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Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss
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4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2
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2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3
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2.1 Getting Started

GAUSS 6.0.26+ is required to use these routines. See _rtl_ver in src/gauss.dec.

2.1.1 Setup

In order to use the procedures in the Linear Programming MT module, the lpmt library
must be active. This is done by including lpmt in the library statement at the top of
your program:

library lpmt,pgraph;
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This enables GAUSS to find the procedures contained in this module.

The file lpmt.sdf contains the structure definitions and must be “included”:

#include lpmt.sdf;

The version number of each module is stored in a global variable. For the LPMT module,
this global is:

_lpmt_ver 3×1 matrix. The first element contains the major version number, the second
element the minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version of your copy of this
module.

2.1.2 README Files

If it exists, the file README.lpmt contains any last minute information on the Linear
Programming MT procedures. Please read it before using them.

2-2



LP
M

T

Linear Programming MT 3

3.1 Introduction

The Linear Programming MT or LPMT module contains procedures for solving small
scale linear programming problems.

A linear programming problem is an optimization problem presented in the following
typical manner:

(∗) maximize:
n∑

j=1

c jx j

subject to:
n∑

j=1

ai jx j ≤ bi (i = 1, 2, ...m)

l j ≤ x j ≤ u j ( j = 1, 2, ...n)
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where a, b, c, l and u are user-supplied vectors and matrices. The expression c · x is called
the objective function, the system {ai · x ≤ bi}

m
i=1 makes up the constraints, and the

inequalities l j ≤ x j ≤ u j describe the variable bounds.

If the constraints in (∗) can be satisfied and the problem is not unbounded, then (∗) has an
optimal solution and an optimal value. In this case, x is the optimal solution and the value
of the expression c · x at the optimal solution is the optimal value.

To solve the above problem and its variations, LPMT uses the two-phase standard revised
simplex method with an eta factorization similar to the product form of the inverse.

3.2 Solving a Linear Programming Problem

The LPMT procedure takes two input structures and returns an output structure. The first
input argument is an LP structure containing the required matrices: a, b, c, l, and u. The
second input structure is an LPcontrol structure which contains control information for
LPMT. Default values for the members of this structure are set by createLPcontrol,
which should be called before LPMT in your program.

Finally, LPMT returns an LPout structure.

For example,

library lpmt;

#include lpmt.sdf

struct LP lp0;

lp0 = createLP;

lp0.a = { 2 -3 4 1 3,

1 7 3 -2 1,

5 4 -6 2 3 };
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lp0.b = { 1, 1, 22 };

lp0.c = { 8, -9, 12, 4, 11 };

lp0.l = 0;

lp0.u = 1e200;

struct LPcontrol c0;

c0 = createLPcontrol;

struct LPout out0;

out0 = lpmt(lp0,c0);

call lpmtprt(out0,c0);

output off;

As the above sample program illustrates, lp0.l and lp0.u may take on the values +∞ or
−∞. In LPMT, −∞ is represented by −1e200 and +∞ by 1e200. By setting lp0.l = 0 and
lp0.u = 1e200, the variables x j are restricted to nonnegative values. Here are examples of
two other ways to set up lp0.l and lp0.u:

(1)

lp0.l = -1e200;

lp0.u = 50;

(2)

lp0.l = { 0, -1e200, -50, -1e200 };

lp0.u = { 1e200, 0, 50, 1e200 };

In (1), all variables are bounded below by −∞ and above by 50.
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In (2), the variables are restricted as follows:

x1 ≥ 0
x2 ≤ 0

−50 ≤ x3 ≤ 50
−∞ ≤ x4 ≤ +∞

lp0.b is used to provide upper and/or lower bounds for the constraint expressions and, if
desired, to define constraint types. Usually, though, constraint types (≤, ≥, =) are
defined using members of the LPcontrol structure. This is discussed next. For more
details on defining lp0.b, see the LPMT function definition in Chapter 4. Please note that
LPMT cannot handle free constraints. Do not set bi = ±1e200 for any i.

3.2.1 Customizing Your Program

Once the arguments to LPMT are set up, you probably want to customize your program.
Almost all aspects of the linear programming problem, including the constraint type and
variable bounds, can be modified by changing the value of one or more of the members of
the LPcontrol structure. A complete list of all the members of this structure is given in
the reference section for LPMT in Chapter 4. Described below are some of the aspects
that the user can customize and the structure member used in each case:

• To determine whether LPMT should solve the minimization or
maximization problem set minimize.

• In the case where the user wants simply to define variables as nonnegative,
nonpositive or free, the structure member altConstraint may be used to
indicate variable types, rather than explicitly setting the l and u members of
the ”LP” structure.

• For constraint type (≤, ≥, or =), set constraintType.
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• To determine whether to report a feasible solution only (i.e., terminate with
Phase I) or return the optimal solution (i.e., continue on to Phase II) set
feasible.

• To specify the maximum number of iterations that the algorithm is allowed
to execute, set maxIterations.

• For choice of starting values, set start. This is useful if the user plans to
solve several similar problems (e.g., problems which vary only in the vector
contained in the b member of the ”LP” structure).

• To specify the kind of output that LPMT should produce, set output. Also,
the user may customize the output with a title, variable names, and header
of his/her choosing. See title, name, altNames, altNamessa, and header.

Control variables also control more advanced options of the solution process. For a brief
discussion on how to control these options, see Section 3.4. The advanced options include:

• To determine tie breaking rules which are used to determine the entering
variable and the leaving variable, set rule.

• For tolerances used in determining the entering and leaving variables, set
eps1, eps2.

• For the tolerance used to minimize roundoff errors, see eps3, constraintTol,
and tolerance.

• For number of solutions returned, set numSolutions. If the solution first
found by LPMT is not unique, the user can specify how many more optimal
solutions LPMT should attempt to find.

Using the Control Variables

To use the control variables, simply assign the desired value to the selected control
variable in the GAUSS program before calling LPMT. The control variables are members
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of an LPcontrol structure. You can set the members of this structure to alternate values
before passing it to LPMT. In order to ensure that members of structures are properly
re-set to default values when a command file is re-run, assign the structure to its “create”
procedure. In the case of the LPcontrol structure, set it equal to createLPcontrol.

The following is an example of how to solve a minimization problem with equality
constraints and free variables:

library lpmt;

#include lpmt.sdf;

struct LP lp0;

lp0 = createLP;

lp0.a = trunc(100*rndu(20,30));

lp0.b = 100*ones(20,1);

lp0.c = ones(30,1);

struct LPcontrol c0;

c0 = createLPcontrol;

c0.altConstraint = 0; /* All variables are free */

c0.minimize = 1; /* Solve minimization problem */

c0.constraintType = 3; /* Constraints are all equalities */

c0.output = 1; /* Send output from lpmt to the screen */

c0.name = "Y"; /* Variable name to be used in output */

output file = lp1.out reset;

call lpmtprt(lpmt(lp0,c0),c0);

output off;

By setting c0.minimize = 1, the minimum value of the objective function is computed. By
setting c0.constraintType = 3, the constraint equations are treated as equalities. Here
c0.constraintType is a scalar, but in general it can be an M × 1 vector where each element
describes the corresponding equation type. Also note that instead of setting lp0.l
= −1e200 and lp0.u = 1e200, this program uses c0.altConstraint to specify that the
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variables should be unrestricted. In this case, the values of the LP structure members l and
u are ignored. The two methods are equivalent. The user may choose whichever is
preferable.

The control variable c0.output has been set to specify that information generated during
the iterative stages of LPMT should be sent to the screen. lpmtprt also produces a report
that will be sent to the screen. The call to the output command specifies that the output
from LPMT and lpmtprt should also be sent to the file lp1.out.

In general, the output member of the LPcontrol structure controls the output produced
by the procedure LPMT and can take the value 0, 1 or 2, where 0 is no output, 1 is screen
output that is suitable for an output file, and 2 is screen output that is suitable only for a
DOS Compatibility Window. Final reports can be generated with either lpmtprt or
lpmtview; however, the latter can be run only in a DOS compatibility window. Both final
report formats report the return code, the value of the objective function upon termination,
the total number of iterations required by LPMT, final solution x (with an indication of
which variables are basic upon termination), the quality of the solution, and the value of
the constraints and the dual variables. lpmtview also reports the state of each constraint.

3.3 Example Programs

These and other example programs, lpmtn.e, can be found in the examples subdirectory.

EXAMPLE 1

This program solves a straightforward linear programming problem. By default, the
maximization problem is solved, the constraints are all of the type ≤, and output from
LPMT is sent to the screen.

/*

** lpmt1.e
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*/

library lpmt;

#include lpmt.sdf

struct LP lp0;

lp0 = createLP;

lp0.a = { 2 -6 2 7 3 8,

-3 -1 4 -3 1 2,

8 -3 5 -2 0 2,

4 0 8 7 -1 3,

5 2 -3 6 -2 -1 };

lp0.b = { 1, 2, 4, 1, 5 };

lp0.c = { 18, -7, 12, 5, 0, 8 };

lp0.l = 0;

lp0.u = 1e200;

struct LPcontrol c0;

c0 = createLPcontrol;

c0.name ="Y";

c0.title = "lpmt1.e";

output file = lpmt1.out reset;

call lpmtview(lpmt(lp0,c0),c0);

output off;
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EXAMPLE 2

A more complicated example might look like this:

/*

** lpmt2.e

*/

library lpmt;

#include lpmt.sdf

struct LP lp0;

lp0 = createLP;

lp0.a = { 3 1 -4 2 5 1,

-5 4 2 -3 2 3,

1 1 2 1 1 2 };

lp0.b = { 3, 25, 4 };

lp0.c = { -5, 2, 3, 3, 6, 1 };

lp0.l = { 0, 2, -1e200, -3, -1e200, -1e200 };

lp0.u = { 1e200, 10, 0, 3, 1e200, 1e200 };

struct LPcontrol c0;

c0 = createLPcontrol;

c0.constraintType = { 1, 1, 3 };

c0.minimize = 1;

c0.title = "lpmt2.e";

output file = lpmt2.out reset;

call lpmtprt(lpmt(lp0,c0),c0);
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output off;

Here c0.constraintType is a 3 × 1 vector which indicates that the first two constraints are ≤
constraints and the final constraint is an equality constraint. The variables should satisfy
the inequalities:

x1 ≥ 0
2 ≤ x2 ≤ 10

x3 ≤ 0
−3 ≤ x4 ≤ 3

x5 and x6 are free variables.

Results of the algorithm’s progress and the final solution report are printed to the screen
and sent to the output file lp2.out.

EXAMPLE 3

In this example both the primal and the dual problem are solved. The fundamental
principle of linear programming states that the optimal value of the primal is equal to the
optimal value of the dual problem (assuming both have optimal solutions). Then the
solution to one problem is compared with the dual variables of another.

/*

** lpmt3.e

** This example illustrates how to solve

** both a primal and dual problem

*/

library lpmt;

#include lpmt.sdf

3-10



LP
M

T

Linear Programming MT

struct LP lp0;

lp0 = createLP;

lp0.a = { 4 0 -1 1,

2 1 4 -1,

-3 2 0 -8,

1 1 1 1 };

lp0.b = { 2, 12, -31, 12 };

lp0.c = { -2, -9, -1, 6 };

lp0.l = 0;

lp0.u = 1e200;

struct LPcontrol c0;

c0 = createLPcontrol;

c0.constraintType = { 3, 2, 3, 1 };

c0.title = "PRIMAL PROBLEM";

output file = lpmt3.out reset;

call lpmtprt(lpmt(lp0,c0),c0);

print;

print;

c0 = createLPcontrol;

c0.minimize = 1;

c0.altConstraint = { 0, 1, 0, -1 }; /* l and u set to 0 below */

c0.constraintType = 1;

c0.title = "DUAL PROBLEM";

c0.name = "Y";

lp0.a = lp0.a’;

lp0.l = 0;

lp0.u = 0;
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call lpmtprt(lpmt(lp0,c0),c0);

output off;

3.4 Advanced Topics Using lpmt

By changing the values of the tolerances eps1, eps2, eps3, tolerance and constraintTol, the
user can affect the speed and accuracy of LPMT. Also, if LPMT is returning a return
code of 5 or 13, these tolerances can be modified to encourage LPMT to return a more
informative code.

If LPMT is returning a return code of 13, it is probable that either eps1 or eps2 is set too
high. Generally, by setting eps1 lower, the number of variables from which LPMT
chooses the variable entering the basis is increased. The more variables from which
LPMT has to choose, the more likely it is that it will find one which does not cause
numerical errors.

Another tolerance which the user might wish to modify is eps3. Briefly, eps3 determines
how well x, the intermediate solution determined at each iteration, should satisfy a
particular expression. By modifying the value of eps3, the user can have some affect on
how much time LPMT requires and on the accuracy of the final solution. In general,
increasing the value of eps3 reduces the amount of time LPMT requires and decreasing
eps3 should improve the accuracy of the solution.

Two other tolerances, tolerance and constraintTol, are used to determine whether an
optimal solution found during Phase I is feasible and whether the x found during a
particular iteration satisfies the constraints to within the user’s specifications.

In solving a linear programming problem, the user may find that LPMT reports that the
problem is infeasible, but also reports that the value of the objective function at
termination is very small–i.e., less than 10−5. In this case, the user should consider
increasing tolerance to at least as large as the value of the objective function returned by
LPMT. This guarantees that LPMT will proceed to Phase II and attempt to find an
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optimal solution to the problem.

Due to scaling differences among constraints, the user may wish to allow differences
among what it takes to satisfy those constraints. That is, a greater degree of infeasibility
may be allowed in those constraints with larger coefficients. constraintTol can be set to a
scalar, in which case all constraints are satisfied to within the same degree of accuracy, or
to an Mx1 vector (M = rows(a)), in which case each constraint uses the tolerance in the
corresponding element of constraintTol. A return code of 5 indicates that the
algorithm required more iterations than allowed by the maxIterations member of the
LPcontrol structure. If cycling is not occurring, simply increase the value of
maxIterations. However, if it is suspected that cycling is occurring, change the value of
the rule member of the LPcontrol structure. Changing the rules used to choose entering
and leaving variables may decrease the number of iterations required by LPMT. It should
be noted, however, that cycling is very rare.

3.5 Sparse Constraint Matrices

The constraint matrix a in an instance of an LP structure can be either dense or sparse. For
very large linear programming problems with many zero elements in the constraint matrix,
there are many advantages to storing this matrix in a sparse form. A common storage form
is the MPS formatted file. You may also store or generate the matrix using GAUSS sparse
functions.

3.5.1 MPS Formatted Files

If you have an MPS formatted file, the mps function returns an instance of an LP structure
with the model matrices defined including a sparse constraint matrix. The input to this
function is the name of the file. For example,

library lpmt;

3-13



Linear Programming MT 4.0 for GAUSS

#include lpmt.sdf

struct LP lp0;

lp0 = mps("adlittle.mps");

struct LPcontrol c0;

c0 = createLPcontrol;

struct LPout out1;

out1 = lpmt(lp0,c0);

call lpmtprt(out1,c0);

A keyword function is also available that generates the analysis of the MPS file
interactively. From the GAUSS command line, type

>> library lpmt;

>> solveLP adlittle;

This analyzes a linear programming problem stored in a file name adlittle.mps and
prints results to a file name adlittle.out.

3.5.2 Alternate Sparse Methods

The constraint matrix can also be stored or generated using GAUSS functions. The
GAUSS function sparseFD takes a matrix containing three columns, the element value,
row, and column, of the nonzero elements of the constraint matrix, and returns a GAUSS
sparse matrix. For example,

ap = { 1 1 2,

1 1 3,

1 1 4,

1 2 5,

1 2 6,
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1 2 7,

1 3 8,

1 3 9,

1 3 10,

-1 4 2,

-1 4 5,

-1 4 8,

-1 4 11,

-1 4 12,

-1 4 13,

1 4 1,

1 5 2,

1 5 3,

1 5 4,

1 5 5,

1 5 6,

1 5 7,

1 5 8,

1 5 9,

1 5 10,

1 5 11,

1 5 12,

1 5 13,

1 6 1,

-1 6 11,

2 7 2,

2 7 3,

2 7 4,

1.2 7 5,

1.2 7 6,

1.2 7 7,

0.7 7 8,

0.7 7 9,

0.7 7 20,

4 8 11,

2.5 8 12 };

b = { 2754, 850, 855, 0, 5000, 2247, 2440, 4160 };

3-15



Linear Programming MT 4.0 for GAUSS

c = { 72,

11, 24, 88,

-13, 0, 64,

-27, -14, 50,

44,

1,

-46 };

l = 0;

u = { 1e200,

1e200, 357, 500,

1e200, 197, 130,

1e200, 39, 170,

1598,

405,

1761 };

struct LP lp0;

lp0.a = sparseFP(ap,8,13);

lp0.b = b;

lp0.c = c;

lp0.l = l;

lp0.u = u;

3.6 References

Chvatal, Vašek 1983. Linear Programming. New York: W. H. Freeman and Company.
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lpmt

PURPOSE Computes the optimal value of a linear objective function subject to
linear inequality constraints and bounds on variables. The problem
typically is of the form:

maximize:
n∑

j=1

c jx j

subject to:
n∑

j=1

ai jx j ≤ bi (i = 1, 2, ...m)

l j ≤ x j ≤ u j ( j = 1, 2, ...n)

LIBRARY lpmt
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FORMAT out0 = lpmt(lp0,c0);

INPUT lp0 an instance of an LP structure with the following members:

lp0.a M × N dense or sparse matrix of
constraint coefficients. The problem
should not be supplied with slack
variables.

lp0.b M × 1 vector or M × 2 matrix. If
lp0.b is M × 2, the constraint
expressions are bounded below by the
first column and above by the second
column. That is,

lp0.bi1 ≤

n∑
j=1

lp0.ai j x j ≤ lp0.bi2 (i = 1, 2, ...m)

This format can be used to generate
all three constraint types. For
example:

3x1 + 4x2 − 13x3 ≥ 24
is equivalent to:

24 ≤ 3x1 + 4x2 − 13x3 ≤ 1e200
Note the use of 1e200 for +∞. This is
also used below in describing variable
ranges.

lp0.c N × 1 vector containing the
coefficients of the objective function.

lp0.l N × 1 vector or a scalar, containing
the lower bounds of x. Use −1e200
for −∞. If lp0.l is a scalar, it is
assumed that all elements of the
solution have the same lower bound.

lp0.u N × 1 vector or a scalar, containing
the upper bounds of the solution. Use
1e200 for +∞. If lp0.u is a scalar, it
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is assumed that all elements of the
solution have the same upper bound.

c0 an instance of an LPcontrol structure. The following
members are used in the LPMT routine:

c0.altConstraint N × 1 vector or scalar. This member
may be used as an alternative to
setting lp0.l and lp0.u if variables
are set to be non-negative,
non-positive, or free. Values for this
member are:

-1 Corresponding variable is
nonpositive.

0 Corresponding variable is
unrestricted (or free).

1 Corresponding variable is
nonnegative.

If c0.altConstraint is a scalar, it will
be assumed that all variables have the
same restrictions. If this member has
been set to a value other than its
default, lp0.l and lp0.u will be
ignored and thus should be set to 0.
Default = -2.

c0.altNames N × 1 character vector, alternate
variable names to be used for printout
purposes. These names will be used
in the iterations printout and in the
final report. c0.altNamessa may be
used to input alternate variable names
in a string array and if set, will
override c0.altNames. By default, the
iterations report will use numbers to
indicate variables and the final
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solution report will use the name in
c0.name.

c0.altNamessa N × 1 string array, alternate variable
names to be used for printout
purposes. These names will be used
in the iterations printout and in the
final report. c0.altNames may be used
to input alternate variable names in a
character vector; but if c0.altNamessa
is set, it overrides c0.altNames. By
default, the iterations report will use
numbers to indicate variables and the
final solution report will use the name
in c0.name.

c0.constraintTol M × 1 vector or scalar, tolerance used
to determine whether a constraint has
been violated or not. Default = 10−8.

c0.constraintType M × 1 vector or scalar used to
describe each equation type. The
values for each equation type are:

1 Corresponding constraint is ≤.
2 Corresponding constraint is ≥.
3 Corresponding constraint is =.

If c0.constraintType is a scalar, it will
be assumed that all constraints are of
the same type. Default = 1.

c0.eps1 scalar. This is the smallest value
around which a pivot will be
performed. If during any iteration, a
value exceeds c0.eps1, in absolute
value, it is a possible candidate for
entering the basis. Default: 10−5.

c0.eps2 scalar. The algorithm will not divide
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by a number smaller than this.
Default: 10−8.

c0.eps3 scalar. This is used to determine how
often to refactor the basis. Roughly, if
abs(ax-b) is greater than c0.eps3 in
any element, in any iteration, the
basis will be refactored immediately.
Setting this value too low will slow
down the algorithm speed, since
refactoring is the most time
consuming portion of any iteration. If
abs(b-ax) never exceeds c0.eps3, then
the basis will be refactored when
either the eta file gets too large for
available memory or when scanning
the file becomes too time consuming.
Default = 10−6.

c0.feasible If 1, only a feasible solution will be
returned. If 2, an optimal solution
will be returned. If you want to input
a feasible solution, set c0.start to this
solution. If c0.feasible = 2, and this
solution is feasible, it will be used to
start Phase II of the algorithm.
Default = 2.

c0.header string, specifies the format for the
output header. c0.header can contain
zero or more of the following
characters:
t print title (see c0.title)
l bracket title with lines
d print date and time
v print procedure name and version

number
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Example:
c0.header = "tld";

If c0.header = “”, no header is
printed. Default = “tldv”.

c0.maxIterations scalar, the maximum number of
iterations the simplex algorithm will
iterate during either phase.
Default = 1000.

c0.minimize If 1, the minimum value of the
objective function will be calculated.
If 2, the maximum will be calculated.
Default = 2.

c0.name string, Variable name to be used for
output purposes. Default = “X”.

c0.numSolutions scalar, the number of optimal
solutions that LPMT should attempt
to find. Default = 1.

c0.output scalar, determines writing to the
screen.
0 Nothing is written.
1 Iteration information printed to

screen.
2 Output, including iteration

information, is printed to a DOS
compatibility window

Default = 1.
c0.rule 2 × 1 vector. The first element

determines which tie breaking rule
will be used for the entering variable.
The second element determines
which rule will be used for the
leaving variable. c0.rule[1] specifies
the tie breaking rule for the entering

4-6 LPMT C R



R
eference

lpmt

variable and can have the following
values:
1 Smallest subscript rule.
2 Largest coefficient rule.
3 Largest increase rule.
4 A random selection is made.
c0.rule[2] specifies the tie breaking
rule for the leaving variable and can
have the following values:
1 Smallest subscript rule.
2 Lexicographic rule. This rule is

very time-consuming and
memory-intensive.

3 A random selection is made.
The rule used to choose the entering
variable can have an effect on the
number of iterations required before
the algorithm finds an optimal
solution. Unfortunately, no general
rules can be given about which rule to
use. Using the smallest subscript rule
for the leaving variable guarantees
that off-optimal cycling does not
occur. This rule, however, may force
the algorithm to go through more
iterations than might otherwise be
necessary. Default = { 2, 1 }.

c0.scale scalar, if nonzero, the input matrices
will be scaled. Default = 1.

c0.seed scalar, random number seed.
Default = 345678.

c0.start (N + M) × 1 or (N + M) × 2 vector. If
c0.start is (N +M) × 1, then it will be
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used to initialize Phase I. The first N
elements are the values of the original
variables, and the last M variables are
values of slack variables. If c0.start
is (N + M) × 2, the first column
should contain a solution with which
to initilize the algorithm and the
second column should contain a 1 if
the corresponding first column
element is basic, and a zero
otherwise. In either case, the initial
solution must be feasible with respect
to lp0.l and lp0.u, but need not be
feasible with respect to the constraint
equations. Default = 0.

c0.title string, message printed at the top of
the screen and output device by
lpmtprt and lpmtview as well as in
the output header. By default, no title
is included in the header, and a
generic title is used elsewhere.

c0.tolerance scalar, tolerance used to determine
whether a solution is feasible or not.
If sum of artificial variables at end of
phase I does not exceed c0.tolerance,
then solution at that point is
considered feasible. This may also be
an M × 1 vector if you want different
feasibilities for each constraint.
Default = 10−8.

OUTPUT out0 an instance of an LPout structure with the following
members:

out0.basis M × 1 vector containing the indices of
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the variables in the final basis.
Normally, the indices returned in
out0.basis will be in the range
1 − (M + N), but occasionally,
however, artificial variables will
persist in the basis. In this case,
indices will be in the range
1 − (2 ∗ M + N).

out0.constraintValues M × 1 vector. The value of each
constraint upon termination of
LPMT.

out0.dual M × 1 vector, the dual variables.
out0.numIters 2 × 1 vector containing the number of

iterations required for each phase of
the simplex algorithm. The first and
second elements correspond to the
number of iterations required by
Phase I and Phase II, respectively.

out0.optimumValue scalar, the value of the objective
upon termination of LPMT. This
may be the optimal value, the
minimum sum of the infeasibilities,
or the largest value found before it
was determined that the problem was
unbounded or that the algorithm was
unable to continue.

out0.optSolutions If c0.numSolutions is greater than 1,
this member will be an (N + M) × P
matrix containing P optimal
solutions. Otherwise,
out0.optSolutions will be set to 0.

out0.quality scalar, reports the quality of the final
solution. Quality is judged to be:
1 POOR

LPMT C R 4-9



lpmt

2 FAIR
3 GOOD
4 EXCELLENT

out0.returncode scalar, return code:
0 An optimal solution was found.
1 The problem is unbounded.
2 The problem is infeasible.
5 Maximum number of iterations

exceeded. Cycling may be
occurring.

13 Algorithm unable to find a
suitable variable to enter the
basis. Either set c0.eps1 or
c0.eps2 lower, or change
c0.rule[1] to another value.

If the return code is negative, then the
program terminated in Phase I.

out0.Solution (N + M) × 1 vector containing either
(1) an optimal solution to the original
problem, or (2) the x values which
minimize the sum of the
infeasibilities, or (3) the last solution
found before it was determined that
the problem is unbounded or that the
algorithm was unable to continue.
The last M elements contain the
values of the slack variables.

out0.state M × 1 vector containing the state of
each constraint. The states are:
-4 Equality constraint has been

violated below.
-3 Equality constraint has been

violated above.
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-2 Constraint violates its lower
bound.

-1 Constraint violates its upper
bound.

0 Constraint strictly between its
two bounds.

1 Constraint is at its lower bound.
2 Constraint is at its upper bound.
3 Equality constraint is satisfied.

REMARKS By default, LPMT solves the problem:

maximize:
n∑

j=1

c jx j

subject to:
n∑

j=1

ai jx j ≤ bi (i = 1, 2, ...m)

x j ≥ 0 ( j = 1, 2, ...n)

Please note that LPMT cannot handle free constraints. Do not set
bi = ±1e200 for any i.

EXAMPLE library lpmt;

#include lpmt.sdf

struct LP lp0;

lp0 = createLP;

lp0.a = { 1 -4 3 3,

1 3 -1 1,

1 2 3 2,

1 3 -2 1 };

lp0.b = { 2, -2, 3, -3 };

lp0.c = { 3, 1, 4, 2 };
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struct LPcontrol c0;

c0 = createLPcontrol;

c0.title = "THE PRIMAL PROBLEM";

c0.altConstraint = { 0, 0, 1, 1 };

c0.minimize = 1;

call lpmtprt(lpmt(lp0,c0),c0);

struct LP lp1;

lp1 = createLP;

lp1.a = lp0.a’;

lp1.b = lp0.b;

lp1.c = lp0.c;

lp1.u = 1e200;

struct LPcontrol c1;

c1 = createLPcontrol;

c1.title = "THE DUAL PROBLEM";

c1.constraintType = { 3, 3, 2, 2 };

c1.minimize = 2;

call lpmtprt(lpmt(lp1,c1),c1);

SOURCE lpmt.src

lpmtprt

PURPOSE Formats and prints the output from LPMT. This printout is suitable for
output to a disk file.
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LIBRARY lpmt

FORMAT out0 = lpmtprt(out0,c0);

INPUT out0 an instance of an LPout structure returned by LPMT with
the following members:

out0.basis M × 1 vector containing the indices of
the variables in the final basis.
Normally, the indices returned in
out0.basis will be in the range
1 − (M + N), but occasionally,
however, artificial variables will
persist in the basis. In this case,
indices will be in the range
1 − (2 ∗ M + N).

out0.constraintValues M × 1 vector. The value of each
constraint upon termination of
LPMT.

out0.dual M × 1 vector, the dual variables.
out0.numIters 2 × 1 vector containing the number of

iterations required for each phase of
the simplex algorithm. The first and
second elements correspond to the
number of iterations required by
Phase I and Phase II, respectively.

out0.optimumValue scalar, the value of the objective
upon termination of LPMT. This
may be the optimal value, the
minimum sum of the infeasibilities,
or the largest value found before it
was determined that the problem was
unbounded or that the algorithm was
unable to continue.

LPMT C R 4-13



lpmtprt

out0.optSolutions If c0.numSolutions is greater than 1,
this member will be an (N + M) × P
matrix containing P optimal
solutions. Otherwise,
out0.optSolutions will be set to 0.

out0.quality scalar, reports the quality of the final
solution. Quality is judged to be:
1 POOR
2 FAIR
3 GOOD
4 EXCELLENT

out0.returncode scalar, return code:
0 An optimal solution was found
1 The problem is unbounded
2 The problem is infeasible
5 Maximum number of iterations

exceeded. Cycling may be
occurring.

13 Algorithm unable to find a
suitable variable to enter the
basis. Either set c0.eps1 or
c0.eps2 lower, or change
c0.rule[1] to another value.

If the return code is negative, then the
program terminated in Phase I.

out0.Solution (N + M) × 1 vector containing either
(1) an optimal solution to the original
problem, or (2) the x values which
minimize the sum of the
infeasibilities or (3), the last solution
found before it was determined that
the problem is unbounded or that the
algorithm was unable to continue.
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The last M elements contain the
values of the slack variables.

out0.state M × 1 vector containing the state of
each constraint. The states are:
-4 Equality constraint has been

violated below.
-3 Equality constraint has been

violated above.
-2 Constraint violates its lower

bound.
-1 Constraint violates its upper

bound.
0 Constraint strictly between its

two bounds.
1 Constraint is at its lower bound.
2 Constraint is at its upper bound.
3 Equality constraint is satisfied.

c0 an instance of an LPcontrol structure. The following
members are used in the lpmtprt routine:

c0.altNames N × 1 character vector, alternate
variable names to be used for printout
purposes. These names will be used
in the iterations printout and in the
final report. c0.altNamessa may be
used to input alternate variable names
in a string array and if set, will
override c0.altNames. By default, the
iterations report will use numbers to
indicate variables and the final
solution report will use the name in
c0.name.

c0.altNamessa N × 1 string array, alternate variable
names to be used for printout
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purposes. These names will be used
in the iterations printout and in the
final report. c0.altNames may be used
to input alternate variable names in a
character vector, but if c0.altNamessa
is set, it overrides c0.altNames. By
default, the iterations report will use
numbers to indicate variables and the
final solution report will use the name
in c0.name.

c0.header string, specifies the format for the
output header. c0.header can contain
zero or more of the following
characters:

t print title (see c0.title)
l bracket title with lines
d print date and time
v print procedure name and version

number

Example:
c0.header = "tld";

If c0.header = “”, no header is
printed. Default = “tldv”.

c0.name string, Variable name to be used for
output purposes. Default = “X”.

c0.title string, message printed at the top of
the screen and output device by
”lpmtprt” as well as in the output
header. By default, no title is included
in the header, and a generic title is
used elsewhere.

c0.vpad scalar. If 0, internally created variable
names are not padded to give them
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equal length (e.g., X1, X2, ..., X10).
If 1, they are padded with zeros to
give them equal length (e.g., X01,
X02, ..., X10). Default = 1.

OUTPUT out0 an instance of an LPout structure identical to the LPout
instance passed in the first input argument.

SOURCE lpmtprt.src

lpmtview

PURPOSE Creates a screen display of the final results returned from LPMT in a
DOS compatibility window. This display allows the user to page
through the values of constraints upon termination, the dual variables
and the final solution. The state of each constraint is reported and slack
variables are marked.

LIBRARY lpmt

FORMAT out0 = lpmtview(out0,c0);

INPUT out0 an instance of an LPout structure returned by LPMT with
the following members:

out0.basis M × 1 vector containing the indices of
the variables in the final basis.
Normally, the indices returned in
out0.basis will be in the range
1 − (M + N), but occasionally,
however, artificial variables will
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persist in the basis. In this case,
indices will be in the range
1 − (2 ∗ M + N).

out0.constraintValues M × 1 vector. The value of each
constraint upon termination of
LPMT.

out0.dual M × 1 vector, the dual variables.
out0.numIters 2 × 1 vector containing the number of

iterations required for each phase of
the simplex algorithm. The first and
second elements correspond to the
number of iterations required by
Phase I and Phase II, respectively.

out0.optimumValue scalar, the value of the objective
upon termination of LPMT. This
may be the optimal value, the
minimum sum of the infeasibilities,
or the largest value found before it
was determined that the problem was
unbounded or that the algorithm was
unable to continue.

out0.optSolutions If c0.numSolutions is greater than 1,
this member will be an (N + M) × P
matrix containing P optimal
solutions. Otherwise,
out0.optSolutions will be set to 0.

out0.quality scalar, reports the quality of the final
solution. Quality is judged to be:
1 POOR
2 FAIR
3 GOOD
4 EXCELLENT

out0.returncode scalar, return code:
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0 An optimal solution was found.
1 The problem is unbounded.
2 The problem is infeasible.
5 Maximum number of iterations

exceeded. Cycling may be
occurring.

13 Algorithm unable to find a
suitable variable to enter the
basis. Either set c0.eps1 or
c0.eps2 lower, or change
c0.rule[1] to another value.

If the return code is negative, then the
program terminated in Phase I.

out0.Solution (N + M) × 1 vector containing either
(1) an optimal solution to the original
problem, or (2) the x values which
minimize the sum of the
infeasibilities, or (3) the last solution
found before it was determined that
the problem is unbounded or that the
algorithm was unable to continue.
The last M elements contain the
values of the slack variables.

out0.state M × 1 vector containing the state of
each constraint. The states are:

-4 Equality constraint has been
violated below.

-3 Equality constraint has been
violated above.

-2 Constraint violates its lower
bound.

-1 Constraint violates its upper
bound.
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0 Constraint strictly between its
two bounds.

1 Constraint is at its lower bound.
2 Constraint is at its upper bound.
3 Equality constraint is satisfied.

c0 an instance of an LPcontrol structure. The following
members are used in the lpmtview routine:

c0.altNames N × 1 character vector, alternate
variable names to be used for printout
purposes. These names will be used
in the iterations printout and in the
final report. c0.altNamessa may be
used to input alternate variable names
in a string array and if set, will
override c0.altNames. By default, the
iterations report will use numbers to
indicate variables and the final
solution report will use the name in
c0.name.

c0.altNamessa N × 1 string array, alternate variable
names to be used for printout
purposes. These names will be used
in the iterations printout and in the
final report. c0.altNames may be used
to input alternate variable names in a
character vector, but if c0.altNamessa
is set, it overrides c0.altNames. By
default, the iterations report will use
numbers to indicate variables and the
final solution report will use the name
in c0.name.

c0.name string, Variable name to be used for
output purposes. Default = “X”.
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c0.title string, message printed at the top of
the screen and output device by
lpmtview as well as in the output
header. By default, no title is included
in the header, and a generic title is
used elsewhere.

c0.vpad scalar. If 0, internally created variable
names are not padded to give them
equal length (e.g., X1, X2, ..., X10).
If 1, they are padded with zeros to
give them equal length (e.g., X01,
X02, ..., X10). Default = 1.

OUTPUT out0 an instance of an LPout structure identical to the LPout
instance passed in the first input argument.

REMARKS lpmtview is designed to run only in a DOS compatibility window. In
the Windows version of GAUSS, you can open a DOS compatibility
window with the doswin command. You can then run a program that
calls lpmtview; lpmtview will take control of the open DOS
compatibility window, using it both to display output and to obtain user
input.

SOURCE lpmtprt.src

mps

PURPOSE Generates input for a linear programming problem from an MPS file.

LIBRARY lpmt
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FORMAT lp0 = mps(s0);

INPUT s0 string, name of file in MPS format

OUTPUT lp0 an instance of an LP structure with the following members,
which are set according to information in the input file:

lp0.a M × N dense or sparse matrix of
constraint coefficients

lp0.b M × 1 vector or M × 2 matrix. If
lp0.b is M × 2, the constraint
expressions are bounded below by the
first column and above by the second
column. That is,

lp0.bi1 ≤

n∑
j=1

lp0.ai j x j ≤ lp0.bi2 (i = 1, 2, ...m)

This format can be used to generate
all three constraint types. For
example:

3x1 + 4x2 − 13x3 ≥ 24
is equivalent to:

24 ≤ 3x1 + 4x2 − 13x3 ≤ 1e200
Note the use of 1e200 for +∞. This is
also used below in describing variable
ranges.

lp0.c N × 1 vector containing the
coefficients of the objective function.

lp0.l N × 1 vector or a scalar, containing
the lower bounds of x. Use −1e200
for −∞. If lp0.l is a scalar, it is
assumed that all elements of the
solution have the same lower bound.

lp0.u N × 1 vector or a scalar, containing
the upper bounds of the solution. Use
1e200 for +∞. If lp0.u is a scalar, it
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is assumed that all elements of the
solution have the same upper bound.

EXAMPLE library lpmt;

#include lpmt.sdf

struct LP lp0;

lp0 = mps("adlittle.mps");

struct LPcontrol c0;

c0 = createLPcontrol;

c0.title = "adlittle problem";

output file = lpmt8.out reset;

struct LPout out1;

out1 = lpmt(lp0,c0);

call lpmtprt(out1,c0);

output off;

SOURCE lpmt.src

solveLP

PURPOSE Calls LPMT and lpmtprt with input taken from an MPS file.

LIBRARY lpmt

FORMAT solveLP mpsfname outfname
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INPUT mpsfname string, name of file in MPS format

outfname string, name of output file (optional)

REMARKS If the file extension is omitted from the first argument, an .mps
extension is assumed. If the second argument is omitted entirely, an
output file is generated with the extension .out appended.

This is a keyword procedure designed to be used interactively, though it
could be used from a command file as well. For example, typing the
following:

>> library lpmt;

>> solveLP adlittle;

solves a linear programming problem defined in MPS format in a file
named adlittle.mps, the output of which is printed to a file named
adlittle.out.

solveLP uses default values for the members of the LPcontrol
structure that is inputted into the LPMT and lpmtprt calls.

SOURCE lpmt.src
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library, lpmt, 2-1
linear programming, 3-1
LP, 3-2
LPcontrol, 3-2
LPMT, 3-2
lpmt, 4-1
lpmt.sdf, 2-2
lpmtprt, 3-7, 4-12
”lpmtview”, 4-17

M

maximization, 3-4
maxIterations, 3-5
maxIterations, 3-13
minimization, 3-4
minimize, 3-4
mps, 3-13, 4-21
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N

name, 3-5
numSolutions, 3-5

O

optimization, 3-1
output, 3-5

R

return code, 3-12
rule, 3-5

S

solveLP, 4-23
sparse constraint matrix, 3-13
start, 3-5

T

title, 3-5
tolerance, 3-5, 3-12
tolerances, 3-12

U

UNIX, 1-3
UNIX/Linux/Mac, 1-1

V

variables, free, 3-6

W

Windows, 1-2, 1-3
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