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Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss
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4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2
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Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3
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Getting Started 2

GAUSS 10+ and the GAUSS Run-Time Library 10+ are required to use these routines
for all platforms except Linux, which requires 10.0.4+. See _rtl_ver in
src/gauss.dec.

The Constrained Maximum Likelihood MT version number is stored in a global
variable:

_comt_ver 3×1 matrix, the first element contains the major version number, the second
element the minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version of your copy of this
module.

2-1
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2.0.1 README Files

If there is a README.cmlmt file, it contains any last minute information on the
Constrained Maximum Likelihood MT procedures. Please read it before using them.

2-2
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written by

Ronald Schoenberg

This module contains a set of procedures for the solution of the constrained maximum
likelihood problem.

3.0.1 Setup

In order to use the procedures in the Constrained Maximum Likelihood Estimation
MT or CMLMT Module, the CMLMT library must be active. This is done by including
cmlmt in the library statement at the top of your program or command file:

library cmlmt,pgraph;

3-1
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This enables GAUSS to find the CMLMT procedures. The statement

#include cml.sdf

is also required. It sets the definitions of the structures used by CMLMT.

The version number of each module is stored in a global variable:

cmlmt ver 3×1 matrix, the first element contains the major version number of the
CMLMT Module, the second element the minor version number, and the third
element the revision number.

If you call for technical support, you may be asked for the version number of your copy of
this module.

3.1 Special Features in Constrained Maximum Likelihood
Estimation MT

3.1.1 Structures

In CMLMT the same procedure computing the log-likelihood or objective function will
be used to compute analytical derivatives as well if they are being provided. Its return
argument is a cmlmtResults structure with three members, a scalar, or Nx1 vector
containing the log-likelihood (or objective), a 1XK vector, or NxK matrix of first
derivatives, and a KxK matrix or NxKxK array of second derivatives (it needs to be an
array if the log-likelihood is weighted). Of course the derivatives are optional, or even
partially optional, i.e., you can compute a subset of the derivatives if you like and the
remaining will be computed numerically. This procedure will have an additional argument
which tells the function which to compute, the log-likelihood or objective, the first
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derivatives, or the second derivatives, or all three. This means that calculations in common
won’t have to be redone.

The new CMLMT will use the DS and PV structures that are now in use in the GAUSS
Run-Time Library. The DS structure is completely flexible, allowing you to pass
anything you can think of into your procedure. The PV structure revolutionizes how you
pass the parameters into the procedure. No more do you have to struggle to get the
parameter vector into matrices for calculating the function and its derivatives, trying to
remember, or figure out, which parameter is where in the vector. If your log-likelihood
uses matrices or arrays, you can store them directly into the PV structure, and remove them
as matrices or arrays with the parameters already plugged into them. The PV structure can
handle matrices and arrays where some of their elements are fixed and some free. It
remembers the fixed parameters and knows where to plug in the current values of the free
parameters. It can handle symmetric matrices where parameters below the diagonal are
repeated above the diagonal.

There will no longer be any need to use global variables. Anything the procedure needs
can be passed into it through the DS structure. And these new applications will use control
structures rather than global variables. This means, in addition to thread safety, that it will
be straightforward to nest calls to CMLMT inside of a call to CMLMT, not to mention
Run-Time Library functions like QNewtonmt, QProgmt, and EQsolvemt.

3.1.2 Threading

If you have a multi-core processor in your computer, you may take advantage of this
capability by selecting threading. This is done by setting the useThreads member of the
cmlmtControl instance:

struct cmlmtControl c0;

c0 = cmlmtControlCreate;

c0.useThreads = 1;

3-3
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An important advantage of threading occurs in computing numerical derivatives. If the
derivatives are computed numerically, threading will significantly decrease the time of
computation.

Resampling in CMLMTBoot and CMLMTBayes procedures also takes advantage of threading
increasing the speed of calculations up to several times.

3.1.3 Augmented Lagrangian Penalty Line Search Method

An augmented Lagrangian penalty method with second order correction described by
Conn, Gould, and Toint (2000), Section 15.3.1, is implemented in CMLMT.

3.1.4 Hypothesis Testing for Constrained Models

A special procedure is included in CMLMT that computes a test statistic and its
probability for the hypotheses H0 : ψ = 0 against H1 : G(ψ) ≥ 0, ψ , 0 where G(ψ) is
a general function of the parameters and ψ is a subset of the parameters. See Section 3.8.2
for a discussion of a special case where G(ψ) is a linear constraint function. Also see
Silvapulle and Sen, 2005, Section 4.6.2, page 177.

3.2 The Log-likelihood Function

CMLMT is a set of procedures for the estimation of the parameters of models via the
maximum likelihood method with general constraints on the parameters, along with an
additional set of procedures for statistical inference.
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CMLMT solves the general weighted maximum likelihood problem

L =
N∑

i=1

log P(Yi; θ)wi

where N is the number of observations, wi is a weight. P(Yi, θ) is the probability of Yi

given θ, a vector of parameters, subject to the linear constraints,

Aθ = B

Cθ ≥ D

the nonlinear constraints

G(θ) = 0

H(θ) ≥ 0

and bounds

θl ≤ θ ≤ θu

G(θ) and H(θ) are functions provided by the user and must be differentiable at least once
with respect to θ.
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The procedure CMLMT finds values for the parameters in θ such that L is maximized. In
fact CMLMT minimizes −L. It is important to note, however, that the user must specify
the log-probability to be maximized. CMLMT transforms the function into the form to be
minimized.

CMLMT has been designed to make the specification of the function and the handling of
the data convenient. The user supplies a procedure that computes log P(Yi; θ), i.e., the
log-likelihood, given the parameters in θ, for either an individual observation or set of
observations (i.e., it must return either the log-likelihood for an individual observation or a
vector of log-likelihoods for a matrix of observations). CMLMT uses this procedure to
construct the function to be minimized.

3.3 Algorithm

CMLMT uses the Sequential Quadratic Programming method. In this method the
parameters are updated in a series of iterations beginning with starting values that you
provide. Let θt be the current parameter values. Then the succeeding values are

θt+1 = θt + ρδ

where δ is a K × 1 direction vector, and ρ a scalar step length.

Direction

Define

Σ(θ) =
∂2L
∂θ∂θ′

3-6
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Ψ(θ) =
∂L
∂θ

and the Jacobians

Ġ(θ) =
∂G(θ)
∂θ

Ḣ(θ) =
∂H(θ)
∂θ

For the purposes of this exposition, and without loss of generality, we may assume that the
linear constraints and bounds have been incorporated into G and H.

The direction, δ is the solution to the quadratic program

minimize
1
2
δ′Σ(θt)δ + Ψ(θt)δ

sub ject to Ġ(θt)δ +G(θt) = 0

Ḣ(θt)δ + H(θt) ≥ 0

This solution requires that Σ be positive semi-definite.

In practice, linear constraints are specified separately from the G and H because their
Jacobians are known and easy to compute. And the bounds are more easily handled
separately from the linear inequality constraints.
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Line Search

Define the merit function

m(θ) = L −
∑

j

κ jg j(θ) −
∑
`

λ`h`(θ)) +
1

2µ
(‖g j(θ)‖22 + ‖h j(θ)‖22)

where g j is the j-th row of G, h` is the `-th row of H, κ is the vector of Lagrangean
coefficients of the equality constraints, and λ the vector of Lagrangean coefficients of the
inequality constraints.

The line search finds a value of ρ that minimizes or decreases m(θt + ρδ).

The penalty coefficient µ increases at each iteration. The amount of increase in this
coefficient is set by the Penalty member of the instance of the cmlmtControl structure.

Trust Radius

By default a “trust radius” is set around all of the parameters being estimated. Constraints
are set for each parameter that bounds the new direction ensuring the iterations against
extreme movements in the estimates. This provides for safer iterations but can add to the
total number of iterations to convergence. To turn this off set the TrustRadius member
of the instance of the cmlmtControl structure.

3.3.1 The Secant Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start values
may produce an ill-conditioned Hessian. For these reasons alternative algorithms are
provided in CMLMT for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during the
execution of CMLMT.
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Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the estimate
of the Hessian, improving its ability to project the direction of the descent. Thus after
several iterations the secant algorithm should do nearly as well as Newton iteration with
much less computation.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb, and
Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two updates,
that is, they are analogous to adding two rows of new data to a previously computed
moment matrix. The Cholesky factorization of the estimate of the Hessian is updated
using the functions CHOLUP and CHOLDN.

Secant Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the method
of Davidon, Fletcher, and Powell. These methods are complementary (Luenberger 1984,
page 268). BFGS and DFP are like the NEWTON method in that they use both first and
second derivative information. However, in DFP and BFGS the Hessian is approximated,
reducing considerably the computational requirements. Because they do not explicitly
calculate the second derivatives they are sometimes called quasi-Newton methods. While
it takes more iterations than the NEWTON method, the use of an approximation produces
a gain because it can be expected to converge in less overall time (unless analytical second
derivatives are available in which case it might be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the Hessian.
This is not the best method numerically for the BFGS algorithm (Gill and Murray, 1972).
This version of CMLMT, following Gill and Murray (1972), updates the Cholesky
factorization of the Hessian instead, using the functions CHOLUP and CHOLDN for BFGS.
The new direction is then computed using CHOLSOL, a Cholesky solve, as applied to the
updated Cholesky factorization of the Hessian and the gradient.
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3.3.2 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. CMLMT includes a variety of methods for computing ρ. The
value of the function to be minimized as a function of ρ is

m(θt + ρδ)

Given θ and d, this is a function of a single variable ρ. Line search methods attempt to find
a value for ρ that decreases m. STEPBT is a polynomial fitting method, BRENT and
HALF are iterative search methods. A fourth method called ONE forces a step length of 1.
The default line search method is STEPBT. If this, or any selected method, fails, then
BRENT is tried. If BRENT fails, then HALF is tried. If all of the line search methods fail,
then a random search is tried, provided the RandRadius member of the cmlmtControl
instance is greater than zero which it is by default.

Augmented Penalty Line Search Method

When the LineSearch member of the instance of the cmlmtControl structure is set to
zero, CMLMT uses an “augmented Lagrangian penalty” method for the line search
described in Conn, Gould, and Toint (2000). The Hessian and gradient for the Quadratic
Programming problem in the SQP method is augmented as described in their Section
15.3.1. This method requires that constraints be imposed on the parameters. This method
is not available for solving maximum likelihood problems without constraints on
parameters.
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STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ) and computes an
ρ that minimizes the quadratic. If that fails, it attempts to fit a cubic function. The cubic
function more accurately portrays the F which is not likely to be very quadratic but is,
however, more costly to compute. STEPBT is the default line search method because it
generally produces the best results for the least cost in computational resources.

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for ρ. These test values are
determined by extrapolation and interpolation using the constant, (

√
5 − 1)/2 = .6180....

This constant is the inverse of the so-called “golden ratio” ((
√

5 + 1)/2 = 1.6180... and is
why the method is called a golden section method. This method is generally more efficient
than STEPBT but requires significantly more function evaluations.

HALF

This method first computes m(x + d), i.e., sets ρ = 1. If m(x + d) < m(x) then the step
length is set to 1. If not, then it tries m(x + .5d). The attempted step length is divided by
one half each time the function fails to decrease and exits with the current value when it
does decrease. This method usually requires the fewest function evaluations (it often only
requires one), but it is the least efficient in that it is not very likely to find the step length
that decreases m the most.
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BHHHSTEP

This is a variation on the golden search method. A sequence of step lengths are computed,
interpolating or extrapolating using a golden ratio, and the method exits when the function
decreases.

3.3.3 Weighted Maximum Likelihood

Weights are specified by setting the Weights member of the cmlmtControl instance to a
weighting vector or by assigning it the name of a column in the GAUSS data set being
used in the estimation.

CMLMT assumes that the weights sum to the number of observations, i.e, that the
weights are frequencies. This will be an issue only with statistical inference. Otherwise,
any multiple of the weights will produce the same results.

3.3.4 Active and Inactive Parameters

The member Active of the instance of the cmlmtControl structure may be used to fix
parameters to their start values. This allows estimation of different models without having
to modify the function procedure. Active must be set to a vector of the same length as the
vector of start values. Elements of Active set to zero will be fixed to their starting values
while nonzero elements will be estimated.

This feature may also be used for model testing. NumObs times the difference between the
function values from the two estimations is chi-squared distributed with degrees of
freedom equal to the number of fixed parameters in Active.
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3.4 Constraints

There are two general types of constraints: nonlinear equality constraints and nonlinear
inequality constraints. However, for computational convenience they are divided into five
types: linear equality, linear inequality, nonlinear equality, nonlinear inequality, and
bounds.

3.4.1 Linear Equality Constraints

Linear constraints are of the form:

Aθ = B

where A is an m1 × k matrix of known constants, and B an m1 × 1 vector of known
constants, and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the A and B matrices
to members, A and B, of an instance of a cmlmtControl structure. For example, to
constrain the first of four parameters to be equal to the third,

struct cmlmtControl ctl;

ctl = cmlmtControlCreate;

ctl.A = { 1 0 -1 0 };

ctl.B = { 0 };

3.4.2 Linear Inequality Constraints

Linear constraints are of the form:

Cθ ≥ D
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where C is an m2 × k matrix of known constants, and D an m2 × 1 vector of known
constants, and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the C and D matrices
to members, C and D, of an instance of a cmlmtControl structure. For example, to
constrain the first of four parameters to be greater than the third, and as well the second
plus the fourth greater than 10:

struct cmlmtControl ctl;

ctl = cmlmtControlCreate;

ctl.C = { 1 0 -1 0,

0 1 0 1 };

ctl.D = { 0,

10 };

3.4.3 Nonlinear Equality

Nonlinear equality constraints are of the form:

G(θ) = 0

where θ is the vector of parameters and G(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the procedure pointer to the
EqProc member of an instance of the cmlmtControl structure. This procedure has two
input arguments, a PV structure containing the parameters, and a DS structure containing
data.

For example, suppose you wish to constrain the norm of the parameters to be equal to 1:

struct cmlmtControl ctl;

ctl = cmlmtControlCreate;
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proc eqp(struct PV p, struct DS d);

local b;

b = pvUnpack(p,"coefficients");

retp(b’b - 1);

endp;

ctl.eqProc = &eqp;

3.4.4 Nonlinear Inequality

Nonlinear inequality constraints are of the form:

H(θ) ≥ 0

where θ is the vector of parameters and H(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the IneqProc
member of an instance of the cmlmtControl structure. This procedure has two input
arguments, a PV structure containing the parameters, and a DS structure containing data.

For example, suppose you wish to constrain a covariance matrix to be positive definite

proc ineqp(struct PV p, struct DS d);

local v;

v = pvUnpack(p,"covariance");

retp(minc(eigh(v)) - 1e-5);

endp;

ctl.IneqProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a
small number (1e-5). This guarantees the covariance matrix to be positive definite.
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3.4.5 Bounds

Bounds are a type of linear inequality constraint. For computational convenience they
may be specified separately from the other inequality constraints. To specify bounds, the
lower and upper bounds respectively are entered in the first and second columns of a
matrix that has the same number of rows as the parameter vector. This matrix is assigned
to the Bounds member of an instance of a cmlmtControl structure.

If the bounds are the same for all of the parameters, only the first row is necessary.

To bound four parameters:

struct cmlmtControl ctl;

ctl = cmlmtControlCreate;

ctl.Bounds = { -10 10,

-10 0,

1 10,

0 1 };

Suppose all of the parameters are to be bounded between -50 and +50, then,

ctl.Bounds = { -50 50 };

is all that is necessary.

3.5 The CMLMT Procedure

The call to CMLMT has four input arguments and one output argument.
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3.5.1 First Input Argument: Pointer to Procedure

The first input argument is the pointer to the procedure computing the log-likelihood
function and optionally the gradient and/or Hessian. See Section 3.6 for details.

3.5.2 Second Input Argument: PV Parameter Instance

The GAUSS Run-Time Library contains special functions that work with the PV
structure. They are prefixed by “pv” and defined in pv.src. These functions store
matrices and arrays with parameters in the structure, and retrieve the original matrices and
arrays along with various kinds of information about the parameters and parameter vector
from it.

The advantage of the PV structure is that it permits you to retrieve the parameters in the
form of matrices and/or arrays ready for use in calculating your log-likelihood. The
matrices and arrays are defined in your command file when the start values are set up. It
isn’t necessary that a matrix or array be completely free parameters to be estimated. There
are pvPack functions that take mask arguments defining what is a parameter versus what
is a fixed value. There are also functions for handling symmetric matrices where the
parameters below the diagonal are duplicated above the diagonal.

For example, a PV structure is created in your command file:

struct PV p;

p = pvCreate; // creates default structure

garch = { .1, .1, .1 };

p = pvPack(p,garch,"garch");

A matrix or array in the model may contain a mixture of fixed values along with
parameters to be estimated. This type of matrix or array uses pvPackm which has an
additional argument, called a “mask”, strictly conformable to the input matrix or array
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indicating which elements are fixed (the corresponding element in the mask is zero) or
being estimated (the corresponding element in the mask is nonzero). For example,

struct PV p;

p = pvCreate;

b = { 1.0 0.0 0.0,

0.5 1.0 0.2,

0.3 0.0 1.0 };

b_mask = { 0 0 0,

1 0 1,

1 0 1 };

p = pvPackm(p,b,"beta",b_mask);

In this case there are four free parameters to be estimated, b21, b23, b31, and b33. b11 and
b22 are fixed to 1.0, and b22, b23, and b32 are fixed to 0.0.

pvPacks “packs” a symmetric matrix into the PV structure in which only the lower left
portion of the matrix contains independent parameters while the upper left is duplicated
from the lower left. The following packed matrix contains three nonredundant parameters.
When this matrix is unpacked, it will contain the upper nonredundant portion of the
matrix equal to the lower portion.

vc = { 1.2 0.4,

0.4 2.1 };

p = pvPacks(p,vc,"phi"); // pack symmetric matrix

Suppose that you wish to specify a correlation matrix in which only the correlations are
free parameters. You would then use pvPacksm.
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cor = { 1.0 0.2,

0.2 1.0 };

msk = { 0 1,

1 0 };

pv = pvPacksm(p,cor,msk,"R");

Some computation speedup can be achieved by packing and unpacking by number rather
than name. Each packing function has a version with an i suffix that packs by number.
Then pvUnpack can be used with that number:

garch = { .1, .1, .1 };

p = pvPacki(p,garch,"garch",1);

which is unpacked using its number

g0 = pvUnpack(g,1);

3.5.3 Third Input Argument: DS Data Instance

The DS structure, or “data” structure, is a very simple structure. It contains a member for
each GAUSS data type. This is its definition (see ds.sdf in the GAUSS src
subdirectory):

struct DS {

scalar type;

matrix dataMatrix;

array dataArray;

string dname;

string array vnames;

};

3-19



Constrained Maximum Likelihood MT 2.0 for GAUSS

Data in Matrices or Arrays

If you are passing your data in as matrices or arrays, you can set the data structure in any
way you want, except that the dname member of the first element of the data structure
must be a null string. CMLMT will pass this instance, or a matrix of instances, to your
log-likelihood procedure untouched. For example:

struct DS d0;

d0 = reshape(dsCreate,2,1);

d0[1].DataMatrix = y;

d0[2].DataMatrix = x;

GAUSS Data Sets

You may choose to have CMLMT read a GAUSS data set and pass selected columns to
your log-likelihood procedure. For this set the Dname member of an instance of DS
structure to the name of the GAUSS data set:

struct DS d0;

d0.Dname = "mydatafile";

d0.Vnames = "price" $| "X1" $| "X2";

CMLMT will first determine how many rows of the data set can be read in at a time.
Then it reads in the appropriate number of rows (possibly all), selects the appropriate
columns (all of them if Vnames set to null string), and passes the resulting matrix to your
log-likelihood. If only part of the data can read it at a time, your procedure will be called
repeatedly and the log-likelihood and derivatives accumulated.
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3.5.4 Fourth Input Argument: cmlmtControl Instance

The members of the cmlmtControl instance determine everything about the
optimization. For example, suppose you want CMLMT to stop after 100 iterations:

struct cmlmtControl c0;

c0 = cmlmtControlCreate;

c0.maxIters = 100;

The cmlmtControlCreate procedure sets all of the defaults. The default values for all
the members of a cmlmtControl instance can be found in that procedure, located at the
top of cmlmtutil.src in the GAUSS src subdirectory.

3.6 The Log-likelihood Procedure

CMLMT requires that you write a procedure computing the log-likelihood. The output
from this procedure is a modelResults structure containing the log-likelihood and
optionally the first and second derivatives of the log-likelihood with respect to the
parameters. There are three input arguments to this procedure

1. instance of a PV structure containing parameter values

2. instance of a DS structure containing data

3. indicator vector

and one return argument

1. instance of a modelResults structure containing computational results.
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3.6.1 First Input Argument: PV Parameter Instance

This argument contains the parameter matrices and arrays that you need for computing the
log-likelihood and (optionally) derivatives. The pvUnpack function retrieves them from
the PV instance.

proc lpr(struct PV p, struct DS d, ind);

local beta, gamma;

beta = pvUnpack(p,"beta");

gamma = pvUnpack(p,"gamma");

.

.

.

endp;

You may have decided to speed the program up a bit by packing the matrices or arrays
using the “i” pack functions, pvPacki, pvPackmi, pvPacksi, etc., You can then unpack
the matrices and arrays with the integers used in packing them:

proc lpr(struct PV p, struct DS d, ind);

local beta, gamma;

beta = pvUnpack(p,1);

gamma = pvUnpack(p,2);

.

.

.

endp;

where it has been assumed that they’ve been packed accordingly:

struct PV p;
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p = pvCreate;

p = pvPacki(p,1.|.1,"beta",1);

p = pvPacksi(p,(1˜0)|(0˜1),"gamma",2);

3.6.2 Second Input Argument: DS Data Instance

There are two cases,

1 the Dname member of the first element of the DS instance is set to the name
of a GAUSS data set.

2 the Dname member of the first element of the instance is set to a null string
(default).

Case 1

In case 1, CMLMT will pass the observations in the data set to the log-likelihood
procedure in the DataMatrix member of the first element of the DS instance in this
argument.

For example, if the DS instance is set up this way in the command file:

struct DS d;

d = dsCreate;

d.dname = "mydataset";

Then in your log-likelihood procedure you can expect N0 rows of the data set (where
N0 ≤ N and N is the total number of rows in the data set) in the Datamatrix member of
the DS instance passed to your procedure from CMLMT.
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proc lpr(struct PV p, struct DS d, ind);

local y,x;

.

.

.

y = d.datamatrix[.,1];

x = d.dataMatrix[.,2:4];

.

.

.

endp;

CMLMT will determine whether or not the entire data set can be stored in memory at
once. If it can be, then the entire data set will be passed to the procedure. If not, it will
pass the data in chunks and generate the log-likelihood and derivatives by accumulation.

Case 2

In Case 2, CMLMT passes the DS instance you have constructed completely untouched.
You can, therefore, design this instance completely for your convenience in computing the
log-likelihood and optionally its derivatives.

For example, you can write a general log-likelihood procedure that computes a variety of
log-likelihoods, e.g., a probit and a logit. Then you can set the Type member of a DS
instance to a value in your command file that chooses which to compute for that run.

In your command file

struct DS d;

d = dsCreate;

d.Type = 1;

d.dataMatrix = z;
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and in your log-likelihood procedure

proc lpr(struct PV p, struct DS d, ind);

.

.

.

if d.type == 1; // compute probit log-likelihood

.

.

elseif d.type == 2; // compute logit

.

.

endif;

.

.

.

endp;

3.6.3 Third Input Argument: Indicator Vector

The third argument is a vector with elements set to zero or one, indicating whether or not
function, first derivatives, or second derivatives are to be computed.

1st element if nonzero, the function is to be computed.

2nd element if nonzero, the first derivatives are to be computed.

3rd element if nonzero, the second derivatives are to be computed.

The second and third elements associated with the first and second derivatives are optional.

For example,
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proc logl( struct PV p0, struct DS d0, ind );

local b0,b,y,x;

b0 = pvUnpack(p0,"b0");

b = pvUnpack(p0,"beta");

y = d0[1].DataMatrix;

x = d0[2].DataMatrix;

struct modelResults mm;

if ind[1]; // compute log-likelihood

mm.Function = ....

endif;

if ind[2]; // compute optional first derivatives

mm.Gradient = ....

endif;

if ind[3]; // compute optional second derivatives

mm.Hessian = ....

endif;

retp(mm);

endp;

If mm.Gradient and mm.Hessian are not set, they will be computed numerically by
CMLMT.

3.6.4 Output Argument: modelResults Instance

The return argument for your log-likelihood procedure is an instance of a modelResults
structure. The members of this structure are

1 scalar log-likelihood

Function scalar log-likelihood

Gradient 1 × K vector of first derivatives (optional)
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Hessian K × K matrix of second derivatives (optional)

NumObs scalar, number of observations

2 vector of log-likelihoods by observation

Function N × 1 vector of log-likelihoods

Gradient N × K matrix of first derivatives (optional)

Hessian K × K matrix of second derivatives (optional)

3 weighted log-likelihood

Function N × 1 vector of log-likelihoods

Gradient N × K matrix of first derivatives (optional)

Hessian N × K × K array of second derivatives computed by observation
(optional)

3.6.5 Examples

proc logitLL(struct PV p, struct DS d, ind);

local mu,const,coefs;

struct modelResults mm;

const = pvUnpack(p,"constant");

coefs = pvUnpack(p,"coefficients");

mu = const + d[2].DataMatrix * coefs;

emu = exp(mu’);

if ind[1];

f = mu - ln(sumc(emu));

mm.Function = subvec(f,1+d[1].DataMatrix);

endif;

if ind[2] or ind[3];

3-27



Constrained Maximum Likelihood MT 2.0 for GAUSS

w = emu./sumc(emu);

y = d[1].DataMatrix ˜ (1 - d[1].DataMatrix);

g = sumc((y.*(y - w)’);

mm.Gradient = g˜(g.*d[2].DataMatrix);

if ind[3];

mm.Hessian = mm.Gradient’ * mm.Gradient;

endif;

endif;

retp(mm);

endp;

proc FactorAnalysisLL(struct PV p, struct DS d, ind);

local lambda,phi,psi,sigma;

struct modelResults mm;

lambda = pvUnpack(p,"lambda");

phi = pvUnpack(p,"phi");

psi = pvUnpack(p,"psi");

sigma = lambda * phi * lambda’ + psi;

if ind[1];

mm.Function = lnpdfmvn(d.DataMatrix,sigma);

endif;

retp(mm);

endp;

proc garchLL(struct PV p0, struct DS d0, ind);

local b0,garch,arch,omega,p,q,h,u,vc,w;

struct modelResults mm;

b0 = pvUnpack(p0,"b0");
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garch = pvUnpack(p0,"garch");

arch = pvUnpack(p0,"arch");

omega = pvUnpack(p0,"omega");

p = rows(garch);

q = rows(arch);

u = d0.DataMatrix - b0;

vc = moment(u,0)/rows(u);

w = omega + (zeros(q,q) | shiftr((u.*ones(

1,q))’,seqa(q-1,-1,q))) * arch;

h = recserar(w,vc*ones(p,1),garch);

mm.Function = -0.5 * ((u.*u)./h + ln(2*pi) + ln(h));

retp(mm);

endp;

3.7 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of the
model. When the data are scaled, the starting point is reasonably close to the solution, and
the data and model go together well, the iterations converge quickly and without difficulty.

For best results, therefore, you want to prepare the problem so that model is
well-specified, the data scaled, and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands on
the starting point and condition of the model. The less demanding methods are generally
time consuming and computationally intensive, whereas the quicker methods (either in
terms of time or number of iterations to convergence) are more sensitive to conditioning
and quality of starting point.
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3.7.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, CMLMT has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the constants
(or “data”) used in the model are about the same magnitude.

3.7.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the gradient
is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very small for a
particular parameter, then CMLMT has difficulty determining the optimal values since a
large region of the function appears virtually flat to CMLMT. When the Hessian has very
small elements, the inverse of the Hessian has very large elements and the search direction
gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor specification
of the model or by bad data. Bad models and bad data are two sides of the same coin. If
the problem is highly nonlinear, it is important that data be available to describe the
features of the curve described by each of the parameters. For example, one of the
parameters of the Weibull function describes the shape of the curve as it approaches the
upper asymptote. If data are not available on that portion of the curve, then that parameter
is poorly estimated. The gradient of the function with respect to that parameter is very flat,
elements of the Hessian associated with that parameter is very small, and the inverse of
the Hessian contains very large numbers. In this case it is necessary to respecify the model
in a way that excludes that parameter.
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3.7.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical. When
the optimization doesn’t seem to be working, try different starting points. A closed form
solution may exist for a simpler problem with the same parameters. For example, ordinary
least squares estimates may be used for nonlinear least squares problems or nonlinear
regressions like probit or logit. There are no general methods for computing start values
and it may be necessary to attempt the estimation from a variety of starting points.

3.7.4 Example

The following example illustrates the estimation of a tobit model with nonlinearly
inequality constraints, and bounds on the parameters. The nonlinear inequality constraints
constrain the first coefficient to be greater than the constant, and the product of the
coefficients to be less than one. The bounds are provided essentially to constrain the
variance parameter to be greater than zero.

library cmlmt;

#include cmlmt.sdf

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d[1].DataMatrix;

x = d[2].DataMatrix;

yh = b0 + x * b;

res = y - yh;
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u = y[.,1] ./= 0;

if ind[1];

mm.Function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.Gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

proc ineqp(struct PV p, struct DS d);

local c,b0,b;
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b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

c = zeros(2,1);

c[1] = b[1] - b0;

c[2] = 1 - b[1] * b[2];

retp(c);

endp;

c0.IneqProc = &ineqp;

struct DS d0;

d0 = reshape(dsCreate,2,1);

z = loadd("cmlmttobit");

d0[1].DataMatrix = z[.,1];

d0[2].DataMatrix = z[.,2:4];

struct cmlmtResults out1;

out1 = CMLmtprt(CMLmt(&lpr,p0,d0,c0));

print "nonlinear Lagrangeans";

print out1.lagr.nlinineq;

print;

print "bounds Lagrangeans";

print out1.lagr.bounds;

and the output looks like this:

============================================================

tobit example

============================================================

CMLMT Version 2.0.0 3/07/2010 3:41 pm

============================================================

return code = 0

normal convergence

Log-likelihood -99.8204
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Number of cases 100

Covariance of the parameters computed by the following method:

ML covariance matrix

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

-----------------------------------------------------------

b0[1,1] 0.9690 0.0614 15.790 0.0000 61.1939

b[1,1] 0.9690 0.0614 15.790 0.0000 -61.1943

b[2,1] 0.5186 0.1027 5.051 0.0000 0.0007

b[3,1] 0.3914 0.0876 4.470 0.0000 -0.0005

variance[1,1] 0.5716 0.0871 6.562 0.0000 0.0000

Correlation matrix of the parameters

1 1 -0.39399796 0.0035754728 -0.043471706

1 1 -0.39399796 0.0035754728 -0.043471706

-0.39399796 -0.39399796 1 -0.32467011 0.07251157

0.003575471 0.003575471 -0.32467012 1 0.03239667

-0.043471725 -0.043471725 0.072511576 0.032396662 1

Wald Confidence Limits

0.95 confidence limits

Parameters Estimates Lower Limit Upper Limit Gradient

------------------------------------------------------------

b0[1,1] 0.9690 0.8472 1.0908 61.1939

b[1,1] 0.9690 0.8472 1.0908 -61.1943

b[2,1] 0.5186 0.3148 0.7225 0.0007

b[3,1] 0.3914 0.2176 0.5653 -0.0005

variance[1,1] 0.5716 0.3986 0.7445 0.0000

Number of iterations 15

Minutes to convergence 0.00333

nonlinear Lagrangeans

61.1941

0.0000

3-34



C
M

LM
T

Constrained Maximum Likelihood MT

bounds Lagrangeans

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

If the Lagrangeans are “empty” matrices, the associated constraints are not active. If they
are zeros but not “empty” matrices, then they are still inactive at the solution but were
active at some point during the iterations.

3.7.5 Algorithmic Derivatives

Algorithmic Derivatives is a program that can be used to generate a GAUSS procedure
to compute derivatives of the log-likelihood function. If you have Algorithmic
Derivatives, be sure to read its manual for details on doing this.

First, copy the procedure computing the log-likelihood to a separate file. Second, from the
command line enter

ad file_name d_file_name

where file_name is the name of the file containing the input function procedure, and
d_file_name is the name of the file containing the output derivative procedure.

If the input function procedure is named lpr, the output derivative procedure has the
name d_A_lpr where the addition to the “_A_” indicates that the derivative is with respect
to the first of the two arguments.

For example, put the following function into a file called lpr.fct
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proc lpr(c,x,y);

local b,b0,yh,res,yh,u,logl;

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

logl = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

retp(logl);

endp;

Then enter the following at the GAUSS command line

library ad;

ad lpr.fct d_lpr.fct;

If successful, the following is printed to the screen

java -jar d:\gauss10\src\GaussAD.jar lpr.fct d_lpr.fct

and the derivative procedure is written to file named d_lpr.fct:

/* Version:1.1 - May 15, 2004 */

/* Generated from:lpr.src */

/* Taking derivative with respect to argument 1 */

Proc(1)=d_A_lpr(c, x, y);

Clearg _AD_fnValue;

Local b, b0, yh, res, yh, u, logl;

b0 = c[(1)] ;
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b = c[(2):(4)] ;

yh = b0 + (x * b);

res = y - yh;

u = y[.,(1)] ./= 0;

logl = (u .* lnpdfmvn(res, s2)) + ((1 - u)

.* ln(cdfnc(yh / sqrt(s2))));

_AD_fnValue = logl;

/* retp(_AD_fnValue); */

/* endp; */

struct _ADS_optimum _AD_d_c ,_AD_d_b ,_AD_d_b0 ,

_AD_d_yh ,_AD_d_logl ,_AD_d_res ,

_AD_d__AD_fnValue;

/* _AD_d_b = 0; _AD_d_b0 = 0; _AD_d_yh = 0;

_AD_d_res = 0; _AD_d_res = 0; */

_AD_d__AD_fnValue = _ADP_d_x_dx(_AD_fnValue);

_AD_d_logl = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_d_x_dx(logl));

_AD_d_yh = _ADP_DtimesD(_AD_d_logl,

_ADP_DtimesD(_ADP_d_yplusx_dx( u .*

lnpdfmvn(res, s2), (1 - u) .* ln(cdfnc(yh /

sqrt(s2)))),

_ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, ln(cdfnc(yh /

sqrt(s2)))),

_ADP_DtimesD(_ADP_d_ln(cdfnc(yh / sqrt(s2))),

_ADP_DtimesD(_ADP_internal(d_cdfnc(yh / sqrt(s2))),

_ADP_DtimesD(_ADP_d_xdivy_dx(yh, sqrt(s2)),

_ADP_d_x_dx(yh)))))));

_AD_d_res = _ADP_DtimesD(_AD_d_logl,

_ADP_DtimesD(_ADP_d_xplusy_dx(

u .* lnpdfmvn(res, s2), (1 - u) .*

ln(cdfnc(yh / sqrt(s2)))),

_ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(res, s2)),

_ADP_DtimesD(_ADP_internal(d_A_lnpdfmvn(res, s2)),

_ADP_d_x_dx(res)))));

/* u = y[.,(1)] ./= 0; */

_AD_d_yh = _ADP_DplusD(_ADP_DtimesD(_AD_d_res,

_ADP_DtimesD(_ADP_d_yminusx_dx(y, yh), _ADP_d_x_dx(yh))),

_AD_d_yh); _AD_d_b = _ADP_DtimesD(_AD_d_yh,

_ADP_DtimesD(_ADP_d_yplusx_dx(b0,

x * b) , _ADP_DtimesD(_ADP_d_yx_dx(x, b),

_ADP_d_x_dx(b))));

_AD_d_b0 = _ADP_DtimesD(_AD_d_yh, _ADP_DtimesD(
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_ADP_d_xplusy_dx(b0, x * b) , _ADP_d_x_dx(b0)));

Local _AD_s_c;

_AD_s_c = _ADP_seqaMatrix(c);

_AD_d_c = _ADP_DtimesD(_AD_d_b, _ADP_d_xIdx_dx(c,

_AD_s_c[(2):(4)] ));

_AD_s_c = _ADP_seqaMatrix(c);

_AD_d_c = _ADP_DplusD(_ADP_DtimesD(_AD_d_b0,

_ADP_d_xIdx_dx(c,

_AD_s_c[(1)] )), _AD_d_c);

retp(_ADP_external(_AD_d_c));

endp;

If there’s a syntax error in the input function procedure, the following is written to the
screen

java -jar d:\gauss10\src\GaussAD.jar lpr.fct d_lpr.fct

Command ’java -jar d:\gauss10\src\GaussAD.jar lpr.fct

d_lpr.fct’ exit status 1

the exit status 1 indicating that an error has occurred. The output file then contains
the reason for the error:

/* Version:1.1 - May 15, 2004 */

/* Generated from:lpr.src */

/* Taking derivative with respect to argument 1 */

proc lpr(c,x,y);

local b,b0,yh,res,yh,u,logl;

b0 = c[1];

b = c[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;
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logl = u.*lnpdfmvn(res,s2) + (1-u).*(ln(cdfnc(

yh/sqrt(s2)));

Error: lpr.src:12:64: expecting ’)’, found ’;’

Finally, call the above procedure from your log-likelihood procedure, for example,

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d[1].DataMatrix;

x = d[2].DataMatrix;

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.Function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

mm.Gradient = d_A_lpr(pvGetParvector(p),y,x);

endif;

retp(mm);

endp;
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3.8 Inference

CMLMT includes four broad classes of methods for analyzing the distributions of the
estimated parameters:

• tests of hypotheses for models with constrained parameters

• Taylor Series covariance matrix of the parameters. This includes two types:
the inverted Hessian and the heteroskedastic- consistent covariance matrix
computed from both the Hessian and the cross-product of the first
derivatives.

• Confidence limits computed by inversion of the Wald and likelihood ratio
statistics that take into account constraints

• Bootstrap

• Likelihood profile and profile t traces

CMLMT computes a Taylor-series covariance matrix of the parameters that includes the
sampling distributions of the Lagrangean coefficients. However, when the model includes
inequality constraints, confidence limits computed from the usual t-statistics, i.e., by
simply dividing the parameter estimates by their standard errors, are incorrect because
they do not account for boundaries placed on the distributions of the parameters by the
inequality constraints.

Inference for Models with Constraints on Parameters

The likelihood ratio statistic becomes a mixture of chi-squared distributions in the region
of constraint boundaries (Gourieroux et al., 1982). If there are no parameters with limits
near constraint boundaries, bootstrapping will suffice. Taylor-series methods assume that
it is reasonable to truncate the Taylor-series approximation to the distribution of the
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parameters at the second order. If this is not reasonable, bootstrapping is an alternative not
requiring this assumption. It is important to note that if the limit of the parameter of
interest or any other parameters with which it is correlated more than .6 are near constraint
boundaries, then bootstrapping will not produce correct inference (Andrews, 1999).

The hypotheses H(θ) = 0 versus H(θ) ≥ 0 can be tested using the CMLMTChibarSq
procedure. See Section 3.8.2 for details.

The procedure CMLMTBoot generates the mean vector and covariance matrix of the
bootstrapped parameters. The likelihood profile and profile t traces explicated by Bates
and Watts (1988) provide diagnostic material for evaluating parameter distributions.
CMLMTProfile generates trace plots which are used for this evaluation.

3.8.1 Covariance Matrix of the Parameters

An argument based on a Taylor-series approximation to the likelihood function (e.g.,
Amemiya, 1985, page 111) shows that

θ̂ → N(θ, A−1BA−1)

where

A = E
[
∂2L
∂θ∂θ′

]
B = E

[(
∂L
∂θ

)′ (
∂L
∂θ

)]

Estimates of A and B are
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Â =
1
N

N∑
i

∂2Li

∂θ∂θ′

B̂ =
1
N

N∑
i

(
∂Li

∂θ

)′ (
∂Li

∂θ

)

Assuming the correct specification of the model plim(A) = plim(B) and thus

θ̂ → N(θ, Â−1)

Without loss of generality we may consider two types of constraints, the nonlinear
equality and the nonlinear inequality constraints (the linear constraints are included in
nonlinear, and the bounds are regarded as a type of linear inequality). Furthermore, the
inequality constraints may be treated as equality constraints with the introduction of
“slack” parameters into the model:

H(θ) ≥ 0

is changed to

H(θ) = ζ2

where ζ is a conformable vector of slack parameters.

Further distinguish active from inactive inequality constraints. Active inequality
constraints have nonzero Lagrangeans, γ j, and zero slack parameters, ζ j, while the reverse
is true for inactive inequality constraints. Keeping this in mind, define the diagonal
matrix, Z, containing the slack parameters, ζ j, for the inactive constraints, and another
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diagonal matrix, Γ, containing the Lagrangean coefficients. Also, define H⊕(θ)
representing the active constraints, and H	(θ) the inactive.

The likelihood function augmented by constraints is then

LA = L + λ1g(θ)1 + · · · + λIg(θ)I + γ1h⊕1(θ) + · · · + γJh⊕J(θ)+
h	1(θ)i − ζ

2
1 + · · · + h	K(θ) − ζ2

K

and the Hessian of the augmented likelihood is

E(
∂2LA

∂θ∂θ′
) =



Σ 0 0 Ġ′ Ḣ′⊕ Ḣ′	
0 2Γ 0 0 0 0
0 0 0 0 0 2Z
Ġ 0 0 0 0 0
Ḣ⊕ 0 0 0 0 0
Ḣ	 0 2Z 0 0 0


where the dot represents the Jacobian with respect to θ, L =

∑N
i=1 log P(Yi; θ), and

Σ = ∂2L/∂θ∂θ′. The covariance matrix of the parameters, Lagrangeans, and slack
parameters is the Moore-Penrose inverse of this matrix. Usually, however, we are
interested only in the covariance matrix of the parameters, as well as the covariance
matrices of the Lagrange coefficients associated with the active inequality constraints and
the equality constraints.

These matrices may be computed without requiring the storage and manipulation of the
entire Hessian. Construct the partitioned array

B̃ ==

 Ġ
Ḣ⊕
Ḣ	
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and denote the i-th row of B̃ as b̃i. Then the k × k upper left portion of the inverse, that is,
that part associated with the estimated parameters, is calculated recursively. First, compute

Ω1 = Σ
−1 −

1
b̃1Σ−1b̃′1

Σ−1b̃′1b̃1Σ
−1

then continue to compute for all rows of B̃:

Ωi = Ωi−1 −
1

b̃iΩi−1b̃′i
Ωi−1b̃′i b̃iΩi−1

Rows associated with the inactive inequality constraints in B̃, i.e., with Ḣ	, drop out and
therefore they need not be considered.

Standard errors for some parameters associated with active inequality constraints may not
be available, i.e., the rows and columns of Ω associated with those parameters may be all
zeros.

3.8.2 Testing against inequality constraints

Constraints of the form

Hθ ≥ 0, (1)

where H is a matrix of constants, arise in various empirical studies. There is a large
literature on statistical inference under such linear inequality constraints, and more
generally under nonlinear inequality constraints as well. An up-to-date account of these
developments may be found in Silvapulle and Sen (2005). In what follows, we shall
provide an introduction to tests against inequality constraints and indicate how GAUSS
may be used for implementing a simple score test against inequality constraints.
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Let ψ denote a q × 1 subvector of θ and λ denote the remaining components of θ. For

simplicity, let us write θ =
(
λ

ψ

)
where ψ = (ψ1, . . . , ψq)′ and λ = (λ1, . . . , λp−q)′. Suppose

that we wish to test

H0 : ψ = 0 against H1 : Rψ ≥ 0, ψ , 0 (2)

where R is a given matrix of constants; thus, R does not depend on θ and it is
nonstochastic.

If our objective were to test ψ = 0 against ψ , 0, then a simple and easy to apply test is the
Rao’s Score test, or equivalently the Lagrange Multiplier test. This test is also a valid for
the inequality constrained testing problem in (2), but it may not be the best because it
ignores the inequality constraint Rψ ≥ 0 in the alternative hypothesis. Various tests of (2),
including likelihood ratio and score tests, have been developed. Now, we provide the
essential details for testing (2) using a one-sided score test.

First, it is convenient to introduce the so called chi-bar square distribution that plays an
important role in constrained statistical inference. The asymptotic null distribution of the
likelihood ratio/Wald/Score test of ψ = 0 against ψ , 0 is a chi-square. When there are
inequality constraints, such as Rψ ≥ 0, in the null or the alternative hypothesis, the role of
the chi-square distribution is replaced by a chi-bar square distribution; this is defined in
the next paragraph.

Let Z ∼ N(0,V), where Z is a q × 1 random vector and V is a q × q positive definite
matrix. Let

χ̄2(V,R) = Z′V−1Z −min
Ra≥0

(Z − a)′V−1(Z − a); (3)

in the second term, it is implicit that a is a vector of the same length as Z. We shall use the
notation χ̄2(V,R) is used for the random variable on the RHS of (3) and also for its
distribution. The random variable, χ̄2(V,R), is said to have a chi-bar square distribution
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and it can be expressed as follows:

Pr{χ̄2(V,R) ≤ c} =
q∑

i=0

wi Pr(χ2
i ≤ c)

for some non-negative numbers, wi, i = 0, . . . q, that are functions of (q,V,R); these
quantities are known as chi-bar square weights and also as level probabilities. Except in
some very spacial cases, Pr{χ̄2(V,R) ≤ c} is difficult to compute exactly. However, it can
be estimated by simulation to a desired degree of precision as follows:

1. Generate Z from N(0,V).

2. Compute χ̄2(V,R).

3. Repeat the first two steps M times, say M = 10000.

4. Estimate Pr{χ̄2(V,R) ≤ c} by the proportion of times χ̄2(V,R) turned out to
be less than or equal to c.

This is the method employed by GAUSS; for a similar method for estimating {wi} see
Wolak (1987). When the number of repeated samples M is 10000, the standard error of
the estimate of the probability obtained by this simulation method does not exceed 0.005;
if c is large so that Pr{χ̄2(V,R) ≤ c} is less than 0.1, then the standard error is less than
0.003. Thus, the precision in the estimation can be controlled by adjusting the number of
repeated samples, M.

The asymptotic null distributions of several statistics for testing (2) turns out to be a
chi-bar square distribution. Therefore, the chibarsq() procedure plays an important role in
the implementation of tests against inequality constraints.
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3.8.3 One-sided score test

As in (2) let ψ = (ψ1, . . . , ψq)′ denote a q × 1 subvector of θ, λ denote the remaining

components of θ, and θ =
(
λ

ψ

)
. Suppose that we wish to test

H0 : ψ = 0 against H1 : Rψ ≥ 0, ψ , 0 (4)

where R is a given matrix of constants. A generalized version of Rao’s Score test can be
applied for testing H0 vs H1. Let us first introduce the following: Let L(θ) denote the
log-likelihood and

s(θ) =
∂L(θ)
∂θ

: score function. (5)

Let s(θ) be partitioned as follows to conform with (λ, ψ) :

(
sλ
sψ

)
=

( ∂L
∂λ
∂L
∂ψ

)
. (6)

Similarly, let us introduce the following notation for partitioning any given matrix P of the
same order as θ, to conform with the partition, (ψ, λ):

P =
(

Pλλ Pλψ

Pψλ Pψψ

)
(7)

Let λ̃ denote the mle of λ under H0 : ψ = 0, and let

θ̃ =

(
λ̃

0

)
, (8)
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denote the mle of θ under H0 : ψ = 0. Let

A(θ) = −E[n−1 ∂

∂θ′
s(θ)] = −n−1E[

∂2

∂θ′∂θ
L(θ)], (9)

(10)

Let s̃, Ã, and B̃ denote the corresponding quantities evaluated at θ̃. These three quantities
can be obtained by calling the constrained maximum likelihood procedure under the
constraint Hθ = 0 where

H =
(

0 I
)

and I is the identity matrix of the same order as the dimension of ψ; note that Hθ = ψ and
hence Hθ = 0 is equivalent to ψ = 0.

Now, the one-sided score statistic of Silvapulle and Silvapulle (1995) [SS, hereafter],
which is a generalized version of Rao’s Score statistic, for testing H0 : ψ = 0 against the
one-sided alternative H1 : Rψ ≥ 0, ψ , 0 is

TS = ũ′D̃−1ũ −min
Ra≥0

(ũ − a)′D̃−1(ũ − a) (11)

where

D̃ = [(ÃB̃−1Ã′)−1]ψψ, (12)

and

ũ = n−1/2[Ãψψ − ÃψλÃ−1
λλ Ãλψ]−1[s̃ψ − Ãψλ(Ãψψ)−1 s̃λ]. (13)

An attractive feature of this one-sided score test of SS is that it does not require estimation
of the model under the inequality constraints in the alternative hypothesis, and further, the
test is applicable for methods based on estimating equations such as Generalized
Estimating Equations (GEE) of Liang and Zeger (1986).
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The asymptotic distribution of TS under the null hypothesis is χ̄2(D,R) where
D = [(AB−1A′)−1]ψψ. Therefore, if ts denotes the sample value of TS and D does not
depend on λ then an approximate large sample p-value is Pr{χ̄2(D,R) ≥ ts). Further, if the
exact form of D is unknown, then an estimate of the p-value is obtained by substituting an
estimate for D.

Usually D depends on λ. In this case, it is customary to define the asymptotic p-value as

sup
λ

Pr{χ̄2(Dλ,R) ≥ ts}

where the suffix λ is used to indicate the D matrix depends on λ. This can be computed
approximately by evaluating Pr{χ̄2(Dλ,R) ≥ ts} over a grid of λ values and finding the
maximum over that grid; if the dimension q of λ is large, this may be computing intensive.
Alternatively, some authors have suggested to estimate the large sample p-value by

p̃ = Pr{χ̄2(D̃,R) ≥ ts} (14)

where D̃ is treated as nonstochastic; its suitability would depend on the particular case,
and hence should be used with caution.

An upper bound for the large sample p-value is

pu = 0.5[Pr(χ2
q−1 ≥ ts) + Pr(χ2

q ≥ ts)]

where q is the number of components in ψ.

3.8.4 Likelihood ratio test

The likelihood ratio statistic is defined as

LRT = 2[max
H1

L(θ) −max
H0

L(θ)]. (15)
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The asymptotic null distribution of LRT is χ̄2(HA−1H′, I) where I is the identity matrix
(see Theorem 4.3.1 in Silvapulle and Sen, 2005). Therefore, an estimate of the p-value,
corresponding to (14), for the likelihood ratio test is

Pr{χ̄2(HÃ−1H′, I) ≥ LRT ).

An upper bound for the p-value of LRT is

0.5[Pr(χ2
2 ≥ LRT ) + Pr(χ2

3 ≥ LRT )].

Example

This example replicates a test of an AR-ARCH model described in Silvapulle and Sen
(2005), Section 4.6.6, page 181. The data are observations on the All Ordinaries Index of
Australian companies. The model is an AR-ARCH with three lagged error terms in the
conditional variance equation, and four lagged AR terms in the mean equation. The test
we have in mind is whether ARCH effects exist. This test is complicated by the fact that
they are constrained to be positive to ensure stationarity of the process as well as positive
conditional variances. The null and alternative hypotheses are therefore H0 : Ψ = 0 and
H1 : Ψ ≥ 0 where Ψ includes the three ARCH parameters.

First, a CMLMT estimation is generated where the ARCH parameters are fixed to zero. A
cmlmtControl instance is created for this estimation where its Active member is used to
fix the ARCH parameters to their initial values, zero in this case. Additional CovParType
is set to 2 instructing CMLMT to generate the cross-product of the matrix of first
derivatives which is required by chiBarSq.

Second, another cmlmtControl instance is created containing the specification of the
constraints on the parameters in the hypothesis. In this case they are bounds constraining
the ARCH parameters to be positive.

Third, the cmlmtResults instance returned from the call to CMLMT along with the DS
data structure, and the second cmlmtControl instance with the specification of the
constraints on the parameters, are passed to chiBarSq for the calculation of the test
statistic and its probability.
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Finally, additional constraints that might be placed on ancillary parameters are ignored
here. The method for testing hypotheses described here and employed by chiBarSq does
not allow for constraints on ancillary parameters which is a considerably more
complicated test. The additional constraints that could be placed on the AR parameters to
ensure stationarity are not active and so may be ignored here. It is important to remember
therefore that the test described here only holds for hypotheses where constraints are only
placed on the parameters of interest and not the ancillary parameters.

library cmlmt;

#include cmlmt.sdf

struct DS d1;

d1 = reshape(dsCreate,2,1);

load z0[] = aoi.asc;

z = packr(lagn(251*ln(trimr(z0,1,0)./

trimr(z0,0,1)),0|1|2|3|4));

d1[1].dataMatrix = z[.,1];

d1[2].dataMatrix = z[.,2:5];

proc lpr(struct PV p, struct DS d, ind);

local series,b,omega,arch,const,phi,u2,q,n,h,v;

struct modelResults mm;

omega = pvUnpack(p,"omega");

arch = pvUnpack(p,"arch");

const = pvUnpack(p,"constant");

phi = pvUnpack(p,"phi");

u2 = (d[1].dataMatrix - d[2].dataMatrix * phi -

const)ˆ2;

3-51



Constrained Maximum Likelihood MT 2.0 for GAUSS

q = rows(arch);

n = rows(u2);

h = ones(n,1);

v = seqa(1,1,q)’ + seqa(0,1,n-q);

h[q+1:rows(h)] = omega + reshape(u2[v],n-q,q) * arch;

h[1:q] = ones(q,1)*meanc(h[q+1:rows(h)]);

mm.function = -0.5*( (u2 ./ h) + ln(2 * pi) + ln(h) );

retp(mm);

endp;

/*

** hypothesis test that the arch parameters

** are zero versus greater than zero

*/

struct cmlmtControl c1;

c1 = cmlmtControlCreate;

c1.A = zeros(3,6) ˜ eye(3);

c1.B = zeros(3,1);

c1.covParType = 2; // causes Jacobian to be computed

// which is needed for chibarsq

struct PV p1;

p1 = pvPack(pvCreate,.08999,"constant");

p1 = pvPack(p1,.25167|-.12599|.09164|.07517,"phi");

p1 = pvPack(p1,3.22713,"omega");

p1 = pvPack(p1,0|0|0,"arch");

/*

** ML estimation of parameters where
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** parameters under hypothesis are fixed

** to zero.

*/

struct cmlmtResults out1;

out1 = cmlmt(&lpr,p1,d1,c1);

/*

** The cmlmtControl instance, c2, contains the

** the constraints on the arch parameters

*/

struct cmlmtControl c2;

c2 = cmlmtcontrolcreate;

c2.bounds = {

-10 10,

-10 10,

-10 10,

-10 10,

-10 10,

0 10,

0 10,

0 10,

0 10 };

psi = { 7, 8, 9 };

{ chibar,chibarprob } = chibarsq(out1,d1,c2,psi);

print;
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print;

print "-------------------------------------------";

print " test of H(arch) = 0 vs. H(arch) >= 0";

print;

print " chibar " chibar;

print " chibarprob " chibarprob;

The results are

-------------------------------------------

test of H(arch) = 0 vs. H(arch) >= 0

chibar 3.9152

chibarprob 0.0913

3.8.5 Testing Lagrangeans

Equality Constraints

When equality constraints are present in the model, their associated Lagrange coefficients
may be tested to determine their reasonableness. An estimate of the covariance matrix of
the joint distribution of the Lagrange coefficients associated with the equality constraints
is ĠΣ−1Ġ′ and therefore

λ̂′ĠΣ−1Ġ′λ̂

is asymptotically χ2(p) where p is the length of λ̂. Individual constraints may be tested
using their associated t-statistics.

When appropriate this covariance matrix is assigned to the Lagr.Eqcov member of an
instance of the cmlmtResults structure.

3-54



C
M

LM
T

Constrained Maximum Likelihood MT

Active Inequality Constraints

When inequality constraints are active, their associated Lagrange coefficients are nonzero.
The expected value of their Lagrange coefficients is zero (assuming correct specification
of the model), and they are active only in occasional samples. How many samples this
occurs in depends on their covariance matrix, which is estimated by Ḣ⊕Σ−1Ḣ′⊕.

When appropriate this covariance matrix is assigned to Lagr.Ineqcov member of an
instance of the cmlmtResults structure.

3.8.6 Heteroskedastic-consistent Covariance Matrix

When the CovParType member of an instance of cmlmtControl is set to 2, CMLMT
returns heteroskedastic-consistent covariance matrices of the parameters in the CovPar
member of an instance of the cmlmtResults structure returned from the call to CMLMT.

Define

B =
(
∂F
∂θ

)′ (
∂L
∂θ

)

evaluated at the estimates. Then the covariance matrix of the parameters is

ΩBΩ

3.8.7 Confidence Limits by Inversion

When the model includes inequality constraints, confidence limits computed as the ratio
of the parameter estimate to its standard error are not correct because they do not take into
account that the distribution of the parameter is restricted by its boundaries.
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Inversion of the Likelihood Ratio Statistic. Partition a k-vector of parameters,
θ = (θ1 θ2), and let θ̃ be a maximum likelihood estimate of θ, where θ1 is fixed to some
value. A 100(1 − α)% confidence region for the parameters in θ1 is defined by

−2 ∗ log(L(θ̃)/L(θ̂)) ≤ χ2
(1−α,k).

Let

Flr(φ) = min(−2 ∗ log(L(θ̃)/L(θ̂)) | η′iθ = φ,H(θ) ≥ 0)

where η is a vector with a one in the i-th position and zeros elsewhere, and H(θ) is a
function describing the constraints. The lower limit of the (1 − α) interval for θi is the
value of φ such that

Flr(φ) = χ2
(1−α,k). (16)

A modified secant method is used to find the value of φ that satisfies (16). The upper limit
is found by defining Flr as a maximum.

The CMLMT procedure CMLProfileLimits solves this problem. Corrections are made
by CMLMTProfileLimits when the limits are near constraint boundaries.

Inversion of the Wald Statistic. A 1 − α joint confidence region for θ is the
hyper-ellipsoid

JF(J,N − K;α) = (θ − θ̂)′V−1(θ − θ̂) (17)

where V is the covariance matrix of the parameters, J is the number of parameters
involved in the hypothesis, and F(J,N − K;α) is the upper α area of the F-distribution
with J, N-K degrees of freedom.

3-56



C
M

LM
T

Constrained Maximum Likelihood MT

If there are no constraints in the model, the 1 − α confidence interval for any selected
parameter is

θ̂ ±
√
η′kV−1ηk t(N − K;α/2)

where ηk is a vector of zeros with the k-th element corresponding to the parameter being
tested set to one.

When there are constraints no such simple description of the interval is possible. Instead it
is necessary to state the confidence limit problem as a parametric nonlinear programming
problem.

The lower limit of the confidence limit is the solution to

min
{
η′kθ | (θ − θ̂)

′V−1(θ − θ̂) ≥ JF(J,N − K;α),G(θ) = 0,H(θ) ≥ 0)
}

where now η can be an arbitrary vector of constants and J =
∑
ηk , 0, and where again

we have assumed that the linear constraints and bounds have been folded in among
nonlinear constraints. The upper limit is the maximum of this same function.

In this form, the minimization is not convex and can’t be solved by the usual methods.
However, the problem can be re-stated as a parametric nonlinear programming problem
(Rust and Burrus, 1972). Define the function

F(φ) = min((θ − θ̂)′V−1(θ − θ̂) | η′kθ = φ,G(θ) = 0,H(θ) ≥ 0)

The upper and lower limits of the 1 − α interval are the values of φ such that

F(φ) = JF(J,N − K;α)

To find this value it is necessary to iteratively refine φ by interpolation until 3.8.7 is
satisfied. The CMLMT procedure CMLMTInverseWaldLimits solves this problem.
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3.8.8 Bootstrap

The bootstrap method is used to generate empirical distributions of the parameters, thus
avoiding the difficulties with the usual methods of statistical inference described above.

CMLMTBoot

Rather than randomly sample with replacement from the data set, CMLMTBoot performs
NumSample weighted maximum likelihood estimations where the weights are Poisson
pseudo-random numbers with expected value equal to the the number of observations,
where NumSample is a member of an instance of the cmlmtControl structure. This is
asymptotically equivalent to simple random sampling with replacement. The number of
resamplings is determined by setting the NumSample member of an instance of a
cmlmtControl structure. The default is 100 re-samplings. Efron and Tibshirani
(1993:52) suggest that 100 is satisfactory, 50 is often enough to give a good estimate, and
rarely are more than 200 needed.

The mean of the bootstrapped parameters is returned by CMLMTBoot in an instance of a
cmlmtResults structure as the member Par, an instance of a PV structure. The
covariance matrix is returned as the member CovPar. Confidence limits are returned as
the member BootLimits. In addition CMLMTBoot writes the bootstrapped parameter
estimates to a GAUSS data set with the name set in the member BootFileName. If the
name is not specified, CMLMTBoot selects the name BOOTxxxx, where xxxx starts at 0000
and increments by 1 until a name is found that is not already in use.

Example

To bootstrap the example in Section 3.7.4, the only necessary alteration is the change the
call to CMLMT to a call to CMLMTBoot:

library cmlmt,pgraph;
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#include cmlmt.sdf

#include kern.sdf

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.DataMatrix[.,1];

x = d.DataMatrix[.,2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.Function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.Gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;
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c0 = cmlmtcontrolcreate;

c0.Title = "CML6 - bootstrap example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

c0.BootFilename = "example6";

c0.State = 324235;

struct DS d0;

d0.Dname = "cmlmttobit";

struct cmlmtResults out1;

out1 = cmlmtBoot(&lpr,p0,d0,c0);

call cmlmtPrt(out1);

call kern(loadd("example6"),kernControlCreate);

This example calls kern to generate kernel density plots of the parameters from the
GAUSS data set generated by CMLMTBoot.

3.8.9 Profiling

The CMLMT proc, CMLMTProfile generates profile t plots as well as plots of the
likelihood profile traces for all of the parameters in the model in pairs. The profile t plots
are used to assess the nonlinearity of the distributions of the individual parameters, and the
likelihood profile traces are used to assess the bivariate distributions. The input and output
arguments to CMLMTProfile are identical to those of CMLMT. But in addition to
providing the maximum likelihood estimates and covariance matrix of the parameters, a
series of plots are printed to the screen using GAUSS’ Publication Quality Graphics. A
screen is printed for each possible pair of parameters. There are three plots, a profile t plot
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for each parameter, and a third plot containing the likelihood profile traces for the two
parameters.

The discussion in this section is based on Bates and Watts (1988), pages 205-216, which is
recommended reading for the interpretation and use of profile t plots and likelihood profile
traces.

The Profile t Plot

Define

θ̃k = (θ̃1, θ̃2, ..., θ̃k−1, θk, θ̃k+1, ..., θ̃K)

This is the vector of maximum likelihood estimates conditional on θk, i.e., where θk is
fixed to some value. Further define the profile t function

τ(θk) = sign(θk − θ̂k)(N − K)
√

2N
[
L(θ̃k) − L(θ̂k)

]
For each parameter in the model, τ is computed over a range of values for θk. These plots
provide exact likelihood intervals for the parameters, and reveal how nonlinear the
estimation is. For a linear model, τ is a straight line through the origin with unit slope. For
nonlinear models, the amount of curvature is diagnostic of the nonlinearity of the
estimation. High curvature suggests that the usual statistical inference using the t-statistic
is hazardous.

The Likelihood Profile Trace

The likelihood profile traces provide information about the bivariate likelihood surfaces.
For nonlinear models the profile traces are curved, showing how the parameter estimates

3-61



Constrained Maximum Likelihood MT 2.0 for GAUSS

affect each other and how the projection of the likelihood contours onto the (θk, θ`) plane
might look. For the (θk, θ`) plot, two lines are plotted, L(θ̃k) against θk and L(θ̃`) against θ`.

If the likelihood surface contours are long and thin, indicating the parameters to be
collinear, the profile traces are close together. If the contours are fat, indicating the
parameters to be more uncorrelated, the profile traces tend to be perpendicular. And if the
contours are nearly elliptical, the profile traces are straight. The surface contours for a
linear model would be elliptical and thus the profile traces would be straight and
perpendicular to each other. Significant departures of the profile traces from straight,
perpendicular lines, therefore, indicate difficulties with the usual statistical inference.

To generate profile t plots and likelihood profile traces from the example in Section 3.7.4,
it is necessary only to change the call to CMLMT to a call to CMLMTProfile:

call CMLMTPrt(CMLMTProfile("cmlmttobit",0,&lpr,x0));

CMLMTProfile produces the same output as CMLMT which can be printed out using a
call to CMLMTPRT.

For each pair of parameters a plot is generated containing an xy plot of the likelihood
profile traces of the two parameters, and two profile t plots, one for each parameter.

The likelihood profile traces indicate that the distributions of parameters 1 and 2 are
highly correlated. Ideally, the traces would be perpendicular and the trace in this example
is far from ideal.

The profile t plots indicate that the parameter distributions are somewhat nonlinear.
Ideally the profile t plots would be straight lines and this example exhibits significant
nonlinearity. It is clear that any interpretations of the parameters of this model must be
made quite carefully.
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3.9 Run-Time Switches

If the user presses H during the iterations, a help table is printed to the screen which
describes the run-time switches. By this method, important global variables may be
modified during the iterations. The case may also be ignored, that is, either upper or lower
case letters suffice.

A Change Algorithm

C Force Exit

G Toggle GradMethod

H Help Table

O Set PrintIters

S Set line search method

T set TrustRadius

V Set DirTol

Keyboard polling can be turned off completely by setting the disableKey member of the
cmlmtControl instance to a nonzero value.

3.10 CMLMT Structures

3.10.1 cmlmtControl

matrix A

matrix B
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matrix C

matrix D

scalar EqProc

scalar IneqProc

scalar IneqJacobian

scalar EqJacobian

matrix Bounds

matrix Algorithm

matrix Switch

matrix LineSearch

matrix Active

matrix NumObs

matrix MaxIters

matrix DirTol

matrix Weights

matrix CovParType

matrix Alpha

matrix FeasibleTest

matrix MaxTries

matrix RandRadius

matrix GradMethod
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matrix HessMethod

matrix GradStep

matrix HessStep

matrix GradCheck

matrix State

string Title

scalar PrintIters

matrix TrustRadius

matrix Aug

matrix DisableKey

matrix Select

matrix Center

matrix Increment

matrix Width

matrix NumCat

string BootFileName

string BayesFileName

matrix BayesAlpha

scalar PriorProc

matrix NumSamples

matrix MaxTime

matrix MaxBootTime
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3.10.2 cmlmtResults

struct PV Par

scalar Fct

struct CcmlmtLagrange lagr

scalar Retcode

string ReturnDescription

matrix CovPar

string CovParDescription

matrix NumObs

matrix Hessian

matrix Xproduct

matrix Waldlimits

matrix Inversewaldlimits

matrix Bayeslimits

matrix Profilelimits

matrix Bootlimits

matrix Gradient

matrix NumIterations

matrix ElapsedTime

matrix Alpha

string Title

3-66



C
M

LM
T

Constrained Maximum Likelihood MT

3.10.3 cmlmtLagrange

matrix Lineq

matrix Nlineq

matrix Linineq

matrix Nlinineq

matrix Bounds

3.10.4 modelResults

matrix Function

matrix Gradient

matrix Hessian

array Hessianw

matrix NumObs

3.11 Error Handling

3.11.1 Return Codes

The Retcode member of an instance of a cmlmtResults structure, which is returned by
CMLMT, contains a scalar number that contains information about the status of the
iterations upon exiting CMLMT. The following table describes their meanings:

0 normal convergence
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1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values

8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

12 error with weights

13 quadratic program failed

14 equality Jacobian failed

15 inequality Jacobian failed

16 function evaluated as complex

20 Hessian failed to invert

34 data set could not be opened
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3.11.2 Error Trapping

Setting the PrintIters member of an instance of a cmlmtControl structure to zero
turns off all printing to the screen. Error codes, however, still are printed to the screen
unless error trapping is also turned on. Setting the trap flag to 4 causes CMLMT not to
send the messages to the screen:

trap 4;

Whatever the setting of the trap flag, CMLMT discontinues computations and returns
with an error code. The trap flag in this case only affects whether messages are printed to
the screen or not. This is an issue when the CMLMT function is embedded in a larger
program, and you want the larger program to handle the errors.

3.12 References

1. Andrews, D.W.K, 1999. “Inconsistency of the bootstrap when a parameter
is on the boundary of the parameter space”, Econometrica, 99.

2. Amemiya, Takeshi, 1985. Advanced Econometrics. Cambridge, MA:
Harvard University Press.

3. Bates, Douglas M. and Watts, Donald G., 1988. Nonlinear Regression
Analysis and Its Applications. New York: John Wiley & Sons.

4. Berndt, E., Hall, B., Hall, R., and Hausman, J., 1974. “Estimation and
inference in nonlinear structural models”. Annals of Economic and Social
Measurement 3:653-665.

5. Brent, R.P., 1972. Algorithms for Minimization Without Derivatives.
Englewood Cliffs, NJ: Prentice-Hall.

6. Conn, Andrew R., Gould, Nicholas I.M., Toint, Philippe L., 2000.
Trust-Region Methods. Philadelphia: SIAM.

3-69



Constrained Maximum Likelihood MT 2.0 for GAUSS

7. Dennis, Jr., J.E., and Schnabel, R.B., 1983. Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs,
NJ: Prentice-Hall.

8. Efron, Gradley, Robert J. Tibshirani, 1993. An Introduction to the
Bootstrap. New York: Chapman & Hall.

9. Fletcher, R., 1987. Practical Methods of Optimization. New York: Wiley.

10. Gill, P. E. and Murray, W. 1972. “Quasi-Newton methods for unconstrained
optimization.” J. Inst. Math. Appl., 9, 91-108.

11. Gourieroux, Christian, Holly, Alberto, and Monfort, Alain (1982).
“Likelihood Ratio test, Wald Test, and Kuhn-Tucker test in linear models
with inequality constraints on the regression parameters”, Econometrica 50:
63-80.

12. Han, S.P., 1977. “A globally convergent method for nonlinear
programming.” Journal of Optimization Theory and Applications,
22:297-309.

13. Hock, Willi and Schittkowski, Klaus, 1981. Lecture Notes in Economics
and Mathematical Systems. New York: Springer-Verlag.

14. Jamshidian, Mortaza and Bentler, P.M., 1993. “A modified Newton method
for constrained estimation in covariance structure analysis.” Computational
Statistics & Data Analysis, 15:133-146.

15. Judge, G.G., R.C. Hill, W.E. Griffiths, H. Lütkepohl and T.C. Lee. 1988.
Introduction to the Theory and Practice of Econometrics. 2nd Edition. New
York:Wiley.

16. Judge, G.G., W.E. Griffiths, R.C. Hill, H. Lüutkepohl and T.C. Lee. 1985.
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CMLMT

PURPOSE Computes estimates of parameters of a constrained maximum
likelihood function.

LIBRARY cmlmt

FORMAT out = CMLMT(&modelProc,par,data,ctl);

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.
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data instance or matrix of instances of a DS structure containing
data. it is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,
1 a scalar or vector of DS instances passed to cmlmt are

passed unchanged to the user-provided log-likelihood
procedure. In this case the structure can be a scalar,
vector, or matrix of DS instances, and all members of all
the instances can be set at the discretion of the
programmer, except that the dname member of the
[1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, cmlmt passes the contents
of that data set either in whole or in part to the user-
provided log-likelihood procedure in the DataMatrix
member of the first DS instance. If the member,
Vnames, contains a string array of column names in the
data set cmlmt will select those columns for passing to
that procedure. All other members, as well as all
members of succeeding elements of a vector of
instances may be used at the programmer’s discretion.

To clarify, if you do not want cmlmt to read the data from a
GAUSS data set and pass it to your procedure, you can pass
a DS structure containing whatever you wish to cmlmt and it
will be passed untouched to your procedure.
If you do wish to have cmlmt to read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
cmlmt will pass the contents in the DataMatrix member of
the first instance.

ctl an instance of a cmlmtControl structure. Normally an
instance is initialized by calling cmlmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:
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ctl.A M × K matrix, linear equality
constraint coefficients: ctl.A * p =
ctl.B where p is a vector of the
parameters.

ctl.B M × 1 vector, linear equality
constraint constants: ctl.A * p = ctl.B
where p is a vector of the parameters.

ctl.C M × K matrix, linear inequality
constraint coefficients: ctl.C * p ≥
ctl.D where p is a vector of the
parameters.

ctl.D M × 1 vector, linear inequality
constraint constants: ctl.C * p ≥ ctl.D
where p is a vector of the parameters.

ctl.EqProc scalar, pointer to a procedure that
computes the nonlinear equality
constraints. When such a procedure
has been provided, it has two input
arguments, an instance of a PV
parameter structure, and an instance
of a DS data structure, and one output
argument, a vector of computed
equality constraints. For more details
see Remarks below. Default = {.}, i.e.,
no equality procedure.

ctl.IneqProc scalar, pointer to a procedure that
computes the nonlinear inequality
constraints. When such a procedure
has been provided, it has two input
arguments, an instance of a PV
parameter structure, and an instance
of a DS data structure, and one output
argument, a vector of computed
inequality constraints. For more
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details see Remarks below. Default =
{.}, i.e., no inequality procedure.

ctl.EqJacobian scalar, pointer to a procedure that
computes the Jacobian of the equality
constraints. When such a procedure
has been provided, it has two input
arguments, an instance of a PV
parameter structure, and an instance
of a DS data structure, and one output
argument, a matrix of derivatives of
the equality constraints with respect
to the parameters. Default = {.}, i.e.,
no equality Jacobian procedure.

ctl.IneqJacobian scalar, pointer to a procedure that
computes the Jacobian of the
inequality constraints. When such a
procedure has been provided, it has
two input arguments, an instance of a
PV parameter structure, and an
instance of a DS data structure, and
one output argument, a matrix of
derivatives of the inequality
constraints with respect to the
parameters. Default = {.}, i.e., no
inequality Jacobian procedure.

ctl.Bounds 1 × 2 or K × 2 matrix, bounds on
parameters. If 1 × 2 all parameters
have same bounds. Default = {
-1e256 1e256 }.

ctl.Algorithm scalar, descent algorithm.
0 Modified BFGS
1 BFGS (default)
2 DFP
3 Newton
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4 BHHH
ctl.useThreads scalar, if nonzero, the calculation of

numerical derivatives will be
threaded. Default = 0.

ctl.Switch 4 × 1 or 4 × 2 vector, controls
algorithm switching:
if 4 × 1:
ctl.Switch[1] algorithm number to

switch to.
ctl.Switch[2] cmlmt switches if

function changes less than this
amount.

ctl.Switch[3] cmlmt switches if
this number of iterations is
exceeded.

ctl.Switch[4] cmlmt switches if
line search step changes less than
this amount.

else if 4 × 2 cmlmt switches between
the algorithm in column 1 and
column 2. Default = { 1 3, .0001
.0001, 10 10, .0001 .0001 }.

ctl.LineSearch scalar, sets line search method.
0 augmented trust region method

(requires constraints)
1 STEPBT (quadratic and cubic

curve fit) (default)
2 Brent’s method
3 BHHHStep
4 half
5 Wolfe’s condition

ctl.TrustRadius scalar, radius of the trust region. If
scalar missing, trust region not
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applied. The trust sets a maximum
amount of the direction at each
iteration. Default = .001.

ctl.Aug scalar, augmentation constant for
trust region line search method.

ctl.Active K × 1 vector, set K-th element to zero
to fix it to start value. Use the
GAUSS function pvGetIndex to
determine where parameters in the PV
structure are in the vector of
parameters. Default = {.}, all
parameters are active.

ctl.NumObs scalar, number of observations,
required if the log-likelihood
procedure returns a scalar.

ctl.MaxIters scalar, maximum number of
iterations. Default = 10000.

ctl.DirTol scalar, convergence tolerance.
Iterations cease when all elements of
the direction vector are less than this
value. Default = 1e − 5.

ctl.Weights vector, weights for objective function
returning a vector. Default = 1.

ctl.CovParType scalar. If 2, QML covariance matrix,
else if 0, no covariance matrix is
computed, else ML covariance matrix
is computed. Default = 1.

ctl.Alpha scalar, probability level for statistical
tests. Default = .05.

ctl.FeasibleTest scalar, if nonzero, parameters are
tested for feasibility before
computing function in line search. If
function is defined outside inequality
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boundaries, then this test can be
turned off. Default = 1.

ctl.MaxTries scalar, maximum number of attemps
in random search. Default = 100.

ctl.RandRadius scalar, If zero, no random search is
attempted. If nonzero, it is the radius
of the random search. Default = .001.

ctl.GradMethod scalar, method for computing
numerical gradient.
0 central difference
1 forward difference (default)
2 backward difference

ctl.HessMethod scalar, method for computing
numerical Hessian.
0 central difference
1 forward difference (default)
2 backward difference

ctl.GradStep scalar or K × 1, increment size for
computing numerical gradient. If
scalar, stepsize will be value times
parameter estimates for the numerical
gradient. If K × 1, the step size for
the gradient will be the elements of
the vector, i.e., it will not be
multiplied times the parameters.

ctl.HessStep scalar or K × 1, increment size for
computing numerical Hessian. If
scalar, stepsize will be value times
parameter estimates for the numerical
Hessian. If K × 1, the step size for the
gradient will be the elements of the
vector, i.e., it will not be multiplied
times the parameters.
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ctl.GradCheck scalar, if nonzero and if analytical
gradients and/or Hessian have been
provided, numerical gradients and/or
Hessian are computed and compared
against the analytical versions.

ctl.State scalar, seed for random number
generator.

ctl.Title string, title of run.
ctl.printIters scalar, if nonzero, prints iteration

information. Default = 0.
ctl.MaxBootTime scalar, maximum number of minutes

to convergence.
ctl.DisableKey scalar, if nonzero, keyboard input

disabled.

OUTPUT out instance of a cmlmtResults structure. For an instance
named out, the members are:

out.Par instance of a PV structure containing
the parameter estimates. Use
pvUnpack to retrieve matrices and
arrays or pvGetParvector to get the
parameter vector.

out.Fct scalar, function evaluated at
parameters in out.Par

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
parameters.

out.CovParDescription string, description of
out.CovPar.

out.NumObs scalar, number of observations.
out.Hessian K × K matrix, Hessian evaluated at

parameters in out.Par.
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out.Xproduct K × K matrix, cross-product of N × K
matrix of first derivatives evaluated at
parameters in out.Par. Not available
if loglikelihood function returns a
scalar.

out.WaldLimits K × 2 matrix, Wald confidence limits.
out.inverseWaldLimits K × 2 matrix, confidence

limits by inversion of Wald statistics.
Available only

out.ProfileLimits K × 2 matrix, profile likelihood
confidence limits, i.e., by inversion of
likelihood ratio statistics. Only
available if cmlmtProfileLimits
has been called.

out.BayesLimits K × 2 matrix, weighted likelihood
Bayesian confidence limits. Only
available if cmlmtBayes has been
called.

out.BootLimits K × 2 Matrix, bootstrap confidence
limits. Available only if cmlmtBoot
has been called.

out.Gradient K × 1 vector, gradient evaluated at
the parameters in out.Par.

out.NumIterations scalar, number of iterations.
out.ElapsedTime scalar, elapsed time of iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.
out.Title string, title of run.
out.Lagr an instance of a cmlmtLagrange

structure containing the Lagrangeans
for the constraints. For an instance
named out.Lagr, the members are:
out.Lagr.Lineq M × 1 vector,

CMLMT C R 4-9



CMLMT

Lagrangeans of linear equality
constraints.

out.Lagr.Nlineq N × 1 vector,
Lagrangeans of nonlinear
equality constraints.

out.Lagr.Linineq P × 1 vector,
Lagrangeans of linear inequality
constraints.

out.Lagr.Nlinineq Q × 1 vector,
Lagrangeans of nonlinear
inequality constraints.

out.Lagr.Bounds K × 2 matrix,
Lagrangeans of bounds.

out.Lagr.EqCov (M+N) × (M+N)
matrix, covariance matrix of
equality constraints.

out.Lagr.IneqCov (P+Q) × (P+Q)
matrix, covariance matrix of
inequality constraints.

Whenever a constraint is active, its
associated Lagrangean will be
nonzero. For any constraint that is
inactive throughout the iterations as
well as at convergence, the
corresponding Lagrangean matrix
will be set to a scalar missing value.

out.Retcode return code:
0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
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5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
9 error with constraints
10 second update failed
11 maximum time exceeded
12 error with weights
13 quadratic program failed
14 equality constraint Jacobian

failed
15 inequality constraint Jacobian

failed
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened

REMARKS Writing the Log-likelihood Function There is one required
user-provided procedure, the one computing the log-likelihood function
and optionally the first and/or second derivatives, and four other
optional procedures, one each for computing the equality constraints,
the inequality constraints, the Jacobian of the equality constraints, and
the Jacobian of the inequality constraints.

The main procedure, computing the log-likelihood and optionally the
first and/or second derivatives, has three arguments, an instance of type
struct PV containing the parameters, a second argument that is an
instance of type struct DS containing the data, and a third argument that
is a vector of zeros and ones indicating which of the results, the
function, first derivatives, or second derivatives, are to be computed.

The remaining optional procedures take just two arguments, the
instance of the PV structure containing the parameters and the the
instance of the DS structure containing the data.
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The instance of the PV structure is set up using the PV pack procedures,
pvPack, pvPackm, pvPacks, and pvPacksm. These procedures allow
for setting up a parameter vector in a variety of ways.

The instance of the DS structure containing the data is set up in two
distinct ways depending on whether cmlmt is to read the data in from a
GAUSS data set, or whether the data is in a matrix.

For example, the following procedure computes the log-likelihood and
the first derivatives for a tobit model:

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d[1].dataMatrix;

x = d[2].dataMatrix;

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);
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g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

Nonlinear Equality or Inequality Constraints Procedures

The procedures for nonlinear equality and inequality constraints take
two input arguments, an instance of a PV parameter structure and an
instance of a DS data structure. For example, to constrain the sum of
squares of coefficients to be greater than one, provide the following
procedure:

proc ineqConst(struct PV par1, struct DS data1);

local b;

b = pvUnpack(p,"b");

retp( sumc(bˆ2) - 1 );

endp;

EXAMPLE The following is a complete example. It applys the Biochemical
Oxygen Demand model to data taken from Douglas M. Bates and
Donald G. Watts, Nonlinear Regression Analysis and Its Applications,
page 270.

library cmlmt;

#include cmlmt.sdf
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proc lnlk(struct PV p, struct DS d, ind);

local dev,s2,m,r,b0,b;

struct modelResults mm;

b0 = pvUnpack(p,1);

b = pvUnpack(p,2);

r = exp(-b*d[2].dataMatrix);

m = 1 - r;

dev = d[1].dataMatrix - b0*m;

s2 = dev’dev/rows(dev);

if ind[1];

mm.function = lnpdfmvn(dev,s2);

endif;

if ind[2];

mm.gradient = (dev/s2) .*

(m ˜ b0*d[2].dataMatrix.*r);

endif;

retp(mm);

endp;

struct DS d0;

d0 = reshape(dsCreate,2,1);

d0[1].dataMatrix =

{

8.3,

10.3,

19.0,

16.0,

15.6,
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19.8

};

d0[2].dataMatrix =

{

1,

2,

3,

4,

5,

7

};

struct PV p0;

p0 = pvPacki(pvCreate,19.143,"b0",1);

p0 = pvPacki(p0,.5311,"b",2);

struct cmlmtControl c0;

c0 = cmlmtControlCreate;

c0.Bounds = { 10 35,

0 2 };

struct cmlmtResults out;

out = cmlmt(&lnlk,p0,d0,c0);

SOURCE cmlmt.src
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CMLMTBayes

PURPOSE Bayesian Inference using weighted maximum likelihood bootstrap.

LIBRARY cmlmt

FORMAT out = CMLMTBayes(&modelProc,par,data,ctl);

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

data instance or matrix of instances of a DS structure containing
data. it is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,

1 a scalar or vector of DS instances passed to cmlmt are
passed unchanged to the user-provided log-likelihood
procedure. In this case the structure can be a scalar,
vector, or matrix of DS instances, and all members of all
the instances can be set at the discretion of the
programmer, except that the dname member of the
[1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, cmlmt passes the contents
of that data set either in whole or in part to the user-
provided log-likelihood procedure in the DataMatrix
member of the first DS instance. If the member,
Vnames, contains a string array of column names in the
data set cmlmt will select those columns for passing to
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that procedure. All other members, as well as all
members of succeeding elements of a vector of
instances may be used at the programmers discretion.

To clarify, if you do not want cmlmt to read the data from a
GAUSS data set and pass it to your procedure, you can pass
a DS structure containing whatever you wish to cmlmt and it
will be passed untouched to your procedure.
If you do wish to have cmlmt read the data from a GAUSS
data set, set the dname member of the first instance in the DS
structure to the name of the GAUSS data set, and cmlmt
will pass the contents in the DataMatrix member of the
first instance.

ctl an instance of a cmlmtControl structure. Normally an
instance is initialized by calling cmlmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.useThreads scalar, if nonzero, resampling will be
threaded. Default = 0.

ctl.BayesAlpha scalar, exponent of the Dirichlet
random variates used in the weights
for the weighted bootstrap. See
Newton and Raftery, “Approximate
Bayesian Inference with the Weighted
Likelihood Bootstrap”, J.R.Statist.
Soc. B (1994), 56:3-48. Default =
1.4.

ctl.PriorProc scalar, pointer to proc for computing
prior. This proc takes the parameter
vector as its only argument and
returns a scalar probability. If a proc
is not provided, a uniform prior is
assumed.

ctl.NumSample scalar, number of re-samples in the
weighted likelihood bootstrap.
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ctl.BayesFname string, file name of GAUSS data set
(do not include the .DAT extension)
containing simulated posterior of the
parameters. If not specified,
CMLMTBayes will select the file name,
BAYESxxxx where xxxx is 0000
incremented by 1 until a name is
found that doesn’t exist on the current
directory.

ctl.MaxBootTime scalar, maximum number of minutes
for resampling.

For description of additional members of the
cmlmtControl structure see reference for cmlmt.

OUTPUT out instance of a cmlmtResults structure.

out.Par instance of a PV structure containing
the mean of the resampled estimates.
Use pvUnpack to retrieve matrices
and arrays or pvGetParvector to
get the parameter vector.

out.Fct scalar, mean log-likelihood across
resamples.

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
resampled parameter estimates.

out.CovParDescription string, description of
out.CovPar.

out.NumObs scalar, number of observations.
out.BayesLimits K × 2 matrix, weighted likelihood

Bayesian confidence limits. Only
available if cmlmtBayes has been
called.
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out.Gradient K × 1 vector, mean gradient.
out.NumIterations scalar, average number of

iterations.
out.ElapsedTime scalar, average elapsed time of

iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.
out.Title string, title of run.
out.Retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
9 error with constraints
10 second update failed
11 maximum time exceeded
12 error with weights
13 quadratic program failed
14 equality constraint Jacobian

failed
15 inequality constraint Jacobian

failed
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened
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EXAMPLE
library cmlmt,pgraph;

#include cmlmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜
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(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

c0.numSamples = 200;

c0.bayesFileName = "bayes";

proc prior(b); /* unit normal prior */

retp(prodc(pdfn(b)));

endp;

c0.PriorProc = &prior;
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struct DS d0;

d0 = dsCreate;

d0.dname = "cmlmttobit";

out1 = cmlmtBayes(&lpr,p0,d0,c0);

call cmlmtPrt(out1);

SOURCE cmlmtbayes.src

CMLMTBoot

PURPOSE Computes bootstrap estimates.

LIBRARY cmlmt

FORMAT out = CMLMTBoot(&modelProc,par,data,ctl);

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

data instance or matrix of instances of a DS structure containing
data. It is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,

1 a scalar or vector of DS instances passed to cmlmt are
passed unchanged to the user-provided log-likelihood
procedure. In this case the structure can be a scalar,
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vector, or matrix of DS instances, and all members of all
the instances can be set at the discretion of the
programmer, except that the dname member of the
[1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, cmlmt passes the contents
of that data set either in whole or in part to the user-
provided log-likelihood procedure in the DataMatrix
member of the first DS instance. If the member,
Vnames, contains a string array of column names in the
data set cmlmt will select those columns for passing to
that procedure. All other members, as well as all
members of succeeding elements of a vector of
instances may be used at the programmers discretion.

To clarify, if you do not want cmlmt to read the data from a
GAUSS data set and pass it to your procedure, you can pass
a DS structure containing whatever you wish to cmlmt and it
will be passed untouched to your procedure.
If you do wish to have cmlmt to read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
cmlmt will pass the contents in the DataMatrix member of
the first instance.

ctl an instance of a cmlmtControl structure. Normally an
instance is initialized by calling cmlmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.useThreads scalar, if nonzero, resampling will be
threaded. Default = 0.

ctl.NumSample scalar, number of re-samples in the
weighted likelihood bootstrap.

ctl.BootFname string, file name of GAUSS data set
(do not include the .DAT extension)
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containing simulated posterior of the
parameters. If not specified,
CMLMTBoot will select the file name,
BAYESxxxx where xxxx is 0000
incremented by 1 until a name is
found that doesn’t exist on the current
directory.

ctl.MaxBootTime scalar, maximum number of minutes
for resampling.

For description of additional members of the
cmlmtControl structure see reference for cmlmt.

OUTPUT out instance of a cmlmtResults structure.

out.Par instance of a PV structure containing
the mean of the resampled estimates.
Use pvUnpack to retrieve matrices
and arrays or pvGetParvector to
get the parameter vector.

out.Fct scalar, mean log-likelihood across
resamples.

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
resampled parameter estimates.

out.CovParDescription string, description of
out.CovPar.

out.NumObs scalar, number of observations.
out.BootLimits K × 2 Matrix, bootstrap confidence

limits. Available only if cmlmtBoot
has been called.

out.Gradient K × 1 vector, mean gradient.
out.NumIterations scalar, average number of

iterations.
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out.ElapsedTime scalar, average elapsed time of
iterations.

out.Alpha scalar, probability level of confidence
limits. Default = .05.

out.Title string, title of run.
out.Retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
9 error with constraints
10 second update failed
11 maximum time exceeded
12 error with weights
13 quadratic program failed
14 equality constraint Jacobian

failed
15 inequality constraint Jacobian

failed
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened

EXAMPLE
library cmlmt,pgraph;
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#include cmlmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;
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mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

c0.numSamples = 200;

c0.bootFileName = "boot";

proc prior(b); /* unit normal prior */

retp(prodc(pdfn(b)));

endp;

c0.PriorProc = &prior;

struct DS d0;

d0 = dsCreate;
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d0.dname = "cmlmttobit";

out1 = cmlmtBoot(&lpr,p0,d0,c0);

call cmlmtPrt(out1);

SOURCE cmlmtboot.src

CMLMTProfile

PURPOSE Computes profile t plots and likelihood profile traces for constrained
maximum likelihood models.

LIBRARY cmlmt

FORMAT out = CMLMTProfile(&modelProc,par,data,ctl);

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

data instance or matrix of instances of a DS structure containing
data. it is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,

1 a scalar or vector of DS instances passed to cmlmt are
passed unchanged to the user-provided log-likelihood
procedure. In this case the structure can be a scalar,
vector, or matrix of DS instances, and all members of all
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the instances can be set at the discretion of the
programmer, except that the dname member of the
[1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, cmlmt passes the contents
of that data set either in whole or in part to the
user-provided log-likelihood procedure in the
DataMatrix member of the first DS instance. If the
member, Vnames, contains a string array of column
names in the data set cmlmt will select those columns
for passing to that procedure. All other members, as
well as all members of succeeding elements of a vector
of instances may be used at the programmers discretion.

To clarify, if you do not want cmlmt to read the data from a
GAUSS data set and pass it to your procedure, you can pass
a DS structure containing whatever you wish to cmlmt and it
will be passed untouched to your procedure.
If you do wish to have cmlmt to read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
cmlmt will pass the contents in the DataMatrix member of
the first instance.

ctl an instance of a cmlmtControl structure. Normally an
instance is initialized by calling cmlmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.NumCat scalar, number of categories in profile
table. Default = 16.

ctl.Increment K × 1 vector, increments for cutting
points, default is 2 * ctl.Width * std
dev / ctl.NumCat. If scalar zero,
increments are computed by
CMLMTProfile.
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ctl.Center K × 1 vector, value of center category
in profile table. Default values are
coefficient estimates.

ctl.Select selection vector for selecting
coefficients to be included in
profiling, for example

ctl.Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th
parameters for profiling.

ctl.Width scalar, width of profile table in units
of the standard deviations of the
parameters. Default = 2.

For description of additional members of the cmlmtControl structure
see reference for cmlmt.

OUTPUT out instance of a cmlmtResults structure.

out.Par instance of a PV structure containing
the mean of the resampled estimates.
Use pvUnpack to retrieve matrices
and arrays or pvGetParvector to
get the parameter vector.

out.Fct scalar, mean log-likelihood across
resamples.

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
resampled parameter estimates.

out.CovParDescription string, description of
out.CovPar

out.NumObs scalar, number of observations.
out.ProfileLimits K × 2 matrix, profilestrap

confidence limits. Available only if
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cmlmtProfile has been called.
out.Gradient K × 1 vector, mean gradient.
out.NumIterations scalar, average number of

iterations.
out.ElapsedTime scalar, average elapsed time of

iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.
out.Title string, title of run.
out.Retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
9 error with constraints
10 second update failed
11 maximum time exceeded
12 error with weights
13 quadratic program failed
14 equality constraint Jacobian

failed
15 inequality constraint Jacobian

failed
16 function evaluated as complex
20 Hessian failed to invert
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34 data set could not be opened

REMARKS For each pair of the selected parameters, three plots are printed to the
screen. Two of these are the profile t trace plots that describe the
univariate profiles of the parameters, and one of them is the profile
likelihood trace describing the joint distribution of the two parameters.
Ideally distributed parameters would have univariate profile t traces that
are straight lines, and bivariate likelihood profile traces that are two
straight lines intersecting at right angles. This ideal is generally not met
by nonlinear models, however, large deviations from the ideal indicate
serious problems with the usual statistical inference.

EXAMPLE
library cmlmt,pgraph;

#include cmlmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;
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u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,
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-10 10,

-10 10,

.1 10 };

struct DS d0;

d0 = dsCreate;

d0.dname = "cmlmttobit";

out1 = cmlmtProfile(&lpr,p0,d0,c0);

call cmlmtPrt(out1);

SOURCE cmlmtprofile.src

CMLMTProfileLimits

PURPOSE Computes confidence limits by inversion of the likelihood ratio statistic.

LIBRARY cmlmt

FORMAT out = CMLMTProfileLimits(&modelProc,out,data,ctl);

INPUT &modelProc a pointer to the log-likelihood procedure used to generate
results of an estimation by a call to cmlmt.

out instance of cmlmtResults structure containing results of an
estimation generated by a call to cmlmt.

data instance of the DS data structure used in the call to cmlmt
that produced the results in out.

ctl an instance of a cmlmtControl structure. Normally an
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instance is initialized by calling cmlmtCreate and members
of this instance can be set to other values by the user.

For description of the cmlmtControl structure see reference for cmlmt.

OUTPUT out instance of a cmlmtResults structure. The member
out.ProfileLimits is filled with the confidence limits by
inversion of the likelihood ratio statistic. The remaining
members are untouched. For description of additional
cmlmtResutls members see reference for cmlmt.

EXAMPLE
library cmlmt,pgraph;

#include cmlmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;
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if ind[1];

mm.function = u.*lnpdfmvn(res,s2) + (1-u).*

(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,
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-10 10,

.1 10 };

struct DS d0;

d0 = dsCreate;

d0.dname = "cmlmttobit";

struct cmlmtResults out1;

out1 = cmlmt(&lpr,p0,d0,c0);

out1 = cmlmtProfileLimits(&lpr,out1,d0,c0);

call cmlmtPrt(out1);

SOURCE cmlmtpflim.src

CMLMTInverseWaldLimits

PURPOSE Computes confidence limits by inversion of the Wald statistic.

LIBRARY cmlmt

FORMAT out = CMLMTInverseWaldLimits(out,ctl);

INPUT out instance of cmlmtResults structure containing results of an
estimation generated by a call to cmlmt.

ctl an instance of a cmlmtControl structure. Normally an
instance is initialized by calling cmlmtCreate and members
of this instance can be set to other values by the user.

For description of the cmlmtControl structure see reference for cmlmt.
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OUTPUT out instance of a cmlmtResults structure. The member
out.ProfileLimits is filled with the confidence limits by
inversion of the likelihood ratio statistic. The remaining
members are untouched. For description of additional
cmlmtResults members see reference for cmlmt.

EXAMPLE
library cmlmt,pgraph;

#include cmlmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;
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if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/

(2*s2);

g2 = ( -( ones(rows(x),1)˜x )/sqrt(s2) )˜

(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

struct DS d0;

d0 = dsCreate;
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d0.dname = "cmlmttobit";

struct cmlmtResults out1;

out1 = cmlmt(&lpr,p0,d0,c0);

out1 = cmlmtInverseWaldLimits(&lpr,out1,d0,c0);

call cmlmtPrt(out1);

SOURCE cmlmtpflim.src

ChiBarSq

PURPOSE Computes the chi-bar-statistic and its probability for an hypothesis
regarding parameters under constraints.

LIBRARY ChiBarSq

FORMAT { chibar, chiparprob } = ChiBarSq(out,data,ctl,psi);

INPUT out instance of a cmlmtResults structure. This structure must
contain the results from a cmlmt estimation in which the a
subset of parameters is set equal to zero using ctl.Active –
start values for those parameters are set to zero, and
ctl.Active is set equal to a vector of zeros and ones in
which zeros correspond to the parameters in the hypothesis
and ones to the remaining parameters.

data instance of a DS structure, the same instances used in the
cmlmt estimation generating out.

ctl instance of a cmlmtControl structure. It must contain the
constraint specifications under the alternate hypothesis.
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psi indices of the set of parameters in the hypothesis. The
indices can be determined from the list of the parameters
generated by calling pvGetParnames on the instance of the
PV structure in out.

OUTPUT chibar scalar, chi-bar-square statistic of hypothesis.

chibarprob scalar, probability of chibar.

REMARKS Chibarsq computes the chi-bar-square statistic for the hypothesis
H(theta) = 0 vs. H(theta) >= 0, where theta is the vector of estimated
parameters, and H() is a constraint function of the parameters.

First, the model with H(theta) = 0 is estimated by calling cmlmt. The
simplest way to to this is to use ctl.Active. ctl.covParType must also
be set to 2 so that the Jacobian or score, i.e., the matrix of first
derivatives by observation, is generated.

Next CHIBARSQ is called with first argument being the instance of the
cmlmtResults structure output by the call to cmlmt, and second
argument the DS data structure, and third argument the cmlmtControl
structure containing the specification of the alternate hypothesis,
H(theta) ≥ 0.

EXAMPLE library cmlmt;

#include cmlmt.sdf

struct DS d0;

d0 = reshape(dsCreate,2,1);

load z0[] = aoi.asc;

z = packr(lagn(251*ln(trimr(z0,1,0)./trimr(

z0,0,1)),0|1|2|3|4));

d0[1].dataMatrix = z[.,1];

d0[2].dataMatrix = z[.,2:5];
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proc lpr(struct PV p, struct DS d, ind);

local series,b,omega,arch,const,phi,u2,q,n,h,v;

struct modelResults mm;

omega = pvUnpack(p,"omega");

arch = pvUnpack(p,"arch");

const = pvUnpack(p,"constant");

phi = pvUnpack(p,"phi");

u2 = (d[1].dataMatrix - d[2].dataMatrix *

phi - const)ˆ2;

q = rows(arch);

n = rows(u2);

h = ones(n,1);

v = seqa(1,1,q)’ + seqa(0,1,n-q);

h[q+1:rows(h)] = omega + reshape(u2[v],n-q,q) *

arch;

h[1:q] = ones(q,1)*meanc(h[q+1:rows(h)]);

mm.function = -0.5*( (u2 ./ h) + ln(2 * pi) +

ln(h) );

retp(mm);

endp;

// First, estimate model where H(theta) = 0

struct cmlmtControl c2;

c2 = cmlmtControlCreate;

c2.Active = ones(6,1) | zeros(3,1);
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c2.covParType = 2; // causes Jacobian to be computed

// which is needed for chibarsq

struct PV p1;

p1 = pvPack(pvCreate,.08999,"constant");

p1 = pvPack(p1,.25167|-.12599|.09164|.07517,"phi");

p1 = pvPack(p1,3.22713,"omega");

p1 = pvPack(p1,0|0|0,"arch");

struct cmlmtResults out2;

out2 = cmlmt(&lpr,p1,d0,c2);

// Set up cmlmtControl structure for H(theta) >= 0

struct cmlmtControl c0;

c0 = cmlmtcontrolcreate;

c0.bounds = {

-10 10,

-10 10,

-10 10,

-10 10,

-10 10,

-10 10,

0 10,

0 10,

0 10 };

psi = { 7, 8, 9 };

{ chibar,chibarprob } = chibarsq(out2,d0,c0,psi);

print;

print;
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print "-------------------------------------------";

print " test of H(arch) = 0 vs. H(arch) >= 0";

print;

print " chibar " chibar;

print " chibarprob " chibarprob;

SOURCE cmlmtchibar.src

CMLMTControlCreate

PURPOSE Creates a default instance of type CMLMTControl.

LIBRARY cmlmt

FORMAT s = CMLMTControlCreate;

OUTPUT s instance of type CMLMTControl.

SOURCE cmlmtutil.src

CMLMTLagrangeCreate

PURPOSE Creates a default instance of type CMLMTLagrange.

LIBRARY cmlmt

FORMAT s = CMLMTLagrangeCreate;
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OUTPUT s instance of type CMLMTLagrange.

SOURCE cmlmtutil.src

CMLMTResultsCreate

PURPOSE Creates a default instance of type CMLMTResults.

LIBRARY cmlmt

FORMAT s = CMLMTResultsCreate;

OUTPUT s instance of type CMLMTResults.

SOURCE cmlmtutil.src

ModelResultsCreate

PURPOSE Creates a default instance of type ModelResults.

LIBRARY cmlmt

FORMAT s = ModelResultsCreate;

OUTPUT s instance of type ModelResults.

SOURCE cmlmtutil.src
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CMLMTPrt

PURPOSE Formats and prints the output from a call to cmlmt.

LIBRARY cmlmt

FORMAT out = CMLMTPrt(out);

INPUT out instance of cmlmtResults structure containing results of an
estimation generated by a call to cmlmt.

OUTPUT out the input instance of the cmlmtResults structure
unchanged.

REMARKS The call to cmlmt can be nested in the call to CMLMTPrt:

call CMLMTPrt(CMLMT(&modelProc,par,data,ctl));

SOURCE cmlmtutil.src
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