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Chapter 1

Installation

1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to
step 3.

gunzip app appname vernum.revnum UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app appname vernum.revnum UNIX.tar

– or –
unzip /tmp/app appname vernum.revnum UNIX.zip

1



1. INSTALLATION

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files
found on the CD. For example:

tar xvf /cdrom/apps/app appname vernum.revnum UNIX.tar

– or –
unzip /cdrom/apps/app appname vernum.revnum UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from
the keyboard, it may be necessary to press Enter after the keystroke in the
UNIX version.

2



Chapter 2

Linear Regression MT

2.1 Getting Started

The LINEAR REGRESSION MT or LRMT module is a set of procedures for the
estimation of single equation and simultaneous equation models. Single equation
models are estimated using Ordinary Least Squares . Systems of equations can be
estimated using Two-Stage Least Squares , Three-Stage Least Squares , or Seemingly
Unrelated Regression.

The core of this module consists of the following procedures:

l2sls Linear Two-Stage Least Squares Regression
l3sls Linear Three-Stage Least Squares Regression
lreg Linear Regression by Ordinary Least Squares
lsur Linear Seemingly Unrelated Regression

In addition to these estimation procedures, a procedure lrtest is provided for linear
hypothesis testing of any of the above regression models.

Special features of the LRMT module include:

• Handles arbitrarily large data sets with multiple variables.

• Performs multiple linear hypothesis testing easily.

• Estimates regressions with linear restrictions.

• All regression procedures may operate on a specified range of observations.

3



2. LINEAR REGRESSION MT

• Performs iteratively re-weighted Three-Stage Least Squares and Seemingly
Unrelated Regression.

This chapter begins with some general aspects of the use of the LRMT module. The
second chapter provides additional topics covering the application of the procedures.
Comprehensive details of each estimation procedure are provided in the last chapter.

2.1.1 README Files

The file README.lrmt contains any last minute information on this module. Please read
it carefully before using the procedures in this module.

2.1.2 Version Number

The version number is stored in a global variable lrmt ver, which is a 3×1 matrix
containing the major version, minor version, and revision number in that order.

If you call for technical support, you will be asked for the version number of your copy
of this module.

2.2 Setup

There are four essential parts to any estimation procedure in this module. These must
be specified in any programs that call these estimation procedures.

1. Header:

The header consists of five statements: a library statement which activates the
LRMT library, an #include statement to include the file containing the
definitions of the structures used by LRMT, declarations of an instance of an
lrControl structure and an lrOut structure, and a call to lrControlCreate which
sets the members of the lrControl structure to default values. These five
statements are specified at the top of the command file and should look
something like this:

library lrmt, pgraph;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;
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2. LINEAR REGRESSION MT

In the example above, the PGRAPH library is necessary if you intend to use the
Publication Quality Graphics.

2. Data Setup:

Next, the user must specify the data to be passed to the procedures. For
example, the format for lreg is:

lro = lreg(lrc,dataset,dv,iv,restrict);

Here is an example of the data setup for that procedure call:

dataset = "translog"; // File name of the data set

dv = "y1"; // Specify dependent variable

iv = "const"$|"x1"$|"x2"; // Specify independent variables

3. Specify Options:

Options are controlled by setting the corresponding members of the lrControl
structure. Following the above example, you may want to analyze the data with
both influence and collinearity diagnostics. This can be accomplished by
specifying the following two statements:

lrc.lregres = "residual";

lrc.lregcol = 1;

4. Calling the Procedure:

Each estimation procedure can print results to the screen and send output to the
specified output file and/or return a global output structure to memory. If all
you need is the printed results, you can call the procedure as follows:

call lreg(lrc,dataset,dv,iv,0);

In this case, you would not need to declare an instance of an lrOut structure at
the top of the program.

However, if you want information returned to memory, you must assign the
result to an lrOut structure.

lro = lreg(lrc,dataset,dv,iv,0);

The resulting structure, lro, stores all of the return statistics in an efficient
manner. The members of the lrOut structure that are relevant to each procedure
are listed in the reference section.

2.3 Data Sets

A GAUSS data set is a binary disk file, which is saved with a .dat extension. The
.dat file is comprised of the data and a header which contains the names and types of
the variables associated with each column of the data set.

5



2. LINEAR REGRESSION MT

2.3.1 Data Transformations

It is assumed that the data set for analysis is ready before you call the procedures. If
you need to modify your data, GAUSS Data Tool is available for fast and simple
manipulation of data sets. GAUSS Data Tool provides users with a powerful and
flexible environment for viewing and modifying data. It includes commands for keeping
and dropping variables, selecting observations, sorting, merging on a key variable or set
of variables, imputing missing data, and transforming data using GAUSS functions.

2.3.2 Creating Data Sets

There are three ways to create a GAUSS data set.

1. If you have an ASCII format data file, use the ATOG utility to convert it
into a GAUSS data set. For details, see ATOG in the UTILITIES section
of the GAUSS manual.

2. If you have a matrix in memory, use the command create or saved to
create a data set. See the COMMAND REFERENCE section of the
GAUSS manual.

3. GAUSS Data Tool has commands for creating new data sets and
translating ASCII and Excel files to GAUSS data sets.

To look at a data set in GAUSS, use the keyword datalist. The syntax is:

datalist filename [variables];

For details, see datalist in the GAUSS manual.

2.4 Compiling the Procedures

By compiling your procedures and saving the compiled code to disk, you can eliminate
the time required to compile the LRMT procedures into memory. The compiled file
saved to disk will have a .gcg extension.

To create a file containing the compiled images of the procedures you use together
often, you may, for example, type the following commands from the command line:

new;

library lrmt;

external proc lreg, l2sls;

saveall procset1;

6



2. LINEAR REGRESSION MT

The procedures listed in the external statement will be compiled and the compiled
images will be saved to the file procset1.gcg. The file containing the compiled image
should be saved on a subdirectory listed in the SRC PATH of the GAUSS configuration
file.

To use these procedures, you need to have the statement

use procset1;

at the top of your command file. The use command will look along the SRC PATH for
the file you specify. A library statement may not be necessary if you are using only
procedures that are saved in the file specified in the use statement.

2.5 Troubleshooting

Here are common error messages that you may encounter when using LRMT
procedures.

Undefined symbols:

lrControlCreate c:gauss\examples\test1.e(6)

l3sls c:gauss\examples\test1.e(22)

lrtest c:gauss\examples\test1.e(23)

.

.

.

If this happens, the LRMT library may not be active. Check if the following statement
is listed at the top of your command file:

library lrmt;

2.6 Error Codes

When certain errors are encountered in the specification of the model or the data being
analyzed, the procedures either terminate with an error message or return an error code
in the errcode member of the lrOut structure. This is controlled with the low order bit
of the trap flag. See trap in the GAUSS COMMAND REFERENCE .

TRAP 0 terminate with error message

TRAP 1 return scalar error code

7



2. LINEAR REGRESSION MT

2.6.1 Testing for Error Codes

The returning error code appears as a missing value if printed. Use scalerr to retrieve
the error number.

trap 1; // Initialize the trap

lro = lreg(lrc,dataset,dv,iv,restrict);

if scalerr(lro.errcode);

print "Error " scalerr(lro.errcode) " was encountered.";

end;

endif;

trap 0; // Reset the trap

Use lrError to display the error message assocated with an error code.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: testerrmt1.e

Data file: tmt11_3

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

struct lrControl lrc;

struct lrOut lro1,lro2;

lrc = lrControlCreate;

dataset = "tmt11_3";

output file = testerrmt1.out reset;

trap 1;

dv = "y";

iv = "const"$|"p1"$|"p3";

restrict = "p1 + p33 = 1"; // User mistypes p3

lro1 = lreg(lrc,dataset,dv,iv,restrict);

if scalerr(lro1.errcode);

lrerror("Error located in the 1st equation",lro1.errcode);

pause(3);

endif;

dv = "y";

iv = "const"$|"p1"$|"p4"; // Variable p4 is not in the data set

lro2 = lreg(lrc,dataset,dv,iv,0);

if scalerr(lro2.errcode);

lrerror("Error located in the 2nd equation",lro2.errcode);

pause(3);

endif;

trap 0;

output off;

NOTE: The example files are included in the examples subdirectory.

8



2. LINEAR REGRESSION MT

2.6.2 List of Error Codes

Following is a list of error code definitions:

1 Data file not found.
2 Variables specified not found in the data set.
4 Invalid range.
5 Type mismatch.
21 Misspecification in the restriction string.
22 The restricted equations are inconsistent.
23 The restricted equations are linearly dependent.
24 Singular values not all computed.
30 System singular.
31 There are fewer observations than parameters to estimate.
36 Variables specified are not consistent.
40 The input lrOut structure contains an error.
74 The file for residual diagnostics cannot be opened.
75 There is not enough disk space to write the residual measures.
76 Unable to find eigenvalues.

2.7 Getting Help on Procedures

All of the procedures in the LRMT module are automatically accessible in GAUSS if
the LRMT library is active. You can find the definition of an LRMT procedure and
information about its syntax and arguments as follows:

If you are running Windows, place the cursor on the name of the procedure and press
Ctrl-F1.

If you are running UNIX, type browse followed by the name of the procedure.
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Chapter 3

Topics in Linear Regression MT

This chapter covers a wide variety of application examples in LRMT, from the
estimation of single equations to systems of equations. The examples cover the
following topics:

1. Tests for heteroskedasticity

2. Test of structural change

3. Estimating a translog cost function using Ordinary Least Squares

4. Estimating a system of cost share equations using of Seemingly Unrelated
Regression

5. Estimating Klein’s Model I using Three-Stage Least Squares

In order to run some of the examples below, the dataloop translator must be turned on.
If you are running Windows, select "Translate Dataloop Cmds" from the Run menu to
turn the dataloop translator on. If you are running UNIX, use the config command.

3.1 Tests for Heteroskedasticity

Heteroskedasticity exists when the errors do not have a constant variance. Its
consequences lead to inefficient least squares estimators and biased estimator of the
variances. Any inferences based on these estimates could be misleading. There are
several tests which can detect the existence of heteroskedasticity. Two of them are
discussed below.

11



3. TOPICS IN LINEAR REGRESSION MT

3.1.1 The Breusch-Pagan Test

This is a Lagrange Multiplier test and covers a wide range of heteroskedastic situations.
It assumes the model disturbances are distributed normally with variance as follows:

σ2
i = σ2f(α0 + Z ′iα)

where f is any unspecified functional form. Zi is a vector of variables which you
suspect influence the heteroskedasticity, and α is a vector of coefficients. If α = 0, the
model is said to be homoskedastic.

Procedures for this test are given as below:

1. Run lreg and obtain both the residual vector (lro1 .res) and the residual sum of
squares (lro1 .sse).

2. Set sse equal to lro1 .sse, and calculate the σ̃2 as follows:

σ̃2 =
sse

n

3. Rerun lreg with the form as below and obtain lro2 .sst and lro2 .sse.

ê2
t

σ̃2
= α0 + Z ′tα+ Vt

where êt are the least squares residuals from step 1 and α0 = 1.

4. Set sst equal to lro2 .sst and sse equal to lro2 .sse and then compute the test
statistic, which is

LM = (sst− sse)/2

where sst and sse are respectively the total sum of squares and residual sum of
squares obtained from step 3.

Under the null hypothesis, the test statistic is asymptotically distributed as
Chi-squared with degrees of freedom equal to the number of regressors (k) in Z. Thus,
at 5% level if LM > χ2

0.95(k), you reject the hypothesis of homoskedasticity.

Example

In the example below, X2 is thought to be the influential variable. With the use of lreg,
you must specify a file name to hold the residual vector and its diagnostic measures.
This can be done by assigning a file name to the lrControl structure member regres
(i.e., lrc.lregres = “temp”). Do not confuse σ̃2 and σ̂2. σ̃2 is calculated in step 3 and
uses n as divisor. σ̂2 is one of the return statistics, namely s2, stored in the output
structure, and it uses (n− k) as divisor.

12



3. TOPICS IN LINEAR REGRESSION MT

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: hetermt1.e

Data set: hetermt1

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro1,lro2;

lrc = lrControlCreate;

dataset = "hetermt1";

outset = "hetermt1.out";

output file = ^outset reset;

dv = "y";

iv = "const"$|"x2"$|"x3";

lrc.output = 0;

lrc.lregres = "temp"; /* Perform the 1st regression */

lro1 = lreg(lrc,dataset,dv,iv,0);

sse = lro1.sse;

n = lro1.nobs;

newS2 = sse/n;

dataloop temp newdatamt; /* Calculate the new dependent */

extern newS2; /* Variable as step 3 */

make newDV = (res^2)/newS2;

keep newDV x2;

endata;

dataset = "newdatamt";

dv = "newDV";

iv = "const"$|"x2";

lro2 = lreg(lrc,dataset,dv,iv,0); /* Perform the 2nd regression */

sse = lro2.sse;

sst = lro2.sst;

chisq = (sst-sse)/2; /* Compute the test statistic */

format /rd 12,4;

print "Total sum of squares: " sst;

print "Residual sum of squares: " sse;

print "Chi-Squared statistic: " chisq;

output off;
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3. TOPICS IN LINEAR REGRESSION MT

/*+++++ end of program file +++++++++++++++++++++++++++++++++*/

Here is the output:

Total sum of squares: 52.8982

Residual sum of squares: 43.6927

Chi-Squared statistic: 4.6027

By comparing the χ2
(1) value at 5% significance level, which is 3.84, you may conclude

that heteroskedasticity exists in the disturbance variances.

3.1.2 The Goldfeld-Quandt Test

The central idea of this test is to split the observations into two groups. And under the
null hypothesis of homoskedasticity, both groups should have equal variance. Whereas
under the alternative, the disturbance variances would not be the same. In this test,
observations are sorted according to the magnitude of the independent variable Xi, and
this variable is hypothesized to be related to the variance of disturbances. Goldfeld and
Quandt suggest that a certain number of the middle observations be omitted to
increase the distinction between the error variances.

The test procedures are as follows:

1. Sort the observations according to the values of Xi, where Xi is thought to be
the influential variable.

2. Drop some central observations, the number (c) to be dropped is very subjective
and is not obvious.

3. Run two separate regressions, on the first and last (n− c)/2 observations, and
find out their corresponding residual sums of squares.

4. Compute the test statistic as follows:

R =
sse2

sse1

where sse1 and sse2 are respectively the residual sums of squares from the first
and second regressions. In other words, sse1 = lro1.sse and sse2 = lro2.sse.

Under the null hypothesis, the test statistic R is distributed as F with
[(n− c− 2k)/2, (n− c− 2k)/2] degrees of freedom. If F > F0.95, the homoskedasticity
is rejected at 5 percent level.

14
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Example

The data used in this example is per capita expenditure on public schools and per
capita income by state in 1979. Data is from the United States Department of
Commerce (1979, p.157). Since the Goldfeld-Quandt test requires the data to be
ordered, sortd is used to sort the data set with the income variable as the sorting key.
Total number of observations is 51. Each regression is run with 17 observations. By
assigning a data range to the global variable lrc.range, you run the regression with the
indicated range.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: hetermt2.e

Data set: hetermt2

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro1,lro2;

lrc = lrControlCreate;

outset = "hetermt2.out";

output file = ^outset reset;

/* Sort the data according to the values of income */

sortd("hetermt2","newdatamt","income",1);

lrc.output = 0;

dv = "expense";

iv = "const"$|"income";

lrc.range = { 1,17 }; /* 1st regression with the */

lro1 = lreg(lrc,"newdatamt",dv,iv,0); /* first 17 observations */

sse1 = lro1.sse;

lrc.range = { 35,51 }; /* 2nd regression with the */

lro2 = lreg(lrc,"newdatamt",dv,iv,0); /* last 17 observations */

sse2 = lro2.sse;

format /rd 12,6;

print "SSE from the 1st regression: " sse1;

print "SSE from the 2nd regression: " sse2;

print "The F-statistic for this test: " sse2/sse1;

output off;
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3. TOPICS IN LINEAR REGRESSION MT

/*+++++ end of program file +++++++++++++++++++++++++++++++++*/

Here is the output:

SSE from the 1st regression: 28809.327473

SSE from the 2nd regression: 86642.410198

The F-statistic for this test: 3.007443

Since at 5% level of significance F > F0.95(15, 15), where F0.95 = 2.4, you would reject
the hypothesis of homoskedasticity.

3.2 Test of Structural Change

The Chow test is one of several ways to test the differences in parameter estimates
across data sets. Suppose you have two data sets:

Yi = Xiβi + εi i = 1, 2

where Yi has n1 observations, Y2 has n2 observations, and X1 and X2 both have k
regressors k. In matrix notation, the two regressions can be expressed as follows:

Y =

[
Y1

Y2

]
=

[
X1 0
0 X2

] [
β1

β2

]
+

[
ε1

ε2

]
= Xβ + ε (1)

Equation (1) is the unrestricted form of the model. Its residual sum of squares can be
obtained from the two separate regressions (i.e., e′e = e′1e1 + e′2e2).

To test whether β1 = β2, we specify the restricted model:

Y =

[
X1

X2

]
β1 + ε = X∗β1 + ε (2)

The test statistic for the null hypothesis is an F statistic and is defined as follows:

F =
(e′∗e∗ − e′e)/k

e′e/(n1 + n2 − 2k)

16



3. TOPICS IN LINEAR REGRESSION MT

where e′∗e∗ and e′e are respectively the restricted and unrestricted residual sums of
squares, n1 is the number of observations in the first sample, n2 is the number of
observations in the second sample, and k is the number of regressors.

Under the null hypothesis, if F > F0.95(k, n1 + n2 − 2k), you would reject the
hypothesis at the 5% level that the coefficient vectors are the same in two samples.

Example

This example is from Maddala [12, page 131]. The data set, chow.dat, presents data on
per capita food consumption, price of food and per capita income for the years
1927-1941 and 1948-1962. We wish to test the stability of the parameters in the
demand function between the two periods. The estimated function is as follows:

ln q = α+ β1 lnP + β2 lnY

where q is the food consumption per capita, P is the food price, and Y is the consumer
income.

Since the data needs to be in logged, dataloop is used to transform the data. Three
regressions are run with the desired range of data in order to generate their
corresponding residual sums of squares. Finally the test statistic is calculated. Note
that the lrControl structure member range is used to control the data range to be
passed into the regressions.
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/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: chowmt.e

Data set: chowmt

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lrot,lro1,lro2;

lrc = lrControlCreate;

dataloop chowmt newdatamt;

consume = ln(consume); /* Take natural log of variables */

price = ln(price);

income = ln(income);

endata;

output file = chowmt.out reset;

dv = "consume";

iv = "const"$|"price"$|"income";

lrc.output = 0;

lrot = lreg(lrc,"newdatamt",dv,iv,0); /* Full sample run */

sseR = lrot.sse;

lrc.range = { 1,15 }; /* Run with the first 15 observations */

lro1 = lreg(lrc,"newdatamt",dv,iv,0);

sse1 = lro1.sse;

n1 = lro1.nobs;

lrc.range = { 16,30 }; /* Run with the last 15 observations */

lro2 = lreg(lrc,"newdatamt",dv,iv,0);

sse2 = lro2.sse;

n2 = lro2.nobs;

sseU = sse1 + sse2; /* Calculate the unrestricted sse */

F = ((sseR - sseU)/3)/(sseU/(n1+n2-2*3));

prob = cdffc(f,3,(n1+n2-2*3));

format /rd 12,8;

print "unrestricted residual sum of squares: " sseU;

print " restricted residual sum of squares: " sseR;

print " F statistic: " F;

print " significance level: " prob;

output off;
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/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Here is the output:

unrestricted residual sum of squares: 0.00169541

restricted residual sum of squares: 0.00286947

F statistic: 5.53995446

significance level: 0.00491253

The restricted and unrestricted residual sums of squares are different from those
calculated in Maddala [12, page 131]. This is due to differing presentation of the
results. On page 113, Maddala uses 102×SSE to present both residual sums of squares.
From the F -tables, F0.95(3, 24) = 3.01 and F0.99(3, 24) = 4.72. Thus, even at the 1%
level of significance, the hypothesis of stability is rejected.

3.3 Estimating a Translog Cost Function Using Ordinary

Least Squares

The duality of cost and production functions is an important subject in neoclassical
economics. According to the duality theory, under appropriate regularity conditions, all
of the information about the solution to the production function can be obtained via
the corresponding cost function. In fact, Silberberg [13] has suggested that the duality
theory assures us that if a cost function satisfies some elementary properties, i.e., linear
homogeneity and concavity in the factor prices, then there is also a unique production
function. Homogeneity in input prices implies that when all input prices are doubled,
the cost of production also doubles (i.e., mathematically, C(tP, Y ) = t · C(P, Y ) where
t > 0, C is the cost and is a function of the input prices (P) and output (Y)).

Although the topic of estimation of the cost function is very broad, some of the
interesting points are presented below. This section demonstrates the practical aspects
of estimating a translog cost function with symmetry and homogeneity in input prices
imposed. The usage of the translog functional form is due to its popularity and
flexibility.

The translog cost function is specified as below:

lnC = α0 + αy lnY +
∑

i

αi lnPi +
1

2
βyy(lnY )2

+
1

2

∑

i

∑

j

βij · lnPi · lnPj +
∑

i

γyi · lnY · lnPi
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where C is the total cost, Y is the level of output, and Pi is the ith input price. If
symmetry is assumed (i.e., αij = αji ∀ i 6= j), fewer parameters are estimated.

Several hypotheses can be tested within the function. They are constant returns to size
(or linear homogeneity in output, i.e., the same idea as linear homogeneity in input
prices) and functional form of the cost function (i.e., the cobb douglas technology). The
conditions for constant returns to size are tested by restricting: αy = 1, αyy = 0, and
αyi = 0 ∀ i. And the hypothesis regarding the Cobb Douglas technology is tested by
restricting all quadratic terms and cross product terms to be zero. Both hypotheses
require an F -test and the test statistic is defined in the lrtest procedure.

Finally, in order to guarantee that the cost function is homogenous of degree one in
input prices, some restrictions must be imposed into the function. For the translog
case, it is:

∑
i αi = 1,

∑
i γyi = 0, and

∑
j βij = 0 ∀ i. However, if the Cobb Douglas

technology cannot be rejected, the following restrictions are required:
∑
i αi = 1, all

quadratic terms and cross product terms are restricted to zero.

Example

The application of lreg to the above problem is displayed below. Data used in this
example consists of 68 observations with 5 input prices. These data have already been
normalized around their geometric means. Note that when the Cobb Douglas
technology cannot be rejected, the restricted equations (with Cobb Douglas
specification and homogeneity in input prices imposed) are constructed to estimate the
cost function again.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: translogmt.e

Data set: translogmt

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;

output file = translogmt.out reset;

dataloop translogmt newdatamt; /* Perform data transformation */

cost = ln(cost);

y = ln(y);

p1 = ln(p1);

p2 = ln(p2);

p3 = ln(p3);

p4 = ln(p4);
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p5 = ln(p5);

make yy = (y*y)/2;

make p11 = (p1*p1)/2;

make p12 = p1*p2;

make p13 = p1*p3;

make p14 = p1*p4;

make p15 = p1*p5;

make p22 = (p2*p2)/2;

make p23 = p2*p3;

make p24 = p2*p4;

make p25 = p2*p5;

make p33 = (p3*p3)/2;

make p34 = p3*p4;

make p35 = p3*p5;

make p44 = (p4*p4)/2;

make p45 = p4*p5;

make p55 = (p5*p5)/2;

make yp1 = y*p1;

make yp2 = y*p2;

make yp3 = y*p3;

make yp4 = y*p4;

make yp5 = y*p5;

endata;

dataset = "newdatamt";

dv = "cost";

string iv = { "const","y","p1","p2","p3","p4","p5",

"yy",

"p11","p12","p13","p14","p15",

"p22","p23","p24","p25",

"p33","p34","p35",

"p44","p45",

"p55",

"yp1","yp2","yp3","yp4","yp5" };

lro = lreg(lrc,dataset,dv,iv,0);

/* Test of constant return to size */

test1 = "y=1, yy=0, yp1=0, yp2=0, yp3=0, yp4=0, yp5=0";

call lrtest(lrc,lro,test1);

/* Test of Cobb Douglas technology */

test2 = "yy=0,

p11=0, p12=0, p13=0, p14=0, p15=0,

p22=0, p23=0, p24=0, p25=0,

p33=0, p34=0, p35=0,

p44=0, p45=0,
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p55=0,

yp1=0, yp2=0, yp3=0, yp4=0, yp5=0";

call lrtest(lrc,lro,test2);

lrc.title = "COBB DOUGLAS TECHNOLOGY AND HOMOGENEITY IMPOSED";

restrict = "p1+p2+p3+p4+p5=1" $+ "," $+ test2; /* note here */

call lreg(lrc,dataset,dv,iv,restrict);

output off;

/*+++++ end of program file ++++++++++++++++++++++++++++++++++*/

Output for this example:

===============================================================================

LINEAR REGRESSION Version 1.0.0 6/08/2004 3:56 pm

===============================================================================

Data Set: newdatamt

-------------------------------------------------------------------------------

-----------------------------------

Dependent variable: cost

-----------------------------------

Total cases: 68 Valid cases: 68

Total SS: 34.870 Degrees of freedom: 40

R-squared: 0.790 Rbar-squared: 0.648

Residual SS: 7.336 Std error of est: 0.428

F(27,40): 5.560 Probability of F: 0.000

Durbin-Watson: 1.920

Standard Prob Standardized Cor with

Variable Estimate Error t-value >|t| Estimate Dep Var

-------------------------------------------------------------------------------

const -0.743055 0.637914 -1.164819 0.251 -0.000000 0.000000

y 0.503951 0.078073 6.454869 0.000 0.652219 0.792476

p1 0.133066 0.083615 1.591409 0.119 0.587181 0.331334

p2 0.105448 0.160177 0.658322 0.514 0.083346 -0.064546

p3 0.346294 0.232256 1.491002 0.144 0.145411 0.195297

p4 -0.422912 0.817184 -0.517523 0.608 -0.195221 -0.002283

p5 -0.227474 0.205070 -1.109250 0.274 -0.140038 0.129591

yy 0.270977 0.130397 2.078093 0.044 0.218877 0.385657

p11 0.132195 0.120351 1.098415 0.279 0.397203 -0.182481

p12 -0.081801 0.060569 -1.350541 0.184 -0.181723 -0.066657

p13 -0.097157 0.082348 -1.179842 0.245 -0.134457 0.011821
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p14 -0.107957 0.086415 -1.249290 0.219 -0.170307 -0.164789

p15 0.063802 0.052807 1.208222 0.234 0.119138 0.127592

p22 0.041148 0.321014 0.128183 0.899 0.027709 0.027746

p23 0.134335 0.726283 0.184962 0.854 0.020963 -0.045316

p24 -0.204401 0.495043 -0.412896 0.682 -0.061939 0.027906

p25 0.194994 0.412987 0.472155 0.639 0.062974 -0.057050

p33 0.240103 1.075696 0.223207 0.825 0.024031 -0.009060

p34 -0.013950 0.997745 -0.013981 0.989 -0.001986 -0.018197

p35 0.360854 0.759751 0.474963 0.637 0.068868 -0.049615

p44 -1.563439 2.446582 -0.639030 0.526 -0.246312 -0.015852

p45 1.401099 0.950206 1.474521 0.148 0.272823 -0.169663

p55 0.029768 0.444437 0.066979 0.947 0.009755 -0.019073

yp1 0.005353 0.027006 0.198204 0.844 0.020575 0.216620

yp2 0.090026 0.299039 0.301052 0.765 0.056609 -0.062936

yp3 0.338722 0.282181 1.200371 0.237 0.127290 0.242308

yp4 -0.364306 0.277432 -1.313137 0.197 -0.152585 -0.123340

yp5 0.091478 0.293100 0.312106 0.757 0.036010 0.229466

*** Test of Constant Returns to Size

----- LREG: Results for Linear Hypothesis Testing ---------------------------

F(7,40) statistic = 7.596 Prob. = 0.000

--------------------------------------------------------------------------------

*** Test of Cobb Douglas Technology

----- LREG: Results for Linear Hypothesis Testing ---------------------------

F(21,40) statistic = 0.940 Prob. = 0.548

--------------------------------------------------------------------------------

===============================================================================

COBB DOUGLAS TECHNOLOGY AND HOMOGENEITY IMPOSED

===============================================================================

LINEAR REGRESSION Version 1.0.0 6/08/2004 3:56 pm

===============================================================================

Data Set: newdatamt

-------------------------------------------------------------------------------

RESTRICTIONS IN EFFECT

-----------------------------------

Dependent variable: cost

-----------------------------------

Total cases: 68 Valid cases: 68

Total SS: 34.870 Degrees of freedom: 62
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R-squared: 0.654 Rbar-squared: 0.626

Residual SS: 12.067 Std error of est: 0.441

F(5,62): 23.433 Probability of F: 0.000

Durbin-Watson: 2.128

Standard Prob Standardized Cor with

Variable Estimate Error t-value >|t| Estimate Dep Var

-------------------------------------------------------------------------------

const 0.000000 0.053499 0.000000 1.000 0.000000 0.000000

y 0.588345 0.061114 9.627047 0.000 0.761442 0.792476

p1 0.033788 0.018047 1.872239 0.066 0.149095 0.331334

p2 0.176374 0.087734 2.010317 0.049 0.139406 -0.064546

p3 0.640062 0.162847 3.930453 0.000 0.268765 0.195297

p4 0.064513 0.137881 0.467890 0.642 0.029780 -0.002283

p5 0.085264 0.122994 0.693239 0.491 0.052491 0.129591

yy -0.000000 0.000000 -0.000000 1.000 -0.000000 0.385657

p11 -0.000000 0.000000 ----- ----- -0.000000 -0.182481

p12 -0.000000 0.000000 -0.000000 1.000 -0.000000 -0.066657

p13 0.000000 0.000000 0.000000 1.000 0.000000 0.011821

p14 -0.000000 0.000000 -0.000000 1.000 -0.000000 -0.164789

p15 -0.000000 0.000000 -0.000000 1.000 -0.000000 0.127592

p22 0.000000 0.000000 0.000000 1.000 0.000000 0.027746

p23 -0.000000 0.000000 -0.000000 1.000 -0.000000 -0.045316

p24 -0.000000 0.000000 -0.000000 1.000 -0.000000 0.027906

p25 -0.000000 0.000000 ----- ----- -0.000000 -0.057050

p33 0.000000 0.000000 0.000000 1.000 0.000000 -0.009060

p34 0.000000 0.000000 0.000000 1.000 0.000000 -0.018197

p35 -0.000000 0.000000 -0.000000 1.000 -0.000000 -0.049615

p44 -0.000000 0.000000 -0.000000 1.000 -0.000000 -0.015852

p45 0.000000 0.000000 0.000000 1.000 0.000000 -0.169663

p55 0.000000 0.000000 0.000000 1.000 0.000000 -0.019073

yp1 -0.000000 0.000000 -0.000000 1.000 -0.000000 0.216620

yp2 0.000000 0.000000 0.000000 1.000 0.000000 -0.062936

yp3 0.000000 0.000000 0.000000 1.000 0.000000 0.242308

yp4 0.000000 0.000000 0.000000 1.000 0.000000 -0.123340

yp5 0.000000 0.000000 0.000000 1.000 0.000000 0.229466

By looking at the results, the test of constant returns to size is rejected. However, the
Cobb Douglas technology cannot be rejected at even 1% level of significance.
Therefore, the cost function is estimated again with the Cobb Douglas technology and
homogeneity in input prices imposed. Alternatively, you can estimate the Cobb
Douglas functional form as below.

lnC = α0 + αy lnY +
∑

i

αi lnPi

With homogeneity imposed (
∑

i αi = 1), both estimations should give identical results.
You can confirm this by trying the following lines in the command file.
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restrict = "p1+p2+p3+p4+p5=1";

dv = "cost";

iv = "const"$|"y"$|"p1"$|"p2"$|"p3"$|"p4"$|"p5";

call lreg(lrc,dataset,dv,iv,restrict);

3.4 Estimating a System of Cost Share Equations Using

Seemingly Unrelated Regression

This section demonstrates the use of lsur to estimate the system of cost shares with
seemingly unrelated regression technique. Linear hypothesis testing and restrictions
imposed on the parameters are demonstrated as well.

The system of cost shares are defined as follows:

Sit = αi +
∑

j

αij lnPjt + γi lnYt + βitrend+ εit i = 1, 2, 3, 4

where Si are the cost shares and derived from the translog cost function, trend is a
time trend (that is, t = 1 for the first observation, t = 2 for the second observation, and
so on), Pj is the jth input price, and Y is the output.

There are several hypotheses of interest:

1. Symmetry αij = αji ∀ i 6= j

2. Homogeneity
∑
j αij = 0 ∀ i and

∑
i αi = 1

3. Constant returns to scale γi ∀ i

4. No technical change βi ∀ i

Besides the above hypotheses, you may want to estimate the systems with (1) and (2)
above imposed. Since the shares must add to unity, one equation must be dropped to
prevent a singular variance-covariance matrix . Kmenta and Gilbert [11] have shown
that the Iterative Seemingly-Unrelated Regression can produce asymptotically
maximum likelihood estimates. The parameter estimates are the same whichever
equation is deleted.

Example

The program file for this problem is sharesmt.e. This system model has four input
prices, thus it has four equations. However, because of the problem of the singular
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variance-covariance matrix, the 4th equation is dropped from the model. To illustrate
that it is irrelevant which equation is dropped, the final model reestimates with the 4th

equation included and the 1st equation excluded. Data for this example are put into
two files, sharemt.dat and pricemt.dat. Although the merging of two data files is not
presently available in dataloop, you can use the GAUSS language to implement this. If
you have difficulty seeing how the restrictions are constructed, try to write out the
share equations. More details of the lsur procedure can be found in the command
reference of the next chapter.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: sharesmt.e

Data set: sharemt

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

/* THIS PART IS TO COMBINE TWO DATA SETS */

open f1 = share;

open f2 = price;

vnames = getnamef(f1)$|getnamef(f2);

create fout = newdatamt with ^vnames,0,8;

do until eof(f1);

data = readr(f1,100)~readr(f2,100);

data = data[.,1:4]~ln(data[.,5:10])~data[.,11];

if writer(fout,data) /= rows(data);

print "disk full"; end;

endif;

endo;

closeall;

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;

output file = sharesmt.out reset;

y = "s1"$|"s2"$|"s3";

string x = { "const","p1","p2","p3","p4","y","trend", /* 1st Eqn. */

"const","p1","p2","p3","p4","y","trend", /* 2nd Eqn. */

"const","p1","p2","p3","p4","y","trend" }; /* 3rd Eqn. */

novars = { 7,7,7 }; /* No. of RHS variables in each equation */

lro = lsur(lrc,"newdatamt",y,x,novars,0);

print "TEST OF SYMMETRY ";
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test1 = "p2:1-p1:2=0, p3:1-p1:3=0, p3:2-p2:3=0";

call lrtest(lrc,lro,test1);

print "TEST OF HOMOGENEITY ";

test2 = "p1:1 + p2:1 + p3:1 + p4:1 = 0,

p1:2 + p2:2 + p3:2 + p4:2 = 0,

p1:3 + p2:3 + p3:3 + p4:3 = 0";

call lrtest(lrc,lro,test2);

print "TEST OF CONSTANT RETURNS TO SCALE ";

test3 = "y:1=0, y:2=0, y:3=0";

call lrtest(lrc,lro,test3);

print "TEST OF NO TECHNICAL CHANGE ";

test4 = "trend:1=0, trend:2=0, trend:3=0";

call lrtest(lrc,lro,test4);

lrc.tol = 0.00000001;

lrc.iter = 100;

lrc.title = "SYMMETRY AND HOMOGENEITY IMPOSED USING S1,S2,S3";

restrict = "p2:1-p1:2=0,

p3:1-p1:3=0,

p3:2-p2:3=0,

p1:1 + p2:1 + p3:1 + p4:1 = 0,

p1:2 + p2:2 + p3:2 + p4:2 = 0,

p1:3 + p2:3 + p3:3 + p4:3 = 0";

call lsur(lrc,"newdatamt",y,x,novars,restrict);

/* USING S4 AND REMOVING S1 */

y = "s2"$|"s3"$|"s4";

string x = { "const","p1","p2","p3","p4","y","trend",

"const","p1","p2","p3","p4","y","trend",

"const","p1","p2","p3","p4","y","trend" };

novars = { 7,7,7 };

lrc.tol = 0.00000001;

lrc.iter = 100;

lrc.title = "SYMMETRY AND HOMOGENEITY IMPOSED USING S2,S3,S4";

restrict = "p3:1-p2:2=0,

p4:1-p2:3=0,

p4:2-p3:3=0,

p1:1 + p2:1 + p3:1 + p4:1 = 0,

p1:2 + p2:2 + p3:2 + p4:2 = 0,

p1:3 + p2:3 + p3:3 + p4:3 = 0";

call lsur(lrc,"newdatamt",y,x,novars,restrict);

output off;
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/*+++++ end of program file ++++++++++++++++++++++++++++++++++*/

Output for the example:

From the output below, there are two interesting results. First, all of the hypotheses
are rejected at any level of significance. It seems to be somewhat disappointing owing
to the violation of the economic theory (i.e., the conditions of symmetry and
homogeneity). However, these conditions are seldom tested. In fact, according to
Young et al. [17] in most previous studies that have used the flexible functional forms,
the properties of the cost function such as the curvature condition is either not tested
or rejected. This applies as well to the homogeneity condition. In standard practice,
the symmetry and homogeneity are imposed in an ad hoc manner. Second, you can
confirm that the Iterative Seemingly Unrelated Regression can produce asymptotically
maximum likelihood estimates (i.e., obtained parameter estimates are invariant which
respect to which equation is deleted) by excluding a different equation.

===============================================================================

LINEAR SEEMINGLY UNRELATED REGRESSION Version 1.0.0 6/08/2004 1:12 pm

===============================================================================

Data Set: newdatamt

-------------------------------------------------------------------------------

DIVISOR USING N IN EFFECT

ITER. # = 0 LOG OF DETERMINANT OF SIGMA = -28.63610569

ITER. # = 1 LOG OF DETERMINANT OF SIGMA = -28.63610569

-----------------------------------

Equation: 1

Dependent variable: s1

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.143 Degrees of freedom: ----

R-squared: 0.973 Rbar-squared: 0.970

Residual SS: 0.004 Std error of est: 0.009

Durbin-Watson: 0.866

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.42061914 0.03214251 13.086 0.0000

p1 0.40079591 0.01905988 21.028 0.0000

p2 -0.06503234 0.03126903 -2.080 0.0434

p3 -0.00663223 0.02213495 -0.300 0.7659

p4 -0.01302998 0.01050634 -1.240 0.2215
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y -0.35219294 0.04038780 -8.720 0.0000

trend 0.00064332 0.00086750 0.742 0.4623

-----------------------------------

Equation: 2

Dependent variable: s2

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.110 Degrees of freedom: ----

R-squared: 0.875 Rbar-squared: 0.858

Residual SS: 0.014 Std error of est: 0.016

Durbin-Watson: 0.496

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.25782323 0.06079927 4.241 0.0001

p1 -0.42352146 0.03605278 -11.747 0.0000

p2 -0.00105493 0.05914705 -0.018 0.9859

p3 -0.05348148 0.04186944 -1.277 0.2082

p4 -0.04980891 0.01987330 -2.506 0.0160

y 0.50219016 0.07639569 6.574 0.0000

trend 0.00112845 0.00164093 0.688 0.4953

-----------------------------------

Equation: 3

Dependent variable: s3

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.044 Degrees of freedom: ----

R-squared: 0.939 Rbar-squared: 0.931

Residual SS: 0.003 Std error of est: 0.007

Durbin-Watson: 0.724

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const -0.03571263 0.02678922 -1.333 0.1894

p1 -0.05133372 0.01588548 -3.231 0.0023

p2 -0.09499125 0.02606122 -3.645 0.0007

p3 0.01786662 0.01844840 0.968 0.3381

p4 -0.02318483 0.00875652 -2.648 0.0112

y 0.10671202 0.03366127 3.170 0.0028

trend 0.00331548 0.00072302 4.586 0.0000

TEST OF SYMMETRY
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----- LSUR: Results for Linear Hypothesis Testing ---------------------------

Wald Chi-SQ(3) statistic = 76.032 Prob. = 0.000

--------------------------------------------------------------------------------

TEST OF HOMOGENEITY

----- LSUR: Results for Linear Hypothesis Testing ---------------------------

Wald Chi-SQ(3) statistic = 108.365 Prob. = 0.000

--------------------------------------------------------------------------------

TEST OF CONSTANT RETURNS TO SCALE

----- LSUR: Results for Linear Hypothesis Testing ---------------------------

Wald Chi-SQ(3) statistic = 158.533 Prob. = 0.000

--------------------------------------------------------------------------------

TEST OF NO TECHNICAL CHANGE

----- LSUR: Results for Linear Hypothesis Testing ---------------------------

Wald Chi-SQ(3) statistic = 56.880 Prob. = 0.000

--------------------------------------------------------------------------------

===============================================================================

SYMMETRY AND HOMOGENEITY IMPOSED USING S1,S2,S3

===============================================================================

LINEAR SEEMINGLY UNRELATED REGRESSION Version 1.0.0 6/08/2004 1:12 pm

===============================================================================

Data Set: newdatamt

-------------------------------------------------------------------------------

DIVISOR USING N IN EFFECT

RESTRICTIONS IN EFFECT

ITER. # = 0 LOG OF DETERMINANT OF SIGMA = -27.33021909

ITER. # = 1 LOG OF DETERMINANT OF SIGMA = -27.39912399

ITER. # = 2 LOG OF DETERMINANT OF SIGMA = -27.39948493

ITER. # = 3 LOG OF DETERMINANT OF SIGMA = -27.39948665

ITER. # = 4 LOG OF DETERMINANT OF SIGMA = -27.39948666

ITER. # = 5 LOG OF DETERMINANT OF SIGMA = -27.39948666
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3. TOPICS IN LINEAR REGRESSION MT

-----------------------------------

Equation: 1

Dependent variable: s1

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.143 Degrees of freedom: ----

R-squared: 0.954 Rbar-squared: 0.954

Residual SS: 0.007 Std error of est: 0.011

Durbin-Watson: 0.729

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.32351807 0.02125978 15.217 0.0000

p1 0.29551004 0.01140614 25.908 0.0000

p2 -0.23185846 0.01478196 -15.685 0.0000

p3 -0.00831974 0.00834634 -0.997 0.3237

p4 -0.05533185 0.00707085 -7.825 0.0000

y -0.12711952 0.01089636 -11.666 0.0000

trend 0.00299290 0.00064649 4.629 0.0000

-----------------------------------

Equation: 2

Dependent variable: s2

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.110 Degrees of freedom: ----

R-squared: 0.802 Rbar-squared: 0.802

Residual SS: 0.022 Std error of est: 0.021

Durbin-Watson: 0.259

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.37307088 0.03770198 9.895 0.0000

p1 -0.23185846 0.01478196 -15.685 0.0000

p2 0.23773082 0.02815147 8.445 0.0000

p3 -0.02367121 0.01692764 -1.398 0.1682

p4 0.01779884 0.01343222 1.325 0.1912

y 0.10516417 0.01698785 6.191 0.0000

trend -0.00149076 0.00113327 -1.315 0.1944

-----------------------------------

Equation: 3

Dependent variable: s3

-----------------------------------
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Total cases: 51 Valid cases: 51

Total SS: 0.044 Degrees of freedom: ----

R-squared: 0.926 Rbar-squared: 0.926

Residual SS: 0.003 Std error of est: 0.008

Durbin-Watson: 0.648

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.00535612 0.02658260 0.201 0.8411

p1 -0.00831974 0.00834634 -0.997 0.3237

p2 -0.02367121 0.01692764 -1.398 0.1682

p3 0.03282478 0.01975992 1.661 0.1029

p4 -0.00083384 0.00634676 -0.131 0.8960

y 0.00065254 0.00891954 0.073 0.9420

trend 0.00229339 0.00073096 3.138 0.0029

===============================================================================

SYMMETRY AND HOMOGENEITY IMPOSED USING S2,S3,S4

===============================================================================

LINEAR SEEMINGLY UNRELATED REGRESSION Version 1.0.0 6/08/2004 1:12 pm

===============================================================================

Data Set: newdatamt

-------------------------------------------------------------------------------

DIVISOR USING N IN EFFECT

RESTRICTIONS IN EFFECT

ITER. # = 0 LOG OF DETERMINANT OF SIGMA = -27.26517712

ITER. # = 1 LOG OF DETERMINANT OF SIGMA = -27.39866015

ITER. # = 2 LOG OF DETERMINANT OF SIGMA = -27.39948790

ITER. # = 3 LOG OF DETERMINANT OF SIGMA = -27.39949111

ITER. # = 4 LOG OF DETERMINANT OF SIGMA = -27.39949112

ITER. # = 5 LOG OF DETERMINANT OF SIGMA = -27.39949112

-----------------------------------

Equation: 1

Dependent variable: s2

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.110 Degrees of freedom: ----

R-squared: 0.802 Rbar-squared: 0.802

Residual SS: 0.022 Std error of est: 0.021

Durbin-Watson: 0.259

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|
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--------------------------------------------------------------------

const 0.37306890 0.03770206 9.895 0.0000

p1 -0.23185685 0.01478201 -15.685 0.0000

p2 0.23773025 0.02815156 8.445 0.0000

p3 -0.02367155 0.01692765 -1.398 0.1682

p4 0.01779815 0.01343223 1.325 0.1912

y 0.10516289 0.01698791 6.190 0.0000

trend -0.00149070 0.00113328 -1.315 0.1944

-----------------------------------

Equation: 2

Dependent variable: s3

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.044 Degrees of freedom: ----

R-squared: 0.926 Rbar-squared: 0.926

Residual SS: 0.003 Std error of est: 0.008

Durbin-Watson: 0.648

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.00535567 0.02658261 0.201 0.8411

p1 -0.00831953 0.00834633 -0.997 0.3237

p2 -0.02367155 0.01692765 -1.398 0.1682

p3 0.03282497 0.01975992 1.661 0.1029

p4 -0.00083389 0.00634676 -0.131 0.8960

y 0.00065231 0.00891954 0.073 0.9420

trend 0.00229341 0.00073096 3.138 0.0029

-----------------------------------

Equation: 3

Dependent variable: s4

-----------------------------------

Total cases: 51 Valid cases: 51

Total SS: 0.110 Degrees of freedom: ----

R-squared: 0.918 Rbar-squared: 0.918

Residual SS: 0.009 Std error of est: 0.013

Durbin-Watson: 0.328

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

const 0.29805475 0.02261700 13.178 0.0000

p1 -0.05533192 0.00707086 -7.825 0.0000

p2 0.01779815 0.01343223 1.325 0.1912

33



3. TOPICS IN LINEAR REGRESSION MT

p3 -0.00083389 0.00634676 -0.131 0.8960

p4 0.03836766 0.00942412 4.071 0.0002

y 0.02130335 0.00941229 2.263 0.0280

trend -0.00379559 0.00068982 -5.502 0.0000

3.5 Estimating Klein’s Model I Using Three-Stage Least

Squares

This example uses the Klein’s Model I [10] for illustration of two- and three-stage least
squares. The three behavioral equations are:

C = α0 + α1P + α2P−1 + α3(Wp +Wg) + ε1 (1)

I = β0 + β1P + β2P−1 + β3K−1 + ε2 (2)

Wp = γ0 + γ1X + γ2X−1 + γ3A+ ε3 (3)

Equations 1 to 3 are respectively the consumption equation, investment equation, and
demand-for-labour equation; where

C = Consumption

P = Profits

P−1 = Profits lagged one year

Wp = Private wage bill

Wg = Government wage bill

K−1 = Capital stock at the beginning of the year

Y = National income

T = Indirect taxes

X = Y + T −Wg

A = Time trend measured as years from 1931

The model is completed by the following three identities:

Y + T = C + I +G

Y = Wp +Wg + P

K = K−1 + I
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where G is government spending on goods and services.

This above system includes six endogenous variables (C,P ,Wp, I ,Y ,K) and seven
predetermined variables (Wg ,T ,G,A, P−1,K−1,(Y + T −Wg)−1). All three behavioral
equations are overidentified. According to Zellner and Theil [18], the three identities
should be removed from the estimation.

Example

From the data set, some variables such as the lagged variables and the time trend are
not available. Hence, we demonstrate the use of the dataloop to create a new data set.
Inside the dataloop the lag’s are used to create the lagged variables. Iteration of the
estimation process and parameter restriction across equations are available inside the
l3sls procedure. Details of these can be found in the command reference of the next
chapter.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: kleinmt.e

Data set: kleinmt

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;

dataloop kleinmt newdatamt; /* Generate new data set */

make wsum = wp + wg;

make trend = year - 1931;

lag klag = k:1;

lag plag = p:1;

lag xlag = x:1;

keep year c p wp i x wg g t k wsum trend klag plag xlag;

endata;

output file = kleinmt.out reset;

lhs = "c"$|"i"$|"wp"; /* LHS variables for the model */

string rhs = { "const","p","plag","wsum", /* RHS variables for 1st equation */

"const","p","plag","klag", /* 2nd equation */

"const","x","xlag","trend" }; /* 3rd equation */

/* Exogenous variables */

string exo = { "const","wg","t","g","trend","plag","klag","xlag" };

novars = { 4,4,4 }; /* No. of RHS variables in each eqn. */
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lrc.dv = 0; /* Use the normal divisor */

lro = l3sls(lrc,"newdatamt",lhs,rhs,exo,novars,0);

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Here is the output:

===============================================================================

LINEAR THREE-STAGE LEAST SQUARES Version 1.0.0 6/08/2004 2:15 pm

===============================================================================

Data Set: newdatamt

-------------------------------------------------------------------------------

************************** TWO-STAGE RESULTS *********************************

-----------------------------------

Equation: 1

Dependent variable: C

-----------------------------------

Total cases: 22 Valid cases: 21

Total SS: 941.430 Degrees of freedom: 17

R-squared: 0.977 Rbar-squared: 0.973

Residual SS: 21.925 Std error of est: 1.136

Durbin-Watson: 1.485

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

CONST 16.55475577 1.46797870 11.277 0.0000

P 0.01730221 0.13120458 0.132 0.8966

PLAG 0.21623404 0.11922168 1.814 0.0874

WSUM 0.81018270 0.04473506 18.111 0.0000

-----------------------------------

Equation: 2

Dependent variable: I

-----------------------------------

Total cases: 22 Valid cases: 21

Total SS: 252.327 Degrees of freedom: 17

R-squared: 0.885 Rbar-squared: 0.865
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Residual SS: 29.047 Std error of est: 1.307

Durbin-Watson: 2.085

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

CONST 20.27820894 8.38324890 2.419 0.0271

P 0.15022182 0.19253359 0.780 0.4460

PLAG 0.61594358 0.18092585 3.404 0.0034

KLAG -0.15778764 0.04015207 -3.930 0.0011

-----------------------------------

Equation: 3

Dependent variable: WP

-----------------------------------

Total cases: 22 Valid cases: 21

Total SS: 794.910 Degrees of freedom: 17

R-squared: 0.987 Rbar-squared: 0.985

Residual SS: 10.005 Std error of est: 0.767

Durbin-Watson: 1.963

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

CONST 1.50029689 1.27568637 1.176 0.2558

X 0.43885907 0.03960266 11.082 0.0000

XLAG 0.14667382 0.04316395 3.398 0.0034

TREND 0.13039569 0.03238839 4.026 0.0009

************************* THREE-STAGE RESULTS ********************************

ITER. # = 0 LOG OF DETERMINANT OF SIGMA = -0.61186241

ITER. # = 1 LOG OF DETERMINANT OF SIGMA = -0.62839294

-----------------------------------

Equation: 1

Dependent variable: C

-----------------------------------

Total cases: 22 Valid cases: 21

Total SS: 941.430 Degrees of freedom: 17

R-squared: 0.980 Rbar-squared: 0.977

Residual SS: 18.727 Std error of est: 1.050

Durbin-Watson: 1.425

Estimated Standard Prob
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Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

CONST 16.44079006 1.44992488 11.339 0.0000

P 0.12489047 0.12017872 1.039 0.3133

PLAG 0.16314409 0.11163081 1.461 0.1621

WSUM 0.79008094 0.04216562 18.738 0.0000

-----------------------------------

Equation: 2

Dependent variable: I

-----------------------------------

Total cases: 22 Valid cases: 21

Total SS: 252.327 Degrees of freedom: 17

R-squared: 0.826 Rbar-squared: 0.795

Residual SS: 43.954 Std error of est: 1.608

Durbin-Watson: 1.996

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

CONST 28.17784687 7.55085338 3.732 0.0017

P -0.01307918 0.17993761 -0.073 0.9429

PLAG 0.75572396 0.16997567 4.446 0.0004

KLAG -0.19484825 0.03615585 -5.389 0.0000

-----------------------------------

Equation: 3

Dependent variable: WP

-----------------------------------

Total cases: 22 Valid cases: 21

Total SS: 794.910 Degrees of freedom: 17

R-squared: 0.986 Rbar-squared: 0.984

Residual SS: 10.921 Std error of est: 0.801

Durbin-Watson: 2.155

Estimated Standard Prob

Variable Coefficient Error t-ratio >|t|

--------------------------------------------------------------------

CONST 1.79721773 1.24020347 1.449 0.1655

X 0.40049188 0.03535863 11.327 0.0000

XLAG 0.18129101 0.03796536 4.775 0.0002

TREND 0.14967412 0.03104828 4.821 0.0002
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Chapter 4

Linear Regression MT Reference

A summary table listing all of the procedures is displayed below.

Procedure Description Page
l2sls Linear Two-stage Least Squares Estimation 40
l3sls Linear Three-stage Least Squares Estimation 45
lrControlCreate Sets Default Values 51
lreg Ordinary Least Squares Estimation 52
lrerror Error Handling Procedure 61
lrtest Performs Linear Hypothesis Testing 63
lsur Linear Seemingly Unrelated Regression 67
Rmatrix Constructs Restriction Matrix 74
SRmatrix Constructs System Restriction Matrix 76
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Purpose

l2sls (Linear Two-Stage Least Squares) is a single equation technique which employs
the generalized least squares rules for estimating equations in a simultaneous equations
model.

Library

lrmt

Format

lro = l2sls(lrc,dataset ,LHS var ,RHS vars,EXO vars,Restrict);

Input

lrc an instance of an lrControl structure. The following members of lrc are
referenced within the l2sls routine:

lrc.dv scalar, determines which divisor is used to compute σ̂jj .

0 (T −K) is used as divisor, where T is the number of
observations, K is the number of all right-hand side variables
in the equation.

1 T is used as divisor - this provides good asymptotic properties
for the estimator when the sample size is large.

Default = 1.

lrc.header string, specifies the format for the output header. lrc.header
can contain zero or more of the following characters:

t print title (see lrc.title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed

Example:

lrc.header = "tld";

If lrc.header == “”, no header is printed. Default = “tldvf”.

lrc.output determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

Default = 1.

lrc.pcor scalar, if 1, print the correlation matrix of coefficients. This is

the
[
Z
′
jX(X ′X)−1X ′Zj

]−1

matrix scaled to unit diagonals and is

not the correlation matrix of variables. Default = 0.
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lrc.pcov scalar, if 1, print the covariance matrix of coefficients which is

σ̂jj

[
Z
′
jX(X ′X)−1X ′Zj

]−1

, where σ̂jj is the mean squared error.

Default = 0.

lrc.range 2× 1 vector, specifies the range of the data set to be used in
estimation. The first element specifies the beginning observation
while the second element specifies the ending observation. For
example: lrc.range={ 100,200 }. Default is { 0,0 } and uses the
whole data set.

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

lrc.row scalar, specifies how many rows of the data set are read per
iteration of the read loop. If lrc.row = 0, the number of rows to
be read is calculated by the program. Default = 0.

lrc.rowfac scalar, “row factor”. If an LRMT procedure fails due to
insufficient memory while attempting to read a GAUSS data set,
then lrc.rowfac may be set to some value between 0 and 1 to
read a proportion of the original number of rows of the GAUSS
data set. For example, setting

lrc.rowfac = 0.8;

causes GAUSS to read in only 80% of the rows that were
originally calculated. This global has an effect only when lrc.row
= 0. Default = 1.

lrc.title string, message printed at the top of the results. Default = “”.

dataset string, name of GAUSS data set.

LHS var string, name of the endogenous variable in the equation.

RHS vars K × 1 string array, all the right-hand side variables in the equation. If a
constant vector is desired, simply put “CONST” in the RHS vars list.

EXO vars P × 1 string array, all the exogenous variables in the system. Specify
“CONST” in the EXO vars list should a constant vector be desired.

Restrict string or 0, if Restrict equals 0, estimation without restrictions is
performed. Otherwise, the estimator is estimated with the given
restrictions. The syntax of Restrict is as follows:

Restrict = “restriction1, restriction2, · · · , restrictionJ”;

More than one restriction is allowed provided each is separated by a
comma. Each restriction must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side
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(i.e., x1 + x2 = 1). Variables shown in each restriction must be variables in
the right-hand side of the equation. Restrictions in the Restrict argument
must be consistent and not redundant otherwise error messages occur. You
should make sure that only the parameters associated with the variables are
restricted and not the variables in the model themselves.

Example:

restrict = "plag - p = 0";

Output

lro an instance of an lrOut structure, which contains all calculated statistics.
The following members of lro are set by the l2sls routine.

lro.model string, name of the estimation procedure.

lro.nms K × 1 string array, names of the regressors.

lro.b K × 1 vector, regression coefficients.

lro.vc K ×K matrix, variance-covariance matrix of the coefficients.

lro.se K × 1 vector, standard errors of the coefficients.

lro.s2 scalar, variance of the estimate (σ̂2).

lro.cx K ×K matrix, correlation matrix of the coefficients.

lro.rsq scalar, R2.

lro.rbsq scalar, adjusted R2.

lro.dw scalar, Durbin-Watson statistic.

lro.sse scalar, residual sum of squares.

lro.nobs scalar, number of observations.

lro.ixtx P × P matrix, (X ′X)−1 as defined in equation (1).

lro.xtz P ×K matrix, X ′Zj as defined in equation (1).

lro.xty P × 1 vector, X ′Yj as defined in equation (1).

lro.errcode scalar, zero or scalar error code.

If errors are encountered, they are handled with the low order bit of the
trap flag.

trap 0 terminate with error message

trap 1 return scalar error code in lro.errcode

For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(lro.errcode) or viewed
with the lrerror procedure. See the lrerror procedure for more details.
Definitions of the error codes can be found in Section 2.6.2 of this manual.
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Remarks

l2sls is applicable to equations which are overidentified or exactly identified. Note that
l2sls provides identical estimates as those of the Indirect Least Squares (ILS) when
equations are just identified. However, for an overidentified equation, the ILS can not
be used. Instead, the usual alternative is the Two-Stage Least Squares. Good
references can be found in Judge, Hill, Griffiths, Lütkepohl, and Lee [8], Judge,
Griffiths, Hill, Lütkepohl, and Lee [9], Greene [6], and Johnston [7].

The l2sls estimator and its asymptotic variance are as follows:

δ̂j,l2sls =
[
Z
′
jX(X ′X)−1X ′Zj

]−1 [
Z
′
jX(X ′X)−1X ′Yj

]
(1)

AV AR(δ̂j,l2sls) = σ̂jj

[
Z
′
jX(X ′X)−1X ′Zj

]−1

(2)

where

σ̂jj =
(Yj − Zj δ̂j,l2sls)′(Yj − Zj δ̂j,l2sls)

T
(3)

and X is the matrix of all exogenous variables in the system, Yj and Zj are the
endogenous variable and the right-hand side variables respectively in the jth equation,
and T is the total number of observations.

Note:

1. You must be able to specify which variables are endogenous and which are
exogenous.

2. δ̂j,l2sls can be viewed as an instrumental variables estimator with the set of
instruments (X(X ′X)−1X ′Zj).

3. The denominator in calculating the σ̂jj is T and it provides good asymptotic
properties for the estimator. In case of small samples, you may choose T −Kj as
the divisor, where Kj is the number of right-hand side variables in the jth

equation, instead of T . This is accomplished by changing the lrControl structure
member dv to 0.

4. Linear hypothesis testing can be tested with the lrtest procedure. However, the
distribution is unknown and the test statistic can only be viewed as being
asymptotically Chi-Square.

5. Linear a priori restrictions can be imposed on the estimated coefficients.
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6. R2 calculated here is not well defined and could be negative.

Missing data are handled automatically. That is, any observation which has a missing
value for any variable is removed from computation.

Example

The following example is from Judge, Hill, Griffiths, Lütkepohl, and Lee [8, page 656].

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: lrmt11.e

Data set: tmt15_1

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro1, lro2, lro3;

lrc = lrControlCreate;

output file = lrmt11.out reset;

dataset = "tmt15_1";

lrc.dv = 0;

x = "x1"$|"x2"$|"x3"$|"x4"$|"x5";

y = "y1"; /* First equation */

z = "x1"$|"y2"$|"y3";

lro1 = l2sls(lrc,dataset,y,z,x,0);

y = "y2"; /* Second equation */

z = "x1"$|"y1"$|"x2"$|"x3"$|"x4";

lro2 = l2sls(lrc,dataset,y,z,x,0);

y = "y3"; /* Third equation */

z = "x1"$|"y2"$|"x2"$|"x5";

lro3 = l2sls(lrc,dataset,y,z,x,0);

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Source

l2slsmt.src
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Purpose

l3sls (Linear Three-Stage Least Squares) is a procedure for the estimation of the
parameters of a system of simultaneous equations. A synopsis of the estimation
procedure is found in Judge, Hill, Griffiths, Lütkepohl, and Lee [8, Ch. 15], Greene [6,
Ch. 19], and Johnston [7, Ch. 11].

Library

lrmt

Format

lro = l3sls(lrc,dataset ,LHS vars,RHS vars,EXO vars,Novars,Restrict);

Input

lrc an instance of an lrControl structure. The following members of lrc are
referenced within the l3sls routine:

lrc.dv scalar, determines which divisor is used to compute σ̂ij .

0 (MT −K)/M is used as divisor, where M is the number of
equations, T is the number of observations, and K is the
number of all estimated parameters in the model.

1 T is used as divisor. This will provide good asymptotic
properties for the estimator when the sample size is large.

Default = 1.

lrc.header string, specifies the format for the output header. lrc.header
can contain zero or more of the following characters:

t print title (see lrc.title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed

Example:

lrc.header = "tld";

If lrc.header == “”, no header is printed. Default = “tldvf”.

lrc.iter scalar, sets the maximum number of iterations for the iterative
three-stage least squares regression. The iterative process is also
subject to the convergence criterion lrc.tol.

Default = 1.

lrc.output scalar, determines printing of intermediate results.
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0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

Default = 1.

lrc.pcor scalar, if 1, print the correlation matrix of all coefficients in the
system after convergence.

This is the
[
Z ′(Σ̂−1 ⊗X(X ′X)−1X ′)Z

]−1

matrix scaled to unit

diagonals and is not the correlation matrix of variables.
Default = 0.

lrc.pcov scalar, if 1, print the covariance matrix of all coefficients in the
system after convergence, which is[
Z ′(Σ̂−1 ⊗X(X ′X)−1X ′)Z

]−1

. Default = 0.

lrc.range 2× 1 vector, specifies the range of the data set to be used in
estimation. The first element specifies the beginning observation
while the second element specifies the ending observation. For
example: lrc.range={ 100,200 }. Default is { 0,0 } and uses the
whole data set.

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

lrc.result scalar.

1 print only Three-stage results.

2 print both Two-stage and Three-stage results.

Default = 2.

lrc.row scalar, specifies how many rows of the data set are read per
iteration of the read loop. If lrc.row = 0, the number of rows to
be read is calculated by the program. Default = 0.

lrc.rowfac scalar, “row factor”. If an LRMT procedure fails due to
insufficient memory while attempting to read a GAUSS data set,
then lrc.rowfac may be set to some value between 0 and 1 to
read a proportion of the original number of rows of the GAUSS
data set. For example, setting

lrc.rowfac = 0.8;

causes GAUSS to read in only 80% of the rows that were
originally calculated. This global has an effect only when lrc.row
= 0. Default = 1.

lrc.title string, message printed at the top of the results. Default = “”.

lrc.tol specifies a convergence criterion to stop the iterative process. The
iterative process continues until either the iteration limit specified
in lrc.iter is reached or the percentage change in the log of
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determinant of Σ̂ is less than the convergence criterion.
Mathematically, the convergence criterion is written as follows:

ABS
[
(log Σ̂current − log Σ̂previous)/ log Σ̂previous

]
× 100 ≤ lrc.tol

Default = 0.0001.

dataset string, name of GAUSS data set.

LHS vars M × 1 string array, all of the endogenous variables in the model.

RHS vars K × 1 string array, all of the right-hand side variable names in the
systems. The order of the variable names must correspond to the order of
the equations when they are stacked. For example:

X_vars = { const, x1, x2,..., xk, /* equation 1 */

const, y1, x1,..., xn, /* equation 2 */

:

:

const, y6, x2,..., xk }; /* equation M */

If a constant vector is desired for one particular equation, simply put
“CONST” in the RHS vars list.

EXO vars P × 1 string array, all of the exogenous variables in the system. Specify
“CONST” in the EXO vars list should a constant vector be desired.

Novars numeric vector to determine the number of right hand side variables in
each equation. For example:

Novars = { 3, 4, 5 };

From the above, there are 3 right-hand side variables in the 1st equation, 4
in the 2nd equation, and 5 in the last equation.

Restrict string or 0, if restrict equals 0, estimation without restrictions is
performed. Otherwise, the estimator is estimated with the given
restrictions. The syntax for Restrict is as follows:

Restrict = “restriction1, restriction2, · · · , restrictionJ”;

More than one restriction is allowed provided each is separated by a
comma. Each restriction must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side
(i.e., x1 : 1 + x1 : 2 = 1). Variables shown in each restriction must be
variables in the regression model. Note that the numeric value following
the colon (:) signifies which equation the variable comes from (i.e., 3X4:10
indicates the X4 variable comes from the 10th equation). Restrictions in
the Restrict argument must be consistent and not redundant otherwise
error messages occur. Note that only the parameters associated with the
variables are restricted and not the variables in the model. For example:
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restrict = "const:1 + const:2 + const:3 = 1,

trend:1 = 0,trend:2 = 0,trend:3 = 0";

Output

lro an instance of an lrOut structure, which contains all calculated statistics.
The following members of lro are set by the l3sls routine.

lro.model string, name of the estimation procedure.

lro.nms K × 1 string array, names of the regressors.

lro.b K × 1 vector, regression coefficients.

lro.vc K ×K matrix, variance-covariance matrix of the coefficients.

lro.se K × 1 vector, standard errors of the coefficients.

lro.s2 M × 1 vector, variance of the estimate (σ̂2).

lro.cx K ×K matrix, correlation matrix of the coefficients.

lro.rsq M × 1 vector, R2.

lro.rbsq M × 1 vector, adjusted R2.

lro.dw M × 1 vector, Durbin-Watson statistic.

lro.sse M × 1 vector, residual sum of squares.

lro.nobs scalar, number of observations.

lro.ixtx P × P matrix, (X ′X)−1 of the
[
Z ′(Σ̂−1 ⊗X(X ′X)−1X ′)Z

]−1

.

lro.sigma M ×M matrix, residual covariance matrix Σ̂.

lro.novars M × 1 vector, number of RHS variables in each equation.

lro.errcode scalar, zero or scalar error code.

If errors are encountered, they are handled with the low order bit of the
trap flag.

trap 0 terminate with error message

trap 1 return scalar error code in lro.errcode

For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(lro.errcode) or viewed
with the lrerror procedure. See the lrerror procedure for more details.
Definitions of the error codes can be found in Section 2.6.2 of this manual.
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Remarks

The l3sls estimator and its asymptotic variance are as follows:

δ̂j,l3sls =
[
Z ′(Σ̂−1 ⊗X(X ′X)−1X ′)Z

]−1 [
Z ′(Σ̂−1 ⊗X(X ′X)−1X ′)Y

]
(1)

AV AR(δ̂j,l3sls) =
[
Z ′(Σ̂−1 ⊗X(X ′X)−1X ′)Z

]−1

(2)

where X , Y and Z are the matrix of all exogenous variables, vector of endogenous
variables, and matrix of all right-hand side variables, respectively, in the systems. Σ̂ is
the covariance matrix of the residuals and its elements σ̂ij are computed from the
Two-stage least squares estimator. That is:

σ̂ij =
(Yi − Ziδ̂i,l2sls)′(Yj − Zj δ̂j,l2sls)

T
(3)

where T is the total number of observations.

Note:

1. Before using l3sls, you should remove all unidentified equations and all
identities, since the latter have zero disturbances which would render the Σ̂
matrix singular [7, page 490].

2. Although l3sls can perform Iterated Three-Stage Least Squares estimation, this
does not guarantee a maximum likelihood estimator nor that the asymptotic
efficiency will improve [6, page 633].

3. The default for the denominator in calculating the σ̂ij is T . However, by
changing lrc.lrdv to 0, you force the substitution of (MT −K)/M for T as the
divisor, where M is the number of equations, T is the number of observations,
and K is the number of all estimated parameters in the model.

4. Linear hypothesis testing can be done with the lrtest procedure.

5. Restrictions on coefficients of different structural equations can be imposed.
However, only linear restrictions are allowed.

6. R2 calculated for each equation is not well defined and could be negative.

Missing data are handled automatically. That is, any observation which has a missing
value for any variable is removed from computation.

Example

This example is from Judge, Hill, Griffiths, Lütkepohl, and Lee [8, page 656].
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/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: lrmt12.e

Data set: tmt15_1

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;

output file = lrmt12.out reset;

dataset = "tmt15_1";

x = "const"$|"x2"$|"x3"$|"x4"$|"x5";

y = "y1"$|"y2"$|"y3";

string z = { "const","y2","y3","const","y1","x2",

"x3","x4","const","y2","x2","x5" };

novars = { 3,5,4 };

lrc.result = 1; /* Print only the three-stage results */

lrc.dv = 1; /* Using N as divisor */

lro = l3sls(lrc,dataset,y,z,x,novars,0);

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Source

l3slsmt.src
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Purpose

Sets the members of an lrControl structure to default values.

Library

lrmt

Format

lrc = lrControlCreate;

Output

lrc an instance of an lrControl structure.

Remarks

It is generally good practice to put this instruction at the top of all command files that
invoke procedures in the LRMT module. This prevents the members of lrc from being
inappropriately defined when a command file is run several times or when a command
file is run after another command file that calls LRMT procedures.

Source

lrsetmt.src
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Purpose

lreg is a general procedure for linear regression. It applies the method of Ordinary
Least Squares to perform multiple regression. References may be found in any standard
textbook of statistics or econometrics.

Library

lrmt

Format

lro = lreg(lrc,dataset ,depvar ,indvars,Restrict);

Input
lrc an instance of an lrControl structure. The following members of lrc are

referenced within the lreg routine:

lrc.header string, specifies the format for the output header. lrc.header
can contain zero or more of the following characters:

t print title (see lrc.title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed

Example:

lrc.header = "tld";

If lrc.header == “”, no header is printed. Default = “tldvf”.

lrc.lregcol scalar, if 1, perform collinearity diagnostics. Statistics
calculated are described as above. Default = 0.

lrc.lreghc scalar, if 1, the heteroskedastic-consistent covariance matrix
estimator is calculated. Default = 0.

lrc.lregres string, a file name to request influence diagnostics. Statistics
generated from the diagnostics are saved under this file name.
Besides the diagnostic statistics, the predicted values, dependent
variable and independent variables are also saved. They are saved
in the following order:

Col. # Name Description
1 RES Residuals = (observed-predicted)
2 HAT Hat Matrix Values
3 SRES Standardized Residuals
4 RSTUDENT Studentized Residuals
5 COOK Cook Influence Statistics
6 YHAT Predicted Values
7 depname Dependent Variable

8 + indname Independent Variables
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Default = “”.

lrc.output determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

Default = 1.

lrc.pcor scalar, if 1, print the correlation matrix of coefficients. This is
the (X ′X)−1 matrix scaled to unit diagonals and is not the
correlation matrix of variables. Default = 0.

lrc.pcov scalar, if 1, print the covariance matrix of coefficients, which is
σ̂2(X ′X)−1, where σ̂2 is the mean squared error. Default = 0.

lrc.range 2× 1 vector, specifies the range of the data set to be used in
estimation. The first element specifies the beginning observation
while the second element specifies the ending observation. For
example: lrc.range={ 100,200 }. Default is { 0,0 } and uses the
whole data set.

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

lrc.row scalar, specifies how many rows of the data set are read per
iteration of the read loop. If lrc.row = 0, the number of rows to
be read is calculated by the program. Default = 0.

lrc.rowfac scalar, “row factor”. If an LRMT procedure fails due to
insufficient memory while attempting to read a GAUSS data set,
then lrc.rowfac may be set to some value between 0 and 1 to
read a proportion of the original number of rows of the GAUSS
data set. For example, setting

lrc.rowfac = 0.8;

causes GAUSS to read in only 80% of the rows that were
originally calculated. This global has an effect only when lrc.row
= 0. Default = 1.

lrc.title string, message printed at the top of the results. Default = “”.

lrc.weight string, name of the weight variable. By default, unweighted
least squares is calculated.

lrc.weightindex scalar, column number of weight variable. By default,
unweighted least squares is calculated. lrc.weightindex overrides
lrc.weight.

dataset string, name of GAUSS data set.
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depvar string, name of the dependent variable.

indvars K × 1 string array, all of the independent variable names. If a constant
vector is desired, simply put “CONST” in the indvars list.

Restrict string or 0, if Restrict equals 0, estimation without restrictions is
performed. Otherwise, the Restricted Least Squares is done with the given
restrictions. The syntax of Restrict is as follows:

Restrict = “restriction1, restriction2, · · · , restrictionJ”;

More than one restriction is allowed provided each is separated by a
comma. Each restriction must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side (e.g.,
restrict = “x1 + x2 = 1, x3− x4 = 0”). Variables shown in each restriction
must be variables on the right-hand side of the equation. Restrictions in
the Restrict argument must be consistent and not redundant otherwise
error messages occur. Note that only the parameters associated with the
variables are restricted and not the variables. For example:

restrict = "x11 + x22 + x33 = 1,

x12 - x21 = 0, x23 - x32 = 0";

Output

lro an instance of an lrOut structure, which contains all calculated statistics.
The following members of lro are set by the lreg routine.

lro.model string, name of the estimation procedure.

lro.nms K × 1 string array, names of the regressors.

lro.b K × 1 vector, regression coefficients.

lro.hc K ×K matrix, heteroskedastic-consistent covariance matrix of b,
if requested in lrc.lreghc.

lro.vc K ×K matrix, variance-covariance matrix of the coefficients.

lro.se K × 1 vector, standard errors of the coefficients.

lro.s2 scalar, variance of the estimate (σ̂2).

lro.cx K ×K matrix, correlation matrix of the coefficients.

lro.rsq scalar, R2.

lro.rbsq scalar, adjusted R2.

lro.dw scalar, Durbin-Watson statistic.

lro.sse scalar, residual sum of squares.

lro.sst scalar, total sum of squares.

lro.nobs scalar, number of observations.
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lro.xtx K ×K matrix, moment matrix of X , (i.e., X ′X).

lro.xty K × 1 vector, the X ′Y matrix.

lro.errcode scalar, zero or scalar error code.

If errors are encountered, they are handled with the low order bit of the
trap flag.

trap 0 terminate with error message

trap 1 return scalar error code in lro.errcode

For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(lro.errcode) or viewed
with the lrerror procedure. See the lrerror procedure for more details.
Definitions of the error codes can be found in Section 2.6.2 of this manual.

Remarks

Some features of lreg:

• estimates parameters subject to linear constraints.

• performs Weighted Least Squares.

• calculates Heteroskedastic-consistent Standard Errors.

• performs both influence and collinearity diagnostics.

The Ordinary Least Squares estimator and its variances are as follows:

bols = (X ′X)−1X ′Y

V ar(bols) = σ̂2(X ′X)−1

where σ̂2 = (Y −Xb)′(Y −Xb)/(T −K) and Y is the dependent variable, X is a list of
independent variables. T and K are respectively the total number of observations and
total number of estimated coefficients.

For estimated parameters subject to linear constraints, the restricted estimator and its
variances are as follows:

b∗ = b− (X ′X)−1R′
[
R(X ′X)−1R′

]−1
(Rb− z)

V ar(b∗) = σ̂2
[
(X ′X)−1 − (X ′X)−1R′

[
R(X ′X)−1R′

]−1
R(X ′X)−1

]

where R and z are the restriction matrix and vector respectively. Both σ̂2 and X are
already defined as above.
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Weighted Least Squares

When the error variances are not equal, ordinary least squares estimations are unbiased
and consistent but not efficient, (i.e., they are not the minimum variance estimates).
Let the matrix W be a diagonal matrix containing the weights wi and the weights be
inversely proportional to the error variances (i.e., V ar(ei) = σ2/wi).

The Weighted Least Squares estimators are:

bwls = (X ′WX)−1X ′WY

Note that if W = I , as it would be for unweighted least squares, bwls = bols. Weighted
least squares is a special case of the generalized least squares. In calculating the
weighted least squares estimator, the weights are chosen to be greater than zero and
normalized to sum to the number of observations. To perform the weighted least
squares estimation, you must assign the name of a weight variable to the lrControl
structure member weight or the column number of a weight variable to the lrControl
structure member weightindex.

Heteroskedastic-consistent Standard Errors

White [16] has demonstrated that in the absence of precise knowledge of the form of
heteroskedasticity, it is still possible to obtain a consistent estimator of the covariance
matrix of b. This heteroskedasticity-consistent covariance matrix estimator is defined as:

HC V ar(b) = (X ′X)−1X ′Λ̂X(X ′X)−1

where Λ̂ is a diagonal matrix holding all the squares of the errors (i.e.,
diag(ê2

1, ê
2
2, ....., ê

2
T )). This estimator is extremely useful since the precise nature of the

heteroskedasticity is not known most of the time. In order to calculate the
HC V ar(b), you must set lrc.lreghc = 1.

Influence Diagnostics

Influence diagnostics provide the following statistics: hat or leverage values,
standardized and studentized residuals, and Cook’s distance measure. Let Xi and Yi be
the ith observation of the X matrix and Y vector respectively, ei the ith residual (i.e.,
ei = Yi −Xib), σ̂

2
−i the variance estimate of σ2 without the ith observation, and b−i the

least squares estimates after removing the ith observation.
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Hat or leverage values (hi) are defined as follows:

hi = Xi(X
′X)−1X ′i

hi is a measure of how far the ith observation is from the center of the data in terms of
the X values. Thus, a large leverage value hi indicates that the ith observation is
distant from the center of the X observations.

Standardized residuals: It can be shown that

V ar(ei) = σ2(1− hi)

An unbiased estimator of this variance is:

V ar(ei) = σ̂2(1− hi)

The ratio of ei to
√
V ar(ei) is called the standardized residual (ri):

ri =
ei

σ̂
√

1− hi

Note that the residuals ei have substantially different sampling variations if the
leverage values hi differ significantly. Hence, the advantage of ri is that it has constant
variance when the model is correct. Weisberg [15] refers to this as the internally
studentized residual.

Studentized residuals (r−i) are defined as:

r−i = ri

√
σ̂2

σ̂2
−i

The advantage of the studentized residual can be seen when the ith observation is far
from the center of the data. If the ith observation is removed, σ̂2

−i is smaller, which
makes the studentized residual larger relative to the standardized residual.

Cook’s distance measure (Di) measures the change in the estimated coefficients when
the ith observation is removed from the regression. The larger the value of Di, the
greater is the change in the estimates.

Di =
(b−i − b)′(X ′X)(b−i − b)

(K − 1)σ̂2

You must specify an output file name in the lrControl structure member lregres when
requesting the influence diagnostics (e.g., lrc.lregres=“filename”).
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Collinearity Diagnostics

There are a variety of ways in which to detect the presence of collinearity or
multicollinearity. The following statistics or measures are provided:

• determinant of the correlation matrix of the regressors

• Theil’s multicollinearity effect

• variance inflation factor and its tolerance

• eigenvalue of X ′X

• condition number and proportion of variance of the estimate

See Judge, Hill, Griffiths, Lütkepohl, and Lee [8] for more details.

Determinant of the correlation matrix of the regressors: let | Rxx | be the determinant
of the correlation matrix of the independent variables. The value of the determinant
declines with increasing collinearity. Its value ranges from 0 to 1. If the independent
variables are orthogonal, the value is 1, whereas with perfect collinearity among the
regressors, the value is zero.

Theil’s multicollinearity effect (m): this measure has been suggested by Theil [14]. It is
defined as:

m =
∑

h

(R2 −R2
h)

where R2 is the coefficient of determination when all of the variables are included in the
regression and R2

h is the coefficient of determination when the Xh is excluded from the
independent variable list. R2 −R2

h is the incremental contribution due to Xh. If all of
the regressors are orthogonal, m is the same as R2. Deviations from R2 indicate
multicollinearity.

Variance Inflation Factor (V IF ) and Tolerances (TOL): V IF measures the degree
to which the variances of the estimated regression coefficients are inflated over linearly
independent variables. The TOL is the reciprocal of the V IF (i.e., TOL = 1/V IF )
and is compared with a tolerance limit (frequently used are 0.01, 0.001, or 0.0001),
below which the variable is not entered into the model.

The V IF for the jth variable is defined as:

V IFj =
1

(1−R2
j )
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where R2
j is the coefficient of multiple determination when Xj is regressed on all of the

remaining independent variables. For example, if there were four independent variables,
R2

3 would be the coefficient of determination from regressing X3 on X1, X2, and X4.

The largest V IFj among all X variables is often used as an indicator of the severity of
multicollinearity. A maximum V IFj in excess of 10 indicates multicollinearity unduly
influencing the least squares estimates. Note that if all variables are orthogonal to each
other, both V IF and TOL are 1.

Eigenvalues and Condition Number: The eigenvalues are computed from the X ′X
matrix. If one or more columns of X are linearly dependent, one or more of the
eigenvalues is zero. When one or more columns are nearly linearly dependent, the ratio
of the largest to the smallest eigenvalue is very large. The square root of this ratio is
called the condition number (CN):

CN =

√
λmax
λmin

where λmax and λmin denote the maximum and minimum eigenvalues of X ′X ,
respectively. Since the eigenvalues are dependent on the scaling of the data, it is better
to normalize the data (i.e., S(X ′X)S, where S is a diagonal matrix with 1/

√
x′ixi on

the diagonals). If the regressors are orthogonal, CN is 1. Belsley, Kuh, and Welsch [1]
suggest that a value of CN in excess of 30 indicates serious problems of collinearity.

For each variable, lreg prints both eigenvalues and a condition number along with the
variance proportion of the estimates. Coefficients with proportions in excess of 0.5 may
be regarded as seriously affected by the collinearity in the X matrix.

Note: For collinearity diagnostics, you must specify lrc.lregcol=1.

Missing data are handled automatically. That is, any observation which has a missing
value for any variable is removed from computation.

Example

This example is from Judge, Hill, Griffiths, Lütkepohl, and Lee [8, page 871].

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: lrmt13.e

Data set: tmt21_1

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf
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struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;

output file = lrmt13.out reset;

dataset = "tmt21_1";

y = "c";

x = "const"$|"w"$|"p"$|"a";

lrc.lregcol=1; /* Request collinearity diagnostics */

lro = lreg(lrc,dataset,y,x,0);

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Source

lregmt.src
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Purpose

Provides interpretation of the error code returned from the procedures. You may add
comments in addition to the printed error message. In order to use this procedure, you
must set the trap flag by putting trap 1 in the command file.

Library

lrmt

Format

lrerror(comment ,errcode);

Input

comment string, user defined comment.

errcode a scalar error code.

Example

In this example, a user traps the errors himself with the use of trap, scalerr, and lrerror.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: testerrmt2.e

Data set: tmt15_1

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro1,lro2,lro3;

lrc = lrControlCreate;

output file = testerrmt2.out reset;

trap 1; /* Initialize the trap */

lrc.dv = 0;

x = "xx1"$|"x2"$|"x3"$|"x4"$|"x5"; /* User mistyped the x1 */

y = "y1"; /* First equation */

z = "x1"$|"y2"$|"y3";

lro1 = l2sls(lrc,"tmt15_1",y,z,x,0);

if scalerr(lro1.errcode);
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lrerror("Error appears in the 1st equation",lro1.errcode);

pause(3);

endif;

y = "y2"; /* Second equation */

z = "x1"$|"y1"$|"x2"$|"x3"$|"x4";

lro2 = l2sls(lrc,"tmt15_1",y,z,x,0);

if scalerr(lro2.errcode);

lrerror("Error appears in the 2nd equation",lro2.errcode);

pause(3);

endif;

y = "y3"; /* Third equation */

z = "x1"$|"y2"$|"x2"$|"x5";

lro3 = l2sls(lrc,"tmt15_1",y,z,x,0);

if scalerr(lro3.errcode);

lrerror("Error appears in the 3rd equation",lro3.errcode);

pause(3);

endif;

trap 0 ; /* Reset the trap */

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Source

lrutilmt.src
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Purpose

Performs linear hypothesis testing for all estimation modules in LRMT. For lreg, the
hypothesis test calculates the F statistic, whereas for l2sls, l3sls, and lsur, the Wald
statistic is calculated. References can be found in Judge, Hill, Griffiths, Lütkepohl, and
Lee [8], Judge, Griffiths, Hill, Lütkepohl, and Lee [9], Greene [6], and Johnston [7].

Library

lrmt

Format

stat = lrtest(lrc,lro,test);

Input

lrc an instance of an lrControl structure. The following members of lrc are
referenced within the lrtest routine:

lrc.lreghc scalar, if 1, the heteroskedastic-consistent covariance matrix
estimator is used. Default = 0.

lrc.output scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

Default = 1.

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

lro an instance of an lrOut structure, the results generated from the
corresponding regression procedure.

test string that contains the set of linear restrictions to perform the hypothesis
testing. test has the following form:

test = “test1, test2, · · · , testJ”;

More than one test equation is allowed provided each is separated by a
comma. Each test equation must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side.
Variables shown in each equation must be variables in the regression
model. Equations in the test argument must be consistent and not
redundant, otherwise error messages are issued. For a system of
simultaneous equations, every variable defined in each test equation must
have a colon (:) and a numeric value following the variable. The numeric
value indicates which equation the variable comes from (i.e., 3X4:10
indicates that the X4 variable comes from the 10th equation). Note that
only the parameters associated with the variables are tested and not the
variables in the model. For example:
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/* for models such as lreg and l2sls */

test = "x11+x22+x33=1,x12-x21=0,x23-x32=0";

/* for models such as l3sls and lsur */

test = "const:1 + const:2 + const:3 = 1,

trend:1 = 0,

trend:2 = 0,

trend:3 = 0";

Output

stat scalar, test statistic for the corresponding regression.

If errors are encountered, they are handled with the low order bit of the
trap flag.

trap 0 terminate with error message

trap 1 return scalar error code in stat

For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(stat) or viewed with the
lrerror procedure. See the lrerror procedure for more details. Definitions of
the error codes can be found in Section 2.6.2 of this manual.

Remarks

For lreg, the F statistic is defined as follows:

F(J,T−K) =
(Rβ̂ − z)′

[
R(X ′X)−1R′

]−1
(Rβ̂ − z)

Jσ̂2

where J is the set of linear restrictions, T and K are the total number of observations
and coefficients, respectively. R and z are the restriction matrix and vector
respectively. X is the data matrix and σ̂2 is the estimated error variance.

For l2sls, l3sls, and lsur, the Wald statistic is defined as:

χ2
(J) = (Rβ̂ − z′)(RĈR′)−1(Rβ̂ − z)

where J is the set of linear restrictions, R and z are the restriction matrix and vector
respectively. β̂ is the corresponding estimated coefficients and Ĉ is the covariance
matrix of β̂.
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Example

This example is from Judge, Hill, Griffiths, Lütkepohl, and Lee [8, page 460]. Data is
already logged here.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: lrmt14.e

Data set: tmt11_3

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro;

lrc = lrControlCreate;

output file = lr14.out reset;

dataset = "tmt11_3";

lhs = "q1"$|"q2"$|"q3";

string rhs = { "const","p1","y",

"const","p2","y",

"const","p3","y" };

novars = { 3,3,3 }; /* No. of RHS variables in each eqn. */

test = "p1:1-p2:2=0,

p1:1-p3:3=0";

lrc.dv=0;

lrc.output = 0; /* Output of the call to lsur won’t be printed */

/* lsur estimation without restriction imposed */

lro = lsur(lrc,dataset,lhs,rhs,novars,0);

lrc.output = 1; /* Print the result of lrtest */

/* Linear hypothesis testing by using lrtest */

call lrtest(lrc,lro,test);

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Output for the example:
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----- LSUR: Results for Linear Hypothesis Testing --------------

Wald Chi-SQ(2) statistic = 1.138 Prob. = 0.566

-------------------------------------------------------------------

Source

lrtestmt.src
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Purpose

lsur (Linear Seemingly Unrelated Regression) is a procedure for estimating a system of
equations. It employs the technique of joint-generalized least squares, which uses the
covariance matrix of residuals. Linear restrictions can be imposed on the coefficients
within or across equations. Hypothesis testing for these linear restrictions can be tested
with the lrtest procedure.

Library

lrmt

Format

lro = lsur(lrc,dataset ,LHS vars,RHS vars,Novars,Restrict);

Input

lrc an instance of an lrControl structure. The following members of lrc are
referenced within the lsur routine:

lrc.dv scalar, determines which divisor is used to compute the
covariance matrix of residuals.

0 T − (K/M) is used as divisor, where T is the number of
observations, K is the number of all right hand side variables
in the system, and M is the total number of equations. Hence,
(K/M) is the average number of coefficients per equation.

1 T is used as divisor. Users are encouraged to use this, since it
provides good asymptotic properties for the estimator.

Default = 1.

lrc.header string, specifies the format for the output header. lrc.header
can contain zero or more of the following characters:

t print title (see lrc.title)
l bracket title with lines
d print date and time
v print procedure name and version number
f print file name being analyzed

Example:

lrc.header = "tld";

If lrc.header == “”, no header is printed. Default = “tldvf”.

lrc.iter scalar, sets the maximum number of iterations for the iterative
seemingly unrelated regression. Default = 1.

lrc.output scalar, determines printing of intermediate results.
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0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

Default = 1.

lrc.pcor scalar, if 1, print the correlation matrix of all coefficients in the

system after convergence. This is the
[
X ′
(

Σ̂−1 ⊗ I
)
X
]−1

matrix scaled to unit diagonals and is not the correlation matrix
of variables. Default = 0.

lrc.pcov scalar, if 1, print the covariance matrix of all coefficients in the

system after convergence which is
[
X ′
(

Σ̂−1 ⊗ I
)
X
]−1

.

Default = 0.

lrc.range 2× 1 vector, specifies the range of the data set to be used in
estimation. The first element specifies the beginning observation
while the second element specifies the ending observation. For
example: lrc.range={ 100,200 }. Default is { 0,0 } and uses the
whole data set.

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

lrc.row scalar, specifies how many rows of the data set are read per
iteration of the read loop. If lrc.row = 0, the number of rows to
be read is calculated by the program. Default = 0.

lrc.rowfac scalar, “row factor”. If an LRMT procedure fails due to
insufficient memory while attempting to read a GAUSS data set,
then lrc.rowfac may be set to some value between 0 and 1 to
read a proportion of the original number of rows of the GAUSS
data set. For example, setting

lrc.rowfac = 0.8;

causes GAUSS to read in only 80% of the rows that were
originally calculated. This global has an effect only when lrc.row
= 0. Default = 1.

lrc.title string, message printed at the top of the results. Default = “”.

lrc.tol scalar, specifies a convergence criterion to stop the iterative
process. The iterative process continues until either the iteration
limit specified in lrc.iter is reached or the percentage change in
the log of determinant of Σ̂ is less than the convergence criterion.
Mathematically, the convergence criterion is written as follows:

ABS
[
(log Σ̂current − log Σ̂previous)/ log Σ̂previous

]
× 100 ≤ lrc.tol

Default = 0.0001.

dataset string, name of GAUSS data set.
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LHS vars M×1 string array, all of the dependent variable names in the systems. For
example:

lhs_vars = { y1, y2, y3,...., yM };

where y1 is the dependent variable for the 1st equation, y2 for the 2nd

equation, and so on.

RHS vars K×1 string array, all of the independent variable names in the systems.
The order of the variable names must correspond to the order of the
equations when they are stacked. For example:

rhs_vars = { const, x11, x12,..., x1k, /* equation 1 */

const, x21, x22,..., x2k, /* equation 2 */

:

:

const, xM1, xM2,..., xMk }; /* equation M */

If a constant vector is desired for a particular equation, simply put
“CONST” in the RHS vars list.

Novars M×1 numeric vector, to determine the number of right hand side variables
in each equation. For example:

novars = { 3, 4, 5 };

From the above, there are 3 right hand side variables in the 1st equation, 4
in the 2nd equation, and 5 in the 3rd equation.

Restrict string or 0, if restrict equals 0, estimation without restrictions is
performed. Otherwise, the estimator is estimated with the given
restrictions. The syntax for Restrict is as follows:

Restrict = “restriction1, restriction2, · · · , restrictionJ”;

More than one restriction is allowed provided each is separated by a
comma. Each restriction must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side
(e.g., x1 : 1 + x1 : 2 = 1). Variables shown in each restriction must be
variables in the regression model. Note that the numeric value following
the colon (:) signifies which equation the variable comes from (i.e., 3X4:10
indicates the X4 variable comes from the 10th equation). Restrictions in
the Restrict argument must be consistent and not redundant otherwise
error messages are returned. Note that only the parameters associated with
the variables are restricted and not the variables in the model.

For example, suppose one wants to estimate the following 2 equations:

Sit = αi +

2∑

j=1

αij lnPjt + αiY lnYt + γitrend + εit i = 1, 2
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and would like to impose three restrictions on it. For example, to impose
the restrictions (α1 + α2 = 1) and (γi = 0, ∀i) on the model, we can write
the following code:

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

lrc = lrControlCreate;

dataset = "temp";

lhs = "s1"$|"s2";

string rhs = { "const","lp1","lp2","ly","trend", /* equation 1 */

"const","lp1","lp2","ly","trend" }; /* equation 2 */

novars = { 5,5 };

restrict = "const:1 + const:2 = 1,

trend:1=0,

trend:2=0";

call lsur(lrc,dataset,lhs,rhs,novars,restrict);

Output

lro an instance of an lrOut structure, which contains all calculated statistics.
The following members of lro are set by the lsur routine.

lro.model string, name of the estimation procedure.

lro.nms K × 1 string array, names of the regressors.

lro.b K × 1 vector, regression coefficients.

lro.vc K ×K matrix, variance-covariance matrix of the coefficients.

lro.se K × 1 vector, standard errors of the coefficients.

lro.s2 M × 1 vector, variance of the estimate (σ̂2).

lro.cx K ×K matrix, correlation matrix of the coefficients.

lro.rsq M × 1 vector, R2.

lro.rbsq M × 1 vector, adjusted R2.

lro.dw M × 1 vector, Durbin-Watson statistic.

lro.sse M × 1 vector, residual sum of squares.

lro.nobs scalar, number of observations.

lro.sigma M ×M matrix, residual covariance matrix Σ̂.

lro.novars M × 1 vector, number of RHS variables in each equation.

lro.errcode scalar, zero or scalar error code.

If errors are encountered, they are handled with the low order bit of the
trap flag.
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trap 0 terminate with error message

trap 1 return scalar error code in lro.errcode

For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(lro.errcode) or viewed
with the lrerror procedure. See the lrerror procedure for more details.
Definitions of the error codes can be found in Section 2.6.2 of this manual.

Remarks

A powerful feature in lsur is that it can perform Iterative Seemingly Unrelated
Regression. The iterative process terminates when it meets the convergence criterion.
Good references can be found in Judge, Hill, Griffiths, Lütkepohl, and Lee [8, Ch. 11],
Judge, Griffiths, Hill, Lütkepohl, and Lee [9, Ch. 12], Greene [6, Ch. 17], and Johnston
[7, Ch. 8].

The lsur estimator and variance are as follows:

ˆ̂
βsur =

[
X ′
(

Σ̂−1 ⊗ I
)
X
]−1 [

X ′
(

Σ̂−1 ⊗ I
)
Y
]

V ar(
ˆ̂
βsur) =

[
X ′
(

Σ̂−1 ⊗ I
)
X
]−1

where X and Y are stacked by equations. Σ̂ is the estimated covariance matrix of
residuals from each equation and has elements given by

σ̂ij =
êiêj
T

=

∑T
t=1 êitêjt
T

i, j = 1, 2, ....,M

where M and T stand for the number of equations and number of observations
respectively.

For restrictions imposed on the coefficients, the restricted estimator and variance are as
follows:

ˆ̂
β
∗
sur =

ˆ̂
βsur − ĈR′

(
RĈR′

)−1 (
R

ˆ̂
βsur − r

)

V ar(
ˆ̂
β
∗
sur) = Ĉ − ĈR′

(
RĈR′

)−1

RĈ

where R and r are the restriction matrix and vector respectively. Ĉ is the covariance

matrix of
ˆ̂
βsur and has the form

[
X ′
(

Σ̂−1 ⊗ I
)
X
]−1

.
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Missing data are handled automatically. That is, any observation which has a missing
value for any variable is removed from computation. In this case R2 calculated for each
equation is not well defined and could be negative.

Example

This example is from Judge, Hill, Griffiths, Lütkepohl, and Lee [8, page 460]. Data is
already logged here.

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Program file: lrmt15.e

Data set: tmt11_3

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

struct lrOut lro1,lro2;

lrc = lrControlCreate;

output file = lrmt15.out reset;

dataset = "tmt11_3";

lhs = "q1"$|"q2"$|"q3";

string rhs = { "const","p1","y",

"const","p2","y",

"const","p3","y" };

novars = { 3,3,3 }; /* Number of RHS variables in each eqn. */

restrict = "p1:1-p2:2=0,

p1:1-p3:3=0";

lrc.dv = 0; /* Using normal divisor */

/* lsur estimation without restriction imposed */

lro1 = lsur(lrc,dataset,lhs,rhs,novars,0);

/* lsur estimation with restriction imposed */

lro2 = lsur(lrc,dataset,lhs,rhs,novars,restrict);

format /rd 8,4;

print;

print "-----------------------------------------------------";

print "The coeff. with restrictions imposed are as follows: ";

print "-----------------------------------------------------";

fmt = { "%-10.8s", "%14.8f" };
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answer = satostrC(rhs,fmt[1]) $~ ftostrC(lro2.b,fmt[2]);

answer = strcombine(answer,"",0);

print answer;

output off;

/*+++++ end of program file +++++++++++++++++++++++++++++++++++*/

Source

lsurmt.src
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Purpose

Constructs the restriction matrix and the constant vector for single equation models.
Both the restriction matrix and the constant vector can be used for linear hypothesis
testing and restricted estimation.

Library

lrmt

Format

{ R,z } = Rmatrix(lrc,Restrict ,Varnames);

Input

lrc an instance of an lrControl structure. The following member of lrc is
referenced within the Rmatrix routine:

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

Restrict string, the restriction equations. The syntax of Restrict is as follows:

Restrict = “restriction1, restriction2, · · · , restrictionJ”;

More than one restriction is allowed provided each is separated by a
comma. Each restriction must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side
(i.e., x1 + x2 = 1). Variables shown in each restriction must be variables in
the right-hand side of the equation. Restrictions in the Restrict argument
must be consistent and not redundant otherwise error messages occur.
Note that the corresponding variable names are used to represent the
regression parameters.

Varnames N × 1 string array, the variable names of the regression parameters.

Output

R matrix, the restriction matrix. If errors are encountered, they are handled
with the low order bit of the trap flag.

trap 0 terminate with error message

trap 1 return scalar error code in R
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For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(R) or viewed with the
lrerror procedure. See the lrerror procedure for more details. Definitions of
the error codes can be found in Section 2.6.2 of this manual.

z the constant vector.

Example

Suppose you wish to perform a Linear Hypothesis Testing,

H0 : Rβ = z

where the R matrix, β, and z vector are as follows:

R =




0 1 −3 0 0 −6 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0


 , β =




β0

β1

β2

β3

β4

β5

β6




, and r =




0
2
0




That is to test jointly with the following equations:

β1 − 3β2 − 6β5 = 0

β3 + β4 = 2

β0 = 0

By typing the following code, you can create the R matrix and z vector easily.

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

lrc = lrControlCreate;

str = "x1-3x2-6x5=0, x3+x4=2, x0=0";

varnames = "x0"$|"x1"$|"x2"$|"x3"$|"x4"$|"x5"$|"x6";

{ R,z } = Rmatrix(lrc,str,varnames);

Source

rmatrixmt.src
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Purpose

Constructs the restriction matrix and the constant vector for systems of equations
models. Both the restriction matrix and the constant vector can be used for linear
hypothesis testing and restricted estimation.

Library

lrmt

Format

{ R,z } = SRmatrix(lrc,Restrict ,Varnames,Novars);

Input

lrc an instance of an lrControl structure. The following member of lrc is
referenced within the SRmatrix routine:

lrc.ranktol scalar, specifies the tolerance used to determine if any of the
singular values are effectively 0 when computing the rank of a
matrix. Default = 10−13.

Restrict string, the restriction equations. The syntax of Restrict is as follows:

Restrict = “restriction1, restriction2, · · · , restrictionJ”;

More than one restriction is allowed provided each is separated by a
comma. Each restriction must be written as a linear equation with all
variables on the left hand side and the constant on the right hand side
(e.g., x1 : 1 + x1 : 2 = 1). Variables shown in each restriction must be
variables in the regression model. Note that the numeric value following
the colon (:) signifies which equation the variable comes from (e.g., 3X4:10
indicates the X4 variable comes from the 10th equation). Restrictions in
the Restrict argument must be consistent and not redundant otherwise
error messages occur. Note that the corresponding variable names in the
model are used to represent the regression parameters.

Varnames N × 1 string array, the variable names of the regression parameters.

Novars numeric vector to determine the number of right hand side variables in
each equation. For example:

novars = { 3, 4, 5 };

From the above, there are 3 right hand side variables in the 1st equation, 4
in the 2nd equation, and 5 in the 3rd equation.

Output
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R matrix, the restriction matrix. If errors are encountered, they are handled
with the low order bit of the trap flag.

trap 0 terminate with error message

trap 1 return scalar error code in R

For more details on trap, see the COMMAND REFERENCE of the
GAUSS manual. Since the returning error code appears as a missing value,
it can be translated with the command scalerr(R) or viewed with the
lrerror procedure. See the lrerror procedure for more details. Definitions of
the error codes can be found in Section 2.6.2 of this manual.

z the constant vector.

Example

Suppose one wants to perform a restricted estimation with the following model:

S1 = α1 + α11 lnP1 + α12 lnP2 + ε1

S2 = α2 + α21 lnP1 + α22 lnP2 + ε2

In matrix notation, the above model is as follows:

[
S1

S2

]
=

[
1 lnP1 lnP2 0 0 0
0 0 0 1 lnP1 lnP2

]




α1

α11

α12

α2

α21

α22




+ ε

And the restrictions are

α12 − α21 = 0

α1 + α2 = 1

α11 + α12 = 0

α21 + α22 = 0
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Hence, for the restricted estimation to take place, we first have to construct the R
matrix and the z vector.

R =




0 0 1 0 −1 0
1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 1 1


 and z =




0
1
0
0




With the use of SRmatrix, we can create the R and Z easily.

library lrmt;

#include lrmt.sdf

struct lrControl lrc;

lrc = lrControlCreate;

novars = { 3,3 }; /* Number of RHS variables in each equation */

str = "lnp2:1 - lnp1:2 = 0,

const:1 + const:2 = 1,

lnp1:1 + lnp2:1 = 0,

lnp1:2 + lnp2:2 = 0";

varnames = "const"$|"lnp1"$|"lnp2"$|"const"$|"lnp1"$|"lnp2";

{ R,z } = SRmatrix(lrc,str,varnames,novars);

Source

rmatrixmt.src
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