Constrained
Maximum Likelihood

Estimation

for GAUSS™
Version 2.0

Aptech Systems, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software described in
this document is furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.
The purchaser may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose other than the
purchaser’s personal use without the written permission of Aptech Systems, Inc.
(©Copyright 1994-2010 by Aptech Systems, Inc., Black Diamond, WA.

All Rights Reserved.

GAUSS, GAUSS Engine, GAUSS Light are trademarks of Aptech Systems, Inc. All
other trademarks are the properties of their respective owners.

Documentation Revision: 1504 March 8, 2010

Part Number: 001860

Contents

1 Installation

1.1 UNIX/Linux/Mac oot
1.1.1 Download
1.1.2 CD ..o e

1.2 Windows L
1.2.1 Download
122 CD ..o e

1.3 Difference Between the UNIX and Windows Versions

2 Constrained Maximum Likelihood Estimation

2.1 Getting Started Lo
211 README Files.
2.1.2 Setup
2.1.3 Converting MAXLIK Command Files

22 Newin CML
2.2.1 Fast Procedures L.

2.2.2 New Random Numbers

ii

2.3

24

2.5

2.6

2.2.3 Trust Region Method 6
2.2.4 Switching Algorithms L. 6
225 GridSearch 6
2.2.6 Multiple Point Numerical Gradients 7
2.2.7 Calling CML without a Dataset 7
The Log-likelihood Function 8
Algorithm 9
2.4.1 Derivatives Lo 10
2.4.2 The Secant Algorithms 10
2.4.3 Line Search Methods 11
2.4.4 Weighted Maximum Likelihood 12
2.4.5 Active and Inactive Parameters L. 13
Managing Optimization 13
2.5.1 Scaling 13
2.5.2 Condition 13
2.5.3 Starting Point Lo Lo 14
2.5.4 Diagnosis 14
Constraints Lo 15
2.6.1 Linear Equality Constraints 15
2.6.2 Linear Inequality Constraints 15
2.6.3 Nonlinear Equality 16
2.6.4 Nonlinear Inequality 16
2.6.5 Bounds 17
266 Example. 17

2.7 Gradients 19

2.7.1 Analytical Gradient oL 19
2.7.2 User-Supplied Numerical Gradient 20
2.7.3 Algorithmic Derivatives 20
2.7.4 Analytical Hessian L 25
2.7.5 User-Supplied Numerical Hessian 27
2.7.6 Analytical Nonlinear Constraint Jacobians. 27
2.8 Inference. 28
2.8.1 Covariance Matrix of the Parameters 29
2.8.2 Testing Constraints oL 31
2.8.3 Heteroskedastic-consistent Covariance Matrix 32
2.8.4 Confidence Limits by Inversion 32
2.85 Bootstrap L 34
2.8.6 Profiling 35
2.9 Run-Time Switches 37
2.10 Error Handling 38
2.10.1 Return Codes o oL e 38
2.10.2 Error Trapping« . o o v i i e 38
2.11 References oL e 39
Constrained Maximum Likelihood Reference 41
CML . . e 42
CMLBlimits o e 59
CMLCHmitso e 60
CMLPACImits o 61

iii

iv

CMLTHmMItS o o o e e e e 63

CMLBayes oot e 64
CMLBOOt o e 67
CMLDensity 70
CMLHist e 72
CMLProfile e 74
CMLSet . . . o o e 7
CMLPrt . . . o o 78
CMLCLPrt e 79
fastCML o o 81
fastCMLBayes e 96
fastCMLBoot 99
fastCMLPiClimts 102
fastCMLProfile 104
Constrained Event Count and Duration Regression 107
4.1 Getting Startedo o 108
411 READMEFiles. 108
4.1.2 Setup 108
4.2 About the CONSTRAINED COUNT Procedures 109
421 Inputs 110
4.2.2 Outputs 111
4.2.3 Global Control Variables. 111
4.2.4 Adding Constraints Lo 114
4.2.5 Statistical Inference o oL 114
4.2.6 Problems with Convergence 116
4.3 Annotated Bibliography oL 118

5 CMLCount Reference 121

CMLCountPrt 122
CMLCountPrt o 123
CMLCountSet 124
CMLEXpgam ittt et e e e 125
CMLEXpon e 130
CMLHurdlep 134
CMLNegbino e 138
CMLPareto e 144
CMLPOISSON o oo s e e e e 149
CMLSUpreme o v e e e e e 154
CMLSupreme2o e 158

Chapter 1

Installation

1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.
2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to
step 3.
gunzip app-appname_vernum. revnum UNIX.tar.gz
3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extension, to extract the file.
tar xvf /tmp/app-appname_vernum.revnum _UNIX.tar
_or —
unzip /tmp/app-appname_vernum.revnum_UNIX.zip

1.1.2

1.2

1.2.1

1. INSTALLATION

CD

Insert the Apps CD into your machine’s CD-ROM drive.
Open a terminal window.
cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss
Use tar or unzip, depending on the file name extensions, to extract the files
found on the CD. For example:

tar xvf /cdrom/apps/app-appname_vernum.revnum UNIX.tar
—or —
unzip /cdrom/apps/app-appname_vernum.revnum UNIX.zip

However, note that the paths may be different on your machine.

Windows

Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2

1.3

CD

Insert the Apps CD into your machine’s CD-ROM drive.

Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

Difference Between the UNIX and Windows Versions

If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

Chapter 2

Constrained Maximum Likelihood
Estimation

written by
Ronald Schoenberg

This module contains a set of procedures for the solution of the constrained maximum
likelihood problem

2.1 Getting Started

GAUSS 3.6.23+ is required to use these routines.

2.1.1 README Files

The file README.cml contains any last minute information on this module. Please
read it before using the procedures in this module.

2.1.2 Setup

In order to use the procedures in the CONSTRAINED MAXIMUM LIKELIHOOD
Module, the CML library must be active. This is done by including cml in the
LIBRARY statement at the top of your program or command file:

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

library cml,pgraph;

This enables GAUSS to find the CONSTRAINED MAXIMUM LIKELIHOOD
procedures. If you plan to make any right hand references to the global variables
(described in the REFERENCE section), you also need the statement:

#include cml.ext;

Finally, to reset global variables in succeeding executions of the command file the
following instruction can be used:

cmlset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the command file.

The version number of each module is stored in a global variable:

—cml_version 3x1 matrix, the first element contains the major version number of the
CONSTRAINED MAXIMUM LIKELIHOOD Module, the second
element the minor version number, and the third element the revision
number.

If you call for technical support, you may be asked for the version number of your copy
of this module.

2.1.3 Converting MAXLIK Command Files

The CML module includes a utility for processing command files to change MAXLIK
global names to CML global names and vice versa. This utility is a standalone
executable program that is called outside of GAUSS. The format is:

chgvar control_file target_directory file...

The control_file is an ASCII file containing a list of the symbols to change in the first
column and the new symbol names in the second column. The CML module comes
with three control files:

cmltoml4 CML to MAXLIK 4.x
ml4tocml MAXLIK 4.x to CML
ml3tocml MAXLIK 3.x to CML

CHGVAR processes each file and writes a new file with the same name in the target
directory.

A common use for CHGVAR is translating a command file that had been used before
with MAXLIK 3.x to one that can be run with CML. For example:

4

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

mkdir new
chgvar ml3tocml new max*.cmd

This would convert every file matching max*.cmd in the current directory and create
a new file with the same name in the new directory.

The reverse translation is also possible. However, there are many global names in CML
that don’t have a corresponding global in MAXLIK, and in these cases no translation
occurs.

Further editing of the file may be necessary after processing by CHGVAR.

You may edit the control files or create your own. They are ASCII files with each line
containing a pair of names, the first column being the old name, and the second column
the new name.

2.2 New in CML

2.2.1 Fast Procedures

CML 2.0 contains fast versions of several of its procedures including the primary
procedure, CML. These procedures are fastCML, fastCMLBoot, fastCMLBayes,
fastCMLProfile, and fastCMLPfIClimits. The fast procedures have identical input
and output arguments and thus their use requires only the change in name.

These new fast procedures gain their speed at the loss of some features. The data must
be completely storable in RAM. During the iterations no keyboard input is allowed, nor
is there any iteration information printed to the screen.

You may want to test your program using the slower version of the procedure since
diagnostic information will not be available in the faster version.

2.2.2 New Random Numbers

You may now choose either a linear congruential type random number, which is the
kind always available in GAUSS, or the new “KISS-Monster” random number
generator The latter generator has a period of 23859 which is long enough for any
serious Monte Carlo work, while the former is faster but with a shorter, 232 period.

The current state of the generators is stored in a CML global variable, _cml_state.
The seed for the random number sequence is the default value of —cml_state which is
set to 345678. For a different sequence set —cml_state to a different integer value.

If you wish to restart a bootstrap from where a former bootstrap ended, save the
contents of —cml_state in a GAUSS matrix file on the disk. Then in your command
file load the contents of the matrix file into —cml_state before calling CMLBoot or
fastCMLBoot.

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.2.3 Trust Region Method

With a poor starting point the minimization of the log-likelihood can often end up in
far regions of the parameter space. This is a problem in particular for the Newton
descent method. The trust region is an effective method for preventing this. This is
essentially a linear constraint placed on the direction taken at each iteration. It is
turned off by default. To turn it on, set the global variable —_cml_TrustRegion to the
desired maximum size of the direction, for example,

_cml_TrustRegion = .1;

This global can also be turned on or off or modified from the keyboard during the
iterations by pressing ‘T".

2.2.4 Switching Algorithms

A new algorithm switching method has been introduced into CML. This method allows
switching between two algorithms depending on three measures of progress, change in
function value, number of iterations, or change in line search step length. For example,
to have CML switch between the BFGS and Newton methods whenever (a) the
function changes less than .001, or (b) the number of iterations since the last change of
algorithms is 10, or (c), the line search step length is less than .0001, enter the following
statement into your command file before the call to CML,

_cml_Switch = { 1 3,

.001 .001,
10 10,
.0001 .0001 };

Entering a single column with one algorithm number rather than two columns causes
CML to change algorithms to that specified in the first row only once when one of the
conditions is met.

2.2.5 Grid Search

After a direction is computed CML attempts a line search. When the default method
STEPBT fails it runs through all of the available methods looking for one that will
succeed. If all of them fail CML has two alternatives, first, to give up the search for
optimal parameters and return with their current value, or second, attempt a grid
search for a new direction from which to continue the optimization. CML adopts the
latter method by default with the global —_cml_GridSearch set to a nonzero value. The
former method will happen when it is set to zero.

The radius of the grid search is set by the global _cml_GridSearchRadius. By default
it is set to .001.

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.2.6 Multiple Point Numerical Gradients

By default numerical first derivatives are computed using two evaluations of the
function and second derivatives three evaluations. For most problems this produces
derivatives with enough accuracy to converge in a reasonable number of iterations. The
accuracy might not be enough for some difficult problems however. In these cases
greater accuracy can be achieved by using a greater number of points in computing the
numerical derivatives. This is done by setting —cml_GradOrder to some nonzero
integer value,

_cml_GradOrder = 3;

2.2.7 Calling CML without a Dataset

Usually the log-likelihood procedure provided by the user takes the data as the second
input argument and returns a vector of log-likelihoods computed by observation. This
may not be convenient for some problems. If you wish to handle the data in a global
variable outside the call to CML, or if it is inconvient to return the log-likelihood by
observation, CML still produces maximum likelihood estimates.

Handling data outside of CML

The data are normally passed to CML in the first argument in the call to CML.
Alternatively, a scalar zero or a scalar missing value may be entered into the first
argument. In this case CML will assume that you are handling the data in the
log-likelihood function yourself.

Returning a scalar log-likelihood

When you either choose not to return a vector of log-likelihoods computed by
observation or if the problem doesn’t permit it, you must provide the proper number of
observations used for statistical inference in the global —_cml_NumObs.

The following features are not available when the log-likelihood procedure returns a
scalar value:

QML standard errors

BHHH descent method

Bootstrap estimates and standard errors
Bayesian estimates and standard errors

weighted estimates

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.3 The Log-likelihood Function

CONSTRAINED MAXIMUM LIKELIHOOD is a set of procedures for the estimation
of the parameters of models via the maximum likelihood method with general
constraints on the parameters, along with an additional set of procedures for statistical
inference.

CONSTRAINED MAXIMUM LIKELIHOOD solves the general weighted maximum
likelihood problem

N
L= logP(Y;;0)"
i=1
where N is the number of observations, w; is a weight. P(Y;,0) is the probability of Y;
given 0, a vector of parameters, subject to the linear constraints,

the nonlinear constraints

G(0) =0
H(0) >0

and bounds

G(0) and H(0) are functions provided by the user and must be differentiable at least
once with respect to 6.

The CONSTRAINED MAXIMUM LIKELIHOOD procedure CML finds values for the
parameters in 6 such that L is maximized. In fact CML minimizes —L. It is important
to note, however, that the user must specify the log-probability to be mazimized. CML
transforms the function into the form to be minimized.

CML has been designed to make the specification of the function and the handling of
the data convenient. The user supplies a procedure that computes log P(Y;;), i.e., the
log-likelihood, given the parameters in 6, for either an individual observation or set of
observations (i.e., it must return either the log-likelihood for an individual observation
or a vector of log-likelihoods for a matrix of observations; see discussion of the global
variable —_row below). CML uses this procedure to construct the function to be
minimized.

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.4 Algorithm

CONSTRAINED MAXIMUM LIKELIHOOD uses the Sequential Quadratic
Programming method. In this method the parameters are updated in a series of
iterations beginning with a starting values that you provide. Let 6; be the current
parameter values. Then the succeeding values are

9t+1 = Ht —+ pé

where § is a K x 1 direction vector, and p a scalar step length.

DIRECTION
Define
0%L
20) = 0000’
oL
vh) = —
(0) 50

and the Jacobians

For the purposes of this exposition, and without loss of generality, we may assume that
the linear constraints and bounds have been incorporated into G and H.

The direction, ¢ is the solution to the quadratic program

minimize %5’2(005 + U(6;)8

subject to G(6;)0 + G(6;) =0
H(Gt)é +H(6)>0

This solution requires that ¥ be positive semi-definite.

In practice, linear constraints are specified separately from the G and H because their
Jacobians are known and easy to compute. And the bounds are more easily handled
separately from the linear inequality constraints.

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

LINE SEARCH

Define the merit function

m(0) = L+max | k| Y | g;(0) | —max | A| Y min(0,he(6))
J Y4

where g; is the j-th row of G, hy is the ¢-th row of H, k is the vector of Lagrangean
coefficients of the equality constraints, and A the Lagrangean coefficients of the
inequality constraints.

The line search finds a value of p that minimizes or decreases m(6; + pd).

2.4.1 Derivatives

The SQP method requires the calculation of a Hessian, 3, and various gradients and
Jacobians, ¥, G(0), and H(#). CML computes these numerically if procedures to
compute them are not supplied.

If you provide a proc for computing ¥, the first derivative of L, CML uses it in
computing ¥, the second derivative of L, i.e., ¥ is computed as the Jacobian of the
gradient. This improves the computational precision of the Hessian by about four
places. The accuracy of the gradient is improved and thus the iterations converge in
fewer iterations. Moreover, the convergence takes less time because of a decrease in
function calls - the numerical gradient requires k function calls while an analytical
gradient reduces that to one.

2.4.2 The Secant Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start
values may produce an ill-conditioned Hessian. For these reasons alternative algorithms
are provided in CML for updating the Hessian rather than computing it directly at
each iteration. These algorithms, as well as step length methods, may be modified
during the execution of CML.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the
estimate of the Hessian, improving its ability to project the direction of the descent.
Thus after several iterations the secant algorithm should do nearly as well as Newton
iteration with much less computation.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb,
and Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two
updates, that is, they are analogous to adding two rows of new data to a previously

computed moment matrix. The Cholesky factorization of the estimate of the Hessian is
updated using the functions CHOLUP and CHOLDN.

10

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

Secant Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the
method of Davidon, Fletcher, and Powell. These methods are complementary
(Luenberger 1984, page 268). BFGS and DFP are like the NEWTON method in that
they use both first and second derivative information. However, in DFP and BFGS the
Hessian is approximated, reducing considerably the computational requirements.
Because they do not explicitly calculate the second derivatives they are sometimes
called quasi-Newton methods. While it takes more iterations than the NEWTON
method, the use of an approximation produces a gain because it can be expected to
converge in less overall time (unless analytical second derivatives are available in which
case it might be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the
Hessian. This is not the best method numerically for the BFGS algorithm (Gill and
Murray, 1972). This version of CML, following Gill and Murray (1972), updates the
Cholesky factorization of the Hessian instead, using the functions CHOLUP and
CHOLDN for BFGS. The new direction is then computed using CHOLSOL, a Cholesky
solve, as applied to the updated Cholesky factorization of the Hessian and the gradient.

2.4.3 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed
Or41 =0 + pd

where p is a constant, usually called the step length, that increases the descent of the
function given the direction. CML includes a variety of methods for computing p. The
value of the function to be minimized as a function of p is

m(0; + po)

Given 6 and d, this is a function of a single variable p. Line search methods attempt to
find a value for p that decreases m. STEPBT is a polynomial fitting method, BRENT
and HALF are iterative search methods. A fourth method called ONE forces a step
length of 1. The default line search method is STEPBT. If this, or any selected
method, fails, then BRENT is tried. If BRENT fails, then HALF is tried. If all of the
line search methods fail, then a random search is tried (provided —cml_RandRadius is
greater than zero).

STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(6; + pd) and

11

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

computes an p that minimizes the quadratic. If that fails it attempts to fit a cubic
function. The cubic function more accurately portrays the F' which is not likely to be
very quadratic, but is, however, more costly to compute. STEPBT is the default line
search method because it generally produces the best results for the least cost in
computational resources.

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for p. These test values
are determined by extrapolation and interpolation using the constant,

(v/5 —1)/2 = .6180.... This constant is the inverse of the so-called “golden ratio”
((v/5+1)/2 = 1.6180... and is why the method is called a golden section method. This
method is generally more efficient than STEPBT but requires significantly more
function evaluations.

HALF

This method first computes m(x + d), i.e., sets p = 1. If m(z + d) < m(x) then the step
length is set to 1. If not, then it tries m(z + .5d). The attempted step length is divided
by one half each time the function fails to decrease, and exits with the current value
when it does decrease. This method usually requires the fewest function evaluations (it
often only requires one), but it is the least efficient in that it is not very likely to find
the step length that decreases m the most.

BHHHSTEP

This is a variation on the golden search method. A sequence of step lengths are
computed, interpolating or extrapolating using a golden ratio, and the method exits
when the function decreases by an amount determined by —cml_Interp.

2.4.4 Weighted Maximum Likelihood

Weights are specified by setting the GAUSS global, —_weight to a weighting vector, or
by assigning it the name of a column in the GAUSS data set being used in the
estimation. Thus if a data matrix is being analyzed, — _weight must be assigned to a
vector.

CML assumes that the weights sum to the number of observations, i.e, that the weights
are frequencies. This will be an issue only with statistical inference. Otherwise, any
multiple of the weights will produce the same results.

12

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.4.5 Active and Inactive Parameters

The CML global —cml_Active may be used to fix parameters to their start values.
This allows estimation of different models without having to modify the function
procedure. —cml_Active must be set to a vector of the same length as the vector of
start values. Elements of —cml_Active set to zero will be fixed to their starting values,
while nonzero elements will be estimated.

This feature may also be used for model testing. —_cml_NumQObs times the difference
between the function values (the second return argument in the call to CML) is
chi-squared distributed with degrees of freedom equal to the number of fixed
parameters in —cml_Active.

2.5 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of
the model. When the data are scaled, the starting point is reasonably close to the
solution, and the data and model go together well, the iterations converge quickly and
without difficulty.

For best results therefore, you want to prepare the problem so that model is
well-specified, the data scaled, and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands
on the starting point and condition of the model. The less demanding methods are
generally time consuming and computationally intensive, whereas the quicker methods
(either in terms of time or number of iterations to convergence) are more sensitive to
conditioning and quality of starting point.

2.5.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, CML has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the
constants (or “data”) used in the model are about the same magnitude.

2.5.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the

13

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

gradient is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very
small for a particular parameter, then CML has difficulty determining the optimal
values since a large region of the function appears virtually flat to CML. When the
Hessian has very small elements, the inverse of the Hessian has very large elements and
the search direction gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor
specification of the model or by bad data. Bad models and bad data are two sides of
the same coin. If the problem is highly nonlinear, it is important that data be available
to describe the features of the curve described by each of the parameters. For example,
one of the parameters of the Weibull function describes the shape of the curve as it
approaches the upper asymptote. If data are not available on that portion of the curve,
then that parameter is poorly estimated. The gradient of the function with respect to
that parameter is very flat, elements of the Hessian associated with that parameter is
very small, and the inverse of the Hessian contains very large numbers. In this case it is
necessary to respecify the model in a way that excludes that parameter.

2.5.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical.
When the optimization doesn’t seem to be working, try different starting points. A
closed form solution may exist for a simpler problem with the same parameters. For
example, ordinary least squares estimates may be used for nonlinear least squares
problems or nonlinear regressions like probit or logit. There are no general methods for
computing start values and it may be necessary to attempt the estimation from a
variety of starting points.

2.5.4 Diagnosis

When the optimization is not proceeding well, it is sometimes useful to examine the
function, the gradient ¥ , the direction 9, the Hessian 3, the parameters 6;, or the step
length p, during the iterations. The current values of these matrices can be printed out
or stored in the global —_cml_Diagnostic by setting —cml_Diagnostic to a nonzero
value. Setting it to 1 causes CML to print them to the screen or output file, 2 causes
CML to store then in —cml_Diagnostic, and 3 does both.

When you have selected —_cml_Diagnostic = 2 or 3, CML inserts the matrices into
—cml_Diagnostic using the VPUT command. The matrices are extracted using the
VREAD command. For example,

_cml_Diagnostic = 2;

call CMLPrt(CML("tobit",0,&lpr,x0));
h = vread(_cml_Diagnostic,"hessian");
d = vread(_cml_Diagnostic,"direct");

14

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

The following table contains the strings to be used to retrieve the various matrices in
the VREAD command:

“params”
“direct”
“hessian”
“gradient”
“step”

<[M >

2.6 Constraints

There are two general types of constraints, nonlinear equality constraints and nonlinear
inequality constraints. However, for computational convenience they are divided into
five types: linear equality, linear inequality, nonlinear equality, nonlinear inequality, and
bounds.

2.6.1 Linear Equality Constraints

Linear constraints are of the form:
A0 =B

where A is an m; X k matrix of known constants, and B an mi x 1 vector of known
constants, and 6 the vector of parameters.

The specification of linear equality constraints is done by assigning the A and B
matrices to the CML globals, —_eml_A and —_eml_B, respectively. For example, to
constrain the first of four parameters to be equal to the third,

_cml_A={10-1013%};
_cml_B ={0 };

2.6.2 Linear Inequality Constraints

Linear constraints are of the form:
Cc0>D

where C is an mo X k matrix of known constants, and D an mo X 1 vector of known
constants, and 6 the vector of parameters.

The specification of linear equality constraints is done by assigning the C' and D
matrices to the CML globals, —_ecml_C and —_cml_D, respectively. For example, to
constrain the first of four parameters to be greater than the third, and as well the
second plus the fourth greater than 10:

15

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

_cml_C

]
-~

I

P,
O O O -
:Hu

= O

|
[N
= O

_cml_D

2.6.3 Nonlinear Equality

Nonlinear equality constraints are of the form:
GO)=0

where 6 is the vector of parameters, and G(0) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the
user-supplied function to the GAUSS global, _cml_EqProc.

For example, suppose you wish to constrain the norm of the parameters to be equal to
1:

proc eqp(b);
retp(b’b - 1);

endp;

_cml_EgProc = &eqp;

2.6.4 Nonlinear Inequality

Nonlinear inequality constraints are of the form:
H(9) >0

where 6 is the vector of parameters, and H(f) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the
user-supplied function to the GAUSS global, _cml_InegProc.

For example, suppose you wish to constrain a covariance matrix to be positive definite,
the lower left nonredundant portion of which is stored in elements r:r+s of the
parameter vector:

proc ineqgp(b);
local v;
v = xpnd(b[r:r+s]); /* r and s defined elsewhere */
retp(minc(eigh(v)) - 1le-5);

endp;

_cml_InegProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a
small number (le-5). This guarantees the covariance matrix to be positive definite.

16

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.6.5 Bounds

Bounds are a type of linear inequality constraint. For computational convenience they
may be specified separately from the other inequality constraints. To specify bounds,
the lower and upper bounds respectively are entered in the first and second columns of
a matrix that has the same number of rows as the parameter vector. This matrix is
assigned to the CML global, _cml_Bounds.

If the bounds are the same for all of the parameters, only the first row is necessary.
To bound four parameters:

_cml_Bounds = { -10 10,

-10 0,
1 10,
0 113}

Suppose all of the parameters are to be bounded between -50 and +50, then,
_cml_Bounds = { -50 50 };

is all that is necessary.

2.6.6 Example

The following example illustrates the estimation of a tobit model with linear equality
constraints, nonlinearly inequality constraints, and bounds on the parameters. The
nonlinear inequality constraint constraints the norm of the coefficients to be greater
than three. The bounds are provided essentially to constrain the variance parameter to
be greater than zero. The linear equality constraints constrain the first and second
parameters to be equal.

library cml;
#include cml.ext;
cmlset;

proc lpr(x,z);
local t,s,m,u;

s = x[4];
m=z[.,2:4]*x[1:3,.];
u=1z[.,1] ./=0;

t =2z[.,1]-m;

retp(u.*(-(t.*t)./(2*s)-.5*x1n(2*s*pi)) + (1-u).*(ln(cdfnc(m/sqrt(s)))));
endp;

17

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

cml A={1-1001};
cml B ={ 0 };

proc ineq(x);
local b;
b = x[1:3];
retp(b’b - 3);
endp;
_cml_IneqProc = &ineq;

_cml_Bounds = { -10 10,
-10 10,
-10 10,
.01 10 };

{ x,f,g,cov,ret } = CMLPrt(CML("tobit",0,&lpr,x0));

print "linear equality Lagrangeans";
print vread(_cml_Lagrange,"lineq");
print;

print "nonlinear inequality Lagrangeans";
print vread(_cml_Lagrange,"nlinineq");
print;

print "bounds Lagangreans";

print vread(_cml_Lagrange, "bounds");

and the output looks like this:

CML Version 2.0.0 02/08/2001 9:51 am

Data Set: tobit

return code = 0
normal convergence

Mean log-likelihood -1.34034
Number of cases 100

Covariance of the parameters computed by the following method:
Inverse of computed Hessian

18

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

Parameters Estimates Std. err. Gradient
PO1 -0.1832 0.0710 -0.2073
P02 -0.1832 0.0710 0.1682
P03 1.7126 0.0152 0.1825
P04 1.0718 0.1589 -0.0000
Number of iterations 8

Minutes to convergence 0.06683

linear equality Lagrangeans
-0.1877

nonlinear inequality Lagrangeans
0.0533

bounds Lagangreans

The scalar missing value for the bounds Lagrangeans indicate that they are inactive.
The linear equality and nonlinear inequality constraints are active.

At times the Lagrangeans will not be scalar missing values but yet will be equal to zero
and thus inactive. This indicates that the constraints became active at some point
during the iterations.

2.7 Gradients

2.7.1 Analytical Gradient

To increase accuracy and reduce time, you may supply a procedure for computing the
gradient, U(6) = OL/00, analytically.

This procedure has two input arguments, a K x 1 vector of parameters and an N; x L
submatrix of the input data set. The number of rows of the data set passed in the
argument to the call of this procedure may be less than the total number of
observations when the data are stored in a GAUSS data set and there was not enough
space to store the data set in RAM in its entirety. In that case subsets of the data set
are passed to the procedure in sequence. The gradient procedure must be written to
return a gradient (or more accurately, a “Jacobian”) with as many rows as the input
submatrix of the data set. Thus the gradient procedure returns an N; x K matrix of
gradients of the N; observations with respect to the K parameters. The CML global,
—cml_GradProc is then set to the pointer to that procedure. For example,

19

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

library cml;
#include cml.ext;
cmlset;

proc lpsn(b,z); /* Function - Poisson Regression */
local m;
m = z[.,2:4]*b;
retp(z[.,1] .*m-exp(m));

endp;

proc 1lgd(b,z); /* Gradient */
retp((z[.,1]-exp(z[.,2:4]1%b)) .*z[.,2:4]);

endp;

x0={ .5, .5, .5 };
_cml_GradProc = &lgd;
_cml_GradCheckTol = le-3;

{ x,f0,g,h,retcode } = CML("psn",0,&lpsn,x0);
call CMLPrt(x,f0,g,h,retcode);

In practice, unfortunately, much of the time spent on writing the gradient procedure is
devoted to debugging. To help in this debugging process, CML can be instructed to
compute the numerical gradient along with your prospective analytical gradient for
comparison purposes. In the example above this is accomplished by setting
—cml_GradCheckTol to 1le-3.

2.7.2 User-Supplied Numerical Gradient

You may substitute your own numerical gradient procedure for the one used by CML
by default. This is done by setting the CML global, —_cml_UserGrad to a pointer to
the procedure.

CML includes some numerical gradient functions in gradient.src which can be
invoked using this global. One of these procedures, GRADRE, computes numerical
gradients using the Richardson Extrapolation method. To use this method set

_cml_UserNumGrad = &gradre;

2.7.3 Algorithmic Derivatives
ALGORITHMIC DERIVATIVES is a program that can be used to generate a GAUSS
procedure to compute derivatives of the log-likelihood function. If you have

ALGORITHMIC DERIVATIVES, be sure to read its manual for details on doing this.

20

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

First, copy the procedure computing the log-likelihood to a separate file. Second, from
the command line enter

ad file_name d_file_name

where file_name is the name of the file containing the input function procedure, and
d_file_name is the name of the file containing the output derivative procedure.

If the input function procedure is named lpr, the output derivative procedure has the
name d_1_1pr where the addition to the “_1_" indicates that the derivative is with
respect to the first of the two arguments.

For example, put the following function into a file called lpr.fct

proc lpr(x,z);

local s,m,u;

s = x[4];

m=z[.,2:4]*x[1:3,.];

u==z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(Incdfnc(m/sqrt(s))));
endp;

Then enter the following at the GAUSS command line

library ad;
ad lpr.fct d_lpr.fct;

If successful, the following is printed to the screen
java -jar d:\gauss6.0\src\GaussAD.jar lpr.fct d_lpr.fct
and the derivative procedure is written to file named d_lpr.fct:

/* Version:1.0 - May 15, 2004 */
/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */
Proc(1)=d_1_lpr(x, z);
Clearg _AD_fnValue;

Local s, m, u;

s = x[(4] ;

Local _AD_t1;

_AD_t1 = x[(1):(3),.] ;

m z[.,(2):(4)] =* _AD_t1;
z[., (D1 ./=0;

u

21

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

_AD_fnValue = (u .* lopdfmvn(z[.,(1)] -m, s)) + ((1 - w) .*

lncdfnc(m / sqrt(s)));

/* retp(_AD_fnValue); */

/* endp; */

struct _ADS_optimum _AD_d__AD_t1 ,_AD_d_x ,_AD_d_s ,_AD_d_m

,_AD_d__AD_£fnValue;

/* _AD_d__AD_t1 = 0; _AD_d_s = 0; _AD_d_m
_AD_d__AD_fnValue = _ADP_d_x_dx(_AD_fnValue);
_AD_d_s = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn(z[.,(1)] - m, s),
(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(
z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_2_lnpdfmvn(z[.,(1)] - m,
s)), _ADP_d_x_dx(s)))), _ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(
z[.,(1D] -m, s), (1 - uw) .* lncdfnc(m / sqrt(s))),
_ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s))),
_ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_ydivx_dx(m,
sqrt(s)), _ADP_DtimesD(_ADP_d_sqrt(s), _ADP_d_x_dx(s))))))));

_AD_d_m = _ADP_DtimesD(_AD_d__AD_fnValue,
_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn(z[.,(1)] - m, s),
(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_1_lnpdfmvn(z[.,(1)] - m,
s)), _ADP_DtimesD(_ADP_d_yminusx_dx(z[.,(1)] , m), _ADP_d_x_dx(m))))),
_ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(z[.,(1)] -m, s), (1 - u) .*

0; =x/

lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s)

)), _ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_xdivy_dx(m,
sqrt(s)), _ADP_d_x_dx(m)))))));

/xu= z[.,(1D] ./=0; =/

_AD_d__AD_t1 = _ADP_DtimesD(_AD_d_m, _ADP_DtimesD(_ADP_d_yx_dx(
z[.,(2):(4)] , _AD_t1), _ADP_d_x_dx(_AD_t1)));

Local _AD_sr_x, _AD_sc_x;

_AD_sr_x = _ADP_seqaMatrixRows (x);

_AD_sc_x = _ADP_seqaMatrixCols(x);

_AD_d_x = _ADP_DtimesD(_AD_d__AD_t1, _ADP_d_x2Idx_dx(x,
_AD_sr_x[(1):(3)1 , _AD_sc_x[0]));

Local _AD_s_x;

_AD_s_x = _ADP_seqaMatrix(x);

_AD_d_x = _ADP_DplusD(_ADP_DtimesD(_AD_d_s, _ADP_d_xIdx_dx(x,
_AD_s_x[(4)])), _AD_d_x);

retp(_ADP_external (_AD_d_x));
endp;

If there’s a syntax error in the input function procedure, the following is written to the
screen

java -jar d:\gauss6.0\src\GaussAD.jar lpr.fct d_lpr.fct
Command °’java -jar d:\gauss6.0\src\GaussAD.jar lpr.fct d_lpr.fct’ exit status 1

22

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

the exit status 1 indicating that an error has occurred. The output file then contains
the reason for the error:

/* Version:1.0 - May 15, 2004 */
/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

proc lpr(x,z);

local s,m,u;

s = x[4];

m=z[.,2:4]1*x[1:3,.];

u==z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s)));
Error: lpr.fct:12:63: expecting ’)’, found ’;’

Finally, set the global, _cml_GradProc equal to a pointer to this above procedure, for
example,

library cml,ad;
#include ad.sdf

XO={1, 19 1:1};
__title = "tobit example";

_cml_Bounds = { -10 10,
-10 10,
-10 10,
.1 10 };

_cml_GradProc = &d_1_1pr;

CML("tobit",0,&lpr,x0);

Speeding Up the Algorithmic Derivative

A slightly faster derivative procedure can be generated by modifying the log-likelihood
proc to return a scalar sum of the log-likelihoods in the input file in the call to AD. It is
important to note that this derivative function based on a scalar return cannot be used
for computing the QML covariance matrix of the parameters. Thus if you want both a
derivative procedure based on a scalar return and QML standard errors you will need
to provide both types of gradient procedures. To accomplish this first copy both

23

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

versions of the log-likelihood procedure into separate files and run AD on both of them
with different output files. Then copy both of these derivatives procedures to the
command file. Note: the log-likelihood procedure that returns a vector of
log-likelihoods should remain in the command file, i.e., don’t use the version of the
log-likelihood that returns a scalar in the command file.

For example, enlarging on the example in the previous section, put the following into a
separate file,

proc 1lpr2(x,z);
local s,m,u,logl;
s = x[4];
m=z[.,2:4]*%x[1:3,.];
u==z[.,1] ./= 0;
logl = u.*Ilnpdfmvn(z[.,1]-m,s) + (1-u).*(Incdfnc(m/sqrt(s)));
retp(sumc(logl));
endp;

Then enter on the command line
ad 1lpr2.src d_lpr2.src
and copy the contents of d'lpr2.src into the command file.

Our comand file now contains two derivative procedures, one based on a scalar result
and another on a vector result. The one in the previous section d_1_lpr is our vector
result derivative, and the from run above, d_1_1pr2 is our scalar result derivative. We
want to use d_1_1pr2 for the iterations because it will be faster (it is computing a

1 x K vector gradient), and for the QML covariance matrix of the parameters we will
use d_1_1pr which returns a NV x K matrix of derivatives as required for the QML
covariance matrix.

Our command file will be

library cml,ad;
#include ad.sdf

x0={1,1,1, 113}
__title = "tobit example";
_cml_Bounds = { -10 10,
-10 10,
-10 10,
.1 10 };

24

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

_cml_QMLProc = &d_1_1pr;
_cml_GradProc = &d_1_1pr2;

CML("tobit",0,&lpr,x0);

in addition to the two derivative procedures.

2.7.4 Analytical Hessian

You may provide a procedure for computing the Hessian, 3() = 02L/9006¢’. This
procedure has two arguments, the K x 1 vector of parameters, an N; x L submatrix of
the input data set (where N; may be less than N), and returns a K x K symmetric
matrix of second derivatives of the objection function with respect to the parameters.

The pointer to this procedure is stored in the global variable —_cml_HessProc.

In practice, unfortunately, much of the time spent on writing the Hessian procedure is
devoted to debugging. To help in this debugging process, CML can be instructed to
compute the numerical Hessian along with your prospective analytical Hessian for
comparison purposes. To accomplish this —_ecml_GradCheckTol is set to a small
nonzero value.

library cml;
#include cml.ext;

proc 1lnlk(b,z);
local dev,s2;
dev = z[.,1] - b[1] * exp(-b[2]*z[.,2]);
s2 = dev’dev/rows(dev);
retp(-0.5%(dev.*dev/s2 + 1n(2%pi*s2)));
endp;

proc grdlk(b,z);
local d,s2,dev,r;
d = exp(-b[2]*z[.,2]);
dev = z[.,1] - b[1]*d;
s2 = dev’dev/rows(dev) ;
r = dev.*d/s2;

/* retp(r~ (-b[1]*z[.,2] .*r)); correct gradient */
retp(r~(z[.,2] .*r)); /* incorrect gradient */
endp;

25

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

proc hslk(b,z);
local d,s2,dev,r, hss;
d = exp(-b[2]*z[.,2]);
dev = z[.,1] - b[1]%d;
s2 = dev’dev/rows(dev);
r =2z[.,2] .*xd.*(b[1] .*d - dev)/s2;
hss = -d.*d/s2"r"-b[1] .*z[.,2] .*r;
retp (xpnd (sumc (hss))) ;
endp;

cmlset;
_cml_HessProc = &hslk;
_cml_GradProc = &grdlk;

_cml_Bounds = { 0 10, 0 10 }; /* constrain parameters to */

/* be positive
_cml_GradCheckTol = 1le-3;

startv = { 2, 1 };

{ x,f0,g,cov,retcode } = CML("nlls",0,&lnlk,startv);
call CMLPrt(x,f0,g,cov,retcode);

*/

The gradient is incorrectly computed, and CML responds with an error message. It is
clear that the error is in the calculation of the gradient for the second parameter.

analytical and numerical gradients differ

numerical analytical
-0.015387035 -0.015387035
0.031765317 -0.015882659

analytical Hessian and analytical gradient

CML Version 2.0.0 02/08/2001

10:10 am

Data Set: nlls

return code = 7
function cannot be evaluated at initial parameter values

Mean log-likelihood 1.12119
Number of cases 150

The covariance of the parameters failed to invert

26

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

Parameters Estimates Gradient
PO1 2.000000 -0.015387
P02 1.000000 -0.015883

Number of iterations
Minutes to convergence

2.7.5 User-Supplied Numerical Hessian

You may substitute your own numerical Hessian procedure for the one used by CML by
default. This done by setting the CML global, —_cml_UserHess to a pointer to the
procedure. This procedure has three input arguments, a pointer to the log-likelihood
function, a K x 1 vector of parameters, and an N; x K matrix containing the data. It
must return a K x K matrix which is the estimated Hessian evaluated at the parameter
vector.

2.7.6 Analytical Nonlinear Constraint Jacobians

When nonlinear equality or inequality constraints have been placed on the parameters,
the convergence can be improved by providing a procedure for computing their
Jacobians, i.e., G(0) = 0G(0)/00 and H(0) = 0H(6)/00.

These procedures have one argument, the K x 1 vector of parameters, and return an
M; x K matrix, where M; is the number of constraints computed in the corresponding
constraint function. Then the CML globals, _cml_EqJacobian and
—cml_IneqJacobian are set to pointers to the nonlinear equality and inequality
Jacobians, respectively. For example,

library cml;
#include cml.ext;

cmlset;
proc lpr(c,x); /* ordinary least squares model */
local s,t;
t = x[.,1] - x[.,2:4]*c[1:3];
s = cl[4];
retp(—(t.*t)./(2*s)-.5*1n(2*s*pi)));
endp;
proc ineq(c); /* constrain parameter norm to be > 1 %/
local b;
b = c[1:3];

27

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

retp(b’b - 1);
endp;

proc ineqj(c); /* constraint Jacobian */
local b;
b =cl[1:3];
retp((2%b’)~0);

endp;

_cml_Bounds = { -1e256 1e256, /* bound residual to be larger */

-1e256 1e256, /* than a small number */
-1e256 1e256,
le-3 1e256 };
_cml_IneqProc = &ineq; /* set pointers */

_cml_IneqJacobian = &ineqj;

x0={1,1, 1, 1 3}; /* Y and X defined elsewhere */
{ x,f,g,cov,ret } = CMLPrt(CML(Y"X,0,&lpr,x0));

2.8 Inference

CML includes four broad classes of methods for analyzing the distributions of the
estimated parameters:

e Taylor Series covariance matrix of the parameters. This includes two
types: the inverted Hessian and the heteroskedastic- consistent
covariance matrix computed from both the Hessian and the cross-product
of the first derivatives.

e Confidence limits computed by inversion of the Wald and likelihood ratio
statistics that take into account constraints

e Bootstrap with additional procedures for kernel density plots,
histograms, surface plots, and confidence limits

e Likelihood profile and profile t traces

CML computes a Taylor-series covariance matrix of the parameters that includes the
sampling distributions of the Lagrangean coefficients. However, when the model
includes inequality constraints, confidence limits computed from the usual t-statistics,
i.e., by simply dividing the parameter estimates by their standard errors, are incorrect
because they do not account for boundaries placed on the distributions of the
parameters by the inequality constraints.

28

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

The likelihood ratio statistic becomes a mixture of chi-squared distributions in the
region of constraint boundaries (Gourieroux et al., 1982). For a parameter of interest
only in the region of a boundary this is a simple mixture which can be corrected by
CML. If all other parameters near constraint boundaries are correlated less than about
.6 with the parameter of interest, then statistical inference is mostly unaffected
(Schoenberg, 1997). There is unfortunately no method for the correction of confidence
limits if the converse is true.

For correct statistical inference, provided the condition just described hold, use either
CMLClimits which computes confidence limits by inversion of the Wald statistic, or
CMLPAIClimits which does the same by inversion of the likelihood ratio statistic. Both
of these compute limits correctly that are in the region of constraint boundaries
provided there are no other parameters in the model near constraint boundaries with
which the parameter of interest is correlated more than .6.

If there are no parameters with limits near constraint boundaries, bootstrapping will
suffice. Taylor-series methods assume that it is reasonable to truncate the Taylor-series
approximation to the distribution of the parameters at the second order. If this is not
reasonable, bootstrapping is an alternative not requiring this assumption. It is
important to note that if the limit of the parameter of interest or any other parameters
with which it is correlated more than .6 are near constraint boundaries, then
bootstrapping will not produce correct inference (Andrews, 1999).

The procedure CMLBoot generates the mean vector and covariance matrix of the
bootstrapped parameters, and CMLHist which produces histograms and surface plots.
The likelihood profile and profile t traces explicated by Bates and Watts (1988) provide

diagnostic material for evaluating parameter distributions. CMLProfile generates trace
plots which are used for this evaluation.

2.8.1 Covariance Matrix of the Parameters

An argument based on a Taylor-series approximation to the likelihood function (e.g.,
Amemiya, 1985, page 111) shows that

6 — N@ A'BA™Y

9
(%@

Estimates of A and B are

where

A

B

29

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

Assuming the correct specification of the model plim(A) = plim(B) and thus
6 — N@B,A

Without loss of generality we may consider two types of constraints, the nonlinear
equality and the nonlinear inequality constraints (the linear constraints are included in
nonlinear, and the bounds are regarded as a type of linear inequality). Furthermore,
the inequality constraints may be treated as equality constraints with the introduction
of “slack” parameters into the model:

H(6) >0

is changed to

where (is a conformable vector of slack parameters.

Further distinguish active from inactive inequality constraints. Active inequality
constraints have nonzero Lagrangeans, v;, and zero slack parameters, ¢;, while the
reverse is true for inactive inequality constraints. Keeping this in mind, define the
diagonal matrix, Z, containing the slack parameters, (;, for the inactive constraints,
and another diagonal matrix, I', containing the Lagrangean coefficients. Also, define
Hg, (0) representing the active constraints, and Hg () the inactive.

The likelihood function augmented by constraints is then

La = L+ g0+ +Arg(0)" +71he1(0) + -+ v7hes (0)+
her(8)i = G+ + hox (6) — (%

and the Hessian of the augmented likelihood is

X 0 0 G H H,
0 2' 0 0 0 0
D?L o 0 0 0 0 0 27
(eae) = | ¢ o o 0o o o0
Hy, 0 0 0 0 0
Hy 0 2Z 0 0 0

30

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

where the dot represents the Jacobian with respect to 0, L = vazl log P(Y;;0), and
¥ = 0%2L/0006¢". The covariance matrix of the parameters, Lagrangeans, and slack
parameters is the Moore-Penrose inverse of this matrix. Usually, however, we are
interested only in the covariance matrix of the parameters, as well as the covariance
matrices of the Lagrange coefficients associated with the active inequality constraints
and the equality constraints.

These matrices may be computed without requiring the storage and manipulation of
the entire Hessian. Construct the partitioned array
G
B == H@
Hg
and denote the i-th row of B as b;. Then the k x k upper left portion of the inverse,

that is, that part associated with the estimated parameters, is calculated recursively.
First, compute

Q="' ——— 2!
X1y
then continue to compute for all rows of B:
1 -
Qi = Qi,1 — ﬁﬂiflb;bigifl
b1 b

Rows associated with the inactive inequality constraints in B , 1.e., with He, drop out
and therefore they need not be considered.

Standard errors for some parameters associated with active inequality constraints may
not be available, i.e., the rows and columns of) associated with those parameters may
be all zeros.

2.8.2 Testing Constraints
Equality Constraints

When equality constraints are present in the model, their associated Lagrange
coefficients may be tested to determine their reasonableness. An estimate of the
covariance matrix of the joint distribution of the Lagrange coefficients associated with
the equality constraints is GX G’ and therefore

NG G/

is asymptotically x2(p) where p is the length of \. Individual constraints may be tested
using their associated t-statistics.

When appropriate, CML inserts GX G’ as “eqcov” in the global, _cml_Lagrange,
using the GAUSS VPUT command.

31

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

Active Inequality Constraints

When inequality constraints are active, their associated Lagrange coefficients are
nonzero. The expected value of their Lagrange coefficients is zero (assuming correct
specification of the model), and they are active only in occasional samples. How many
samples this occurs in depends on their covariance matrix, which is estimated by
Hg X ' H,.

When appropriate CML inserts H@E_ll—f@ as “ineqcov” in the global,
—cml_Lagrange, using the GAUSS VPUT command.

2.8.3 Heteroskedastic-consistent Covariance Matrix

When —_ecml_CovPar is set to 3, CML returns heteroskedastic-consistent covariance
matrices of the parameters, and as well as the corresonding heteroskedastic-consistent
covariance matrices of the Lagrange coefficients in the global, —cml_Lagrange.
Define
5 (9F\ (0L
-\ 09 00
evaluated at the estimates. Then the covariance matrix of the parameters is

QBN

2.8.4 Confidence Limits by Inversion

When the model includes inequality constraints, confidence limits computed as the ratio
of the parameter estimate to its standard error are not correct because they do not take
into account that the distribution of the parameter is restricted by its boundaries.
Inversion of the Likelihood Ratio Statistic. Partition a k-vector of parameters,

0 = (01 62), and let A be a maximum likelihood estimate of §, where 6y is fixed to some
value. A 100(1 — @)% confidence region for the parameters in 6; is defined by

~2%1og(L(0)/L(0)) < X{1_ar)-
Let

Fy(¢) = min(~2 + log(L(8)/L(0)) | 06 = ¢, H(6) > 0)

32

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

where 7 is a vector with a one in the i-th position and zeros elsewhere, and H(0) is a
function describing the constraints. The lower limit of the (1 — «) interval for 6; is the
value of ¢ such that

Fir(6) = X{1=auk)- (2.1)

A modified secant method is used to find the value of ¢ that satisfies (2.1). The upper
limit is found by defining Fj,- as a maximum.

The CML procedure CMLPfIClimits solves this problem. Corrections are made by
CMLPfIClimits when the limits are near constraint boundaries.

Inversion of the Wald Statistic. A 1 — « joint confidence region for 6 is the
hyper-ellipsoid

JFE(J,N —K:a) = (60— 0)V~1(0 - 6) (2.2)

where V is the covariance matrix of the parameters, J is the number of parameters
involved in the hypothesis, and F(J, N — K;) is the upper « area of the F-distribution
with J, N-K degrees of freedom.

If there are no constraints in the model, the 1 — a confidence interval for any selected
parameter is

0+ AV e t(N — K a/2)

where 7y is a vector of zeros with the k-th element corresponding to the parameter
being tested set to one.

When there are constraints no such simple description of the interval is possible.
Instead it is necessary to state the confidence limit problem as a parametric nonlinear
programming problem.

The lower limit of the confidence limit is the solution to

min {n;e 10— 6YV=Y0 —) > JF(J,N — K;a),G(0) = 0, H(0) > 0)}

where now 7 can be an arbitrary vector of constants and J = > ni # 0, and where
again we have assumed that the linear constraints and bounds have been folded in
among nonlinear constraints. The upper limit is the maximum of the this same
function.

33

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

In this form, the minimization is not convex and can’t be solved by the usual methods.
However, the problem can be re-stated as a parametric nonlinear programming problem
(Rust and Burrus, 1972). Define the function

F(¢) = min((0 — 0)'V=10 — 0) | 0 = ¢,G(6) = 0, H(0) > 0)
The upper and lower limits of the 1 — « interval are the values of ¢ such that
F(¢) = JF(J,N - K:0)

To find this value it is necessary to iteratively refine ¢ by interpolation until 2.8.4 is
satisfied. The CML procedure CMLClimits solves this problem.

Corrections are made by CMLClimits when the parameter is near a constraint
boundary.

2.8.5 Bootstrap

The bootstrap method is used to generate empirical distributions of the parameters,
thus avoiding the difficulties with the usual methods of statistical inference described
above.

CMLBoot

Rather than randomly sample with replacement from the data set, CMLBoot performs
—cml—_NumSample weighted maximum likelihood estimations where the weights are
Poisson pseudo-random numbers with expected value equal to the the number of
observations. This is asymptotically equivalent to simple random sampling with
replacement. —cml_NumSample is set by the CMLBoot global variable. The default
is 50 re-samplings. Efron and Tibshirani (1993:52) suggest that 100 is satisfactory, 50 is
often enough to give a good estimate, and rarely are more than 200 needed.

The mean and covariance matrix of the bootstrapped parameters is returned by
CMLBoot. In addition CMLBoot writes the bootstrapped parameter estimates to a
GAUSS data set for use with CMLHist, which produces histograms and surface plots,
CMLDensity, which produces kernel density plots, and CMLBIlimits, which produces
confidence limits based on the bootstrapped coefficients. The data set name can be
specified by the user in the global —_cml_BootFname. However, if not specified,
CMLBoot selects the name BOOTxxxx, where xxxx starts at 0000 and increments by 1
until a name is found that is not already in use.

CMLDensity

CMLDensity is a procedure for computing kernel type density plots. The global,
—cml_Kernel permits you to select from a variety of kernels, normal, Epanechnikov,
biweight, triangular, rectangular, and truncated normal. For each selected parameter, a
plot is generated of a smoothed density. The smoothing coefficients may be specified
using the global, _cml_Smoothing, or CMLDensity will compute them.

34

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

CMLHist

CMLHist is a procedure for visually displaying the results of the bootstrapping in
univariate histograms and bivariate surface plots for selected parameters. The
univariate discrete distributions of the parameters used for the histograms are returned
by CMLHist in a matrix.

Example

To bootstrap the example in Section 2.6.6, the only necessary alteration is the change
the call to CML to a call to CMLBoot:

_cml_BootFname = "bootdata";
call CMLPrt(cmlboot("tobit",0,&lpr,x0));

call CMLDensity("bootdata",0);
call CMLHist("bootdata",0);

2.8.6 Profiling

The CML proc, CMLProfile generates profile t plots as well as plots of the likelihood
profile traces for all of the parameters in the model in pairs. The profile t plots are used
to assess the nonlinearity of the distributions of the individual parameters, and the
likelihood profile traces are used to assess the bivariate distributions. The input and
output arguments to CMLProfile are identical to those of CML. But in addition to
providing the maximum likelihood estimates and covariance matrix of the parameters,
a series of plots are printed to the screen using GAUSS’ Publication Quality Graphics.
A screen is printed for each possible pair of parameters. There are three plots, a profile
t plot for each parameter, and a third plot containing the likelihood profile traces for
the two parameters.

The discussion in this section is based on Bates and Watts (1988), pages 205-216, which

is recommended reading for the interpretation and use of profile t plots and likelihood
profile traces.

The Profile t Plot

Define
Or = (01,02, ..., 01,0k, Ops1, ..., Oc)

35

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

This is the vector of maximum likelihood estimates conditional on 0y, i.e., where 6y, is
fixed to some value. Further define the profile t function

() = sign(0r —) (N — K)\/QN [L(ék) - L(ék)}

For each parameter in the model, 7 is computed over a range of values for 0. These
plots provide exact likelihood intervals for the parameters, and reveal how nonlinear the
estimation is. For a linear model, 7 is a straight line through the origin with unit slope.
For nonlinear models, the amount of curvature is diagnostic of the nonlinearity of the
estimation. High curvature suggests that the usual statistical inference using the
t-statistic is hazardous.

The Likelihood Profile Trace

The likelihood profile traces provide information about the bivariate likelihood surfaces.
For nonlinear models the profile traces are curved, showing how the parameter
estimates affect each other and how the projection of the likelihood contours onto the
(0, 0¢) plane might look. For the (6, 8;) plot, two lines are plotted, L(6)) against 6y,
and L(f,) against 6,.

If the likelihood surface contours are long and thin, indicating the parameters to be
collinear, the profile traces are close together. If the contours are fat, indicating the
parameters to be more uncorrelated, the profile traces tend to be perpendicular. And if
the contours are nearly elliptical, the profile traces are straight. The surface contours
for a linear model would be elliptical and thus the profile traces would be straight and
perpendicular to each other. Significant departures of the profile traces from straight,
perpendicular lines, therefore, indicate difficulties with the usual statistical inference.

To generate profile t plots and likelihood profile traces from the example in
Section 2.6.6, it is necessary only to change the call to CML to a call to CMLProfile:

call CMLPrt(cmlprofile("tobit",0,&lpr,x0));

CMLProfile produces the same output as CML which can be printed out using a call to
CMLPRT.

For each pair of parameters a plot is generated containing an xy plot of the likelihood
profile traces of the two parameters, and two profile t plots, one for each parameter.

The likelihood profile traces indicate that the distributions of parameters 1 and 2 are
highly correlated. Ideally, the traces would be perpendicular and the trace in this
example is far from ideal.

The profile t plots indicate that the parameter distributions are somewhat nonlinear.
Ideally the profile t plots would be straight lines and this example exhibits significant
nonlinearity. It is clear that any interpretations of the parameters of this model must
be made quite carefully.

36

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.9 Run-Time Switches

If the user presses Alt-H during the iterations, a help table is printed to the screen
which describes the run-time switches. By this method, important global variables may
be modified during the iterations.

On most systems the Alt key can be ignored, especially if the Alt key is under control
by the operating system for some other purpose. The case may also be ignored, that is,
either upper or lower case letters suffice.

Alt-A Change Algorithm

Alt-C Force Exit

Alt-E Edit Parameter Vector
Alt-G Toggle —_cml_GradMethod
Alt-H Help Table

Alt-1 Compute Hessian

Alt-K toggle Grid Search

Alt-L set —_cml_GridRadius
Alt-M Maximum Tries

Alt-N Set —cml_GradOrder
Alt-0O Toggle —__output

Alt-R Set —_cml_CovPar, type of covariance matrix
Alt-S Set line search Method
Alt-T toggle Trust Region Method
Alt-U set —cml_TrustRadius
Alt-V Set —cml_DirTol

The algorithm may be switched during the iterations either by pressing Alt-A, or by
pressing one of the following;:

Alt-1 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Alt-2 Davidon-Fletcher-Powell (DFP)

Alt-3 Newton-Raphson (NEWTON) or (NR)
Alt-4 Berndt, Hall, Hall & Hausman (BHHH)
Alt-5 scaled BFGS

Alt-5 scaled DFP

The line search method may be switched during the iterations either by pressing Alt-S,
or by pressing one of the following;:

Shift-1 no search (1.0 or 1 or ONE)

Shift-2 cubic or quadratic method (STEPBT)
Shift-3 step halving method (HALF)

Shift-4 Brent’s method (BRENT)

Shift-5 BHHH step method (BHHHSTEP)

Keyboard polling can be turned off completely by setting the global —_cml_key to zero.

37

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.10 Error Handling

2.10.1 Return Codes

The fourth argument in the return from CML contains a scalar number that contains
information about the status of the iterations upon exiting CML. The following table
describes their meanings:

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at
initial parameter values

8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

12 error with weights

13 quadratic program failed
14 equality Jacobian failed
15 inequality Jacobian failed

20 Hessian failed to invert

34 data set could not be opened
35 number of observations not set
99 termination condition unknown

2.10.2 Error Trapping

Setting the global —_output = 0 turns off all printing to the screen. Error codes,
however, still are printed to the screen unless error trapping is also turned on. Setting
the trap flag to 4 causes CML to not send the messages to the screen:

trap 4;

Whatever the setting of the trap flag, CML discontinues computations and returns with
an error code. The trap flag in this case only affects whether messages are printed to
the screen or not. This is an issue when the CML function is embedded in a larger
program, and you want the larger program to handle the errors.

38

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

2.11 References

Andrews, D.W.K, 1999. “Inconsistency of the bootstrap when a parameter is on the
boundary of the parameter space”, Econometrica,99.

Amemiya, Takeshi, 1985. Advanced Econometrics. Cambridge, MA: Harvard University
Press.

Bates, Douglas M. and Watts, Donald G., 1988. Nonlinear Regression Analysis and Its
Applications. New York: John Wiley & Sons.

Berndt, E., Hall, B., Hall, R., and Hausman, J. 1974. “Estimation and inference in
nonlinear structural models”. Annals of Economic and Social
Measurement 3:653-665.

Brent, R.P., 1972. Algorithms for Minimization Without Derivatives. Englewood Cliffs,
NJ: Prentice-Hall.

Dennis, Jr., J.E., and Schnabel, R.B., 1983. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ:
Prentice-Hall.

Efron, Gradley, Robert J. Tibshirani, 1993. An Introduction to the Bootstrap. New
York: Chapman & Hall.

Fletcher, R., 1987. Practical Methods of Optimization. New York: Wiley.

Gill, P. E. and Murray, W. 1972. “Quasi-Newton methods for unconstrained
optimization.” J. Inst. Math. Appl., 9, 91-108.

Gourieroux, Christian, Holly, Alberto, and Monfort, Alain (1982). “Likelihood Ratio
test, Wald Test, and Kuhn-Tucker test in linear models with inequality
constraints on the regression parameters”, Econometrica 50: 63-80.

Han, S.P., 1977. “A globally convergent method for nonlinear programming.” Journal
of Optimization Theory and Applications, 22:297-309.

Hock, Willi and Schittkowski, Klaus, 1981. Lecture Notes in Economics and
Mathematical Systems. New York: Springer-Verlag.

Jamshidian, Mortaza and Bentler, P.M., 1993. “A modified Newton method for
constrained estimation in covariance structure analysis.” Computational
Statistics € Data Analysis, 15:133-146.

Judge, G.G., R.C. Hill, W.E. Griffiths, H. Liitkepohl and T.C. Lee. 1988. Introduction
to the Theory and Practice of Econometrics. 2nd Edition. New
York:Wiley.

39

2. CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATION

Judge, G.G., W.E. Griffiths, R.C. Hill, H. Liitkepohl and T.C. Lee. 1985. The Theory
and Practice of Econometrics. 2nd Edition. New York:Wiley.

Schoenberg, Ronald, 1997. “Constrained Maximum Likelihood”. Computational
Economics, 1997:251-266.

White, H. 1981. “Consequences and detection of misspecified nonlinear regression
models.” Journal of the American Statistical Association 76:419-433.

White, H. 1982. “Maximum likelihood estimation of misspecified models.”
FEconometrica 50:1-25.

40

Chapter 3

Constrained Maximum Likelihood
Reference

41

CML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Purpose

Computes estimates of parameters of a constrained maximum likelihood function.
Library

cml

Format

{ z,f,g,cov,retcode } = CML(dataset,vars,&fct,start)

Input
dataset string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of CML, a
scalar zero or a scalar missing value may be entered.

vars NV x 1 character vector, labels of variables selected for analysis

—or —
NV x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CML (i.e., either V1, V2,...; or V01,
V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

&fet a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).
If this function returns a scalar value and “"row /= 1, the BHHH descent
method and QML standard errors will not be available. It is also
necessary to set —_cml—_NumObs to the number of observations.

start K x 1 vector, start values.

Output

T K x 1 vector, estimated parameters

f scalar, function at minimum (the mean log-likelihood)

g K x 1 vector, gradient evaluated at x

42

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

h K x K matrix, covariance matrix of the parameters (see discussion of the
global variable —ecml_CovPar below).

retcode scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

0
1
2
3
4
5
6
7
8
9

10
11
12
13
20
34
35
99

Globals

normal convergence

forced exit.

maximum iterations exceeded.
function calculation failed.
gradient calculation failed.
Hessian calculation failed.

line search failed.

function cannot be evaluated at initial parameter values.
error with gradient

error with constraints

secant update failed

maximum time exceeded

error with weights

quadratic program failed
Hessian failed to invert

data set could not be opened.
number of observations not set.

termination condition unknown.

The globals variables used by CML can be organized in the following categories
according to which aspect of the optimization they affect:

Options _cml_Options

Constraints —_cml_A, _cml—_B, _cml_C, _cml_D, _cml_EqProc, _cml_IneqProc,
—cml_EqJacobian, _cml_IneqJacobian, _cml_Bounds,
—cml_Lagrange

Descent and Line Search _cml_Algorithm, _cml_Delta, _cml_LineSearch,

—cml_Maxtry, —_cml_Extrap, —_cml_Interp, —_cml_UserSearch
—cml_Switch, _cml_Trust, _cml_TrustRadius, _cml_GridsSearch,
—cml_GridSearchRadius, _cml_FeasibleTest

43

CML

CML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Covariance Matrix of Parameters _cml_CovPar, _cml_XprodCov, _cml_HessCov,
—cml_FinalHess

Gradient —cml_GradMethod, —_cml_GradProc, —_cml_UserNumGrad,
—cml_HessProc, —_cml_UserNumHess, —_cml_GradStep,
—cml_GradCheckTol _cml_GradOrder

Termination Conditions —cml_DirTol, —_cml_DFTol, —_cml_Makxlters,
—cml_MaxTime

Data _cml_Lag, _cml_NumObs, __weight, __row, __rowfac

Parameters —cml_Active, _cml_ParNames

Miscellaneous —_title, _cmi_IterData, _cml_Diagnostic —_cml_State _cml_Alpha
—cml_Key

The list below contains an alphabetical listing of each global with a complete
description.

—cml_A My x K matrix, linear equality constraint coefficient matrix —cml_A is
used with —_ecml_B to specify linear equality constraints:

_cml_A * X = _cml_B

where X is the K x 1 unknown parameter vector.
—cml_Alpha scalar, sets alpha level for statistical inference. Default = .05.

—cml_Active vector, defines fixed/active coefficients. This global allows you to fix a
parameter to its starting value. This is useful, for example, when you
wish to try different models with different sets of parameters without
having to re-edit the function. When it is to be used, it must be a vector
of the same length as the starting vector. Set elements of _cml_Active
to 1 for an active parameter, and to zero for a fixed one.

—cml_Algorithm scalar, selects optimization method:

1 BFGS - Broyden, Fletcher, Goldfarb, Shanno method
2 DFP - Davidon, Fletcher, Powell method

3 NEWTON - Newton-Raphson method

4 BHHH - Berndt, Hall, Hall, Hausman method

Default = 3

—cml_Delta scalar, floor for eigenvalues of Hessian in the NEWTON algorithm. When
nonzero, the eigenvalues of the Hessian are augmented to this value.

44

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_B M; x 1 vector, linear equality constraint constant vector —cml_B is
used with —cml_A to specify linear equality constraints:

_cml_A x X = _cml_B
where X is the K x 1 unknown parameter vector.
—cml_Bounds K X 2 matrix, bounds on parameters. The first column contains the
lower bounds, and the second column the upper bounds. If the bounds

for all the coefficients are the same, a 1x2 matrix may be used. Default =
{ -1e256 1256 }.

—cml_C M3 x K matrix, linear inequality constraint coefficient matrix —cml_C
is used with —cml_D to specify linear inequality constraints:

_cml_C * X = _cml_D

where X is the K x 1 unknown parameter vector.

—cml_CovPar scalar, type of covariance matrix of parameters

0 not computed
1 computed from inverse of Hessian calculated after the iterations
2 computed from cross-product of Jacobian after the iterations
3 heteroskedastic-consistent covariance matrix of the parameters
Default = 1;

—cml_D M3 x 1 vector, linear inequality constraint constant vector —cml_D is

used with —_eml_C to specify linear inequality constraints:
_cml _ C * X = _cml D
where X is the K x 1 unknown parameter vector.

—cml_DFTol scalar. Iterations are halted when the absolute value of the change in
the function is less than this amount. Default = 0;

—cml_Diagnostic scalar.

0 nothing is stored or printed

1 current estimates, gradient, direction, function value, Hessian, and
step length are printed to the screen

2 the current quantities are stored in —cml_Diagnostic using the
VPUT command. Use the following strings to extract from
—cml_Diagnostic using VREAD:

45

CML

CML 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

function “function”
estimates “params”
1%

direction “direct”
Hessian “hessian”
gradient “gradient”

step “step”

When _cml_Diagnostic is nonzero, —_output is forced to 1.
b

—cml_DirTol scalar, convergence tolerance for gradient of estimated coefficients.
When this criterion has been satisifed CML exits the iterations. Default
= le-5.

—cml_EqgJacobian scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K x 1 vector of parameters, and
one output argument, the My x 1 vector of derivatives of the constraints
with respect to the parameters. For example, if the nonlinear equality
constraint procedure was,

proc egproc(p);
retp(pl[1l*p[2]1-p[31);
endp;

the Jacobian procedure and assignment to the global would be,

proc eqj(p);
retp(p[2]"pl[1]17-1);
endp;

_cml_EqJacobian = &eqj;
—cml_EqgProc scalar, pointer to a procedure that computes the nonlinear equality
constraints. For example, the statement:
_cml_EqProc = &eqproc;

tells CML that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K x 1 vector of
parameters, and one output argument, the My x K matrix of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] * P[2] = P[3]
The proc for this is:

proc egproc(p);
retp(pl[11*[2]1-p[3]1);
endp;

46

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CML

—cml_Extrap scalar, extrapolation constant in BRENT. Default = 2.

—cml_FeasibleTest scalar, if nonzero a test for the feasibility of the parameter vector
is tested before calling the log-likelihood function. This is important if
feasibility is necessary for the calculation of the log-likelihood, for
example if the procedure is computing the log of a parameter which is
being constrained to be positive. By default this function is turned on,
but if feasibility is not required for calculating the function then set
—cml_FeasibleTest to zero if the iterations are being halted as a result
of the test. Default = 1.

—cml_FinalHess K x K matrix, the Hessian used to compute the covariance matrix
of the parameters is stored in —cml_FinalHess. This is most useful if the
inversion of the hessian fails, which is indicated when CML returns a
missing value for the covariance matrix of the parameters. An analysis of
the Hessian stored in —cml_FinalHess can then reveal the source of the
linear dependency responsible for the singularity.

—cml_GradCheckTol scalar. Tolerance for the deviation of numerical and analytical
gradients when proc’s exist for the computation of analytical gradients,
Hessians, and/or Jacobians. If set to zero, the analytical gradients will
not be compared to their numerical versions. When adding procedures
for computing analytical gradients it is highly recommended that you
perform the check. Set _cml_GradCheckTol to some small value, le-3,
say when checking. It may have to be set larger if the numerical
gradients are poorly computed to make sure that CML doesn’t fail when
the analytical gradients are being properly computed.

—cml_GradMethod scalar, method for computing numerical gradient.

0 central difference

1 forward difference (default)

—cml_GradOrder scalar, If set to zero, standard two point method is used. If greater
than two, sets number of points for computing multiple point numerical
gradient.

—cml_GradProc scalar, pointer to a procedure that computes the gradient of the
function with respect to the parameters. For example, the statement:

_cml_GradProc=&gradproc;

tells CML that a gradient procedure exists as well where to find it. The
user-provided procedure has two input arguments, an K x 1 vector of
parameter values and an NxK matrix of data. The procedure returns a
single output argument, an N x K matrix of gradients of the log-
likelihood function with respect to the parameters evaluated at the vector
of parameter values.

47

CML 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

For example, suppose the log-likelihood function is for a Poisson
regression, then the following would be added to the command file:

proc lgd(b,z);
retp((z[.,1]-exp(z[.,2:4]1*b)) .xz[.,2:4]);
endp;

_cml_GradProc = &lgd;

Default = 0, i.e., no gradient procedure has been provided.

—cml_GradStep scalar, increment size for computing gradient. When the numerical
gradient is performing well, set to a larger value (1le-3, say). Default is
the cube root of machine precision.

—cml_GridSearch scalar, if nonzero a grid search for a new direction will be
attempted whenever the line search fails. It is nonzero by default.

—cml_GridSearchRadius scalar, set to the radius of the grid search. Default = .01

—cml_HessCov K x K matrix. When —_cml_CovPar is set to 3 the information
matrix covariance matrix of the parameters, i.e., the inverse of the matrix
of second order partial derivatives of the log-likelihood by observations, is
returned in —cml_HessCov.

—cml_HessProc scalar, pointer to a procedure that computes the hessian, i.e., the
matrix of second order partial derivatives of the function with respect to
the parameters. For example, the instruction:

_cml_HessProc = &hessproc;

tells CML that a procedure has been provided for the computation of the
hessian and where to find it. The procedure that is provided by the user
must have two input arguments, a K x 1 vector of parameter values and
an NxP data matrix. The procedure returns a single output argument,
the K x K symmetric matrix of second order derivatives of the function
evaluated at the parameter values.

—cml_IneqJacobian scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K x 1 vector of parameters, and
one output argument, the M, x K matrix of derivatives of the
constraints with respect to the parameters. For example, if the nonlinear
equality constraint procedure was,

proc inegproc(p);
retp(p[1]1*p[2]1-p[31);
endp;

the Jacobian procedure and assignment to the global would be,

48

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

proc ineqj(p);
retp(p[2] "p[1]17-1);
endp;

_cml_IneqJacobian = &ineqj;

—cml_IneqProc scalar, pointer to a procedure that computes the nonlinear

inequality constraints. For example the statement:
_cml_IneqProc = &ineqgproc;

tells CML that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K x 1 vector of
parameters, and one output argument, the My x K matrix of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] = P[2] >= P[3]
The proc for this is:

proc inegproc(p);
retp(p[1]1*[2]-p[3]);
endp;

—cmi_lInterp scalar, interpolation constant in BRENT. Default = .25.

—cmi_lterData 3x1 vector, contains information about the iterations. The first

—cml_Key

—cml_Lag

element contains the # of iterations, the second element contains the
elapsed time in minutes of the iterations, and the third element contains
a character variable indicating the type of covariance matrix of the
parameters.

scalar, if nonzero, the keyboard is polled for run-time modification of
globals governing the interation process (See Section 2.9). Default is
nonzero.

scalar, if the function includes lagged values of the variables —_cml_Lag
may be set to the number of lags. When _ecml_Lag is set to a nonzero
value then —_row is set to 1 (that is, the function must evaluated one
observation at a time), and CML passes a matrix to the user-provided
function and gradient procedures. The first row in this matrix is the (i -
—cml_Lag)-th observation and the last row is the i-th observation. The
read loop begins with the (—eml_Lag+1)-th observation. Default = 0.

—cml_Lagrange vector, created using VPUT. Contains the Lagrangean coefficients

for the constraints. They may be extracted with the VREAD command
using the following strings:

49

CML

CML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

“lineq” linear equality constraints
“nlineq” nonlinear equality constraints
“linineq” linear inequality constraints
“nlinineq” nonlinear inequality constraints
“bounds” bounds
“eqcov” covariance matrix of

equality Lagrangeans
“ineqcov” covariance matrix of

inequality Lagrangeans
“boundcov” covariance matrix of

bounds’ Lagrangeans

When an inequality or bounds constraint is active, its associated
Lagrangean is nonzero. The linear Lagrangeans preceed the nonlinear
Lagrangeans in the covariance matrices.

—cml_LineSearch scalar, selects method for conducting line search. The result of the

line search is a step length, i.e., a number which reduces the function
value when multiplied times the direction..

1 step length = 1.

2 cubic or quadratic step length method (STEPBT)
3 step halving (HALF)

4 Brent’s step length method (BRENT)

5 BHHH step length method (BHHHSTEP)
Default = 2.

Usually —cml_LineSearch = 2 is best. If the optimization bogs down,
try setting _cml_LineSearch = 1, 4 or 5. _cml_LineSearch = 3
generates slower iterations but faster convergence and —_cml_LineSearch
= 1 generates faster iterations but slower convergence.

When any of these line search methods fails, CML attempts a random
search of radius —cml_RandRadius times the truncated log to the base
10 of the gradient when —_cml_RandRadius is set to a nonzero value. If
—cml_UserSearch is set to 1, CML enters an interactive line search
mode.

—cml_Maxlters scalar, maximum number of iterations.

—cml_MaxTime scalar, maximum time in iterations in minutes. This global is most

50

useful in bootstrapping. You might want 100 re-samples, but would be
happy with anything more than 50 depending on the time it took. Set
—cml—_NumSample = 100, and —cml—_MaxTime to maximum time you
would be willing to wait for results. Default = 1le+5, about 10 weeks.

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_MaxTry scalar, maximum number of tries to find step length that produces a

descent.

—cml—_NumObs scalar, number of observations. By default the number of

observations is determined from the dataset and this number is returned
in the global after the iterations. If a different number is required for
correct statistical inference, set —cml—_NumObs to this value. It may
also be necessary to set this global if a dataset is not passed to CML and
if the log-likelihood returns a scalar.

—cml_Options character vector, specification of options. This global permits setting

——_output

various CML options in a single global using identifiers. The following
_cml_Options = { newton stepbt forward screen };

the descent method to NEWTON, the line search method to STEPBT,
the numerical gradient method to forward differences, and ——_OQUTPUT
=2

The following is a list of the identifiers:

Algorithms BFGS, DFP, NEWTON, BHHH

Line Search ONE, STEPBT, HALF, BRENT, BHHHSTEP
Covariance Matrix NOCOV, INFO, XPROD, HETCON
Gradient method CENTRAL, FORWARD, BACKWARD
Output method NONE, FILE, SCREEN

scalar, determines printing of intermediate results. Generally when
——_output is nonzero, i.e., where there some kind of printing during the
iterations, the time of the iterations is degraded.

0 nothing is written
serial ASCII output format suitable for disk files or printers
2 output is suitable for screen only. ANSI.SYS must be active.

>5 same as ——output = 1 except that information is printed only
every ——output-th iteration.

When _cml_Diagnostic is nonzero, —_output is forced to 1.

—cml—_ParNames K x 1 character vector, parameter labels.

—cml_State scalar,

—cml_Trust scalar, if nonzero, a trust region is imposed on the direction vector in the

iterations. The trust region method is helpful when the starting values
are poor. By default it is turned off.

51

CML

CML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_TrustRadius scalar, sets the radius of the trust region method. Default = .001.

—cml_UserNumGrad scalar, pointer to user provided numerical gradient procedure.

——row

——rowfac

The instruction
_cml_UserNumGrad = &userproc;

tells CML that a procedure for computing the numerical gradients exists.
The user-provided procedure has three input arguments, a pointer to a
function that computes the log-likelihood function, a K x 1 vector of
parameter values, and an K x P matrix of data. The procedure returns a
single output argument, an N x K matrix of gradients of each row of the
input data matrix with respect to each parameter.

scalar, specifies how many rows of the data set are read per iteration of

the read loop. See the REMARKS Section for a more detailed discussion
of how to set up your log-likelihood to handle more than one row of your
data set. By default, the number of rows to be read is calculated by CML.

scalar, “row factor”. If CML fails due to insufficient memory while
attempting to read a GAUSS data set, then —__rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;

causes GAUSS to read in 80% of the rows of the GAUSS data set that
were read when CML failed due to insufficient memory.

This global has an affect only when —_row = 0. Default = 1.

—cml_Switch 4 x 1 or 4 x 2 vector,

——title

controls algorithm switching. If 4 x 1 set

_cml_Switch[1
_cml_Switch|[2
_cml_Switch([3

-cml_Switch[4
amount

] algorithm number to switch to

] CML switches if functions changes less than this amount
] CML switches if this number of iterations is exceeded.

]

CML switches if line search step changes less than this

or else if 4 x 2 set each column as in the 4 x 1 case with different
algorithms in the first row. CML switches between the algorithm in
column 1 and column 2.

string title of run

—cml_UserNumHess scalar, pointer to user provided numerical Hessian procedure.

52

The instruction

_cml_UserHess = &hessproc;

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CML

tells CML that a procedure for computing the numerical Hessian exists.
The user-provided procedure three input arguments, a pointer to a
function that computes the log-likelihood function, a K x 1 vector of
parameter values, and an NxP matrix of data. The procedure returns a
single output argument, a K x K Hessian matrix of the function with
respect to the parameters.

—cml_UserSearch scalar, if nonzero and if all other line search methods fail CML
enters an interactive mode in which the user can select a line search
parameter

——weight vector, frequency of observations. By default all observations have a
frequency of 1. zero frequencies are allowed. It is assumed that the
elements of —_weight sum to the number of observations.

—cml_XprodCov K x K matrix. When —_cml_CovPar is set to 3 the cross-product
matrix covariance matrix of the parameters, i.e., the inverse of the
cross-product of the first derivatives of the log-likelihood computed by
observations, is is returned in —cml_XprodCov.

Remarks
Specifying Constraints.

There are five types of constraints: linear equality, linear inequality, nonlinear equality,
nonlinear inequality, bounds Linear constraints are specified by initializing the
appropriate CML globals to known matrices of constants. The linear equality
constraint matrices are —cml—A and —cml_B, and they assume the following
relationship with the parameter vector:

_cml_A *x x = _cml_B
where x is the parameter vector.

Similarly, the linear inequality constraint matrices are —_cml—_C and —_ecml_D, and
assume the following relationship with the parameter vector:

_cml_C * x >= _cml_D

The nonlinear constraints are specified by providing procedures and assigning their
pointers to CML globals. These procedures take a single argument, the vector of
parameters, and return a column vector of evaluations of the constraints at the
parameters. Each element of the column vector is a separate constraint.

For example, suppose you wish to constrain the product of the first and third

coefficients to be equal to 10, and the squared second and fourth coefficients to be equal
to the squared fifth coefficient:

53

CML 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

proc eqp(x);
local c;
c = zeros(2,1);
c[1] = x[1] * x[3] - 10;
cl[2] = x[2] * x[2] + x[4] = x[4] - x[5] * x[6];
retp(c);
endp;

_cml_EgProc = &eqp;

The nonlinear equality constraint procedure causes CML to find estimates for which its
evaluation is equal to a conformable vector of zeros.

The nonlinear inequality constraint procedure is similar to the equality procedure.
CML finds estimates for which the evaluation of the procedure is greater than or equal
to zero. The nonlinear inequality constraint procedure is assigned to the global
—cml_IneqProc. For example, suppose you wish to constrain the norm of the
coefficients to be greater than one:

proc ineqgp(x);
retp(x’x-3);
endp;

_cml_IneqgProc = &eqp;

Bounds are a type of linear inequality constraint. They are specified separately for
computational and notational convenience. To declare bounds on the parameters assign
a two column vector with rows equal to the number of parameters to the CML global,
—cml_Bounds. The first column is the lower bounds and the second column the upper
bounds. For example,

_cml_Bounds = { 0 10,
-10 O
-10 20 };

If the bounds are the same for all of the parameters, only the first row is required.

Writing the Log-likelihood Function

CML requires a procedure for computing the log-likelihood.

The procedure has two input arguments: first, a vector of parameter values, and
second, one or more rows of the data matrix. The output argument is the log-likelihood
for the observation or observations in the second argument evaluated at the parameter
values in the first argument.

54

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE
Suppose that the function procedure has been named pfct, the following considerations
apply:

The format of the procedure is:

logprob = pfct(z,y);

where

z column vector of parameters of model

Y one or more rows of the data set (if the data set has been transformed, or
if vars # 0, i.e., there is selection, then y is a transformed, selected
observation).

if a scalar zero or scalar missing value was passed to CML in its first
argument not data will be passed to pfct and the user will required to
provide the necessary data for computing the log-likelihood.

if ——row = n, then n rows of the data set are read at a time

if —_row = 0, the maximum number of rows that fit in memory is
computed by CML.

For most uses, the output from this procedure is a vector of log-likelihoods where the
vector has the same number of rows as the input dataset in the second argument. A
scalar log-likelihood may also be returned but it is important to keep in mind that in
this case certain features of CML will not be available such as QML standard errors or
bootstrapping. Also if a scalar log-likelihood is returned by this procedure you must
also set —_ecml_NumObs to its appropriate value.

CML can be forced, if necessary, to send the data n observation at a time by setting
_row = n. By default _row = 0 causing CML to send the entire matrix to pfct if it is
stored entirely in memory, or to compute the maximum number of rows if it is a
GAUSS data set stored on disk (Note that even if the data starts out in a GAUSS data
set, CML determines whether the data set fits in memory, and if it does, then it reads
the data set into an array in memory). If you are getting insufficient memory messages,
then set —_rowfac to a positive value less than 1.

Supplying an Analytical GRADIENT Procedure
To decrease the time of computation, the user may provide a procedure for the
calculation of the gradient of the log-likelihood. The global variable _cml_GradProc

must contain the pointer to this procedure. Suppose the name of this procedure is
gradproc. Then,

g = gradproc(z,y);
where the input arguments are

55

CML

CML 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

T vector of coefficients

Y one or more rows of data set.

if a scalar zero or scalar missing value was passed to CML in its first
argument not data will be passed to gradproc and the user will required
to provide the necessary data for computing the gradient.

and the output argument is

g row vector of gradients of log-likelihood with respect to coefficients, or a
matrix of gradients (i.e., a Jacobian) if the data passed in y is a matrix
(unless —_cml_Lag > 1 in which case the data passed in y is a matrix of
lagged values but a row vector of gradients is passed back in g).

It is important to note that the gradient is row oriented. Thus if the function that
computes the log-likelihood returns a scalar value (——row = 1), then a row vector of
the first derivatives of the log-likelihood with respect to the coefficients must be
returned, but if the procedure that computes the log-likelihood returns a column
vector, then —_cml_GradProc must return a matrix of first derivatives in which rows
are associated with observations and columns with coefficients.

Providing a procedure for the calculation of the first derivatives also has a significant
effect on the calculation time of the Hessian. The calculation time for the numerical
computation of the Hessian is a quadratic function of the size of the matrix. For large
matrices, the calculation time can be very significant. This time can be reduced to a
linear function of size if a procedure for the calculation of analytical first derivatives is
available. When such a procedure is available, CML automatically uses it to compute
the numerical Hessian.

The major problem one encounters when writing procedures to compute gradients and
Hessians is in making sure that the gradient is being properly computed. CML checks
the gradients and Hessian when —_cml_GradCheckTol is nonzero. CML generates both
numerical and analytical gradients, and viewing the discrepancies between them can
help in debugging the analytical gradient procedure.

Supplying an Analytical HESSIAN Procedure.

Selection of the NEWTON algorithm becomes feasible if the user supplies a procedure
to compute the Hessian. If such a procedure is provided, the global variable
—cml_HessProc must contain a pointer to this procedure. Suppose this procedure is
called hessproc, the format is

h = hessproc(z,y);
The input arguments are

T K x 1 vector of coefficients

56

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CML

y one or more rows of data set

if a scalar zero or scalar missing value was passed to CML in its first
argument not data will be passed to hessproc and the user will required
to provide the necessary data for computing the Hessian.

and the output argument is

h K x K matrix of second order partial derivatives evaluated at the
coefficients in z.

To compare numerical and analytical Hessians set —_cml_GradCheckTol to a nonzero
value.

Supplying Analytical Jacobians of the Nonlinear Constraints.

At each iteration the Jacobians of the nonlinear constraints, if they exist, are computed
numerically. This is time-consuming and generates a loss of precision. For models with
a large number of inequality constraints a significant speed-up can be achieved by
providing analytical Jacobian procedures. The improved accuracy can also have a
significant effect on convergence.

The Jacobian procedures take a single argument, the vector of parameters, and return a
matrix of derivatives of each constraint with respect to each parameter. The rows are
associated with the constraints and the columns with the parameters. The pointer to
the nonlinear equality Jacobian procedure is assigned to —_cml_EqJacobian. The
pointer to the nonlinear inequality Jacobian procedure is assigned to
—cml_IneqJacobian.

For example, suppose the following procedure computes the equality constraints:

proc eqp(x);
local c;
c = zeros(2,1);
c[1] = x[1] * x[3] - 10;
cl2] = x[2] * x[2] + x[4] = x[4] - x[6] * x[56];
retp(c);
endp;
cml_EqProc = &eqp;

Then the Jacobian procedure would look like this:

proc eqJacob(x);
local c;
c = zeros(2,5);
cl1,1] = x[3];
cl[1,3] = x[1];

57

CML 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

c[2,2] = 2*x[2];

cl2,4] = 2*x[4];
c[3,5] = -2%x[5];
retp(c);

endp;

_cml_EqJacobian = &eqJacob;
The Jacobian procedure for the nonlinear inequality constraints is specified similarly,

except that the associated global containing the pointer to the procedure is
—cml_IneqJacobian.

= Source

cml.src

58

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Purpose

Produces kernel Density plots of bootstrapped parameters in GAUSS data set
Library
cml

Format

¢l = CMLBIlimits(dataset)

Input
dataset string containing name of GAUSS data set
Cor —
Nx K matrix, data
Output
cl K x 2 matrix, lower (first column) and upper (second column) confidence
limits of the selected parameters
Globals

—cml_Alpha (1 - —_cml_Alpha)% confidence limits are computed. Default = .05

—cml_Select selection vector for selecting coefficients to be included in profiling, for
example

_cml_Select = { 1, 3, 4 };
selects the 1st, 3rd, and 4th parameters for profiling.
Remarks
CMLBIimits sorts each column of the parameter data set and computes
(1-—cml_Alpha)% confidence limits by measuring back —_eml_Alpha/2 times the
number of rows from each end of the columns. The confidence limits are the values in
those elements. If amount to be measured back from each end of the columns doesn’t

fall exactly on an element of the column, the confidence limit is interpolated from the
bordering elements.

Source
cmlblim.src

59

CMLBIlimits

CMLClimits 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

= Purpose

Computes confidence limits by inversion of Wald statistic

= Library
cml
= Format

climits = CMLClimits(b, V')

= Input
b K x 1 vector, parameter estimates
Vv K x K matrix, covariance matrix of parameters in b
= Output
climits K x 2 matrix, lower confidence limits in the first column and upper limits
in second column
= Globals

The CML procedure global variables are also applicable.

—cml_Alpha scalar, CMLClimits computes (1-—cml_Alpha)% confidence intervals,
where —cml_Alpha varies between zero and one. Default = .05.

s Remarks

Confidence limits are computed by inversion of the Wald statistic. For inequality
constrained models they are the solutions to a parametric nonlinear programming
problem. CMLClimits solves this problem given a covariance matrix, the vector of
parameter estimates, and given the model constraints.

The calculation of confidence limits for large models can be time consuming. In that
case it might be necessary to select parameters for analysis. This can be done using the
CML global, —cml_Select.

The global _cml—_NumObs must be set. If CMLClimits is called immediately after a
call to CML, —_ecml_NumObs will be set by CML.

= Source

cmlclim.src

60

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLPAIClimits

Purpose

Computes confidence limits by inversion of the likelihood ratio statistic.
Library

cml

Format

pficlimits = CMLPfIClimits(b,f,dataset,vars,&fct)

Input

b K x 1 vector, parameter estimates

f scalar, function at minimum (mean log-likelihood)

dataset string containing name of GAUSS data set

~or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of
CMLPAfIClimits, a scalar zero or a scalar missing value may be entered.

vars NV x 1 character vector, labels of variables selected for analysis

_or —
NV x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CML (i.e., either V1, V2,..., or V01,
V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

& fct a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).
If this function returns a scalar value and “row /= 1, the BHHH descent
method and QML standard errors will not be available. It is also
necessary to set —_cml_NumObs to the number of observations.

Output

pflclimits K x 2 matrix, lower confidence limits in the first column and upper limits
in second column

Globals

The CML procedure global variables are also applicable.

61

CMLPAIClimits 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_Alpha scalar, CMLPfIClimits computes (1-—cml_Alpha)% confidence intervals,
where —_cml_Alpha varies between zero and one. Default = .05.

= Remarks
Confidence limits are computed by inversion of the likelihood ratio statistic. b and f
should be returns from a call to CML. This will also properly set up the global
—cml—_NumObs.
For inequality constrained models the limits are the solutions to a parametric nonlinear
programming problem. CMLPfIClimits solves this problem given the vector of

parameter estimates and the model constraints.

The calculation of confidence limits for large models can be time consuming. In that
case it might be necessary to select parameters for analysis. This can be done using the
CML global, —_cml_Select.

The global —ecml—_NumObs must be set. If CMLPfIClimits is called immediately after
a call to CML, —_cml_NumObs will be set by CML.

= Source

cmlpflcl.src

62

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLTIlimits

Purpose
Computes confidence limits based on t-statistics
Library

cml

Format

¢l = CMLTIlimits(b,cov)

Input

b K x 1 vector, parameter estimates

cov K x K matrix, covariance matrix of parameter estimates

Output

cl K x 2 matrix, lower (first column) and upper (second column) confidence
limits of the selected parameters

Globals

—cml_Alpha (1-—_cml_Alpha)% confidence limits are computed.
Default = .05

—cmI_NumObs scalar, number of observations. Must be set.

—cml_Select selection vector for selecting coefficients to be included in profiling, for
example

_cml_Select = { 1, 3, 4 };
selects the 1st, 3rd, and 4th parameters for profiling.

Remarks
CMLTlimits returns b[i] + t(.cmi_NumObs — K; _ecml_Alpha/2) x +/covli, i]

—cml_NumObs must be set.

The global —_cml—_NumObs must be set. If CMLTlimits is called immediately after a
call to CML, —_max—_NumObs will be set by CML.

Source

cml.src

63

CMLBayes

Purpose

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Baysian Inference using weighted maximum likelihood bootstrap

Library

cml

Format

{ z,f,g,cov,retcode } = CMLBayes(dataset,vars,&fct,start)

Input

dataset

vars

&fct

start

Output

retcode

64

string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of CMLBayes, a
scalar zero or a scalar missing value may be entered.

NV x 1 character vector, labels of variables selected for analysis
—or —
NV x 1 numeric vector, indices of variables selected for analysis.

If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CMLBayes (i.e., either V1, V2,...; or V01,
Vo02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —__altnam).

a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

K x 1 vector, start values.

K x 1 vector, mean of simulated posterior

scalar, mean weighted bootstrap log-likelihood

K x 1 vector, means gradient of weighted bootstrap

K x K matrix, covariance matrix of the simulated posterior

scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLBayes

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values
8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

12 error with weights

13 quadratic program failed

34 data set could not be opened
35 number of observations not set
99 termination condition unknown

Globals

The CML procedure global variables are also applicable.

—cml_BayesAlpha scalar, exponent of the Dirichlet random variates used in the
weights for the weighted bootstrap. See Newton and Raftery,
“Approximate Bayesian Inference with the Weighted Likelihood
Bootstrap”, J.R.Statist. Soc. B (1994), 56:3-48. Default = 1.4.

—cml_PriorProc scalar, pointer to proc for computing prior. This proc takes the
parameter vector as its only argument, are returns a scalar probability. If
a proc is not provided, a uniform prior is assumed.

—cml_BootFname string, file name of GAUSS data set (do not include .DAT
extension) containing bootstrapped parameter estimates. If not specified,
CMLBayes selects a temporary filename, BAYESxxxx where xxxx is
0000 incremented by 1 until a name is found that doesn’t exist on the
current directory.

—cml—_MaxTime scalar, maximum amount of time spent in re-sampling. Default =
leb (about 10 weeks).

—cml—_NumSample scalar, number of samples to be drawn. Default = 100.

65

CMLBayes

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Remarks

CMLBayes implements random sampling with replacement by computing
—cml—_NumObs pseudo-random Poisson variates and using them as weights in a call to
CML. CMLBayes returns the mean vector of the estimates in the first argument and
the covariance matrix of the estimates in the third argument.

A GAUSS data set is also generated containing the bootstrapped parameter estimates.
The file name of the data set is either the name found in the global _cml_BootFname,
or a temporary name. If CMLBayes selects a file name, it returns that file name in

—cml_BootFname. The coefficients in this data set may be used as input to the CML
procedures CMLHist and CMLDensity for further analysis.

Source

cmlbayes.src

66

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Purpose

Computes bootstrapped estimates of parameters of a constrained maximum likelihood

function.

Library

cml

Format

{ z,f,g,cov,retcode } = CMLBoot(dataset,vars,&fct,start)

Input

dataset

vars

& fct

start

Output

string containing name of GAUSS data set
—or —
N x NV matrix, data

If there is no data or if the data is to be handled outside of CMLBoot, a
scalar zero or a scalar missing value may be entered.

NV x 1 character vector, labels of variables selected for analysis
_or —
NV x 1 numeric vector, indices of variables selected for analysis.

If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CMLBoot (i.e., either V1, V2,...; or V01,
V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

K x 1 vector, start values.

K x 1 vector, means of re-sampled parameters
scalar, mean re-sampled function at minimum (the mean log-likelihood)
K x 1 vector, means of re-sampled gradients evaluated at the estimates

K x K matrix, covariance matrix of the re-sampled parameters

67

CMLBoot

CMLBoot

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

retcode scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values

8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

12 error with weights

13 quadratic program failed

34 data set could not be opened

35 number of observations not set

99 termination condition unknown
Globals

The CML procedure global variables are also applicable.

—cml_BootFname string, file name of GAUSS data set (do not include .DAT
extension) containing bootstrapped parameter estimates. If not specified,
CMLBoot selects a temporary filename, BOOTxxxx where xxxx is 0000
incremented by 1 until a name is found that doesn’t exist on the current
directory.

—cml_MaxTime scalar, maximum amount of time spent in re-sampling. Default =
leb (about 10 weeks).

—cml_NumSample scalar, number of samples to be drawn. Default = 100.

Remarks

CMLBoot implements random sampling with replacement by computing
—cml—_NumObs pseudo-random Poisson variates and using them as weights in a call to

68

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLBoot

CML. CMLBoot returns the mean vector of the estimates in the first argument and the
covariance matrix of the estimates in the third argument.

A GAUSS data set is also generated containing the bootstrapped parameter estimates.
The file name of the data set is either the name found in the global _cml_BootFname,
or a temporary name. If CMLBoot selects a file name, it returns that file name in

—cml_BootFname. The coefficients in this data set may be used as input to the CML
procedures CMLHist and CMLDensity for further analysis.

Source

cmlboot.src

69

CMLDensity

= Purpose

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Generates kernel density plots from GAUSS data sets

= Library

cml, pgraph

= Format

{ pz, py, smth } = CMLDensity(dataset,vars)

= Input

dataset

vars

= Output

pT
by

smth

= Globals

string containing name of GAUSS data set
—or —
NxK matrix, data

K x 1 character vector, labels of variables selected for analysis
—or —
K x 1 numeric vector, indices of variables selected for analysis.

If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CMLDensity (i.e., either V1, V2_..., or
Vo1, Vo2,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

—cml_NumPoints x K matrix, abscissae of plotted points
—cml_NumPoints x K matrix, ordinates of plotted points

K x 1 vector, smoothing coefficients

The CML procedure global variables are also applicable.

—cml_Kernel K x 1 character vector, type of kernel:

70

NORMAL normal kernel
EPAN Epanechnikov kernel
BIWGT biweight kernel
TRIANG triangular kernel
RECTANG rectangular kernel

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLDensity

TNORMAL truncated normal kernel

If _cml_Kernel is scalar, the kernel is the same for all parameter
densities. Default = NORMAL.

—cml—_NumPoints scalar, number of points to be computed for plots

—cml_EndPoints K x 2 matrix, lower (in first column) and upper (in second column)
endpoints of density. Default is minimum and maximum, respectively, of
the parameter values. If 1 x 2 matrix, endpoints are the same for all
parameters.

—cml_Smoothing K x 1 vector, smoothing coefficients for each plot. If scalar,
smoothing coefficient is the same for each plot. If zero, smoothing
coefficient is computed by CMLDensity. Default = 0.

—cml_Truncate K Xx 2 matrix, lower (in first column) and upper (in second column)
truncation limits for truncated normal kernel. If 1x2 matrix, truncations
limits are the same for all plots. Default is minimum and maximum,
respectively.

——output If nonzero, K density plots are printed to the screen, otherwise no plots
are generated.

Source

cmldens.src

71

CMLHist 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

= Purpose

Generates histograms and surface plots from GAUSS data sets
= Library

cml, pgraph
= Format

{ tab, cut ¥ = CMLHist(dataset,vars)

= Input
dataset string containing name of GAUSS data set
—or —
NxK matrix, data
vars K x 1 character vector, labels of variables selected for analysis
—or —
K x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CMLHist (i.e., either V1, V2,..., or V01,
V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —__altnam).
= Output
tab —cml_NumCat x K matrix, univariate distributions of bootstrapped
parameters
cut —cml_NumCat x K matrix, cutting points
= Globals

The CML procedure global variables are also applicable.

—cml_Center K x 1 value of center category in histograms. Default is initial
coefficient estimates.

—cml_CutPoint _cml_NumCat x 1 vector, output, cutting points for histograms

—cml_Increment K X 1 vector, increments for cutting points of the histograms.
Default is 2 * _ecml_Width * std dev / —cml_NumCat.

—cml—_NumCat scalar, number of categories in the histograms

72

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLHist

—cml_Width scalar, width of histograms, default = 2

—_output If nonzero, K density plots are printed to the screen, otherwise no plots
are generated.

Remarks

If __output is nonzero, K (K — 1)/2 plots are printed to the screen displaying
univariate histograms and bivariate surface plots of the bootstrapped parameter
distributions in pairs.

The globals, —_cml_Center, _cml_Width, and —_cml_Increment may be used to
establish cutting points (which is stored in —ecml_Increment) for the tables of
re-sampled coefficients in tab The numbers in —_cml_Center fix the center categories,
—cml_Width is a factor which when multiplied times the standard deviation of the
estimate determines the increments between categories. Alternatively, the increments
between categories can be fixed directly by supplying them in —cml_Increment.

Source

cmlhist.src

73

CMLProfile

= Library

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

cml, pgraph

= Purpose

Computes profile t plots and likelihood profile traces for constrained maximum
likelihood models

s Format

{ z,f,g,cov,retcode } = CMLProfile(dataset,vars,&fct,start)

= Input

dataset

vars

&fct

start

= Output

74

string containing name of GAUSS data set
—or —
N x NV matrix, data

If there is no data or if the data is to be handled outside of CMLProfile,
a scalar zero or a scalar missing value may be entered.

NV x 1 character vector, labels of variables selected for analysis
—or —
NV x 1 numeric vector, indices of variables selected for analysis.

If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CMLProfile (i.e., either V1, V2,..., or V01,
Vo02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

K x 1 vector, start values.

K x 1 vector, parameter estimates
scalar, log-likelihood at maximum
K x 1 vector, gradients evaluated at the estimates

K x K matrix, covariance matrix of the parameters

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLProfile

retcode scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

normal convergence

forced exit

maximum iterations exceeded

function calculation failed

gradient calculation failed

Hessian calculation failed

line search failed

function cannot be evaluated at initial parameter values

error with gradient

© 00 N O O W Ny = O

error with constraints

—
(=}

secant update failed

[u—y
[a-—y

maximum time exceeded

[y
[

error with weights

—
«w

quadratic program failed

w
~

data set could not be opened.

w
(S48

number of observations not set

=]
o

termination condition unknown

Globals

The CML procedure global variables are also relevant.

—cml—_NumCat scalar, number of categories in profile table. Default = 16.

—cml_Increment K x 1 vector, increments for cutting points, default is 2 *
—cml_Width * std dev / —eml_NumCat. If scalar zero, increments are
computed by CMLProfile.

—cml_Center K x 1 vector, value of center category in profile table. Default values
are coefficient estimates.

—cml_Select selection vector for selecting coefficients to be included in profiling, for
example

_cml_Select = { 1, 3, 4 };
selects the 1st, 3rd, and 4th parameters for profiling.

75

CMLProfile 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_Width scalar, width of profile table in units of the standard deviations of the
parameters. Default = 2.

s Remarks

For each pair of the selected parameters, three plots are printed to the screen. Two of
the are the profile t trace plots that describe the univariate profiles of the parameters,
and one of them is the profile likelihood trace describing the joint distribution of the
two parameters. Ideally distributed parameters would have univariate profile t traces
that are straight lines, and bivariate likelihood profile traces that are two straight lines
intersecting at right angles. This ideal is generally not met by nonlinear models,
however, large deviations from the ideal indicate serious problems with the usual
statistical inference.

= Source

cmlprof.src

76

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE CMLSet

Purpose

Resets CONSTRAINED MAXIMUM LIKELIHOOD global variables to default values.

Library
cml
Format
CMLSet;
Input
None
Output
None

Remarks

Putting this instruction at the top of all command files that invoke CML is generally
good practice. This prevents globals from being inappropriately defined when a
command file is run several times or when a command file is run after another
command file has executed that calls CML.

Source

cml.src

7

CMLPrt

= Purpose

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Formats and prints the output from a call to CML.

= Library
cml
= Format

{ z,f,g9,h,retcode } = CMLPrt(z,f,g,h,retcode);

= Input
x

f

9
h

retcode

= OQOutput

K x 1 vector, parameter estimates

scalar, value of function at minimum

K x 1 vector, gradient evaluated at x

K x K matrix, covariance matrix of parameters

scalar, return code.

The input arguments are returned unchanged.

» Globals

——header

——title

= Remarks

string. This is used by the printing procedure to display information
about the date, time, version of module, etc. The string can contain one
or more of the following characters:

“¢7 print title (see —_title)

“17 bracket title with lines

“d” print date and time Example:
“y” print version number of program

“f” print file name being analyzed

__header = "t1d";
Default = “tldvf”.

string, message printed at the top of the screen and printed out by
CMLPrt. Default = 7.

The call to CML can be nested in the call to CMLPrt:
{ x,f,g,h,retcode } = CMLPrt(CML(dataset,vars,&fct,start));

= Source

cml.src

78

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Purpose

Formats and prints the output from a call to CML along with confidence limits

Library

cml

Format

{ z.f,g,cl,retcode } = CMLCLPrt(z,f,g,cl,retcode);

Input

x

f

g

cl

retcode

Output

K x 1 vector, parameter estimates
scalar, value of function at minimum
K x 1 vector, gradient evaluated at x

K x 2 matrix, lower and upper confidence limits

The lower limits are in the first column and the upper limits are in the
second column.

scalar, return code.

The input arguments are returned unchanged.

Globals

——header

——title

string. This is used by the printing procedure to display information
about the date, time, version of module, etc. The string can contain one
or more of the following characters:

“t” print title (see —_title)

“17 bracket title with lines

“d” print date and time Example:
“v7 print version number of program

“f” print file name being analyzed

__header = "t1d4";
Default = “tldv{”.

string, message printed at the top of the screen and printed out by
CMLPrt. Default = “”.

79

CMLCLPrt

CMLCLPrt 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

= Remarks

Confidence limits computed by CMLBIlimits, CMLClimits, or CMLTlimits may be
passed in the fourth argument in the call to CMLCLPrt:

{ b,f,g,cov,ret } = CMLBoot("tobit",0,&lpr,x0);

cl = CMLBlimits(_cml_BootFname) ;
call CMLCLPrt(b,f,g,cl,ret);

80

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCML

Purpose

Computes estimates of parameters of a constrained maximum likelihood function
Library

cml

Format

{ z,f,g,cov,retcode } = fastCML(dataset,vars,&fct,start)

Input
dataset string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of fastCML, a
scalar zero or a scalar missing value may be entered.

vars NV x 1 character vector, labels of variables selected for analysis

_or —
NV x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CML (i.e., either V1, V2,...; or V01,
V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

&fet a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).
If this function returns a scalar value and “"row /= 1, the BHHH descent
method and QML standard errors will not be available. It is also
necessary to set —_cml—_NumObs to the number of observations.

start K x 1 vector, start values.

Output

x K x 1 vector, estimated parameters

f scalar, function at minimum (the mean log-likelihood)

g K x 1 vector, gradient evaluated at x

81

fastCML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

h K x K matrix, covariance matrix of the parameters (see discussion of the
global variable —cml_CovPar below).

retcode scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

0
1
2
3
4
5
6
7
8
9

10
11
12
13
20
34
35
99

Globals

normal convergence

forced exit.

maximum iterations exceeded.
function calculation failed.
gradient calculation failed.
Hessian calculation failed.

line search failed.

function cannot be evaluated at initial parameter values.
error with gradient

error with constraints

secant update failed

maximum time exceeded

error with weights

quadratic program failed
Hessian failed to invert

data set could not be opened.
number of observations not set.

termination condition unknown.

The globals variables used by CML can be organized in the following categories
according to which aspect of the optimization they affect:

Options _cml_Options

Constraints —_cml_A, _cml_B, _cml_C, _cml_D, _cml_EqProc, _cml_IneqProc,
—cml_EqgJacobian, _cml_IneqJacobian, _cml_Bounds,
—cml_Lagrange

Descent and Line Search _cml_Algorithm, _cml_Delta, —_cml_LineSearch,

—cml_Maxtry, —_cml_Extrap, _cml_Interp, —_cml_Switch,
—cml_Trust, _cml_TrustRadius, _cml_GridsSearch,
—cml_GridSearchRadius, _cml_FeasibleTest

82

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Covariance Matrix of Parameters _cml_CovPar, _cml_XprodCov, _cml_HessCov,
—cml_FinalHess

Gradient _cml_GradMethod, _cml_GradProc, _cml_HessProc, _cml_GradStep,
—cml_GradCheckTol —cml_GradOrder,

Termination Conditions —cml_DirTol, —_cml_DFTol, —_cml_Maxlters,
—cml—_MaxTime

Data _—_cml—_NumObs, __weight,
Parameters —cml_Active, _cml_ParNames

Miscellaneous _cml_IterData, _cml_State, _cml_Alpha,

The list below contains an alphabetical listing of each global with a complete
description.

—cml_A M, x K matrix, linear equality constraint coefficient matrix —cml_A is
used with —cml_B to specify linear equality constraints:

_cml_A *x X = _cml_B

where X is the K x 1 unknown parameter vector.
—cml_Alpha scalar, sets alpha level for statistical inference. Default = .05.

—cml_Active vector, defines fixed/active coeflicients. This global allows you to fix a
parameter to its starting value. This is useful, for example, when you
wish to try different models with different sets of parameters without
having to re-edit the function. When it is to be used, it must be a vector
of the same length as the starting vector. Set elements of —_cml_Active
to 1 for an active parameter, and to zero for a fixed one.

—cml_Algorithm scalar, selects optimization method:

1 BFGS - Broyden, Fletcher, Goldfarb, Shanno method
2 DFP - Davidon, Fletcher, Powell method

3 NEWTON - Newton-Raphson method

4 BHHH - Berndt, Hall, Hall, Hausman method

Default = 3

—cml_Delta scalar, floor for eigenvalues of Hessian in the NEWTON algorithm. When
nonzero, the eigenvalues of the Hessian are augmented to this value.

—cml_B M; x 1 vector, linear equality constraint constant vector —cml_B is
used with —cml_A to specify linear equality constraints:

83

fastCML

fastCML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

_cml_A * X = _cml_B

where X is the K x 1 unknown parameter vector.

—cml—_Bounds K x 2 matrix, bounds on parameters. The first column contains the

—cml_C

lower bounds, and the second column the upper bounds. If the bounds
for all the coefficients are the same, a 1x2 matrix may be used. Default =
{ -1e256 1e256 }.

M3 x K matrix, linear inequality constraint coefficient matrix —eml_C
is used with —cml_D to specify linear inequality constraints:
_cml_C * X = _cml_D

where X is the K x 1 unknown parameter vector.

—cml_CovPar scalar, type of covariance matrix of parameters

—cml_D

0 not computed

1 computed from inverse of Hessian calculated after the iterations
2 computed from cross-product of Jacobian after the iterations

3 heteroskedastic-consistent covariance matrix of the parameters
Default = 1;

M3 x 1 vector, linear inequality constraint constant vector —cml_D is
used with —_ecml_C to specify linear inequality constraints:

_cml_C * X = _cml_D

where X is the K x 1 unknown parameter vector.

—cml_DFTol scalar. Iterations are halted when the absolute value of the change in

the function is less than this amount. Default = 0;

—cml_DirTol scalar, convergence tolerance for gradient of estimated coefficients.

When this criterion has been satisifed CML exits the iterations. Default
= le-5.

—cml_EqgJacobian scalar, pointer to a procedure that computes the Jacobian of the

84

nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K x 1 vector of parameters, and
one output argument, the My x 1 vector of derivatives of the constraints
with respect to the parameters. For example, if the nonlinear equality
constraint procedure was,

proc egproc(p);
retp(pl[1l*p[2]1-p[31);
endp;

the Jacobian procedure and assignment to the global would be,

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCML

proc eqj(p);
retp(p[2]"p[1]17-1);
endp;

_cml_EqJacobian = &eqj;

—cml_EqgProc scalar, pointer to a procedure that computes the nonlinear equality
constraints. For example, the statement:

_cml_EqProc = &eqproc;

tells CML that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K x 1 vector of
parameters, and one output argument, the My x K matrix of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] * P[2] = P[3]
The proc for this is:

proc egproc(p);
retp(p[1]1*[2]-p[3]);
endp;

—cml_Extrap scalar, extrapolation constant in BRENT. Default = 2.

—cml_FeasibleTest scalar, if nonzero a test for the feasibility of the parameter vector
is tested before calling the log-likelihood function. This is important if
feasibility is necessary for the calculation of the log-likelihood, for
example if the procedure is computing the log of a parameter which is
being constrained to be positive. By default this function is turned on,
but if feasibility is not required for calculating the function then set
—cml_FeasibleTest to zero if the iterations are being halted as a result
of the test. Default = 1.

—cml_FinalHess K x K matrix, the Hessian used to compute the covariance matrix
of the parameters is stored in —cml_FinalHess. This is most useful if the
inversion of the hessian fails, which is indicated when CML returns a
missing value for the covariance matrix of the parameters. An analysis of
the Hessian stored in —cml_FinalHess can then reveal the source of the
linear dependency responsible for the singularity.

—cml_GradMethod scalar, method for computing numerical gradient.

0 central difference

1 forward difference (default)

85

fastCML 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_GradOrder scalar, If set to zero, standard two point method is used. If greater
than two, sets number of points for computing multiple point numerical
gradient.

—cml_GradProc scalar, pointer to a procedure that computes the gradient of the
function with respect to the parameters. For example, the statement:

_cml_GradProc=&gradproc;

tells CML that a gradient procedure exists as well where to find it. The
user-provided procedure has two input arguments, an K x 1 vector of
parameter values and an NxK matrix of data. The procedure returns a
single output argument, an N x K matrix of gradients of the log-
likelihood function with respect to the parameters evaluated at the vector
of parameter values.

For example, suppose the log-likelihood function is for a Poisson
regression, then the following would be added to the command file:

proc lgd(b,z);
retp((z[.,1]-exp(z[.,2:4]1%b)) .*z[.,2:4]);
endp;

_cml_GradProc = &lgd;

Default = 0, i.e., no gradient procedure has been provided.

—cml_GradStep scalar, increment size for computing gradient. When the numerical
gradient is performing well, set to a larger value (1le-3, say). Default is
the cube root of machine precision.

—cml_GridSearch scalar, if nonzero a grid search for a new direction will be
attempted whenever the line search fails. It is nonzero by default.

—cml_GridSearchRadius scalar, set to the radius of the grid search. Default = .01

—cml_HessCov K x K matrix. When —_eml_CovPar is set to 3 the information
matrix covariance matrix of the parameters, i.e., the inverse of the matrix
of second order partial derivatives of the log-likelihood by observations, is
returned in —cml_—HessCov.

—cml_HessProc scalar, pointer to a procedure that computes the hessian, i.e., the
matrix of second order partial derivatives of the function with respect to
the parameters. For example, the instruction:

_cml_HessProc = &hessproc;

tells CML that a procedure has been provided for the computation of the
hessian and where to find it. The procedure that is provided by the user
must have two input arguments, a K x 1 vector of parameter values and
an NxP data matrix. The procedure returns a single output argument,
the K x K symmetric matrix of second order derivatives of the function
evaluated at the parameter values.

86

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_IneqJacobian scalar, pointer to a procedure that computes the Jacobian of the
nonlinear equality constraints with respect to the parameters. The
procedure has one input argument, the K x 1 vector of parameters, and
one output argument, the My x K matrix of derivatives of the
constraints with respect to the parameters. For example, if the nonlinear
equality constraint procedure was,

proc inegproc(p);
retp(p[11*p[2]1-p[3]1);
endp;

the Jacobian procedure and assignment to the global would be,

proc ineqj(p);
retp(p[2]~p[117-1);
endp;

_cml_IneqJacobian = &ineqj;

—cml_IneqProc scalar, pointer to a procedure that computes the nonlinear
inequality constraints. For example the statement:

_cml_InegProc = &inegproc;

tells CML that nonlinear equality constraints are to be placed on the
parameters and where the procedure computing them is to be found. The
procedure must have one input argument, the K x 1 vector of
parameters, and one output argument, the My x K matrix of computed
constraints that are to be equal to zero. For example, suppose that you
wish to place the following constraint:

P[1] * P[2] >= P[3]
The proc for this is:

proc ineqgproc(p);
retp(p[1]1*[2]1-p[3]1);
endp;

—cml_Interp scalar, interpolation constant in BRENT. Default = .25.

—cmi_lterData 3x1 vector, contains information about the iterations. The first
element contains the # of iterations, the second element contains the
elapsed time in minutes of the iterations, and the third element contains
a character variable indicating the type of covariance matrix of the
parameters.

—cml_Lagrange vector, created using VPUT. Contains the Lagrangean coefficients
for the constraints. They may be extracted with the VREAD command
using the following strings:

87

fastCML

fastCML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

“lineq” linear equality constraints
“nlineq” nonlinear equality constraints
“linineq” linear inequality constraints
“nlinineq” nonlinear inequality constraints
“bounds” bounds
“eqcov” covariance matrix of

equality Lagrangeans
“ineqcov” covariance matrix of

inequality Lagrangeans
“boundcov” covariance matrix of

bounds’ Lagrangeans

When an inequality or bounds constraint is active, its associated
Lagrangean is nonzero. The linear Lagrangeans preceed the nonlinear
Lagrangeans in the covariance matrices.

—cml_LineSearch scalar, selects method for conducting line search. The result of the

line search is a step length, i.e., a number which reduces the function
value when multiplied times the direction..

1 step length = 1.

2 cubic or quadratic step length method (STEPBT)
3 step halving (HALF)

4 Brent’s step length method (BRENT)

5 BHHH step length method (BHHHSTEP)
Default = 2.

Usually —cml_LineSearch = 2 is best. If the optimization bogs down,
try setting _cml_LineSearch = 1, 4 or 5. _cml_LineSearch = 3
generates slower iterations but faster convergence and —_cml_LineSearch
= 1 generates faster iterations but slower convergence.

When any of these line search methods fails, CML attempts a random
search of radius —cml_RandRadius times the truncated log to the base
10 of the gradient when —_cml_RandRadius is set to a nonzero value. If
—cml_UserSearch is set to 1, CML enters an interactive line search
mode.

—cml_Maxlters scalar, maximum number of iterations.

—cml_MaxTime scalar, maximum time in iterations in minutes. This global is most

88

useful in bootstrapping. You might want 100 re-samples, but would be
happy with anything more than 50 depending on the time it took. Set
—cml—_NumSample = 100, and —cml—_MaxTime to maximum time you
would be willing to wait for results. Default = 1le+5, about 10 weeks.

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_MaxTry scalar, maximum number of tries to find step length that produces a
descent.

—cmI—_NumObs scalar, number of observations. By default the number of
observations is determined from the dataset and this number is returned
in the global after the iterations. If a different number is required for
correct statistical inference, set —_cml_NumOQObs to this value. It may
also be necessary to set this global if a dataset is not passed to CML and
if the log-likelihood returns a scalar.

—cml_Options character vector, specification of options. This global permits setting
various CML options in a single global using identifiers. The following

_cml_Options = { newton stepbt forward screen };

the descent method to NEWTON, the line search method to STEPBT,
the numerical gradient method to forward differences.

The following is a list of the identifiers:

Algorithms BFGS, DFP, NEWTON, BHHH

Line Search ONE, STEPBT, HALF, BRENT, BHHHSTEP
Covariance Matrix NOCOV, INFO, XPROD, HETCON
Gradient method CENTRAL, FORWARD, BACKWARD

—cml_ParNames K x 1 character vector, parameter labels.
—cml_State scalar,

—cml_Trust scalar, if nonzero, a trust region is imposed on the direction vector in the
iterations. The trust region method is helpful when the starting values
are poor. By default it is turned off.

—cml_TrustRadius scalar, sets the radius of the trust region method. Default = .001.

—cml_Switch 4 x 1 or 4 x 2 vector,

controls algorithm switching. If 4 x 1 set

—cml_Switch[1] algorithm number to switch to
—cml Switch[2 | CML switches if functions changes less than this amount
—cml Switch[3 | CML switches if this number of iterations is exceeded.

]

—cml_Switch[4
amount

CML switches if line search step changes less than this

or else if 4 x 2 set each column as in the 4 x 1 case with different
algorithms in the first row. CML switches between the algorithm in
column 1 and column 2.

89

fastCML

fastCML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

——weight vector, frequency of observations. By default all observations have a
frequency of 1. zero frequencies are allowed. It is assumed that the
elements of — _weight sum to the number of observations.

—cml_XprodCov K x K matrix. When —_ecml_CovPar is set to 3 the cross-product
matrix covariance matrix of the parameters, i.e., the inverse of the
cross-product of the first derivatives of the log-likelihood computed by
observations, is is returned in —cml_XprodCov.

Remarks
Specifying Constraints.

There are five types of constraints: linear equality, linear inequality, nonlinear equality,
nonlinear inequality, bounds Linear constraints are specified by initializing the
appropriate CML globals to known matrices of constants. The linear equality
constraint matrices are —cml—A and —ecml_B, and they assume the following
relationship with the parameter vector:

_cml A *x x = _cml_B
where x is the parameter vector.

Similarly, the linear inequality constraint matrices are —cml—C and —cml—_D, and
assume the following relationship with the parameter vector:

_cml_C * x >= _cml_D

The nonlinear constraints are specified by providing procedures and assigning their
pointers to CML globals. These procedures take a single argument, the vector of
parameters, and return a column vector of evaluations of the constraints at the
parameters. Each element of the column vector is a separate constraint.

For example, suppose you wish to constrain the product of the first and third
coefficients to be equal to 10, and the squared second and fourth coefficients to be equal
to the squared fifth coefficient:

proc eqp(x);
local c;
c = zeros(2,1);
cl1] = x[1] * x[3] - 10;
cl2] = x[2] * x[2] + x[4] * x[4] - x[5] * x[5];
retp(c);
endp;

_cml_EqgProc = &eqp;

90

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

The nonlinear equality constraint procedure causes CML to find estimates for which its
evaluation is equal to a conformable vector of zeros.

The nonlinear inequality constraint procedure is similar to the equality procedure.
CML finds estimates for which the evaluation of the procedure is greater than or equal
to zero. The nonlinear inequality constraint procedure is assigned to the global
—cml_IneqProc. For example, suppose you wish to constrain the norm of the
coefficients to be greater than one:

proc ineqgp(x);
retp(x’x-3);
endp;

_cml_InegProc = &eqp;

Bounds are a type of linear inequality constraint. They are specified separately for
computational and notational convenience. To declare bounds on the parameters assign
a two column vector with rows equal to the number of parameters to the CML global,
—cml_Bounds. The first column is the lower bounds and the second column the upper
bounds. For example,

_cml_Bounds = { 0 10,
-10 O
-10 20 };

If the bounds are the same for all of the parameters, only the first row is required.

Writing the Log-likelihood Function

CML requires a procedure for computing the log-likelihood.

The procedure has two input arguments: first, a vector of parameter values, and
second, one or more rows of the data matrix. The output argument is the log-likelihood
for the observation or observations in the second argument evaluated at the parameter

values in the first argument.

Suppose that the function procedure has been named pfct, the following considerations
apply:

The format of the procedure is:
logprob = pfet(z,y);
where

x column vector of parameters of model

91

fastCML

fastCML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Y one or more rows of the data set (if the data set has been transformed, or

if vars # 0, i.e., there is selection, then y is a transformed, selected
observation).

if a scalar zero or scalar missing value was passed to CML in its first
argument not data will be passed to pfct and the user will required to
provide the necessary data for computing the log-likelihood.

if —_row = n, then n rows of the data set are read at a time

if —_row = 0, the maximum number of rows that fit in memory is
computed by CML.

For most uses, the output from this procedure is a vector of log-likelihoods where the
vector has the same number of rows as the input dataset in the second argument. A
scalar log-likelihood may also be returned but it is important to keep in mind that in
this case certain features of CML will not be available such as QML standard errors or
bootstrapping. Also if a scalar log-likelihood is returned by this procedure you must
also set —_ecml—_NumObs to its appropriate value. ;

CML can be forced, if necessary, to send the data n observation at a time by setting
_row = n. By default __row = 0 causing CML to send the entire matrix to pfct if it is
stored entirely in memory, or to compute the maximum number of rows if it is a
GAUSS data set stored on disk (Note that even if the data starts out in a GAUSS data
set, CML determines whether the data set fits in memory, and if it does, then it reads
the data set into an array in memory). If you are getting insufficient memory messages,
then set ——_rowfac to a positive value less than 1.

Supplying an Analytical GRADIENT Procedure

To decrease the time of computation, the user may provide a procedure for the
calculation of the gradient of the log-likelihood. The global variable —_cml_GradProc
must contain the pointer to this procedure. Suppose the name of this procedure is
gradproc. Then,

g = gradproc(z,y);

where the input arguments are

T vector of coefficients

Y one or more rows of data set.

if a scalar zero or scalar missing value was passed to CML in its first
argument not data will be passed to gradproc and the user will required
to provide the necessary data for computing the gradient.

and the output argument is

92

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

g row vector of gradients of log-likelihood with respect to coefficients, or a
matrix of gradients (i.e., a Jacobian) if the data passed in y is a matrix
(unless —cml—Lag > 1 in which case the data passed in y is a matrix of
lagged values but a row vector of gradients is passed back in g).

It is important to note that the gradient is row oriented. Thus if the function that
computes the log-likelihood returns a scalar value (——row = 1), then a row vector of
the first derivatives of the log-likelihood with respect to the coefficients must be
returned, but if the procedure that computes the log-likelihood returns a column
vector, then —cml_GradProc must return a matrix of first derivatives in which rows
are associated with observations and columns with coefficients.

Providing a procedure for the calculation of the first derivatives also has a significant
effect on the calculation time of the Hessian. The calculation time for the numerical
computation of the Hessian is a quadratic function of the size of the matrix. For large
matrices, the calculation time can be very significant. This time can be reduced to a
linear function of size if a procedure for the calculation of analytical first derivatives is
available. When such a procedure is available, CML automatically uses it to compute
the numerical Hessian.

The major problem one encounters when writing procedures to compute gradients and
Hessians is in making sure that the gradient is being properly computed. CML checks
the gradients and Hessian when —cml—_GradCheckTol is nonzero. CML generates both
numerical and analytical gradients, and viewing the discrepancies between them can
help in debugging the analytical gradient procedure.

Supplying an Analytical HESSTIAN Procedure.

Selection of the NEWTON algorithm becomes feasible if the user supplies a procedure
to compute the Hessian. If such a procedure is provided, the global variable
—cml_HessProc must contain a pointer to this procedure. Suppose this procedure is
called hessproc, the format is

h = hessproc(z,y);
The input arguments are

T K x 1 vector of coefficients

y one or more rows of data set

if a scalar zero or scalar missing value was passed to CML in its first
argument not data will be passed to hessproc and the user will required
to provide the necessary data for computing the Hessian.

and the output argument is

93

fastCML

fastCML

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

h K x K matrix of second order partial derivatives evaluated at the

coefficients in z.

To compare numerical and analytical Hessians set _cml_GradCheckTol to a nonzero
value.

Supplying Analytical Jacobians of the Nonlinear Constraints.

At each iteration the Jacobians of the nonlinear constraints, if they exist, are computed
numerically. This is time-consuming and generates a loss of precision. For models with
a large number of inequality constraints a significant speed-up can be achieved by
providing analytical Jacobian procedures. The improved accuracy can also have a
significant effect on convergence.

The Jacobian procedures take a single argument, the vector of parameters, and return a
matrix of derivatives of each constraint with respect to each parameter. The rows are
associated with the constraints and the columns with the parameters. The pointer to
the nonlinear equality Jacobian procedure is assigned to —cml_EqJacobian. The
pointer to the nonlinear inequality Jacobian procedure is assigned to
—cml_IneqJacobian.

For example, suppose the following procedure computes the equality constraints:

proc eqp(x);
local c;
c = zeros(2,1);
c[1] = x[1] * x[3] - 10;
cl2] = x[2] * x[2] + x[4] * x[4] - x[5] * x[5];
retp(c);
endp;
cml_EqgProc = &eqp;

Then the Jacobian procedure would look like this:

proc eqJacob(x);

local c;
c = zeros(2,5);
cl1,1] = x[3]1;
cl1,3] = x[1];
cl2,2] = 2*x[2];
c[2,4] = 2*x[4];
cl[3,5] = -2xx[5];
retp(c);

endp;

_cml_EqJacobian = &eqJacob;

94

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCML

The Jacobian procedure for the nonlinear inequality constraints is specified similarly,
except that the associated global containing the pointer to the procedure is
—cml_IneqJacobian.

Source

cml.src

95

fastCMLBayes

= Purpose

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Baysian Inference using weighted maximum likelihood bootstrap

= Library
cml
s Format

{ z,f,g,cov,retcode } = fastCMLBayes(dataset,vars,&fct,start)

= Input

dataset

vars

&fct

start

= Output

retcode

96

string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of
fastCMLBayes, a scalar zero or a scalar missing value may be entered.

NV x 1 character vector, labels of variables selected for analysis
—or —
NV x 1 numeric vector, indices of variables selected for analysis.

If dataset is a matrix, vars may be a character vector containing either
the standard labels created by fastCMLBayes (i.e., either V1, V2,..., or
Vo1, Vo2,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —__altnam).

a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

K x 1 vector, start values.

K x 1 vector, mean of simulated posterior

scalar, mean weighted bootstrap log-likelihood

K x 1 vector, means gradient of weighted bootstrap

K x K matrix, covariance matrix of the simulated posterior

scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCMLBayes

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values
8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

12 error with weights

13 quadratic program failed

34 data set could not be opened
35 number of observations not set
99 termination condition unknown

Globals

The CML procedure global variables are also applicable.

—cml_BayesAlpha scalar, exponent of the Dirichlet random variates used in the
weights for the weighted bootstrap. See Newton and Raftery,
“Approximate Bayesian Inference with the Weighted Likelihood
Bootstrap”, J.R.Statist. Soc. B (1994), 56:3-48. Default = 1.4.

—cml_PriorProc scalar, pointer to proc for computing prior. This proc takes the
parameter vector as its only argument, are returns a scalar probability. If
a proc is not provided, a uniform prior is assumed.

—cml_BootFname string, file name of GAUSS data set (do not include .DAT
extension) containing bootstrapped parameter estimates. If not specified,
fastCMLBayes selects a temporary filename, BAYESxxxx where xxxx is
0000 incremented by 1 until a name is found that doesn’t exist on the
current directory.

—cml—_MaxTime scalar, maximum amount of time spent in re-sampling. Default =
leb (about 10 weeks).

—cml—_NumSample scalar, number of samples to be drawn. Default = 100.

97

fastCMLBayes 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Remarks

fastCMLBayes implements random sampling with replacement by computing
—cml—_NumObs pseudo-random Poisson variates and using them as weights in a call to
CML. fastCMLBayes returns the mean vector of the estimates in the first argument
and the covariance matrix of the estimates in the third argument.

A GAUSS data set is also generated containing the bootstrapped parameter estimates.
The file name of the data set is either the name found in the global _cml_BootFname,
or a temporary name. If fastCMLBayes selects a file name, it returns that file name in

—cml_BootFname. The coefficients in this data set may be used as input to the CML
procedures CMLHist and CMLDensity for further analysis.

Source

fastcbayes.src

98

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCMLBoot

Purpose

Computes bootstrapped estimates of parameters of a constrained maximum likelihood
function.

Library

cml

Format

{ z,f,g,cov,retcode } = fastCMLBoot(dataset,vars,&fct,start)

Input
dataset string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of
fastCMLBoot, a scalar zero or a scalar missing value may be entered.
vars NV x 1 character vector, labels of variables selected for analysis
_or —
NV x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CMLBoot (i.e., either V1, V2,...; or V01,
V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

& fct a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

start K x 1 vector, start values.

Output

x K x 1 vector, means of re-sampled parameters

f scalar, mean re-sampled function at minimum (the mean log-likelihood)

g K x 1 vector, means of re-sampled gradients evaluated at the estimates

h K x K matrix, covariance matrix of the re-sampled parameters

99

fastCMLBoot 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

retcode scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed.

7 function cannot be evaluated at initial parameter values
8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

12 error with weights

13 quadratic program failed

34 data set could not be opened
35 number of observations not set
99 termination condition unknown

= Globals

The CML procedure global variables are also applicable.

—cml_BootFname string, file name of GAUSS data set (do not include .DAT
extension) containing bootstrapped parameter estimates. If not specified,
CMLBoot selects a temporary filename, BOOTxxxx where xxxx is 0000
incremented by 1 until a name is found that doesn’t exist on the current
directory.

—cml_MaxTime scalar, maximum amount of time spent in re-sampling. Default =
leb (about 10 weeks).

—cml_NumSample scalar, number of samples to be drawn. Default = 100.

s Remarks

CMLBoot implements random sampling with replacement by computing
—cml—_NumObs pseudo-random Poisson variates and using them as weights in a call to

100

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCMLBoot

CML. CMLBoot returns the mean vector of the estimates in the first argument and the
covariance matrix of the estimates in the third argument.

A GAUSS data set is also generated containing the bootstrapped parameter estimates.
The file name of the data set is either the name found in the global _cml_BootFname,
or a temporary name. If CMLBoot selects a file name, it returns that file name in

—cml_BootFname. The coefficients in this data set may be used as input to the CML
procedures CMLHist and CMLDensity for further analysis.

Source

fastcboot.src

101

fastCMLPfIClimts

= Purpose

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

Computes confidence limits by inversion of the likelihood ratio statistic.

= Library
cml
= Format

pficlimits = fastCMLPfIClimts(b,f,dataset,vars,&fct)

= Input
b
f

dataset

vars

&fct

= Output

pficlimits

=« Globals

K x 1 vector, parameter estimates
scalar, function at minimum (mean log-likelihood)

string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of
fastCMLPfIClimts, a scalar zero or a scalar missing value may be entered.

NV x 1 character vector, labels of variables selected for analysis

—or —
NV x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by CML (i.e., either V1, V2,..., or V01,
Vo02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

If this function returns a scalar value and “row /= 1, the BHHH descent
method and QML standard errors will not be available. It is also
necessary to set —_cml_NumObs to the number of observations.

K x 2 matrix, lower confidence limits in the first column and upper limits
in second column

The CML procedure global variables are also applicable.

102

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE fastCMLPfIClimts

—cml_Alpha scalar, fastCMLPfIClimts computes (1-—eml_Alpha)% confidence
intervals, where _cml_Alpha varies between zero and one. Default = .05.

Remarks

Confidence limits are computed by inversion of the likelihood ratio statistic. b and f
should be returns from a call to CML. This will also properly set up the global
—cml—_NumObs.

For inequality constrained models the limits are the solutions to a parametric nonlinear
programming problem. fastCMLPfIClimts solves this problem given the vector of

parameter estimates and the model constraints.

The calculation of confidence limits for large models can be time consuming. In that
case it might be necessary to select parameters for analysis. This can be done using the
CML global, —_cml_Select.

The global —_cml—_NumObs must be set. If fastCMLPfIClimts is called immediately
after a call to CML, —cml—_NumObs will be set by CML.

Source

fastcpflcl.src

103

fastCMLProfile 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

= Library
cml, pgraph
= Purpose

Computes profile t plots and likelihood profile traces for constrained maximum
likelihood models

s Format

{ z,f,g,cov,retcode } = fastCMLProfile(dataset,vars,&fct,start)

= Input
dataset string containing name of GAUSS data set
—or —
N x NV matrix, data
If there is no data or if the data is to be handled outside of
fastCMLProfile, a scalar zero or a scalar missing value may be entered.
vars NV x 1 character vector, labels of variables selected for analysis
—or —
NV x 1 numeric vector, indices of variables selected for analysis.
If dataset is a matrix, vars may be a character vector containing either
the standard labels created by fastCMLProfile (i.e., either V1, V2,..., or
Vo1, V02,..... See discussion of the global variable —_vpad below, or the
user-provided labels in —_altnam).

&fct a pointer to a procedure that returns either the log-likelihood for one
observation or a vector of log-likelihoods for a matrix of observations (see
discussion of the global variable —_row in global variable section below).

start K x 1 vector, start values.

= Output

T K x 1 vector, parameter estimates

f scalar, log-likelihood at maximum

g K x 1 vector, gradients evaluated at the estimates

h K x K matrix, covariance matrix of the parameters

104

3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

retcode

Globals

scalar, return code. If normal convergence is achieved, then retcode = 0,
otherwise a positive integer is returned indicating the reason for the
abnormal termination:

© 00 N O O W Ny = O

© W O e e
- Y NG e N)

normal convergence

forced exit

maximum iterations exceeded
function calculation failed
gradient calculation failed
Hessian calculation failed

line search failed

function cannot be evaluated at initial parameter values
error with gradient

error with constraints

secant update failed
maximum time exceeded

error with weights

quadratic program failed

data set could not be opened
number of observations not set

termination condition unknown

The CML procedure global variables are also relevant.

—cml—_NumCat scalar, number of categories in profile table. Default = 16.

—cml_Increment K x 1 vector, increments for cutting points, default is 2 *
—cml_Width * std dev / —eml_NumCat. If scalar zero, increments are
computed by fastCMLProfile.

—cml_Center K x 1 vector, value of center category in profile table. Default values
are coefficient estimates.

—cml_Select selection vector for selecting coefficients to be included in profiling, for
example

_cml_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for profiling.

105

fastCMLProfile

fastCMLProfile 3. CONSTRAINED MAXIMUM LIKELIHOOD REFERENCE

—cml_Width scalar, width of profile table in units of the standard deviations of the
parameters. Default = 2.

s Remarks

For each pair of the selected parameters, three plots are printed to the screen. Two of
the are the profile t trace plots that describe the univariate profiles of the parameters,
and one of them is the profile likelihood trace describing the joint distribution of the
two parameters. Ideally distributed parameters would have univariate profile t traces
that are straight lines, and bivariate likelihood profile traces that are two straight lines
intersecting at right angles. This ideal is generally not met by nonlinear models,
however, large deviations from the ideal indicate serious problems with the usual
statistical inference.

= Source

fastcprof.src

106

Chapter 4

Constrained Event Count and
Duration Regression

by

Gary King

Department of Government
Harvard University

This module contains procedures for estimating statistical models of event count or
duration data with general nonlinear equality and inequality constraints on the
parameters

The programs included in this module implement maximum likelihood estimators for
parametric statistical models of events data. Data based on events come in two forms:
event counts and durations between events. Event counts are dependent variables that
take on only nonnegative integer values, such as the number of wars in a year, the
number of medical consultations in a month, the number of patents per firm, or even
the frequency in the cell of a contingency table. Dependent variables that are measured
as durations between events measure time and may take on any nonnegative real
number; examples include the duration of parliamentary coalitions or time between
coups d’etat. Note that the same underlying phenomena may be represented as either
event counts (e.g., number of wars) or durations (time between wars), and some of the
programs included in the CONSTRAINED COUNT module enable you to estimate
exactly the same parameters with either form of data.

107

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

A variety of statistical models have been proposed to analyze events data, and the
programs here provide some that I have developed, along with others I have found
particularly useful in my research. I list here the specific programs included in this
module, the models each program can estimate, and citations to the work for which I
wrote each program. More complete references to the literature on event count and
duration models appear at the end of this document.

CMLPoisson Poisson regression (King, 1988, 1987), truncated Pois-
son regression (1989d: Section 5), and log-linear and log-
proportion models for contingency tables (1989a: Chapter
6).

CMLNegbin Negative binomial regression (1989b), truncated negative
binomial regression (1989d: Section 5), truncated or un-
truncated variance function models (1989d: Section 5),
overdispersed log-linear and log-proportion models for con-
tingency tables (1989a: Chapter 6).

CMLHurdlep Hurdle Poisson regression model (1989d: Section 4).

CMLSupreme Seemingly unrelated Poisson regression model (1989c).

CMLSupreme2 Poisson regression model with unobserved dependent vari-
ables (1989d: Section 6).

CMLExpon Exponential duration model with or without censoring
(King, Alt, Burns, and Laver, 1989).

CMLExpgam Exponential-Gamma duration model with or without cen-
soring (King, Alt, Burns, and Laver, 1989).

CMLPareto Pareto duration model with or without censoring (King,

Alt, Burns, and Laver, 1989).

4.1 Getting Started

GAUSS 3.1.0+ is required to use these routines.

4.1.1 README Files

The file README.ccn contains any last minute information on this module. Please
read it before using the procedures in this module.

4.1.2 Setup

In order to use the procedures in the CONSTRAINED COUNT Module, the
CMLCount library must be active. This is done by including count in the LIBRARY
statement at the top of your program or command file:

108

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

library cmlcount,quantal,pgraph;
This enables GAUSS to find the CONSTRAINED COUNT and required
CONSTRAINED MAXIMUM LIKELIHOOD procedures. If you plan to make any

right hand references to the global variables (which are described in a later section),
you also need the statement:

#include cmlcount.ext;

To reset global variables in succeeding executions of the command file, the following
instruction can be used:

cmlcountset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the command file.

The version number of each module is stored in a global variable. For the
CONSTRAINED COUNT Module, this global is:

—cmlc_version 3x1 matrix, the first element contains the major version number of
the CONSTRAINED COUNT Module, the second element the minor

version number, and the third element the revision number.

If you call for technical support, you may be asked for the version number of your copy
of this module.

4.2 About the CONSTRAINED COUNT Procedures

The format of the programs included in this module are all very similar:

{ b,vc,11ik } = CMLExpon(dataset,dep,ind);

{ b,vc,11ik } = CMLExpgam(dataset,dep,ind);

{ b,vc,11ik } = CMLPareto(dataset,dep,ind);

{ b,vc,11ik } = CMLPoisson(dataset,dep,ind);

{ b,vc,11ik } = CMLNegbin(dataset,dep,indl,ind2);

{ b,vc,11lik } = CMLHurdlep(dataset,dep,indl,ind2);

{ b,vc,11lik } = CMLSupreme(dataset,depl,dep2,indl,ind2);

{ b,vc,11lik } = CMLSupreme2(dataset,depl,dep2,indl,ind2,ind3);

An example program file looks like this:

109

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

library cmlcount;
CMLCountSet;

dep = { wars };
ind = { age, party, unem };
dataset = "sample";

_cml_Bounds = { 0 10 };

call CMLPoisson(dataset,dep,ind);

This run constrains the coefficients of age and party to be equal, and bounds the
coefficients to be positive and less than 10.

You may run these lines, or ones like them, from the GAUSS editor or interactively in
command mode.

4.2.1 Inputs

The variable dataset is always the first argument. This may either be a matrix or a
string containing the name of a GAUSS data set.

The dependent variable (or variables) is specified in each program by naming a symbol
or a column number. For example,

dep = { durat };
or
dep = 7;

The independent variable vector (or vectors) is also specified in each program with
variable names or column numbers. For example,

ind { age, sex, race, height, size, iq };

or
ind={2, 4: 55 6’ 7};

For each procedure, the data set and dependent variables must be specified. However,
since constant terms are automatically included as part of independent variable vectors,
you may occasionally wish to include no additional independent variables. You may do
this easily by setting the relevant vector to zero. For example, ind = 0. For another
example, you may wish to run the negative binomial regression model with a scalar
dispersion parameter rather than a variance function: ind2 = 0.

110

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

4.2.2 Outputs

Printed output is controlled by the global —_output, described in the section below.
This section describes the outputs b, ve, and [lik on the left hand side of the
expressions above.

b vector, the maximum likelihood estimates for all the parameters. The
mean vector comes first; the variance function, other mean vectors, and
scalar dispersion parameters, if any, come next.

ve matrix, the variance-covariance matrix evaluated at the maximum. The
standard errors are SQRT(DIAG(wvc)). If you choose the CML global
—cml_CovPar = 3, vc contains heteroskedastic-consistent parameter
estimates.. See Section 2.8 for more discussion of options for statistical
inference in constrained maximum likelihood models.

ik scalar, the value of the log-likelihood function at the maximum.

4.2.3 Global Control Variables

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc—_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the bootstrapped parameters,
or with CMLHist for generating histogram and surface plots.

—cmlc_Censor scalar, allows you to include a variable indicating which observations
are censored. This is used by the exponential, exponential-gamma, and
Pareto models of duration data. Alternatively, you may set it to a symbol
—cmlc_Censor = “varname” if you are using a GAUSS data set, or a
number (—cmlc_Censor = 11) if the data set is a matrix in memory. The
censoring variable should be 0 for censored observations and 1 for others.

By default, no observations are censored.

111

—cmlc_Fix

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

scalar, name of index number of logged variable among the regressors
with coefficient fixed to 1.0. By default, no logged variables are included.

In some of the programs, you have the option of including the log of a
variable and fixing its coefficient to 1.0. To include the variable (the
program takes the log), set _emlc_Fix to a variable name or number
(—emlc_Fix = “totals” or —_emlc_Fix = 12). The default (—cmlc_Fix =
0) includes no additional variable. In most event count data, the
observation period is the same length for all ¢ (a year, month, etc.).
However, in others, the observation period varies. For example, suppose
one observed the number of times a citizen was contacted by a candidate
in the interval between two public opinion polls; since polls typically take
some time to administer, the observation period would vary over the
individuals. In still other situations, the observation period may be the
same length but the population of potential events varies. For example, if
one observed the number of suicides per state, one would need some way
to include information on differing state sizes in the analysis. It turns out
that both of these situations can be dealt with in the same way by
including an additional variable in the stochastic portion of the model.
But (as explained in King, 1989, Section 5.8), this procedure turns out to
be mathematically equivalent to including the log of this additional
variable in the regression component, and constraining its coefficient to
1.0. There is often little harm in just including the log of this variable
and estimating its coefficient with all the others, but several of the
programs allow one to make this constraint.

—cmlc_Dispersion scalar, set this to a value to change the starting value for only the

dispersion parameter in the negative binomial (CMLNegbin), generalized
event count (CMLHurdlep), exponential-gamma (CMLExpgam), Pareto
(CMLPareto), and seemingly-unrelated Poisson models (CMLSupreme,
CMLSupreme2). By default, a special starting value is not used for the
dispersion parameter.

—cmlc_Precision scalar, the number of digits printed to the right of the decimal point

on output. Default = 4.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

112

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.

1 uses a vector of user supplied start values stored in the global
variable —cmlc_StartValue.

2 uses a vector of zeros.

3 uses random uniform numbers on the interval [-1, 1].

Default = 0.

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

—cmlc_StartValue Lx1 vector, start values if _cmlc_Start = 1.

—cmlc_ZeroTruncate scalar, specifies whether or not the model is a truncated model.

——altnam

——_output

——row

——rowfac

—_title

——vpad

For the Poisson and negative binomial models, —_cmlc_ZeroTruncate =
0 estimates a truncated-at-zero version of the model. By default, the
regular untruncated model is estimated.

Kx1 vector, alternate names for variables when a matrix is passed to a
CMLCount procedure. When a data matrix is passed to a CMLCount
procedure and the user is selecting from that matrix, the global variable
——altnam, if it is used, must contain names for the columns of the
original matrix.

scalar, determines printing of intermediate results.

0 nothing is written.

serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSL.SYS must be
active.
Default = 2.

scalar, specifies how many rows of the data set are read per iteration of
the read loop. By default, the number of rows to be read is calculated
automatically.

scalar, row factor. If a CONSTRAINED COUNT procedure fails due to
insufficient memory while attempting to read a GAUSS data set, then
——_rowfac may be set to some value between 0 and 1 to read a proportion
of the original number of rows of the GAUSS data set. For example,
setting

__rowfac = 0.8;
causes GAUSS to read in 80% of the rows originally calculated.
This global has an affect only when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = «”.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2,...V10, V11,....

113

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

4.2.4 Adding Constraints

There are two general types of constraints, nonlinear equality constraints and nonlinear
inequality constraints. However, for computational convenience they are divided into
five types: linear equality, nonlinear equality, linear inequality, nonlinear inequality, and
bounds. For a discussion of specifying constraints, see Section 2.6.

The specification of constraints requires knowledge of the order of the parameters. For
all models, the first parameter is a constant term, then one parameter for each
explanatory variable, and then a dispersion parameter. For CMLHurdlep and
CMLSupreme2 another constant term and set of explanatory parameters follows the
dispersion parameter. For example, suppose there are four explanatory variables, and
you wish to constrain the coefficients and the dispersion parameter to be positive:

_cml_Bounds = { 0 1e200 };

To constrain the coefficients of the first two explanatory variables to be equal:
cml A ={0
_cml B ={0

1 -10003};

}

To constrain the norm of the coefficients of the explanatory variables to be greater than
2:

proc eqp(b);
local c;
c = b[2:4];
retp(c’c - 2);
endp;
_cml_EqProc = &eqp;

4.2.5 Statistical Inference

CML statistical inference features may be accessed through the COUNT global,
—cmlc_Inference. _cmlc_Inference has the following settings:

114

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

CML constrained maximum likelihood estimates (default)
BOOT bootstrapped estimates

That is to generate bootstrapped estimates, set
_cmlc_Inference = "boot";

Confidence limits for inequality constrained parameters are generated by first leaving
—cmlc_Inference at its default setting and then calling CMLClimits with the
covariance matrix of the parameters and the parameter estimates as arguments.

Confidence Limits of Constrained Parameters

When inequality constraints are present, the considerations discussed in Section 2.8 are
relevant. You may need to use CMLClimits for correct confidence limits. In this case,
use the covariance matrix and estimates returned from the CMLCount procedure as
input to CMLClimits as well as any globals and procedures used for the constraints.
For example,

library cmlcount;
CMLCountSet;

dep = { wars };

ind = { age, party, unem };

dataset = "sample";
_eml C={01-101%}; /* constrains coefficient of age */
_cml D ={ 0 }; /* to be greater than that of party */

_cml_Bounds = { 0 10 }; /* bounds coefficients to be positive */
/* and less than 10 */

{ b,vc,11lik } = CMLPoisson(dataset,dep,ind);
cl = CMLClimits(b,vc);
print "confidence limits of PARTY coefficient"

print cl[2,1] " <--> " c1[2,2];

Bootstrapping

In addition to the usual standard errors, you may generate bootstrap standard errors.
Setting —_cmlc—_Inference to BOOT causes CMLCOUNT to call CMLBoot. This
generates bootstrapped estimates and covariance matrices of the estimates.

115

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

The bootstrapped parameters are also stored in a GAUSS data set. The name of the
data set can be determined by setting —cml_BootFname to a file name, or by default
it will be set to BOOTx where x is a four digit number incremented from 0001 until a
name not in use is found. For further details about the bootstrap, see Section 2.8.5.

The data set thus generated can be used for computing confidence intervals of the
coefficients using CMLBIimits. Also, density estimates and plots can be generated
using CMLDensity, and histograms and surface plots of the coefficients can be
produced using CMLHist. For further details about CMLDensity, see Section 2.8.5,
and for further details about CMLHist see Section 2.8.5.

4.2.6 Problems with Convergence

All the programs use maximum likelihood estimation by numerically maximizing a
different likelihood function. As with virtually all nonlinear iterative procedures,
convergence works most of the time, but not every time. Problems to be aware of
include the following:

1. The explanatory variables in each regression function should not be
highly collinear among themselves.

2. The model should have more observations than parameters; indeed, the
more observations, the better.

3. Starting values should not be too far from the optimal values.
4. The model specified should fit the data.

5. The Poisson hurdle model must have at least some observations with
y; = 0 and should take on at least two other values greater than zero.

6. The truncated models should have no observations with zeros (if
inadvertently included, a message appears and the program stops).

7. The models with scalar dispersion parameters and variance functions
should have maximum likelihood estimates that are bounded so that, for
example, in the negative binomial model 62 > 1

If you avoid the potential problems listed in the last paragraph, you should have little
problem with convergence. Of course, avoiding these problems with difficult data sets is
not always easy nor obvious. In these cases, problems may be indicated by the
following situations:

1. iterations sending the parameters off in unreasonable directions or
creating very large numbers.

116

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

2. the program actually bombing out.
3. a single iteration taking an extraordinarily long time.
4. the program taking more than 40 or 50 iterations with no convergence.

If one of these problems occur, you have several options. First, look over the list in the
last paragraph. To verify that the problem does indeed exist, you might try running
your data on the Poisson regression model if you have event count data, or the
exponential regression model if you have duration data. Both are known to be globally
concave and tend to converge very easily. If this model works, but another does not,
you probably do have a problem.

In the case of problems, you must consider iteration a participatory process. When
CML is iterating, you can press Alt-H to receive a list of options that may be changed
during iteration. See CML REFERENCE for a full explanation of each. I find that the
following practices tend to work well:

1. If the program has produced many iterations without much progress, try
pressing Alt-1 every few iterations to force the program to calculate the
information matrix or switch Newton-Raphson iterations. Either of these
may not work if the iterations are not far enough along.

2. The number of zeros to the right of the decimal point on the relative
gradients (printed on the screen while the program is iterating) is the
approximate precision of your final estimates. If the program is having
trouble converging, but the gradients are small enough (i.e., you have
sufficient precision for your substantive problem), press Alt-C to force the
program to converge.

3. If the program bombs out very quickly, changing the starting values are
your best bet (with the global —cmlc_Start). The default starting values
created with least squares, —_cmlc_Start = 0, usually works best. If that
does not work, you can also try creating them yourself, by thinking about
what the answer is likely to be or by running a simpler model. For
example, the exponential-gamma model is sometimes problematic;
however, the exponential model often provides good starting values for
the effect parameters. Thus if the other methods do not work, you might
try the following:

library cmlcount;

CMLCountSet;

dep = { durat };

ind = { unem, infl, age };

dataset = "datafile";

{ b,vc,11ik } = CMLExpon(dataset,dep,ind);
_cmlc_StartValue = b;

_cmlc_Start = 1;

call CMLExpgam(dataset,dep,ind);

117

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

You can also choose one of the other methods of creating starting values
by changing the _emlc_Start global (described above).

4.3 Annotated Bibliography

Allison, Paul. 1984. Event History Analysis. Beverly Hills: Sage. [A simple overview of
event history methods for duration data.]

Bishop, Yvonne M.M.; Stephen E. Fienberg; and Paul W. Holland. 1975. Discrete
Multivariate Analysis Cambridge, Mass.: M.I.T. Press. [Models for
contingency tables.]

Cameron, A. Colin and Pravin K. Trivedi. 1986. “Econometric Models Based on Count
Data: Comparisons and Applications of Some Estimators and Tests,”
Journal of Applied Econometrics 1, 29-53. [Review of the econometric
literature on event counts.]

Grogger, Jeffrey T. and Richard T. Carson. 1988. “Models for Counts from Choice
Based Samples,” Discussion Paper 88-9, Department of Economics,
University of California, San Diego. [Truncated event count models.]

Gourieroux, C.; A. Monfort; and A. Trognon. 1984. “Pseudo Maximum Likelihood
Methods: Applications to Poisson Models,” Econometrica 52: 701-720.
[A three-stage robust estimation method for count data.]

Hall, Bronwyn H.; Zvi Griliches; and Jerry A. Hausman. 1986. “Patents and R and D:
Is there a Lag?” International Economic Review. 27, 2 (June): 265-83.
[Nice example of a applying a variety of different estimators to single
equation count models.]

Hausman, Jerry; Bronwyn H. Hall; and Zvi Griliches. 1984. “Econometrics Models for
Count Data with An Application to the Patents-R&D Relationship,”
Econometrica. 52, 4 (July): 909-938. [Count models for time-series cross
sectional panels.]

Holden, Robert T. 1987. “Time Series Analysis of a Contagious Process,” Journal of
the American Statistical Association. 82, 400 (December): 1019-1026. [A
time series model of count data applied to airline hijack attempts.]

Jorgenson, Dale W. 1961. “Multiple Regression Analysis of a Poisson Process,” Journal
of the American Statistical Association 56,294 (June): 235-45. [The
Poisson regression model.

Kalbfleisch, J.D. and R.L. Prentice. 1980. The Statistical Analysis of Failure Time
Data. New York: Wiley. [Summary of research on many models of
duration data.]

118

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

King, Gary. 1989a. Unifying Political Methodology: The Likelihood Theory of Statistical
Inference. New York: Cambridge University Press. [Introduction to
likelihood, maximum likelihood, and a large variety of statistical models
as special cases; Chapter 5 is discrete regression models.]

____________ 1989b. “Variance Specification in Event Count Models: From Restrictive
Assumptions to a Generalized Estimator,” American Journal of Political
Science, vol. 33, no. 3 (August):762-784. [Poisson-based models with
over- and under-dispersion.]

____________ 1989c. “A Seemingly Unrelated Poisson Regression Model,” Sociological
Methods and Research. 17, 3 (February, 1989): 235-255. [A model for
simultaneously analyzing a pair of event count variables in a SURM
framework.]

____________ 1989d. “Event Count Models for International Relations: Generalizations
and Applications,” International Studies Quarterly, vol. 33, no. 3
(June):123-147. [Hurdle models, truncated models, and models with
unobserved dependent variables, all for event count data.]

____________ 1988. “Statistical Models for Political Science Event Counts: Bias in
Conventional Procedures and Evidence for The Exponential Poisson
Regression Model,” American Journal of Political Science, 32, 3
(August): 838-863. [Introduction to count models; analytical and Monte
Carlo comparisons of LS, logged-LS, and Poisson regression models.]

____________ 1987. “Presidential Appointments to the Supreme Court: Adding Systematic
Explanation to Probabilistic Description,” American Politics Quarterly,
15, 3 (July): 373-386. [An application of the Poisson regression model.]

King, Gary; James Alt; Nancy Burns; Michael Laver. 1990. “A Unified Model of
Cabinet Duration in Parliamentary Democracies,” American Journal of
Political Science, vol. 34, no. 3 (August):846-871. [Exponential model of
duration data with censoring.|

McCullagh, P. And J.A. Nelder 1983. Generalized Linear Models. London: Chapman
and Hall. [A unified approach to specifying and estimating this class of
models. Some count and duration models are covered.]

Mullahy, John. 1986. “Specification and Testing of Some Modified Count Data
Models,” Journal of Econometrics. 33: 341-65. [Several hurdle-type
models of event count data.]

Tuma, Nancy Brandon and Michael T. Hannan. 1984. Social Dynamics. New York:
Academic Press.

119

4. CONSTRAINED EVENT COUNT AND DURATION REGRESSION

120

Chapter 5

CMLCount Reference

121

CMLCountPrt 5. CMLCOUNT REFERENCE

= Purpose

Formats and prints the output from calls to CONSTRAINED COUNT procedures.

= Library

cmlcount

s Format

{ b,vc,llik 3 = CMLCountPrt(b,vc,llik);

= Input
b (K+41)x1 vector, maximum likelihood estimates of the effect parameters
stacked on top of the dispersion parameter.
ve (K+1)x (K+1) matrix, variance-covariance matrix
Uik scalar, value of the log-likelihood function at the maximum.
= Output

The input arguments are returned unchanged.

s Remarks

The call to CONSTRAINED COUNT procedures can be nested in the call to the
CMLCountPrt:

{ b,vc,11ik } = cmlcountprt(CMLExpgam(dataset,dep,ind));

122

5. CMLCOUNT REFERENCE CMLCountCLPrt

Purpose

Formats and prints the output from calls to CONSTRAINED COUNT procedures with
confidence limits

Library

cmlcount

Format

{ b,cl,llik ¥ = CMLCountCLPrt(b,cl,llik);

Input

b (K+4+1)x1 vector, maximum likelihood estimates of the effect parameters
stacked on top of the dispersion parameter.

ve (K + 1) x 2 matrix, confidence limits

ik scalar, value of the log-likelihood function at the maximum.

Output

The input arguments are returned unchanged.

Remarks

Confidence limits computed by CMLBIlimits, CMLClimits, or CMLTlimits may be
passed in the fourth argument in the call to CMLCountCLPrt:

{ b,vc,11ik } = CMLExpgam(dataset,dep,ind);

cl = CMLBlimits(_cml_BootFname);
call CMLCountCLPrt(b,cl,11ik);

Source

ccount.src

123

CMLCountSet 5. CMLCOUNT REFERENCE

= Purpose

Resets CONSTRAINED COUNT global variables to default values.

= Library

cmlcount

s Format

CMLCountSet;

= Input

None

= Output

None

= Remarks
Putting this instruction at the top of all command files that invoke CONSTRAINED
COUNT procedures is generally good practice. This prevents globals from being
inappropriately defined when a command file is run several times or when a command
file is run after another command file has executed that calls a CONSTRAINED
COUNT procedure.

CMLCountSet calls CMLSet which calls GAUSSET.

= Source

ccount.src

124

5. CMLCOUNT REFERENCE CMLExpgam

Purpose

Estimates an exponential-gamma regression model, for the analysis of duration data,
with maximum likelihood.

Library
cmlcount

Format

{ b,vc,llik ¥} = CMLExpgam(dataset,dep,ind);

Input
dataset string, name of GAUSS data set.
_or —
NxK matrix, data
dep string, the name of the dependent variable.
—or —
scalar, the index of the dependent variable.
nd Kx1 character vector, names of the independent variables.

_or —
Kx1 numeric vector, indices of independent variables.

Set to 0 to include only a constant term.

If dataset is a matrix, dep or ind may be a string or character variable containing either
the standard labels created by CML (V1, V2,..., or V01, V02,...., depending on the
value of —_vpad), or the user-provided labels in —_altnam.

Output

b (K+1)x1 vector, maximum likelihood estimates of the effect parameters
stacked on top of the dispersion parameter.

ve (K4+1)x(K+1) matrix, variance-covariance matrix of the estimated
parameters evaluated at the maximum. If you choose the CML global
—cml_CovPar = 3, vc contains heteroskedastic-consistent parameter
estimates.

ik scalar, value of the log-likelihood function at the maximum.

Globals

CML globals are also relevant, including constraint matrices and procedures.

125

CMLExpgam

5. CMLCOUNT REFERENCE

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —cmlc—_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

—cmlc_Censor string, the name of the censor variable from dataset.

—or —
scalar, the index of the censor variable from dataset.

By default, no censoring is used.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.

1 uses a vector of user supplied start values stored in the global
variable —cmlc_StartValue.

2 uses a vector of zeros.

3 uses random uniform numbers on the interval [-1, 1].

Default = 0.

—cmlc_StartValue (K+1)x1 vector, start values if _cmlc_Start = 1.

—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

——altnam

——miss

126

Kx1 vector, alternate names for variables when a matrix is passed to
CMLExpgam. When a data matrix is passed to CMLExpgam and when
the user is selecting from that matrix, the global variable —_altnam, if it
is used, must contain names for the columns of the original matrix.

scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

5. CMLCOUNT REFERENCE CMLExpgam

Default = 0.

——output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or printers.
2 (DOS only) output is suitable for screen only. ANSL.SYS must be
active.
Default = 2.
——_row scalar, specifies how many rows of the data set will be read per iteration

of the read loop. By default, the number of rows to be read will be
calculated automatically.

——rowfac scalar, row factor. If CMLExpgam fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global has an affect only when ——_row = 0.
Default = 1.

—_title string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = «”.

——vpad scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2,...V10, V11,....

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

Remarks

Let the n duration observations (nonnegative real numbers) for the dependent variable
be denoted as y1,...,y,. Assume that y; follows a gamma distribution with expected

127

CMLExpgam 5. CMLCOUNT REFERENCE

value p; and variance p?0?. Let the mean p; be an exponential-linear function of a
vector of explanatory variables, x;:

E(y;) = pi = exp(:8) (5.1)

The program includes a constant term as the first column of x; and allows one to
include any number of explanatory variables. Note that u; from a duration model
equals 1/); from an event count model; thus, one need only change the sign of the effect
parameters to get estimates of the same parameters from these different kinds of data.

The dispersion o2 is parametrized as follows:

o = exp(y) 52

EXPGAM reports estimates of § and ~.

For an introduction to the exponential gamma regression model see King, Alt, Burns,
and Laver (1989) or Kalbfleisch and Prentice (1980).

= Example

Constrained Exponential-Gamma Regression Model of Duration Data

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLExpgam(dataset,dep,ind);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11lik);

output off;

A vector of effect parameters and a scalar dispersion parameter are estimated. The
vector includes one element corresponding to each explanatory variable named in ind
and a constant term. Five parameters are estimated in this example.

Constrained Censored Exponential-Gamma Regression Model of Duration Data
library cmlcount;
#include cmlcount.ext;

CMLCountset;

128

5. CMLCOUNT REFERENCE CMLExpgam

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_Censor = { vi12 };

{ b,vc,11ik } = CMLExpgam(dataset,dep,ind);
output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

A vector of effect parameters and a scalar dispersion parameter are estimated. The
vector includes one element corresponding to each explanatory variable named in ind
and a constant term. Five parameters are estimated in this example.

Source

cmlexpgm.src

129

CMLExpon

5. CMLCOUNT REFERENCE

Purpose

Estimates a constrained exponential regression model or censored exponential
regression model with maximum likelihood.

Library

cmlcount

Format

{ b,ve,llik 3 = CMLExpon(dataset,dep,ind);

Input
dataset string, name of GAUSS data set.
—or —
NxK matrix, data
dep string, the name of the dependent variable
—or —
scalar, the index of the dependent variable
ind Kx1 character vector, names of the independent variables

—or —
Kx1 numeric vector, indices of independent variables

Set to 0 to include only a constant term.

If dataset is a matrix, dep or ind may be a string or character variable containing either
the standard labels created by CML (V1, V2,..., or V01, V02....., depending on the
value of —_vpad), or the user-provided labels in —_altnam.

Output

b Kx1 vector, maximum likelihood estimates of the effect parameters.

Ve KxK matrix, variance-covariance matrix of the estimated parameters
evaluated at the maximum. If the CML global —_cml_CovPar is set to 3,
ve will contain heteroskedastic-consistent parameter estimates.

Uik scalar, value of the log-likelihood function at the maximum.

Globals

CML globals are also relevant, including constraint matrices and procedures.

130

5. CMLCOUNT REFERENCE

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

—cmlc_Censor string, the name of the censor variable from dataset

—or —
scalar, the index of the censor variable from dataset

By default, no censoring is used.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y 4+ 0.5) on the explanatory
variables.
1 will use a vector of user supplied start values stored in the global

variable —cmlc_StartValue.
2 uses a vector of zeros.

uses random uniform numbers on the interval [—1, 1].

Default = 0.

—cmlc_StartValue Kx1 vector, start values if _cmlc_Start = 1.

—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

——altnam

——miss

Kx1 vector, alternate names for variables when a matrix is passed to
CMLExpon. When a data matrix is passed to CMLExpon and the user is
selecting from that matrix, the global variable —_altnam, if it is used,
must contain names for the columns of the original matrix.

scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

131

CMLExpon

CMLExpon

—_output

——row

——rowfac

——title

——vpad

Remarks

5. CMLCOUNT REFERENCE

Default = 0.
scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSL.SYS must be
active.

Default = 2.

scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

scalar, row factor. If EXPON fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global only has an affect when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = 7.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2....V10, V11,....

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

Let y; (i =1,...,n) take on any non-negative real number representing a duration.
Often y; is only measured as an integer, such as the number of days or months. Even
so, if your dependent variable is a measure of time, duration models, and not event
count models, are called for. Let y; be distributed exponentially with mean p;. Also let

132

5. CMLCOUNT REFERENCE

E(y;) = u; = exp(z;0). Note that p; from a duration model equals 1/A; from an event
count model; thus, one need only change the sign of the effect parameters to get
estimates of the same parameters from these different kinds of data.

For an introduction to the exponential regression model and the censored exponential
regression model see Kalbfleisch and Prentice (1980) and King, Alt, Burns, and Laver
(1989).

Example
Constrained Exponential Regression Model

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLExpon(dataset,dep,ind);

output file = cmlcount.out on;

call CMLCountPrt(b,vc,11ik);

output off;

A single vector of effect parameters are estimated. This vector includes one element
corresponding to each explanatory variable named in ind and a constant term.

Constrained Censored Exponential Regression Model

library cmlcount;

#include cmlcount.ext;
CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };
_cmlc_Censor = { notseen };

{ b,vc,11ik } = CMLExpon(dataset,dep,ind);
output file = cmlcount.out reset;
call CMLCountPrt(b,vc,11ik);
output off;

A single vector of effect parameters are estimated. This vector includes one element
corresponding to each explanatory variable named in ind and a constant term.

Source

cmlexpon.src

133

CMLExpon

CMLHurdlep 5. CMLCOUNT REFERENCE

= Purpose

Estimates a constrained hurdle Poisson regression model, for the analysis of event
counts, with maximum likelihood.

= Library
cmlcount
s Format

{ b,ve,llik 3 = CMLHurdlep(dataset,dep,ind);

= Input
dataset string, name of GAUSS data set.
—or —
NxK matrix, data
dep string, the name of the dependent variable
—or —
scalar, the index of the dependent variable
indl Kx1 character vector, names of first event independent variables
—or —
Kx1 numeric vector, indices of first event independent variables
ind2 Kx1 character vector, names of second event independent variables

—or —
Kx1 numeric vector, indices of second event independent variables

If dataset is a matrix, dep, indl, or ind2 may be a string or character variable
containing either the standard labels created by CML (V1, V2,...; or V01, V02,....,
depending on the value of —_vpad), or the user-provided labels in —_altnam.

= Output

b (K4L)x1 vector, maximum likelihood estimates of the effect parameters
stacked on top of the dispersion parameter.

ve (K4+L)x (K+L) matrix, variance-covariance matrix of the estimated
parameters evaluated at the maximum. If you choose the CML global
—cml_CovPar = 3, vc will contain heteroskedastic-consistent parameter
estimates.

llik scalar, value of the log-likelihood function at the maximum.

134

5. CMLCOUNT REFERENCE CMLHurdlep

= Globals

CML globals are also relevant, including constraint matrices and procedures.

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.
1 will use a vector of user supplied start values stored in the global

variable —cmlc_StartValue.
2 uses a vector of zeros.

uses random uniform numbers on the interval [f%, %]
Default = 0.
—cmlc_StartValue (K+L)x1 vector, start values if —cmlc_Start = 1.
—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

——altnam Kx1 vector, alternate names for variables when a matrix is passed to
CMLHurdlep. When a data matrix is passed to CMLHurdlep and the
user is selecting from that matrix, the global variable —_altnam, if it is
used, must contain names for the columns of the original matrix.

——miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

Default = 0.

135

CMLHurdlep

——output

——row

——rowfac

——title

——vpad

Remarks

5. CMLCOUNT REFERENCE

scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSI.SYS must be
active.

Default = 2.

scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

scalar, row factor. If CMLHurdlep fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global only has an affect when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = 7.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2,...V10, V11,....
1 Variable names created by the procedure are padded with zeros to

give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

Let the n event count observations (nonnegative integers) for the dependent variable be

denoted as 1, ...

of events that

, Yn- Yi is then a random dependent variable representing the number
have occurred during observation period i. Let Ag; be the rate of the first

event occurrence and A4; be the rate for all additional events after the first. If these are

136

5. CMLCOUNT REFERENCE CMLHurdlep

the expected values of two separate Poisson processes, we have the hurdle Poisson
regression model. These means are parametrized as usual:

Aoi = exp(zif) (5.3)

and

Api = exp(ziy) (5.4)

where x; and z; are (possibly) different vectors of explanatory variables. The program
produces estimates of 4 and ~. If 8 = v and x = z, this model reduces to the Poisson.

For an introduction to the Hurdle Poisson regression model see Mullahy (1986) and
King (1989d).

Example

Constrained Hurdle Poisson Regression Model:

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

indl = { unem, poverty, allianc };

ind2 = { race, sex, age, partyid, x4, v5 };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLHurdlep(dataset,dep,indl,ind2);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

Two vectors of effect parameters are estimated. Each includes one element
corresponding to each explanatory variable plus a constant term (in the example, four
parameters appear in the first regression function and seven in the second).

Source

cmlhurdl.src

137

CMLNegbin 5. CMLCOUNT REFERENCE

= Purpose

Estimates a constrained negative binomial regression model or truncated-at-zero
negative binomial regression model with maximum likelihood.

= Library
cmlcount
s Format

{ b,ve,llik 3 = CMLNegbin(dataset,dep,indl,ind2);

= Input
dataset string, name of GAUSS data set.
—or —
NxK matrix, data
dep string, the name of the dependent variable
—or —
scalar, the index of the dependent variable
indl Kx1 character vector, names of first event independent variables
—or —
Kx1 numeric vector, indices of first event independent variables
Set to 0 to include only a constant term.
ind2 Kx1 character vector, names of second event independent variables

—or —
Kx1 numeric vector, indices of second event independent variables

Set to 0 for a scalar dispersion parameter.

If dataset is a matrix, dep, indl, or ind2 may be a string or character variable
containing either the standard labels created by CML (V1, V2,...; or V01, V02,....,
depending on the value of —_vpad), or the user-provided labels in —_altnam.

= Output
b (K+1)x1 or (K+L)x1 vector, maximum likelihood estimates of the effect
parameters stacked on top of either the dispersion parameter or the
coefficients of the variance function.
ve (K+1)x(K+1) or (K+L)x(K+L) matrix, variance-covariance matrix of

the estimated parameters evaluated at the maximum. If you choose the
CML global —_eml_CovPar = 3, vc will contain
heteroskedastic-consistent parameter estimates.

138

5. CMLCOUNT REFERENCE

ik

» Globals

scalar, value of the log-likelihood function at the maximum.

CML globals are also relevant, including constraint matrices and procedures.

—cmlc_Inference string, determines the type of statistical inference.

—cmlc_Fix

—cmlc_Start

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc—_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

scalar, name of index number of logged variable among the regressors
with coefficient constrained to 1.0 By default, no logged variables are
included.

scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.

1 will use a vector of user supplied start values stored in the global
variable —_cmlc_StartValue.

2 uses a vector of zeros.

3 uses random uniform numbers on the interval [—1, 1].

Default = 0.

—cmlc_StartValue (K+1)x1 or (K+L)x1 vector, start values if _emlc_Start = 1.

—cmlc_Dispersion scalar, start value for scalar dispersion parameter. Default = 3.

—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

—cmlc_ZeroTruncate scalar, specifies which model is used:

0 truncated-at-zero negative binomial model

1 negative binomial model is used.

139

CMLNegbin

CMLNegbin

——altnam

——miss

——output

——row

——rowfac

——title

——vpad

140

5. CMLCOUNT REFERENCE

Kx1 vector, alternate names for variables when a matrix is passed to
CMLNegbin. When a data matrix is passed to CMLNegbin and the user
is selecting from that matrix, the global variable ——_altnam, if it is used,
must contain names for the columns of the original matrix.

scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

Default = 0.

scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSI.SYS must be
active.

Default = 2.

scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

scalar, row factor. If CMLNegbin fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global only has an affect when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = 7.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2,...V10, V11,....

5. CMLCOUNT REFERENCE CMLNegbin

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

Remarks

Let y; be a random dependent variable representing the number of events that have
occurred during observation period ¢ (i = 1,...,n). Assume that y; follows a negative
binomial distribution with expected value \; and variance A;c2. Let the mean \; (the
rate of event occurrence, which must be greater than zero) be an exponential-linear
function of a vector of explanatory variables, x;:

E(y;) = N = exp(zif3) (5.5)

The program includes a constant term as the first column of x; and allows one to
include any number of explanatory variables.

o2 is parametrized as follows:

02 =1+ exp(zi7) (5.6)

where z; = 1, if estimating a scalar dispersion parameter, or a vector of explanatory
variables, if estimating a variance function. The program calculates estimates of 3 and

Y-

For an introduction to the negative binomial regression model, see Hausman, Hall, and
Griliches (1984) and King (1989b); for information on the truncated negative binomial
model, see Grogger and Carson (1988), and on the variance function model with or
without truncation see King (1989d: Section 5)

Example
Constrained Negative Binomial Regression Model

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

indl = { unem, poverty, allianc };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLNegbin(dataset,dep,ind1,0);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

141

CMLNegbin 5. CMLCOUNT REFERENCE

A single vector of effect parameters and one scalar dispersion parameter are estimated.
The vector of effect parameters includes one element corresponding to each explanatory
variable and a constant term. In the example, five parameters are estimated.

Constrained Negative Binomial Variance Function Regression Model

library cmlcount;

#include cmlcount.ext;
CMLCountset;

dataset = "wars";

depl = { wars };

indl = { unem, poverty, allianc };
ind2 = { partyid, x4 };

{ b,vc,11ik } = CMLNegbin(dataset,dep,indl,ind2);
output file = cmlcount.out reset;
call CMLCountPrt(b,vc,11lik);
output off;

Two vectors of effect parameters are estimated, one for the mean ind! and one for the
variance function ind2. Each vector includes a constant term and one element
corresponding to each explanatory variable. The example estimates seven parameters.

Constrained Truncated-at-zero Negative Binomial Regression Model

library cmlcount;

#include cmlcount.ext;
CMLCountset;

dataset = "wars";

depl = { wars };

indl = { unem, poverty, allianc };
_cmlc_ZeroTruncate = 0;

{ b,vc,11ik } = CMLNegbin(dataset,dep,ind1,0);
output file = cmlcount.out reset;
call CMLCountPrt(b,vc,11ik);
output off;

A single vector of effect parameters and one scalar dispersion parameter are estimated.
The vector of effect parameters includes one element corresponding to each explanatory
variable and a constant term. In the example, five parameters are estimated.

Constrained Truncated-at-zero Negative Binomial Variance Function Regression Model

142

5. CMLCOUNT REFERENCE CMLNegbin

library cmlcount;

#include cmlcount.ext;
CMLCountset;

dataset = "wars";

depl = { wars };

indl = { unem, poverty, allianc };
ind2 = { partyid, x4 };
_cmlc_ZeroTruncate = 0;

{ b,vc,11ik } = CMLNegbin(dataset,dep,ind1,0);
output file = cmlcount.out reset;
call CMLCountPrt(b,vc,11ik);
output off;

Two vectors of effect parameters are estimated, one for the mean and one for the
variance function. Each vector includes a constant term and one element corresponding
to each explanatory variable. In the example, the variables specified in ind! pertain to
the expected value and ind2 to the variance. Seven parameters are estimated.

Source

cmlnegbn.src

143

CMLPareto

5. CMLCOUNT REFERENCE

Purpose

Estimates a constrained Pareto regression model, for the analysis of duration data, with
maximum likelihood.

Library
cmlcount

Format

{ b,ve,llik 3 = CMLPareto(dataset,dep,ind);

Input
dataset string, name of GAUSS data set.
—or —
NxK matrix, data
dep string, the name of the dependent variable
—or —
scalar, the index of the dependent variable
ind Kx1 character vector, names of the independent variables

—or —
Kx1 numeric vector, indices of independent variables

Set to 0 to include only a constant term.

If dataset is a matrix, dep and ind may be a string or character variable containing
either the standard labels created by CML (V1, V2,..., or V01, V02,...., depending on
the value of —_vpad), or the user-provided labels in —_altnam.

Output

b (K+1)x1 vector, maximum likelihood estimates of the effect parameters
stacked on top of the dispersion parameter.

ve (K4+1)x(K+1) matrix, variance-covariance matrix of the estimated
parameters evaluated at the maximum. If the CML global —_cml_CovPar
is set to 3, ve will contain heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

Globals

CML globals are also relevant, including constraint matrices and procedures.

144

5. CMLCOUNT REFERENCE

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

—cmlc_Censor string, the name of the censor variable from dataset

~or —
scalar, the index of the censor variable from dataset

Each element of censor variable is 0 if censored, or 1 if not.

By default, no censoring is used.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.
1 will use a vector of user supplied start values stored in the global

variable _cmlc_StartValue.
uses a vector of zeros.

uses random uniform numbers on the interval [—1, 1].

Default = 0.

—cmlc_StartValue (K+1)x1 vector, start values if _cmlc_Start = 1.

—cmlc_Dispersion scalar, start value for scalar dispersion parameter. Default = 3.

—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

——altnam

——miss

Kx1 vector, alternate names for variables when a matrix is passed to
CMLPareto. When a data matrix is passed to CMLPareto and the user
is selecting from that matrix, the global variable —_altnam, if it is used,
must contain names for the columns of the original matrix.

scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

145

CMLPareto

CMLPareto

—_output

——row

——rowfac

—_title

——vpad

146

5. CMLCOUNT REFERENCE
1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.
Default = 0.

scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSL.SYS must be
active.

Default = 2.

scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

scalar, row factor. If CMLPareto fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global only has an affect when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = 7.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2....V10, V11,....

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to

sort properly.

Default = 1.

5. CMLCOUNT REFERENCE

Remarks

Let the n duration observations (non-negative real numbers) for the dependent variable
be denoted as y1, ..., y,. Assume that y; follows a Pareto distribution with expected
value p; and variance ;02 4 p2. Let the mean u; be an exponential-linear function of a
vector of explanatory variables, x;:

E(y;) = pi = exp(aif3) (5.7)

The program includes a constant term as the first column of x; and allows one to
include any number of explanatory variables. Note that u; from a duration model
equals 1/); from an event count model; thus, one need only change the sign of the effect
parameters to get estimates of the same parameters from these different kinds of data.

The dispersion ¢ is parametrized as follows:

o} = exp(y) (5:8)
The program gives estimates of 5 and ~.

For an introduction to the Pareto regression model see Hannan and Tuma (1984) and
King, Alt, Burns, and Laver (1989).

Example

Pareto Regression Model of Duration Data

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11lik } = CMLPareto(dataset,dep,ind);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

A vector of effect parameters and a scalar dispersion parameter are estimated. The
vector includes one element corresponding to each explanatory variable named in ind
and a constant term. Five parameters are estimated in this example.

Constrained Censored Pareto Regression Model of Duration Data

147

CMLPareto

CMLPareto

5. CMLCOUNT REFERENCE

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty };

_cmlc_Censor = { cvar };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLPareto(dataset,dep,ind);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

A vector of effect parameters and a scalar dispersion parameter are estimated. The
vector includes one element corresponding to each explanatory variable named in ind
and a constant term. Five parameters are estimated in this example.

Source

cmlparet.src

148

5. CMLCOUNT REFERENCE CMLPoisson

Purpose

Estimates a constrained Poisson regression model or truncated-at-zero Poisson
regression model with maximum likelihood.

Library

cmlcount

Format

{ b,ve,llik ¥ = CMLPoisson(dataset,dep,ind);

Input
dataset string, name of GAUSS data set.
—or —
NxK matrix, data
dep string, the name of the dependent variable
—or —
scalar, the index of the dependent variable
nd Kx1 character vector, names of the independent variables

—or —
Kx1 numeric vector, indices of independent variables

Set to 0 to include only a constant term.

If dataset is a matrix, dep and ind may be a string or character variable containing
either the standard labels created by CML (V1, V2,..., or V01, V02,...., depending on
the value of —_vpad), or the user-provided labels in —_altnam.

Output

b Kx1 vector, maximum likelihood estimates of the effect parameters.

ve KxK matrix, variance-covariance matrix of the estimated parameters
evaluated at the maximum. If you choose the CML global —cml_CovPar
= 3, vc will contain heteroskedastic-consistent parameter estimates.

ik scalar, value of the log-likelihood function at the maximum.

Globals

CML globals are also relevant, including constraint matrices and procedures.

149

CMLPoisson 5. CMLCOUNT REFERENCE

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —cmlc—_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

—cmlc_Fix scalar, name of index number of logged variable among the regressors
with coefficient constrained to 1.0 By default, no logged variables are
included.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.
1 will use a vector of user supplied start values stored in the global

variable _cmlc_StartValue.
uses a vector of zeros.

3 uses random uniform numbers on the interval [-1, 1].

Default = 0.
—cmlc_StartValue Kx1 vector, start values if _cmlc_Start = 1.
—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

—cmlc_ZeroTruncate scalar, specifies which model is used:

0 truncated-at-zero negative binomial model
1 negative binomial model is used.
Default = 1.

——altnam Kx1 vector, alternate names for variables when a matrix is passed to
CMLPoisson. When a data matrix is passed to CMLPoisson and the
user is selecting from that matrix, the global variable —_altnam, if it is
used, must contain names for the columns of the original matrix.

—_miss scalar, determines how missing data will be handled.

150

5. CMLCOUNT REFERENCE CMLPoisson

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

Default = 0.
——output scalar, determines printing of intermediate results.

0 nothing is written.
serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSL.SYS must be
active.

Default = 2.

——row scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

——rowfac scalar, row factor. If POISSON fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.

—_title string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = «”.

——vpad scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2,...V10, V11,....

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

151

CMLPoisson 5. CMLCOUNT REFERENCE

Remarks

Let the n event count observations (non-negative integers) for the dependent variable
be denoted as y1,...,yn. y; is then a random dependent variable representing the
number of events that have occurred during observation period i. By assuming that the
events occurring within each period are independent and have constant rates of
occurrence, y; can be shown to follow a Poisson distribution:

To(wilAi) = yil for A, > 0and y; =0,1,... (5.9)
0 otherwise

with expected value and variance \;. Under the Poisson regression model, \; (the rate
of event occurrence, which must be greater than zero) is assumed to be an
exponential-linear function of a vector of explanatory variables, x;:

E(y:) = X = exp(z:p) (5.10)

The program includes a constant term as the first element of x; and allows one to
include any number of explanatory variables.

For an introduction to the Poisson regression model see King (1988); on the truncated
model, see Grogger and Carson (1988) and King (1989d).

Example

Constrained Poisson Regression Model

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLPoisson(dataset,dep,ind);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11lik);

output off;

Constrained Truncated-at-zero Poisson Regression Model

library cmlcount;
#include cmlcount.ext;

152

5. CMLCOUNT REFERENCE CMLPoisson

CMLCountset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };
_cmlc_ZeroTruncate = 0;

{ b,vc,11lik } = CMLPoisson(dataset,dep,ind);
output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

= Source

cmlpoiss.src

153

CMLSupreme 5. CMLCOUNT REFERENCE

= Purpose

Estimates a constrained seemingly unrelated Poisson regression model, for the analysis
of two event CONSTRAINED COUNT variables, with maximum likelihood.

= Library
cmlcount
s Format

{ b,vc,llik 3 = CMLSupreme(dataset,depl,dep2,indl,ind2);
= Input

dataset string, name of GAUSS data set.
—or —
NxK matrix, data

depl string, name of the first dependent variable
—or —
scalar, index of the first dependent variable

dep2 string, name of the second dependent variable
—or —
scalar, index of the second dependent variable

indl Kx1 character vector, names of first event independent variables
—or —
Kx1 numeric vector, indices of first event independent variables

Set to 0 to include only a constant term.

ind2 Kx1 character vector, names of second event independent variables
—or —
Kx1 numeric vector, indices of second event independent variables

Set to 0 to include only a constant term.

If dataset is a matrix, depl, dep2, indl and ind2 may be a string or character variable
containing either the standard labels created by CML (V1, V2,..., or V01, V02,....,
depending on the value of —_vpad), or the user-provided labels in —_altnam.

= OQOutput

b (K4+L+2)x1 vector, maximum likelihood estimates of the effect
parameters of 3 and v stacked on top of the covariance parameter &.

154

5. CMLCOUNT REFERENCE CMLSupreme

ve (K4+L+2) x (K+L+2) matrix, variance-covariance matrix of the estimated
parameters evaluated at the maximum. If you choose the CML global
—cml_CovPar = 3, vc will contain heteroskedastic-consistent parameter
estimates.

ik scalar, value of the log-likelihood function at the maximum.

Globals

CML globals are also relevant, including constraint matrices and procedures.

—cmlc_Inference string, determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

—cmlc_Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.
1 will use a vector of user supplied start values stored in the global

variable —cmlc_StartValue.
uses a vector of zeros.

uses random uniform numbers on the interval [—1, 1].
Default = 0.
—cmlc_StartValue (K+L+2)x1 vector, start values if —cmlc_Start = 1.
—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

——altnam Kx1 vector, alternate names for variables when a matrix is passed to
CMLSupreme. When a data matrix is passed to CMLSupreme and the
user is selecting from that matrix, the global variable —_altnam, if it is
used, must contain names for the columns of the original matrix.

——miss scalar, determines how missing data will be handled.

155

CMLSupreme

——output

——row

——rowfac

——title

——vpad

156

5. CMLCOUNT REFERENCE

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

Default = 0.
scalar, determines printing of intermediate results.

0 nothing is written.

serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSL.SYS must be
active.
Default = 2.

scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

scalar, row factor. If CMLSupreme fails due to insufficient memory while
attempting to read a GAUSS data set, then —_rowfac may be set to
some value between 0 and 1 to read a proportion of the original number
of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global only has an affect when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = 7.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2,...V10, V11,....
1 Variable names created by the procedure are padded with zeros to

give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to
sort properly.

Default = 1.

5. CMLCOUNT REFERENCE CMLSupreme

Remarks

Suppose we observe two event count dependent variables y1; and yo; for n observations.
Let these variables be distributed as a bivariate Poisson with FE(y1;) = A1; and
E(y2;) = A2;. These means are parametrized as follows:

Aoi = exp(x;0) (5.11)

and

Ayi = exp(z7) (5.12)

where z; and z; are (possibly) different vectors of explanatory variables. The covariance
parameter is &.

If you have convergence problems, you might try CMLSupreme2 with argument ind3
= 0 instead.

For details about this model, see King (1989c).

Example
Constrained Seemingly Unrelated Poisson Regression Model (CMLSupreme)

library cmlcount;

#include cmlcount.ext;

CMLCountset;

dataset = "wars";

depl = { wars };

ind1l { unem, poverty, allianc };

dep2 = { coups };

ind2 = { unem, age, sex, race };

cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */

{ b,vc,11ik } = CMLSupreme(dataset,depl,dep2,indl,ind2);

output file = cmlcount.out reset;

call CMLCountPrt(b,vc,11ik);

output off;

Two vectors of effect parameters and one scalar covariance parameter are estimated.
The vectors of effect parameters each include one element corresponding to each
explanatory variable and a constant term. In the example, ten parameters are
estimated.

Source

cmlsupr.src

157

CMLSupreme2 5. CMLCOUNT REFERENCE

= Purpose

Estimates a constrained Poisson regression model with unobserved dependent variables,
for the analysis of two observed (and three unobserved) event count variables, with
maximum likelihood.

= Library
cmlcount
= Format

{ b,ve,llik 3 = CMLSupreme2(dataset,dep!,dep2,indl,ind2,ind3);

= Input

dataset string, name of GAUSS data set.
—or —
NxK matrix, data

depl string, name of the first dependent variable
—or —
scalar, index of the first dependent variable

dep2 string, name of the second dependent variable
—or —
scalar, index of the second dependent variable

indl Kx1 character vector, names of first event independent variables
—or —
K1 numeric vector, indices of first event independent variables

Set to 0 to include only a constant term.

ind2 Lx1 character vector, names of second event independent variables
—or —
L x1 numeric vector, indices of second event independent variables

Set to 0 to include only a constant term.

ind3 Mx1 character vector, names of second event independent variables
—or —
Mx1 numeric vector, indices of second event independent variables

Set to 0 to include only a constant term.
If dataset is a matrix, depl, dep2, indl, ind2, or ind3 may be a string or character

variable containing either the standard labels created by CML (V1, V2,..., or V01,
V02,...., depending on the value of —_vpad), or the user-provided labels in —_altnam.

= Output

158

5. CMLCOUNT REFERENCE CMLSupreme2

ve

ik

Globals

(K4+L+M)x1 vector, maximum likelihood estimates of the effect
parameters of 3 and ~ stacked on top of the covariance parameter &.

(K4+L+M) x (K+L+M) matrix, variance-covariance matrix of the
estimated parameters evaluated at the maximum. If you choose the CML
global —eml—CovPar = 3, vc will contain heteroskedastic-consistent
parameter estimates.

scalar, value of the log-likelihood function at the maximum.

CML globals are also relevant, including constraint matrices and procedures.

—cmlc_Inference string, determines the type of statistical inference.

—cmlc_Start

BOOT generates bootstrapped estimates and covariance matrix of
estimates

CML generates maximum likelihood estimates

Setting —_cmlc_Inference to BOOT generates a GAUSS data set
containing the bootstrapped parameters. The file name of this data set is
either the default BOOTx, where x is a four digit number starting with 1
and increasing until a unique name is found, or the name in the CML
global variable, —_cml_BootFname. This data set can be used with
CMLBIimits for generating confidence limits, with CMLDensity for
generating density estimates and plots of the boostrapped parameters, or
with CMLHist for generating histogram and surface plots.

scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing In(y + 0.5) on the explanatory
variables.
1 will use a vector of user supplied start values stored in the global

variable _cmlc_StartValue.
uses a vector of zeros.

uses random uniform numbers on the interval [f%, %]

Default = 0.

—cmlc_StartValue (K+L+M)x1 vector, start values if _cmlc_Start = 1.

—cmlc_Precision scalar, number of decimal points to print on output. Default = 4.

——altnam

Kx1 vector, alternate names for variables when a matrix is passed to
CMLSupreme2. When a data matrix is passed to CMLSupreme2 and
the user is selecting from that matrix, the global variable —_altnam, if it
is used, must contain names for the columns of the original matrix.

159

CMLSupreme2

——miss

—_output

——row

——rowfac

—_title

——vpad

160

5. CMLCOUNT REFERENCE

scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data set must
not have any missings. This is the fastest option.

1 Listwise deletion. Removes from computation any observation
with a missing value on any variable included in the analysis.

Default = 0.

scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSI.SYS must be
active.

Default = 2.

scalar, specifies how many rows of the data set will be read per iteration
of the read loop. By default, the number of rows to be read will be
calculated automatically.

scalar, row factor. If CMLSupreme2 fails due to insufficient memory
while attempting to read a GAUSS data set, then —_rowfac may be set
to some value between 0 and 1 to read a proportion of the original
number of rows of the GAUSS data set. For example, setting

__rowfac = 0.8;
will cause GAUSS to read in 80% of the rows originally calculated.
This global only has an affect when —_row = 0.
Default = 1.

string, message printed at the top of the screen and printed out by
CMLCountPrt. Default = 7.

scalar, if dataset is a matrix in memory, the variable names are
automatically created by CML. Two types of names can be created:

0 Variable names automatically created by CML are not padded to
give them equal length. For example, V1, V2....V10, V11,....

1 Variable names created by the procedure are padded with zeros to
give them an equal number of characters. For example, V01, V02,
..., V10, V11,.... This is useful if you want the variable names to

sort properly.

Default = 1.

5. CMLCOUNT REFERENCE CMLSupreme2

Remarks

This model assumes the existence of three independent unobserved variables, y3;, v5;,
and y3;, with means E(yj;) = Aj;, for j = 1,2,3. Although these are not observed, we
do observe y1; and y2;, which are functions of these three variables:

Yi; = yi‘i+y§i
Yoi = Yo; + Yz

The procedure estimates three separate regression functions, one for the expected value
of each of the unobserved variables:

A1i = exp(21:51) (5.13)
A2; = exp(z2:02)
A3i = exp(x3;03)

where x1;, x2; and x3; are (possibly) different sets of explanatory variables and (1, S,
and (3 are separate parameter vectors. This option produces maximum likelihood
estimates for these three parameter vectors.

Example
Poisson Regression Model with Unobserved Dependent Variables

library cmlcount;
#include cmlcount.ext;

CMLCountset;

dataset = "wars";

depl = { wars };

indl = { unem, poverty, allianc };
dep2 = { coups };

ind2 = { unem, age, sex, race };
ind3 = { us, sov };

cml_Bounds = { 0 10 }; /* constrains coefficients */
/* to be positive */
{ b,vc,11lik } = CMLSupreme2(dataset,depl,dep2,indl,ind2,ind3);
output file = cmlcount.out reset;
call CMLCountPrt(b,vc,11ik);
output off;

Three vectors of effect parameters are estimated. Each includes one element
corresponding to each explanatory variable plus a constant term. In the example,
twelve parameters are estimated.

Source

cmlsupr2.src

161

CMLSupreme2 5. CMLCOUNT REFERENCE

162

Index

active parameters, 13

AD, 20

algorithm, 37

algorithmic derivatives, 20

Alt-1, 37

Alt-2, 37

Alt-3, 37

Alt-4, 37

Alt-5, 37

Alt-6, 37

Alt-A, 37

Alt-H, 37

——altnam, 111, 113, 126, 131, 135,
140, 145, 150, 155, 159

B

Bayesian estimates, 7

BFGS, 11, 37, 44, 83

BHHH, 7, 37, 44, 83
BHHHSTEP, 12

bootstrap, 5, 7, 29, 34, 111, 115
bounds, 17, 54, 91, 114
BRENT, 11, 12

C

ccount.src, 123, 124

CHGVAR, 4

CML, 42

cml.src, 58, 63, 77, 78, 95
—cml_A,; 15, 43, 44, 53, 82, 83, 90
—cml_Active, 13, 44, 83
—cml_Algorithm, 43, 44, 82, 83
—cml_Alpha, 44, 59, 63, 83
—cml_B, 15, 43, 45, 53, 82, 83, 90

—cml_BootFname, 65, 66, 68, 69, 97,
98, 100, 101
—cml_Bounds, 17, 43, 54, 82, 91, 114
—cml_C, 15, 43, 45, 53, 82, 84, 90
—cml_Center, 72, 75, 105
—cml_CovPar, 31, 32, 37, 43, 44, 45,
82, 83, 84, 111
—cml_CutPoint, 72
—cml_D, 15, 43, 53, 82, 90
—cml_Delta, 43, 44, 82, 83
—cml_DFTol, 44, 45, 83, 84
—cml_Diagnostic, 14, 44, 45, 51
—cml_DirTol, 37, 44, 46, 83, 84
—cml_EqgJacobian, 27, 43, 46, 57, 82,
84, 94
—cml_EqgProc, 16, 43, 46, 82, 85
—cml_Extrap, 43, 47, 82, 85
—cml_FeasibleTest, 43, 47, 82, 85
—cml_FinalHess, 44, 47, 83, 85
—cml_GradCheckTol, 25, 44, 47, 83
—cml_GradMethod, 37, 44, 47, 83, 85
—cml_GradOrder, 37, 44, 47, 83, 86
—cml_GradProc, 44, 47, 55, 56, 83, 86,
92, 93
—cml_GradStep, 44, 48, 83, 86
—cml_GridRadius, 37
—cml_GridSearch, 37, 48, 86
—cml_GridSearchRadius, 43, 48, 82, 86
—cml_GridSearch, 43
—cml_GridsSearch, 82
—cml_HessCov, 44, 48, 83, 86
—cml_HessProc, 25, 44, 48, 56, 83, 86,
93
—cml_Increment, 72, 75, 105

INDEX

—cml_IneqJacobian, 27, 43, 48, 57, 82, —cml_XprodCov, 44, 53, 83, 90
87, 94 CMLBayes, 64
—cml_EqgProc, 16 cmlbayes.src, 66
—cml_InegProc, 43, 49, 82, 87 cmlblim.src, 59
—cmli_Interp, 43, 49, 82, 87 CMLBIimits, 59, 116
_cml_IterData, 44, 49, 83, 87 CMLBoot, 5, 29, 34, 67
—cml_Kernel, 34, 70 cmlboot.src, 69
—cml_key, 37 —cmlc_Boot, 111
—cml_Key, 44, 49 —cmlc_Censor, 111
—cml_Lag, 44, 49 —cmlic_Dispersion, 111
—cml_Lagrange, 32, 43, 49, 82, 87 —cmlc_Fix, 111
—cml_LineSearch, 43, 50, 82, 88 —cmlc_lInference, 111, 114
—cml_Maxlters, 44, 50, 83, 88 —cmlc_Precision, 111
—cml_MaxTime, 44, 50, 65, 68, 83, 88, —cmlc_Start, 111
97. 100 —cmlc_StartValue, 113, 126, 131, 135,
_ch_Maxlrry7 37 139, 145, 150, 155, 159
_cml_Maxtry, 43 —cmlc_ZeroTruncate, 111
—_cml_MaxTry, 51 cmlclim.src, 60

CMLClimits, 29, 34, 60, 115
CMLCountCLPrt, 123
CMLCountPrt, 122
CMLCountSet, 124
cmldens.src, 71
CMLDensity, 34, 70, 111, 116
CMLExpgam, 125
cmlexpgm.src, 129
CMLExpon, 130
cmlexpon.src, 133

CMLHist, 29, 35, 72, 111, 116
cmlhist.src, 73

—cml_Maxtry, 82

—cml_MaxTry, 89

—cml—_NumCat, 72, 75, 105

—cml—_NumObs, 7, 34, 42, 44, 55, 61,
63, 66, 68, 81, 83, 92, 98, 100,
102

—cml—_NumPoints, 70

—cml—_NumSample, 34, 50, 65, 68, 75,
88, 97, 100, 105

—cml_Options, 43, 51, 82, 89

—cml—_ParNames, 44, 51, 83, 89

—cml_RandRadius, 11, 50, 88 cmlhurdl.src, 137
—cml_Select, 59, 63, 75, 105 CMLHurdlep, 114, 134
—cml_Smoothing, 34, 70 CMLNegbin, 138
—cml_state, 5 cmlnegbn.src, 143
—cml_State, 44, 51, 83, 89 cmlparet.src, 148
—cml_Switch, 6, 43, 52, 82, 89 CMLPareto, 144
—cml_Truncate, 70 cmlpflcl.src, 62
—cml_Trust, 43, 51, 82, 89 CMLPfIClimits, 33, 61
—cml_TrustRadius, 37, 43, 52, 82, 89 cmlpoiss.src, 153
—cml_TrustRegion, 37 CMLPoisson, 149
_cml_UserHess, 27 cmlprof.src, 76
—cml_UserNumGrad, 44, 52 CMLProfile, 29, 74
—cml_UserNumHess, 44, 52 CMLPrt, 78
—cml_UserSearch, 43, 53 CMLCLPrt, 79
_cml_Width, 72, 75, 105 CMLSet, 77

164

INDEX

cmlsupr.src, 157

cmlsupr2.src, 161

CMLSupreme, 154

CMLSupreme2, 114, 158

CMLTlimits, 63

condition of Hessian, 13

confidence limits, 32

constraint Jacobians, 27

constraints, 15, 27, 53, 90, 114

convergence, 50, 88

converting MAXLIK programs, 4

covariance matrix, parameters, 28, 31,
32, 35, 45, 84

cubic step, 50, 88

D

derivatives, 10, 19, 45, 56, 84, 93
DFP, 11, 37, 44, 83
diagnosis, 14

E

equality constraints, 15, 16, 44, 45, 46,
53, 83, 85, 90

F

fastcbayes.src, 98
fastcboot.src, 101
fastCML, 5, 81
fastCMLBayes, 5, 96
fastCMLBoot, 5, 99
fastCMLPfIClimits, 5
fastCMLPfIClimts, 102
fastCMLProfile, 5, 104
fastcpflcl.src, 103
fastcprof.src, 106

G

global variables, 37

gradient, 42, 64, 67, 74, 78, 79, 81, 96,
99, 104

gradient procedure, 19, 47, 55, 86, 92

grid radius, 37

grid search, 37

H

HALF, 12

Hessian, 10, 13, 31, 37

Hessian procedure, 25, 27, 56, 93

heteroskedastic-consistent covariance
matrix, 32, 45, 84

|

inactive parameters, 13

inequality constraints, 15, 16, 45, 49,
53, 84, 87, 90

Installation, 1

J
Jacobian, 27
K
KISS-Monster, 5

L

Lagrange coefficients, 31, 32, 49, 87

likelihood profile trace, 35, 36

line search, 11, 37

linear congruential, 5

linear constraints, 15, 44, 45, 53, 83, 84,
90

log-likelihood function, 8, 27, 42, 54,
56, 61, 64, 67, 74, 81, 91, 93,
96, 99, 102, 104

log-linear, 108

M

maximum likelihood, 8, 42, 67, 81, 99,
107

MAXLIK programs, converting, 4

——_miss, 126, 131, 135, 140, 145, 150,
155, 160

165

N

NEWTON, 11, 37, 44, 56, 83, 93
nonlinear constraints, 16, 46, 49, 53, 85,
87, 90

NR, 37
O

—_output, 37, 51, 70, 72, 111, 113,
127, 132, 136, 140, 146, 151,
156, 160

P

profile t plot, 35

Q

QML, 7, 42, 55, 61, 81, 92, 102
quadratic step, 50, 88
Quasi-maximum likeihood, 7
quasi-Newton, 11

R

random numbers, 5

regression, Hurdle Poisson, 108

regression, negative binomial, 108

regression, seemingly unrelated Poisson,
108

regression, truncated negative binomial,
108

regression, truncated Poisson, 108

resampling, 34

——row, 8, 42,44 49 52, 55, 56, 61, 64,
67, 74, 81, 92, 93, 96, 99, 102,
104

——rowfac, 44, 52, 113, 127, 132, 136,
140, 146, 151, 156, 160

run-time switches, 37

166

INDEX

S

scaling, 13

Shift-1, 37

Shift-2, 37

Shift-4, 37

Shift-3, 37

Shift-5, 37

starting point, 14
statistical inference, 28, 114
step length, 11, 37, 50, 88
STEPBT, 11

switching algorithms, 6

T

—_title, 44, 52
trust radius, 37
trust region, 37

U

UNIX, 2
UNIX/Linux/Mac, 1

v

VPUT, 14
VREAD, 14

W

——weight, 12, 44, 53, 83, 90
weighted maximum likelihood, 12
weights, 7

Windows, 2

