
Nonlinear Equations
MT 1.0

for GAUSSTM Mathematical and
Statistical System

Aptech Systems, Inc.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Aptech Systems, Inc. The software
described in this document is furnished under a license agreement or nondis-
closure agreement. The software may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the
software for backup purposes. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose other than the purchaser’s
personal use without the written permission of Aptech Systems, Inc.

c©Copyright Aptech Systems, Inc. Black Diamond WA 2004-2010
All Rights Reserved.

GAUSS, GAUSS Engine and GAUSS Light are trademarks of Aptech
Systems, Inc. Other trademarks are the property of their respective owners.

Part Number: 004437
Version 1.0
Documentation Revision: 1882 June 7, 2010

Contents

Contents

1 Installation

1.1 UNIX/Linux/Mac . 1-1

1.1.1 Download . 1-1

1.1.2 CD . 1-2

1.2 Windows . 1-2

1.2.1 Download . 1-2

1.2.2 CD . 1-2

1.2.3 64-Bit Windows . 1-3

1.3 Difference Between the UNIX and Windows Versions 1-3

2 Getting Started

2.1 Getting Started . 2-1

2.1.1 Setup . 2-1

2.1.2 README Files . 2-2

3 Nonlinear Equations MT

3.1 Introduction . 3-1

3.2 About the nlsys Procedure . 3-1

3.3 Solution Method . 3-3

3.4 An Example . 3-4

3.4.1 Setting Up the System . 3-4

3.4.2 Starting Values . 3-5

3.4.3 Control Variables . 3-5

3.4.4 The Complete Example . 3-6

3.5 References . 3-9

iii

Nonlinear Equations MT 1.0 for GAUSS

4 Nonlinear Equations MT Reference

nlControlCreate . 4-1
nlprt . 4-2
nlsys . 4-5

Index

iv

Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss

1-1

Nonlinear Equations MT 1.0 for GAUSS

4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2

Installation

Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3

G
etting

S
tarted

Getting Started 2

2.1 Getting Started

GAUSS 6.0.26+ is required to use these routines. See _rtl_ver in src/gauss.dec.

2.1.1 Setup

In order to use the procedures in the Nonlinear Equations MT module, the NLEMT
library must be active. This is done by including nlsysmt in the library statement at the
top of your program or command file:

library nlsysmt,simplex,pgraph;

2-1

Nonlinear Equations MT 1.0 for GAUSS

This enables GAUSS to find the NLEMT procedures. An nlControl structure is used to
hold control variables that are used by the procedures in this module. To define an
instance of this structure and set its members to default values, include the following
instructions just after the library statement at the top of your program:

#include nlsysmt.sdf

struct nlControl nlc;

nlc = nlControlCreate;

The version number of each module is stored in a global variable. For Nonlinear
Equations MT, this global is:

_nlmt_ver 3 × 1 matrix, the first element contains the major version number, the second
element the minor version number, and the third element the revision number.

If you call for technical support, you may be asked for the version of your copy of this
module.

2.1.2 README Files

If it exists, the file README.nlmt contains any last minute information on the Nonlinear
Equations MT procedures. Please read it before using them.

2-2

N
LE

M
T

Nonlinear Equations MT 3
3.1 Introduction

This module contains the procedure nlsys which solves the system:

F(x) = 0

where F is a general nonlinear system of equations, F : Rn → Rn. F must have first and
second derivatives, although these need not be supplied analytically.

3.2 About the nlsys Procedure

You can call nlsys, with the following statement:

3-1

Nonlinear Equations MT 1.0 for GAUSS

{ nlc,nlo } = nlsys(nlc,&f,x0);

where nlc is an instance of an nlControl structure created by nlControlCreate, &f is
a pointer to the procedure describing the system of equations (a discussion on how to set
up this procedure follows), x0 is a vector of start values, and nlo is an instance of an
nlOut structure. The nlOut structure contains the final solution, the value of the system
of equations at the final solution, the final Jacobian, the number of iterations needed to
find the final solution, and a return code.

It is assumed that the function passed to nlsys is continuous and differentiable. This
ensures that the matrix of first partial derivatives of the equations, the Jacobian matrix,
exists, even though it may not be possible to calculate it analytically. The Jacobian matrix
may be defined as

Ji, j =
∂Fi

∂x j

The Fi’s must be independent; otherwise, the system will be underdetermined, the
equation F = 0 will have an infinite number of solutions and the method will fail.
Independence of the Fi’s, however, is not a sufficient condition to ensure that the solution
found by nlsys will be unique; for many problems, a number of solutions exist. For
example, F(x) could be the two equation system

x1 + x2 − 3 = 0

x1
2 + x2

2 − 9 = 0

which has roots at x1 = 3, x2 = 0 and x1 = 0, x2 = 3.

3-2

N
LE

M
T

Nonlinear Equations MT

In this case, the particular solution located by nlsys generally will be the solution closest
to the starting values x0.

Specific tolerance levels may be set to define the accuracy of your equations and,
therefore, the accuracy of the solution.

3.3 Solution Method

The program nlsys uses a quasi-Newton method for finding the zeros of a system of
nonlinear equations, if an analytic Jacobian of the system is not supplied by the user. To
approximate the Jacobian, you may chose one of two methods: (1) Broyden’s secant
update of the approximation of the Jacobian, or (2) a forward difference method. Should
Broyden’s technique fail, the algorithm reverts to the forward difference estimate of the
Jacobian and recalculates the step. You may also supply a function to compute the
Jacobian analytically which speeds up the solution significantly, especially for large
problems.

To provide a globalizing strategy for failures of Newton steps, the user may chose one of
two algorithms. The first, a line-search algorithm, uses a backtracking strategy to search in
the Newton direction for a step-length which minimizes the local quadratic model of the
system. The second, the hookstep algorithm, uses a predetermined step-length, which is at
most the Newton step-length, and searches for a direction which minimizes the local
quadratic model. Refer to Dennis and Schnabel for a complete discussion of these
methods.

The chpf, algr, stjc, and ajac members of the nlControl structure are used to
specify which method should be used to calculate the Jacobian, a starting Jacobian, if one
is desired, and which search strategy should be used.

To initialize the process, the user must supply starting values, and optionally, a starting
Jacobian.

3-3

Nonlinear Equations MT 1.0 for GAUSS

3.4 An Example

To illustrate the use of nlsys, we will solve Example 5.5 of Carnahan et.al. in the
following sections. The completed program is given in the example file nlmt4.e.

3.4.1 Setting Up the System

A GAUSS procedure which defines the system of equations F must be defined. There are
no special name requirements for this procedure and and functions called through the
language interface may be used to define the equations. The procedure must however,
accept only the Nx1 vector x = (x1, x2, ...xn) as an argument, and return the Nx1 vector
representing F(x) = (f1, f2, f3... fn).

The system of equations

1
2

x1 + x2 +
1
2

x3 −
x6

x7
= 0

x3 + x4 + 2x5 −
2
x7
= 0

x1 + x2 + x5 −
1
x7
= 0

−28837x1 − 139009x2 − 78213x3 + 18927x4+

+8427x5 +
13492

x7
− 10690

x6

x7
= 0

x1 + x2 + x3 + x4 + x5 − 1 = 0

P2x1x3
4 − 1.7837 × 105x3x5 = 0

x1x3 − 2.6058x2x4 = 0

which is given by Carnahan et.al. represent a methane–oxygen reaction. The task is to

3-4

N
LE

M
T

Nonlinear Equations MT

solve for the variables x∗ = (x1...xn).

Here is one method for placing this system in a procedure:

proc fsys(x);

local f1,f2,f3,f4,f5,f6,f7,P;

P = 20;

f1 = 0.5*x[1] + x[2] + 0.5*x[3] - x[6]/x[7];

f2 = x[3] + x[4] + 2*x[5] - 2/x[7];

f3 = x[1] + x[2] + x[5] - 1/x[7];

f4 = -28837*x[1] - 139009*x[2] - 78213*x3 + 18927*x[4] +

8427*x[5] + 13492/x[7] - 10690*x[6]/x[7];

f5 = x[1] + x[2] + x[3] + x[4] + x[5] - 1;

f6 = (Pˆ2)*x[1]*x[4]ˆ3 - 1.7837*1e5*x[3]*x[5];

f7 = x[1]*x[3] - 2.6058*x[2]*x[4];

retp(f1|f2|f3|f4|f5|f6|f7);

endp;

In this case, one would pass a pointer to the procedure fsys to nlsys.

3.4.2 Starting Values

Starting values for x0 are required. These values should be chosen to be as close as
possible to the solution. This should be a column vector.

x0 = { 0.5, 0, 0, 0.5, 0, 0.5, 2.0 };

3.4.3 Control Variables

The members of the nlControl structure are control variables which may be specified to
control various options, including the convergence, scaling and printed output. These can
be specified as follows:

3-5

Nonlinear Equations MT 1.0 for GAUSS

struct nlControl nlc;

nlc = nlControlCreate;

nlc.algr = 2;

nlc.altnam = "CO"$|"CO2"$|"H2O"$|"H2"$|"CH4"$|"O2/CH4"$|"TOTAL";

nlc.title = "Chemical Equilibrium Problem";

See the nlsys function definition in Chapter 4 for a complete listing of these options.

3.4.4 The Complete Example

Here is a complete example illustrating the use of nlsys and the printing procedure
nlprt.

library nlsysmt;

#include nlsysmt.sdf

struct nlControl nlc;

struct nlOut nlo;

nlc = nlControlCreate;

proc fsys(x);

local f1,f2,f3,f4,f5,f6,f7,P;

P = 20;

f1 = 0.5*x[1] + x[2] + 0.5*x[3] - x[6]/x[7];

f2 = x[3] + x[4] + 2*x[5] - 2/x[7];

f3 = x[1] + x[2] + x[5] - 1/x[7];

f4 = -28837*x[1] - 139009*x[2] - 78213*x3 + 18927*x[4] +

8427*x[5] + 13492/x[7] - 10690*x[6]/x[7];

f5 = x[1] + x[2] + x[3] + x[4] + x[5] - 1;

f6 = (Pˆ2)*x[1]*x[4]ˆ3 - 1.7837*1e5*x[3]*x[5];

f7 = x[1]*x[3] - 2.6058*x[2]*x[4];

retp(f1|f2|f3|f4|f5|f6|f7);

endp;

x0 = { 0.5, 0, 0, 0.5, 0, 0.5, 2.0 };

nlc.algr = 2;

3-6

N
LE

M
T

Nonlinear Equations MT

nlc.altnam = "CO"$|"CO2"$|"H2O"$|"H2"$|"CH4"$|"O2/CH4"$|"TOTAL";

nlc.title = "Chemical Equilibrium Problem";

output file = nlmt3.out reset;

{ nlc,nlo } = nlprt(nlsys(nlc,&fsys,x0));

output off;

The procedure nlprt nested around the call to nlsys prints the results to the current
output device: in this case, the screen and the output file nlmt4.out. The alternative names
set in nlc.altnam will be used to label the variables.

Here is the output produced by nlprt:

ROOTS F(ROOTS)

Iteration #1

CO 0.22101731 F1(X) 0.00098702

CO2 0.02592764 F2(X) -0.00015119

H2O 0.06756228 F3(X) -0.00007557

H2 0.42632756 F4(X) 11.57115067

CH4 0.25916519 F5(X) -0.00000001

O2/CH4 0.33432477 F6(X) -3116.37106748

TOTAL 1.97555953 F7(X) -0.01387121

Iteration #2

CO 0.31014830 F1(X) 0.00449899

CO2 0.00714194 F2(X) -0.06125687

H2O 0.05538274 F3(X) -0.03062845

H2 0.57919778 F4(X) 461.33304026

CH4 0.04812924 F5(X) -0.00000000

O2/CH4 0.46814654 F6(X) -451.34526198

TOTAL 2.52494691 F7(X) 0.00639772

Iteration #3

CO 0.32028481 F1(X) 0.00094304

CO2 0.00955481 F2(X) -0.01374807

3-7

Nonlinear Equations MT 1.0 for GAUSS

H2O 0.04671279 F3(X) -0.00687404

H2 0.61296646 F4(X) 102.82560720

CH4 0.01048112 F5(X) -0.00000000

O2/CH4 0.55332216 F6(X) -57.82467068

TOTAL 2.88022758 F7(X) -0.00030019

Iteration #4

CO 0.32283808 F1(X) 0.00004890

CO2 0.00922480 F2(X) -0.00071492

H2O 0.04603061 F3(X) -0.00035746

H2 0.61809514 F4(X) 5.34555935

CH4 0.00381137 F5(X) 0.00000000

O2/CH4 0.57582389 F6(X) -0.79941029

TOTAL 2.97413952 F7(X) 0.00000267

Iteration #5

CO 0.32287083 F1(X) 0.00000007

CO2 0.00922354 F2(X) -0.00000105

H2O 0.04601709 F3(X) -0.00000053

H2 0.61817165 F4(X) 0.00784925

CH4 0.00371688 F5(X) -0.00000000

O2/CH4 0.57671424 F6(X) -0.00022526

TOTAL 2.97785864 F7(X) -0.00000000

Iteration #6

CO 0.32287084 F1(X) 0.00000000

CO2 0.00922354 F2(X) -0.00000000

H2O 0.04601709 F3(X) -0.00000000

H2 0.61817168 F4(X) 0.00000001

CH4 0.00371685 F5(X) -0.00000000

O2/CH4 0.57671540 F6(X) -0.00000000

TOTAL 2.97786345 F7(X) -0.00000000

===

Chemical Equilibrium Problem

===

nlsys Version 1.0.0 7/21/2004 2:39 pm

===

3-8

N
LE

M
T

Nonlinear Equations MT

Number of iterations required: 6

||F(x)|| at final solution: 6.5585984e-09

Algorithm used: HOOK STEP

Jacobian calculated using: FORWARD DIFFERENCE

Termination Code = 1:

Norm of the scaled function value is less than the value of the fvtol member

of the nlControl structure; xp given is an approximate root of F(x) (unless

fvtol is too large).

VARIABLE START ROOTS F(ROOTS)

CO 0.50000 0.32287084 1.1154966e-13

CO2 0.00000 0.0092235435 -1.7451596e-12

H2O 0.00000 0.046017091 -8.4909857e-13

H2 0.50000 0.61817168 1.3117187e-08

CH4 0.00000 0.003716851 -5.5511151e-15

O2/CH4 0.50000 0.5767154 -1.5589308e-11

TOTAL 2.00000 2.9778635 -5.7322203e-14

3.5 References

1. Agresti, A. 1984. Analysis of Ordinal Categorical Data. New York:Wiley.

2. Dennis and Schnabel 1983, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. New Jersey:Prentice-Hall.

3. Gill, Murray and Wright 1981, Practical Optimization. New York:
Academic Press.

3-9

Nonlinear Equations MT 1.0 for GAUSS

4. Carnahan, Luther and Wilkes 1969, Applied Numerical Methods. New
York: Wiley.

3-10

R
eference

Nonlinear Equations MT
Reference 4

nlControlCreate

PURPOSE Sets the members of an nlControl structure to default values.

LIBRARY nlsysmt

FORMAT nlc = nlControlCreate;

INPUT None

OUTPUT nlc an instance of an nlControl structure with its members set
to default values.

4-1

nlprt

REMARKS Putting this instruction at the top of all programs that invoke nlsys is
generally good practice. This will prevent control variables from being
inappropriately defined when a program is run either several times or
after another program that also calls nlsys.

SOURCE nlsysmt.src

nlprt

PURPOSE Prints a summary of results from nlsys. This printout can be sent to an
output file if one is open.

LIBRARY nlsys

FORMAT { nlc,nlo } = nlprt(nlc,nlo);

INPUT nlc an instance of an nlControl structure. The following
members of nlc are referenced within the nlprt routine:

nlc.ajac pointer to a procedure which
computes the analytic Jacobian. By
default, nlsys will compute the
Jacobian numerically.

nlc.algr scalar, indicates which
search-direction/step-length
algorithm should be used.
1 Use line search
2 Use hook step—a locally

constrained search strategy.
Default = 1.

4-2 NLEMT C R

R
eference

nlprt

nlc.altnam K × 1 string array, alternate names for
variables created by nlsys. These
names are used with the display
produced by nlprt. For example,
nlc.altnam = "CO"$|"CO2"$|"H2O"$|"H2"$|

"CH4"$|"O2/CH4"$|"Total";

By default, the names X1, X2, X3... or
X01, X02, X03... (depending on how
nlc.vpad is set) will be used.

nlc.chpf scalar, flag to control the method of
Jacobian approximation:
0 use Broyden’s secant

approximations
1 use finite difference Jacobians
Default = 1.

nlc.header string. This is used by nlprt to
display information about the date,
time, version of module, etc. The
string can contain zero or more of the
following characters:
t print title (see nlc.title)
l bracket title with lines
d print date and time
v print procedure name and version

number
Example:
nlc.header = "tld";

Default = “tldvf”.
nlc.title string, a custom title to be printed at

the top of the iterations report. By
default, no title will be printed.

nlc.vpad scalar. If nlc.altnam = “”, then the
variable names used during printout

NLEMT C R 4-3

nlprt

are automatically created by nlsys.
Two types of names can be created:
0 Variable names are not padded to

give them equal length. For
example, X1, X2 ... X10, X11....

1 Variable names are padded with
zeros to give them an equal
number of characters. For
example, X1, X2 ... X10, X11....

Default = 1.

nlo an instance of an nlOut structure returned by nlsys, which
contains the following members:

nlo.fvc N × 1 vector, the final function
results, F(xp).

nlo.itnum scalar, the number of iterations
required by nlsys to arrive at the
final solution.

nlo.jc N × N matrix, the final Jacobian
results.

nlo.startvals N × 1 vector, starting values for the
equation solution algorithm.

nlo.tcode scalar, the termination code returned
from nlsys.

nlo.xp N × 1 vector which represents a
solution to the problem F(xp) = 0.

OUTPUT nlc an instance of an nlControl structure that is identical to
the one inputted by the user.

nlo an instance of an nlOut structure that is identical to the one
inputted by the user. See nlsys for more information on the
members of this structure.

REMARKS The call to nlsys can be nested inside the call to nlprt. For example:

4-4 NLEMT C R

R
eference

nlsys

{ nlc,nlo } = nlprt(nlsys(nlc,&f,x0));

SOURCE nlsys.src

nlsys

PURPOSE Solves a system of nonlinear equations.

LIBRARY nlsysmt

FORMAT { nlc,nlo } = nlsys(nlc,&F,x0);

INPUT nlc an instance of an nlControl structure. The following
members of nlc are referenced within the nlsys routine:

nlc.ajac pointer to a procedure which
computes the analytic Jacobian. By
default, nlsys will compute the
Jacobian numerically.

nlc.algr scalar, indicates which
search-direction/step-length
algorithm should be used.
1 Use line search
2 Use hook step—a locally

constrained search strategy.
The line-search uses a Newton
direction, and then determines a step
length. The Hook step uses a
predetermined step length, and then
finds an optimal search direction.

NLEMT C R 4-5

nlsys

If using the hook step, it is best to set
nlc.chpf = 1, or to supply an analytic
Jacobian (see nlc.ajac). This
particular strategy is sensitive to
accuracy of the Hessian being used.
If the secant update is being used, the
Hessian may fail to invert.
Default = 1.

nlc.altnam N × 1 string array of alternate names
to be used by the printed output. By
default, the names X1, X2, X3... or
X01, X02, X03... (depending on how
nlc.vpad is set) will be used.

nlc.chpf scalar, flag to control the method of
Jacobian approximation:
0 use Broyden’s secant

approximations
1 use finite difference Jacobians
Use 0 if the function being evaluated
is expensive and not sensitive.
Neither of these methods will be used
if an analytic Jacobian has been
supplied.
Default = 1.

nlc.fdig scalar, the number of reliable digits in
F(x). This is used to compute eta,
which is used to specify the relative
noise in F(x). eta is computed as
follows:
eta = max(macheps, 10−nlc. f dig)
Default = 14.

nlc.fvtol scalar, the tolerance of the scalar
function f = 1

2 ‖ F(x) ‖2 required to
terminate algorithm. That is, | f (x)|

4-6 NLEMT C R

R
eference

nlsys

must be less than nlc.fvtol before the
algorithm can terminate successfully.
Default = macheps1/3.

nlc.maxit scalar, the maximum number of
iterations. Default = 100.

nlc.mtol scalar, the value used to test if the
algorithm is stuck at a local
minimizer. The algorithm stops if the
maximum component of the scaled
gradient is ≤ nlc.mtol.
Default = macheps2/3.

nlc.output scalar. If 1, output produced during
iterations is sent to the screen and/or
output device such as a printer or
output file. Default = 1.

nlc.stjc N × N matrix, may be set by user to
initial Jacobian of F(x) with respect
to coefficients, if one is available. By
default, nlsys will compute the
initial Jacobian using a forward
difference method.

nlc.stol scalar, the step tolerance.
Default = macheps2/3.

nlc.typf N × 1 vector of the typical F(x)
values at a point not near a root, used
for scaling. This becomes important
when the magnitudes of the
components of F(x) are expected to
be very different. By default, function
values are not scaled.

nlc.typx N × 1 vector of the typical magnitude
of x, used for scaling. This becomes
important when the magnitudes of the
components of x are expected to be

NLEMT C R 4-7

nlsys

very different. By default, variable
values are not scaled.

nlc.vpad scalar. If nlc.altnam = “”, then the
variable names used during printout
are automatically created by nlsys.
Two types of names can be created:
0 Variable names automatically

created by nlsys are not padded
to give them equal length. For
example, X1, X2 ... X10, X11....

1 Variable names created by the
procedure are padded with zeros
to give them an equal number of
characters. For example, X01,
X02 ... X10, X11....

Default = 1.
&F A pointer to a procedure which computes the value at x of

the equations to be solved. This procedure should return an
N × 1 column vector containing the result for each equation.
For example:

Equation 1: x2
1 + x2

2 − 2 = 0
Equation 2: ex1−1 + x3

2 − 2 = 0

proc G(x);

local g1,g2;

g1 = x[1]ˆ2 + x[2]ˆ2 - 2;

g2 = exp(x[1]-1) + x[2]ˆ3 - 2;

retp(g1|g2);

endp;

x0 N × 1 vector, starting values for the equation solution
algorithm. There should be as many elements in this vector
as equations to be solved.

OUTPUT nlc an instance of an nlControl structure that is identical to
the one inputted by the user.

4-8 NLEMT C R

R
eference

nlsys

nlo an instance of an nlOut structure, containing the following
members:
nlo.fvc N × 1 vector, the final function

results, F(xp).
nlo.itnum scalar, the number of iterations

required by nlsys to arrive at the
final solution.

nlo.jc N × N matrix, the final Jacobian
results.

nlo.tcode scalar, the termination code. 1 is
successful. Others may represent
failure.
1 Norm of the scaled function value

is less than nlc.fvtol; the xp given
is an approximate root of F(x)
(unless nlc.fvtol is too large).

2 The scaled distance between the
last two steps is less than the
step-tolerance (nlc.stol). xp may
be an approximate root of F(x),
but it is also possible that the
algorithm is making very slow
progress and is not near a root, or
the step-tolerance (nlc.stol) is
too large.

3 The last global step failed to
decrease ‖ F(x) ‖2 sufficiently;
either xp is close to a root of F
and no more accuracy is possible,
an incorrectly coded analytic
Jacobian is being used, the secant
approximation to the Jacobian is
inaccurate, or the step-tolerance
(nlc.stol) is too large.

NLEMT C R 4-9

nlsys

4 Iteration limit exceeded.

5 Five consecutive steps of
maximum step length have been
taken. This probably means that
nlsys is approaching
asymptotically a finite value from
above.

6 xp may be an approximate local
minimizer of ‖ F(x) ‖2 that is not
a root of F(x) (or nlc.mtol is too
small). To find a root of F(x),
nlsys should be restarted from a
different region.

nlo.xp N × 1 vector which represents a
solution to the problem F(xp) = 0.
Check nlo.tcode to confirm that the
algorithm converged to a proper
solution.

REMARKS This solves a system of nonlinear equations using a quasi-Newton
algorithm with Broyden’s secant update method. The algorithm uses a
line-search algorithm or a model trust region approach (hookstep) as a
globalizing strategy. Numeric derivatives are calculated by default;
however, analytic derivatives may be substituted if available.

EXAMPLE This example illustrates the difficulty of solving certain classes of
problems. Try various starting values to get some of the roots of these
equations. Certain starting values will not converge to a root.

The equations to be solved are:

4-10 NLEMT C R

R
eference

nlsys

1
2

sin(x1x2) −
x2

4π
−

x1

2
= 0(

1 −
1

4π

)
(e2x1−1 − 1) +

x2

π
− 2x1 = 0

A number of roots can be found—here are a few:

x1 x2
0.5000 3.1416
0.2994 2.8369
-0.2606 0.6225

Here is the code for the above example:

library nlsysmt;

#include nlsysmt.sdf

struct nlControl nlc;

struct nlOut nlo;

nlc = nlControlCreate;

proc F(x);

local f1,f2;

f1 = 0.5*sin(x[1]*x[2]) - x[2]/(4*pi) - x[1]/2;

f2 = (1 - 1/(4*pi))*(exp(2*x[1] - 1) - 1) + x[2]/pi - 2*x[1];

retp(f1|f2);

endp;

x0 = { 0.2, 0.3 }; /* Starting Values */

output file = nlmt.out reset;

{ nlc,nlo } = nlprt(nlsys(nlc,&f,x0));

output off;

NLEMT C R 4-11

nlsys

SOURCE nlsys.src

4-12 NLEMT C R

Index

Index

Index

Carnahan, 3-4
convergence, 3-5

D

derivatives, analytic, 4-10
derivatives, numeric, 4-10
derivatives, partial, 3-2

F

forward difference, 3-3

H

hookstep algorithm, 3-3

I

Installation, 1-1

J

Jacobian, 3-2

L

line-search, 4-10
line-search algorithm, 3-3

N

nlControl structure, 2-2
nlControlCreate, 2-2, 4-1
nlmt ver, 2-2
nlOut structure, 3-2
nlprt, 3-6, 4-2
nlsys, 3-1, 4-5
noise, 4-6

O

output, 3-5

Q

quasi-Newton, 3-3, 4-10

S

scaling, 3-5, 4-7
secant, Broyden’s, 4-10
starting values, 3-5, 4-10

T

tolerance levels, 3-3

Index-1

Index

U

UNIX, 1-3
UNIX/Linux/Mac, 1-1

W

Windows, 1-2, 1-3

Index-2 Index

	1 Installation
	1.1 UNIX/Linux/Mac
	1.1.1 Download
	1.1.2 CD

	1.2 Windows
	1.2.1 Download
	1.2.2 CD
	1.2.3 64-Bit Windows

	1.3 Difference Between the UNIX and Windows Versions

	2 Getting Started
	2.1 Getting Started
	2.1.1 Setup
	2.1.2 README Files

	3 Nonlinear Equations MT
	3.1 Introduction
	3.2 About the nlsys Procedure
	3.3 Solution Method
	3.4 An Example
	3.4.1 Setting Up the System
	3.4.2 Starting Values
	3.4.3 Control Variables
	3.4.4 The Complete Example

	3.5 References

	4 Nonlinear Equations MT Reference
	nlControlCreate
	nlprt
	nlsys

	Index

