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Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss
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4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2
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Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3
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Maximum Likelihood
Estimation 3

3.1 The Log-likelihood Function

Maximum Likelihood is a set of procedures for the estimation of the parameters of
models via the maximum likelihood method with general constraints on the parameters,
along with an additional set of procedures for statistical inference.

Maximum Likelihood solves the general maximum likelihood problem

L =
N∑

i=1

log P(Yi; θ)wi

where N is the number of observations, P(Yi, θ) is the probability of Yi given θ, a vector of
parameters, and wi is the weight of the i-th observation.

3-1
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The Maximum Likelihood procedure Maxlik finds values for the parameters in θ such
that L is maximized. In fact Maxlik minimizes −L. It is important to note, however, that
the user must specify the log-probability to be maximized. Maxlik transforms the function
into the form to be minimized.

Maxlik has been designed to make the specification of the function and the handling of
the data convenient. The user supplies a procedure that computes log P(Yi; θ), i.e., the
log-likelihood, given the parameters in θ, for either an individual observation or set of
observations (i.e., it must return either the log-likelihood for an individual observation or a
vector of log-likelihoods for a matrix of observations; see discussion of the global variable
__row below). Maxlik uses this procedure to construct the function to be minimized.

3.2 Algorithm

Maximum Likelihood finds values for the parameters using an iterative method. In this
method the parameters are updated in a series of iterations beginning with a starting values
that you provide. Let θt be the current parameter values. Then the succeeding values are

θt+1 = θt + ρδ

where δ is a k × 1 direction vector, and ρ a scalar step length.

Direction

Define

Σ(θ) =
∂2L
∂θ∂θ′

3-2
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Ψ(θ) =
∂L
∂θ

The direction, δ is the solution to

Σ(θt)δ = Ψ(θt)

This solution requires that Σ be positive definite.

Line Search

The line search finds a value of ρ that minimizes or decreases L(θt + ρδ).

3.2.1 Derivatives

The minimization requires the calculation of a Hessian, Σ, and the gradient, Ψ. Maxlik
computes these numerically if procedures to compute them are not supplied.

If you provide a proc for computing Ψ, the first derivative of L, Maxlik uses it in
computing Σ, the second derivative of L, i.e., Σ is computed as the Jacobian of the
gradient. This improves the computational precision of the Hessian by about four places.
The accuracy of the gradient is improved and thus the iterations converge in fewer
iterations. Moreover, the convergence takes less time because of a decrease in function
calls - the numerical gradient requires k function calls while an analytical gradient reduces
that to one.

3.2.2 The Secant Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start values
may produce an ill-conditioned Hessian. For these reasons alternative algorithms are

3-3
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provided in Maxlik for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during the
execution of Maxlik.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the estimate
of the Hessian, improving its ability to project the direction of the descent. Thus after
several iterations the secant algorithm should do nearly as well as Newton iteration with
much less computation.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb, and
Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two updates,
that is, they are analogous to adding two rows of new data to a previously computed
moment matrix. The Cholesky factorization of the estimate of the Hessian is updated
using the functions cholup and choldn.

In addition, Maxlik includes a scoring method, BHHH (Berndt, Hall, Hall, and
Hausman). This method computes the gradient of the likelihood by observation, i.e., the
Jacobian, and estimates Σ as the cross-product of this Jacobian.

Secant Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the method
of Davidon, Fletcher, and Powell. These methods are complementary (Luenberger 1984,
page 268). BFGS and DFP are like the NEWTON method in that they use both first and
second derivative information. However, in DFP and BFGS the Hessian is approximated,
reducing considerably the computational requirements. Because they do not explicitly
calculate the second derivatives they are sometimes called quasi-Newton methods. While
it takes more iterations than the NEWTON method, the use of an approximation produces
a gain because it can be expected to converge in less overall time (unless analytical second
derivatives are available in which case it might be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the Hessian.
This is not the best method numerically for the BFGS algorithm (Gill and Murray, 1972).

3-4
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This version of Maxlik, following Gill and Murray (1972), updates the Cholesky
factorization of the Hessian instead, using the functions cholup and choldn for BFGS.
The new direction is then computed using cholsol, a Cholesky solve, as applied to the
updated Cholesky factorization of the Hessian and the gradient.

3.2.3 Convergence

Convergence is declared when the relative gradient is less than _max_GradTol. The
relative gradient is a scaled gradient and is used for determining convergence in order to
reduce the effects of scale. It is defined as the absolute value of the gradient times the
absolute value of the parameter vector divided by the larger of zero and the absolute value
of the function. By default, _max_GradTol = 1e-5.

3.2.4 Berndt, Hall, Hall, and Hausman’s (BHHH) Method

BHHH is a method proposed by Berndt, Hall, Hall and Hausman (1974) for the
maximization of log-likelihood functions. It is a scoring method that uses the
cross-product of the matrix of first derivatives to estimate the Hessian matrix.

This calculation can be time-consuming, especially for large data sets, since a gradient
matrix exactly the same size as the data set must be computed. For that reason BHHH
cannot be considered a preferred choice for an optimization algorithm.

3.2.5 Polak-Ribiere-type Conjugate Gradient (PRCG)

The conjugate gradient method is an improvement on the steepest descent method without
the increase in memory and computational requirements of the secant methods. Only the
gradient is stored, and the calculation of the new direction is different:

dt+1 = −gt+1 + βtdt

3-5
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where t indicates t-th iteration, d is the direction, g is the gradient. The conjugate gradient
method used in Maxlik is a variation called the Polak-Ribiere method where

βt =
(gt+1 − gt)′gt+1

g′tgt

The Newton and secant methods require the storage on the order of the Hessian in
memory, i.e., 8k2 bytes of memory, where k is the number of parameters. For a very large
problem this can be prohibitive. For example, 200 parameters will require 3.2 megabytes
of memory, and this doesn’t count the copies of the Hessian that may be generated by the
program. For large problems, then, the PRCG and STEEP methods may be the only
alternative. As described above, STEEP can be very inefficient in the region of the
minimum, and therefore the PRCG is the method of choice in these cases.

3.2.6 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. Maxlik includes a variety of methods for computing ρ. The
value of the function to be minimized as a function of ρ is

L(θt + ρδ)

Given θ and d, this is a function of a single variable ρ. Line search methods attempt to find
a value for ρ that decreases m. STEPBT is a polynomial fitting method, BRENT and
HALF are iterative search methods. A fourth method called ONE forces a step length of 1.
The default line search method is STEPBT. If this, or any selected method, fails, then

BRENT is tried. If BRENT fails, then HALF is tried. If all of the line search methods fail,
then a random search is tried (provided _max_RandRadius is greater than zero).

3-6
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STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ) and computes an
ρ that minimizes the quadratic. If that fails it attempts to fit a cubic function. The cubic
function more accurately portrays the F which is not likely to be very quadratic, but is,
however, more costly to compute. STEPBT is the default line search method because it
generally produces the best results for the least cost in computational resources.

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for ρ. These test values are
determined by extrapolation and interpolation using the constant, (

√
5 − 1)/2 = .6180....

This constant is the inverse of the so-called “golden ratio” ((
√

5 + 1)/2 = 1.6180... and is
why the method is called a golden section method. This method is generally more efficient
than STEPBT but requires significantly more function evaluations.

HALF

This method first computes m(x + d), i.e., sets ρ = 1. If m(x + d) < m(x) then the step
length is set to 1. If not, then it tries m(x + .5d). The attempted step length is divided by
one half each time the function fails to decrease, and exits with the current value when it
does decrease. This method usually requires the fewest function evaluations (it often only
requires one), but it is the least efficient in that it is not very likely to find the step length
that decreases m the most.

3-7
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BHHHStep

This is a variation on the golden search method. A sequence of step lengths are computed,
interpolating or extrapolating using a golden ratio, and the method exits when the function
decreases by an amount determined by _max_Interp.

3.2.7 Random Search

If the line search fails, i.e., no ρ is found such that m(θt + ρδ) < m(θt), then a search is
attempted for a random direction that decreases the function. The radius of the random
search is fixed by the global variable, _max_RandRadius (default = .01), times a measure
of the magnitude of the gradient. Maxlik makes _max_MaxTry attempts to find a
direction that decreases the function, and if all of them fail, the direction with the smallest
value for m is selected.

The function should never increase, but this assumes a well-defined problem. In practice,
many functions are not so well-defined, and it often is the case that convergence is more
likely achieved by a direction that puts the function somewhere else on the hyper-surface
even if it is at a higher point on the surface. Another reason for permitting an increase in
the function here is that halting the minimization altogether is only alternative if it is not at
the minimum, and so one might as well retreat to another starting point. If the function
repeatedly increases, then you would do well to consider improving either the
specification of the problem or the starting point.

3.2.8 Weighted Maximum Likelihood

Weights are specified by setting the GAUSS global, __weight to a weighting vector, or
by assigning it the name of a column in the GAUSS data set being used in the estimation.
Thus if a data matrix is being analyzed, __weight must be assigned to a vector.

Maxlik assumes that the weights sum to the number of observations, i.e, that the weights
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are frequencies. This will be an issue only with statistical inference. Otherwise, any
multiple of the weights will produce the same results.

3.2.9 Active and Inactive Parameters

The Maxlik global _max_Active may be used to fix parameters to their start values. This
allows estimation of different models without having to modify the function procedure.
_max_Active must be set to a vector of the same length as the vector of start values.
Elements of _max_Active set to zero will be fixed to their starting values, while nonzero
elements will be estimated.

This feature may also be used for model testing. _max_NumObs times the difference
between the function values (the second return argument in the call to Maxlik) is
chi-squared distributed with degrees of freedom equal to the number of fixed parameters
in _max_Active.

3.2.10 Example

This example estimates coefficients for a tobit model:

library maxlik;

#include maxlik.ext;

maxset;

proc lpr(x,z);

local t,s,m,u;

s = x[4];

if s <= 1e-4;

retp(error(0));

endif;

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

t = z[.,1]-m;

retp(u.*(-(t.*t)./(2*s)-.5*ln(2*s*pi)) + (1-u).*(ln(cdfnc(m/sqrt(s)))));

3-9
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endp;

x0 = { 1, 1, 1, 1 };

__title = "tobit example";

{x,f,g,cov,ret} = maxlik("tobit",0,&lpr,x0);

call maxprt(x,f,g,cov,ret);

The output is:

===========================================================================

tobit example

===========================================================================

MAXLIK Version 5.0.0 5/30/2001 1:11 pm

===========================================================================

Data Set: tobit

---------------------------------------------------------------------------

return code = 0

normal convergence

Mean log-likelihood -1.13291

Number of cases 100

Covariance matrix of the parameters computed by the following method:

Inverse of computed Hessian

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

------------------------------------------------------------------

P01 0.0104 0.0845 0.123 0.4510 -0.0000

P02 -0.2081 0.0946 -2.200 0.0139 -0.0000

P03 -0.0998 0.0801 -1.245 0.1065 -0.0000

P04 0.6522 0.0999 6.531 0.0000 -0.0000

Correlation matrix of the parameters

1.000 0.035 0.155 -0.090

0.035 1.000 -0.204 0.000

0.155 -0.204 1.000 -0.030

-0.090 0.000 -0.030 1.000
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Number of iterations 17

Minutes to convergence 0.03200

3.3 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of the
model. When the data are scaled, the starting point is reasonably close to the solution, and
the data and model go together well, the iterations converge quickly and without difficulty.

For best results therefore, you want to prepare the problem so that model is well-specified,
the data scaled, and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands on
the starting point and condition of the model. The less demanding methods are generally
time consuming and computationally intensive, whereas the quicker methods (either in
terms of time or number of iterations to convergence) are more sensitive to conditioning
and quality of starting point.

3.3.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, Maxlik has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the constants
(or “data”) used in the model are about the same magnitude.

3-11



Maxlik 5.0 for GAUSS

3.3.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the gradient
is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very small for a
particular parameter, then Maxlik has difficulty determining the optimal values since a
large region of the function appears virtually flat to Maxlik. When the Hessian has very
small elements, the inverse of the Hessian has very large elements and the search direction
gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor specification
of the model or by bad data. Bad models and bad data are two sides of the same coin. If
the problem is highly nonlinear, it is important that data be available to describe the
features of the curve described by each of the parameters. For example, one of the
parameters of the Weibull function describes the shape of the curve as it approaches the
upper asymptote. If data are not available on that portion of the curve, then that parameter
is poorly estimated. The gradient of the function with respect to that parameter is very flat,
elements of the Hessian associated with that parameter is very small, and the inverse of
the Hessian contains very large numbers. In this case it is necessary to respecify the model
in a way that excludes that parameter.

Computer Arithmetic

Computer arithmetic is fundamentally flawed by the fact that the computer number is
finite (see Higham, 1996, for a general discussion). The standard double precision number
in PCs carries about 16 decimal significant places. A simple operation can destroy nearly
all of those places. The most destructive operation on a computer is addition and
subtraction. Numbers are stored in a computer in the form of an abscissa and an
exponent, e.g., 1.234567890123456e+02. There are about 16 decimal places of precision
on most computers. The problem occurs when adding numbers that are of very different
size. Before adding the number must be transformed so that the exponents are the same.
For example consider adding 1.2345678901232456e-07 to 1.0000000000000000e+00:
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1.0000000000000000e+00

0.0000001234567890e+00

------------------------

1.0000001234567890e+00

As you can see eight places were lost in the smaller number. If the exponent in the smaller
number was 16 all of the places in that number would be lost.

This problem is due to the finiteness of the computer number, not to the implementation of
the operators. It is an inherent problem in all computers and the only solution, adding
more bits to the computer number, is only temporary because sooner or later a problem
will arise where that quantity of bits won’t be enough. The first lesson to be learned from
this is to avoid operations combining very small numbers with relatively large numbers.
And for very small numbers, 1 can be a large number, as the example shows.

The standard method for evaluating the precision lost in computing a matrix inverse is the
ratio of the largest to the smallest eigenvalue of the matrix. This quantity is sometimes
called the condition number. The log of the condition number to the base 10 is
approximately the number of decimal places lost in computing the inverse. A condition
number greater than 1e16 therefore indicates that all of the 16 decimal places are lost that
are available in the standard double precision floating point number.

The BFGS optimization method in Maxlik has been successful primarily because its
method of generating an approximation to the Hessian encourages better conditioning.
The implementation of the NEWTON method involves a numerical calculation of the
Hessian. A numerical Hessian, like all numerical derivatives, are computed by first
computing a difference, the most destructive operation as we’ve seen, and then
compounding that by dividing the difference by a very small quantity. In general, when
using double precision with 16 places of accuracy, about four places are lost in calculating
a first derivative and another four with the second derivative. The numerical Hessian
therefore begins with a loss of eight places of precision. If there are any problems
computing the function itself, or if the model itself contains any problems of condition,
there may be nothing left at all.
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The BFGS method avoids much of the problems in computing a numerical Hessian. It
produces an approximation by building information slowly with each iteration. Initially
the Hessian is set tot he identity matrix, the matrix with the best condition but the least
information. Information is increased at each iteration with a method that guarantees a
positive definite result. This provides for stabler, though slower, progress towards
convergence.

The implementation of has been designed to minimize the damage to the precision of the
optimization problem. The BFGS method avoids a direct calculation of the numerical
Hessian, and uses sophisticated techmiques for calculating the direction that preserve as
much precision as possible. However, all of this can be defeated by a poorly scaled
problem or a poorly specified model. When the objective function being optimized is a
log-likelihood, the inverse of the Hessian is an estimate of the covariance matrix of the
sampling distribution of the parameters. The condition of the Hessian is related to (i) the
scaling of the parameters, and (ii) the degree with which there are linear dependencies in
the sampling distribution of the parameters.

Scaling

Scaling is under the direct control of the investigator and should never be an issue in the
optimization. It might not always be obvious how to do it, though. In estimation problems
scaling of the parameters is usually implemented by scaling the data. in regression models
this is simple to accomplish, but in more complicated models it might be more difficult to
do. It might be necessary to experiment with different scaling to get it right. The goal is to
optimize the condition of the Hessian. The definition of the condition number implies that
we endeavor to minimize the difference of the largest to the smallest eigenvalue of the
Hessian. A rule of thumb for this is to scale the Hessian so that the diagonal elements are
all about the same magnitude.

If the scaling of the Hessian proves too difficult, an alternative method is to scale the
parameters directly in the procedure computing the log-likelihood. Multiply or divide the
parameter values being passed to the procedure by setting quantities before their use in the
calculation of the log-likelihood. Experiment with different values until the diagonal
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elements of the Hessian are all about the same magnitude.

Linear Dependencies or Nearly Linear Dependencies in the Sampling
Distribution

This is the most common difficulty in estimation and arises because of a discrepancy
between the data and the model. If the data do not contain sufficient information to
“identify” a parameter or set of parameters, a linear dependency is generated. A simple
example occurs in regressors that cannot be distinquished from the constant because its
variation is too small. When this happens, the sampling distribution of these two
parameters becomes highly collinear. This collinearity will produce an eigenvalue
approaching zero in the Hessian, increasing the number of places lost in the calculation of
the inverse of the Hessian, degrading the optimization.

In the real world the data we have available will frequently fail to contain the information
we need to estimate all of the parameters of our models. This means that it is a constant
struggle to a well-conditioned estimation. When the condition sufficiently deteriorates to
the point that the optimization fails, or the statistical inference fails through a failure to
invert the Hessian, either more data must be found, or the model must be re-specified.
Re-specification means either the direct reduction of the parameter space, that is, a
parameter is deleted from the mdoel, or some sort of restriction is applied to the
parameters.

Diagnosing the Linear Dependency

At times it may be very difficult to determine the cause of the ill-conditioning. If the
Hessian being computed at convergence for teh covariance matrix of the parameters fails
to invert, try the following: first generate the pivoted QR factorization of the Hessian,

{ R,E } = qre(H);
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The linearly dependent columns of H are pivoted to the end of the R matrix. E contains the
new order of the columns of H after pivoting. The number of linearly dependent columns
is found by looking at the number of nearly zero elements at the end of the diagonal fo R.

We can compute a coefficient matrix of the linear relationship of the dependent columns
on the remaining columns by computing R−1

11 R12 where R11 is that portion of the R matrix
associated with the independent columns and R12 the independent with dependent. Rather
than use the inverse function in GAUSS, we use a special solve function that takes
advantage of the triangular shape of R11. Suppose that the last two elements of R are
nearly zero, then

r0 = rows(R);

r1 = rows(R) - 1;

r2 = rows(R) - 2;

B = utrisol(R[1:r2,r1:r0],R[1:r2,1:r2);

B describes the linear dependencies among the columns of H and can be used to diagnose
the ill-conditioning in the Hessian.

3.3.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical. When
the optimization doesn’t seem to be working, try different starting points. A closed form
solution may exist for a simpler problem with the same parameters. For example, ordinary
least squares estimates may be used for nonlinear least squares problems or nonlinear
regressions like probit or logit. There are no general methods for computing start values
and it may be necessary to attempt the estimation from a variety of starting points.
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3.3.4 Diagnosis

When the optimization is not proceeding well, it is sometimes useful to examine the
function, the gradient Ψ , the direction δ, the Hessian Σ, the parameters θt, or the step
length ρ, during the iterations. The current values of these matrices can be printed out or
stored in the global _max_Diagnostic by setting _max_Diagnostic to a nonzero value.
Setting it to 1 causes Maxlik to print them to the screen or output file, 2 causes Maxlik to
store then in _max_Diagnostic, and 3 does both.

When you have selected _max_Diagnostic = 2 or 3, Maxlik inserts the matrices into
_max_Diagnostic using the vput command. The matrices are extracted using the vread
command. For example,

_max_Diagnostic = 2;

call MAXPrt(maxlik("tobit",0,&lpr,x0));

h = vread(_max_Diagnostic,"hessian");

d = vread(_max_Diagnostic,"direct");

The following table contains the strings to be used to retrieve the various matrices in the
vread command:

θ “params”
δ “direct”
Σ “hessian”
Ψ “gradient”
ρ “step”

When nested calls to Maxlik are made, i.e., when the procedure for computing the
log-likelihood itself calls its own version of Maxlik, _max_Diagnostic returns the
matrices of the outer call to Maxlik only.
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3.4 Gradients

3.4.1 Analytical Gradient

To increase accuracy and reduce time, you may supply a procedure for computing the
gradient, Ψ(θ) = ∂L/∂θ, analytically.

This procedure has two input arguments, a K × 1 vector of parameters and an Ni × L
submatrix of the input data set. The number of rows of the data set passed in the argument
to the call of this procedure may be less than the total number of observations when the
data are stored in a GAUSS data set and there was not enough space to store the data set in
RAM in its entirety. In that case subsets of the data set are passed to the procedure in
sequence. The gradient procedure must be written to return a gradient (or more accurately,
a “Jacobian”) with as many rows as the input submatrix of the data set. Thus the gradient
procedure returns an Ni × K matrix of gradients of the Ni observations with respect to the
K parameters. The Maxlik global, _max_GradProc is then set to the pointer to that
procedure. For example,

library maxlik;

#include maxlik.ext;

maxset;

proc lpsn(b,z); /* Function - Poisson Regression */

local m;

m = z[.,2:4]*b;

retp(z[.,1].*m-exp(m));

endp;

proc lgd(b,z); /* Gradient */

retp((z[.,1]-exp(z[.,2:4]*b)).*z[.,2:4]);

endp;

x0 = { .5, .5, .5 };

_max_GradProc = &lgd;

_max_GradCheckTol = 1e-3;
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{ x,f0,g,h,retcode } = MAXLIK("psn",0,&lpsn,x0);

call MAXPrt(x,f0,g,h,retcode);

In practice, unfortunately, much of the time spent on writing the gradient procedure is
devoted to debugging. To help in this debugging process, Maxlik can be instructed to
compute the numerical gradient along with your prospective analytical gradient for
comparison purposes. In the example above this is accomplished by setting
_max_GradCheckTol to 1e-3.

3.4.2 User-Supplied Numerical Gradient

You may substitute your own numerical gradient procedure for the one used by Maxlik by
default. This is done by setting the Maxlik global, _max_UserGrad to a pointer to the
procedure.

Maxlik includes some numerical gradient functions in gradient.src which can be
invoked using this global. One of these procedures, gradre, computes numerical
gradients using the Richardson Extrapolation method. To use this method set

_max_UserNumGrad = &gradre;

3.4.3 Algorithmic Derivatives

Algorithmic Derivatives is a program that can be used to generate a GAUSS procedure
to compute derivatives of the log-likelihood function. If you have Algorithmic
Derivatives, be sure to read its manual for details on doing this.

First, copy the procedure computing the log-likelihood to a separate file. Second, from the
command line enter
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ad file_name d_file_name

where file_name is the name of the file containing the input function procedure, and
d_file_name is the name of the file containing the output derivative procedure.

If the input function procedure is named lpr, the output derivative procedure has the
name d_1_lpr where the addition to the “_1_” indicates that the derivative is with respect
to the first of the two arguments.

For example, put the following function into a file called lpr.fct

proc lpr(x,z);

local s,m,u;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s))));

endp;

Then enter the following at the GAUSS command line

library ad;

ad lpr.fct d_lpr.fct;

If successful, the following is printed to the screen

java -jar d:\gauss6.0\src\GaussAD.jar lpr.fct d_lpr.fct

and the derivative procedure is written to file named d_lpr.fct:
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/* Version:1.0 - May 15, 2004 */

/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

Proc(1)=d_1_lpr(x, z);

Clearg _AD_fnValue;

Local s, m, u;

s = x[(4)] ;

Local _AD_t1;

_AD_t1 = x[(1):(3),.] ;

m = z[.,(2):(4)] * _AD_t1;

u = z[.,(1)] ./= 0;

_AD_fnValue = (u .* lnpdfmvn( z[.,(1)] - m, s)) + ((1 - u) .*

lncdfnc(m / sqrt(s)));

/* retp(_AD_fnValue); */

/* endp; */

struct _ADS_optimum _AD_d__AD_t1 ,_AD_d_x ,_AD_d_s ,_AD_d_m

,_AD_d__AD_fnValue;

/* _AD_d__AD_t1 = 0; _AD_d_s = 0; _AD_d_m = 0; */

_AD_d__AD_fnValue = _ADP_d_x_dx(_AD_fnValue);

_AD_d_s = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn( z[.,(1)] - m, s),

(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_2_lnpdfmvn( z[.,(1)] - m,

s)), _ADP_d_x_dx(s)))), _ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn(

z[.,(1)] - m, s), (1 - u) .* lncdfnc(m / sqrt(s))),

_ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s))),

_ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_ydivx_dx(m,

sqrt(s)), _ADP_DtimesD(_ADP_d_sqrt(s), _ADP_d_x_dx(s))))))));

_AD_d_m = _ADP_DtimesD(_AD_d__AD_fnValue,

_ADP_DplusD(_ADP_DtimesD(_ADP_d_xplusy_dx(u .* lnpdfmvn( z[.,(1)] - m, s),

(1 - u) .* lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(u, lnpdfmvn(

z[.,(1)] - m, s)), _ADP_DtimesD(_ADP_internal(d_1_lnpdfmvn( z[.,(1)] - m,

s)), _ADP_DtimesD(_ADP_d_yminusx_dx( z[.,(1)] , m), _ADP_d_x_dx(m))))),

_ADP_DtimesD(_ADP_d_yplusx_dx(u .* lnpdfmvn( z[.,(1)] - m, s), (1 - u) .*

lncdfnc(m / sqrt(s))), _ADP_DtimesD(_ADP_d_ydotx_dx(1 - u, lncdfnc(m / sqrt(s)

)), _ADP_DtimesD(_ADP_d_lncdfnc(m / sqrt(s)), _ADP_DtimesD(_ADP_d_xdivy_dx(m,

sqrt(s)), _ADP_d_x_dx(m)))))));

/* u = z[.,(1)] ./= 0; */

_AD_d__AD_t1 = _ADP_DtimesD(_AD_d_m, _ADP_DtimesD(_ADP_d_yx_dx(

z[.,(2):(4)] , _AD_t1), _ADP_d_x_dx(_AD_t1)));

Local _AD_sr_x, _AD_sc_x;
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_AD_sr_x = _ADP_seqaMatrixRows(x);

_AD_sc_x = _ADP_seqaMatrixCols(x);

_AD_d_x = _ADP_DtimesD(_AD_d__AD_t1, _ADP_d_x2Idx_dx(x,

_AD_sr_x[(1):(3)] , _AD_sc_x[0] ));

Local _AD_s_x;

_AD_s_x = _ADP_seqaMatrix(x);

_AD_d_x = _ADP_DplusD(_ADP_DtimesD(_AD_d_s, _ADP_d_xIdx_dx(x,

_AD_s_x[(4)] )), _AD_d_x);

retp(_ADP_external(_AD_d_x));

endp;

If there’s a syntax error in the input function procedure, the following is written to the
screen

java -jar d:\gauss6.0\src\GaussAD.jar lpr.fct d_lpr.fct

Command ’java -jar d:\gauss6.0\src\GaussAD.jar lpr.fct d_lpr.fct’ exit status 1

the exit status 1 indicating that an error has occurred. The output file then contains the
reason for the error:

/* Version:1.0 - May 15, 2004 */

/* Generated from:lpr.fct */

/* Taking derivative with respect to argument 1 */

proc lpr(x,z);

local s,m,u;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

retp(u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s)));

Error: lpr.fct:12:63: expecting ’)’, found ’;’

Finally, set the global, _max_GradProc equal to a pointer to this above procedure, for
example,
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library maxlik,ad;

#include ad.sdf

x0 = { 1, 1, 1, 1 };

__title = "tobit example";

_max_Bounds = { -10 10,

-10 10,

-10 10,

.1 10 };

_max_GradProc = &d_1_lpr;

Maxlik("tobit",0,&lpr,x0);

Speeding Up the Algorithmic Derivative

A slightly faster derivative procedure can be generated by modifying the log-likelihood
proc to return a scalar sum of the log-likelihoods in the input file in the call to AD. It is
important to note that this derivative function based on a scalar return cannot be used for
computing the QML covariance matrix of the parameters. Thus if you want both a
derivative procedure based on a scalar return and QML standard errors you will need to
provide both types of gradient procedures. To accomplish this first copy both versions of
the log-likelihood procedure into separate files and run AD on both of them with different
output files. Then copy both of these derivatives procedures to the command file. Note:
the log-likelihood procedure that returns a vector of log-likelihoods should remain in the
command file, i.e., don’t use the version of the log-likelihood that returns a scalar in the
command file.

For example, enlarging on the example in the previous section, put the following into a
separate file,
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proc lpr2(x,z);

local s,m,u,logl;

s = x[4];

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

logl = u.*lnpdfmvn(z[.,1]-m,s) + (1-u).*(lncdfnc(m/sqrt(s)));

retp(sumc(logl));

endp;

Then enter on the command line

ad lpr2.src d_lpr2.src

and copy the contents of d lpr2.src into the command file.

Our comand file now contains two derivative procedures, one based on a scalar result and
another on a vector result. The one in the previous section d_1_lpr is our vector result
derivative, and the from run above, d_1_lpr2 is our scalar result derivative. We want to
use d_1_lpr2 for the iterations because it will be faster (it is computing a 1 × K vector
gradient), and for the QML covariance matrix of the parameters we will use d_1_lpr
which returns a N × K matrix of derivatives as required for the QML covariance matrix.

Our command file will be

library maxlik,ad;

#include ad.sdf

x0 = { 1, 1, 1, 1 };

__title = "tobit example";

_max_Bounds = { -10 10,

-10 10,
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-10 10,

.1 10 };

_max_QMLProc = &d_1_lpr;

_max_GradProc = &d_1_lpr2;

Maxlik("tobit",0,&lpr,x0);

in addition to the two derivative procedures.

3.4.4 Analytical Hessian

You may provide a procedure for computing the Hessian, Σ(θ) = ∂2L/∂θ∂θ′. This
procedure has two arguments, the K × 1 vector of parameters, an Ni × L submatrix of the
input data set (where Ni may be less than N), and returns a K × K symmetric matrix of
second derivatives of the objection function with respect to the parameters.

The pointer to this procedure is stored in the global variable _max_HessProc.

In practice, unfortunately, much of the time spent on writing the Hessian procedure is
devoted to debugging. To help in this debugging process, Maxlik can be instructed to
compute the numerical Hessian along with your prospective analytical Hessian for
comparison purposes. To accomplish this _max_GradCheckTol is set to a small nonzero
value.

library maxlik;

#include maxlik.ext;

proc lnlk(b,z);

local dev,s2;

dev = z[.,1] - b[1] * exp(-b[2]*z[.,2]);

s2 = dev’dev/rows(dev);
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retp(-0.5*(dev.*dev/s2 + ln(2*pi*s2)));

endp;

proc grdlk(b,z);

local d,s2,dev,r;

d = exp(-b[2]*z[.,2]);

dev = z[.,1] - b[1]*d;

s2 = dev’dev/rows(dev);

r = dev.*d/s2;

/* retp(r˜(-b[1]*z[.,2].*r)); correct gradient */

retp(r˜(z[.,2].*r)); /* incorrect gradient */

endp;

proc hslk(b,z);

local d,s2,dev,r, hss;

d = exp(-b[2]*z[.,2]);

dev = z[.,1] - b[1]*d;

s2 = dev’dev/rows(dev);

if s2 <= 0;

retp(error(0));

endif;

r = z[.,2].*d.*(b[1].*d - dev)/s2;

hss = -d.*d/s2˜r˜-b[1].*z[.,2].*r;

retp(xpnd(sumc(hss)));

endp;

maxset;

_max_HessProc = &hslk;

_max_GradProc = &grdlk;

_max_GradCheckTol = 1e-3;

startv = { 2, 1 };

{ x,f0,g,cov,retcode } = MAXLIK("nlls",0,&lnlk,startv);

call MAXPrt(x,f0,g,cov,retcode);

The gradient is incorrectly computed, and Maxlik responds with an error message. It is
clear that the error is in the calculation of the gradient for the second parameter.

analytical and numerical gradients differ
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numerical analytical

-0.015387035 -0.015387035

0.031765317 -0.015882659

========================================================================

analytical Hessian and analytical gradient

========================================================================

MAXLIK Version 5.0.0 5/30/2001 10:10 am

========================================================================

Data Set: nlls

------------------------------------------------------------------------

return code = 7

function cannot be evaluated at initial parameter values

Mean log-likelihood 1.12119

Number of cases 150

The covariance of the parameters failed to invert

Parameters Estimates Gradient

----------------------------------------------

P01 2.000000 -0.015387

P02 1.000000 -0.015883

Number of iterations .

Minutes to convergence .

3.4.5 User-Supplied Numerical Hessian

You may substitute your own numerical Hessian procedure for the one used by Maxlik by
default. This done by setting the Maxlik global, _max_UserHess to a pointer to the
procedure. This procedure has three input arguments, a pointer to the log-likelihood
function, a K × 1 vector of parameters, and an Ni × K matrix containing the data. It must
return a K × K matrix which is the estimated Hessian evaluated at the parameter vector.
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3.4.6 Switching Algorithms Automatically

The global variable _max_Switch can be used to switch algorithms automatically during
the iteratations. If _max_Switch has one column, the algorithm is switched once during
the iterations, and if it has two columns it is switched back and forth. The conditions for
the switching is determined by the elements of _max_Switch in the second through fourth
rows. If these are rows are not supplied default values are entered. The first row contains
the algorithm numbers to switch to, or if two columns to switch to and from. The
algorithm switches if the log-likelihood function improves by less than the quantity in the
second row, or if the number of iterations exceeds the quantity in the third row, or if the
line search changes by less than the quantity in the fourth row.

If only the first row is specified in the command file, that is, if only the algorithm numbers
are entered, the second, third and fourth rows are set by default to .001, 10, .001
respectively.

3.5 FASTMAX – Fast Execution MAXLIK

Depending on the type of problem FASTMAX, the fast version of Maxlik, can be called
with speed-ups from 10 percent to 500 percent over the regular version of Maxlik. This is
achieved at the expense of losing some features, in particular, it won’t print any iteration
information to the screen, the globals cannot be modified on the fly, it can’t print or store
diagnostic information. Moreover, the dataset must be entirely storable in RAM.

The gain in time depends on the type of problem. The greatest speedup occurs with
problems that are function call intensive. The speedup will be less if gradients and/or
Hessians are provided. The least speedup occurs for problems where convergence is
quick, and the most where convergence is slow. Thus FASTMAX will least affect a bootstrap
or profile likelihood estimation for models that converge quickly, and most affect those
that don’t.

FASTMAX is most useful for problems that will be repeated in some way such as in a Monte

3-28



M
axLik

Maximum Likelihood Estimation

Carlo study or a bootstrap. The initial runs would use Maxlik where monitoring the
progress is most important, and subsequent runs would use FASTMAX.

FASTMAX has the same arguments and returns as Maxlik and thus to call it you may
change the name Maxlik in your command file to FASTMAX. FASTMAX does require that
the dataset be storable in memory in its entirety, however, and if that isn’t possible
FASTMAX will fail.

In a similar way, for the fast versions of MAXBOOT, MAXPROFILE, and MAXBAYES, change
the calls to FASTBOOT, FASTPROFILE, and FASTBAYES, respectively. No changes in input
or output arguments are necessary.

3.5.1 Undefined Function Evaluation

On occasion the log-likelihood function will evaluate to an undefined value, for example,
the log-likelihood procedure may attempt to take the log of a negative quantity for one or
more observations. If you have written your procedure to return a scalar missing value
when this happens, Maxlik will succeed in recovering in most cases. That is, depending
on circumstances it will find another set of parameter values or use a different line search
method.

If you are using FASTMAX, you can try a different strategy. Write your procedure to enter a
missing value in the log-likelihood vector for that observation for which the calculation is
undefined. FASTMAX will compute gradients and function values by list-wise deletion. In
other words it will compute the function and gradient from the available observations.

3.6 Inference

Maxlik includes four classes of methods for analyzing the distributions of the estimated
parameters:
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• Wald

• Profile likelihood

• Bootstrap

• Bayesian

The Wald type statistical inference is the most commonly used method which relies on a
quadratic approximation to the log-likelihood surface, and uses an estimate of the
covariance matrix of the parameters for computing standard errors and confidence limits.
Maxlik provides three methods for estimating the covariance matrix, the inverse of the
Hessian, the inverse of the cross-products of the first derivatives, and the quasi-maximum
likelihood (or QML) estimate which is computed from both the Hessian and the
cross-product of the first derivatives.

The bootstrap and Bayesian methods both produce simulated “data” sets of the parameters
from which kernel density plots, histograms, surface plots, and confidence limits may be
computed.

The profile likelihood method computes confidence limits directly from the log-likelihood
surface. Profile likelihood confidence limits are to be prefered to Wald confidence limits
when the quadratic approximation is poor which is likely to be the case in particular for
nonlinear models. The profile likelihood inference package includes a procedure for
computing confidence limits as well as likelihood profile traces and profile t traces used
for evaluating the shape of the log-likelhood surface.

3.6.1 Wald Inference

An argument based on a Taylor-series approximation to the likelihood function (e.g.,
Amemiya, 1985, page 111) shows that

θ̂ → N(θ, A−1BA−1)
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where

A = E
[
∂2L
∂θ∂θ′

]
B = E

[(
∂L
∂θ

)′ (
∂L
∂θ

)]

Estimates of A and B are

Â =
1
N

N∑
i

∂2Li

∂θ∂θ′

B̂ =
1
N

N∑
i

(
∂Li

∂θ

)′ (
∂Li

∂θ

)

Assuming the correct specification of the model plim(A) = plim(B) and thus

θ̂ → N(θ, Â−1)

When _max_CovPar = 1, Â−1, the inverse of the Hessian, is returned as the covariance
matrix of the parameters.

When _max_CovPar = 2, Maxlik returns B̂−1, the cross-product of the first derivatives
computed by observation (i.e., the “Jacobian” of the log-likelihood) as the covariance
matrix of the parameters.

When _max_CovPar is set to 3, Maxlik returns Â−1B̂Â−1, the QML covariance matrices
of the parameters.

3-31



Maxlik 5.0 for GAUSS

When the QML method has been selected, the covariance matrices computed from the
Hessian and the cross-product of first derivatives will both be returned in the global
variables, _max_HessCov and _max_XprodCov, respectively. A rough measure of the
misspecification in the model may be gauged from the extent to which the covariance
matrices computed from the Hessian and the cross-product of first derivatives diverge. A
method for computing a statistic to measure this divergence (thereby providing a test for
misspecification) has been developed by White (1981,1982).

The QML covariance matrix is expensive to compute since it requires the calculation of
both the matrix of second derivatives and the first derivatives by case. The expense will
usually be worth it, however, because this matrix will always generate the correct standard
errors (unless there is a misspecification in the model that renders the parameter estimates
inconsistent in which case no method will produce correct standard errors). To determine
whether either the Hessian or the cross-product covariance matrix of parameters are
sufficiently correct by themselves it would be necessary to compute them both anyway.

When Computing the Covariance Matrix of the Parameters Fails

The computation of the covariance matrix of the parameters may fail if there is not enough
information in the data to identify the model parameters, or if the model specification
includes parameters that cannot be identified for any set of data. In these cases there may
be some utility in a collinearity analysis of the matrix used in the computation of the
covariance matrix of the parameters. This matrix is stored in the global variable
_max_FinalHess before the inversion attempt. If the inversion fails (of the Hessian if
_max_CovPar = 1, or of the cross-product of the first derivatives if _max_CovPar = 2),
Maxlik will return a missing code for the covariance matrix and the user can then retrieve
the matrix stored in _max_FinalHess for a collinearity analysis. Linear dependencies in
this matrix will indicate which parameters are not identified and an analysis of these linear
dependencies may suggest tactics for respecifying the model.
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3.6.2 Profile Likelihood Inference

Wald confidence limits for parameters assume the appropriateness of the quadratic
approximation to the log-likelihood surface. For some models, in particular nonlinear
models, this approximation may not be satisfactory. In this case, the profile likelihood
confidence limit would be prefered.

The profile likelihood confidence region is defined as the set of points (Cook and
Wiesberg, 1990, Meeker and Escobar, 1995):

{θ |

√
2(L(θ̂) − L(θ)) ≥ χ2

(1−α;k)}

where

L(θ) =
N∑

i=1

log P(Yi; θ)

and K is the length of θ.

For individual parameters this method is implemented in Maxlik in the following way:
define

G(φ) = min(Logl(θ) | η′iθ = φ) (1)

where ηi is a conformable vector of zeros with a one in position i.

Then the lower profile likelihood confidence limit at the 1 − α interval are the values of φ
such that

G(φ) = χ2
(1−α;k).

and the upper limit is found by redefining Equation 1 as a maximum.
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Example

This examples illustrates and compares Wald confidence limits and profile likelihood
confidence limits:

library maxlik;

#include maxlik.ext;

maxset;

proc lpr(x,z);

local t,s,m,u;

s = x[4];

if s <= 1e-4;

retp(error(0));

endif;

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

t = z[.,1]-m;

retp(u.*(-(t.*t)./(2*s)-.5*ln(2*s*pi)) +

(1-u).*(ln(cdfnc(m/sqrt(s))))

);

endp;

x0 = { 1, 1, 1, 1 };

{x,f,g,cov,ret} = maxlik("tobit",0,&lpr,x0);

__title = "Wald Confidence Limits";

cl1 = maxtlimits(x,cov);

call maxclprt(x,f,g,cl1,ret);

__title = "Profile Likelihood Confidence Limits";

cl2 = maxpflclimits(x,f,"tobit",0,&lpr);

call maxclprt(x,f,g,cl2,ret);

The output is:

==========================================================================
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Wald Confidence Limits

==========================================================================

MAXLIK Version 5.0.0 5/30/2001 1:16 pm

==========================================================================

Data Set: tobit

--------------------------------------------------------------------------

return code = 0

normal convergence

Mean log-likelihood -1.13291

Number of cases 100

0.95 confidence limits

Parameters Estimates Lower Limit Upper Limit Gradient

------------------------------------------------------------------

P01 0.0104 -0.1573 0.1781 -0.0000

P02 -0.2081 -0.3958 -0.0203 -0.0000

P03 -0.0998 -0.2588 0.0593 -0.0000

P04 0.6522 0.4540 0.8505 -0.0000

Number of iterations 17

Minutes to convergence 0.03200

==========================================================================

Profile Likelihood Confidence Limits

==========================================================================

MAXLIK Version 5.0.0 5/30/2001 1:16 pm

==========================================================================

Data Set: tobit

--------------------------------------------------------------------------

return code = 0

normal convergence

Mean log-likelihood -1.13291

Number of cases 100

0.95 confidence limits

Parameters Estimates Lower Limit Upper Limit Gradient

------------------------------------------------------------------

P01 0.0104 -0.1560 0.1720 -0.0000

P02 -0.2081 -0.3918 -0.0245 -0.0000

P03 -0.0998 -0.2562 0.0549 -0.0000
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P04 0.6522 0.4928 0.8885 -0.0000

Number of iterations 17

Minutes to convergence 0.03200

In this example, the model is conditionally linear and we see that the Wald and profile
likelihood limits are quite similar.

3.6.3 Profile Trace Plots

MAXProfile generates profile t plots as well as plots of the likelihood profile traces for all
of the parameters in the model in pairs. The profile t plots are used to assess the
nonlinearity of the distributions of the individual parameters, and the likelihood profile
traces are used to assess the bivariate distributions. The input and output arguments to
MAXProfile are identical to those of Maxlik. But in addition to providing the maximum
likelihood estimates and covariance matrix of the parameters, a series of plots are printed
to the screen using GAUSS’ Publication Quality Graphics. A screen is printed for each
possible pair of parameters. There are three plots, a profile t plot for each parameter, and a
third plot containing the likelihood profile traces for the two parameters.

The discussion in this section is based on Bates and Watts (1988), pages 205-216, which is
recommended reading for the interpretation and use of profile t plots and likelihood profile
traces.

The Profile t Plot

Define

θ̃k = (θ̃1, θ̃2, ..., θ̃k−1, θk, θ̃k+1, ..., θ̃K)
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This is the vector of maximum likelihood estimates conditional on θk, i.e., where θk is
fixed to some value. Further define the profile t function

τ(θk) = sign(θk − θ̂k)(N − K)
√

2
[
L(θ̃k) − L(θ̂k)

]
For each parameter in the model, τ is computed over a range of values for θk. These plots
provide exact likelihood intervals for the parameters, and reveal how nonlinear the
estimation is. For a linear model, τ is a straight line through the origin with unit slope. For
nonlinear models, the amount of curvature is diagnostic of the nonlinearity of the
estimation. High curvature suggests that the usual statistical inference using the t-statistic
is hazardous.

The Likelihood Profile Trace

The likelihood profile traces provide information about the bivariate likelihood surfaces.
For nonlinear models the profile traces are curved, showing how the parameter estimates
affect each other and how the projection of the likelihood contours onto the (θk, θ`) plane
might look. For the (θk, θ`) plot, two lines are plotted, L(θ̃k) against θk and L(θ̃`) against θ`.

If the likelihood surface contours are long and thin, indicating the parameters to be
collinear, the profile traces are close together. If the contours are fat, indicating the
parameters to be more uncorrelated, the profile traces tend to be perpendicular. And if the
contours are nearly elliptical, the profile traces are straight. The surface contours for a
linear model would be elliptical and thus the profile traces would be straight and
perpendicular to each other. Significant departures of the profile traces from straight,
perpendicular lines, therefore, indicate difficulties with the usual statistical inference.

To generate profile t plots and likelihood profile traces from the example in Section 3.2.10,
it is necessary only to change the call to Maxlik to a call to MAXProfile:

call MAXPrt(MAXProfile("tobit",0,&lpr,x0));
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MAXProfile produces the same output as Maxlik which can be printed out using a call to
MAXPRT.

For each pair of parameters a plot is generated containing an xy plot of the likelihood
profile traces of the two parameters, and two profile t plots, one for each parameter.

3.6.4 Bootstrap

The bootstrap method is used to generate empirical distributions of the parameters, thus
avoiding the difficulties with the usual methods of statistical inference described above.

MAXBoot

Rather than randomly sample with replacement from the data set, MAXBoot performs
_max_NumSample weighted maximum likelihood estimations where the weights are
Poisson pseudo-random numbers with expected value equal to the the number of
observations. _max_NumSample is set by the MAXBoot global variable. The default is 100
re-samplings. Efron and Tibshirani (1993:52) suggest that 100 is satisfactory, and rarely
are more than 200 needed.

The mean and covariance matrix of the bootstrapped parameters is returned by MAXBoot.
In addition MAXBoot writes the bootstrapped parameter estimates to a GAUSS data set for
use with MAXHist, which produces histograms and surface plots, MAXDensity, which
produces kernel density plots, and MAXBlimits, which produces confidence limits based
on the bootstrapped coefficients. The data set name can be specified by the user in the
global _max_BootFname. However, if not specified, MAXBoot selects a temporary
filename.

MAXDensity

MAXDensity is a procedure for computing kernel type density plots. The global,

3-38



M
axLik

Maximum Likelihood Estimation

_max_Kernel permits you to select from a variety of kernels, normal, Epanechnikov,
biweight, triangular, rectangular, and truncated normal. For each selected parameter, a
plot is generated of a smoothed density. The smoothing coefficients may be specified
using the global, _max_Smoothing, or MAXDensity will compute them.

MAXHist

MAXHist is a procedure for visually displaying the results of the bootstrapping in
univariate histograms and bivariate surface plots for selected parameters. The univariate
discrete distributions of the parameters used for the histograms are returned by MAXHist
in a matrix.

Example

To bootstrap the example in Section 3.2.10, the only necessary alteration is the change the
call to Maxlik to a call to MAXBoot:

_max_BootFname = "bootdata";

call MAXPrt(maxlikboot("tobit",0,&lpr,x0));

call MAXDensity("bootdata",0);

call MAXHist("bootdata",0);

3.6.5 Pseudo-Random Number Generators

Pseudo-Random numbers are generated by Maxlik and FASTMAX in the random line
search, by MAXBoot and FASTBoot for re-sampling, and by MAXBayes and FASTBayes
also for re-sampling. There two types of pseudo-random generators, the linear
congruential (LC) and another based on Marsaglia’s Kiss-Monster algorithm (KM). The
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LC generators are faster but have shorter period (232), whereas the KM generators are
slower but have much longer periods (23859).

The global variable _max_RandType chooses between these. By default the LC
generators are used.

The seed for these generators is kept in the global _max_State. The default value is
345678. You may set this to any integer value in your command file.

3.6.6 Bayesian Inference

The Maxlik proc MAXBayes generates a simulated posterior of the parameters of a
maximum likelihood estimation using the weighted likelihood bootstrap method described
in Newton and Raftery (1994). In this method, a weighted bootstrap is conducted using
weighted Dirichlet random variates for weights. After generating the weighted
bootstrapped parameters, “Importance” weights are computed:

r(θ̂) = π(θ̂)eL(θ̂)/ĝ(θ̂)

where π(θ̂) is the prior distribution of the parameters, and ĝ(θ̂) is a normal kernel density
estimate of the of the parameters using Terrell’s (1990) method of maximum smoothing.
The SIR algorithm, described in Rubin (1988), is applyed to the bootstrapped parameters
using these importance weights.

The Dirichlet variates are weighted to generate over-dispersion in order to make sure they
have coverage with respect to the posterior distribution. This weight is stored in the
Maxlik global, _max_BayesAlpha, and is set to 1.4 by default. See Newton and Raftery
(1994) for a discussion of this weight.
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Example

This example computes ordinary maximum likelihood estimates, and then calls MAXBayes
which generates a simulated posterior. The call to MAXDensity produces kernel density
plots and returns the data used in the plots. This information is used to determine the
modes of the simulated posterior distributions and MAXPrt prints that information to
output.

library maxlik,pgraph;

#include maxlik.ext;

#include pgraph.ext;

graphset;

maxset;

proc lpr(x,z);

local t,s,m,u;

s = x[4];

if s <= 1e-4;

retp(error(0));

endif;

m = z[.,2:4]*x[1:3,.];

u = z[.,1] ./= 0;

t = z[.,1]-m;

retp(u.*(-(t.*t)./(2*s)-.5*ln(2*s*pi)) + (1-u).*(ln(cdfnc(m/sqrt(s)))));

endp;

start = { 1, 1, 1, 1 };

__title = "Maximum Likelihood Estimates";

{x0,f,g,cov,ret} = maxlik("tobit",0,&lpr,start);

call maxprt(x0,f,g,cov,ret);

_max_BootFname = "bayes";

_max_NumSample = 500;

{x1,f,g,cov,ret} = maxBayes("tobit",0,&lpr,x0);

{ px,py,smth } = maxDensity("bayes",0);

x_mode = diag(px[maxindc(py),.]);
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__title = "modal Bayesian estimates";

call maxprt(x_mode,f,g,cov,ret);

===============================================================================

Maximum Likelihood Estimates

===============================================================================

MAXLIK Version 5.0.0 5/30/2001 11:18 am

===============================================================================

Data Set: tobit

-------------------------------------------------------------------------------

return code = 0

normal convergence

Mean log-likelihood -1.13291

Number of cases 100

Covariance matrix of the parameters computed by the following method:

Inverse of computed Hessian

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

------------------------------------------------------------------

P01 0.0104 0.0873 0.119 0.4525 0.0000

P02 -0.2081 0.0946 -2.200 0.0139 0.0000

P03 -0.0998 0.0800 -1.247 0.1062 0.0000

P04 0.6522 0.0999 6.531 0.0000 0.0000

Correlation matrix of the parameters

1.000 0.030 0.151 -0.092

0.030 1.000 -0.205 0.000

0.151 -0.205 1.000 -0.029

-0.092 0.000 -0.029 1.000

Number of iterations 17

Minutes to convergence 0.01462
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===============================================================================

modal Bayesian estimates

===============================================================================

MAXLIK Version 5.0.0 5/30/2001 11:20 am

===============================================================================

Data Set: tobit

-------------------------------------------------------------------------------

return code = 0

normal convergence

Mean log-likelihood -0.0117326

Number of cases 100

Covariance matrix of the parameters computed by the following method:

Bayesian covariance matrix

Parameters Estimates Std. err. Est./s.e. Prob. Gradient

------------------------------------------------------------------

P01 0.1729 0.1661 1.041 0.1488 0.0000

P02 -0.2054 0.1930 -1.065 0.1435 0.0000

P03 -0.1425 0.1735 -0.821 0.2057 0.0000

P04 0.6598 0.2329 2.833 0.0023 0.0000

Correlation matrix of the parameters

1.000 -0.165 0.362 0.465

-0.165 1.000 -0.473 0.026

0.362 -0.473 1.000 0.322

0.465 0.026 0.322 1.000

Number of iterations 7

Minutes to convergence 0.00354

3.7 Run-Time Switches

If the user presses Alt-H during the iterations, a help table is printed to the screen which
describes the run-time switches. By this method, important global variables may be
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modified during the iterations.

Alt-G Toggle _max_GradMethod
Alt-V Revise _max_GradTol
Alt-O Toggle __output
Alt-M Maximum Tries
Alt-I Compute Hessian
Alt-E Edit Parameter Vector
Alt-C Force Exit
Alt-A Change Algorithm
Alt-J Change Line Search Method
Alt-H Help Table

The algorithm may be switched during the iterations either by pressing Alt-A, or by
pressing one of the following:

Alt-1 Steepest Descent (STEEP)
Alt-2 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Alt-3 Davidon-Fletcher-Powell (DFP)
Alt-4 Newton-Raphson (NEWTON) or (NR)
Alt-5 Berndt, Hall, Hall & Hausman (BHHH)
Alt-6 Polak-Ribiere Conjugate Gradient (PRCG)

The line search method may be switched during the iterations either by pressing Alt-S, or
by pressing one of the following:

Shift-1 no search (1.0 or 1 or ONE)
Shift-2 cubic or quadratic method (STEPBT)
Shift-3 step halving method (HALF)
Shift-4 Brent’s method (BRENT)
Shift-5 BHHH step method (BHHHSTEP)
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3.8 Calling MAXLIK Recursively

The procedure that computes the log-likelihood may itself call Maxlik. This version of
Maxlik nested inside the procedure is actually a separate copy of Maxlik with its own set
of globals and must have its own log-likelihood function (or otherwise you would have
infinite recursion).

When calling Maxlik recursively, the following considerations apply:

• Variable selection (as opposed to case selection) can be done on any level by
means of the second argument in the call to each copy of Maxlik.

• Data sets can be opened by nested copies of Maxlik. If a nested copy of
Maxlik is going to use the data set opened by the outer copy of Maxlik,
then pass a null string in the first argument in the call. If it is going to
analyze a different data set from the outer copy, then pass it the data set
name in a string. You may also load and store a data set in memory in the
command file and pass it in the first argument in the nested call to Maxlik.

• Before the call to the nested copy of Maxlik, the global variables should be
reset by calling MAXCLR. You must not use MAXSET because that will clear
information about the data sets opened and processed in the outer copy. The
only differences between MAXSET and MAXCLR are references to these
globals.

• You may also want to disable the keyboard control of the nested copies.
This is done by setting the global _max_Key = 0 after the call to MAXCLR
and before the call to the nested Maxlik.

3.9 Using MAXLIK Directly

When Maxlik is called, it directly references all the necessary globals and passes its 4
arguments and the values of the globals to a function called _maxlik. When _maxlik
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returns, Maxlik then sets the output globals to the values returned by _maxlik and returns
5 arguments directly to the user. _maxlik makes no global references to matrices or
strings (except to _max_eps2 which is set to the cube of machine precision), and all
procedures it references have names that begin with an underscore “_”.

_maxlik can be used directly in situations where you do not want any of the global
matrices and strings in your program. If Maxlik, MAXPRT, MAXSET, and MAXCLR are not
referenced, the global matrices and strings in maxlik.dec will not be included in your
program.

The documentation for Maxlik, the globals it references, and the code itself should be
sufficient documentation for using _maxlik.

3.10 Error Handling

3.10.1 Return Codes

The fourth argument in the return from Maxlik contains a scalar number that contains
information about the status of the iterations upon exiting Maxlik. The following table
describes their meanings:
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0 normal convergence
1 forced exit
2 maximum iterations exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 function cannot be evaluated at

initial parameter values
8 error with gradient
9 gradient vector transposed
10 secant update failed
11 maximum time exceeded
12 error with weights
20 Hessian failed to invert
34 data set could not be opened
99 termination condition unknown

3.10.2 Error Trapping

Setting the global __output = 0 turns off all printing to the screen. Error codes, however,
still are printed to the screen unless error trapping is also turned on. Setting the trap flag to
4 causes Maxlik to not send the messages to the screen:

trap 4;

Whatever the setting of the trap flag, Maxlik discontinues computations and returns with
an error code. The trap flag in this case only affects whether messages are printed to the
screen or not. This is an issue when the Maxlik function is embedded in a larger program,
and you want the larger program to handle the errors.
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FASTMAX

PURPOSE Computes estimates of parameters of a maximum likelihood function.

LIBRARY maxlik

FORMAT x,f,g,cov,retcode = FASTMAX(data,vars,&fct,start)

INPUT data N × NV matrix, data.

vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.

4-1



FASTMAX

vars may be a character vector containing either the
standard labels created by FASTMAX (i.e., either V1, V2,...,
or V01, V02,..... See discussion of the global variable
__vpad below, or the user-provided labels in __altnam).

&fct a pointer to a procedure that returns either the log-likelihood
for one observation or a vector of log-likelihoods for a
matrix of observations (see discussion of the global variable
__row in global variable section below).

start K × 1 vector, start values.

OUTPUT x K × 1 vector, estimated parameters.

f scalar, function at minimum (the mean log-likelihood).

g K × 1 vector, gradient evaluated at x.

h K × K matrix, covariance matrix of the parameters (see
discussion of the global variable _max_CovPar below).

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence.
1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient.
9 gradient vector transposed.
10 secant update failed.
11 maximum time exceeded.
12 error with weights.

4-2 M C R



M
L

R
eference

FASTMAX

34 data set could not be opened.
99 termination condition unknown.

GLOBALS The globals variables used by FASTMAX can be organized in the
following categories according to which aspect of the optimization they
affect:

Options _max_Options

Descent and Line Search _max_Algorithm, _max_Delta,
_max_LineSearch, _max_Maxtry, _max_Extrap,
_max_Interp, _max_RandRadius, _max_Switch,
_max_RandType, _max_State,

Covariance Matrix of Parameters _max_CovPar, _max_XprodCov,
_max_HessCov, _max_FinalHess

Gradient _max_GradMethod, _max_GradProc,
_max_UserNumGrad, _max_HessProc, _max_GradStep,

Terminations Conditions _max_GradTol, _max_MaxIters,
_max_MaxTime

Data _max_NumObs, __weight,
Parameters _max_Active, _max_ParNames
Miscellaneous __title, _max_IterData,

The list below contains an alphabetical listing of each global with a
complete description.

max Active vector, defines fixed/active coefficients. This global
allows you to fix a parameter to its starting value. This is
useful, for example, when you wish to try different models
with different sets of parameters without having to re-edit
the function. When it is to be used, it must be a vector of the
same length as the starting vector. Set elements of
_max_Active to 1 for an active parameter, and to zero for a
fixed one.
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max Algorithm scalar, selects optimization method:

1 STEEP - Steepest Descent.
2 BFGS - Broyden, Fletcher, Goldfarb, Shanno method.
3 DFP - Davidon, Fletcher, Powell method.
4 NEWTON - Newton-Raphson method.
5 BHHH - Berndt, Hall, Hall, Hausman method.
6 PRCG - Polak-Ribiere Conjugate Gradient.

Default = 3.

max CovPar scalar, type of covariance matrix of parameters:

0 not computed.
1 computed from Hessian calculated after the iterations .
2 computed from cross-product of Jacobian.
3 Quasi-maximum likelihood (QML) covariance matrix

of the parameters.

Default = 1.

max Delta scalar, floor for eigenvalues of Hessian in the NEWTON
algorithm. When nonzero, the eigenvalues of the Hessian
are augmented to this value.

max GradTol scalar, convergence tolerance for gradient of estimated
coefficients. When this criterion has been satisifed FASTMAX
exits the iterations. Default = 1e-5.

max Extrap scalar, extrapolation constant in BRENT. Default = 2.

max FinalHess K × K matrix, the Hessian used to compute the
covariance matrix of the parameters is stored in
_max_FinalHess. This is most useful if the inversion of the
hessian fails, which is indicated when FASTMAX returns a
missing value for the covariance matrix of the parameters.
An analysis of the Hessian stored in _max_FinalHess can
then reveal the source of the linear dependency responsible
for the singularity.

max GradMethod scalar, method for computing numerical gradient:
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0 central difference.
1 forward difference (default).

max GradProc scalar, pointer to a procedure that computes the
gradient of the function with respect to the parameters. For
example, the statement:

_max_GradProc=&gradproc;

tells FASTMAX that a gradient procedure exists as well where
to find it. The user-provided procedure has two input
arguments, an K × 1 vector of parameter values and an N×K
matrix of data. The procedure returns a single output
argument, an N × K matrix of gradients of the log-
likelihood function with respect to the parameters evaluated
at the vector of parameter values.
For example, suppose the log-likelihood function is for a
Poisson regression, then the following would be added to
the command file:

proc lgd(b,z);

retp((z[.,1]-exp(z[.,2:4]*b)).*z[.,2:4]);

endp;

_max_GradProc = &lgd;

Default = 0, i.e., no gradient procedure has been provided.

max GradStep scalar, increment size for computing gradient. When
the numerical gradient is performing well, set to a larger
value (1e-3, say). Default is the cube root of machine
precision.

max HessCov K × K matrix. When _max_CovPar is set to 3 the
information matrix covariance matrix of the parameters, i.e.,
the inverse of the matrix of second order partial derivatives
of the log-likelihood by observations, is returned in
_max_HessCov.
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max HessProc scalar, pointer to a procedure that computes the
hessian, i.e., the matrix of second order partial derivatives of
the function with respect to the parameters. For example,
the instruction:

_max_HessProc = &hessproc;

tells FASTMAX that a procedure has been provided for the
computation of the hessian and where to find it. The
procedure that is provided by the user must have two input
arguments, a K × 1 vector of parameter values and an N×P
data matrix. The procedure returns a single output
argument, the K × K symmetric matrix of second order
derivatives of the function evaluated at the parameter values.

max Interp scalar, interpolation constant in BRENT. Default = .25.

max IterData 3x1 vector, contains information about the iterations.
The first element contains the # of iterations, the second
element contains the elapsed time in minutes of the
iterations, and the third element contains a character variable
indicating the type of covariance matrix of the parameters.

max LineSearch scalar, selects method for conducting line search.
The result of the line search is a step length, i.e., a number
which reduces the function value when multiplied times the
direction..

1 step length = 1.
2 cubic or quadratic step length method (STEPBT).
3 step halving (HALF).
4 Brent’s step length method (BRENT).
5 BHHH step length method (BHHHSTEP).

Default = 2.
Usually _max_LineSearch = 2 is best. If the optimization
bogs down, try setting _max_LineSearch = 1, 4 or 5.
_max_LineSearch = 3 generates slower iterations but
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faster convergence and _max_LineSearch = 1 generates
faster iterations but slower convergence.
When any of these line search methods fails, FASTMAX
attempts a random search of radius _max_RandRadius
times the truncated log to the base 10 of the gradient when
_max_RandRadius is set to a nonzero value.

max MaxIters scalar, maximum number of iterations.

max MaxTime scalar, maximum time in iterations in minutes. This
global is most useful in bootstrapping. You might want 100
re-samples, but would be happy with anything more than 50
depending on the time it took. Set _max_NumSample = 100,
and _max_MaxTime to maximum time you would be willing
to wait for results. Default = 1e+5, about 10 weeks.

max MaxTry scalar, maximum number of tries to find step length that
produces a descent.

max NumObs scalar, number of cases in the data set that was
analyzed.

max Options character vector, specification of options. This global
permits setting various FASTMAX options in a single global
using identifiers. The following

_max_Options = { bfgs stepbt forward };

sets to the default values, i.e. the descent method to BFGS,
the line search method to STEPBT, the numerical gradient
method to central differences.
The following is a list of the identifiers:

Algorithms STEEP, BFGS, DFP, NEWTON, BHHH,
PRCG

Line Search ONE, STEPBT, HALF, BRENT,
BHHHSTEP

Covariance Matrix NOCOV, INFO, XPROD, HETCON
Gradient method CENTRAL, FORWARD
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max ParNames K × 1 character vector, parameter labels.

max RandRadius scalar, if set to a nonzero value (1e-2, say) and all
other line search methods fail then FASTMAX attempts
_max_MaxTry tries to find a random direction within radius
determined by _max_RandRadius that is a descent. Default
= 1e-2.

max RandType scalar, if nonzero, pseudo-random numbers of the
linear congruential type are generated, otherwise, they are
generated by Marsaglia’s Kiss-Monster method. The latter
method is slower but has a much larger period. Random
numbers are generated for the random line search.

max State scalar or vector, state vector for pseudorandom number
generators containing seed. By default it is set to 345678. If
you wish to select a seed, set to a different value.

max Switch 4 × 1 or 4 × 2 vector, controls algorithm switching. If
_max_Switch is 4× 1, set its elements in the following way:

1 algorithm number to switch to.
2 FASTMAX will switch to algorithm in the first element

when the function value is less than the value entered
here.

3 FASTMAX switches if the number of iterations exceeds
the number entered here.

4 FASTMAX switches if line search step changes less than
the amount entered here.

If _max_Switch is 4 × 2, FASTMAX switches between the
algorithms in column 1 and column 2 subject to the
conditions specified for the 4 × 1 vector.
Thus if _max_Switch is a 4× 1 vector, FASTMAX will switch
algorithms no more than once during the iterations, whereas
if it is 4 × 2 it may switch back and forth between the two
algorithms throughout the iterations.

title string title of run
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weight vector, frequency of observations. By default all
observations have a frequency of 1. zero frequencies are
allowed. It is assumed that the elements of __weight sum
to the number of observations.

max XprodCov K × K matrix. When _max_CovPar is set to 3 the
cross-product matrix covariance matrix of the parameters,
i.e., the inverse of the cross-product of the first derivatives of
the log-likelihood computed by observations, is is returned
in _max_XprodCov.

REMARKS Writing the Log-likelihood Function

The user must provide a procedure for computing the log-likelihood for
a matrix of observations. The procedure must have two input
arguments: first, a vector of parameter values, and second, the data
matrix. The output argument is the log-likelihood for the observations
in the second argument evaluated at the parameter values in the first
argument. Suppose that the function procedure has been named pfct,
the following considerations apply:

The format of the procedure is:

logprob = pfct(x,y);

where

x column vector of parameters of model.

y data.

The output from the procedure pfct is the vector of log-likelihoods for a
set of observations.

Supplying an Analytical GRADIENT Procedure
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To decrease the time of computation, the user may provide a procedure
for the calculation of the gradient of the log-likelihood. The global
variable _max_GradProc must contain the pointer to this procedure.
Suppose the name of this procedure is gradproc. Then,

g = gradproc(x,y);

where the input arguments are

x vector of coefficients.

y matrix, dataset.

and the output argument is

g row vector of gradients of log-likelihood with respect to
coefficients, or a matrix of gradients (i.e., a Jacobian).

It is important to note that the gradient is row oriented.
_max_GradProc must return a matrix of first derivatives in which rows
are associated with observations and columns with coefficients.

Providing a procedure for the calculation of the first derivatives also has
a significant effect on the calculation time of the Hessian. The
calculation time for the numerical computation of the Hessian is a
quadratic function of the size of the matrix. For large matrices, the
calculation time can be very significant. This time can be reduced to a
linear function of size if a procedure for the calculation of analytical
first derivatives is available. When such a procedure is available,
FASTMAX automatically uses it to compute the numerical Hessian.

The major problem one encounters when writing procedures to
compute gradients and Hessians is in making sure that the gradient is
being properly computed. For best results use Maxlik with
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_max_GradCheckTol set to a nonzero value to ensure that they are
being calculated correctly.

Supplying an Analytical HESSIAN Procedure.

Selection of the NEWTON algorithm becomes feasible if the user
supplies a procedure to compute the Hessian. If such a procedure is
provided, the global variable _max_HessProc must contain a pointer to
this procedure. Suppose this procedure is called hessproc, the format is

h = hessproc(x,y);

The input arguments are

x K × 1 vector of coefficients.

y matrix containing data set.

and the output argument is

h K × K matrix of second order partial derivatives evaluated at
the coefficients in x.

In practice much of the time spent on writing the Hessian procedure is
devoted to debugging. To help in this debugging process, use the
Maxlik procedure with _max_GradCheckTol is set to a small nonzero
value.

SOURCE fastmax.src

M C R 4-11



FASTBayes

FASTBayes

PURPOSE Computes a simulated posterior of the parameters of a maximum
likelihood function using FASTMAX.

LIBRARY maxlik

FORMAT { x,f,g,cov,retcode } = FASTBayes(data,vars,&fct,start)

INPUT data N × NV matrix, dataset.

vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
vars may be a character vector containing either the
standard labels created by FASTBayes (i.e., either V1,
V2,..., or V01, V02,..... See discussion of the global variable
__vpad below, or the user-provided labels in __altnam).

&fct a pointer to a procedure that returns the log-likelihood for a
vector of log-likelihoods for a matrix of observations.

start K × 1 vector, start values.

OUTPUT x K × 1 vector, means of simulated posterior.

f scalar, mean weighted bootstrap log-likelihood.

g K × 1 vector, means gradient of weighted bootstrap.

h K × K matrix, covariance matrix of simulated posterior.

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:
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0 normal convergence.
1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient.
9 gradient vector transposed.
10 secant update failed.
11 maximum time exceeded.
12 error with weights.
34 data set could not be opened.
99 termination condition unknown.

GLOBALS The FASTMAX procedure global variables are also applicable.

max BayesAlpha scalar, exponent of the Dirichlet random variates
used for weights for the weighted bootstrap. See Newton
and Raftery, “Approximate Bayesian Inference with the
Weighted Likelihood Bootstrap”, J.R. Statist. Soc. B
(1994), 56:3-48. Default = 1.4.

max BootFname string, file name of GAUSS data set (do not include
.DAT extension) containing bootstrapped parameter
estimates. If not specified, FASTBayes selects a temporary
name.

max MaxTime scalar, maximum amount of time spent in re-sampling.
Default = 1e5 (about 10 weeks).

max NumSample scalar, number of samples to be drawn. Default =
100.
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max PriorProc scalar, pointer to proc for computing prior. This proc
takes the parameter vector as its only argument, and returns
a scalar probability. If a proc is not provided, a uniform
prior is assumed.

max RandType scalar, if nonzero, pseudo-random numbers of the
linear congruential type are generated, otherwise, they are
generated by Marsaglia’s Kiss-Monster method. The latter
method is slower but has a much larger period. Random
numbers are generated for the random line search.

max State scalar or vector, state vector for pseudorandom number
generators containing seed. By default it is set to 345678. If
you wish to select a seed, set to a different value.

REMARKS FASTBayes generates _max_NumSample simulations from the posterior
distribution of the parameters using a weighted likelihood bootstrap
method. The simulation is put into a GAUSS data set. The file name of
the data set is either the name found in the global _max_BootFname, or
a temporary name. If FASTBayes selects a file name, it returns that file
name in _max_BootFname.

The simulated parameters in this data set can be used as input to the
procedures MAXHist and MAXDensity for further analysis.

The output from MAXDensity can also be used to compute modal
estimates of the parameters.

SOURCE fastbayes.src

FASTBoot

PURPOSE Computes bootstrapped estimates of parameters of a maximum
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likelihood function using FASTMAX.

LIBRARY maxlik

FORMAT { x,f,g,cov,retcode } = FASTBoot(data,vars,&fct,start)

INPUT data N × NV matrix, dataset.

vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
vars may be a character vector containing either the
standard labels created by FASTBoot (i.e., either V1, V2,...,
or V01, V02,..... See discussion of the global variable
__vpad below, or the user-provided labels in __altnam).

&fct a pointer to a procedure that returns the log-likelihood for a
matrix of observations.

start K × 1 vector, start values.

OUTPUT x K × 1 vector, means of re-sampled parameters.

f scalar, mean re-sampled function at minimum (the mean
log-likelihood).

g K × 1 vector, means of re-sampled gradients evaluated at the
estimates.

h K × K matrix, covariance matrix of the re-sampled
parameters.

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence.
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1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient.
9 gradient vector transposed.
10 secant update failed.
11 maximum time exceeded.
12 error with weights.
34 data set could not be opened.
99 termination condition unknown.

GLOBALS The FASTMAX procedure global variables are also applicable.

max BootFname string, file name of GAUSS data set (do not include
.DAT extension) containing bootstrapped parameter
estimates. If not specified, FASTBoot selects a temporary
name.

max MaxTime scalar, maximum amount of time spent in re-sampling.
Default = 1e5 (about 10 weeks).

max NumSample scalar, number of samples to be drawn. Default =
100.

max RandType scalar, if nonzero, pseudo-random numbers of the
linear congruential type are generated, otherwise, they are
generated by Marsaglia’s Kiss-Monster method. The latter
method is slower but has a much larger period. Random
numbers are generated for the random line search.
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max State scalar or vector, state vector for pseudorandom number
generators containing seed. By default it is set to 345678. If
you wish to select a seed, set to a different value.

REMARKS FASTBoot generates _max_NumSample random samples of size
_max_NumObs from the data set with replacement and calls FASTMAX.
FASTBoot returns the mean vector of the estimates in the first argument
and the covariance matrix of the estimates in the third argument.

A GAUSS data set is also generated containing the bootstrapped
parameter estimates. The file name of the data set is either the name
found in the global _max_BootFname, or a temporary name. If
FASTBoot selects a file name, it returns that file name in
_max_BootFname. The coefficients in this data set may be used as
input to the procedures MAXHist and MAXDensity for further analysis.

SOURCE fastboot.src

FASTPflClimits

PURPOSE Computes profile likelihood confidence limits using FASTMAX.

LIBRARY maxlik

FORMAT cl = FASTPflClimits(b,f,data,vars,&fct)

INPUT b K × 1 vector, maximum likelihood estimates.
f scalar, function at minimum (mean log-likelihood).
data N × NV matrix, data.
vars NV × 1 character vector, labels of variables selected for

analysis.
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– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
vars may be a character vector containing either the
standard labels created by MAXPflClimits (i.e., either V1,
V2,..., or V01, V02,..... See discussion of the global variable
__vpad below, or the user-provided labels in __altnam).

&fct a pointer to a procedure that returns a vector of
log-likelihoods for a matrix of observations.

OUTPUT cl K × 2 vector, upper (first column) and lower (second
column) confidence limits for the parameters in b.

GLOBALS The FASTMAX procedure global variables are also applicable.

max Alpha (1-/commandname max Alpha)% confidence limits are
computed. The default is .05

max NumObs scalar, number of observations. Must be set. If the call
to MaxPflClimits comes after a call to Maxlik, it will be
set by Maxlik.

max Select selection vector for selecting parameters for analysis. For
example,

_max_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for limits.

REMARKS FASTPflClimits computes profile likelihood confidence limits given a
maximum likelihood estimation. b and f should be returns from a call
to FASTMAX. This will also properly set up _max_NumObs for
FASTPflClimits.

FASTPflClimits solves for the confidence limits as a parametric
likelihood problem. Thus it itself calls FASTMAX several times for each
confidence limit.
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SOURCE fastpflcl.src

FASTProfile

PURPOSE Computes profile t plots and likelihood profile traces for maximum
likelihood models using FASTMAX.

LIBRARY maxlik

FORMAT { x,f,g,cov,retcode } = FASTProfile(data,vars,&fct,start)

INPUT data N × NV matrix, dataset.
vars NV × 1 character vector, labels of variables selected for

analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
vars may be a character vector containing either the
standard labels created by FASTProfile (i.e., either V1,
V2,..., or V01, V02,..... See discussion of the global variable
__vpad below, or the user-provided labels in __altnam).

&fct a pointer to a procedure that returns a vector of
log-likelihoods for a matrix of observations

start K × 1 vector, start values.

OUTPUT x K × 1 vector, means of re-sampled parameters
f scalar, mean re-sampled function at minimum (the mean

log-likelihood)
g K × 1 vector, means of re-sampled gradients evaluated at the

estimates
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h K × K matrix, covariance matrix of the re-sampled
parameters

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence
1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient
9 gradient vector transposed
10 secant update failed
11 maximum time exceeded
12 error with weights
34 data set could not be opened.
99 termination condition unknown.

GLOBALS The FASTMAX procedure global variables are also relevant.

max NumCat scalar, number of categories in profile table. Default =
16.

max Increment K × 1 vector, increments for cutting points, default is
2 * _max_Width * std dev / _max_NumCat. If scalar zero,
increments are computed by FastProfile.

max Center K × 1 vector, value of center category in profile table.
Default values are coefficient estimates.
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max Select selection vector for selecting coefficients to be included in
profiling, for example

_max_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for profiling.

max Width scalar, width of profile table in units of the standard
deviations of the parameters. Default = 2.

REMARKS For each pair of the selected parameters, three plots are printed to the
screen. Two of the are the profile t trace plots that describe the
univariate profiles of the parameters, and one of them is the profile
likelihood trace describing the joint distribution of the two parameters.
Ideally distributed parameters would have univariate profile t traces that
are straight lines, and bivariate likelihood profile traces that are two
straight lines intersecting at right angles. This ideal is generally not met
by nonlinear models, however, large deviations from the ideal indicate
serious problems with the usual statistical inference.

SOURCE fastprof.src

MAXLIK

PURPOSE Computes estimates of parameters of a maximum likelihood function.

LIBRARY maxlik

FORMAT { x,f,g,cov,retcode } = MAXLIK(dataset,vars,&fct,start)

INPUT dataset string containing name of GAUSS data set.
– or –
N × NV matrix, data.
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vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by Maxlik (i.e.,
either V1, V2,..., or V01, V02,..... See discussion of the
global variable __vpad below, or the user-provided labels in
__altnam).

&fct a pointer to a procedure that returns either the log-likelihood
for one observation or a vector of log-likelihoods for a
matrix of observations (see discussion of the global variable
__row in global variable section below).

start K × 1 vector, start values.

OUTPUT x K × 1 vector, estimated parameters

f scalar, function at minimum (the mean log-likelihood)

g K × 1 vector, gradient evaluated at x

h K × K matrix, covariance matrix of the parameters (see
discussion of the global variable _max_CovPar below).

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence
1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
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7 function cannot be evaluated at initial parameter values.
8 error with gradient
9 gradient vector transposed
10 secant update failed
11 maximum time exceeded
12 error with weights
34 data set could not be opened.
99 termination condition unknown.

GLOBALS The globals variables used by Maxlik can be organized in the following
categories according to which aspect of the optimization they affect:

Options _max_Options

Descent and Line Search _max_Algorithm, _max_Delta,
_max_LineSearch, _max_Maxtry, _max_Extrap,
_max_Interp, _max_RandRadius, _max_UserSearch
_max_Switch, _max_RandType, _max_State,

Covariance Matrix of Parameters _max_CovPar,
_max_XprodCov, _max_HessCov, _max_FinalHess

Gradient _max_GradMethod, _max_GradProc,
_max_UserNumGrad, _max_HessProc, _max_UserNumHess,
_max_GradStep, _max_GradCheckTol

Terminations Conditions _max_GradTol, _max_MaxIters,
_max_MaxTime

Data _max_Lag, _max_NumObs, __weight, __row, __rowfac

Parameters _max_Active, _max_ParNames

Miscellaneous __title, _max_IterData, _max_Diagnostic
_max_Key,

The list below contains an alphabetical listing of each global with a
complete description.
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max Active vector, defines fixed/active coefficients. This global
allows you to fix a parameter to its starting value. This is
useful, for example, when you wish to try different models
with different sets of parameters without having to re-edit
the function. When it is to be used, it must be a vector of the
same length as the starting vector. Set elements of
max Active to 1 for an active parameter, and to zero for a

fixed one.

max Algorithm scalar, selects optimization method:

1 STEEP - Steepest Descent
2 BFGS - Broyden, Fletcher, Goldfarb, Shanno method
3 DFP - Davidon, Fletcher, Powell method
4 NEWTON - Newton-Raphson method
5 BHHH - Berndt, Hall, Hall, Hausman method
6 PRCG - Polak-Ribiere Conjugate Gradient

Default = 3

max CovPar scalar, type of covariance matrix of parameters

0 not computed
1 computed from Hessian calculated after the iterations
2 computed from cross-product of Jacobian calculated

after iterations
3 Quasi-maximum likelihood (QML) covariance matrix

of the parameters

Default = 1;

max Delta scalar, floor for eigenvalues of Hessian in the NEWTON
algorithm. When nonzero, the eigenvalues of the Hessian
are augmented to this value.

max Diagnostic scalar.

0 nothing is stored or printed
1 current estimates, gradient, direction, function value,

Hessian, and step length are printed to the screen
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2 the current quantities are stored in _max_Diagnostic
using the vput command. Use the following strings to
extract from _max_Diagnostic using vread:

function “function”
estimates “params”
direction “direct”
Hessian “hessian”
gradient “gradient”

step “step”

When _max_Diagnostic is nonzero, __output is forced
to 1.

max GradTol scalar, convergence tolerance for gradient of estimated
coefficients. When this criterion has been satisifed
MAXLIK exits the iterations. Default = 1e-5.

max Extrap scalar, extrapolation constant in BRENT. Default = 2.

max FinalHess K × K matrix, the Hessian used to compute the
covariance matrix of the parameters is stored in
_max_FinalHess. This is most useful if the inversion of the
hessian fails, which is indicated when Maxlik returns a
missing value for the covariance matrix of the parameters.
An analysis of the Hessian stored in _max_FinalHess can
then reveal the source of the linear dependency responsible
for the singularity.

max GradCheckTol scalar. Tolerance for the deviation of numerical
and analytical gradients when proc’s exist for the
computation of analytical gradients or Hessians. If set to
zero, the analytical gradients will not be compared to their
numerical versions. When adding procedures for computing
analytical gradients it is highly recommended that you
perform the check. Set _max_GradCheckTol to some small
value, 1e-3, say when checking. It may have to be set larger
if the numerical gradients are poorly computed to make sure
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that Maxlik doesn’t fail when the analytical gradients are
being properly computed.

max GradMethod scalar, method for computing numerical gradient.

0 central difference
1 forward difference (default)

max GradProc scalar, pointer to a procedure that computes the
gradient of the function with respect to the parameters. For
example, the statement:

_max_GradProc=&gradproc;

tells Maxlik that a gradient procedure exists as well where
to find it. The user-provided procedure has two input
arguments, an K × 1 vector of parameter values and an N×K
matrix of data. The procedure returns a single output
argument, an N × K matrix of gradients of the log-
likelihood function with respect to the parameters evaluated
at the vector of parameter values.
For example, suppose the log-likelihood function is for a
Poisson regression, then the following would be added to
the command file:

proc lgd(b,z);

retp((z[.,1]-exp(z[.,2:4]*b)).*z[.,2:4]);

endp;

_max_GradProc = &lgd;

Default = 0, i.e., no gradient procedure has been provided.

max GradStep scalar, increment size for computing gradient. When
the numerical gradient is performing well, set to a larger
value (1e-3, say). Default is the cube root of machine
precision.

max HessCov K × K matrix. When _max_CovPar is set to 3 the
information matrix covariance matrix of the parameters, i.e.,
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the inverse of the matrix of second order partial derivatives
of the log-likelihood by observations, is returned in
_max_HessCov.

max HessProc scalar, pointer to a procedure that computes the
hessian, i.e., the matrix of second order partial derivatives of
the function with respect to the parameters. For example,
the instruction:

_max_HessProc = &hessproc;

tells Maxlik that a procedure has been provided for the
computation of the hessian and where to find it. The
procedure that is provided by the user must have two input
arguments, a K × 1 vector of parameter values and an N×P
data matrix. The procedure returns a single output
argument, the K × K symmetric matrix of second order
derivatives of the function evaluated at the parameter values.

max Interp scalar, interpolation constant in BRENT. Default = .25.
max IterData 3x1 vector, contains information about the iterations.

The first element contains the # of iterations, the second
element contains the elapsed time in minutes of the
iterations, and the third element contains a character variable
indicating the type of covariance matrix of the parameters.

max Key scalar, if nonzero, the keyboard is polled for keystrokes for
modifying globals, and if zero, polling is turned off. Default
= 1.

max Lag scalar, if the function includes lagged values of the variables
_max_Lag may be set to the number of lags. When
_max_Lag is set to a nonzero value then __row is set to 1
(that is, the function must evaluated one observation at a
time), and Maxlik passes a matrix to the user-provided
function and gradient procedures. The first row in this
matrix is the (i - _max_Lag)-th observation and the last row
is the i-th observation. The read loop begins with the
(_max_Lag+1)-th observation. Default = 0.
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max LineSearch scalar, selects method for conducting line search.
The result of the line search is a step length, i.e., a number
which reduces the function value when multiplied times the
direction..

1 step length = 1.
2 cubic or quadratic step length method (STEPBT)
3 step halving (HALF)
4 Brent’s step length method (BRENT)
5 BHHH step length method (BHHHSTEP)

Default = 2.
Usually _max_LineSearch = 2 is best. If the optimization
bogs down, try setting _max_LineSearch = 1, 4 or 5.
_max_LineSearch = 3 generates slower iterations but
faster convergence and _max_LineSearch = 1 generates
faster iterations but slower convergence.
When any of these line search methods fails, Maxlik
attempts a random search of radius _max_RandRadius
times the truncated log to the base 10 of the gradient when
_max_RandRadius is set to a nonzero value. If
_max_UserSearch is set to 1, Maxlik enters an interactive
line search mode.

max MaxIters scalar, maximum number of iterations.

max MaxTime scalar, maximum time in iterations in minutes. This
global is most useful in bootstrapping. You might want 100
re-samples, but would be happy with anything more than 50
depending on the time it took. Set _max_NumSample = 100,
and _max_MaxTime to maximum time you would be willing
to wait for results. Default = 1e+5, about 10 weeks.

max MaxTry scalar, maximum number of tries to find step length that
produces a descent.

max NumObs scalar, number of cases in the data set that was
analyzed.
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max Options character vector, specification of options. This global
permits setting various Maxlik options in a single global
using identifiers. The following

_max_Options = { bfgs stepbt forward screen };

sets to the default values, i.e. the descent method to BFGS,
the line search method to STEPBT, the numerical gradient
method to central differences, and OUTPUT = 2.
The following is a list of the identifiers:

Algorithms STEEP, BFGS, DFP, NEWTON, BHHH,
PRCG

Line Search ONE, STEPBT, HALF, BRENT,
BHHHSTEP

Covariance Matrix NOCOV, INFO, XPROD, HETCON
Gradient method CENTRAL, FORWARD
Output method NONE, FILE, SCREEN

output scalar, determines printing of intermediate results.
Generally when __output is nonzero, i.e., where there
some kind of printing during the iterations, the time of the
iterations is degraded.

0 nothing is written
1 serial ASCII output format suitable for disk files or

printers
2 output is suitable for screen only. ANSI.SYS must be

active.
≥5 same as __output = 1 except that information is

printed only every __output-th iteration.

When _max_Diagnostic is nonzero, __output is forced
to 1.

max ParNames K × 1 character vector, parameter labels.

max RandRadius scalar, if set to a nonzero value (1e-2, say) and all
other line search methods fail then Maxlik attempts
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_max_MaxTry tries to find a random direction within radius
determined by _max_RandRadius that is a descent. Default
= 1e-2.

max RandType scalar, if nonzero, pseudo-random numbers of the
linear congruential type are generated, otherwise, they are
generated by Marsaglia’s Kiss-Monster method. The latter
method is slower but has a much larger period. Random
numbers are generated for the random line search.

max State scalar or vector, state vector for pseudorandom number
generators containing seed. By default it is set to 345678. If
you wish to select a seed, set to a different value.

max Switch 4 × 1 or 4 × 2 vector, controls algorithm switching. If
_max_Switch is 4 × 1, set its elements in the following way,

1 , algorithm number to switch to
2 , Maxlik will switch to algorithm in the first element

when the function value is less than the value entered
here

3 Maxlik switches if the number of iterations exceeds the
number entered here

4 Maxlik switches if line search step changes less than
the amount entered here

If _max_Switch is 4 × 2, Maxlik switches between the
algorithms in column 1 and column 2 subject to the
conditions specified for the 4 × 1 vector.
Thus if _max_Switch is a 4 × 1 vector, Maxlik will switch
algorithms no more than once during the iterations, whereas
if it is 4 × 2 it may switch back and forth bewteen the two
algorithms throughout the iterations.

max UserNumGrad scalar, pointer to user provided numerical
gradient procedure. The instruction

_max_UserNumGrad = &userproc;
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tells Maxlik that a procedure for computing the numerical
gradients exists. The user-provided procedure has three
input arguments, a pointer to a function that computes the
log-likelihood function, a K × 1 vector of parameter values,
and an K × P matrix of data. The procedure returns a single
output argument, an N × K matrix of gradients of each row
of the input data matrix with respect to each parameter.
Maxlik includes a procedure, GRADRE, for computing
numerical derivatives using the Richardson Extrapolation
method. It is invoked by setting the global to a pointer to
this function:

_max_UserNumGrad = &gradre;

row scalar, specifies how many rows of the data set are read per
iteration of the read loop. See the Remarks Section for a
more detailed discussion of how to set up your
log-likelihood to handle more than one row of your data set.
By default, the number of rows to be read is calculated by
Maxlik.

rowfac scalar, “row factor”. If Maxlik fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;

causes GAUSS to read in 80% of the rows of the GAUSS
data set that were read when Maxlik failed due to
insufficient memory.
This global has an affect only when __row = 0. Default = 1.

title string title of run

max UserNumHess scalar, pointer to user provided numerical
Hessian procedure. The instruction
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_max_UserHess = &hessproc;

tells Maxlik that a procedure for computing the numerical
Hessian exists. The user-provided procedure three input
arguments, a pointer to a function that computes the
log-likelihood function, a K × 1 vector of parameter values,
and an N×P matrix of data. The procedure returns a single
output argument, a K × K Hessian matrix of the function
with respect to the parameters.

max UserSearch scalar, if nonzero and if all other line search
methods fail Maxlik enters an interactive mode in which the
user can select a line search parameter

weight vector, frequency of observations. By default all
observations have a frequency of 1. zero frequencies are
allowed. It is assumed that the elements of __weight sum
to the number of observations.

max XprodCovr index max XprodCov@_max_XprodCov K × K
matrix. When _max_CovPar is set to 3 the cross-product
matrix covariance matrix of the parameters, i.e., the inverse
of the cross-product of the first derivatives of the
log-likelihood computed by observations, is is returned in
_max_XprodCov.

REMARKS Writing the Log-likelihood Function

The user must provide a procedure for computing the log-likelihood for
either one observation, or for a matrix of observations. The procedure
must have two input arguments: first, a vector of parameter values, and
second, one or more rows of the data matrix. The output argument is
the log-likelihood for the observation or observations in the second
argument evaluated at the parameter values in the first argument.
Suppose that the function procedure has been named pfct, the following
considerations apply:

The format of the procedure is:
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logprob = pfct(x,y);

where

x column vector of parameters of model

y one or more rows of the data set (if the data set has been
transformed, or if vars , 0, i.e., there is selection, then y is a
transformed, selected observation)
if __row = n, then n rows of the data set are read at a time
if __row = 0, the maximum number of rows that fit in
memory is computed by Maxlik.

The output from the procedure pfct is the log-likelihood for a single
observation or a vector of log-likelihoods for a set of observations. If it
is not possible to compute the log-likelihood for a set of observations,
then either __row may be set to 1 to force Maxlik to send one
observation at a time to pfct or the procedure computing the function
may contain a loop. If possible, pfct should be written to compute a
vector of log-likelihoods for a set of observations because this speeds
up the computations significantly. If _max_Lag ≥ 1, then __row is
forced to 1.

Setting __row= 0 causes Maxlik to send the entire matrix to pfct if it is
stored entirely in memory, or to compute the maximum number of rows
if it is a GAUSS data set stored on disk (Note that even if the data starts
out in a GAUSS data set, Maxlik determines whether the data set will
fit in memory, and if it does, then it reads the data set into an array in
memory). If you are getting insufficient memory messages, then set
__rowfac to a positive value less than 1.

Supplying an Analytical GRADIENT Procedure
To decrease the time of computation, the user may provide a procedure
for the calculation of the gradient of the log-likelihood. The global
variable _max_GradProc must contain the pointer to this procedure.
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Suppose the name of this procedure is gradproc. Then,

g = gradproc(x,y);

where the input arguments are

x vector of coefficients

y one or more rows of data set.

and the output argument is

g row vector of gradients of log-likelihood with respect to
coefficients, or a matrix of gradients (i.e., a Jacobian) if the
data passed in y is a matrix (unless _max_Lag ≥ 1 in which
case the data passed in y is a matrix of lagged values but a
row vector of gradients is passed back in g).

It is important to note that the gradient is row oriented. Thus if the
function that computes the log-likelihood returns a scalar value (__row
= 1), then a row vector of the first derivatives of the log-likelihood with
respect to the coefficients must be returned, but if the procedure that
computes the log-likelihood returns a column vector, then
_max_GradProc must return a matrix of first derivatives in which rows
are associated with observations and columns with coefficients.

Providing a procedure for the calculation of the first derivatives also has
a significant effect on the calculation time of the Hessian. The
calculation time for the numerical computation of the Hessian is a
quadratic function of the size of the matrix. For large matrices, the
calculation time can be very significant. This time can be reduced to a
linear function of size if a procedure for the calculation of analytical
first derivatives is available. When such a procedure is available,
Maxlik automatically uses it to compute the numerical Hessian.
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The major problem one encounters when writing procedures to
compute gradients and Hessians is in making sure that the gradient is
being properly computed. Maxlik checks the gradients and Hessian
when _max_GradCheckTol is nonzero. Maxlik generates both
numerical and analytical gradients, and viewing the discrepancies
between them can help in debugging the analytical gradient procedure.

Supplying an Analytical HESSIAN Procedure.

Selection of the NEWTON algorithm becomes feasible if the user
supplies a procedure to compute the Hessian. If such a procedure is
provided, the global variable _max_HessProc must contain a pointer to
this procedure. Suppose this procedure is called hessproc, the format is

h = hessproc(x,y);

The input arguments are

x K × 1 vector of coefficients

y one or more rows of data set

and the output argument is

h K × K matrix of second order partial derivatives evaluated at
the coefficients in x.

In practice much of the time spent on writing the Hessian procedure is
devoted to debugging. To help in this debugging process, Maxlik can
be instructed to compute the numerical Hessian along with your
prospective analytical Hessian for comparison purposes. To accomplish
this _max_GradCheckTol is set to a small nonzero value.

SOURCE maxlik.src
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MAXBayes

PURPOSE Computes a simulated posterior of the parameters of a maximum
likelihood function.

LIBRARY maxlik

FORMAT { x,f,g,cov,retcode } = MAXBayes(dataset,vars,&fct,start)

INPUT dataset string containing name of GAUSS data set.
– or –
N × NV matrix, data.

vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by MAXBayes
(i.e., either V1, V2,..., or V01, V02,..... See discussion of the
global variable __vpad below, or the user-provided labels in
__altnam).

&fct a pointer to a procedure that returns either the log-likelihood
for one observation or a vector of log-likelihoods for a
matrix of observations (see discussion of the global variable
__row in global variable section below).

start K × 1 vector, start values.

OUTPUT x K × 1 vector, means of simulated posterior

f scalar, mean weighted bootstrap log-likelihood
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g K × 1 vector, means gradient of weighted bootstrap

h K × K matrix, covariance matrix of simulated posterior

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence
1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient
9 gradient vector transposed
10 secant update failed
11 maximum time exceeded
12 error with weights
34 data set could not be opened.
99 termination condition unknown.

GLOBALS The Maxlik procedure global variables are also applicable.

max BayesAlpha scalar, exponent of the Dirichlet random variates
used for weights for the weighted bootstrap. See Newton
and Raftery, “Approximate Bayesian Inference with the
Weighted Likelihood Bootstrap”, J.R. Statist. Soc. B
(1994), 56:3-48. Default = 1.4.

max BootFname string, file name of GAUSS data set (do not include
.DAT extension) containing bootstrapped parameter
estimates. If not specified, MAXBayes selects a temporary
name.
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max MaxTime scalar, maximum amount of time spent in re-sampling.
Default = 1e5 (about 10 weeks).

max NumSample scalar, number of samples to be drawn. Default =
100.

max PriorProc scalar, pointer to proc for computing prior. This proc
takes the parameter vector as its only argument, and returns
a scalar probability. If a proc is not provided, a uniform
prior is assumed.

REMARKS MAXBayes generates _max_NumSample simulations from the posterior
distribution of the parameters using a weighted likelihood bootstrap
method. The simulation is put into a GAUSS data set. The file name of
the data set is either the name found in the global _max_BootFname, or
a temporary name. If MAXBayes selects a file name, it returns that file
name in _max_BootFname.

The simulated parameters in this data set can be used as input to the
Maxlik procedures MAXHist and MAXDensity for further analysis.

The output from MAXDensity can also be used to compute modal
estimates of the parameters.

SOURCE maxbayes.src

MAXBoot

PURPOSE Computes bootstrapped estimates of parameters of a maximum
likelihood function.

LIBRARY maxlik
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FORMAT { x,f,g,cov,retcode } = MAXBoot(dataset,vars,&fct,start)

INPUT dataset string containing name of GAUSS data set.
– or –
N × NV matrix, data.

vars NV × 1 character vector, labels of variables selected for
analysis.
NV × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by MAXBoot
(i.e., either V1, V2,..., or V01, V02,..... See discussion of the
global variable __vpad below, or the user-provided labels in
__altnam).

&fct a pointer to a procedure that returns either the log-likelihood
for one observation or a vector of log-likelihoods for a
matrix of observations (see discussion of the global variable
__row in global variable section below).

start K × 1 vector, start values.

OUTPUT x K × 1 vector, means of re-sampled parameters

f scalar, mean re-sampled function at minimum (the mean
log-likelihood)

g K × 1 vector, means of re-sampled gradients evaluated at the
estimates

h K × K matrix, covariance matrix of the re-sampled
parameters

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence
1 forced exit.
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2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient
9 gradient vector transposed
10 secant update failed
11 maximum time exceeded
12 error with weights
34 data set could not be opened.
99 termination condition unknown.

GLOBALS The Maxlik procedure global variables are also applicable.

max BootFname string, file name of GAUSS data set (do not include
.DAT extension) containing bootstrapped parameter
estimates. If not specified, MAXBoot selects a temporary
name.

max MaxTime scalar, maximum amount of time spent in re-sampling.
Default = 1e5 (about 10 weeks).

max NumSample scalar, number of samples to be drawn. Default =
100.

REMARKS MAXBoot generates _max_NumSample random samples of size
_max_NumObs from the data set with replacement and calls Maxlik.
MAXBoot returns the mean vector of the estimates in the first argument
and the covariance matrix of the estimates in the third argument.

A GAUSS data set is also generated containing the bootstrapped
parameter estimates. The file name of the data set is either the name
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found in the global _max_BootFname, or a temporary name. If
MAXBoot selects a file name, it returns that file name in
_max_BootFname. The coefficients in this data set may be used as
input to the Maxlik procedures MAXHist and MAXDensity for further
analysis.

SOURCE maxboot.src

MAXBlimits

PURPOSE Generates histograms and surface plots from GAUSS data sets.

LIBRARY maxlik

FORMAT cl = MAXBlimits(dataset)

INPUT dataset string containing name of GAUSS data set.
– or –
N×K matrix, data.

OUTPUT cl K × 2 matrix, lower (first column) and upper (second
column) confidence limits of the selected parameters

GLOBALS max Alpha (1-_max_Alpha)% confidence limits are computed. The
default is .05

max Select selection vector for selecting coefficients to be included in
profiling, for example

_max_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for profiling.
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REMARKS MAXBlimits sorts each column of the parameter data set and computes
(1-_max_Alpha)% confidence limits by measuring back _max_Alpha/2
times the number of rows from each end of the columns. The
confidence limits are the values in those elements. If amount to be
measured back from each end of the columns doesn’t fall exactly on an
element of the column, the confidence limit is interpolated from the
bordering elements.

SOURCE maxblim.src

MAXCLPrt

PURPOSE Formats and prints the output from a call to Maxlik along with
confidence limits.

LIBRARY maxlik

FORMAT { x,f,g,cl,retcode } = MAXCLPrt(x,f,g,cl,retcode);

INPUT x K × 1 vector, parameter estimates

f scalar, value of function at minimum

g K × 1 vector, gradient evaluated at x

cl K × 2 matrix, lower (first column) and upper (second
column) confidence limits

retcode scalar, return code.

OUTPUT The input arguments are returned unchanged.

GLOBALS header string. This is used by the printing procedure to display
information about the date, time, version of module, etc.
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The string can contain one or more of the following
characters:

“t” print title (see __title)
“l” bracket title with lines
“d” print date and time
“v” print version number of program
“f” print file name being analyzed

Example:

__header = \commandname{tld};

Default = “tldvf”.

title string, message printed at the top of the screen and printed
out by MAXCLPrt. Default = “”.

REMARKS Confidence limits computed by MAXBlimits or MAXTlimits may be
passed in the fourth argument in the call to MAXCLPrt:

{ b,f,g,cov,ret } = MAXBoot("tobit",0,&lpr,x0);

cl = MAXBLimit(_max_BootFname,0);

call MAXCLPrt(b,f,g,cl,ret);

SOURCE maxlik.src

MAXDensity

PURPOSE Generates histograms and surface plots from GAUSS data sets.

LIBRARY maxlik

FORMAT { px, py, smth } = MAXDensity(dataset,vars)
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INPUT dataset string containing name of GAUSS data set.
– or –
N×K matrix, data.

vars K × 1 character vector, labels of variables selected for
analysis.
– or –
K × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by
MAXDensity (i.e., either V1, V2,..., or V01, V02,..... See
discussion of the global variable __vpad below, or the
user-provided labels in __altnam).

OUTPUT px _max_NumPoints × K matrix, abscissae of plotted points

py _max_NumPoints × K matrix, ordinates of plotted points

smth K × 1 vector, smoothing coefficients

GLOBALS The Maxlik procedure global variables are also applicable.

max Kernel K × 1 character vector, type of kernel:

NORMAL normal kernel
EPAN Epanechnikov kernel
BIWGT biweight kernel
TRIANG triangular kernel
RECTANG rectangular kernel
TNORMAL truncated normal kernel

If _max_Kernel is scalar, the kernel is the same for all
parameter densities. Default = NORMAL.

max NumPoints scalar, number of points to be computed for plots

max EndPoints K × 2 matrix, lower (in first column) and upper (in
second column) endpoints of density. Default is minimum
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and maximum, respectively, of the parameter values. If 1× 2
matrix, endpoints are the same for all parameters.

max Smoothing K × 1 vector, smoothing coefficients for each plot. If
scalar, smoothing coefficient is the same for each plot. If
zero, smoothing coefficient is computed by MAXDensity.
Default = 0.

max Truncate K × 2 matrix, lower (in first column) and upper (in
second column) truncation limits for truncated normal
kernel. If 1x2 matrix, truncations limits are the same for all
plots. Default is minimum and maximum, respectively.

output If nonzero, K density plots are printed to the screen,
otherwise no plots are generated.

SOURCE maxdens.src

MAXHist

PURPOSE Generates histograms and surface plots from GAUSS data sets.

LIBRARY maxlik

FORMAT { tab, cut } = MAXHist(dataset,vars)

INPUT dataset string containing name of GAUSS data set.
– or –
N×K matrix, data.

vars K × 1 character vector, labels of variables selected for
analysis.
– or –
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K × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by MAXHist
(i.e., either V1, V2,..., or V01, V02,..... See discussion of the
global variable __vpad below, or the user-provided labels in
__altnam).

OUTPUT tab _max_NumCat × K matrix, univariate distributions of
bootstrapped parameters

cut _max_NumCat × K matrix, cutting points

GLOBALS The Maxlik procedure global variables are also applicable.

max Center K × 1 value of center category in histograms. Default is
initial coefficient estimates.

max CutPoint _max_NumCat × 1 vector, output, cutting points for
histograms

max Increment K × 1 vector, increments for cutting points of the
histograms. Default is 2 * _max_Width * std dev /
_max_NumCat.

max NumCat scalar, number of categories in the histograms

max Width scalar, width of histograms, default = 2

output If nonzero, K density plots are printed to the screen,
otherwise no plots are generated.

REMARKS If __output is nonzero, K(K − 1)/2 plots are printed to the screen
displaying univariate histograms and bivariate surface plots of the
bootstrapped parameter distributions in pairs.

The globals, _max_Center, _max_Width, and _max_Increment may
be used to establish cutting points (which is stored in
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_max_Increment) for the tables of re-sampled coefficients in tab The
numbers in _max_Center fix the center categories, _max_Width is a
factor which when multiplied times the standard deviation of the
estimate determines the increments between categories. Alternatively,
the increments between categories can be fixed directly by supplying
them in _max_Increment.

SOURCE maxhist.src

MAXProfile

PURPOSE Computes profile t plots and likelihood profile traces for maximum
likelihood models.

LIBRARY maxlik

FORMAT { x,f,g,cov,retcode } = MAXProfile(dataset,vars,&fct,start)

INPUT dataset string containing name of GAUSS data set.
– or –
N × NV matrix, data.

vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by
MAXProfile (i.e., either V1, V2,..., or V01, V02,..... See
discussion of the global variable __vpad below, or the
user-provided labels in __altnam).
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&fct a pointer to a procedure that returns either the log-likelihood
for one observation or a vector of log-likelihoods for a
matrix of observations (see discussion of the global variable
__row in global variable section below).

start K × 1 vector, start values.

OUTPUT x K × 1 vector, means of re-sampled parameters

f scalar, mean re-sampled function at minimum (the mean
log-likelihood)

g K × 1 vector, means of re-sampled gradients evaluated at the
estimates

h K × K matrix, covariance matrix of the re-sampled
parameters

retcode scalar, return code. If normal convergence is achieved, then
retcode = 0, otherwise a positive integer is returned
indicating the reason for the abnormal termination:

0 normal convergence
1 forced exit.
2 maximum iterations exceeded.
3 function calculation failed.
4 gradient calculation failed.
5 Hessian calculation failed.
6 line search failed.
7 function cannot be evaluated at initial parameter values.
8 error with gradient
9 gradient vector transposed
10 secant update failed
11 maximum time exceeded
12 error with weights
34 data set could not be opened.
99 termination condition unknown.

4-48 M C R



M
L

R
eference

MAXPflClimits

GLOBALS The Maxlik procedure global variables are also relevant.

max NumCat scalar, number of categories in profile table. Default =
16.

max Increment K × 1 vector, increments for cutting points, default is
2 * _max_Width * std dev / _max_NumCat. If scalar zero,
increments are computed by MAXProfile.

max Center K × 1 vector, value of center category in profile table.
Default values are coefficient estimates.

max Select selection vector for selecting coefficients to be included in
profiling, for example

_max_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for profiling.

max Width scalar, width of profile table in units of the standard
deviations of the parameters. Default = 2.

REMARKS For each pair of the selected parameters, three plots are printed to the
screen. Two of the are the profile t trace plots that describe the
univariate profiles of the parameters, and one of them is the profile
likelihood trace describing the joint distribution of the two parameters.
Ideally distributed parameters would have univariate profile t traces that
are straight lines, and bivariate likelihood profile traces that are two
straight lines intersecting at right angles. This ideal is generally not met
by nonlinear models, however, large deviations from the ideal indicate
serious problems with the usual statistical inference.

SOURCE maxprof.src
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MAXPflClimits

PURPOSE Computes profile likelihood confidence limits.

LIBRARY maxlik

FORMAT cl = MAXPflClimits(b,f,dataset,vars,&fct)

INPUT b K × 1 vector, maximum likelihood estimates

f scalar, function at minimum (mean log-likelihood)

dataset string containing name of GAUSS data set.
– or –
N × NV matrix, data.

vars NV × 1 character vector, labels of variables selected for
analysis.
– or –
NV × 1 numeric vector, indices of variables selected for
analysis.
If dataset is a matrix, vars may be a character vector
containing either the standard labels created by
MAXPflClimits (i.e., either V1, V2,..., or V01, V02,.....
See discussion of the global variable __vpad below, or the
user-provided labels in __altnam).

&fct a pointer to a procedure that returns either the log-likelihood
for one observation or a vector of log-likelihoods for a
matrix of observations (see discussion of the global variable
__row in global variable section below).

OUTPUT cl K × 2 vector, upper (first column) and lower (second
column) confidence limits for the parameters in b
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GLOBALS max Alpha (1-_max_Alpha)% confidence limits are computed. The
default is .05

max NumObs scalar, number of observations. Must be set. If the call
to MaxPflClimits comes after a call to Maxlik, it will be
set by Maxlik.

max Select selection vector for selecting parameters for analysis. For
example,

_max_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for limits.

REMARKS MAXPflClimits computes profile likelihood confidence limits given a
maximum likelihood estimation. b and f should be returns from a call
to MAXLIK. This will also properly set up _max_NumObs for
MAXPflClimits.

MAXPflClimits solves for the confidence limits as a parametric
likelihood problem. Thus it itself calls Maxlik several times for each
confidence limit. The screen output is turned off for these runs.
However, the computation can be time consuming, and if you wish to
check on its progress, type O, or Alt-O, and revise the __OUTPUT
global. This will turn on the screen output for that run. The parameter
number is printed on the title and this will tell you what parameter it is
presently working on.

SOURCE maxpflcl.src

MAXPrt

PURPOSE Formats and prints the output from a call to Maxlik.
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LIBRARY maxlik

FORMAT { x,f,g,h,retcode } = MAXPrt(x,f,g,h,retcode);

INPUT x K × 1 vector, parameter estimates
f scalar, value of function at minimum
g K × 1 vector, gradient evaluated at x
h K × K matrix, covariance matrix of parameters
retcode scalar, return code.

OUTPUT The input arguments are returned unchanged.

GLOBALS header string. This is used by the printing procedure to display
information about the date, time, version of module, etc.
The string can contain one or more of the following
characters:

“t” print title (see __title)
“l” bracket title with lines
“d” print date and time
“v” print version number of program
“f” print file name being analyzed

Example:

__header = "tld";

Default = “tldvf”.
title string, message printed at the top of the screen and printed

out by MAXPrt. Default = “”.

REMARKS The call to Maxlik can be nested in the call to MAXPrt:

{ x,f,g,h,retcode } = MAXPrt(MAXLIK(dataset,vars,&fct,start));

SOURCE maxlik.src
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MAXSet

PURPOSE Resets Maximum Likelihood global variables to default values.

LIBRARY maxlik

FORMAT MAXSet;

INPUT None

OUTPUT None

REMARKS Putting this instruction at the top of all command files that invoke
Maxlik is generally good practice. This prevents globals from being
inappropriately defined when a command file is run several times or
when a command file is run after another command file has executed
that calls Maxlik.

SOURCE maxlik.src

MAXTlimits

PURPOSE Computes Wald confidence limits.

LIBRARY maxlik

FORMAT cl = MAXTlimits(b,cov)
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INPUT b K × 1 vector, parameter estimates

cov K × K matrix, covariance matrix of parameter estimates

OUTPUT cl K × 2 matrix, lower (first column) and upper (second
column) confidence limits of the selected parameters

GLOBALS max Alpha (1-_max_Alpha)% confidence limits are computed. The
default is .05

max NumObs scalar, number of observations. Must be set.

max Select selection vector for selecting coefficients to be included in
profiling, for example

_max_Select = { 1, 3, 4 };

selects the 1st, 3rd, and 4th parameters for profiling.

REMARKS MAXTlimits returns
b[i] ± t( max NumObs − K; max Alpha/2) ×

√
cov[i, i]

The global _max_NumObs must be set. If MAXTlimits is called
immediately after a call to Maxlik, _max_NumObs will be set by
Maxlik.

SOURCE maxlik.src
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by
Gary King

Department of Government
Harvard University

This module contains procedures for estimating statistical models of event count or
duration data.

The programs included in this module implement maximum likelihood estimators for
parametric statistical models of events data. Data based on events come in two forms:
event counts and durations between events. Event counts are dependent variables that take
on only nonnegative integer values, such as the number of wars in a year, the number of
medical consultations in a month, the number of patents per firm, or even the frequency in
the cell of a contingency table. Dependent variables that are measured as durations
between events measure time and may take on any nonnegative real number; examples
include the duration of parliamentary coalitions or time between coups d’etat. Note that
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the same underlying phenomena may be represented as either event counts (e.g., number
of wars) or durations (time between wars), and some of the programs included in the
COUNT module enable you to estimate exactly the same parameters with either form of
data.

A variety of statistical models have been proposed to analyze events data, and the
programs here provide some that I have developed, along with others I have found
particularly useful in my research. I list here the specific programs included in this
module, the models each program can estimate, and citations to the work for which I
wrote each program. More complete references to the literature on event count and
duration models appear at the end of this document.

Poisson Poisson regression (King, 1988, 1987), truncated Pois-
son regression (1989d: Section 5), and log-linear and log-
proportion models for contingency tables (1989a: Chapter
6).

Negbin Negative binomial regression (1989b), truncated negative
binomial regression (1989d: Section 5), truncated or un-
truncated variance function models (1989d: Section 5),
overdispersed log-linear and log-proportion models for
contingency tables (1989a: Chapter 6).

Hurdlep Hurdle Poisson regression model (1989d: Section 4).
Supreme Seemingly unrelated Poisson regression model (1989c).
Supreme2 Poisson regression model with unobserved dependent

variables (1989d: Section 6).
Expon Exponential duration model with or without censoring

(King, Alt, Burns, and Laver, 1989).
Expgam Exponential-Gamma duration model with or without cen-

soring (King, Alt, Burns, and Laver, 1989).
Pareto Pareto duration model with or without censoring (King,

Alt, Burns, and Laver, 1989).
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5.0.1 README Files

The file README.cn contains any last minute information on this module. Please read it
before using the procedures in this module.

5.0.2 Setup

In order to use the procedures in the COUNTModule, the COUNT library must be active.
This is done by including count in the LIBRARY statement at the top of your program or
command file:

library count,quantal,pgraph;

This enables GAUSS to find the COUNT and required Maximum Likelihood procedures.
If you plan to make any right hand references to the global variables (which are described
in a later section), you also need the statement:

#include count.ext;

To reset global variables in succeeding executions of the command file, the following
instruction can be used:

countset;

This could be included with the above statements without harm and would insure the
proper definition of the global variables for all executions of the command file.

The version number of each module is stored in a global variable. For the COUNTModule,
this global is:
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cn ver 3×1 matrix, the first element contains the major version number of the COUNT
Module, the second element the minor version number, and the third element
the revision number.

If you call for technical support, you may be asked for the version number of your copy of
this module.

5.1 About the COUNT Procedures

The format of the programs included in this module are all very similar:

{ b,vc,llik } = Expon(dataset,dep,ind);

{ b,vc,llik } = Expgam(dataset,dep,ind);

{ b,vc,llik } = Pareto(dataset,dep,ind);

{ b,vc,llik } = Poisson(dataset,dep,ind);

{ b,vc,llik } = Negbin(dataset,dep,ind1,ind2);

{ b,vc,llik } = Hurdlep(dataset,dep,ind1,ind2);

{ b,vc,llik } = Supreme(dataset,dep1,dep2,ind1,ind2);

{ b,vc,llik } = Supreme2(dataset,dep1,dep2,ind1,ind2,ind3);

An example program file looks like this:

library count;

CountSet;

dep = { wars };

ind = { age, party, unem };

dataset = "sample";

call Poisson(dataset,dep,ind);

You may run these lines, or ones like them, from the GAUSS editor or interactively in
command mode.
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5.1.1 Inputs

The variable dataset is always the first argument. This may either be a matrix or a string
containing the name of a GAUSS data set.

The dependent variable (or variables) is specified in each program by naming a symbol or
a column number. For example,

dep = { durat };

or

dep = 7;

The independent variable vector (or vectors) is also specified in each program with
variable names or column numbers. For example,

ind = { age, sex, race, height, size, iq };

or

ind = { 2, 4, 5, 6, 7 };

For each procedure, the data set and dependent variables must be specified. However,
since constant terms are automatically included as part of independent variable vectors,
you may occasionally wish to include no additional independent variables. You may do
this easily by setting the relevant vector to zero. For example, ind = 0. For another
example, you may wish to run the negative binomial regression model with a scalar
dispersion parameter rather than a variance function: ind2 = 0.
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5.1.2 Outputs

Printed output is controlled by the global __output, described in the section below. This
section describes the outputs b, vc, and llik on the left hand side of the expressions above.

b vector, the maximum likelihood estimates for all the parameters. The mean
vector comes first; the variance function, other mean vectors, and scalar
dispersion parameters, if any, come next.

vc matrix, the variance-covariance matrix evaluated at the maximum. The
standard errors are SQRT(DIAG(vc)). If you choose the “” global __CovPar =
3, vc contains heteroskedastic-consistent parameter estimates.. See Section 3.6
for more discussion of options for statistical inference in maximum likelihood
models.

llik scalar, the value of the log-likelihood function at the maximum.

5.1.3 Global Control Variables

cn Inference scalar character. Determines the type of statistical inference.

BOOT generates bootstrapped estimates and covariance matrix of estimates

MAXLIK generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data set containing the
bootstrapped parameters. The file name of this data set is either a temporary
name, or the name in the Maxlik global variable, _max_BootFname. This data
set can be used with MAXBlimits for generating confidence limits, with
MAXDensity for generating density estimates and plots of the boostrapped
parameters, or with MAXHist for generating histogram and surface plots.

cn Censor scalar, allows you to include a variable indicating which observations are
censored. This is used by the exponential, exponential-gamma, and Pareto
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models of duration data. Alternatively, you may set it to a symbol
_cn_Censor = “varname” if you are using a GAUSS data set, or a number
(_cn_Censor = 11) if the data set is a matrix in memory. The censoring
variable should be 0 for censored observations and 1 for others.

By default, no observations are censored.

cn Fix scalar, name of index number of logged variable among the regressors with
coefficient fixed to 1.0. By default, no logged variables are included.

In some of the programs, you have the option of including the log of a variable
and fixing its coefficient to 1.0. To include the variable (the program takes the
log), set _cn_Fix to a variable name or number (_cn_Fix = “totals” or
_cn_Fix = 12). The default (_cn_Fix = 0) includes no additional variable. In
most event count data, the observation period is the same length for all i (a
year, month, etc.). However, in others, the observation period varies. For
example, suppose one observed the number of times a citizen was contacted by
a candidate in the interval between two public opinion polls; since polls
typically take some time to administer, the observation period would vary over
the individuals. In still other situations, the observation period may be the
same length but the population of potential events varies. For example, if one
observed the number of suicides per state, one would need some way to
include information on differing state sizes in the analysis. It turns out that
both of these situations can be dealt with in the same way by including an
additional variable in the stochastic portion of the model. But (as explained in
King, 1989, Section 5.8), this procedure turns out to be mathematically
equivalent to including the log of this additional variable in the regression
component, and constraining its coefficient to 1.0. There is often little harm in
just including the log of this variable and estimating its coefficient with all the
others, but several of the programs allow one to make this constraint.

cn Dispersion scalar, set this to a value to change the starting value for only the
dispersion parameter in the negative binomial (Negbin), generalized event
count (Hurdlep), exponential-gamma (Expgam), Pareto (Pareto), and
seemingly-unrelated Poisson models (Supreme, Supreme2). By default, a
special starting value is not used for the dispersion parameter.
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cn Precision scalar, the number of digits printed to the right of the decimal point on
output. Default = 4.

cn Start scalar, selects method of calculating starting values. Possible values are:

0 calculates them by regressing ln(y + 0.5) on the explanatory variables.

1 uses a vector of user supplied start values stored in the global variable
_cn_StartValue.

2 uses a vector of zeros.

3 uses random uniform numbers on the interval [− 1
2 ,

1
2 ].

Default = 0.

cn StartValue L×1 vector, start values if _cn_Start = 1.

cn ZeroTruncate scalar, specifies whether or not the model is a truncated model. For the
Poisson and negative binomial models, _cn_ZeroTruncate = 0 estimates a
truncated-at-zero version of the model. By default, the regular untruncated
model is estimated.

altnam K×1 vector, alternate names for variables when a matrix is passed to a COUNT
procedure. When a data matrix is passed to a COUNT procedure and the user is
selecting from that matrix, the global variable __altnam, if it is used, must
contain names for the columns of the original matrix.

output scalar, determines printing of intermediate results.

0 nothing is written.

1 serial ASCII output format suitable for disk files or printers.

2 (DOS only) output is suitable for screen only. ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set are read per iteration of the read
loop. By default, the number of rows to be read is calculated automatically.
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rowfac scalar, “row factor”. If a COUNT procedure fails due to insufficient memory
while attempting to read a GAUSS data set, then __rowfac may be set to
some value between 0 and 1 to read a proportion of the original number of
rows of the GAUSS data set. For example, setting

__rowfac = 0.8;

causes GAUSS to read in 80% of the rows originally calculated.

This global has an affect only when __row = 0.

Default = 1.

title string, message printed at the top of the screen and printed out by CountPrt.
Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names are automatically
created by “”. Two types of names can be created:

0 Variable names automatically created by “” are not padded to give them
equal length. For example, V1, V2,...V10, V11,....

1 Variable names created by the procedure are padded with zeros to give
them an equal number of characters. For example, V01, V02, ..., V10,
V11,.... This is useful if you want the variable names to sort properly.

Default = 1.

5.1.4 Statistical Inference

Maxlik statistical inference features may be accessed through the COUNT global,
_cn_Inference. _cn_Inference has the following settings:

maxlik maximum likelihood estimates
boot bootstrapped estimates
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That is to generate bootstrapped estimates, set

_cn_Inference = "boot";

Bootstrapping

In addition to the usual standard errors, you may generate bootstrap standard errors.
Setting _cn_Inference = BOOT causes COUNT to call MAXBoot. This generates
bootstrapped estimates and covariance matrices of the estimates.

The bootstrapped parameters are also stored in a GAUSS data set. The name of the data
set can be determined by setting _max_BootFname to a file name, or by default it will be
set to BOOT# where # is a four digit number incremented from 0001 until a name not in
use is found. For further details about the bootstrap, see Section 3.6.4.

The data set thus generated can be used for computing confidence intervals of the
coefficients using MAXBlimits. Also, density estimates and plots can be generated using
MAXDensity, and histograms and surface plots of the coefficients can be produced using
MAXHist. For further details about MAXDensity, see Section 3.6.4, and for further details
about MAXHist see Section 3.6.4.

5.1.5 Problems with Convergence

All the programs use maximum likelihood estimation by numerically maximizing a
different likelihood function. As with virtually all nonlinear iterative procedures,
convergence works most of the time, but not every time. Problems to be aware of include
the following:

1. The explanatory variables in each regression function should not be highly
collinear among themselves.
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2. The model should have more observations than parameters; indeed, the
more observations, the better.

3. Starting values should not be too far from the optimal values.

4. The model specified should fit the data.

5. The Poisson hurdle model must have at least some observations with yi = 0
and should take on at least two other values greater than zero.

6. The truncated models should have no observations with zeros (if
inadvertently included, a message appears and the program stops).

7. The models with scalar dispersion parameters and variance functions should
have maximum likelihood estimates that are bounded so that, for example,
in the negative binomial model σ̂2 > 1

If you avoid the potential problems listed in the last paragraph, you should have little
problem with convergence. Of course, avoiding these problems with difficult data sets is
not always easy nor obvious. In these cases, problems may be indicated by the following
situations:

1. iterations sending the parameters off in unreasonable directions or creating
very large numbers.

2. the program actually bombing out.

3. a single iteration taking an extraordinarily long time.

4. the program taking more than 40 or 50 iterations with no convergence.

If one of these problems occur, you have several options. First, look over the list in the last
paragraph. To verify that the problem does indeed exist, you might try running your data
on the Poisson regression model if you have event count data, or the exponential
regression model if you have duration data. Both are known to be globally concave and
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tend to converge very easily. If this model works, but another does not, you probably do
have a problem.

In the case of problems, you must consider iteration a participatory process. When “” is
iterating, you can press Alt-H to receive a list of options that may be changed during
iteration. See MAXLIK REFERENCE for a full explanation of each. I find that the
following practices tend to work well:

1. If the program has produced many iterations without much progress, try
pressing Alt-I every few iterations to force the program to calculate the
information matrix or switch Newton-Raphson iterations. Either of these
may not work if the iterations are not far enough along.

2. The number of zeros to the right of the decimal point on the relative
gradients (printed on the screen while the program is iterating) is the
approximate precision of your final estimates. If the program is having
trouble converging, but the gradients are small enough (i.e., you have
sufficient precision for your substantive problem), press Alt-C to force the
program to converge.

3. If the program bombs out very quickly, changing the starting values are
your best bet (with the global _cn_Start). The default starting values
created with least squares, _cn_Start = 0, usually works best. If that does
not work, you can also try creating them yourself, by thinking about what
the answer is likely to be or by running a simpler model. For example, the
exponential-gamma model is sometimes problematic; however, the
exponential model often provides good starting values for the effect
parameters. Thus if the other methods do not work, you might try the
following:

library count;

CountSet;

dep = { durat };

ind = { unem, infl, age };

dataset = "datafile";
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{ b,vc,llik } = Expon(dataset,dep,ind);

_cn_StartValue = b;

_cn_Start = 1;

call Expgam(dataset,dep,ind);

You can also choose one of the other methods of creating starting values by
changing the _cn_Start global (described above).
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CountCLPrt

PURPOSE Formats and prints the output from calls to COUNT procedures with
confidence limits

LIBRARY count

FORMAT { b,cl,llik } = CountCLPrt(b,cl,llik);

INPUT b (K+1)×1 vector, maximum likelihood estimates of the effect
parameters stacked on top of the dispersion parameter.

cl (K + 1) × 2 matrix, confidence limits

llik scalar, value of the log-likelihood function at the maximum.
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OUTPUT The input arguments are returned unchanged.

REMARKS Confidence limits computed by MAXBLimits may be passed in the
fourth argument in the call to CountCLPrt:

_cn_Inference = { boot };

{ b,vc,llik } = Expgam(dataset,dep,ind);

cl = MAXBlimits(_max_BootFname);

call CountCLPrt(b,cl,llik);

SOURCE count.src

CountPrt

PURPOSE Formats and prints the output from calls to COUNT procedures.

LIBRARY count

FORMAT { b,vc,llik } = CountPrt(b,vc,llik);

INPUT b (K+1)×1 vector, maximum likelihood estimates of the effect
parameters stacked on top of the dispersion parameter.

vc K+1)×(K+1) matrix, variance-covariance matrix of the
estimated parameters

llik scalar, value of the log-likelihood function at the maximum.

OUTPUT The input arguments are returned unchanged.

REMARKS The call to COUNT procedures can be nested in the call to the CountPrt:
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{ b,vc,llik } = countprt(Expgam(dataset,dep,ind));

SOURCE count.src

CountSet

PURPOSE Resets COUNT global variables to default values.

LIBRARY count

FORMAT CountSet;

INPUT None

OUTPUT None

REMARKS Putting this instruction at the top of all command files that invoke
COUNT procedures is generally good practice. This prevents globals
from being inappropriately defined when a command file is run several
times or when a command file is run after another command file has
executed that calls a COUNT procedure.

CountSet calls Set which calls GAUSSET.

SOURCE count.src

Expgam
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PURPOSE Estimates an exponential-gamma regression model, for the analysis of
duration data, with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Expgam(dataset,dep,ind);

INPUT dataset string, name of GAUSS data set.
– or –
N×K matrix, data.

dep string, the name of the dependent variable.
– or –
scalar, the index of the dependent variable.

ind K×1 character vector, names of the independent variables.
– or –
K×1 numeric vector, indices of independent variables.
Set to 0 to include only a constant term.

If dataset is a matrix, dep or ind may be a string or character variable
containing either the standard labels created by “” (V1, V2,..., or V01,
V02,...., depending on the value of __vpad), or the user-provided labels
in __altnam.

OUTPUT b (K+1)×1 vector, maximum likelihood estimates of the effect
parameters stacked on top of the dispersion parameter.

vc (K+1)×(K+1) matrix, variance-covariance matrix of the
estimated parameters evaluated at the maximum. If you
choose the “” global __CovPar = 3, vc contains
heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant
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cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates
(default)

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Censor string, the name of the censor variable from dataset.
– or –
scalar, the index of the censor variable from dataset.
By default, no censoring is used.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 uses a vector of user supplied start values stored in the
global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.

cn StartValue (K+1)×1 vector, start values if _cn_Start = 1.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Expgam. When a data matrix is passed to Expgam
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and when the user is selecting from that matrix, the global
variable __altnam, if it is used, must contain names for the
columns of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
2 (DOS only) output is suitable for screen only.

ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set will be read
per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If Expgam fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.
This global has an affect only when __row = 0.
Default = 1.
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title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:

0 Variable names automatically created by “” are not
padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Let the n duration observations (nonnegative real numbers) for the
dependent variable be denoted as y1, . . . , yn. Assume that yi follows a
gamma distribution with expected value µi and variance µ2

iσ
2. Let the

mean µi be an exponential-linear function of a vector of explanatory
variables, xi:

E(yi) ≡ µi = exp(xiβ) (2)

The program includes a constant term as the first column of xi and
allows one to include any number of explanatory variables. Note that µi

from a duration model equals 1/λi from an event count model; thus, one
need only change the sign of the effect parameters to get estimates of
the same parameters from these different kinds of data.

The dispersion σ2 is parametrized as follows:

σ2
i = exp(γ) (3)
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EXPGAM reports estimates of β and γ.

For an introduction to the exponential gamma regression model see
King, Alt, Burns, and Laver (1989) or Kalbfleisch and Prentice (1980).

EXAMPLE Exponential-Gamma Regression Model of Duration Data

library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

{ b,vc,llik } = Expgam(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

A vector of effect parameters and a scalar dispersion parameter are
estimated. The vector includes one element corresponding to each
explanatory variable named in ind and a constant term. Five parameters
are estimated in this example.

Censored Exponential-Gamma Regression Model of Duration Data

library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };
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_Censor = { v12 };

{ b,vc,llik } = Expgam(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

A vector of effect parameters and a scalar dispersion parameter are
estimated. The vector includes one element corresponding to each
explanatory variable named in ind and a constant term. Five parameters
are estimated in this example.

SOURCE expgam.src

Expon

PURPOSE Estimates an exponential regression model or censored exponential
regression model with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Expon(dataset,dep,ind);

INPUT dataset string, name of GAUSS data set.
– or –
N×K matrix, data.

dep string, the name of the dependent variable.
– or –
scalar, the index of the dependent variable.

ind K×1 character vector, names of the independent variables.
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– or –
K×1 numeric vector, indices of independent variables.
Set to 0 to include only a constant term.

If dataset is a matrix, dep or ind may be a string or character variable
containing either the standard labels created by “” (V1, V2,..., or V01,
V02,...., depending on the value of __vpad), or the user-provided labels
in __altnam.

OUTPUT b K×1 vector, maximum likelihood estimates of the effect
parameters.

vc K×K matrix, variance-covariance matrix of the estimated
parameters evaluated at the maximum. If the “” global
__CovPar is set to 3, vc will contain
heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant.

cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Censor string, the name of the censor variable from dataset.
– or –
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scalar, the index of the censor variable from dataset.
By default, no censoring is used.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 will use a vector of user supplied start values stored in
the global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.

cn StartValue K×1 vector, start values if _cn_Start = 1.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Expon. When a data matrix is passed to Expon
and the user is selecting from that matrix, the global variable
__altnam, if it is used, must contain names for the columns
of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
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2 (DOS only) output is suitable for screen only.
ANSI.SYS must be active.

Default = 2.
row scalar, specifies how many rows of the data set will be read

per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If EXPON fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.
This global only has an affect when __row = 0.
Default = 1.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:
0 Variable names automatically created by “” are not

padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Let yi (i = 1, . . . , n) take on any non-negative real number representing
a duration. Often yi is only measured as an integer, such as the number

6-12 M C R



R
eference

Expon

of days or months. Even so, if your dependent variable is a measure of
time, duration models, and not event count models, are called for. Let yi

be distributed exponentially with mean µi. Also let
E(yi) ≡ µi = exp(xiβ). Note that µi from a duration model equals 1/λi

from an event count model; thus, one need only change the sign of the
effect parameters to get estimates of the same parameters from these
different kinds of data.

For an introduction to the exponential regression model and the
censored exponential regression model see Kalbfleisch and Prentice
(1980) and King, Alt, Burns, and Laver (1989).

EXAMPLE Exponential Regression Model

library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

{ b,vc,llik } = Expon(dataset,dep,ind);

output file = count.out on;

call CountPrt(b,vc,llik);

output off;

A single vector of effect parameters are estimated. This vector includes
one element corresponding to each explanatory variable named in ind
and a constant term.

Censored Exponential Regression Model
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library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_cn_Censor = { notseen };

{ b,vc,llik } = Expon(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

A single vector of effect parameters are estimated. This vector includes
one element corresponding to each explanatory variable named in ind
and a constant term.

SOURCE expon.src

Hurdlep

PURPOSE Estimates a hurdle Poisson regression model, for the analysis of event
counts, with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Hurdlep(dataset,dep,ind);

INPUT dataset string, name of GAUSS data set.
– or –
N×K matrix, data.
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dep string, the name of the dependent variable.
– or –
scalar, the index of the dependent variable.

ind1 K×1 character vector, names of first event independent
variables.
– or –
K×1 numeric vector, indices of first event independent
variables.

ind2 K×1 character vector, names of second event independent
variables.
– or –
K×1 numeric vector, indices of second event independent
variables.

If dataset is a matrix, dep, ind1, or ind2 may be a string or character
variable containing either the standard labels created by “” (V1, V2,...,
or V01, V02,...., depending on the value of __vpad), or the
user-provided labels in __altnam.

OUTPUT b (K+L)×1 vector, maximum likelihood estimates of the
effect parameters stacked on top of the dispersion parameter.

vc (K+L)×(K+L) matrix, variance-covariance matrix of the
estimated parameters evaluated at the maximum. If you
choose the “” global __CovPar = 3, vc will contain
heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant

cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates
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Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 will use a vector of user supplied start values stored in
the global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.

cn StartValue (K+L)×1 vector, start values if _cn_Start = 1.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Hurdlep. When a data matrix is passed to
Hurdlep and the user is selecting from that matrix, the
global variable __altnam, if it is used, must contain names
for the columns of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.
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Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
2 (DOS only) output is suitable for screen only.

ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set will be read
per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If Hurdlep fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.
This global only has an affect when __row = 0.
Default = 1.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:

0 Variable names automatically created by “” are not
padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
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For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Let the n event count observations (nonnegative integers) for the
dependent variable be denoted as y1, . . . , yn. yi is then a random
dependent variable representing the number of events that have
occurred during observation period i. Let λ0i be the rate of the first
event occurrence and λ+i be the rate for all additional events after the
first. If these are the expected values of two separate Poisson processes,
we have the hurdle Poisson regression model. These means are
parametrized as usual:

λ0i = exp(xiβ) (4)

and

λ+i = exp(ziγ) (5)

where xi and zi are (possibly) different vectors of explanatory variables.
The program produces estimates of β and γ. If β = γ and x = z, this
model reduces to the Poisson.

For an introduction to the Hurdle Poisson regression model see Mullahy
(1986) and King (1989d).

EXAMPLE Hurdle Poisson Regression Model:

library count;

#include count.ext;
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Countset;

dataset = "wars";

dep = { wars };

ind1 = { unem, poverty, allianc };

ind2 = { race, sex, age, partyid, x4, v5 };

{ b,vc,llik } = Hurdlep(dataset,dep,ind1,ind2);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

Two vectors of effect parameters are estimated. Each includes one
element corresponding to each explanatory variable plus a constant
term (in the example, four parameters appear in the first regression
function and seven in the second).

SOURCE hurdlep.src

Negbin

PURPOSE Estimates a negative binomial regression model or truncated-at-zero
negative binomial regression model with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Negbin(dataset,dep,ind1,ind2);

INPUT dataset string, name of GAUSS data set.
– or –
N×K matrix, data.

dep string, the name of the dependent variable.
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– or –
scalar, the index of the dependent variable.

ind1 K×1 character vector, names of first event independent
variables.
– or –
K×1 numeric vector, indices of first event independent
variables.
Set to 0 to include only a constant term.

ind2 K×1 character vector, names of second event independent
variables.
– or –
K×1 numeric vector, indices of second event independent
variables.
Set to 0 for a scalar dispersion parameter.

If dataset is a matrix, dep, ind1, or ind2 may be a string or character
variable containing either the standard labels created by “” (V1, V2,...,
or V01, V02,...., depending on the value of __vpad), or the
user-provided labels in __altnam.

OUTPUT b (K+1)×1 or (K+L)×1 vector, maximum likelihood
estimates of the effect parameters stacked on top of either
the dispersion parameter or the coefficients of the variance
function.

vc (K+1)×(K+1) or (K+L)×(K+L) matrix, variance-covariance
matrix of the estimated parameters evaluated at the
maximum. If you choose the “” global __CovPar = 3, vc
will contain heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant.

cn Inference string, determines the type of statistical inference.
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boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Fix scalar, name of index number of logged variable among the
regressors with coefficient constrained to 1.0 By default, no
logged variables are included.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 will use a vector of user supplied start values stored in
the global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.

cn StartValue (K+1)×1 or (K+L)×1 vector, start values if
_cn_Start = 1.

cn Dispersion scalar, start value for scalar dispersion parameter.
Default = 3.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

cn ZeroTruncate scalar, specifies which model is used:

0 truncated-at-zero negative binomial model
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1 negative binomial model is used.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Negbin. When a data matrix is passed to Negbin
and the user is selecting from that matrix, the global variable
__altnam, if it is used, must contain names for the columns
of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
2 (DOS only) output is suitable for screen only.

ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set will be read
per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If Negbin fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;
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will cause GAUSS to read in 80% of the rows originally
calculated.

This global only has an affect when __row = 0.

Default = 1.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by . Two types of names can be
created:

0 Variable names automatically created by “” are not
padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Let yi be a random dependent variable representing the number of
events that have occurred during observation period i (i = 1, . . . , n).
Assume that yi follows a negative binomial distribution with expected
value λi and variance λiσ

2. Let the mean λi (the rate of event
occurrence, which must be greater than zero) be an exponential-linear
function of a vector of explanatory variables, xi:

E(yi) ≡ λi = exp(xiβ) (6)

The program includes a constant term as the first column of xi and
allows one to include any number of explanatory variables.
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σ2 is parametrized as follows:

σ2
i = 1 + exp(ziγ) (7)

where zi = 1, if estimating a scalar dispersion parameter, or a vector of
explanatory variables, if estimating a variance function. The program
calculates estimates of β and γ.

For an introduction to the negative binomial regression model, see
Hausman, Hall, and Griliches (1984) and King (1989b); for information
on the truncated negative binomial model, see Grogger and Carson
(1988), and on the variance function model with or without truncation
see King (1989d: Section 5)

EXAMPLE Negative Binomial Regression Model

library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind1 = { unem, poverty, allianc };

{ b,vc,llik } = Negbin(dataset,dep,ind1,0);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

A single vector of effect parameters and one scalar dispersion parameter
are estimated. The vector of effect parameters includes one element
corresponding to each explanatory variable and a constant term. In the
example, five parameters are estimated.
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Negative Binomial Variance Function Regression Model

library count;

#include count.ext;

Countset;

dataset = "wars";

dep1 = { wars };

ind1 = { unem, poverty, allianc };

ind2 = { partyid, x4 };

{ b,vc,llik } = Negbin(dataset,dep,ind1,ind2);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

Two vectors of effect parameters are estimated, one for the mean ind1
and one for the variance function ind2. Each vector includes a constant
term and one element corresponding to each explanatory variable. The
example estimates seven parameters.

Truncated-at-zero Negative Binomial Regression Model

library count;

#include count.ext;

Countset;

dataset = "wars";

dep1 = { wars };

ind1 = { unem, poverty, allianc };

_cn_ZeroTruncate = 0;

{ b,vc,llik } = Negbin(dataset,dep,ind1,0);

output file = count.out reset;

call CountPrt(b,vc,llik);
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output off;

A single vector of effect parameters and one scalar dispersion parameter
are estimated. The vector of effect parameters includes one element
corresponding to each explanatory variable and a constant term. In the
example, five parameters are estimated.

Truncated-at-zero Negative Binomial Variance Function Regression
Model

library count;

#include count.ext;

Countset;

dataset = "wars";

dep1 = { wars };

ind1 = { unem, poverty, allianc };

ind2 = { partyid, x4 };

_cn_ZeroTruncate = 0;

{ b,vc,llik } = Negbin(dataset,dep,ind1,0);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

Two vectors of effect parameters are estimated, one for the mean and
one for the variance function. Each vector includes a constant term and
one element corresponding to each explanatory variable. In the
example, the variables specified in ind1 pertain to the expected value
and ind2 to the variance. Seven parameters are estimated.

SOURCE negbin.src
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Pareto

PURPOSE Estimates a Pareto regression model, for the analysis of duration data,
with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Pareto(dataset,dep,ind);

INPUT dataset string, name of GAUSS data set.
– or –
N×K matrix, data.

dep string, the name of the dependent variable.
– or –
scalar, the index of the dependent variable.

ind K×1 character vector, names of the independent variables.
– or –
K×1 numeric vector, indices of independent variables.
Set to 0 to include only a constant term.

If dataset is a matrix, dep and ind may be a string or character variable
containing either the standard labels created by “” (V1, V2,..., or V01,
V02,...., depending on the value of __vpad), or the user-provided labels
in __altnam.

OUTPUT b (K+1)×1 vector, maximum likelihood estimates of the effect
parameters stacked on top of the dispersion parameter.

vc (K+1)×(K+1) matrix, variance-covariance matrix of the
estimated parameters evaluated at the maximum. If the “”
global __CovPar is set to 3, vc will contain
heteroskedastic-consistent parameter estimates.

M C R 6-27



Pareto

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant.

cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Censor string, the name of the censor variable from dataset.
– or –
scalar, the index of the censor variable from dataset.
Each element of censor variable is 0 if censored, or 1 if not.
By default, no censoring is used.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 will use a vector of user supplied start values stored in
the global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.

cn StartValue (K+1)×1 vector, start values if _cn_Start = 1.
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cn Dispersion scalar, start value for scalar dispersion parameter.
Default = 3.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Pareto. When a data matrix is passed to Pareto
and the user is selecting from that matrix, the global variable
__altnam, if it is used, must contain names for the columns
of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
2 (DOS only) output is suitable for screen only.

ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set will be read
per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If Pareto fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting
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__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.
This global only has an affect when __row = 0.
Default = 1.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:

0 Variable names automatically created by “” are not
padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Let the n duration observations (non-negative real numbers) for the
dependent variable be denoted as y1, . . . , yn. Assume that yi follows a
Pareto distribution with expected value µi and variance µiσ

2 + µ2
i . Let

the mean µi be an exponential-linear function of a vector of explanatory
variables, xi:

E(yi) ≡ µi = exp(xiβ) (8)

The program includes a constant term as the first column of xi and
allows one to include any number of explanatory variables. Note that µi

from a duration model equals 1/λi from an event count model; thus, one
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need only change the sign of the effect parameters to get estimates of
the same parameters from these different kinds of data.

The dispersion σ2 is parametrized as follows:

σ2
i = exp(γ) (9)

The program gives estimates of β and γ.

For an introduction to the Pareto regression model see Hannan and
Tuma (1984) and King, Alt, Burns, and Laver (1989).

EXAMPLE Pareto Regression Model of Duration Data

library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

{ b,vc,llik } = Pareto(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

A vector of effect parameters and a scalar dispersion parameter are
estimated. The vector includes one element corresponding to each
explanatory variable named in ind and a constant term. Five parameters
are estimated in this example.

Censored Pareto Regression Model of Duration Data
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library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty };

_cn_Censor = { cvar };

{ b,vc,llik } = Pareto(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

A vector of effect parameters and a scalar dispersion parameter are
estimated. The vector includes one element corresponding to each
explanatory variable named in ind and a constant term. Five parameters
are estimated in this example.

SOURCE pareto.src

Poisson

PURPOSE Estimates a Poisson regression model or truncated-at-zero Poisson
regression model with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Poisson(dataset,dep,ind);

INPUT dataset string, name of GAUSS data set.
– or –
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N×K matrix, data.

dep string, the name of the dependent variable.
– or –
scalar, the index of the dependent variable.

ind K×1 character vector, names of the independent variables.
– or –
K×1 numeric vector, indices of independent variables.
Set to 0 to include only a constant term.

If dataset is a matrix, dep and ind may be a string or character variable
containing either the standard labels created by “” (V1, V2,..., or V01,
V02,...., depending on the value of __vpad), or the user-provided labels
in __altnam.

OUTPUT b K×1 vector, maximum likelihood estimates of the effect
parameters.

vc K×K matrix, variance-covariance matrix of the estimated
parameters evaluated at the maximum. If you choose the “”
global __CovPar = 3, vc will contain
heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant.

cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
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can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Fix scalar, name of index number of logged variable among the
regressors with coefficient constrained to 1.0 By default, no
logged variables are included.

cn Start scalar, selects method of calculating starting values.
Possible values are:
0 calculates them by regressing ln(y + 0.5) on the

explanatory variables.
1 will use a vector of user supplied start values stored in

the global variable _cn_StartValue.
2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.
cn StartValue K×1 vector, start values if _cn_Start = 1.
cn Precision scalar, number of decimal points to print on output.

Default = 4.
cn ZeroTruncate scalar, specifies which model is used:

0 truncated-at-zero negative binomial model
1 negative binomial model is used.
Default = 1.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Poisson. When a data matrix is passed to
Poisson and the user is selecting from that matrix, the
global variable __altnam, if it is used, must contain names
for the columns of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.
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1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
2 (DOS only) output is suitable for screen only.

ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set will be read
per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If POISSON fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:

0 Variable names automatically created by “” are not
padded to give them equal length. For example, V1,
V2,...V10, V11,....
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1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Let the n event count observations (non-negative integers) for the
dependent variable be denoted as y1, . . . , yn. yi is then a random
dependent variable representing the number of events that have
occurred during observation period i. By assuming that the events
occurring within each period are independent and have constant rates of
occurrence, yi can be shown to follow a Poisson distribution:

fp(yi|λi) =

 e−λi (λi)yi

yi!
for λi > 0 and yi = 0, 1, . . .

0 otherwise
(10)

with expected value and variance λi. Under the Poisson regression
model, λi (the rate of event occurrence, which must be greater than
zero) is assumed to be an exponential-linear function of a vector of
explanatory variables, xi:

E(yi) ≡ λi = exp(xiβ) (11)

The program includes a constant term as the first element of xi and
allows one to include any number of explanatory variables.

For an introduction to the Poisson regression model see King (1988); on
the truncated model, see Grogger and Carson (1988) and King (1989d).

EXAMPLE Poisson Regression Model
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library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

{ b,vc,llik } = Poisson(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

Truncated-at-zero Poisson Regression Model

library count;

#include count.ext;

Countset;

dataset = "wars";

dep = { wars };

ind = { unem, poverty, allianc };

_cn_ZeroTruncate = 0;

{ b,vc,llik } = Poisson(dataset,dep,ind);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

SOURCE poisson.src

Supreme
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PURPOSE Estimates a seemingly unrelated Poisson regression model, for the
analysis of two event COUNT variables, with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Supreme(dataset,dep1,dep2,ind1,ind2);

dataset string, name of GAUSS data set.
– or –
N×K matrix, data.

dep1 string, name of the first dependent variable.
– or –
scalar, index of the first dependent variable.

dep2 string, name of the second dependent variable.
– or –
scalar, index of the second dependent variable.

ind1 K×1 character vector, names of first event independent
variables.
– or –
K×1 numeric vector, indices of first event independent
variables.
Set to 0 to include only a constant term.

ind2 K×1 character vector, names of second event independent
variables.
– or –
K×1 numeric vector, indices of second event independent
variables.
Set to 0 to include only a constant term.

If dataset is a matrix, dep1, dep2, ind1 and ind2 may be a string or
character variable containing either the standard labels created by “”
(V1, V2,..., or V01, V02,...., depending on the value of __vpad), or the
user-provided labels in __altnam.
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OUTPUT b (K+L+2)×1 vector, maximum likelihood estimates of the
effect parameters of β and γ stacked on top of the covariance
parameter ξ.

vc (K+L+2)×(K+L+2) matrix, variance-covariance matrix of
the estimated parameters evaluated at the maximum. If you
choose the global __CovPar = 3, vc will contain
heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant.

cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 will use a vector of user supplied start values stored in
the global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.
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cn StartValue (K+L+2)×1 vector, start values if _cn_Start = 1.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Supreme. When a data matrix is passed to
Supreme and the user is selecting from that matrix, the
global variable __altnam, if it is used, must contain names
for the columns of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
2 (DOS only) output is suitable for screen only.

ANSI.SYS must be active.

Default = 2.

row scalar, specifies how many rows of the data set will be read
per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If Supreme fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting
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__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.
This global only has an affect when __row = 0.
Default = 1.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:

0 Variable names automatically created by “” are not
padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS Suppose we observe two event count dependent variables y1i and y2i for
n observations. Let these variables be distributed as a bivariate Poisson
with E(y1i) = λ1i and E(y2i) = λ2i. These means are parametrized as
follows:

λ0i = exp(xiβ) (12)

and

λ+i = exp(ziγ) (13)
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where xi and zi are (possibly) different vectors of explanatory variables.
The covariance parameter is ξ.

If you have convergence problems, you might try Supreme2 with
argument ind3 = 0 instead.

For details about this model, see King (1989c).

EXAMPLE Seemingly Unrelated Poisson Regression Model (Supreme)

library count;

#include count.ext;

Countset;

dataset = "wars";

dep1 = { wars };

ind1 = { unem, poverty, allianc };

dep2 = { coups };

ind2 = { unem, age, sex, race };

{ b,vc,llik } = Supreme(dataset,dep1,dep2,ind1,ind2);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

Two vectors of effect parameters and one scalar covariance parameter
are estimated. The vectors of effect parameters each include one
element corresponding to each explanatory variable and a constant
term. In the example, ten parameters are estimated.

SOURCE supreme.src
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PURPOSE Estimates a Poisson regression model with unobserved dependent
variables, for the analysis of two observed (and three unobserved) event
count variables, with maximum likelihood.

LIBRARY count

FORMAT { b,vc,llik } = Supreme2(dataset,dep1,dep2,ind1,ind2,ind3);

INPUT dataset string, name of GAUSS data set.
– or –
N×K matrix, data.

dep1 string, name of the first dependent variable.
– or –
scalar, index of the first dependent variable.

dep2 string, name of the second dependent variable.
– or –
scalar, index of the second dependent variable.

ind1 K×1 character vector, names of first event independent
variables.
– or –
K×1 numeric vector, indices of first event independent
variables.
Set to 0 to include only a constant term.

ind2 L×1 character vector, names of second event independent
variables.
– or –
L×1 numeric vector, indices of second event independent
variables.
Set to 0 to include only a constant term.
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ind3 M×1 character vector, names of second event independent
variables.
– or –
M×1 numeric vector, indices of second event independent
variables.
Set to 0 to include only a constant term.

If dataset is a matrix, dep1, dep2, ind1, ind2, or nd3 may be a string or
character variable containing either the standard labels created by “”
(V1, V2,..., or V01, V02,...., depending on the value of __vpad), or the
user-provided labels in __altnam.

OUTPUT b (K+L+M)×1 vector, maximum likelihood estimates of the
effect parameters of β and γ stacked on top of the covariance
parameter ξ.

vc (K+L+M)×(K+L+M) matrix, variance-covariance matrix of
the estimated parameters evaluated at the maximum. If you
choose the “” global __CovPar = 3, vc will contain
heteroskedastic-consistent parameter estimates.

llik scalar, value of the log-likelihood function at the maximum.

GLOBALS Maxlik globals are also relevant.

cn Inference string, determines the type of statistical inference.

boot generates bootstrapped estimates and covariance
matrix of estimates

maxlik generates maximum likelihood estimates

Setting _cn_Inference to BOOT generates a GAUSS data
set containing the bootstrapped parameters. The file name of
this data set is either a temporary name, or the name in the
Maxlik global variable, _max_BootFname. This data set
can be used with MAXBlimits for generating confidence
limits, with MAXDensity for generating density estimates
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and plots of the boostrapped parameters, or with MAXHist
for generating histogram and surface plots.

cn Start scalar, selects method of calculating starting values.
Possible values are:

0 calculates them by regressing ln(y + 0.5) on the
explanatory variables.

1 will use a vector of user supplied start values stored in
the global variable _cn_StartValue.

2 uses a vector of zeros.
3 uses random uniform numbers on the interval [− 1

2 ,
1
2 ].

Default = 0.

cn StartValue (K+L+M)×1 vector, start values if _cn_Start = 1.

cn Precision scalar, number of decimal points to print on output.
Default = 4.

altnam K×1 vector, alternate names for variables when a matrix is
passed to Supreme2. When a data matrix is passed to
Supreme2 and the user is selecting from that matrix, the
global variable __altnam, if it is used, must contain names
for the columns of the original matrix.

miss scalar, determines how missing data will be handled.

0 Missing values will not be checked for, and so the data
set must not have any missings. This is the fastest
option.

1 Listwise deletion. Removes from computation any
observation with a missing value on any variable
included in the analysis.

Default = 0.

output scalar, determines printing of intermediate results.

0 nothing is written.
1 serial ASCII output format suitable for disk files or

printers.
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2 (DOS only) output is suitable for screen only.
ANSI.SYS must be active.

Default = 2.
row scalar, specifies how many rows of the data set will be read

per iteration of the read loop. By default, the number of
rows to be read will be calculated automatically.

rowfac scalar, “row factor”. If Supreme2 fails due to insufficient
memory while attempting to read a GAUSS data set, then
__rowfac may be set to some value between 0 and 1 to read
a proportion of the original number of rows of the GAUSS
data set. For example, setting

__rowfac = 0.8;

will cause GAUSS to read in 80% of the rows originally
calculated.
This global only has an affect when __row = 0.
Default = 1.

title string, message printed at the top of the screen and printed
out by CountPrt. Default = “”.

vpad scalar, if dataset is a matrix in memory, the variable names
are automatically created by “”. Two types of names can be
created:
0 Variable names automatically created by “” are not

padded to give them equal length. For example, V1,
V2,...V10, V11,....

1 Variable names created by the procedure are padded
with zeros to give them an equal number of characters.
For example, V01, V02, ..., V10, V11,.... This is useful
if you want the variable names to sort properly.

Default = 1.

REMARKS This model assumes the existence of three independent unobserved
variables, y∗1i, y∗2i, and y∗3i, with means E(y∗ji) = λ ji, for j = 1, 2, 3.
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Although these are not observed, we do observe y1i and y2i, which are
functions of these three variables:

y1i = y∗1i + y∗3i

y2i = y∗2i + y∗3i

The procedure estimates three separate regression functions, one for the
expected value of each of the unobserved variables:

λ1i = exp(x1iβ1) (14)

λ2i = exp(x2iβ2)

λ3i = exp(x3iβ3)

where x1i, x2i and x3i are (possibly) different sets of explanatory
variables and β1, β2, and β3 are separate parameter vectors. This option
produces maximum likelihood estimates for these three parameter
vectors.

EXAMPLE Poisson Regression Model with Unobserved Dependent Variables

library count;

#include count.ext;

Countset;

dataset = "wars";

dep1 = { wars };

ind1 = { unem, poverty, allianc };

dep2 = { coups };

ind2 = { unem, age, sex, race };
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ind3 = { us, sov };

{ b,vc,llik } = Supreme2(dataset,dep1,dep2,ind1,ind2,ind3);

output file = count.out reset;

call CountPrt(b,vc,llik);

output off;

Three vectors of effect parameters are estimated. Each includes one
element corresponding to each explanatory variable plus a constant
term. In the example, twelve parameters are estimated.

SOURCE supreme2.src
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active parameters, 3-9
AD, 3-19
algorithm, 3-44
algorithmic derivatives, 3-19
Alt-1, 3-44
Alt-2, 3-44
Alt-3, 3-44
Alt-4, 3-44
Alt-5, 3-44
Alt-6, 3-44
Alt-A, 3-44
Alt-H, 3-43
__altnam, 5-6, 5-8, 6-5, 6-11, 6-16,

6-22, 6-29, 6-34, 6-40, 6-45

B

Bayesian inference, 3-29, 4-12, 4-36
BFGS, 3-4, 3-44, 4-4, 4-24
BHHH, 3-5, 3-44, 4-4, 4-24
BHHHStep, 3-8
bootstrap, 3-38, 5-6, 5-10
BRENT, 3-6, 3-7

C

_cn_Censor, 5-6
_cn_Dispersion, 5-6
_cn_Fix, 5-6
_cn_Inference, 5-6, 5-9
_cn_Precision, 5-6
_cn_Start, 5-6
_cn_StartValue, 5-8, 6-5, 6-11, 6-16,

6-21, 6-28, 6-34, 6-40, 6-45
_cn_ZeroTruncate, 5-6
condition of Hessian, 3-12
conjugate gradient, 3-5
convergence, 3-5, 4-7, 4-28
count.src, 6-2, 6-3
CountCLPrt, 6-1
CountPrt, 6-2
CountSet, 6-3
covariance matrix, parameters, 3-29,

3-31, 3-36, 4-4, 4-24
__CovPar, 5-6
cubic step, 4-6, 4-28

D

density, 5-6
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derivatives, 3-3, 3-18, 4-4, 4-24, 4-34
DFP, 3-4, 3-44, 4-4, 4-24
diagnosis, 3-17
direction, 3-2

E

Expgam, 6-3
expgam.src, 6-9
Expon, 6-9
expon.src, 6-14

F

FASTBAYES, 3-29
FASTBayes, 4-12
fastbayes.src, 4-14
FASTBOOT, 3-29
FASTBoot, 4-14
fastboot.src, 4-17
FASTMAX, 3-28, 4-1
fastmax.src, 4-11
fastpflcl.src, 4-19
FASTPflClimits, 4-17
fastprof.src, 4-21
FASTPROFILE, 3-29
FASTProfile, 4-19

G

global variables, 3-43
gradient, 4-2, 4-12, 4-15, 4-19, 4-22,

4-37, 4-39, 4-42, 4-48, 4-52
gradient procedure, 3-18, 4-5, 4-9, 4-10,

4-26, 4-33
GRADRE, 4-31

H

HALF, 3-7
Hessian, 3-3, 3-12, 3-44
Hessian procedure, 3-25, 3-27, 4-11,

4-35
Hurdlep, 6-14
hurdlep.src, 6-19

I

inactive parameters, 3-9
Installation, 1-1

K

Kiss-Monster, 3-40

L

likelihood profile trace, 3-36, 3-37
line search, 3-3, 3-6, 3-44
linear congruential, 3-40
log-likelihood function, 3-1, 3-2, 3-27,

4-2, 4-9, 4-10, 4-12, 4-15, 4-22,
4-32, 4-33, 4-34, 4-36, 4-39,
4-48, 4-50

log-linear, 5-2

M

_max_Active, 3-9, 4-3, 4-23, 4-24
_max_Algorithm, 4-3, 4-4, 4-23, 4-24
_max_Alpha, 4-18, 4-41, 4-51, 4-54
_max_BayesAlpha, 3-40, 4-13, 4-37
_max_BootFname, 4-13, 4-14, 4-16,

4-17, 4-37, 4-38, 4-40, 4-41
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_max_Center, 4-20, 4-46, 4-49
_max_CovPar, 3-31, 4-2, 4-3, 4-4, 4-22,

4-23, 4-24
_max_CutPoint, 4-46
_max_Delta, 4-3, 4-4, 4-23, 4-24
_max_Diagnostic, 3-17, 4-23, 4-24
_max_Diagnostic

_max_Extrap, 4-3, 4-4, 4-23, 4-25
_max_FinalHess, 3-32, 4-3, 4-4, 4-23,

4-25
_max_GradCheckTol, 3-25, 4-11, 4-23,

4-25, 4-35
_max_GradMethod, 3-44, 4-3, 4-4, 4-23,

4-26
_max_GradProc, 4-3, 4-5, 4-10, 4-23,

4-26, 4-33, 4-34
_max_GradStep, 4-3, 4-5, 4-23, 4-26
_max_GradTol, 3-5, 3-44, 4-3, 4-4,

4-23, 4-25
_max_HessCov, 3-32, 4-3, 4-5, 4-23,

4-26
_max_HessProc, 3-25, 4-3, 4-6, 4-11,

4-23, 4-27, 4-35
_max_Increment, 4-20, 4-46, 4-49
_max_Interp, 4-3, 4-6, 4-23, 4-27
_max_IterData, 4-3, 4-6, 4-23, 4-27
_max_Kernel, 3-39, 4-44
_max_Key, 4-23, 4-27
_max_Lag, 4-23, 4-27
_max_Lagrange, 3-31
_max_LineSearch, 4-3, 4-6, 4-23, 4-28
_max_MaxIters, 4-3, 4-7, 4-23, 4-28
_max_MaxTime, 4-3, 4-7, 4-13, 4-16,

4-23, 4-28, 4-37, 4-40

_max_MaxTry, 3-44
_max_Maxtry, 4-3
_max_MaxTry, 4-7
_max_Maxtry, 4-23
_max_MaxTry, 4-28
_max_NumCat, 4-20, 4-46, 4-49
_max_NumObs, 3-38, 4-3, 4-14, 4-17,

4-23, 4-38, 4-40
_max_NumPoints, 4-44
_max_NumSample, 3-38, 4-7, 4-13, 4-16,

4-20, 4-28, 4-37, 4-40, 4-49
_max_Options, 4-3, 4-7, 4-23, 4-29
_max_ParNames, 4-3, 4-8, 4-23, 4-29
_max_PriorProc, 4-13, 4-37
_max_RandRadius, 3-6, 4-3, 4-7, 4-8,

4-23, 4-28, 4-29
_max_RandType, 3-40, 4-3, 4-8, 4-14,

4-16, 4-23, 4-30
_max_Select, 4-20, 4-41, 4-49, 4-54
_max_Smoothing, 3-39, 4-44
_max_State, 4-3, 4-8, 4-14, 4-17, 4-23,

4-30
_max_Switch, 3-28, 4-3, 4-8, 4-23, 4-30
_max_Truncate, 4-44
_max_UserHess, 3-27
_max_UserNumGrad, 4-3, 4-23, 4-30
_max_UserNumHess, 4-23, 4-31
_max_UserSearch, 4-23, 4-32
_max_Width, 4-20, 4-46, 4-49
_max_XprodCov, 3-32, 4-3, 4-9, 4-23
MAXBayes, 4-36
maxbayes.src, 4-38
maxblim.src, 4-42
MAXBlimits, 4-41
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MAXBoot, 3-38, 4-38
maxboot.src, 4-41
MAXCLPrt, 4-42
maxdens.src, 4-45
MAXDensity, 3-38, 4-43, 5-10
MAXHist, 3-39, 4-45, 5-6, 5-10
maxhist.src, 4-47
maximum likelihood, 3-1, 4-1, 4-14,

4-21, 4-38, 5-1
Maxlik, 4-21
maxlik.src, 4-35, 4-43, 4-52, 4-53,

4-54
maxpflcl.src, 4-51
MAXPflClimits, 4-50
maxprof.src, 4-49
MAXProfile, 4-47
MAXPrt, 4-51
MAXSet, 4-53
MAXTlimits, 4-53
__miss, 6-6, 6-11, 6-16, 6-22, 6-29,

6-34, 6-40, 6-45

N

Negbin, 6-19
negbin.src, 6-26
NEWTON, 3-4, 3-44, 4-4, 4-11, 4-24,

4-35
NR, 3-44

O

__output, 3-44, 4-29, 4-44, 4-46, 5-6,
5-8, 6-6, 6-11, 6-17, 6-22, 6-29,
6-35, 6-40, 6-45

P

Pareto, 6-27
pareto.src, 6-32
Poisson, 6-32
poisson.src, 6-37
PRCG, 3-5, 3-44, 4-4, 4-24
profile likelihood, 3-29, 3-33, 4-17, 4-50
profile t plot, 3-36
pseudo-random numbers, 3-40

Q

quadratic step, 4-6, 4-28
quasi-maximum likelihood covariance

matrix, 3-31, 4-4, 4-24
quasi-Newton, 3-4

R

random search, 3-8
regression, Hurdle Poisson, 5-2
regression, negative binomial, 5-2
regression, seemingly unrelated Poisson,

5-2
regression, truncated negative binomial,

5-2
regression, truncated Poisson, 5-2
resampling, 3-38
Richardson Extrapolation, 4-31
__row, 3-2
__row, 4-2, 4-22, 4-23, 4-27, 4-31, 4-33,

4-34, 4-36, 4-39, 4-48, 4-50
__rowfac, 4-23, 4-31, 5-9, 6-6, 6-12,

6-17, 6-22, 6-29, 6-35, 6-40,
6-46
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run-time switches, 3-43

S

scaling, 3-11
Shift-1, 3-44
Shift-2, 3-44
Shift-4, 3-44
Shift-3, 3-44
Shift-5, 3-44
starting point, 3-16
statistical inference, 3-29, 5-9
STEEP, 3-44, 4-4, 4-24
step length, 3-6, 3-44, 4-6, 4-28
STEPBT, 3-6
Supreme, 6-37
supreme.src, 6-42
Supreme2, 6-43
supreme2.src, 6-48
switching algorithms, 3-28

T

__title, 4-3, 4-8, 4-23, 4-31

U

UNIX, 1-3
UNIX/Linux/Mac, 1-1

V

vput, 3-17
vread, 3-17

W

Wald, 3-29, 4-53
Wald inference, 3-30
__weight, 3-8, 4-3, 4-9, 4-23, 4-32
weighted maximum likelihood, 3-8
Windows, 1-2, 1-3
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