
Maximum Likelihood
MT 2.0

for GAUSSTM Mathematical and
Statistical System

Aptech Systems, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or nondis-
closure agreement. The software may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the
software for backup purposes. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose other than the purchaser’s
personal use without the written permission of Aptech Systems, Inc.

c©Copyright 2007-2010 by Aptech Systems, Inc., Black Diamond, WA.
All Rights Reserved.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech
Systems, Inc. Other trademarks are the property of their respective owners.

Part Number: 007238
Version 2.0
Documentation Revision: 2173 June 4, 2012

Contents

Contents

1 Installation

1.1 UNIX/Linux/Mac . 1-1
1.1.1 Download . 1-1
1.1.2 CD . 1-2

1.2 Windows . 1-2
1.2.1 Download . 1-2
1.2.2 CD . 1-2
1.2.3 64-Bit Windows . 1-3

1.3 Difference Between the UNIX and Windows Versions 1-3

2 Getting Started

2.0.1 README Files . 2-2
2.0.2 Setup . 2-2

3 Maximum Likelihood Estimation MT

3.1 Special Features in Maximum Likelihood Estimation MT 3-1
3.1.1 Structures . 3-1
3.1.2 Threading . 3-2
3.1.3 Simple Bounds . 3-3
3.1.4 Hypothesis Testing for Models with Bounded Parameters . . . 3-3

3.2 The Log-likelihood Function . 3-4
3.3 Algorithm . 3-5

3.3.1 The Secant Algorithms . 3-6
3.3.2 Line Search Methods . 3-7
3.3.3 Weighted Maximum Likelihood 3-9
3.3.4 Active and Inactive Parameters 3-9

iii

MaxlikMT 2.0 for GAUSS

3.4 Bounds . 3-10
3.5 The MaxlikMT Procedure . 3-10

3.5.1 First Input Argument: Pointer to Procedure 3-11
3.5.2 Second Input Argument: PV parameter Instance 3-11
3.5.3 Third Input Argument: DS Data Instance 3-13
3.5.4 Fourth Input Argument: maxlikmtControl Instance 3-15

3.6 The Log-likelihood Procedure . 3-15
3.6.1 First Input Argument: PV Parameter Instance 3-16
3.6.2 Second Input Argument: DS Data Instance 3-17
3.6.3 Third Input Argument: Indicator Vector 3-19
3.6.4 Output Argument: modelResults Instance 3-20
3.6.5 Examples . 3-21

3.7 Managing Optimization . 3-23
3.7.1 Scaling . 3-24
3.7.2 Condition . 3-24
3.7.3 Starting Point . 3-25
3.7.4 Example . 3-25
3.7.5 Algorithmic Derivatives . 3-28

3.8 Inference . 3-33
3.8.1 Covariance Matrix of the Parameters 3-34
3.8.2 Testing Against Inequality Constraints 3-37
3.8.3 One-sided Score Test . 3-40
3.8.4 Likelihood Ratio Test . 3-42
3.8.5 Heteroskedastic-consistent Covariance Matrix 3-47
3.8.6 Confidence Limits by Inversion 3-47
3.8.7 Bootstrap . 3-49
3.8.8 Profiling . 3-52

3.9 Run-Time Switches . 3-54
3.10 MaxlikMT Structures . 3-55

3.10.1 maxlikmtControl . 3-55

iv

Contents

3.10.2 maxlikmtResults . 3-57
3.10.3 modelResults . 3-58

3.11 Error Handling . 3-58
3.11.1 Return Codes . 3-58
3.11.2 Error Trapping . 3-59

3.12 References . 3-60

4 MaxlikMT Reference

Maxlikmt . 4-1
MaxlikmtBayes . 4-12
MaxlikmtBoot . 4-18
MaxlikmtControlCreate . 4-23
MaxlikmtInverseWaldLimits . 4-24
MaxlikmtProfile . 4-26
MaxlikmtProfileLimits . 4-32
MaxlikmtPrt . 4-35
MaxlikmtResultsCreate . 4-36
ModelResultsCreate . 4-36

Index

v

Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

1-1

MaxlikMT 2.0 for GAUSS

4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2

Installation

Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3

G
etting

S
tarted

Getting Started 2

GAUSS 10+ and the GAUSS Run-Time Library 10+ are required to use these routines
for all platforms except Linux, which requires 10.0.4+. See _rtl_ver in
src/gauss.dec.

The Maximum Likelihood MT version number is stored in a global variable:

_maxlikmt_ver 3×1 matrix, the first element contains the major version number, the
second element the minor version number, and the third element the revision
number.

If you call for technical support, you may be asked for the version of your copy of
Maximum Likelihood MT.

2-1

MaxlikMT 2.0 for GAUSS

2.0.1 README Files

If there is a README.maxlikmt file, it contains any last minute information on the
Maximum Likelihood MT procedures. Please read it before using them.

2.0.2 Setup

In order to use the procedures in the Maximum Likelihood Estimation MT or
MaxlikMT Module, the MaxlikMT library must be active. This is done by including
maxlikmt in the library statement at the top of your program or command file:

library maxlikmt,pgraph;

This enables GAUSS to find the MaxlikMT procedures. The statement

#include maxlikmt.sdf

is also required. It sets the definitions of the structures used by MaxlikMT.

2-2

M
axLik

E
stim

ation
M

T

Maximum Likelihood
Estimation MT 3

written by

Ronald Schoenberg

This module contains a set of procedures for the solution of the maximum likelihood
problem with bounds on parameters.

3.1 Special Features in Maximum Likelihood Estimation MT

3.1.1 Structures

In MaxlikMT the same procedure computing the log-likelihood or objective function will
be used to compute analytical derivatives as well if they are being provided. Its return

3-1

MaxlikMT 2.0 for GAUSS

argument is a maxlikmtResults structure with three members, a scalar, or Nx1 vector
containing the log-likelihood (or objective), a 1XK vector, or NxK matrix of first
derivatives, and a KxK matrix or NxKxK array of second derivatives (it needs to be an
array if the log-likelihood is weighted). Of course the derivatives are optional, or even
partially optional, i.e., you can compute a subset of the derivatives if you like and the
remaining will be computed numerically. This procedure will have an additional argument
which tells the function which to compute, the log-likelihood or objective, the first
derivatives, the second derivatives, or all three. This means that calculations in common
won’t have to be redone.

MaxlikMT uses the DS and PV structures that are now in use in the GAUSS Run-Time
Library. The DS structure is completely flexible, allowing you to pass anything you can
think of into your procedure. The PV structure revolutionizes how you pass the parameters
into the procedure. No more do you have to struggle to get the parameter vector into
matrices for calculating the function and its derivatives, trying to remember or figure out
which parameter is where in the vector. If your log-likelihood uses matrices or arrays, you
can store them directly into the PV structure, and remove them as matrices or arrays with
the parameters already plugged into them. The PV structure can handle matrices and
arrays where some of their elements are fixed and some free. It remembers the fixed
parameters and knows where to plug in the current values of the free parameters. It can
handle symmetric matrices where parameters below the diagonal are repeated above the
diagonal.

There will no longer be any need to use global variables. Anything the procedure needs
can be passed into it through the DS structure. And these new applications will use control
structures rather than global variables. This means, in addition to thread safety, that it will
be straightforward to nest calls to MaxlikMT inside of a call to MaxlikMT, not to
mention Run-Time Library functions like QNewtonmt, QProgmt, and EQsolvemt.

3.1.2 Threading

If you have a multi-core processor in your computer, you may take advantage of this
capability by selecting threading. This is done by setting the useThreads member of the

3-2

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

maxlikmtControl instance:

struct maxlikmtControl c0;

c0 = maxlikmtControlCreate;

c0.useThreads = 1;

An important advantage of threading occurs in computing numerical derivatives. If the
derivatives are computed numerically, threading will significantly decrease the time of
computation.

Resampling in maxlikmtBoot and MaxlikmtBayes procedures also takes advantage of
threading increasing the speed of calculations up to several times.

3.1.3 Simple Bounds

Bounds may be placed on parameters. This can be very important for models with a
limited parameter space outside of which the log-likelihood is not defined.

3.1.4 Hypothesis Testing for Models with Bounded Parameters

Ordinary statistical inference is not correct for models with bounded parameters. This
includes bootstrapping and profile likelihoods. The conscore function in the GAUSS
Run-Time Library can be used that computes a test statistic and its probability for the
hypotheses H0 : ψ = 0 against H1 : G(ψ) ≥ 0, ψ , 0 where G(ψ) is a general function
of the parameters and ψ is a subset of the parameters. See Section 3.8.2 for a discussion of
a special case where G(ψ) is a bounds constraint function. Also see Silvapulle and Sen,
2005, Section 4.6.2, page 177.

3-3

MaxlikMT 2.0 for GAUSS

3.2 The Log-likelihood Function

MaxlikMT is a set of procedures for the estimation of the parameters of models via the
maximum likelihood method with general constraints on the parameters, along with an
additional set of procedures for statistical inference.

MaxlikMT solves the general weighted maximum likelihood problem

L =
N∑

i=1

log P(Yi; θ)wi

where N is the number of observations, wi is a weight. P(Yi, θ) is the probability of Yi

given θ, a vector of parameters, subject to bounds,

θl ≤ θ ≤ θu

The procedure MaxlikMT finds values for the parameters in θ such that L is maximized.
In fact MaxlikMT minimizes −L. It is important to note, however, that the user must
specify the log-probability to be maximized. MaxlikMT transforms the function into the
form to be minimized.

MaxlikMT has been designed to make the specification of the function and the handling
of the data convenient. The user supplies a procedure that computes log P(Yi; θ), i.e., the
log-likelihood, given the parameters in θ, for either an individual observation or set of
observations (i.e., it must return either the log-likelihood for an individual observation or a
vector of log-likelihoods for a matrix of observations). MaxlikMT uses this procedure to
construct the function to be minimized.

3-4

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

3.3 Algorithm

MaxlikMT includes four descent methods, BFGS, DFP, BHHH, and Newton. In these
methods the parameters are updated in a series of iterations beginning with starting values
that you provide. Let θt be the current parameter values. Then the succeeding values are

θt+1 = θt + ρδ

where δ is a K × 1 direction vector, and ρ a scalar step length.

Direction

Define

Σ(θ) =
∂2L
∂θ∂θ′

Ψ(θ) =
∂L
∂θ

The direction, δ is the solution to

Σ(θt)δ = Ψ(θt)

This solution requires that Σ be positive definite.

This solution requires that Σ be positive semi-definite.

3-5

MaxlikMT 2.0 for GAUSS

Line Search

Define the merit function

m(θ) = L −
∑
`

λ`h`(θ)

h` is the `-th bounds constraint and λ` the Lagrangean coefficient of the `-th bounds
constraint.

The line search finds a value of ρ that minimizes or decreases m(θt + ρδ).

3.3.1 The Secant Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start values
may produce an ill-conditioned Hessian. For these reasons alternative algorithms are
provided in MaxlikMT for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during the
execution of MaxlikMT.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the estimate
of the Hessian, improving its ability to project the direction of the descent. Thus after
several iterations the secant algorithm should do nearly as well as Newton iteration with
much less computation.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb, and
Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two updates,
that is, they are analogous to adding two rows of new data to a previously computed
moment matrix. The Cholesky factorization of the estimate of the Hessian is updated
using the functions CHOLUP and CHOLDN.

3-6

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

Secant Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the method
of Davidon, Fletcher, and Powell. These methods are complementary (Luenberger 1984,
page 268). BFGS and DFP are like the NEWTON method in that they use both first and
second derivative information. However, in DFP and BFGS the Hessian is approximated,
reducing considerably the computational requirements. Because they do not explicitly
calculate the second derivatives they are sometimes called quasi-Newton methods. While
it takes more iterations than the NEWTON method, the use of an approximation produces
a gain because it can be expected to converge in less overall time (unless analytical second
derivatives are available in which case it might be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the Hessian.
This is not the best method numerically for the BFGS algorithm (Gill and Murray, 1972).
This version of MaxlikMT, following Gill and Murray (1972), updates the Cholesky
factorization of the Hessian instead, using the functions CHOLUP and CHOLDN for BFGS.
The new direction is then computed using CHOLSOL, a Cholesky solve, as applied to the
updated Cholesky factorization of the Hessian and the gradient.

3.3.2 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. MaxlikMT includes a variety of methods for computing ρ.
The value of the function to be minimized as a function of ρ is

m(θt + ρδ)

3-7

MaxlikMT 2.0 for GAUSS

Given θ and d, this is a function of a single variable ρ. Line search methods attempt to find
a value for ρ that decreases m. STEPBT is a polynomial fitting method, BRENT and
HALF are iterative search methods. A fourth method called ONE forces a step length of 1.
The default line search method is STEPBT. If this or any selected method fails, then
BRENT is tried. If BRENT fails, then HALF is tried. If all of the line search methods fail,
then a random search is tried provided the RandRadius member of the
maxlikmtControl instance is greater than zero which it is by default.

STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ) and computes a ρ
that minimizes the quadratic. If that fails, it attempts to fit a cubic function. The cubic
function more accurately portrays the F which is not likely to be very quadratic but is,
however, more costly to compute. STEPBT is the default line search method because it
generally produces the best results for the least cost in computational resources.

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for ρ. These test values are
determined by extrapolation and interpolation using the constant, (

√
5 − 1)/2 = .6180....

This constant is the inverse of the so-called “golden ratio” ((
√

5 + 1)/2 = 1.6180... and is
why the method is called a golden section method. This method is generally more efficient
than STEPBT but requires significantly more function evaluations.

HALF

This method first computes m(x + d), i.e., sets ρ = 1. If m(x + d) < m(x) then the step
length is set to 1. If not, then it tries m(x + .5d). The attempted step length is divided by

3-8

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

one half each time the function fails to decrease and exits with the current value when it
does decrease. This method usually requires the fewest function evaluations (it often only
requires one), but it is the least efficient in that it is not very likely to find the step length
that decreases m the most.

BHHHSTEP

This is a variation on the golden search method. A sequence of step lengths are computed,
interpolating or extrapolating using a golden ratio, and the method exits when the function
decreases.

3.3.3 Weighted Maximum Likelihood

Weights are specified by setting the Weights member of the maxlikmtControl instance
to a weighting vector or by assigning it the name of a column in the GAUSS data set
being used in the estimation.

MaxlikMT assumes that the weights sum to the number of observations, i.e, that the
weights are frequencies. This will be an issue only with statistical inference. Otherwise,
any multiple of the weights will produce the same results.

3.3.4 Active and Inactive Parameters

The member Active of the instance of the maxlikmtControl structure may be used to
fix parameters to their start values. This allows estimation of different models without
having to modify the function procedure. Active must be set to a vector of the same
length as the vector of start values. Elements of Active set to zero will be fixed to their
starting values while nonzero elements will be estimated.

This feature may also be used for model testing. NumObs times the difference between the

3-9

MaxlikMT 2.0 for GAUSS

function values from the two estimations is chi-squared distributed with degrees of
freedom equal to the number of fixed parameters in Active.

3.4 Bounds

To specify bounds, the lower and upper bounds respectively are entered in the first and
second columns of a matrix that has the same number of rows as the parameter vector.
This matrix is assigned to the Bounds member of an instance of a maxlikmtControl
structure.

If the bounds are the same for all of the parameters, only the first row is necessary.

To bound four parameters:

struct maxlikmtControl ctl;

ctl = maxlikmtControlCreate;

ctl.Bounds = { -10 10,

-10 0,

1 10,

0 1 };

Suppose all of the parameters are to be bounded between -50 and +50, then,

ctl.Bounds = { -50 50 };

is all that is necessary.

3.5 The MaxlikMT Procedure

The call to MaxlikMT has four input arguments and one output argument.

3-10

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

3.5.1 First Input Argument: Pointer to Procedure

The first input argument is the pointer to the procedure computing the log-likelihood
function and optionally the gradient and/or Hessian. See Section 3.6 for details.

3.5.2 Second Input Argument: PV parameter Instance

The GAUSS Run-Time Library contains special functions that work with the PV
structure. They are prefixed by “pv” and defined in pv.src. These functions store
matrices and arrays with parameters in the structure and retrieve the original matrices and
arrays along with various kinds of information about the parameters and parameter vector
from it.

The advantage of the PV structure is that it permits you to retrieve the parameters in the
form of matrices and/or arrays ready for use in calculating your log-likelihood. The
matrices and arrays are defined in your command file when the start values are set up. It
isn’t necessary that a matrix or array be completely free parameters to be estimated. There
are pvPack functions that take mask arguments defining what is a parameter versus what
is a fixed value. There are also functions for handling symmetric matrices where the
parameters below the diagonal are duplicated above the diagonal.

For example, a PV structure is created in your command file:

struct PV p;

p = pvCreate; // creates default structure

garch = { .1, .1, .1 };

p = pvPack(p,garch,"garch");

A matrix or array in the model may contain a mixture of fixed values along with
parameters to be estimated. This type of matrix or array uses pvPackm which has an
additional argument, called a “mask”, strictly conformable to the input matrix or array

3-11

MaxlikMT 2.0 for GAUSS

indicating which elements are fixed (the corresponding element in the mask is zero) or
being estimated (the corresponding element in the mask is nonzero). For example,

struct PV p;

p = pvCreate;

b = { 1.0 0.0 0.0,

0.5 1.0 0.2,

0.3 0.0 1.0 };

b_mask = { 0 0 0,

1 0 1,

1 0 1 };

p = pvPackm(p,b,"beta",b_mask);

In this case there are four free parameters to be estimated, b21, b23, b31, and b33. b11 and
b22 are fixed to 1.0, and b22, b23, and b32 are fixed to 0.0.

pvPacks “packs” a symmetric matrix into the PV structure in which only the lower left
portion of the matrix contains independent parameters while the upper left is duplicated
from the lower left. The following packed matrix contains three nonredundant parameters.
When this matrix is unpacked, it will contain the upper nonredundant portion of the
matrix equal to the lower portion.

vc = { 1.2 0.4,

0.4 2.1 };

p = pvPacks(p,vc,"phi"); // pack symmetric matrix

Suppose that you wish to specify a correlation matrix in which only the correlations are
free parameters. You would then use pvPacksm.

3-12

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

cor = { 1.0 0.2,

0.2 1.0 };

msk = { 0 1,

1 0 };

pv = pvPacksm(p,cor,msk,"R");

Some computation speedup can be achieved by packing and unpacking by number rather
than name. Each packing function has a version with an i suffix that packs by number.
Then pvUnpack can be used with that number:

garch = { .1, .1, .1 };

p = pvPacki(p,garch,"garch",1);

which is unpacked using its number

g0 = pvUnpack(1);

3.5.3 Third Input Argument: DS Data Instance

The DS structure, or “data” structure, is a very simple structure. It contains a member for
each GAUSS data type. This is its definition (see ds.sdf in the GAUSS src
subdirectory):

struct DS {

scalar type;

matrix dataMatrix;

array dataArray;

string dname;

string array vnames;

};

3-13

MaxlikMT 2.0 for GAUSS

Data in Matrices or Arrays

If you are passing your data in as matrices or arrays, you can set the data structure in any
way you want, except that the dname member of the first element of the data structure
must be a null string. MaxlikMT will pass this instance, or a matrix of instances, to your
log-likelihood procedure untouched. For example:

struct DS d0;

d0 = reshape(dsCreate,2,1);

d0[1].DataMatrix = y;

d0[2].DataMatrix = x;

GAUSS Data Sets

You may choose to have MaxlikMT read a GAUSS data set and pass selected columns to
your log-likelihood procedure. For this set the Dname member of an instance of DS
structure to the name of the GAUSS data set:

struct DS d0;

d0.Dname = "mydatafile";

d0.Vnames = "price" $| "X1" $| "X2";

MaxlikMT will first determine how many rows of the data set can be read in at a time.
Then it reads in the appropriate number of rows (possibly all), selects the appropriate
columns (all of them if Vnames set to null string), and passes the resulting matrix to your
log-likelihood. If only part of the data can read it at a time, your procedure will be called
repeatedly and the log-likelihood and derivatives accumulated.

3-14

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

3.5.4 Fourth Input Argument: maxlikmtControl Instance

The members of the maxlikmtControl instance determine everything about the
optimization. For example, suppose you want MaxlikMT to stop after 100 iterations:

struct maxlikmtControl c0;

c0 = maxlikmtControlCreate;

c0.maxIters = 100;

The maxlikmtControlCreate procedure sets all of the defaults. The default values for
all the members of a maxlikmtControl instance can be found in that procedure, located
at the top of maxlikmtutil.src in the GAUSS src subdirectory.

3.6 The Log-likelihood Procedure

MaxlikMT requires that you write a procedure computing the log-likelihood. The output
from this procedure is a modelResults structure containing the log-likelihood and
optionally the first and second derivatives of the log-likelihood with respect to the
parameters. There are three input arguments to this procedure

1. instance of a PV structure containing parameter values

2. instance of a DS structure containing data

3. indicator vector

and one return argument

1. instance of a modelResults structure containing computational results.

3-15

MaxlikMT 2.0 for GAUSS

3.6.1 First Input Argument: PV Parameter Instance

This argument contains the parameter matrices and arrays that you need for computing the
log-likelihood and (optionally) derivatives. The pvUnpack function retrieves them from
the PV instance.

proc lpr(struct PV p, struct DS d, ind);

local beta, gamma;

beta = pvUnpack("beta");

gamma = pvUnpack("gamma");

.

.

.

endp;

You may have decided to speed the program up a bit by packing the matrices or arrays
using the “i” pack functions, pvPacki, pvPackmi, pvPacksi, etc., You can then unpack
the matrices and arrays with the integers used in packing them:

proc lpr(struct PV p, struct DS d, ind);

local beta, gamma;

beta = pvUnpack(1);

gamma = pvUnpack(2);

.

.

.

endp;

where it has been assumed that they’ve been packed accordingly:

struct PV p;

3-16

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

p = pvCreate;

p = pvPacki(p,1.|.1,"beta",1);

p = pvPacksi(p,(1˜0)|(0˜1),"gamma",2);

3.6.2 Second Input Argument: DS Data Instance

There are two cases,

1 the Dname member of the first element of the DS instance is set to the name
of a GAUSS data set.

2 the Dname member of the first element of the instance is set to a null string
(default).

Case 1

In case 1, MaxlikMT will pass the observations in the data set to the log-likelihood
procedure in the DataMatrix member of the first element of the DS instance in this
argument.

For example, if the DS instance is set up this way in the command file:

struct DS d;

d = dsCreate;

d.dname = "mydataset";

Then in your log-likelihood procedure you can expect N0 rows of the data set (where
N0 ≤ N and N is the total number of rows in the data set) in the Datamatrix member of
the DS instance passed to your procedure from MaxlikMT.

3-17

MaxlikMT 2.0 for GAUSS

proc lpr(struct PV p, struct DS d, ind);

local y,x;

.

.

.

y = d.datamatrix[.,1];

x = d.dataMatrix[.,2:4];

.

.

.

endp;

MaxlikMT will determine whether or not the entire data set can be stored in memory at
once. If it can be, then the entire data set will be passed to the procedure. If not, it will
pass the data in chunks and generate the log-likelihood and derivatives by accumulation.

Case 2

In Case 2, MaxlikMT passes the DS instance you have constructed completely untouched.
You can, therefore, design this instance completely for your convenience in computing the
log-likelihood and optionally its derivatives.

For example, you can write a general log-likelihood procedure that computes a variety of
log-likelihoods, e.g., a probit and a logit. Then you can set the Type member of a DS
instance to a value in your command file that chooses which to compute for that run.

In your command file

struct DS d;

d = dsCreate;

d.Type = 1;

d.dataMatrix = z;

3-18

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

and in your log-likelihood procedure

proc lpr(struct PV p, struct DS d, ind);

.

.

.

if d.type == 1; // compute probit log-likelihood

.

.

elseif d.type == 2; // compute logit

.

.

endif;

.

.

.

endp;

3.6.3 Third Input Argument: Indicator Vector

The third argument is a vector with elements set to zero or one, indicating whether or not
function, first derivatives, or second derivatives are to be computed.

1st element if nonzero, the function is to be computed.

2nd element if nonzero, the first derivatives are to be computed.

3rd element if nonzero, the second derivatives are to be computed.

The second and third elements associated with the first and second derivatives are optional.

For example,

3-19

MaxlikMT 2.0 for GAUSS

proc logl(struct PV p0, struct DS d0, ind);

local b0,b,y,x;

b0 = pvUnpack(p0,"b0");

b = pvUnpack(p0,"beta");

y = d0[1].DataMatrix;

x = d0[2].DataMatrix;

struct modelResults mm;

if ind[1]; // compute log-likelihood

mm.Function =

endif;

if ind[2]; // compute optional first derivatives

mm.Gradient =

endif;

if ind[3]; // compute optional second derivatives

mm.Hessian =

endif;

retp(mm);

endp;

If mm.Gradient and mm.Hessian are not set, they will be computed numerically by
MaxlikMT.

3.6.4 Output Argument: modelResults Instance

The return argument for your log-likelihood procedure is an instance of a modelResults
structure. The members of this structure are

1 scalar log-likelihood

Function scalar log-likelihood

Gradient 1 × K vector of first derivatives (optional)

Hessian K × K matrix of second derivatives (optional)

3-20

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

NumObs scalar, number of observations

2 vector of log-likelihoods by observation

Function N × 1 vector of log-likelihoods

Gradient N × K matrix of first derivatives (optional)

Hessian K × K matrix of second derivatives (optional)

3 weighted log-likelihood

Function N × 1 vector of log-likelihoods

Gradient N × K matrix of first derivatives (optional)

Hessian N × K × K array of second derivatives computed by
observation (optional)

3.6.5 Examples

proc logitLL(struct PV p, struct DS d, ind);

local mu,const,coefs;

struct modelResults mm;

const = pvUnpack(p,"constant");

coefs = pvUnpack(p,"coefficients");

mu = const + d[2].DataMatrix * coefs;

emu = exp(mu’);

if ind[1];

f = mu - ln(sumc(emu));

mm.Function = subvec(f,1+d[1].DataMatrix);

endif;

if ind[2] or ind[3];

w = emu./sumc(emu);

y = d[1].DataMatrix ˜ (1 - d[1].DataMatrix);

3-21

MaxlikMT 2.0 for GAUSS

g = sumc((y.*(y - w)’);

mm.Gradient = g˜(g.*d[2].DataMatrix);

if ind[3];

mm.Hessian = mm.Gradient’ * mm.Gradient;

endif;

endif;

retp(mm);

endp;

proc FactorAnalysisLL(struct PV p, struct DS d, ind);

local lambda,phi,psi,sigma;

struct modelResults mm;

lambda = pvUnpack(p,"lambda");

phi = pvUnpack(p,"phi");

psi = pvUnpack(p,"psi");

sigma = lambda * phi * lambda’ + psi;

if ind[1];

mm.Function = lnpdfmvn(d.DataMatrix,sigma);

endif;

retp(mm);

endp;

proc garchLL(struct PV p0, struct DS d0, ind);

local b0,garch,arch,omega,p,q,h,u,vc,w;

struct modelResults mm;

b0 = pvUnpack(p0,"b0");

garch = pvUnpack(p0,"garch");

arch = pvUnpack(p0,"arch");

3-22

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

omega = pvUnpack(p0,"omega");

p = rows(garch);

q = rows(arch);

u = d0.DataMatrix - b0;

vc = moment(u,0)/rows(u);

w = omega + (zeros(q,q) | shiftr((u.*ones(1,q))’,seqa(

q-1,-1,q))) * arch;

h = recserar(w,vc*ones(p,1),garch);

mm.Function = -0.5 * ((u.*u)./h + ln(2*pi) + ln(h));

retp(mm);

endp;

3.7 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of the
model. When the data are scaled, the starting point is reasonably close to the solution, and
the data and model go together well, the iterations converge quickly and without difficulty.

For best results, therefore, you want to prepare the problem so that model is
well-specified, the data scaled, and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands on
the starting point and condition of the model. The less demanding methods are generally
time consuming and computationally intensive, whereas the quicker methods (either in
terms of time or number of iterations to convergence) are more sensitive to conditioning
and quality of starting point.

3-23

MaxlikMT 2.0 for GAUSS

3.7.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, MaxlikMT has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the constants
(or “data”) used in the model are about the same magnitude.

3.7.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the gradient
is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very small for a
particular parameter, then MaxlikMT has difficulty determining the optimal values since
a large region of the function appears virtually flat to MaxlikMT. When the Hessian has
very small elements, the inverse of the Hessian has very large elements and the search
direction gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor specification
of the model or by bad data. Bad models and bad data are two sides of the same coin. If
the problem is highly nonlinear, it is important that data be available to describe the
features of the curve described by each of the parameters. For example, one of the
parameters of the Weibull function describes the shape of the curve as it approaches the
upper asymptote. If data are not available on that portion of the curve, then that parameter
is poorly estimated. The gradient of the function with respect to that parameter is very flat,
elements of the Hessian associated with that parameter is very small, and the inverse of
the Hessian contains very large numbers. In this case it is necessary to respecify the model
in a way that excludes that parameter.

3-24

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

3.7.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical. When
the optimization doesn’t seem to be working, try different starting points. A closed form
solution may exist for a simpler problem with the same parameters. For example, ordinary
least squares estimates may be used for nonlinear least squares problems or nonlinear
regressions like probit or logit. There are no general methods for computing start values
and it may be necessary to attempt the estimation from a variety of starting points.

3.7.4 Example

The following example illustrates the estimation of a tobit model with bounds on the
parameters. The bounds are provided essentially to constrain the variance parameter to be
greater than zero.

library maxlikmt;

#include maxlikmt.sdf

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d[1].DataMatrix;

x = d[2].DataMatrix;

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

3-25

MaxlikMT 2.0 for GAUSS

if ind[1];

mm.Function = u.*lnpdfmvn(res,s2) + (1-u).*(ln(cdfnc(

yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.Gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

c0 = maxlikmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

struct DS d0;

d0 = reshape(dsCreate,2,1);

z = loadd("maxlikmttobit");

d0[1].DataMatrix = z[.,1];

d0[2].DataMatrix = z[.,2:4];

3-26

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

struct maxlikmtResults out1;

out1 = maxlikmtprt(maxlikmt(&lpr,p0,d0,c0));

print "bounds Lagrangeans";

print out1.lagrangeans;

and the output looks like this:

==

tobit example

==

MaxlikMT Version 2.0.0 3/16/2010 3:41 pm

==

return code = 0

normal convergence

Log-likelihood -99.8204

Number of cases 100

Covariance of the parameters computed by the following method:

ML covariance matrix

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

--

b0[1,1] 0.9690 0.0614 15.790 0.0000 61.1939

b[1,1] 0.9690 0.0614 15.790 0.0000 -61.1943

b[2,1] 0.5186 0.1027 5.051 0.0000 0.0007

b[3,1] 0.3914 0.0876 4.470 0.0000 -0.0005

variance[1,1] 0.5716 0.0871 6.562 0.0000 0.0000

Correlation matrix of the parameters

1 1 -0.3939 0.0035 -0.0434

1 1 -0.3939 0.0035 -0.0434

-0.3939 -0.3939 1 -0.3246 0.0725

0.0035 0.0035 -0.3246 1 0.0323

-0.0434 -0.0434 0.0725 0.0323 1

3-27

MaxlikMT 2.0 for GAUSS

Wald Confidence Limits

0.95 confidence limits

Parameters Estimates Lower Limit Upper Limit Gradient

b0[1,1 0.9690 0.8472 1.0908 61.1939

b[1,1] 0.9690 0.8472 1.0908 -61.1943

b[2,1] 0.5186 0.3148 0.7225 0.0007

b[3,1] 0.3914 0.2176 0.5653 -0.0005

variance[1,1] 0.5716 0.3986 0.7445 0.0000

Number of iterations 15

Minutes to convergence 0.00333

bounds Lagrangeans

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

If the Lagrangeans are “empty” matrices, the associated constraints are not active. If they
are zeros but not “empty” matrices, then they are still inactive at the solution but were
active at some point during the iterations.

3.7.5 Algorithmic Derivatives

Algorithmic Derivatives is a program that can be used to generate a GAUSS procedure
to compute derivatives of the log-likelihood function. If you have Algorithmic
Derivatives, be sure to read its manual for details on doing this.

3-28

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

First, copy the procedure computing the log-likelihood to a separate file. Second, from the
command line enter

ad file_name d_file_name

where file_name is the name of the file containing the input function procedure, and
d_file_name is the name of the file containing the output derivative procedure.

If the input function procedure is named lpr, the output derivative procedure has the
name d_A_lpr where the addition to the “_A_” indicates that the derivative is with respect
to the first of the two arguments.

For example, put the following function into a file called lpr.fct

proc lpr(c,x,y);

local b,b0,yh,res,yh,u,logl;

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

logl = u.*lnpdfmvn(res,s2) + (1-u).*(ln(cdfnc(yh/sqrt(s2))));

retp(logl);

endp;

Then enter the following at the GAUSS command line

library ad;

ad lpr.fct d_lpr.fct;

If successful, the following is printed to the screen

3-29

MaxlikMT 2.0 for GAUSS

java -jar d:\gauss10\src\GaussAD.jar lpr.fct d_lpr.fct

and the derivative procedure is written to file named d_lpr.fct:

/* Version:1.1 - May 15, 2004 */

/* Generated from:lpr.src */

/* Taking derivative with respect to argument 1 */

Proc(1)=d_A_lpr(c, x, y);

Clearg _AD_fnValue;

Local b, b0, yh, res, yh, u, logl;

b0 = c[(1)] ;

b = c[(2):(4)] ;

yh = b0 + (x * b);

res = y - yh;

u = y[.,(1)] ./= 0;

logl = (u .* lnpdfmvn(res, s2)) + ((1 - u) .* ln(cdfnc(yh /

sqrt(s2))));

_AD_fnValue = logl;

/* retp(_AD_fnValue); */

/* endp; */

struct _ADS_optimum _AD_d_c ,_AD_d_b ,_AD_d_b0 ,_AD_d_yh ,

_AD_d_logl ,_AD_d_res ,_AD_d__AD_fnValue;

/* _AD_d_b = 0; _AD_d_b0 = 0; _AD_d_yh = 0; _AD_d_logl = 0;

_AD_d_res = 0; */

_AD_d__AD_fnValue = _ADP_d_x_dx(_AD_fnValue);

_AD_d_logl = _ADP_DtimesD(_AD_d__AD_fnValue, _ADP_d_x_dx(logl));

_AD_d_yh = _ADP_DtimesD(_AD_d_logl, _ADP_DtimesD(

_ADP_d_yplusx_dx(u .* lnpdfmvn(res, s2), (1 - u) .*

ln(cdfnc(yh / sqrt(s2)))),_ADP_DtimesD(

_ADP_d_ydotx_dx(1 - u, ln(cdfnc(yh / sqrt(s2)))),

_ADP_DtimesD(_ADP_d_ln(cdfnc(yh / sqrt(s2))),

_ADP_DtimesD(_ADP_internal(d_cdfnc(yh / sqrt(s2))),

_ADP_DtimesD(_ADP_d_xdivy_dx(yh, sqrt(s2)), _ADP_d_x_dx(yh)))))));

_AD_d_res = _ADP_DtimesD(_AD_d_logl, _ADP_DtimesD(

_ADP_d_xplusy_dx(u .* lnpdfmvn(res, s2), (1 - u) .*

ln(cdfnc(yh / sqrt(s2)))), _ADP_DtimesD(_ADP_d_ydotx_dx(u,

lnpdfmvn(res, s2)),_ADP_DtimesD(_ADP_internal(

d_A_lnpdfmvn(res, s2)), _ADP_d_x_dx(res)))));

/* u = y[.,(1)] ./= 0; */

3-30

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

_AD_d_yh = _ADP_DplusD(_ADP_DtimesD(_AD_d_res,

_ADP_DtimesD(_ADP_d_yminusx_dx(y, yh), _ADP_d_x_dx(yh))),

_AD_d_yh);_AD_d_b = _ADP_DtimesD(_AD_d_yh, _ADP_DtimesD(

_ADP_d_yplusx_dx(b0,x * b) , _ADP_DtimesD(_ADP_d_yx_dx(x, b),

_ADP_d_x_dx(b))));_AD_d_b0 = _ADP_DtimesD(_AD_d_yh,

_ADP_DtimesD(_ADP_d_xplusy_dx(b0, x * b) , _ADP_d_x_dx(b0)));

Local _AD_s_c;

_AD_s_c = _ADP_seqaMatrix(c);

_AD_d_c = _ADP_DtimesD(_AD_d_b, _ADP_d_xIdx_dx(c,

_AD_s_c[(2):(4)]));_AD_s_c = _ADP_seqaMatrix(c);

_AD_d_c = _ADP_DplusD(_ADP_DtimesD(_AD_d_b0,

_ADP_d_xIdx_dx(c, _AD_s_c[(1)])), _AD_d_c);

retp(_ADP_external(_AD_d_c));

endp;

If there’s a syntax error in the input function procedure, the following is written to the
screen

java -jar d:\gauss10\src\GaussAD.jar lpr.fct d_lpr.fct

Command ’java -jar d:\gauss10\src\GaussAD.jar lpr.fct d_lpr.fct’

exit status 1

the exit status 1 indicating that an error has occurred. The output file then contains
the reason for the error:

/* Version:1.1 - May 15, 2004 */

/* Generated from:lpr.src */

/* Taking derivative with respect to argument 1 */

proc lpr(c,x,y);

local b,b0,yh,res,yh,u,logl;

b0 = c[1];

b = c[2:4];

3-31

MaxlikMT 2.0 for GAUSS

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

logl = u.*lnpdfmvn(res,s2) + (1-u).*(ln(cdfnc(yh/sqrt(s2)));

Error: lpr.src:12:64: expecting ’)’, found ’;’

Finally, call the above procedure from your log-likelihood procedure, for example,

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d[1].DataMatrix;

x = d[2].DataMatrix;

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.Function = u.*lnpdfmvn(res,s2) + (1-u).*(ln(cdfnc(

yh/sqrt(s2))));

endif;

if ind[2];

mm.Gradient = d_A_lpr(pvGetParvector(p),y,x);

endif;

retp(mm);

endp;

3-32

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

3.8 Inference

MaxlikMT includes four broad classes of methods for analyzing the distributions of the
estimated parameters:

• tests of hypotheses for models with constrained parameters

• Taylor Series covariance matrix of the parameters. This includes two types:
the inverted Hessian and the heteroskedastic- consistent covariance matrix
computed from both the Hessian and the cross-product of the first
derivatives.

• Confidence limits computed by inversion of the Wald and likelihood ratio
statistics that take into account constraints

• Bootstrap

• Likelihood profile and profile t traces

MaxlikMT computes a Taylor-series covariance matrix of the parameters that includes
the sampling distributions of the Lagrangean coefficients. However, when the model
includes inequality constraints, confidence limits computed from the usual t-statistics, i.e.,
by simply dividing the parameter estimates by their standard errors, are incorrect because
they do not account for boundaries placed on the distributions of the parameters by the
inequality constraints.

Inference for Models with Bounds on Parameters

The likelihood ratio statistic becomes a mixture of chi-squared distributions in the region
of constraint boundaries (Gourieroux et al., 1982). If there are no parameters with limits
near constraint boundaries, bootstrapping will suffice. Taylor-series methods assume that
it is reasonable to truncate the Taylor-series approximation to the distribution of the

3-33

MaxlikMT 2.0 for GAUSS

parameters at the second order. If this is not reasonable, bootstrapping is an alternative not
requiring this assumption. It is important to note that if the limit of the parameter of
interest or any other parameters with which it is correlated more than .6 are near constraint
boundaries, then bootstrapping will not produce correct inference (Andrews, 1999).

The hypotheses H(θ) = 0 versus H(θ) ≥ 0 can be tested using the MaxlikMTChibarSq
procedure. See Section 3.8.2 for details.

The procedure MaxlikMTBoot generates the mean vector and covariance matrix of the
bootstrapped parameters. The likelihood profile and profile t traces explicated by Bates
and Watts (1988) provide diagnostic material for evaluating parameter distributions.
MaxlikMTProfile generates trace plots which are used for this evaluation.

3.8.1 Covariance Matrix of the Parameters

An argument based on a Taylor-series approximation to the likelihood function (e.g.,
Amemiya, 1985, page 111) shows that

θ̂ → N(θ, A−1BA−1)

where

A = E
[
∂2L
∂θ∂θ′

]
B = E

[(
∂L
∂θ

)′ (
∂L
∂θ

)]

Estimates of A and B are

3-34

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

Â =
1
N

N∑
i

∂2Li

∂θ∂θ′

B̂ =
1
N

N∑
i

(
∂Li

∂θ

)′ (
∂Li

∂θ

)

Assuming the correct specification of the model plim(A) = plim(B) and thus

θ̂ → N(θ, Â−1)

Without loss of generality we may consider two types of constraints, the nonlinear
equality and the nonlinear inequality constraints (the linear constraints are included in
nonlinear, and the bounds are regarded as a type of linear inequality). Furthermore, the
inequality constraints may be treated as equality constraints with the introduction of
“slack” parameters into the model:

H(θ) ≥ 0

is changed to

H(θ) = ζ2

where ζ is a conformable vector of slack parameters.

Further distinguish active from inactive inequality constraints. Active inequality
constraints have nonzero Lagrangeans, γ j, and zero slack parameters, ζ j, while the reverse
is true for inactive inequality constraints. Keeping this in mind, define the diagonal
matrix, Z, containing the slack parameters, ζ j, for the inactive constraints, and another

3-35

MaxlikMT 2.0 for GAUSS

diagonal matrix, Γ, containing the Lagrangean coefficients. Also, define H⊕(θ)
representing the active constraints, and H	(θ) the inactive.

The likelihood function augmented by constraints is then

LA = L + λ1g(θ)1 + · · · + λIg(θ)I + γ1h⊕1(θ) + · · · + γJh⊕J(θ)+
h	1(θ)i − ζ

2
1 + · · · + h	K(θ) − ζ2

K

and the Hessian of the augmented likelihood is

E(
∂2LA

∂θ∂θ′
) =



Σ 0 0 Ġ′ Ḣ′⊕ Ḣ′	
0 2Γ 0 0 0 0
0 0 0 0 0 2Z
Ġ 0 0 0 0 0
Ḣ⊕ 0 0 0 0 0
Ḣ	 0 2Z 0 0 0


where the dot represents the Jacobian with respect to θ, L =

∑N
i=1 log P(Yi; θ), and

Σ = ∂2L/∂θ∂θ′. The covariance matrix of the parameters, Lagrangeans, and slack
parameters is the Moore-Penrose inverse of this matrix. Usually, however, we are
interested only in the covariance matrix of the parameters, as well as the covariance
matrices of the Lagrange coefficients associated with the active inequality constraints and
the equality constraints.

These matrices may be computed without requiring the storage and manipulation of the
entire Hessian. Construct the partitioned array

B̃ ==

 Ġ
Ḣ⊕
Ḣ	



3-36

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

and denote the i-th row of B̃ as b̃i. Then the k × k upper left portion of the inverse, that is,
that part associated with the estimated parameters, is calculated recursively. First, compute

Ω1 = Σ
−1 −

1
b̃1Σ−1b̃′1

Σ−1b̃′1b̃1Σ
−1

then continue to compute for all rows of B̃:

Ωi = Ωi−1 −
1

b̃iΩi−1b̃′i
Ωi−1b̃′i b̃iΩi−1

Rows associated with the inactive inequality constraints in B̃, i.e., with Ḣ	, drop out and
therefore they need not be considered.

Standard errors for some parameters associated with active inequality constraints may not
be available, i.e., the rows and columns of Ω associated with those parameters may be all
zeros.

3.8.2 Testing Against Inequality Constraints

Constraints of the form

Hθ ≥ 0, (1)

where H is a matrix of constants, arise in various empirical studies. There is a large
literature on statistical inference under such linear inequality constraints, and more
generally under nonlinear inequality constraints as well. An up-to-date account of these
developments may be found in Silvapulle and Sen (2005). In what follows, we shall
provide an introduction to tests against inequality constraints and indicate how GAUSS
may be used for implementing a simple score test against inequality constraints.

3-37

MaxlikMT 2.0 for GAUSS

Let ψ denote a q × 1 subvector of θ and λ denote the remaining components of θ. For

simplicity, let us write θ =
(
λ

ψ

)
where ψ = (ψ1, . . . , ψq)′ and λ = (λ1, . . . , λp−q)′. Suppose

that we wish to test

H0 : ψ = 0 against H1 : Rψ ≥ 0, ψ , 0 (2)

where R is a given matrix of constants; thus, R does not depend on θ and it is
nonstochastic.

If our objective were to test ψ = 0 against ψ , 0, then a simple and easy to apply test is the
Rao’s Score test, or equivalently the Lagrange Multiplier test. This test is also a valid for
the inequality constrained testing problem in (2), but it may not be the best because it
ignores the inequality constraint Rψ ≥ 0 in the alternative hypothesis. Various tests of (2),
including likelihood ratio and score tests, have been developed. Now, we provide the
essential details for testing (2) using a one-sided score test.

First, it is convenient to introduce the so called chi-bar square distribution that plays an
important role in constrained statistical inference. The asymptotic null distribution of the
likelihood ratio/Wald/Score test of ψ = 0 against ψ , 0 is a chi-square. When there are
inequality constraints, such as Rψ ≥ 0, in the null or the alternative hypothesis, the role of
the chi-square distribution is replaced by a chi-bar square distribution; this is defined in
the next paragraph.

Let Z ∼ N(0,V), where Z is a q × 1 random vector and V is a q × q positive definite
matrix. Let

χ̄2(V,R) = Z′V−1Z −min
Ra≥0

(Z − a)′V−1(Z − a); (3)

in the second term, it is implicit that a is a vector of the same length as Z. We shall use the
notation χ̄2(V,R) is used for the random variable on the RHS of (3) and also for its
distribution. The random variable, χ̄2(V,R), is said to have a chi-bar square distribution

3-38

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

and it can be expressed as follows:

pr(χ̄2(V,R) ≤ c) =
q∑

i=0

wi pr(χ2
i ≤ c)

for some non-negative numbers, wi, i = 0, . . . q, that are functions of (q,V,R); these
quantities are known as chi-bar square weights and also as level probabilities. Except in
some very spacial cases, pr(χ̄2(V,R) ≤ c) is difficult to compute exactly. However, it can
be estimated by simulation to a desired degree of precision as follows:

1. Generate Z from N(0,V).

2. Compute χ̄2(V,R).

3. Repeat the first two steps M times, say M = 10000.

4. Estimate pr(χ̄2(V,R) ≤ c) by the proportion of times χ̄2(V,R) turned out to
be less than or equal to c.

This is the method employed by GAUSS; for a similar method for estimating {wi} see
Wolak (1987). When the number of repeated samples M is 10000, the standard error of
the estimate of the probability obtained by this simulation method does not exceed 0.005;
if c is large so that pr(χ̄2(V,R) ≤ c) is less than 0.1, then the standard error is less than
0.003. Thus, the precision in the estimation can be controlled by adjusting the number of
repeated samples, M.

The asymptotic null distributions of several statistics for testing (2) turns out to be a
chi-bar square distribution. Therefore, the chibarsq() procedure plays an important role
in the implementation of tests against inequality constraints.

3-39

MaxlikMT 2.0 for GAUSS

3.8.3 One-sided Score Test

As in (2) let ψ = (ψ1, . . . , ψq)′ denote a q × 1 subvector of θ, λ denote the remaining

components of θ, and θ =
(
λ

ψ

)
. Suppose that we wish to test

H0 : ψ = 0 against H1 : Rψ ≥ 0, ψ , 0 (4)

where R is a given matrix of constants. A generalized version of Rao’s Score test can be
applied for testing H0 vs H1. Let us first introduce the following: Let L(θ) denote the
log-likelihood and

s(θ) =
∂L(θ)
∂θ

: score function. (5)

Let s(θ) be partitioned as follows to conform with (λ, ψ) :

(
sλ
sψ

)
=

(∂L
∂λ
∂L
∂ψ

)
. (6)

Similarly, let us introduce the following notation for partitioning any given matrix P of the
same order as θ, to conform with the partition, (ψ, λ):

P =
(

Pλλ Pλψ

Pψλ Pψψ

)
(7)

Let λ̃ denote the mle of λ under H0 : ψ = 0, and let

θ̃ =

(
λ̃

0

)
, (8)

3-40

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

denote the mle of θ under H0 : ψ = 0. Let

A(θ) = −E[n−1 ∂

∂θ′
s(θ)] = −n−1E[

∂2

∂θ′∂θ
L(θ)], (9)

B(θ) = var[n−1/2s(θ)] = n−1E[
∂L(θ)
∂θ

)(
∂L(θ)
∂θ

)′]. (10)

Let s̃, Ã, and B̃ denote the corresponding quantities evaluated at θ̃. These three quantities
can be obtained by calling the maximum likelihood procedure under the constraint Hθ = 0
where

H =
(

0 I
)

and I is the identity matrix of the same order as the dimension of ψ; note that Hθ = ψ and
hence Hθ = 0 is equivalent to ψ = 0.

Now, the one-sided score statistic of Silvapulle and Silvapulle (1995) [SS, hereafter],
which is a generalized version of Rao’s Score statistic, for testing H0 : ψ = 0 against the
one-sided alternative H1 : Rψ ≥ 0, ψ , 0 is

TS = ũ′D̃−1ũ −min
Ra≥0

(ũ − a)′D̃−1(ũ − a) (11)

where

D̃ = [(ÃB̃−1Ã′)−1]ψψ, (12)

and

ũ = n−1/2[Ãψψ − ÃψλÃ−1
λλ Ãλψ]−1[s̃ψ − Ãψλ(Ãψψ)−1 s̃λ]. (13)

An attractive feature of this one-sided score test of SS is that it does not require estimation
of the model under the inequality constraints in the alternative hypothesis, and further, the

3-41

MaxlikMT 2.0 for GAUSS

test is applicable for methods based on estimating equations such as Generalized
Estimating Equations (GEE) of Liang and Zeger (1986).

The asymptotic distribution of TS under the null hypothesis is χ̄2(D,R) where
D = [(AB−1A′)−1]ψψ. Therefore, if ts denotes the sample value of TS and D does not
depend on λ then an approximate large sample p-value is pr(χ̄2(D,R) ≥ ts). Further, if the
exact form of D is unknown, then an estimate of the p-value is obtained by substituting an
estimate for D.

Usually D depends on λ. In this case, it is customary to define the asymptotic p-value as
supλ pr(χ̄2(Dλ,R) ≥ ts) where the suffix λ is used to indicate the D matrix depends on λ.
This can be computed approximately by evaluating pr(χ̄2(Dλ,R) ≥ ts) over a grid of λ
values and finding the maximum over that grid; if the dimension q of λ is large, this may
be computing intensive. Alternatively, some authors have suggested to estimate the large
sample p-value by

p̃ = pr(χ̄2(D̃,R) ≥ ts) (14)

where D̃ is treated as nonstochastic; its suitability would depend on the particular case,
and hence should be used with caution.

An upper bound for the large sample p-value is pu = 0.5[pr(χ2
q−1 ≥ ts) + pr(χ2

q ≥ ts)]
where q is the number of components in ψ.

3.8.4 Likelihood Ratio Test

The likelihood ratio statistic is defined as

LRT = 2[max
H1

L(θ) −max
H0

L(θ)]. (15)

The asymptotic null distribution of LRT is χ̄2(HA−1H′, I) where I is the identity matrix
(see Theorem 4.3.1 in Silvapulle and Sen, 2005). Therefore, an estimate of the p-value,

3-42

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

corresponding to (14), for the likelihood ratio test is pr(χ̄2(HÃ−1H′, I) ≥ LRT). An upper
bound for the p-value of LRT is 0.5[pr(χ2

2 ≥ LRT) + pr(χ2
3 ≥ LRT)].

Example

This example replicates a test of an AR-ARCH model described in Silvapulle and Sen
(2005), Section 4.6.6, page 181. The data are observations on the All Ordinaries Index of
Australian companies. The model is an AR-ARCH with three lagged error terms in the
conditional variance equation, and four lagged AR terms in the mean equation. The test
we have in mind is whether ARCH effects exist. This test is complicated by the fact that
they are constrained to be positive to ensure stationarity of the process as well as positive
conditional variances. The null and alternative hypotheses are therefore H0 : Ψ = 0 and
H1 : Ψ ≥ 0 where Ψ includes the three ARCH parameters.

First, a MaxlikMT estimation is generated where the ARCH parameters are fixed to zero.
A maxlikmtControl instance is created for this estimation where its Active member is
used to fix the ARCH parameters to their initial values, zero in this case. Additional
CovParType is set to 2 instructing MaxlikMT to generate the cross-product of the matrix
of first derivatives which is required by chiBarSq.

Second, another maxlikmtControl instance is created containing the specification of the
constraints on the parameters in the hypothesis. In this case they are bounds constraining
the ARCH parameters to be positive.

Third, the maxlikmtResults instance returned from the call to MaxlikMT along with
the DS data structure, and the second maxlikmtControl instance with the specification of
the constraints on the parameters, are passed to chiBarSq for the calculation of the test
statistic and its probability.

Finally, additional constraints that might be placed on ancillary parameters are ignored
here. The method for testing hypotheses described here and employed by chiBarSq does
not allow for constraints on ancillary parameters which is a considerably more
complicated test. The additional constraints that could be placed on the AR parameters to
ensure stationarity are not active and so may be ignored here. It is important to remember

3-43

MaxlikMT 2.0 for GAUSS

therefore that the test described here only holds for hypotheses where constraints are only
placed on the parameters of interest and not the ancillary parameters.

library maxlikmt;

#include maxlikmt.sdf

struct DS d1;

d1 = reshape(dsCreate,2,1);

load z0[] = aoi.asc;

z = packr(lagn(251*ln(trimr(z0,1,0)./trimr(z0,0,1)),0|1|2|3|4));

d1[1].dataMatrix = z[.,1];

d1[2].dataMatrix = z[.,2:5];

proc lpr(struct PV p, struct DS d, ind);

local series,b,omega,arch,const,phi,u2,q,n,h,v;

struct modelResults mm;

omega = pvUnpack(p,"omega");

arch = pvUnpack(p,"arch");

const = pvUnpack(p,"constant");

phi = pvUnpack(p,"phi");

u2 = (d[1].dataMatrix - d[2].dataMatrix * phi - const)ˆ2;

q = rows(arch);

n = rows(u2);

h = ones(n,1);

v = seqa(1,1,q)’ + seqa(0,1,n-q);

h[q+1:rows(h)] = omega + reshape(u2[v],n-q,q) * arch;

h[1:q] = ones(q,1)*meanc(h[q+1:rows(h)]);

mm.function = -0.5*((u2 ./ h) + ln(2 * pi) + ln(h));

retp(mm);

endp;

3-44

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

/*

** hypothesis test that the arch parameters

** are zero versus greater than zero

*/

struct maxlikmtControl c1;

c1 = maxlikmtControlCreate;

c1.A = zeros(3,6) ˜ eye(3);

c1.B = zeros(3,1);

c1.covParType = 2; // causes Jacobian to be computed

// which is needed for chibarsq

struct PV p1;

p1 = pvPack(pvCreate,.08999,"constant");

p1 = pvPack(p1,.25167|-.12599|.09164|.07517,"phi");

p1 = pvPack(p1,3.22713,"omega");

p1 = pvPack(p1,0|0|0,"arch");

/*

** ML estimation of parameters where

** parameters under hypothesis are fixed

** to zero.

*/

struct maxlikmtResults out1;

out1 = maxlikmt(&lpr,p1,d1,c1);

/*

** The maxlikmtControl instance, c2, contains the

** the constraints on the arch parameters

*/

struct maxlikmtControl c2;

c2 = maxlikmtcontrolcreate;

3-45

MaxlikMT 2.0 for GAUSS

c2.bounds = {

-10 10,

-10 10,

-10 10,

-10 10,

-10 10,

0 10,

0 10,

0 10,

0 10 };

psi = { 7, 8, 9 };

{ chibar,chibarprob } = chibarsq(out1,d1,c2,psi);

print;

print;

print "---";

print " test of H(arch) = 0 vs. H(arch) >= 0";

print;

print " chibar " chibar;

print " chibarprob " chibarprob;

The results are

test of H(arch) = 0 vs. H(arch) >= 0

chibar 3.9152

chibarprob 0.0913

3-46

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

3.8.5 Heteroskedastic-consistent Covariance Matrix

When the CovParType member of an instance of maxlikmtControl is set to 2,
MaxlikMT returns heteroskedastic-consistent covariance matrices of the parameters in
the CovPar member of an instance of the maxlikmtResults structure returned from the
call to MaxlikMT.

Define

B =
(
∂F
∂θ

)′ (
∂L
∂θ

)

evaluated at the estimates. Then the covariance matrix of the parameters is

ΩBΩ

3.8.6 Confidence Limits by Inversion

When the model includes inequality constraints, confidence limits computed as the ratio
of the parameter estimate to its standard error are not correct because they do not take into
account that the distribution of the parameter is restricted by its boundaries.

Inversion of the Likelihood Ratio Statistic. Partition a k-vector of
parameters, θ = (θ1 θ2), and let θ̃ be a maximum likelihood estimate of θ, where θ1 is fixed
to some value. A 100(1 − α)% confidence region for the parameters in θ1 is defined by

−2 ∗ log(L(θ̃)/L(θ̂)) ≤ χ2
(1−α,k).

Let

Flr(φ) = min(−2 ∗ log(L(θ̃)/L(θ̂)) | η′iθ = φ,H(θ) ≥ 0)

3-47

MaxlikMT 2.0 for GAUSS

where η is a vector with a one in the i-th position and zeros elsewhere, and H(θ) is a
function describing the constraints. The lower limit of the (1 − α) interval for θi is the
value of φ such that

Flr(φ) = χ2
(1−α,k). (16)

A modified secant method is used to find the value of φ that satisfies (16). The upper limit
is found by defining Flr as a maximum.

The MaxlikMT procedure MaxlikMTProfileLimits solves this problem. Corrections
are made by MaxlikMTProfileLimits when the limits are near constraint boundaries.

Inversion of the Wald Statistic. A 1 − α joint confidence region for θ is the
hyper-ellipsoid

JF(J,N − K;α) = (θ − θ̂)′V−1(θ − θ̂) (17)

where V is the covariance matrix of the parameters, J is the number of parameters
involved in the hypothesis, and F(J,N − K;α) is the upper α area of the F-distribution
with J, N-K degrees of freedom.

If there are no constraints in the model, the 1 − α confidence interval for any selected
parameter is

θ̂ ±
√
η′kV−1ηk t(N − K;α/2)

where ηk is a vector of zeros with the k-th element corresponding to the parameter being
tested set to one.

3-48

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

When there are constraints no such simple description of the interval is possible. Instead it
is necessary to state the confidence limit problem as a parametric nonlinear programming
problem.

The lower limit of the confidence limit is the solution to

min
{
η′kθ | (θ − θ̂)

′V−1(θ − θ̂) ≥ JF(J,N − K;α),G(θ) = 0,H(θ) ≥ 0)
}

where now η can be an arbitrary vector of constants and J =
∑
ηk , 0, and where again

we have assumed that the linear constraints and bounds have been folded in among
nonlinear constraints. The upper limit is the maximum of this same function.

In this form, the minimization is not convex and can’t be solved by the usual methods.
However, the problem can be re-stated as a parametric nonlinear programming problem
(Rust and Burrus, 1972). Define the function

F(φ) = min((θ − θ̂)′V−1(θ − θ̂) | η′kθ = φ,G(θ) = 0,H(θ) ≥ 0)

The upper and lower limits of the 1 − α interval are the values of φ such that

F(φ) = JF(J,N − K;α)

To find this value it is necessary to iteratively refine φ by interpolation until 3.8.6 is
satisfied. The MaxlikMT procedure MaxlikMTInverseWaldLimits solves this problem.

3.8.7 Bootstrap

The bootstrap method is used to generate empirical distributions of the parameters, thus
avoiding the difficulties with the usual methods of statistical inference described above.

3-49

MaxlikMT 2.0 for GAUSS

MaxlikMTBoot

Rather than randomly sample with replacement from the data set, MaxlikMTBoot
performs NumSample weighted maximum likelihood estimations where the weights are
Poisson pseudo-random numbers with expected value equal to the the number of
observations, where NumSample is a member of an instance of the maxlikmtControl
structure. This is asymptotically equivalent to simple random sampling with replacement.
The number of resamplings is determined by setting the NumSample member of an
instance of a maxlikmtControl structure. The default is 100 re-samplings. Efron and
Tibshirani (1993:52) suggest that 100 is satisfactory, 50 is often enough to give a good
estimate, and rarely are more than 200 needed.

The mean of the bootstrapped parameters is returned by MaxlikMTBoot in an instance of
a maxlikmtResults structure as the member Par, an instance of a PV structure. The
covariance matrix is returned as the member CovPar. Confidence limits are returned as
the member BootLimits. In addition MaxlikMTBoot writes the bootstrapped parameter
estimates to a GAUSS data set with the name set in the member BootFileName. If the
name is not specified, MaxlikMTBoot selects the name BOOTxxxx, where xxxx starts at
0000 and increments by 1 until a name is found that is not already in use.

Example

To bootstrap the example in Section 3.7.4, the only necessary alteration is the change the
call to MaxlikMT to a call to MaxlikMTBoot:

library maxlikmt,pgraph;

#include maxlikmt.sdf

#include kern.sdf

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

3-50

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.DataMatrix[.,1];

x = d.DataMatrix[.,2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.Function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.Gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

c0 = maxlikmtcontrolcreate;

c0.Title = "bootstrap example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

c0.BootFilename = "example6";

3-51

MaxlikMT 2.0 for GAUSS

c0.State = 324235;

struct DS d0;

d0.Dname = "maxlikmttobit";

struct maxlikmtResults out1;

out1 = maxlikmtBoot(&lpr,p0,d0,c0);

call maxlikmtPrt(out1);

call maxlikmtkernelDensity(loadd("example6"),

mlmtKernelDensityControlCreate);

3.8.8 Profiling

The MaxlikMT proc, MaxlikMTProfile generates profile t plots as well as plots of the
likelihood profile traces for all of the parameters in the model in pairs. The profile t plots
are used to assess the nonlinearity of the distributions of the individual parameters, and the
likelihood profile traces are used to assess the bivariate distributions. The input and output
arguments to MaxlikMTProfile are identical to those of MaxlikMT. But in addition to
providing the maximum likelihood estimates and covariance matrix of the parameters, a
series of plots are printed to the screen using GAUSS’ Publication Quality Graphics. A
screen is printed for each possible pair of parameters. There are three plots, a profile t plot
for each parameter, and a third plot containing the likelihood profile traces for the two
parameters.

The discussion in this section is based on Bates and Watts (1988), pages 205-216, which is
recommended reading for the interpretation and use of profile t plots and likelihood profile
traces.

3-52

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

The Profile t Plot

Define

θ̃k = (θ̃1, θ̃2, ..., θ̃k−1, θk, θ̃k+1, ..., θ̃K)

This is the vector of maximum likelihood estimates conditional on θk, i.e., where θk is
fixed to some value. Further define the profile t function

τ(θk) = sign(θk − θ̂k)(N − K)
√

2N
[
L(θ̃k) − L(θ̂k)

]
For each parameter in the model, τ is computed over a range of values for θk. These plots
provide exact likelihood intervals for the parameters, and reveal how nonlinear the
estimation is. For a linear model, τ is a straight line through the origin with unit slope. For
nonlinear models, the amount of curvature is diagnostic of the nonlinearity of the
estimation. High curvature suggests that the usual statistical inference using the t-statistic
is hazardous.

The Likelihood Profile Trace

The likelihood profile traces provide information about the bivariate likelihood surfaces.
For nonlinear models the profile traces are curved, showing how the parameter estimates
affect each other and how the projection of the likelihood contours onto the (θk, θ`) plane
might look. For the (θk, θ`) plot, two lines are plotted, L(θ̃k) against θk and L(θ̃`) against θ`.

If the likelihood surface contours are long and thin, indicating the parameters to be
collinear, the profile traces are close together. If the contours are fat, indicating the
parameters to be more uncorrelated, the profile traces tend to be perpendicular. And if the
contours are nearly elliptical, the profile traces are straight. The surface contours for a
linear model would be elliptical and thus the profile traces would be straight and

3-53

MaxlikMT 2.0 for GAUSS

perpendicular to each other. Significant departures of the profile traces from straight,
perpendicular lines, therefore, indicate difficulties with the usual statistical inference.

To generate profile t plots and likelihood profile traces from the example in Section 3.7.4,
it is necessary only to change the call to MaxlikMT to a call to MaxlikMTProfile:

call MaxlikMTPrt(MaxlikMTProfile("maxlikmttobit",0,&lpr,x0));

MaxlikMTProfile produces the same output as MaxlikMT which can be printed out
using a call to MaxlikMTPRT.

For each pair of parameters a plot is generated containing an xy plot of the likelihood
profile traces of the two parameters, and two profile t plots, one for each parameter.

The likelihood profile traces indicate that the distributions of parameters 1 and 2 are
highly correlated. Ideally, the traces would be perpendicular and the trace in this example
is far from ideal.

The profile t plots indicate that the parameter distributions are somewhat nonlinear.
Ideally the profile t plots would be straight lines and this example exhibits significant
nonlinearity. It is clear that any interpretations of the parameters of this model must be
made quite carefully.

3.9 Run-Time Switches

If the user presses H during the iterations, a help table is printed to the screen which
describes the run-time switches. By this method, important global variables may be
modified during the iterations. The case may also be ignored, that is, either upper or lower
case letters suffice.

A Change Algorithm

3-54

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

C Force Exit

G Toggle GradMethod

H Help Table

O Set PrintIters

S Set line search method

V Set Tol

Keyboard polling can be turned off completely by setting the disableKey member of the
maxlikmtControl instance to a nonzero value.

3.10 MaxlikMT Structures

3.10.1 maxlikmtControl

matrix Bounds

matrix Algorithm

matrix Switch

matrix LineSearch

matrix Active

matrix NumObs

matrix MaxIters

matrix Tol

matrix Weights

3-55

MaxlikMT 2.0 for GAUSS

matrix CovParType

matrix Alpha

matrix FeasibleTest

matrix MaxTries

matrix RandRadius

matrix GradMethod

matrix HessMethod

matrix GradStep

matrix HessStep

matrix GradCheck

matrix State

string Title

scalar PrintIters

matrix DisableKey

matrix Select

matrix Center

matrix Increment

matrix Width

matrix NumCat

string BootFileName

string BayesFileName

3-56

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

matrix BayesAlpha

scalar PriorProc

matrix NumSamples

matrix MaxTime

matrix MaxBootTime

3.10.2 maxlikmtResults

struct PV Par

scalar Fct

struct Lagrange

scalar Retcode

string ReturnDescription

matrix CovPar

string CovParDescription

matrix NumObs

matrix Hessian

matrix Xproduct

matrix Waldlimits

matrix Inversewaldlimits

matrix Bayeslimits

matrix Profilelimits

3-57

MaxlikMT 2.0 for GAUSS

matrix Bootlimits

matrix Gradient

matrix NumIterations

matrix ElapsedTime

matrix Alpha

string Title

3.10.3 modelResults

matrix Function

matrix Gradient

matrix Hessian

array Hessianw

matrix NumObs

3.11 Error Handling

3.11.1 Return Codes

The Retcode member of an instance of a maxlikmtResults structure, which is returned
by MaxlikMT, contains a scalar number that contains information about the status of the
iterations upon exiting MaxlikMT. The following table describes their meanings:

0 normal convergence

3-58

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values

8 error with gradient

10 secant update failed

11 maximum time exceeded

12 error with weights

16 function evaluated as complex

20 Hessian failed to invert

34 data set could not be opened

3.11.2 Error Trapping

Setting the PrintIters member of an instance of a maxlikmtControl structure to zero
turns off all printing to the screen. Error codes, however, still are printed to the screen
unless error trapping is also turned on. Setting the trap flag to 4 causes MaxlikMT not to
send the messages to the screen:

trap 4;

3-59

MaxlikMT 2.0 for GAUSS

Whatever the setting of the trap flag, MaxlikMT discontinues computations and returns
with an error code. The trap flag in this case only affects whether messages are printed to
the screen or not. This is an issue when the MaxlikMT function is embedded in a larger
program, and you want the larger program to handle the errors.

3.12 References

1. Andrews, D.W.K, 1999. “Inconsistency of the bootstrap when a parameter
is on the boundary of the parameter space”, Econometrica, 99.

2. Amemiya, Takeshi, 1985. Advanced Econometrics. Cambridge, MA:
Harvard University Press.

3. Bates, Douglas M. and Watts, Donald G., 1988. Nonlinear Regression
Analysis and Its Applications. New York: John Wiley & Sons.

4. Berndt, E., Hall, B., Hall, R., and Hausman, J., 1974. “Estimation and
inference in nonlinear structural models”. Annals of Economic and Social
Measurement 3:653-665.

5. Brent, R.P., 1972. Algorithms for Minimization Without Derivatives.
Englewood Cliffs, NJ: Prentice-Hall.

6. Conn, Andrew R., Gould, Nicholas I.M., Toint, Philippe L., 2000.
Trust-Region Methods. Philadelphia: SIAM.

7. Dennis, Jr., J.E., and Schnabel, R.B., 1983. Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs,
NJ: Prentice-Hall.

8. Efron, Gradley, Robert J. Tibshirani, 1993. An Introduction to the
Bootstrap. New York: Chapman & Hall.

9. Fletcher, R., 1987. Practical Methods of Optimization. New York: Wiley.

10. Gill, P. E. and Murray, W. 1972. “Quasi-Newton methods for unconstrained
optimization.” J. Inst. Math. Appl., 9, 91-108.

3-60

M
axLik

E
stim

ation
M

T
Maximum Likelihood Estimation MT

11. Gourieroux, Christian, Holly, Alberto, and Monfort, Alain (1982).
“Likelihood Ratio test, Wald Test, and Kuhn-Tucker test in linear models
with inequality constraints on the regression parameters”, Econometrica 50:
63-80.

12. Judge, G.G., R.C. Hill, W.E. Griffiths, H. Lütkepohl and T.C. Lee. 1988.
Introduction to the Theory and Practice of Econometrics. 2nd Edition. New
York:Wiley.

13. Judge, G.G., W.E. Griffiths, R.C. Hill, H. Lütkepohl and T.C. Lee. 1985.
The Theory and Practice of Econometrics. 2nd Edition. New York:Wiley.

14. Liang, Kung-Yee and Zeger, Scott L. (1986). Longitudinal Data Analysis
Using Generalized Linear Models, Biometrika, 73, pp 13–22,

15. Schoenberg, Ronald, 1997. “Constrained Maximum Likelihood”.
Computational Economics, 1997:251-266.

16. Silvapulle, Mervyn J. and Sen, Pranab K., 2005. Constrained Statistical
Inference. New York: Wiley.

17. Silvapulle, Mervyn J. and Silvapulle, Paramsothy (1995). A score test
against one-sided alternatives. Journal of the American Statistical
Association, volume 90, pages 342–349.

18. Wolak, Frank A. (1987). An exact test for multiple inequality and equality
constraints in the linear regression model. Journal of the American
Statistical Association, volume 82, pages 782–793.

19. White, H. 1981. “Consequences and detection of misspecified nonlinear
regression models.” Journal of the American Statistical Association
76:419-433.

20. White, H. 1982. “Maximum likelihood estimation of misspecified models.”
Econometrica 50:1-25.

3-61

R
eference

MaxlikMT Reference 4
Maxlikmt

PURPOSE Computes estimates of parameters of a maximum likelihood function
with bounds on parameters.

LIBRARY maxlikmt

FORMAT out = Maxlikmt(&modelProc,par,data,ctl);

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

4-1

Maxlikmt

data instance or matrix of instances of a DS structure containing
data. it is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,
1 a scalar or vector of DS instances passed to Maxlikmt

are passed unchanged to the user-provided
log-likelihood procedure. In this case the structure can
be a scalar, vector, or matrix of DS instances, and all
members of all the instances can be set at the discretion
of the programmer, except that the dname member of
the [1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, Maxlikmt passes the
contents of that data set either in whole or in part to the
user- provided log-likelihood procedure in the
DataMatrix member of the first DS instance. If the
member, Vnames, contains a string array of column
names in the data set, Maxlikmt will select those
columns for passing to that procedure. All other
members, as well as all members of succeeding
elements of a vector of instances may be used at the
programmer’s discretion.

To clarify, if you do not want Maxlikmt to read the data
from a GAUSS data set and pass it to your procedure, you
can pass a DS structure containing whatever you wish to
Maxlikmt and it will be passed untouched to your
procedure.
If you do wish to have Maxlikmt to read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
Maxlikmt will pass the contents in the DataMatrix
member of the first instance.

ctl an instance of a maxlikmtControl structure. Normally an
instance is initialized by calling maxlikmtCreate and

4-2 MMT C R

R
eference

Maxlikmt

members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.Bounds 1 × 2 or K × 2 matrix, bounds on
parameters. If 1 × 2 all parameters
have same bounds. Default = {
-1e256 1e256 }.

ctl.Algorithm scalar, descent algorithm.
1 BFGS (default)
2 DFP
3 Newton
4 BHHH

ctl.Switch 4 × 1 or 4 × 2 vector, controls
algorithm switching:
if 4 × 1:

ctl.Switch[1] algorithm number to
switch to.

ctl.Switch[2] Maxlikmt switches if
function changes less than
this amount.

ctl.Switch[3] Maxlikmt switches if
this number of iterations
is exceeded.

ctl.Switch[4] Maxlikmt switches if
line search step changes
less than this amount.

else if 4 × 2 Maxlikmt switches
between the algorithm in column 1
and column 2. Default = { 1 3, .0001
.0001, 10 10, .0001 .0001 }.

ctl.LineSearch scalar, sets line search method.
0 augmented trust region method

(requires constraints)

MMT C R 4-3

Maxlikmt

1 STEPBT (quadratic and cubic
curve fit) (default)

2 Brent’s method
3 BHHHStep
4 half
5 Wolfe’s condition

ctl.Active K × 1 vector, set K-th element to zero
to fix it to start value. Use the
GAUSS function pvGetIndex to
determine where parameters in the PV
structure are in the vector of
parameters. Default = {.}, all
parameters are active.

ctl.NumObs scalar, number of observations,
required if the log-likelihood
procedure returns a scalar.

ctl.MaxIters scalar, maximum number of
iterations. Default = 10000.

ctl.Tol scalar, convergence tolerance.
Iterations cease when all elements of
the direction vector are less than this
value. Default = 1e − 5.

ctl.Weights vector, weights for objective function
returning a vector. Default = 1.

ctl.CovParType scalar. If 2, QML covariance matrix,
else if 0, no covariance matrix is
computed, else ML covariance matrix
is computed. Default = 1.

ctl.Alpha scalar, probability level for statistical
tests. Default = .05.

ctl.FeasibleTest scalar, if nonzero, parameters are
tested for feasibility before
computing function in line search. If

4-4 MMT C R

R
eference

Maxlikmt

function is defined outside inequality
boundaries, then this test can be
turned off. Default = 1.

ctl.MaxTries scalar, maximum number of attempts
in random search. Default = 100.

ctl.RandRadius scalar, If zero, no random search is
attempted. If nonzero, it is the radius
of the random search. Default = .001.

ctl.GradMethod scalar, method for computing
numerical gradient.
0 central difference
1 forward difference (default)
2 backward difference

ctl.HessMethod scalar, method for computing
numerical Hessian.
0 central difference
1 forward difference (default)
2 backward difference

ctl.GradStep scalar or K × 1, increment size for
computing numerical gradient. If
scalar, stepsize will be value times
parameter estimates for the numerical
gradient. If K × 1, the step size for
the gradient will be the elements of
the vector, i.e., it will not be
multiplied times the parameters.

ctl.HessStep scalar or K × 1, increment size for
computing numerical Hessian. If
scalar, stepsize will be value times
parameter estimates for the numerical
Hessian. If K × 1, the step size for the
gradient will be the elements of the
vector, i.e., it will not be multiplied

MMT C R 4-5

Maxlikmt

times the parameters.
ctl.GradCheck scalar, if nonzero and if analytical

gradients and/or Hessian have been
provided, numerical gradients and/or
Hessian are computed and compared
against the analytical versions.

ctl.State scalar, seed for random number
generator.

ctl.Title string, title of run.
ctl.printIters scalar, if nonzero, prints iteration

information. Default = 0.
ctl.MaxBootTime scalar, maximum number of minutes

to convergence.
ctl.DisableKey scalar, if nonzero, keyboard input

disabled.

OUTPUT out instance of a maxlikmtResults structure. For an instance
named out, the members are:

out.Par instance of a PV structure containing
the parameter estimates. Use
pvUnpack to retrieve matrices and
arrays or pvGetParvector to get the
parameter vector.

out.Fct scalar, function evaluated at
parameters in out.Par

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
parameters.

out.CovParDescription string, description of
out.CovPar.

out.NumObs scalar, number of observations.

4-6 MMT C R

R
eference

Maxlikmt

out.Hessian K × K matrix, Hessian evaluated at
parameters in out.Par.

out.Xproduct K × K matrix, cross-product of N × K
matrix of first derivatives evaluated at
parameters in out.Par. Not available
if loglikelihood function returns a
scalar.

out.WaldLimits K × 2 matrix, Wald confidence limits.
out.inverseWaldLimits K × 2 matrix, confidence

limits by inversion of Wald statistics.
Available only if
maxlikmtInverseWaldLimits has
been called.

out.ProfileLimits K × 2 matrix, profile likelihood
confidence limits, i.e., by inversion of
likelihood ratio statistics. Only
available if
maxlikmtProfileLimits has been
called.

out.BayesLimits K × 2 matrix, weighted likelihood
Bayesian confidence limits. Only
available if maxlikmtBayes has been
called.

out.BootLimits K × 2 Matrix, bootstrap confidence
limits. Available only if
maxlikmtBoot has been called.

out.Gradient K × 1 vector, gradient evaluated at
the parameters in out.Par.

out.NumIterations scalar, number of iterations.
out.ElapsedTime scalar, elapsed time of iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.
out.Title string, title of run.

MMT C R 4-7

Maxlikmt

out.Lagrange K ×2 matrix, Lagrangeans for the
bounds constraints.
Whenever a constraint is active, its
associated Lagrangean will be
nonzero. For any constraint that is
inactive throughout the iterations as
well as at convergence, the
corresponding Lagrangean matrix
will be set to a scalar missing value.

out.Retcode return code:
0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
10 secant update failed
11 maximum time exceeded
12 error with weights
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened

REMARKS Writing the Log-likelihood Function There is one required
user-provided procedure, the one computing the log-likelihood function
and optionally the first and/or second derivatives, and four other
optional procedures, one each for computing the equality constraints,
the inequality constraints, the Jacobian of the equality constraints, and
the Jacobian of the inequality constraints.

4-8 MMT C R

R
eference

Maxlikmt

The main procedure, computing the log-likelihood and optionally the
first and/or second derivatives, has three arguments, an instance of type
struct PV containing the parameters, a second argument that is an
instance of type struct DS containing the data, and a third argument that
is a vector of zeros and ones indicating which of the results, the
function, first derivatives, or second derivatives, are to be computed.

The remaining optional procedures take just two arguments, the
instance of the PV structure containing the parameters and the the
instance of the DS structure containing the data.

The instance of the PV structure is set up using the PV pack procedures,
pvPack, pvPackm, pvPacks, and pvPacksm. These procedures allow
for setting up a parameter vector in a variety of ways.

The instance of the DS structure containing the data is set up in two
distinct ways depending on whether Maxlikmt is to read the data in
from a GAUSS data set, or whether the data is in a matrix.

For example, the following procedure computes the log-likelihood and
the first derivatives for a tobit model:

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d[1].dataMatrix;

x = d[2].dataMatrix;

yh = b0 + x * b;

res = y - yh;

MMT C R 4-9

Maxlikmt

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

EXAMPLE The following is a complete example. It applys the Biochemical
Oxygen Demand model to data taken from Douglas M. Bates and
Donald G. Watts, Nonlinear Regression Analysis and Its Applications,
page 270.

library maxlikmt;

#include maxlikmt.sdf

proc lnlk(struct PV p, struct DS d, ind);

local dev,s2,m,r,b0,b;

struct modelResults mm;

b0 = pvUnpack(p,1);

b = pvUnpack(p,2);

r = exp(-b*d[2].dataMatrix);

m = 1 - r;

4-10 MMT C R

R
eference

Maxlikmt

dev = d[1].dataMatrix - b0*m;

s2 = dev’dev/rows(dev);

if ind[1];

mm.function = lnpdfmvn(dev,s2);

endif;

if ind[2];

mm.gradient = (dev/s2) .*

(m ˜ b0*d[2].dataMatrix.*r);

endif;

retp(mm);

endp;

struct DS d0;

d0 = reshape(dsCreate,2,1);

d0[1].dataMatrix =

{

8.3,

10.3,

19.0,

16.0,

15.6,

19.8

};

d0[2].dataMatrix =

{

1,

2,

3,

4,

5,

7

};

struct PV p0;

p0 = pvPacki(pvCreate,19.143,"b0",1);

MMT C R 4-11

MaxlikmtBayes

p0 = pvPacki(p0,.5311,"b",2);

struct maxlikmtControl c0;

c0 = maxlikmtControlCreate;

c0.Bounds = { 10 35,

0 2 };

struct maxlikmtResults out;

out = maxlikmt(&lnlk,p0,d0,c0);

SOURCE maxlikmt.src

MaxlikmtBayes

PURPOSE Bayesian Inference using weighted maximum likelihood bootstrap.

LIBRARY maxlikmt

FORMAT out = MaxlikmtBayes(&modelProc,par,data,ctl)

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

data instance or matrix of instances of a DS structure containing
data. it is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,

4-12 MMT C R

R
eference

MaxlikmtBayes

1 a scalar or vector of DS instances passed to Maxlikmt
are passed unchanged to the user-provided
log-likelihood procedure. In this case the structure can
be a scalar, vector, or matrix of DS instances, and all
members of all the instances can be set at the discretion
of the programmer, except that the dname member of
the [1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, Maxlikmt passes the
contents of that data set either in whole or in part to the
user- provided log-likelihood procedure in the
DataMatrix member of the first DS instance. If the
member, Vnames, contains a string array of column
names in the data set Maxlikmt will select those
columns for passing to that procedure. All other
members, as well as all members of succeeding
elements of a vector of instances may be used at the
programmers discretion.

To clarify, if you do not want Maxlikmt to read the data
from a GAUSS data set and pass it to your procedure, you
can pass a DS structure containing whatever you wish to
Maxlikmt and it will be passed untouched to your
procedure.
If you do wish to have Maxlikmt read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
Maxlikmt will pass the contents in the DataMatrix
member of the first instance.

ctl an instance of a maxlikmtControl structure. Normally an
instance is initialized by calling maxlikmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.BayesAlpha scalar, exponent of the Dirichlet
random variates used in the weights

MMT C R 4-13

MaxlikmtBayes

for the weighted bootstrap. See
Newton and Raftery, “Approximate
Bayesian Inference with the Weighted
Likelihood Bootstrap”, J.R.Statist.
Soc. B (1994), 56:3-48. Default =
1.4.

ctl.PriorProc scalar, pointer to proc for computing
prior. This proc takes the parameter
vector as its only argument and
returns a scalar probability. If a proc
is not provided, a uniform prior is
assumed.

ctl.NumSample scalar, number of re-samples in the
weighted likelihood bootstrap.

ctl.BayesFname string, file name of GAUSS data set
(do not include the .DAT extension)
containing simulated posterior of the
parameters. If not specified,
MaxlikmtBayes will select the file
name, BAYESxxxx where xxxx is
0000 incremented by 1 until a name
is found that doesn’t exist on the
current directory.

ctl.MaxBootTime scalar, maximum number of minutes
for resampling.

For description of additional members of the
maxlikmtControl structure see reference for Maxlikmt.

OUTPUT out instance of a maxlikmtResults structure.
out.Par instance of a PV structure containing

the mean of the resampled estimates.
Use pvUnpack to retrieve matrices
and arrays or pvGetParvector to
get the parameter vector.

4-14 MMT C R

R
eference

MaxlikmtBayes

out.Fct scalar, mean log-likelihood across
resamples.

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
resampled parameter estimates.

out.CovParDescription string, description of
out.CovPar.

out.NumObs scalar, number of observations.
out.BayesLimits K × 2 matrix, weighted likelihood

Bayesian confidence limits. Only
available if maxlikmtBayes has been
called.

out.Gradient K × 1 vector, mean gradient.
out.NumIterations scalar, average number of

iterations.
out.ElapsedTime scalar, average elapsed time of

iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.
out.Title string, title of run.
out.Retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient

MMT C R 4-15

MaxlikmtBayes

10 secant update failed
11 maximum time exceeded
12 error with weights
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened

EXAMPLE
library maxlikmt,pgraph;

#include maxlikmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

4-16 MMT C R

R
eference

MaxlikmtBayes

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

c0 = maxlikmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

c0.numSamples = 200;

c0.bayesFileName = "bayes";

proc prior(b); /* unit normal prior */

retp(prodc(pdfn(b)));

endp;

c0.PriorProc = &prior;

struct DS d0;

d0 = dsCreate;

d0.dname = "maxlikmttobit";

out1 = maxlikmtBayes(&lpr,p0,d0,c0);

MMT C R 4-17

MaxlikmtBoot

call maxlikmtPrt(out1);

SOURCE maxlikmtbayes.src

MaxlikmtBoot

PURPOSE Computes bootstrap estimates.

LIBRARY maxlikmt

FORMAT out = MaxlikmtBoot(&modelProc,par,data,ctl)

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

data instance or matrix of instances of a DS structure containing
data. It is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,

1 a scalar or vector of DS instances passed to Maxlikmt
are passed unchanged to the user-provided
log-likelihood procedure. In this case the structure can
be a scalar, vector, or matrix of DS instances, and all
members of all the instances can be set at the discretion
of the programmer, except that the dname member of
the [1,1] element of the structure must be a null string.

4-18 MMT C R

R
eference

MaxlikmtBoot

2 if the dname member of the DS instance contains the
name of a GAUSS data set, Maxlikmt passes the
contents of that data set either in whole or in part to the
user- provided log-likelihood procedure in the
DataMatrix member of the first DS instance. If the
member, Vnames, contains a string array of column
names in the data set Maxlikmt will select those
columns for passing to that procedure. All other
members, as well as all members of succeeding
elements of a vector of instances may be used at the
programmers discretion.

To clarify, if you do not want Maxlikmt to read the data
from a GAUSS data set and pass it to your procedure, you
can pass a DS structure containing whatever you wish to
Maxlikmt and it will be passed untouched to your
procedure.
If you do wish to have Maxlikmt to read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
Maxlikmt will pass the contents in the DataMatrix
member of the first instance.

ctl an instance of a maxlikmtControl structure. Normally an
instance is initialized by calling maxlikmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.NumSample scalar, number of re-samples in the
weighted likelihood bootstrap.

ctl.BootFname string, file name of GAUSS data set
(do not include the .DAT extension)
containing simulated posterior of the
parameters. If not specified,
MaxlikmtBoot will select the file
name, BAYESxxxx where xxxx is
0000 incremented by 1 until a name

MMT C R 4-19

MaxlikmtBoot

is found that doesn’t exist on the
current directory.

ctl.MaxBootTime scalar, maximum number of minutes
for resampling.

For description of additional members of the
maxlikmtControl structure see reference for Maxlikmt.

OUTPUT out instance of a maxlikmtResults structure.

out.Par instance of a PV structure containing
the mean of the resampled estimates.
Use pvUnpack to retrieve matrices
and arrays or pvGetParvector to
get the parameter vector.

out.Fct scalar, mean log-likelihood across
resamples.

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
resampled parameter estimates.

out.CovParDescription string, description of
out.CovPar.

out.NumObs scalar, number of observations.
out.BootLimits K × 2 Matrix, bootstrap confidence

limits. Available only if
maxlikmtBoot has been called.

out.Gradient K × 1 vector, mean gradient.
out.NumIterations scalar, average number of

iterations.
out.ElapsedTime scalar, average elapsed time of

iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.

4-20 MMT C R

R
eference

MaxlikmtBoot

out.Title string, title of run.
out.Retcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
10 secant update failed
11 maximum time exceeded
12 error with weights
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened

EXAMPLE
library maxlikmt,pgraph;

#include maxlikmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

MMT C R 4-21

MaxlikmtBoot

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

c0 = maxlikmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

4-22 MMT C R

R
eference

MaxlikmtControlCreate

-10 10,

-10 10,

.1 10 };

c0.numSamples = 200;

c0.bootFileName = "boot";

proc prior(b); /* unit normal prior */

retp(prodc(pdfn(b)));

endp;

c0.PriorProc = &prior;

struct DS d0;

d0 = dsCreate;

d0.dname = "maxlikmttobit";

out1 = maxlikmtBoot(&lpr,p0,d0,c0);

call maxlikmtPrt(out1);

SOURCE maxlikmtboot.src

MaxlikmtControlCreate

PURPOSE Creates a default instance of type MaxlikmtControl.

MMT C R 4-23

MaxlikmtInverseWaldLimits

LIBRARY maxlikmt

FORMAT s = MaxlikmtControlCreate;

OUTPUT s instance of type MaxlikmtControl.

SOURCE maxlikmtutil.src

MaxlikmtInverseWaldLimits

PURPOSE Computes confidence limits by inversion of the Wald statistic.

LIBRARY maxlikmt

FORMAT out = MaxlikmtInverseWaldLimits(out,ctl)

INPUT out instance of maxlikmtResults structure containing results
of an estimation generated by a call to maxlikmt.

ctl an instance of a maxlikmtControl structure. Normally an
instance is initialized by calling maxlikmtCreate and
members of this instance can be set to other values by the
user.

For description of the maxlikmtControl structure see reference for
Maxlikmt.

OUTPUT out instance of a maxlikmtResults structure. The member
out.ProfileLimits is filled with the confidence limits by
inversion of the likelihood ratio statistic. The remaining
members are untouched. For description of additional
maxlikmtResults members see reference for Maxlikmt.

4-24 MMT C R

R
eference

MaxlikmtInverseWaldLimits

EXAMPLE
library maxlikmt,pgraph;

#include maxlikmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

MMT C R 4-25

MaxlikmtProfile

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

c0 = maxlikmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

struct DS d0;

d0 = dsCreate;

d0.dname = "maxlikmttobit";

struct maxlikmtResults out1;

out1 = maxlikmt(&lpr,p0,d0,c0);

out1 = maxlikmtInverseWaldLimits(&lpr,out1,d0,c0);

call maxlikmtPrt(out1);

SOURCE maxlikmtpflim.src

MaxlikmtProfile

4-26 MMT C R

R
eference

MaxlikmtProfile

PURPOSE Computes profile t plots and likelihood profile traces for maximum
likelihood models.

LIBRARY maxlikmt

FORMAT out = MaxlikmtProfile(&modelProc,par,data,ctl)

INPUT &modelProc a pointer to a procedure that returns either the
log-likelihood for one observation or a vector of
log-likelihoods for a matrix of observations.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.

data instance or matrix of instances of a DS structure containing
data. it is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. There are two
cases,
1 a scalar or vector of DS instances passed to Maxlikmt

are passed unchanged to the user-provided
log-likelihood procedure. In this case the structure can
be a scalar, vector, or matrix of DS instances, and all
members of all the instances can be set at the discretion
of the programmer, except that the dname member of
the [1,1] element of the structure must be a null string.

2 if the dname member of the DS instance contains the
name of a GAUSS data set, Maxlikmt passes the
contents of that data set either in whole or in part to the
user-provided log-likelihood procedure in the
DataMatrix member of the first DS instance. If the
member, Vnames, contains a string array of column
names in the data set Maxlikmt will select those
columns for passing to that procedure. All other
members, as well as all members of succeeding
elements of a vector of instances may be used at the
programmers discretion.

MMT C R 4-27

MaxlikmtProfile

To clarify, if you do not want Maxlikmt to read the data
from a GAUSS data set and pass it to your procedure, you
can pass a DS structure containing whatever you wish to
Maxlikmt and it will be passed untouched to your
procedure.
If you do wish to have Maxlikmt to read the data from a
GAUSS data set, set the dname member of the first instance
in the DS structure to the name of the GAUSS data set, and
Maxlikmt will pass the contents in the DataMatrix
member of the first instance.

ctl an instance of a maxlikmtControl structure. Normally an
instance is initialized by calling maxlikmtCreate and
members of this instance can be set to other values by the
user. For an instance named ctl, the members are:

ctl.NumCat scalar, number of categories in profile
table. Default = 16.

ctl.Increment K × 1 vector, increments for cutting
points, default is 2 * ctl.Width * std
dev / ctl.NumCat. If scalar zero,
increments are computed by
MaxlikmtProfile.

ctl.Center K × 1 vector, value of center category
in profile table. Default values are
coefficient estimates.

ctl.Select selection vector for selecting
coefficients to be included in
profiling, for example

ctl.Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th
parameters for profiling.

ctl.Width scalar, width of profile table in units
of the standard deviations of the
parameters. Default = 2.

4-28 MMT C R

R
eference

MaxlikmtProfile

For description of additional members of the maxlikmtControl
structure see reference for Maxlikmt.

OUTPUT out instance of a maxlikmtResults structure.

out.Par instance of a PV structure containing
the mean of the resampled estimates.
Use pvUnpack to retrieve matrices
and arrays or pvGetParvector to
get the parameter vector.

out.Fct scalar, mean log-likelihood across
resamples.

out.ReturnDescription string, description of return
values.

out.CovPar K × K matrix, covariance matrix of
resampled parameter estimates.

out.CovParDescription string, description of
out.CovPar

out.NumObs scalar, number of observations.
out.ProfileLimits K × 2 matrix, profilestrap

confidence limits. Available only if
maxlikmtProfile has been called.

out.Gradient K × 1 vector, mean gradient.
out.NumIterations scalar, average number of

iterations.
out.ElapsedTime scalar, average elapsed time of

iterations.
out.Alpha scalar, probability level of confidence

limits. Default = .05.
out.Title string, title of run.
out.Retcode return code:

0 normal convergence
1 forced exit

MMT C R 4-29

MaxlikmtProfile

2 maximum number of iterations
exceeded

3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
10 secant update failed
11 maximum time exceeded
12 error with weights
16 function evaluated as complex
20 Hessian failed to invert
34 data set could not be opened

REMARKS For each pair of the selected parameters, three plots are printed to the
screen. Two of these are the profile t trace plots that describe the
univariate profiles of the parameters, and one of them is the profile
likelihood trace describing the joint distribution of the two parameters.
Ideally distributed parameters would have univariate profile t traces that
are straight lines, and bivariate likelihood profile traces that are two
straight lines intersecting at right angles. This ideal is generally not met
by nonlinear models, however, large deviations from the ideal indicate
serious problems with the usual statistical inference.

EXAMPLE
library maxlikmt,pgraph;

#include maxlikmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

4-30 MMT C R

R
eference

MaxlikmtProfile

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) +

(1-u).*(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

MMT C R 4-31

MaxlikmtProfileLimits

c0 = maxlikmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

struct DS d0;

d0 = dsCreate;

d0.dname = "maxlikmttobit";

out1 = maxlikmtProfile(&lpr,p0,d0,c0);

call maxlikmtPrt(out1);

SOURCE maxlikmtprofile.src

MaxlikmtProfileLimits

PURPOSE Computes confidence limits by inversion of the likelihood ratio statistic.

LIBRARY maxlikmt

FORMAT out = MaxlikmtProfileLimits(&modelProc,out,data,ctl)

INPUT &modelProc a pointer to the log-likelihood procedure used to generate
results of an estimation by a call to maxlikmt.

out instance of maxlikmtResults structure containing results
of an estimation generated by a call to maxlikmt.

4-32 MMT C R

R
eference

MaxlikmtProfileLimits

data instance of the DS data structure used in the call to
maxlikmt that produced the results in out.

ctl an instance of a maxlikmtControl structure. Normally an
instance is initialized by calling maxlikmtCreate and
members of this instance can be set to other values by the
user.

For description of the maxlikmtControl structure see reference for
Maxlikmt.

OUTPUT out instance of a maxlikmtResults structure. The member
out.ProfileLimits is filled with the confidence limits by
inversion of the likelihood ratio statistic. The remaining
members are untouched. For description of additional
maxlikmtResutls members see reference for Maxlikmt.

EXAMPLE
library maxlikmt,pgraph;

#include maxlikmt.sdf

#include kern.sdf

graphset;

proc lpr(struct PV p, struct DS d, ind);

local s2,b0,b,y,x,yh,u,res,g1,g2;

struct modelResults mm;

b0 = pvUnpack(p,"b0");

b = pvUnpack(p,"b");

s2 = pvUnpack(p,"variance");

y = d.dataMatrix[1];

x = d[2].dataMatrix[2:4];

yh = b0 + x * b;

MMT C R 4-33

MaxlikmtProfileLimits

res = y - yh;

u = y[.,1] ./= 0;

if ind[1];

mm.function = u.*lnpdfmvn(res,s2) + (1-u).*

(ln(cdfnc(yh/sqrt(s2))));

endif;

if ind[2];

yh = yh/sqrt(s2);

g1 = ((res˜x.*res)/s2)˜((res.*res/s2)-1)/(2*s2);

g2 = (-(ones(rows(x),1)˜x)/sqrt(s2))˜(yh/(2*s2));

g2 = (pdfn(yh)./cdfnc(yh)).*g2;

mm.gradient = u.*g1 + (1-u).*g2;

endif;

retp(mm);

endp;

struct PV p0;

p0 = pvPack(pvCreate,1,"b0");

p0 = pvPack(p0,1|1|1,"b");

p0 = pvPack(p0,1,"variance");

struct maxlikmtControl c0;

c0 = maxlikmtcontrolcreate;

c0.title = "tobit example";

c0.Bounds = { -10 10,

-10 10,

-10 10,

-10 10,

.1 10 };

struct DS d0;

d0 = dsCreate;

4-34 MMT C R

R
eference

MaxlikmtPrt

d0.dname = "maxlikmttobit";

struct maxlikmtResults out1;

out1 = maxlikmt(&lpr,p0,d0,c0);

out1 = maxlikmtProfileLimits(&lpr,out1,d0,c0);

call maxlikmtPrt(out1);

SOURCE maxlikmtpflim.src

MaxlikmtPrt

PURPOSE Formats and prints the output from a call to Maxlikmt.

LIBRARY maxlikmt

FORMAT out = MaxlikmtPrt(out);

INPUT out instance of maxlikmtResults structure containing results
of an estimation generated by a call to maxlikmt.

OUTPUT out the input instance of the maxlikmtResults structure
unchanged.

REMARKS The call to Maxlikmt can be nested in the call to MaxlikmtPrt:

call MaxlikmtPrt(Maxlikmt(&modelProc,par,data,ctl));

SOURCE maxlikmtutil.src

MMT C R 4-35

MaxlikmtResultsCreate

MaxlikmtResultsCreate

PURPOSE Creates a default instance of type MaxlikmtResults.

LIBRARY maxlikmt

FORMAT s = MaxlikmtResultsCreate;

OUTPUT s instance of type MaxlikmtResults.

SOURCE maxlikmtutil.src

ModelResultsCreate

PURPOSE Creates a default instance of type ModelResults.

LIBRARY maxlikmt

FORMAT s = ModelResultsCreate;

OUTPUT s instance of type ModelResults.

SOURCE maxlikmtutil.src

4-36 MMT C R

Index

Index

Index

Active, 3-9, 3-55
active parameters, 3-9
AD, 3-28
algorithm, 3-54
Algorithm, 3-55
algorithmic derivatives, 3-28
Alpha, 3-55, 3-57

B

BayesAlpha, 3-55
BayesFileName, 3-55
Bayeslimits, 3-57
BFGS, 3-7
BHHHSTEP, 3-9
BootFileName, 3-55
Bootlimits, 3-57
bootstrap, 3-34, 3-49
Bounds, 3-10, 3-55
BRENT, 3-8

C

Center, 3-55
condition of Hessian, 3-24
confidence limits, 3-47

covariance matrix, parameters, 3-33,
3-36, 3-47, 3-52

covPar, 3-36
CovPar, 3-47, 3-57
CovParDescription, 3-57
CovParType, 3-55

D

DataMatrix, 3-14
DFP, 3-7
Tol, 3-55
disableKey, 3-55
DisableKey, 3-55
Dname, 3-14
DS, 3-17

E

ElapsedTime, 3-57

F

Fct, 3-57
FeasibleTest, 3-55
force exit, 3-55
Function, 3-58

Index-1

Index

G

global variables, 3-54
GradCheck, 3-55
Gradient, 3-57, 3-58
GradMethod, 3-55
GradMethod, 3-55
GradStep, 3-55

H

HALF, 3-8
Help Table, 3-55
Hessian, 3-6, 3-24, 3-36, 3-57, 3-58
Hessianw, 3-58
HessMethod, 3-55
HessStep, 3-55
heteroskedastic-consistent covariance

matrix, 3-47

I

inactive parameters, 3-9
Increment, 3-55
Installation, 1-1
Inversewaldlimits, 3-57

L

Lagrange, 3-57
likelihood profile trace, 3-52, 3-53
line search, 3-7, 3-55
LineSearch, 3-55
log-likelihood function, 3-4, 4-1, 4-8,

4-12, 4-18, 4-27

M

MaxBootTime, 3-55
maximum likelihood, 3-4, 4-1
MaxIters, 3-55
MaxlikMT, 4-1
MaxlikmtBayes, 4-12
MaxlikMTBoot, 3-34, 3-50
MaxlikmtBoot, 4-18
maxlikmtControl, 3-55
MaxlikmtControlCreate, 4-23
MaxlikMTInverseWaldLimits, 3-49
MaxlikmtInverseWaldLimits, 4-24
MaxlikMTProfile, 3-34
MaxlikmtProfile, 4-26
MaxlikMTProfileLimits, 3-48
MaxlikmtProfileLimits, 4-32
MaxlikmtPrt, 4-35
MaxlikmtResultsCreate, 4-36
MaxTime, 3-55
MaxTries, 3-55
modelResults, 3-20
ModelResultsCreate, 4-36

N

NEWTON, 3-7
NumCat, 3-55
NumIterations, 3-57
NumObs, 3-55, 3-57, 3-58
NumSample, 3-50
NumSamples, 3-55

O

objective function, 4-8

Index-2

Index

Index

P

PrintIters, 3-55
PrintIters, 3-55
PriorProc, 3-55
profile t plot, 3-52, 3-53
Profilelimits, 3-57
PV Par, 3-57
PV structure, 3-16
pvPack, 3-11
pvPacki, 3-11
pvPackm, 3-11
pvPacks, 3-11
pvPacksm, 3-11
pvUnpack, 3-16

Q

quasi-Newton, 3-7

R

RandRadius, 3-8
RandRadius, 3-55
resampling, 3-49
Retcode, 3-57
ReturnDescription, 3-57
Run-Time Switches, 3-54

S

scaling, 3-24
Select, 3-55
starting point, 3-25
State, 3-55
statistical inference, 3-33
step length, 3-7, 3-55

STEPBT, 3-8
Switch, 3-55

T

Title, 3-55, 3-57
Tol, 3-55

U

UNIX, 1-3
UNIX/Linux/Mac, 1-1

V

Vnames, 3-14

W

Waldlimits, 3-57
weighted maximum likelihood, 3-9
Weights, 3-9, 3-55
Width, 3-55
Windows, 1-2, 1-3

X

Xproduct, 3-57

Index Index-3

	1 Installation
	1.1 UNIX/Linux/Mac
	1.1.1 Download
	1.1.2 CD

	1.2 Windows
	1.2.1 Download
	1.2.2 CD
	1.2.3 64-Bit Windows

	1.3 Difference Between the UNIX and Windows Versions

	2 Getting Started
	2.0.1 README Files
	2.0.2 Setup

	3 Maximum Likelihood Estimation MT
	3.1 Special Features in Maximum Likelihood Estimation MT
	3.1.1 Structures
	3.1.2 Threading
	3.1.3 Simple Bounds
	3.1.4 Hypothesis Testing for Models with Bounded Parameters

	3.2 The Log-likelihood Function
	3.3 Algorithm
	3.3.1 The Secant Algorithms
	3.3.2 Line Search Methods
	3.3.3 Weighted Maximum Likelihood
	3.3.4 Active and Inactive Parameters

	3.4 Bounds
	3.5 The MaxlikMT Procedure
	3.5.1 First Input Argument: Pointer to Procedure
	3.5.2 Second Input Argument: PV parameter Instance
	3.5.3 Third Input Argument: DS Data Instance
	3.5.4 Fourth Input Argument: maxlikmtControl Instance

	3.6 The Log-likelihood Procedure
	3.6.1 First Input Argument: PV Parameter Instance
	3.6.2 Second Input Argument: DS Data Instance
	3.6.3 Third Input Argument: Indicator Vector
	3.6.4 Output Argument: modelResults Instance
	3.6.5 Examples

	3.7 Managing Optimization
	3.7.1 Scaling
	3.7.2 Condition
	3.7.3 Starting Point
	3.7.4 Example
	3.7.5 Algorithmic Derivatives

	3.8 Inference
	3.8.1 Covariance Matrix of the Parameters
	3.8.2 Testing Against Inequality Constraints
	3.8.3 One-sided Score Test
	3.8.4 Likelihood Ratio Test
	3.8.5 Heteroskedastic-consistent Covariance Matrix
	3.8.6 Confidence Limits by Inversion
	3.8.7 Bootstrap
	3.8.8 Profiling

	3.9 Run-Time Switches
	3.10 MaxlikMT Structures
	3.10.1 maxlikmtControl
	3.10.2 maxlikmtResults
	3.10.3 modelResults

	3.11 Error Handling
	3.11.1 Return Codes
	3.11.2 Error Trapping

	3.12 References

	4 MaxlikMT Reference
	Maxlikmt
	MaxlikmtBayes
	MaxlikmtBoot
	MaxlikmtControlCreate
	MaxlikmtInverseWaldLimits
	MaxlikmtProfile
	MaxlikmtProfileLimits
	MaxlikmtPrt
	MaxlikmtResultsCreate
	ModelResultsCreate

	Index

