
CurveFit 3.1
for GAUSSTM Mathematical and

Statistical System

Aptech Systems, Inc.



Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or nondis-
closure agreement. The software may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the
software for backup purposes. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose other than the purchaser’s
personal use without the written permission of Aptech Systems, Inc.

c©Copyright 1994-2010 by Aptech Systems, Inc., Black Diamond, WA.
All Rights Reserved.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech
Systems, Inc. Other trademarks are the property of their respective owners.

Part Number: 000024
Version 3.1
Documentation Revision: 1860 May 19, 2010



Contents

Contents

1 Installation

1.1 UNIX/Linux/Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1.1 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1.2 CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

1.2 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.1 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.2 CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.3 64-Bit Windows . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

1.3 Difference Between the UNIX and Windows Versions . . . . . . . . . . 1-3

2 Getting Started

2.0.1 README Files . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.0.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

3 CurveFit

3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.1 Multiple Dependent Variables . . . . . . . . . . . . . . . . . . 3-4
3.1.2 Aiding Convergence . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.1.3 Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.1.4 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
3.1.5 Fixed Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 3-15
3.1.6 Descent Methods . . . . . . . . . . . . . . . . . . . . . . . . 3-17
3.1.7 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
3.1.8 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . 3-21
3.1.9 Calling CurveFit Recursively . . . . . . . . . . . . . . . . . . 3-22
3.1.10 Using CurveFit Directly . . . . . . . . . . . . . . . . . . . . . 3-23

iii



CurveFit 3.1 for GAUSS

3.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
3.2.1 Covariance Matrix of Coefficients . . . . . . . . . . . . . . . . 3-24

3.3 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
3.3.1 CurveBoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
3.3.2 Coefficient Distribution Histogram . . . . . . . . . . . . . . . . 3-29

3.4 Diagnosing Coefficient Distribution . . . . . . . . . . . . . . . . . . . . 3-31
3.4.1 The Profile t Plot . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
3.4.2 The Likelihood Profile Trace . . . . . . . . . . . . . . . . . . . 3-32
3.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34

4 CurveFit Reference

CurveBoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
CurveFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
CurveFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
CurveHist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
CurveHist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
CurveProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
CurveProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
CurveFitSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
CurveFitClr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
CurveFitClr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
CurveFitPrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
CurveFitPrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

Index

iv



Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss
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4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.
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Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.
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Getting Started 2
GAUSS 6.0.26+ is required to use these routines. See _rtl_ver in src/gauss.dec.

The CurveFit version number is stored in a global variable:

_cv_ver 3×1 matrix, the first element contains the major version number, the second
element the minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version of your copy of
CurveFit.

2.0.1 README Files

If there is a README.cv file, it contains any last minute information on the CurveFit
procedures. Please read it before using them.
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2.0.2 Setup

In order to use the procedures in the CurveFit or CV Module, the CV library must be
active. This is done by including cvfit in the library statement at the top of your
program or command file:

library cvfit,pgraph;

This enables GAUSS to find the CV procedures. If you plan to make any right-hand
references to the global variables (described under the CurveFit function definition in
chapter ??), you will also need the statement:

#include cvfit.ext

Finally, to reset global variables in succeeding executions of the program the following
instruction can be used:

CurveFitSet;

This could be included with the earlier statements without harm and would insure the
proper definition of the global variables for all executions of the program.
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CurveFit 3

The CurveFit module includes procedures for the nonlinear least squares fitting of data
with or without weighting. Additional procedures provide for computing bootstrapped
estimates and their distributions.

3.1 Estimation

Suppose we wish to model an observed “response,” or dependent variable, given
observations on independent variables. For example, a two compartment model of the
metabolism of tetracycline (Bates and Watts, p. 281) in the blood might be modelled using
the function,

h(θ, x) = θ3[e−θ1(x−θ4) − e−θ2(x−θ4)]
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where f is the predicted tetracycline hydrochloride concentration and x is time. θ1 is a
coefficient measuring the movement of the drug into the blood and θ2 represents the
metabolism or elimination of the drug.

CurveFit is a module for the estimation of the coefficients of nonlinear functions such as
this one, as well as their distributions. The user must provide a GAUSS proc to compute
the response or dependent variable given values for the coefficients and the independent
variables. The function must be twice differentiable, though GAUSS procs to compute the
derivatives are not required.

A GAUSS proc for the estimation of the coefficients of the model above would look like
this:

proc fct(th,x)

retp(th[3]*exp(-th[1]*(x-th[4]))-exp(-th[2]*(x-th[4])));

endp;

This GAUSS proc and a set of observations on concentration of tetracycline hydrochloride
at different time intervals is all that is needed for CurveFit to generate estimates of the
coefficients.

Objective Function

Define the N × 1 residual matrix Z, the ith element of which is

zi = yi − h(θ, xi),

where N is the number of observations. For a single dependent variable Y and Z are
vectors, and the objective function is

F = Z′Z = (Y − h(θ, x))′(Y − h(θ, x))
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which may be interpreted as the sum of the squared residuals. Minimizing F amounts to
finding values for θ that minimize the residual variance. If the assumption that the zi are
independently Gaussian distributed with equal variance (i.e., homoskedastic), the
coefficient estimates are maximum likelihood.

Example

Clarke (1987) fits a Micherlitz model

h(t, b0, b1, b2) = b1 + b2e−b2t

to the weight of cut grass from 10 randomly sited quadrants as a function of weeks after
the start of grazing in a pasture. The command file for this analysis is:

library cvfit;

#include cvfit.ext;

CurveFitset;

proc Micherlitz(b,x);

retp(b[1] + b[2]*exp(-b[3]*x));

endp;

b0 = { 1, 2.5, .1 };

__title = "Micherlitz Model";

y = { 3.183, 3.059, 2.871, 2.622, 2.541, 2.184, 2.110, 2.075,

2.018, 1.903, 1.770, 1.762, 1.550 };

x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 };

call CurveFitPrt(CurveFit("",y,x,&Micherlitz,b0));

and the results are
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=====================================================================

Micherlitz Model

=====================================================================

CurveFit Version 3.1.1 8/01/94 10:15 am

=====================================================================

return code = 0

normal convergence

Number of cases 13

estimated residual variance 0.00534536

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

---------------------------------------------------------------

P01 0.963133 0.321581 2.995 0.0014 0.000001

P02 2.518989 0.265764 9.478 0.0000 -0.000000

P03 0.103056 0.025504 4.041 0.0000 -0.000001

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 -0.972 0.984

-0.972 1.000 -0.923

0.984 -0.923 1.000

Number of iterations 8

Minutes to convergence 0.00183

3.1.1 Multiple Dependent Variables

For more than one dependent variable the objective function is

F = ln det(Z′Z)
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Z is now an N × L matrix where L is the number of dependent variables. It is important to
note that this objective function does not provide for models in which the dependent
variable in one equation is independent in another. The dependent variables, therefore,
must not occur on the right hand side of any equation in the model.

Example

The following diagram describes a compartment model with five compartments
representing concentrations of a-pinene, dipentene, aloocimene, pyronene, and dimer.
This example is taken from Bates and Watts (1988), p. 147 ff.

p1 p3 p5

p2 p4

b2
b5

b4
b1 b3

? ?

- -
�

The diagram implies the following set of simultaneous first order differential equations:

dp1

dt
= −(b1 + b2)p1

dp2

dt
= b1 p1

dp3

dt
= b2 p1 − (b3 + b4)p3 + b5 p5

dp4

dt
= b3 p3
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dp5

dt
= b4 p3 − b5 p5

Arranging the coefficients into a matrix B:


−b1 − b2 0 0 0 0

b1 0 0 0 0
b2 0 −b3 − b4 0 b5

0 0 b3 0 0
0 0 b4 0 −b5


the system of equations can be described

dP
dt
= BP

and the solution

P(t) = eBt

= UeLtU−1P(0)

where ULU−1 is an eigendecomposition of B and where P(0) is the initial condition.

The following is a GAUSS command file to estimate this model.

library cvfit;

#include cvfit.ext;
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CurveFitset;

proc fct(b0,x);

local p, b, p0, u, e, ui, i;

p = zeros(rows(x),5);

b0 = exp(b0);

b0 = exp(b0); /* The coefficients are strictly positive */

/* and therefore the model will estimate */

/* the log of the coefficients */

b = zeros(5,5);

b[1,1] = -b0[1] -b0[2];

b[2,1] = b0[1];

b[3,1] = b0[2];

b[3,3] = -b0[3] -b0[4];

b[3,5] = b0[5];

b[4,3] = b0[3];

b[5,3] = b0[4];

b[5,5] = -b0[5];

p0 = { 1, 0, 0, 0, 0 };

{ e, u } = eigv(b);

e = real(e);

u = real(u);

ui = inv(u);

i = 1;

do until i > rows(x);

p[i,.] = ( ( (u.*exp(e*x[i])’) * ui) * p0 )’;

i = i + 1;

endo;

retp(p);
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endp;

/* minutes times 1e3 */

_time = { 1.2, 2.1, 3.0, 3.9, 4.9, 6.3, 7.8, 9.2, 10.6, 12.8, 15.0,

18.8, 22.6, 29.5, 36.4};

_conc = {

/* a-pinene dipentene aloocimene pyronene dimer */

0.75 0.17 0.06 -0.01 0.00,

0.62 0.24 0.10 0.01 0.01,

0.51 0.32 0.11 0.02 0.03,

0.39 0.37 0.13 -0.01 0.06,

0.32 0.44 0.13 0.01 0.07,

0.25 0.50 0.14 0.04 0.08,

0.16 0.53 0.15 0.05 0.10,

0.12 0.57 0.16 0.06 0.09,

0.06 0.59 0.13 0.06 0.11,

0.07 0.63 0.13 0.06 0.10,

0.02 0.62 0.12 0.11 0.08,

0.01 0.64 0.13 0.12 0.10,

0.02 0.67 0.12 0.15 0.09,

0.00 0.65 0.09 0.18 0.06,

0.01 0.66 0.07 0.20 0.05

};

b0 = { -1.9, -2.5, -3.0, -1.4, -1.0 };

{ c,f,g,h,ret } = CurveFit("",_conc,_time,&fct,b0);

call CurveFitPrt(c,f,g,h,ret);

The results are:

====================================================================

CurveFit Version 3.1.1 7/21/94 10:33 am

====================================================================
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return code = 0

normal convergence

Number of cases 15

estimated residual variance-covariance matrix

0.000 0.000 0.000 0.000 -0.000

0.000 0.000 0.000 -0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 -0.000 0.000 0.000 -0.000

-0.000 0.000 0.000 -0.000 0.000

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

----------------------------------------------------------------

P01 -1.906199 0.014890 -128.021 0.0000 0.000051

P02 -2.564489 0.024142 -106.226 0.0000 0.000004

P03 -2.974562 0.042869 -69.388 0.0000 0.000026

P04 -1.353696 0.163991 -8.255 0.0000 0.000009

P05 -1.005758 0.180214 -5.581 0.0000 0.000085

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 0.588 -0.080 0.208 0.187

0.588 1.000 0.049 0.310 0.299

-0.080 0.049 1.000 0.201 0.218

0.208 0.310 0.201 1.000 0.957

0.187 0.299 0.218 0.957 1.000

Number of iterations 8

Minutes to convergence 0.02100
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3.1.2 Aiding Convergence

The example of the preceding section is a good example of a very difficult problem. To
achieve rapid convergence consider

scaling Failure to scale properly is the cause of nearly all problems in convergence.
Check the Hessian - its diagonal elements should all be about the same order of
magnitude.

start values If convergence eludes you even with good scaling, work with the start values.

descent methods Toggle descent methods - press P during iterations to print iteration
information to the screen, and then press D to toggle descent methods.

The example in the preceding section required very good start values to converge.
However, even poor start values will work if the descent method is toggled first to the
PRCG method and then to the Levenberg-Marquardt method after 10 or so iterations.

3.1.3 Frequencies

Let fi be the frequency of the ith observation. Further define the N × N matrix, Ω, the ith

diagonal element of which is fi. The objective function for the single dependent variable
becomes

F f = Z′ΩZ

and for multiple dependent variables

F f = ln det(Z′ΩZ)

The number of observations is computed, when there are frequencies, as the sum of the
frequencies. If this is not the case, the covariance matrix of the coefficients, and thus the
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t-statistics, will not be correct. This feature permits the analysis of nonlinear models of
tabulated data.

For computational purposes the frequencies are entered as elements of a column vector
stored in the GAUSS global variable, weight. The ith row of weight is the frequency of
the ith observation. Zero frequencies are allowed.

Example 1

In the example in Section 3.1 there are thirteen points or observations. To re-estimate the
model, for example, without the 4th and 5th observations, add the following line to the
command file before the call to CurveFit:

__weight = { 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 };

The results are:

=================================================================

Micherlitz Model

=================================================================

CurveFit Version 3.1.1 8/01/94 3:56 pm

=================================================================

return code = 0

normal convergence

Number of cases 11

estimated residual variance 0.00586157

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

-----------------------------------------------------------------

P01 1.077901 0.310968 3.466 0.0003 -0.000000

P02 2.418233 0.254753 9.492 0.0000 0.000000
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P03 0.113281 0.029966 3.780 0.0001 -0.000001

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 -0.962 0.984

-0.962 1.000 -0.909

0.984 -0.909 1.000

Number of iterations 9

Minutes to convergence 0.00267

Example 2

Suppose that based on some analysis of the residuals from an initial run on the preceding
analysis, we decide to reduce the influence of the 4th and 5th observations on the
estimation. To reduce that influence to, say, 50% of the rest of the observations, add the
following lines before the call to CurveFit:

wgt = { 1, 1, 1, .5, .5, 1, 1, 1, 1, 1, 1, 1, 1 };

__weight = (rows(wgt)/sumc(wgt))*wgt;

The results are:

=================================================================

Micherlitz Model

=================================================================

CurveFit Version 3.1.1 7/20/94 3:23 pm

=================================================================

return code = 0

normal convergence
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Number of cases 13

estimated residual variance 0.00446591

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

-----------------------------------------------------------------

P01 0.908592 0.324097 2.803 0.0025 0.000000

P02 2.562695 0.273074 9.385 0.0000 -0.000000

P03 0.098521 0.023602 4.174 0.0000 -0.000000

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 -0.980 0.987

-0.980 1.000 -0.942

0.987 -0.942 1.000

Number of iterations 9

Minutes to convergence 0.00267

3.1.4 Weights

The assumption of homoskedasticity is often untenable. Heteroskedastic residuals result
in inefficient estimates and biased estimates of the covariance matrix of the estimates. If
some information is available about the heteroskedasticity of the residual, it may be
incorporated into the estimates using the frequencies feature of CurveFit.

Define the N × 1 vector W, the ith element of which is a consistent estimate of the variance
of the ith residual up to a constant of proportionality. Because CurveFit expects
frequencies, the weights must be first inverted and then “normalized,” i.e., transformed to
sum to N.

3-13



CurveFit 3.1 for GAUSS

Define the vector F, the ith element of which is

fi =
A
wi

where

A =
No. of observations∑ 1

wi

and where wi is the ith element of W. Then set the global variable ” weight” equal to F.

The resulting coefficient estimates will be efficient, provided the weights are proportional
to consistent estimates of the variances of the residuals, and the estimate of the covariance
matrix of the coefficients will be unbiased.

If little is known about the source of heteroskedasticity, weights may be computed from
results of an unweighted estimation, or from a theoretical derivation (Seber and Wild,
p. 77). Alternatively, one could transform the variables (Seber and Wild, p. 68, Bates and
Watts, p. 28) or compute the heteroskedastic-consistent standard errors described in
Section 3.2.1.

Example

In the example in Section 3.1, there are thirteen points or observations. Suppose that based
on some analysis of the residuals from an initial analysis, we have determined that the
observations are heteroskedastic with variance proportional to time squared, i.e., to the
square of the independent variable. To correct for this the following lines are added to the
command file before the call to CurveFit:

wgt = 1/xˆ2;

__weight = (rows(wgt)/sumc(wgt))*wgt;
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The results are:

==================================================================

Micherlitz Model

==================================================================

CurveFit Version 3.1.1 7/20/94 4:04 pm

==================================================================

return code = 0

normal convergence

Number of cases 13

estimated residual variance 0.00201156

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

-----------------------------------------------------------------

P01 -0.137816 1.228786 -0.112 0.4553 0.000000

P02 3.527866 1.205738 2.926 0.0017 0.000000

P03 0.057360 0.025968 2.209 0.0136 0.000001

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 -1.000 0.995

-1.000 1.000 -0.993

0.995 -0.993 1.000

Number of iterations 13

Minutes to convergence 0.00450

3.1.5 Fixed Coefficients

Coefficients can be fixed to their starting values by setting the CurveFit global variable,
cv active to a vector of zeros and ones, where a zero indicates that the corresponding
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element in the starting vector is fixed to that value, and a one indicates that the
corresponding element is free to be estimated. This feature allows the estimation of
different types of models with one function procedure.

Example

Suppose that we have some prior knowledge about a parameter in the model presented in
Section 3.1 - that the second parameter is equal to 2. This can be accomplished by adding
the following line to the command file before the call to CurveFit:

_cv_Active = { 1, 0, 1 };

and revising the starting point to

b0 = { 1, 2.0, .1 };

The results are:

================================================================

Micherlitz Model

================================================================

CurveFit Version 3.1.1 7/20/94 4:14 pm

================================================================

return code = 0

normal convergence

Number of cases 13

estimated residual variance 0.0100550
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Parameters Estimates Std. err. Est./s.e. Prob. Gradient

----------------------------------------------------------------

P01 1.480062 0.134828 10.977 0.0000 0.000005

P02 2.000000 . . . -0.308611

P03 0.153671 0.033091 4.644 0.0000 -0.000010

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 . 0.978

. . .

0.978 . 1.000

Number of iterations 9

Minutes to convergence 0.00367

The derivative for the fixed parameter is included so that it may be used to determine the
reasonableness of the constraint. This value has the interpretation of a Lagrangian
coefficient in a constrained model, that is, the size of the derivative is indicative of the
reasonableness of the constraint.

3.1.6 Descent Methods

Given starting values for the coefficients, CurveFit seeks estimates through an iterative
process which steadily improves them until convergence criteria have been satisfied.
CurveFit employs two types of descent methods, the Levenberg-Marquardt variation of
the Gauss-Newton method, and the Polak-Ribiere variation of the conjugate gradient.
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Levenberg-Marquardt Descent

Let

G = ∂F/∂θ0

be the N × k matrix of the first derivatives of the objective function evaluated at the initial
values of the coefficients for each observation. Further define Z = Y − h(θ0, X), the vector
of the residuals, where Y is an N × L column vector containing the observations on the
dependent variable, and h(θ0, X) is an N × L column vector of predicted values.

An improved vector of the coefficients, in the sense that they decrease the objective
function, is

θ1 = θ0 + αδ`

where

δ` = −(G′G + (ε + 1)diag(G′G))G′Z

where ε is a constant initially set to .01. If, on each iteration, the function increases, ε is
set to 10ε, otherwise to 0.4ε.

α is a scalar step factor found by “step-halving”: first, α is set to 0.5. If

F(θ0 + αδ`) < F(θ0) (1)

the coefficients are updated:

θ1 = θ0 + αδ`

and CurveFit proceeds to the next iteration. If not, α is set to α/2, and a new evaluation
of Equation 1 is made. This is continued until Equation 1 is satisfied.
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Polak-Ribiere Conjugate Gradient Descent

The conjugate gradient descent method is quite slow to converge. However, it does not
require the computation or storage of the Hessian matrix, which can be advantageous
when the number of coefficients is very large.

On the first iteration, a steepest descent is used to the update of the starting values:

θ1 = θ0 − αG

where α is a scalar step factor found as described above by step-halving. On subsequent
iterations

θ`+1 = θ` + αδ`

where

δ` = −G` +
(G` −G`−1)G`

G′
`
G`

δ`−1

3.1.7 Gradients

CurveFit finds coefficient estimates such that the gradient, G, is zero. If one or more
coefficients have been fixed to their start values (see 3.1.5), their corresponding gradients
will be nonzero.

By default CurveFit uses a forward difference numerical gradient. You may provide a
function to compute the gradient. This will speed up the convergence because of the
greater accuracy and the fewer number of function calls. The downside is that
user-provided gradient functions are notorious for being difficult to debug.
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If you decide to provide a gradient function, you must ensure that the function returns a
T × K matrix, were T is the size of the matrix of independent variables passed to the
procedure, and K is the number of coefficients, including any that are fixed to their start
values.

For example, suppose the function being fitted is

h(x, b1, b2, b3) = b1 + b2e−b3 x

The function and gradient procedure are

proc fct(b,x);

retp(b[1] + b[2]*exp(-b[3]*x));

endp;

proc grd(b,x);

local g, r;

g = zeros(rows(x),rows(b));

r = exp(-b[3]*x);

g[.,1] = ones(rows(x),1);

g[.,2] = r;

g[.,3] = -b[2]*x .* r;

retp(g);

endp;

Multiple Dependent Variables

When there is more than one dependent variable, the gradient procedure must return a
T × K matrix of gradients for each dependent variable. Thus for L dependent variables,
the gradient procedure returns L T × K matrices concatenated horizontally.
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3.1.8 Convergence Criteria

Relative Gradient

The primary method for convergence testing is the relative gradient:

Grel = |G|
|θ|

|F|

The gradient is multiplied by the vector of current estimates of the coefficients divided by
the current value of the objective function in order to remove the effects of scale.

G itself is also tested against machine epsilon. When the absolute gradients are less than
machine precision, there is not enough machine accuracy to tell when it has passed the
relative gradient test, and therefore convergence is declared when G < 1e − 15 whether or
not the relative gradient test succeeds.

ROCC

A secondary test is available, due to Bates and Watts (1988, p. 49), called the relative
offset convergence criterion (ROCC). This criterion is available only when the entire data
set fits in memory, and the matrices themselves are passed into CurveFit. This is
necessary because the ROCC requires the calculation of the QR factorization of the
gradient matrix, and that requires the availability of the entire data matrix.

For the ROCC, CurveFit first computes the QR factorization of the N × K matrix of
gradients, i.e., the gradient computed for each observation. Let the Q matrix from that
factorization be called Qg. Compute

w = Q′g(y − h(θ, x))
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and partition the vector w into two parts, w1 = w[1 : K] and w2 = w[K + 1 : N]. Then

ROCC =
w′1w1/

√
K

w′2w2/
√

N − K

Convergence is achieved when ROCC < .001

3.1.9 Calling CurveFit Recursively

The procedure that performs the least squares estimation may itself call CurveFit. This
version of CurveFit nested inside the procedure is actually a separate copy of CurveFit
with its own set of globals and must have its own nonlinear function (or otherwise you
would have infinite recursion).

When calling CurveFit recursively, the following considerations apply:

• Data sets can be opened by nested copies of CurveFit. If a nested copy of
CurveFit is going to use the data set opened by the outer copy of
CurveFit, then pass a null string in the first argument in the call. If it is
going to analyze a different data set from the outer copy, then pass it the
data set name in a string. You may also load and store a data set in memory
in the command file and pass the dependent and independent variables in
the second two arguments in the nested call to CurveFit.

• Before the call to the nested copy of CurveFit, the global variables should
be reset by calling CurveFitClr. You must not use CurveFitSet because
that will clear information about the data sets opened and processed in the
outer copy. The only differences between CurveFitSet and CurveFitClr
are references to these globals.

• You may also want to disable the keyboard control of the nested copies.
This is done by setting the global cv key = 0 after the call to CurveFitClr
and before the call to the nested CurveFit.
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3.1.10 Using CurveFit Directly

When CurveFit is called, it directly references all the necessary globals and passes its
arguments and the values of the globals to a function called _CurveFit. When
_CurveFit returns, CurveFit then sets the output globals to the values returned by
_CurveFit and returns its output arguments directly to the user. _CurveFit makes no
global references to matrices or strings.

_CurveFit can be used directly in situations where you do not want any of the global
matrices and strings in your program. If CurveFit, CurveFitPrt, CurveFitSet, and
CurveFitClr are not referenced, the global matrices and strings in cvfit.dec will not
be included in your program.

The documentation for CurveFit, the globals it references, and the code itself should be
sufficient documentation for using _CurveFit.

3.2 Inference

Statistical inference in nonlinear least squares models is hampered by the fact that the
standard error of the estimates may poorly describe their distributions. This is because the
asymptotic normality of the estimates of nonlinear models is not generally established.
Thus for a particular nonlinear model the distributions of the coefficients may not have the
advantage of being described uniquely by the first two moments.

CurveFit has a variety of ways of describing the distributions of the coefficients. First,
the usual covariance matrix of the coefficients based on the information matrix may be
computed. There are two variations on this that may be selected, a covariance matrix
based on the Hessian, or the heteroskedastic-consistent covariance matrix (White, 1980).

When the distributions of the coefficients fail to be asymptotically Normal, the standard
error is not an adequate description, and moreover its associated t-statistic can be quite
misleading. To diagnose this situation, CurveFit provides a special function,
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CurveProfile, for computing profile t plots which are plots of a type of t-statistic across
values of the coefficients. The closer this trace is to a straight line, the more reasonable
will be the usual inference based on t-statistics.

Just as the standard errors might be misleading in nonlinear models, so also might be the
correlations of the coefficients computed in the usual way from the covariance matrix of
the coefficients. To provide a description of the “correlatedness” of the coefficients,
likelihood profile traces are plotted along with the profile t plots.

Bootstrapping is a third method for assessing the distribution of the estimated coefficients.
Using a “model-free” method of resampling, a user-controlled number of estimated
coefficients is generated. Two procedures are provided in CurveFit: CurveBoot which
returns the mean and variance-covariance matrix of the resampled coefficients, and
CurveHist which plots univariate histograms and bivariate surface plots of the
distributions of the coefficients.

3.2.1 Covariance Matrix of Coefficients

In CurveFit you may select from three methods for the calculation of the covariance
matrix of the coefficients: (a) the information matrix, (b) the Hessian matrix, or (c) the
heteroskedastic-consistent method which uses both the information matrix and the
Hessian.

Information Matrix Method

Provided that the residuals are approximately Gaussian distributed, i.e., Z ∼ N(0, σ2IN),
we have for large N

θ̂ − θ∗ ∼ NK[0, σ2(G′G)−1]
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where

G = ∂F/∂θ

is the N × K matrix of first derivatives for each observation (Jennrich, 1969, Gallant, 1987,
Seber and Wild, 1989, p. 24).

An estimate of σ2 is

σ̂2 = F/(N − K)

CurveFit will return σ̂2(G′G)−1 when the CurveFit global variable, cv CovMatrix is
set to 1. This is the default value of cv CovMatrix.

Hessian Method

When the model is correctly specified, the Hessian matrix is also a consistent estimate of
the covariance matrix of the coefficients. When cv CovMatrix is set to 2,

σ̂2(∂2F/∂θ∂θ′)−1

is returned by CurveFit in the fourth argument. The Hessian is computed numerically.

Heteroskedastic-Consistent Method

Both the inverse of the information matrix and the inverse of the Hessian are consistent
and unbiased estimates of the covariance matrix of the coefficients when the model is
correctly specified. Under misspecification, however, neither of them are consistent or
unbiased. The heteroskedastic-consistent method uses both the first and second derivatives
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to produce a covariance matrix of the coefficients which is consistent under
misspecification (White, 1980).

Define the k × k Hessian,

H = ∂2F/∂θ∂θ′

the N × k matrix of first derivatives,

G = ∂F/∂θ

and the N × N matrix, Σ, with diagonal elements

σ2
ii = (yi − h(θ, xi))2

Then the heteroskedastic-consistent covariance matrix of the parameters is

H−1G′ΣGH−1

This matrix is returned when cv CovMatrix is set to 3.

When Inversion Fails

When not enough information is available for one or more coefficients in the model to be
properly estimated, the matrix used to compute the covariance matrix of the coefficients
will fail to invert. This situation is analogous to multicollinearity in linear regression.
When this happens it may be useful to look at the matrices which CurveFit attempted to
invert in order to diagnose the problem.
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When cv CovMatrix = 1, G′G is stored in the CurveFit global variable cv InfoMatrix.
When cv CovMatrix = 2, H is stored in cv HessMatrix, and when cv CovMatrix = 3,
G′ΣG is stored in cv InfoMatrix and H in cv HessMatrix.

The problem may be immediately evident upon inspection of these matrices. For example,
if a single parameter is the source of the problem, the entries in the matrix corresponding
to that parameter may be very small.

If it appears to be more complex, the following procedure may be used to diagnose the
problem: first, produce the pivoted QR factorization of the matrix. There will be K − r
zeros at the end of the diagonal of R, where r is the rank of the matrix and K the order.

The failure to invert implies a linear dependency in the matrix to be inverted. These
dependencies can be derived from the factorization. Compute

B = R′12R−1
11

where R is partitioned

R =
[

R11 R12

0 0

]

and R11 is r × r and R12 is r × (K − r).

Partition the pivot vector,

P =
[

P1

P2

]

where P1 is r × 1 rows, and P2 is K − r rows. B gives the linear dependencies of the rows
in P1 of the original matrix being inverted as a function of the rows in P2. The rows of the
matrix being inverted, whether G′G or H, are associated directly with the coefficients in

3-27



CurveFit 3.1 for GAUSS

the model, the first row of G′G is associated with the first coefficient, the second row with
the second coefficient, and so on.

The matrix B may suggest ways of refining the model to eliminate the problem with the
model. If the second coefficient is linearly dependent on the first and third coefficients, it
might be constrained to be equal to one or the other, or to some function of the two, or to a
constant.

3.3 Bootstrap

The bootstrap method is used to generate empirical distributions of the coefficients, thus
avoiding the problems with the methods of statistical inference described above. The
resampling method used in CurveFit is a model-free method. The N observations are
randomly sampled with replacement Nr times, and coefficients are estimated for each of
these samples. Nr is set by the CurveFit global variable, cv NumSample.

3.3.1 CurveBoot

CurveBoot is a procedure in the CurveFit module which returns the mean and
variance-covariance matrix of the bootstrapped coefficients. CurveBoot generates
cv NumSample random samples of size cv NumObs from the data set with replacement

and calls _CurveFit. CurveBoot returns the mean vector and covariance matrix of the
estimates.

Example

To bootstrap the example in Section 3.1, the only necessary alteration is the change of the
call to CurveFit to a call to CurveBoot:

call CurveFitPrt(CurveBoot("",y,x,&Micherlitz,b0));
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The results are

================================================================

bootstrapped Micherlitz Model

================================================================

CurveFit Version 3.1.1 8/01/94 10:16 am

================================================================

return code = 0

normal convergence

Number of cases 13

estimated residual variance 0.0349228

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

---------------------------------------------------------------

P01 0.988809 0.173910 5.686 0.0000 0.000000

P02 2.513743 0.139890 17.969 0.0000 0.000000

P03 0.107700 0.014842 7.256 0.0000 -0.000000

Covariance matrix of parameters computed from

cross-product of first derivatives

Correlation matrix of the coefficients

1.000 -0.974 0.970

-0.974 1.000 -0.901

0.970 -0.901 1.000

3.3.2 Coefficient Distribution Histogram

If the distribution of the coefficients is highly nonlinear, the mean and variance-covariance
matrix of the coefficients may not be satisfactory for inference. The profile t plots and
likelihood profile traces would provide evidence for this, and if the coefficient
distributions appear to be problematic, then simply reporting the variance-covariance
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matrix of the coefficients would not be sufficient. For this reason a procedure, CurveHist,
is provided in the CurveFit module for visually displaying the empirical distributions of
the coefficients. CurveHist produces univariate histograms as well as bivariate surface
plots of each of the bootstrapped coefficients in pairs. The tables used to generate the
histograms and surface plots are stored in cv CrossTab. Each column of the matrix stored
in cv CrossTab contains a vec-ed cv NumCat × cv NumCat matrix tabulating the
distribution of the ith coefficient against the jth coefficient, where the order of the columns
is determined by (i, j)⇒ (2, 1)(3, 1)(3, 2)(4, 1) · · ·, for columns 1, 2, 3, 4, 5, 6,...and so on.
The cutting points for these tables are stored in cv CutPoint.

Example

To generate univariate histograms and bivariate surface plots from the bootstrapped
example in Section 3.3.1, it is necessary only to change the call to CurveBoot to a call to
CurveHist:

call CurveFitPrt(CurveHist("",y,x,&Micherlitz,b0));

The identical summary statistics are returned by the procedure which may be printed out
using CurveFitPrt. In addition, a series of plots of histograms are generated for each
combination of pairs of parameters. Each plot contains two univariate histograms and a
bivariate surface plot. In this example there are three coefficients and thus three plots are
produced of coefficient 1 against 2, 1 against 3, and 2 against 3. The following is the first
plot of the histograms and surface plot for coefficients 1 and 2:
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3.4 Diagnosing Coefficient Distribution

The CurveFit proc, CurveProfile generates profile t plots as well as plots of the
likelihood profile traces for all of the coefficients in the model in pairs. The profile t plots
are used to assess the nonlinearity of the distributions of the individual coefficients, and
the likelihood profile traces are used to assess the bivariate distributions.

The input and output arguments to CurveProfile are identical to those of CurveFit.
But in addition to providing the least squares estimates and covariance matrix of the
coefficients, a series of plots are printed to the screen using GAUSS’ Publication Quality
Graphics. A screen is printed for each possible pair of coefficients. There are three plots, a
profile t plot for each parameter, and a third plot containing the likelihood profile traces
for the two coefficients.

The discussion in this section is based on Bates and Watts (1988), pp. 205-216, which is
recommended reading for the interpretation and use of profile t plots and likelihood profile
traces.
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3.4.1 The Profile t Plot

Define

θ̃k = (θ̃1, θ̃2, ..., θ̃k−1, θk, θ̃k+1, ..., θ̃K)

This is the vector of least squares estimates conditional on θk, i.e., where θk is fixed to
some value. Further define the profile t function

τ(θk) = sign(θk − θ̂k)(N − K)
√

F(θ̃k)/F(θ̂k) − 1

For each coefficient in the model, τ is computed over a range of values for θk. These plots
provide exact likelihood intervals for the coefficients, and reveal how nonlinear the
estimation is. For a linear model, τ is a straight line through the origin with unit slope. For
nonlinear models, the amount of curvature is diagnostic of the nonlinearity of the
estimation. High curvature suggests that the usual statistical inference using the t-statistic
will be hazardous.

3.4.2 The Likelihood Profile Trace

The likelihood profile traces provide information about the bivariate likelihood surfaces.
For nonlinear models the profile traces are curved, showing how the coefficient estimates
affect each other and how the projection of the likelihood contours onto the (θk, θ`) plane
might look. For the (θk, θ`) plot, two lines are plotted, F(θ̃k) against θk and F(θ̃`) against θ`.

If the likelihood surface contours are long and thin, indicating the coefficients to be
collinear, the profile traces will be close together. If the contours are fat, indicating the
coefficients to be more uncorrelated, the profile traces will tend to be perpendicular.
Furthermore, if the contours are nearly elliptical, the profile traces will be straight. The
surface contours for a linear model would be elliptical and thus the profile traces would be
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straight and perpendicular to each other. Significant departures of the profile traces from
straight, perpendicular lines, therefore, indicate difficulties with the usual statistical
inference.

3.4.3 Example

To generate profile t plots and likelihood profile traces from the example in Section 3.1, it
is necessary only to change the call to CurveFit to a call to CurveProfile:

call CurveFitPrt(CurveProfile("",y,x,&Micherlitz,b0));

CurveProfile produces the same output as CurveFit which can be printed out using a
call to CurveFitPrt.

As illustrated in the Figures below, for each pair of coefficients a plot is generated
containing an xy plot of the likelihood profile traces of the two coefficients, and two
profile t plots, one for each coefficient.

The likelihood profile traces in the following Figure indicate that the distributions of
coefficients 1 and 2 are highly correlated. Ideally, the traces would be perpendicular and
the trace in this example is far from ideal.
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The profile t plots in the following Figures indicate that the coefficient distributions are
somewhat nonlinear. Ideally the profile t plots would be straight lines and this example
exhibits noticeable nonlinearity. It is clear that any interpretations of the coefficients of
this model must be made quite carefully.
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CurveBoot

PURPOSE Generates bootstrapped estimates of a nonlinear regression model

LIBRARY cvfit

FORMAT { b,f,g,cov,retcode } = CurveBoot(dataset,depv,indv,&fct,start)

INPUT dataset either string containing name of GAUSS data set, or null
string

depv either L × 1 string array of names of dependent variables, or,
if dataset $== “”, N × L matrix of dependent variables

indv either P × 1 string array of names of independent variables,
or, if dataset $== “”, N × P matrix of independent variables
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fct the name of a procedure that returns predicted values for a
matrix of observations

start either a K × 1 vector of start values, or a procedure name
(not a pointer) that returns a K × 1 vector of start values

OUTPUT b K × 1 mean vector of re-sampled coefficients
f L × L matrix, mean re-sampled residual covariance matrix
g K × 1 mean vector of re-sampled gradients
cov K × K covariance matrix of re-sampled coefficients
retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations exceeded
3 function calculation failed
4 gradient calculation failed
6 step length calculation failed
7 function cannot be evaluated at initial coefficient values
8 number of elements in the gradient vector inconsistent

with number of starting values
9 gradient function returned a column vector rather than

the required row vector
10 rows( cv Active) , 1 and , rows(start)
11 maximum time exceeded
12 weights not found
15 input variables not found
34 data set could not be opened
99 termination condition unknown

GLOBALS The CurveFit procedure global variables are also relevant.

cv NumSample scalar, number of samples to be drawn. Default =
100.
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cv MaxTime scalar, maximum amount of time spent in re-sampling.
Default = 1e5 (about 10 weeks).

REMARKS CurveBoot generates cv NumSample random samples of size
cv NumObs from the data set with replacement and calls CurveFit.
CurveBoot returns the mean vector of the estimates in the first
argument and the covariance matrix of the estimates in the third
argument.

SOURCE cvboot.src

CurveFit

PURPOSE Computes coefficient estimates of nonlinear regression models

LIBRARY cvfit

FORMAT { b,f,g,cov,retcode } = CurveFit(dataset,depv,indv,&fct,start)

INPUT dataset either string containing name of GAUSS data set, or null
string

depv either L × 1 string array of names of dependent variables, or,
if dataset $== “”, N × L matrix of dependent variables

indv either P × 1 string array of names of independent variables,
or, if dataset $== “”, N × P matrix of independent variables

fct the name of a procedure that returns predicted values for a
matrix of observations

start either a K × 1 vector of start values, or a procedure name
(not a pointer) that returns a K × 1 vector of start values
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OUTPUT b K × 1 vector of coefficients

f L × L matrix, residual covariance matrix

g K × 1 vector, gradient

cov K × K covariance matrix of coefficients

retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations exceeded
3 function calculation failed
4 gradient calculation failed
6 step length calculation failed
7 function cannot be evaluated at initial coefficient values
8 number of elements in the gradient vector inconsistent

with number of starting values
9 gradient function returned a column vector rather than

the required row vector
10 rows( cv Active) , 1 and , rows(start)
11 maximum time exceeded
12 weights not found
15 input variables not found
34 data set could not be opened
99 termination condition unknown

GLOBALS cv Active scalar or K × 1 vector, determines active coefficients. If all
coefficients are active, set to scalar 1 (default), otherwise set
to a K × 1 vector of zeros and ones, with zeros where the
corresponding element of the coefficient vector is to be fixed
to its starting value.

cv CovMatrix scalar. If 0, covariance matrix of coefficients is not
computed, otherwise if 1, covariance matrix computed from
cross-product of first derivatives, if 2, computed from the
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inverse of the Hessian, and if 3, the heteroskedastic-
consistent covariance matrix of the coefficients is computed.
Default = 1.

cv Criterion scalar. If 0, convergence is determined by testing the
relative gradient against cv RelGradTol. If 1, it is
determined by testing the ROCC against cv ROCC. If 2,
convergence is declared when either criterion is satisfied,
and if 3, when both conditions are satisfied.

cv DescMethod scalar, descent method. If nonzero,
Levenberg-Marquardt method, otherwise conjugate
gradient. Conjugate gradient method is best for problems
with large numbers of coefficients because it does not
generate a Hessian matrix.

cv GradInc scalar, increment size for computing gradient.

cv GradMethod scalar, method for computing numerical gradient. If
1, forward difference, otherwise central difference.
Default = 1.

cv GradProc scalar, pointer to a procedure that computes the gradient
of the function with respect to the coefficients. For example,
the instruction:

_cv_GradProc=&gradproc

will tell CurveFit that a gradient procedure exists as well
as where to find it. The user-provided procedure has two
input arguments, a vector of coefficient values and a matrix
of independent variables, and a single output argument, a
matrix of gradients of the function with respect to the
coefficients evaluated at the vector of coefficient values for
each observation. For example, suppose the procedure is
named gradproc and the function is a quadratic with two
coefficients: y = b1x2 + 2b2x + 1, then

proc gradproc(b,x);

retp(xˆ2˜2*x);
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endp;

Default = 0, i.e., no gradient procedure has been provided.
cv IterInfo scalar, if nonzero, print iteration information. Can be

toggled on and off by pressing P or p on the keyboard.
cv Key scalar, controls keyboard capture. Useful for recursively

nested version of CurveFit. Setting cv Key = 0 for the
nested versions will turn off their keyboard captures,
permitting the outside version to retain control of the
keyboard.
CurveFit has two actions controlled by keypresses.
Pressing C or C will force convergence, and pressing P or P
will toggle printing iteration information to the screen.

cv MaxIter scalar, maximum number of iterations.
cv MaxTime scalar, maximum time in iterations in minutes.

Default = 1e5, about 10 weeks.
cv MaxTry scalar, maximum number of step-half attempts.
cv NumLag scalar, if the function includes lagged values of the

variables cv NumLag may be set to the number of lags.
When cv NumLag is set to a nonzero value, then row is
set to 1 (that is, the function must evaluated one observation
at a time), and CurveFit will pass a matrix to the
user-provided function and gradient procedures. The first
row in this matrix will be the ( cv NumLag)-th observation
and the last row will be the i-th observation. The read loop
will begin with the ( cv NumLag+1)-th observation.
Default = 0.

cv ParName K × 1 string array, coefficient labels.
cv RelGradTol scalar, convergence tolerance for gradient of estimated

coefficients. Default = 1e-5. When this criterion has been
satisifed, CurveFit will exit the iterations.

cv ROCC scalar, if nonzero, use the Relative Offset Convergence
Criterion as described in Bates and Watts, Nonlinear
Regression Analysis and Its Applications, p. 49.
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row scalar, determines the number of rows in the data set to be
passed to the user-provided procedures. Default = 0
(number of rows will be computed by CurveFit).

weight either N × 1 vector of frequencies, or string containing name
of variable in GAUSS data set, or scalar column number of
variable in GAUSS data set. NOTE: frequencies must sum
to N, the sample size. See Section 3.1.4 for discussion of the
use of this global for weighting observations.

GLOBAL
OUTPUT

cv Coefficient K × 1 vector, the current estimates of the estimated
coefficients will be stored in cv Coefficients. If CurveFit
terminates abnormally, then the current estimates can be
retrieved from this global variable.

cv NumObs scalar, number of cases in the data set that was analyzed.
cv HessMatrix K × K matrix, the Hessian used to compute the

covariance matrix of the coefficients when cv CovMatrix
equals 2 or 3. See Section 3.2.1 for discussion about the use
of this global.

cv InfoMatrix K × K matrix, the cross-product of the first derivatives
used to compute the covariance matrix of the coefficients
when cv CovMatrix equals 1 or 2. See Section 3.2.1 for
discussion about the use of this global.

cv IterData 2 × 1 vector, contains information about the iterations.
The first element contains the elapsed time of the iterations
in minutes; the second element contains the number of
iterations.

REMARKS There are three keyboard toggles:

C forces convergence
D toggles between descent methods
P toggles printing the iteration information to the

screen on or off
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These are case insensitive. The printing toggle is useful in determining
the progress of the iterations. The default is not to print anything to the
screen, speeding up computations. However, to reassure yourself that
the computations are actually going on, you may press P to check the
progress, and then re-press P to turn printing back off to restore the
speed of the calculations.

SOURCE cvfit.src

CurveHist

PURPOSE Computes bootstrapped estimates and presents the results in a
histogram and surface plot

LIBRARY cvfit

FORMAT { b,f,g,cov,retcode } = CurveHist(dataset,depv,indv,&fct,start)

INPUT dataset either string containing name of GAUSS data set, or null
string

depv either L × 1 string array of names of dependent variables, or,
if dataset $== “”, N × L matrix of dependent variables

indv either P × 1 string array of names of independent variables,
or, if dataset $== “”, N × P matrix of independent variables

fct the name of a procedure that returns predicted values for a
matrix of observations

start either a K × 1 vector of start values, or a procedure name
(not a pointer) that returns a K × 1 vector of start values

OUTPUT b K × 1 mean vector of re-sampled coefficients
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f L × L matrix, mean re-sampled residual covariance matrix

g K × 1 mean vector of re-sampled gradients

cov K × K covariance matrix of re-sampled coefficients

retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations exceeded
3 function calculation failed
4 gradient calculation failed
6 step length calculation failed
7 function cannot be evaluated at initial coefficient values
8 number of elements in the gradient vector inconsistent

with number of starting values
9 gradient function returned a column vector rather than

the required row vector
10 rows( cv Active) , 1 and , rows(start)
11 maximum time exceeded
12 weights not found
15 input variables not found
34 data set could not be opened
99 termination condition unknown

GLOBALS The CurveFit procedure global variables are also relevant.

cv NumSample scalar, number of samples to be drawn from data set.
Default = 100.

cv NumCat scalar, number of categories for cross-tabulation.
Default = 10.

cv Increment K × 1 vector, category increments for each histogram.
If scalar zero, increments are computed by CurveHist.
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cv Center K × 1 vector, center points for each histogram. If scalar
zero, CurveHist computes them.

cv Width scalar, width of histogram is this global times standard
deviations of coefficients. Default = 2.

GLOBAL
OUTPUT

cv CutPoint cv NumCat ×K matrix of category cutting points for
cross-tabulation of the K coefficients.

cv CrossTab ( cv NumCat * cv NumCat) ×(K(K − 1)/2) matrix
containing cross-tabulations of the re-sampled coefficients.

REMARKS The tables used to generate the histograms and surface plots are stored
in cv CrossTab. Each column of the matrix stored in cv CrossTab
contains a vec-ed cv NumCat × cv NumCat matrix tabulating the
distribution of the ith coefficient against the jth coefficient, where the
order of the columns is determined by
(i, j)⇒ (2, 1)(3, 1)(3, 2)(4, 1)(4, 2)(4, 3) · · ·, for columns 1, 2, 3, 4, 5,
6,...and so on. The cutting points for these tables are stored in
cv CutPoint.

SOURCE cvhist.src

CurveProfile

PURPOSE Computes profile t plots and likelihood profile traces

LIBRARY cvfit

FORMAT { b,f,g,cov,retcode } =
CurveProfile(dataset,depv,indv,&fct,start)
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INPUT dataset either string containing name of GAUSS data set, or null
string

depv either L × 1 string array of names of dependent variables, or,
if dataset $== “”, N × L matrix of dependent variables

indv either P × 1 string array of names of independent variables,
or, if dataset $== “”, N × P matrix of independent variables

fct the name of a procedure that returns predicted values for a
matrix of observations

start either a K × 1 vector of start values, or a procedure name
(not a pointer) that returns a K × 1 vector of start values

OUTPUT b K × 1 vector of coefficients

f L × L matrix, residual covariance matrix

g K × 1 vector, gradient

cov K × K covariance matrix of coefficients

retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations exceeded
3 function calculation failed
4 gradient calculation failed
6 step length calculation failed
7 function cannot be evaluated at initial coefficient values
8 number of elements in the gradient vector inconsistent

with number of starting values
9 gradient function returned a column vector rather than

the required row vector
10 rows( cv Active) , 1 and , rows(start)
11 maximum time exceeded
12 weights not found
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15 input variables not found
34 data set could not be opened
35 no observations left after transformation and selection
99 termination condition unknown

GLOBALS The CurveFit procedure global variables are also relevant.

cv NumCat scalar, number of points for plots. Default = 10.

cv Increment K × 1 vector, increments for each plot. If scalar zero,
increments are computed by CurveProfile.

cv Center K × 1 vector, center points for each plot. If scalar zero,
CurveProfile computes them.

cv Width scalar, width of plot is this global times standard deviations
of coefficients. Default = 2.

SOURCE cvprof.src

CurveFitSet

PURPOSE Initializes CurveFit global variables to default values.

LIBRARY cvfit

FORMAT CurveFitSet

INPUT None

OUTPUT None
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REMARKS Putting this instruction at the top of all programs that invoke CurveFit
is generally good practice. This will prevent globals from being
inappropriately defined when a program is run either several times or
after another program that also calls CurveFit.

CurveFitSet calls gausset.

SOURCE cvfit.src

CurveFitClr

PURPOSE Initializes CurveFit global variables to default values.

LIBRARY cvfit

FORMAT CurveFitClr

INPUT None

OUTPUT None

REMARKS CurveFitClr is used to reset global variables to default values for
“nested” versions of CurveFit, i.e., versions called by function
procedures of “outer” versions of CurveFit. CurveFitClr is identical
to CurveFitSet except that certain global variables used to pass
information from outer versions of CurveFit to the nested versions are
not reset.

CurveFitClr calls gausset.

SOURCE cvfit.src
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CurveFitPrt

PURPOSE Formats and prints the output from a call to CurveFit.

LIBRARY cvfit

FORMAT { b,f,g,cov,retcode } = CurveFitPrt( b,f,g,cov,retcode )

INPUT b K × 1 vector of coefficients

f L × L matrix, residual covariance matrix

g K × 1 vector, gradient

cov K × K covariance matrix of coefficients

retcode return code

OUTPUT The input arguments are returned unchanged.

GLOBALS header string. This is used by the printing procedure to display
information about the date, time, version of module, etc.
The string can contain one or more of the following
characters:

“t” print title (see title)
“l” bracket title with lines
“d” print date and time
“v” print version number of program

“f”] print file name being analyzed

Example:

__header = "tld";

Default = “tldvf”.

4-14 CF C R



C
urveFit

CurveFitPrt

title string, message printed at the top of the screen and printed
out by CurveFit. Default = “”.

REMARKS The call to CurveFit can be nested in the call to CurveFitPrt:

{ x,f,g,h,retcode } = CurveFitPrt(CurveFit(dataset,vars,&fct,start));

SOURCE cvfit.src
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