_AD_d__AD_t1 = _ADP_DtimesD(_AD_d_m, _ADP_DtimesD(_ADP_d_yx_dx(

z[.,(2):(4)] , _AD_t1), _ADP_d_x_dx(_AD_t1)));

Local _AD_sr_x, _AD_sc_x;

_AD_sr_x = _ADP_seqaMatrixRows(x);

_AD_sc_x = _ADP_seqaMatrixCols(x);

_AD_d_x = _ADP_DtimesD(_AD_d__AD_t1, _ADP_d_x2Idx_dx(x,

_AD_sr_x[(1):(3)] , _AD_sc_x[0]));

Local _AD_s_x;

3-3

AD 1.0 for GAUSS

_AD_s_x = _ADP_seqaMatrix(x);

_AD_d_x = _ADP_DplusD(_ADP_DtimesD(_AD_d_s, _ADP_d_xIdx_dx(x,

_AD_s_x[(4)])), _AD_d_x);

retp(_ADP_external(_AD_d_x));

endp;

If there is a syntax error in the input function procedure, the following is written to the
screen

java -jar d:\gauss6.0\src\gauss_ad.jar lpr.fct d_lpr.fct

Command ’java -jar d:\gauss6.0\src\gauss_ad.jar cmlad3.fct d_lpr.fct’ exit status 1

the exit status 1 indicating that an error has occurred. The output file then contains the
reason for the error:

/* Version:1.0 - May 15, 2004 */

/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

proc lpr(x,z);

local s,m,u;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s)));

Error: lpr.fct:12:63: expecting ’)’, found ’;’

3.2 Naming Conventions for Procedures with Several
Arguments

For a function procedure with a single argument,

3-4

A
D

Algorithmic Derivatives

proc fct(x);

/* code */

endp;

in a file called, for example, fct.src with a single argument, the following

ad fct.src d_fct.src

produces a derivative procedure

proc d_fct(x);

/* code */

endp;

in the file d_fct.src with the same single argument.

For a function procedure with two arguments,

proc fct(x,y);

/* code */

endp;

produces a derivative procedure

proc d_1_fct(x);

/* code */

endp;

where the “_1_” indicates the derivative is taken with respect to the first argument.

By default, the derivative is with respect to the first argument. To produce the derivative
with respect to the second argument, add a “_2_” to the name of the file that will contain
the derivative procedure. For example,

3-5

AD 1.0 for GAUSS

ad fct.src d_2_fct.src

The derivative procedure will then have the name

proc d_2_fct(b,x);

/* code */

endp;

3.3 Adding a Derivative Function

The function procedure may contain calls to GAUSS functions that have not yet been
included in AD, or it may contain calls to functions you have written. AD will need to
know how to compute the derivatives of these functions before being able to produce the
derivative procedure. This section describes several methods for doing this.

3.3.1 Calling Functions Returning Matrices with Dependent Columns

The derivative of the called function must be computed numerically. Add two procedures
to the ad.src file in the src subdirectory:

proc _ADP_utility_userfct(x);

retp(userfct(x));

endp;

proc d_userfct(x);

retp(gradp4d(&_ADP_utility_userfct,x));

endp;

where userfct is the name of the called function. For example, for the GAUSS invpd
function,

3-6

A
D

Algorithmic Derivatives

proc _ADP_utility_invpd(x);

retp(invpd(x));

endp;

proc d_invpd(x);

retp(gradp4d(&_ADP_utility_invpd,x));

endp;

3.3.2 Calling Functions Returning Matrices with Independent Columns

Most functions, for example, the GAUSS log function, return matrices that are
independent. Their derivatives can be provided either numerically or analytically.

Analytical

For example, the following computes the derivatives for the log function. For your own
function change “log” below to the name of your function, substitute the calculation of the
derivative for the appropriate line, and add these procedures to the ad.src file:

proc(1) = d_log(x);

retp(_ADP_external(_ADP_d_log(x)));

endp;

proc(1) = _ADP_d_log(x);

local xCols,xRows;

xCols = cols(x);

xRows = rows(x);

x = 1 ./ (ln(10) .* vec(x));

retp(_ADP_putDiag(xCols|xCols|xRows|xRows,x));

endp;

Note that the input matrix is “vec-ed” after the number of rows and columns have been
recorded.

3-7

AD 1.0 for GAUSS

Numerical for User-Provided Called Function

gradp1d is a function provided in AD for computing the derivative of a function returning
a matrix with independent columns. Substitute your own called function name for
“userfct”.

proc(1) = d_userfct(x);

retp(_ADP_external(_ADP_d_userfct(x)));

endp;

proc(1) = _ADP_d_userfct(x);

local xCols,xRows;

xCols = cols(x);

xRows = rows(x);

x = gradp1d(&userfct,x);

retp(_ADP_putDiag(xCols|xCols|xRows|xRows,x));

endp;

Numerical for GAUSS Called Function

In order to handle a GAUSS function, a wrapper function needs to be written.

proc(1) = d_log(x);

retp(_ADP_external(_ADP_d_log(x)));

endp;

proc _ADP_utility_log(x);

retp(log(x));

endp;

proc(1) = _ADP_d_log(x);

local xCols,xRows;

xCols = cols(x);

xRows = rows(x);

3-8

A
D

Algorithmic Derivatives

x = gradp1d(&_ADP_utility_log,x);

retp(_ADP_putDiag(xCols|xCols|xRows|xRows,x));

endp;

3.4 Running the Test Example

The example_procs subdirectory has a number of files containing function procedures
(for example, test1.src). When run in GAUSS, the example file test.e generates files
containing derivative procedures using the files with the function procedures (for example,
d_test1.src).

Additionally, the example file d_test.e tests the accuracy of the resulting derivative
procedures. Thus after running test.e, run d_test.e and an accuracy report is printed
to the screen.

3.5 Disallowed GAUSS Constructions

The following GAUSS language constructions are not allowed in the input procedure

Label: statement

CLEARG

DLLCALL

FORMAT

IF

ELSEIF

ELSE

3-9

AD 1.0 for GAUSS

ENDIF

FOR

ENDFOR

DO

WHILE

UNTIL

ENDO

BREAK

CONTINUE

GOTO

GOSUB

3.6 References

1. Griewank, Andreas, Principles and Techniques of Algorithmic
Differentiation, SIAM, 2000.

3-10

R
eference

Algorithmic Derivatives
Reference 4

AD

PURPOSE Generates a procedure for computing derivatives from a procedure that
computes a function.

LIBRARY ad

FORMAT ad infile name outfile name

INPUT infile name string, name of file containing procedure computing
function

outfile name string, name of file into which the derivative procedure is
to be put

4-1

gradp1d

EXAMPLE library ad

ad fct.src d_fct.src

gradp1d

PURPOSE Computes the gradient vector defined in a procedure. Single-sided
(forward difference) gradients are computed.

LIBRARY ad

FORMAT g = gradp1d(&fct,x)

INPUT &fct a pointer to a procedure that evaluates a function given x

proc fct(x);

/* function evaluation here */

retp(result);

endp;

This function must return a vector or a matrix with
independent columns.

x K × 1 vector, values at which to evaluate the function

OUTPUT g M × 1 vector, derivatives of function evaluated at x where M
is the number of columns of the matrix returned by fct.

EXAMPLE proc myfunc(x);

retp(lngamma(x));

endp;

x0 = { 0.1 0.2,

0.4 0.5 };

4-2 AD C R

R
eference

gradp4d

gradp1d(&myfunc,x0);

-10.4238

-2.5614

-5.2890

-1.9635

SEE ALSO gradp4d, gradp4d_2_1, gradp4d_2_2, gradp, hessp

gradp4d

PURPOSE Computes the gradient vector or matrix (Jacobian) of a matrix-valued
function defined in a procedure. Single-sided (forward difference)
gradients are computed.

LIBRARY ad

FORMAT g = gradp4d(&fct,x)

INPUT &fct a pointer to a procedure that evaluates a function given x

proc fct(x);

/* function evaluation here */

retp(result);

endp;

x K × J vector, values at which to evaluate the function

OUTPUT g scalar, 1 × K vector, Q × K matrix, L × Q × K array or
P × L × Q × K array, derivatives of function evaluated at x

If x is a K × 1 vector and fct(x) is a 1 × 1 scalar, the
result g is row vector [1,K] of gradients

AD C R 4-3

gradp4d

If x is a K × 1 vector and fct(x) is an N × 1 vector, the
result g is matrix [N,K] of cross gradients
If x is a matrix K × J and fct(x) is an N × 1 vector, the
result g is 3D matrix [J,N,K]
If x is a matrix K × J and fct(x) is a matrix N × M, the
result g is 4D matrix [M, J,N,K]

REMARKS gradp4d will return a row for every row that is returned by fct. For
instance, if fct returns a 1 × 1 result, then gradp4d will return a 1 × K
row vector. This allows the same function to be used where N is the
number of rows in the result returned by fct. Thus, for instance,
gradp4d can be used to compute the Jacobian matrix of a set of
equations.

EXAMPLE proc myfunc(x);

retp(x*x’);

endp;

x0 = { 0.1 0.2 0.3,

0.4 0.5 0.6 };

gradp4d(&myfunc,x0);

Plane [1,1,.,.]

0.20 0.00

0.40 0.10

Plane [1,2,.,.]

0.40 0.00

0.50 0.20

Plane [1,3,.,.]

0.60 0.00

0.60 0.30

4-4 AD C R

R
eference

gradp4d 2 1

Plane [2,1,.,.]

0.40 0.10

0.00 0.80

Plane [2,2,.,.]

0.50 0.20

0.00 1.00

Plane [2,3,.,.]

0.60 0.30

0.00 1.20

SEE ALSO gradp1d, gradp4d_2_1, gradp4d_2_2, gradp, hessp

gradp4d 2 1

PURPOSE Computes 4-dimensional numerical derivatives.

LIBRARY ad

FORMAT g = gradp4d_2_1(&fct,x,y)

INPUT &fct a pointer to a procedure that evaluates a function given x and
y

proc fct(x,y);

/* function evaluation here */

retp(result);

AD C R 4-5

gradp4d 2 1

endp;

x K × L matrix, values at which to evaluate the function

y M × N matrix

OUTPUT g scalar, 1 × K vector, Q × K matrix, L × Q × K array or
P × L × Q × K array, derivatives of function evaluated at x

If x is a K × 1 vector and fct(x,y) is a 1 × 1 scalar, the
result g is row vector [1,K] of gradients
If x is a K × 1 vector and fct(x,y) is an N × 1 vector, the
result g is matrix [N,K] of cross gradients
If x is a matrix K × J and fct(x,y) is an N × 1 vector, the
result g is 3D matrix [J,N,K]
If x is a matrix K × J and fct(x,y) is a matrix N × M, the
result g is 4D matrix [M, J,N,K]

REMARKS gradp4D_2_1 will return a row for every row that is returned by fct.
For instance, if fct returns a 1 × 1 result, then gradp4D_2_1 will return
a 1 × K row vector. This allows the same function to be used where N is
the number of rows in the result returned by fct. Thus, for instance,
gradp4D_2_1 can be used to compute the Jacobian matrix of a set of
equations.

EXAMPLE
proc myfunc(x,y);

retp(x * y);

endp;

x0 = { 0.1 0.2 0.3,

0.4 0.5 0.6 };

y = { 1 4,2 5,3 6 };

gradp4d_2_1(&myfunc,x0,y);

Plane [1,1,.,.]

4-6 AD C R

R
eference

gradp4d 2 2

1.00 0.00

0.00 1.00

Plane [1,2,.,.]

2.00 0.00

0.00 2.00

Plane [1,3,.,.]

3.00 0.00

0.00 3.00

Plane [2,1,.,.]

4.00 0.00

0.00 4.00

Plane [2,2,.,.]

5.00 0.00

0.00 5.00

Plane [2,3,.,.]

6.00 0.00

0.00 6.00

SEE ALSO gradp4d_2_2, gradp4d, gradp, hessp

gradp4d 2 2

PURPOSE Computes 4-dimensional numerical derivatives.

AD C R 4-7

gradp4d 2 2

LIBRARY ad

FORMAT g = gradp4d_2_2(&fct,x,y)

INPUT &fct a pointer to a procedure that evaluates a function given x and
y

proc fct(x,y);

/* function evaluation here */

retp(result);

endp;

x M × N matrix

y K × L matrix, values at which to evaluate the function

OUTPUT g scalar, 1 × K vector, Q × K matrix, L × Q × K array or
P × L × Q × K array, derivatives of function evaluated at y

If y is a K × 1 vector and fct(x,y) is a 1 × 1 scalar, the
result g is row vector [1,K] of gradients

If y is a K × 1 vector and fct(x,y) is an N × 1 vector, the
result g is matrix [N,K] of cross-gradients

If y is a matrix K × J and fct(x,y) is an N × 1 vector, the
result g is 3D matrix [J,N,K]

If y is a matrix K × J and fct(x,y) is a matrix N × M, the
result g is 4D matrix [M, J,N,K]

REMARKS gradp4D_2_2 will return a row for every row that is returned by fct.
For instance, if fct returns a 1 × 1 result, then gradp4D_2_2 will return
a 1 × K row vector. This allows the same function to be used where N is
the number of rows in the result returned by fct. Thus, for instance,
gradp4D_2_2 can be used to compute the Jacobian matrix of a set of
equations.

4-8 AD C R

R
eference

gradp4d 2 2

EXAMPLE
proc myfunc(x,y);

retp(x * y);

endp;

x = { 0.1 0.2 0.3,

0.4 0.5 0.6 };

y0 = { 1 4,2 5,3 6 };

gradp4d_2_2(&myfunc,x,y0);

Plane [1,1,.,.]

0.10 0.20 0.30

0.40 0.50 0.60

Plane [1,2,.,.]

0.00 0.00 0.00

0.00 0.00 0.00

Plane [2,1,.,.]

0.00 0.00 0.00

0.00 0.00 0.00

Plane [2,2,.,.]

0.10 0.20 0.30

0.40 0.50 0.60

SEE ALSO gradp4D_2_1, gradp4d, gradp, hessp

AD C R 4-9

Index

Index

Index

AD, 4-1

D

disallowed statements, 3-9

G

gradp1d, 3-8, 4-2
gradp4d, 4-3
gradp4d_2_1, 4-5
gradp4d_2_2, 4-7

I

Installation, 1-1

U

UNIX, 1-3
UNIX/Linux/Mac, 1-1

W

Windows, 1-2, 1-3

Index-1

	1 Installation
	1.1 UNIX/Linux/Mac
	1.1.1 Download
	1.1.2 CD

	1.2 Windows
	1.2.1 Download
	1.2.2 CD
	1.2.3 64-Bit Windows

	1.3 Difference Between the UNIX and Windows Versions

	2 Getting Started
	2.0.1 README Files
	2.0.2 Setup

	3 Algorithmic Derivatives
	3.1 Using Algorithmic Derivatives
	3.2 Naming Conventions for Procedures with Several Arguments
	3.3 Adding a Derivative Function
	3.3.1 Calling Functions Returning Matrices with Dependent Columns
	3.3.2 Calling Functions Returning Matrices with Independent Columns

	3.4 Running the Test Example
	3.5 Disallowed GAUSS Constructions
	3.6 References

	4 Algorithmic Derivatives Reference
	AD
	gradp1d
	gradp4d
	gradp4d_2_1
	gradp4d_2_2

	Index

