STATA EXTENDED REGRESSION MODELS REFERENCE MANUAL RELEASE 15

A Stata Press Publication StataCorp LLC College Station, Texas

Copyright © 1985–2017 StataCorp LLC All rights reserved Version 15

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in T_FX

ISBN-10: 1-59718-235-4 ISBN-13: 978-1-59718-235-5

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STata Stata Press, Mata, Mata and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2017. Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC.

Contents

introIntroductionintro 1An introduction to the ERM commandsintro 2The models that ERMs fitintro 3Endogenous covariates featuresintro 4Endogenous sample-selection featuresintro 5Treatment assignment featuresintro 6Model interpretationintro 7A Rosetta stone for extended regression commandsintro 8Conceptual introduction via worked example	1 4 10 13 19 24 31 45 47
eintregExtended interval regressioneintreg postestimationPostestimation tools for eintregeintreg predictpredictpredictpredict	62 79 82
eoprobitExtended ordered probit regressioneoprobit postestimationPostestimation tools for eoprobiteoprobit predictpredictpredictpredict	85 101 106
eprobit Extended probit regression eprobit postestimation Postestimation tools for eprobit eprobit predict predict after eprobit	110 133 140
eregress Extended linear regression eregress postestimation Postestimation tools for eregress eregress predict predict after eregress	143 157 162
erm options Extended regression model options	170
estat teffects Average treatment effects for extended regression models	176
example 1a Linear regression with continuous endogenous covariate example 1b Interval regression with continuous endogenous covariate example 1c Interval regression with endogenous covariate and sample selection	179 185 187
example 2a Linear regression with binary endogenous covariate example 2b Linear regression with exogenous treatment example 2c Linear regression with endogenous treatment	190 193 196
example 3a Probit regression with continuous endogenous covariate example 3b Probit regression with endogenous covariate and treatment	202 211
example 4a Probit regression with endogenous sample selection example 4b Probit regression with endogenous treatment and sample selection	
example 5 Probit regression with endogenous ordinal treatment	222
example 6a Ordered probit regression with endogenous treatment example 6b Ordered probit regression with endogenous treatment and sample selection	
predict advanced predict's advanced features predict treatment predict for treatment statistics	
triangularize How to triangularize a system of equations	242

ii Contents

Glossary	248
Subject and author index	254

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands[XT] xtabond[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User's Guide; the second is a reference to the xtabond entry in the Longitudinal-Data/Panel-Data Reference Manual; and the third is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM]	Getting Started with Stata for Mac
[GSU]	Getting Started with Stata for Unix
[GSW]	Getting Started with Stata for Windows
[U]	Stata User's Guide
[R]	Stata Base Reference Manual
[BAYES]	Stata Bayesian Analysis Reference Manual
[D]	Stata Data Management Reference Manual
[ERM]	Stata Extended Regression Models Reference Manual
[FMM]	Stata Finite Mixture Models Reference Manual
[FN]	Stata Functions Reference Manual
[G]	Stata Graphics Reference Manual
[IRT]	Stata Item Response Theory Reference Manual
[DSGE]	Stata Linearized Dynamic Stochastic General Equilibrium Reference Manual
[XT]	Stata Longitudinal-Data/Panel-Data Reference Manual
[ME]	Stata Multilevel Mixed-Effects Reference Manual
[MI]	Stata Multiple-Imputation Reference Manual
[MV]	Stata Multivariate Statistics Reference Manual
[PSS]	Stata Power and Sample-Size Reference Manual
[P]	Stata Programming Reference Manual
[SP]	Stata Spatial Autoregressive Models Reference Manual
[SEM]	Stata Structural Equation Modeling Reference Manual
[SVY]	Stata Survey Data Reference Manual
[ST]	Stata Survival Analysis Reference Manual
[TS]	Stata Time-Series Reference Manual
[TE]	Stata Treatment-Effects Reference Manual: Potential Outcomes/Counterfactual Outcomes
[1]	Stata Glossary and Index
[M]	Mata Reference Manual

Title

intro — Introduction

Description Remarks and examples

Description

ERM stands for extended regression model. The ERMs are linear regression, interval regression, probit, and ordered probit. This manual introduces, explains, and documents ERM features.

Remarks and examples

The entries in this manual are organized as follows:

Introductions Examples ERM commands Postestimation Technical details Glossary

Introductions

Read the introductions first.

We recommend reading [ERM] **intro** 1–[ERM] **intro** 6 in order. In them, you will find introductions to the models that can be fit with the ERM commands, the syntax, the complications—endogenous covariates, sample selection, and treatment assignment—that ERM commands address, and the interpretation of results.

[ERM] intro 1	An introduction to the ERM commands
[ERM] intro 2	The models that ERMs fit
[ERM] intro 3	Endogenous covariates features
[ERM] intro 4	Endogenous sample-selection features
[ERM] intro 5	Treatment assignment features
[ERM] intro 6	Model interpretation

The next introduction is a Rosetta stone for anyone who has used other Stata commands to account for endogenous covariates, sample selection, or nonrandom treatment assignment. It provides a simple mapping of syntax from commands such as ivregress, heckman, ivprobit, heckoprobit, and etregress to the corresponding ERM command. If you are already familiar with these other commands, this entry may be all you need to get started using the ERM commands.

[ERM] intro 7 A Rosetta stone for extended regression commands

Finally, we include an introduction to important concepts in ERMs in the context of a worked example. Here, we discuss endogeneity, sample selection, and nonrandom treatment assignment. We fit models that account for each of these complications, and we show you how to use postestimation commands to interpret the results.

[ERM] intro 8 Conceptual introduction via worked example

[ERM] intro 8 can be read either before or after [ERM] intro 1-[ERM] intro 6.

Examples

The example entries demonstrate how to fit models using eregress, eintreg, eprobit, and eoprobit.

We do not recommend selecting the examples you read based only on the type of outcome discussed in the example. The syntax of the ERM commands is interchangeable. Therefore, you can substitute eintreg, eoprobit, eprobit, or eregress into any of the examples to fit a model that addresses the same complications. The table below lists the command, the type of outcome variable, and the complications that are addressed in each example to help you locate examples that are of most interest to you.

Example	Command	Outcome	Complications
[ERM] example 1a	eregress	continuous	continuous endogenous covariate
[ERM] example 1b	eintreg	interval	continuous endogenous covariate
[ERM] example 1c	eintreg	interval	continuous endogenous covariate, endogenous sample selection
[ERM] example 2a	eregress	continuous	binary endogenous covariate
[ERM] example 2b	eregress	continuous	exogenous treatment
[ERM] example 2c	eregress	continuous	endogenous treatment
[ERM] example 3a	eprobit	binary	continuous endogenous covariate
[ERM] example 3b	eprobit	binary	continuous endogenous covariate, endogenous treatment
[ERM] example 4a	eprobit	binary	endogenous sample selection
[ERM] example 4b	eprobit	binary	endogenous sample selection, endogenous treatment
[ERM] example 5	eprobit	binary	endogenous ordinal treatment
[ERM] example 6a	eoprobit	ordinal	endogenous treatment
[ERM] example 6b	eoprobit	ordinal	endogenous treatment, endogenous sample selection

The type of outcome does play a role in the way results are interpreted, so examples with the same outcome type will be of interest for interpretation. If your main interest is in interpretation, also see [ERM] intro 6 and [ERM] intro 8.

ERM commands

The entries for the individual commands provide details on syntax and implementation. The *Methods* and formulas sections include full details on the models that can be fit using these commands.

[ERM] eintreg	Extended interval regression
[ERM] eoprobit	Extended ordered probit regression
[ERM] eprobit	Extended probit regression
[ERM] eregress	Extended linear regression
[ERM] erm options	Extended regression model options

Postestimation

The postestimation commands allow you to estimate treatment effects, obtain predictions, perform tests, and more. They are documented in the entries listed below.

[ERM] eintreg postestimation	Postestimation tools for eintreg
[ERM] eintreg predict	predict after eintreg
[ERM] eoprobit postestimation	Postestimation tools for eoprobit
[ERM] eoprobit predict	predict after eoprobit
[ERM] eprobit postestimation	Postestimation tools for eprobit
[ERM] eprobit predict	predict after eprobit
[ERM] eregress postestimation	Postestimation tools for eregress
[ERM] eregress predict	predict after eregress
[ERM] estat teffects	Average treatment effects for extended regression models
[ERM] predict advanced	predict's advanced features
[ERM] predict treatment	predict for treatment statistics

Examples using postestimation commands are found in [ERM] intro 8 and in the example entries.

Technical details

ERM commands require that endogenous covariates form a triangular or recursive system. Here, we discuss triangular systems and possible solutions if your model does not have this required form.

[ERM] triangularize How to triangularize a system of equations

Glossary

Finally, we provide a glossary that can be referred to as needed.

[ERM] Glossary Glossary of technical terms

Title

intro 1 — An introduction to the ERM commands

Description Remarks and examples Also see

Description

ERM stands for extended regression model. It is our term to designate

- commands for fitting linear regression, interval regression, probit, and ordered probit models that allow
- · continuous, binary, and ordinal endogenous covariates, including
- polynomials of endogenous covariates,
- interactions of endogenous covariates,
- interactions of endogenous with exogenous covariates,
- endogenous sample selection, and
- nonrandom exogenous or endogenous treatment assignment.

The features may be used separately or in any combination.

The estimation commands eregress, eintreg, eprobit, and eoprobit fit ERMs.

Remarks and examples

Remarks are presented under the following headings:

The problems ERMs solve The simple syntax of ERMs Normality assumption underlying ERMs Learning more about ERMs

The problems ERMs solve

The ERM commands fit the following models:

Command	Purpose
eregress	linear regression
eintreg	interval regression
eprobit eoprobit	binary-outcome probit regression ordinal-outcome probit regression

These models are described in [ERM] intro 2.

All the ERM commands provide the following features:

• Endogenous covariates

Explanatory variables in the model-covariates-can be exogenous or endogenous.

Endogenous covariates can themselves be continuous (linear), binary (probit), or ordinal (ordered probit).

Endogenous covariates can be interacted with other covariates, whether endogenous or exogenous. They can even be interacted with themselves to form polynomials.

Endogenous covariates can themselves be predicted by other endogenous covariates.

• Endogenous selection

Models can be adjusted for situations in which outcomes are unobserved for endogenous reasons.

In a medical trial, patients may skip the final visit, causing the final outcome to be unobserved. They may skip it for reasons correlated with the outcome.

In economic data, wages are observed only for those who have a job. Those who do not have a job may not for reasons correlated with the wage they would have received.

• Exogenous or endogenous treatment assignment

The purpose of models is often to measure the effect of a treatment, such as a drug that is administered or a training program that is attended. Ethics often prevent assignment from being random.

In a medical trial, doctors might assign patients most likely to benefit to a trial based on observed characteristics. That is called exogenous treatment assignment.

In another situation, subjects may volunteer, and subjects who perceive larger benefits will be more likely to benefit. If all the determinants of the perceptions are observed, then assignment is exogenous. It can be explained by the observed variables, just as in the previous case.

If the determinants are unobserved, then treatment is endogenous. Errors in the assignment equation will be correlated with errors in the outcome equation.

Stata has other commands that address each of these issues in the case of linear regression, and it has still other commands that can address some of these issues for interval regression, probit, and ordered probit. But Stata has no other commands that can adjust for all the above when they occur together. Even if your problem has only one of the issues, you may still prefer to use the ERM commands because they all have the same simple syntax.

The simple syntax of ERMs

The basic syntax of the ERM commands is Stata's standard estimation syntax: the command followed by the dependent variable followed by the covariates. Typing

. eregress y1 x1 x2

fits a linear regression of y1 on x1 and x2. If you need to use one or more ERM features, you add options to the command.

6 intro 1 — An introduction to the ERM commands

Option	Purpose
endogenous()	add endogenous covariates
<pre>select() tobitselect()</pre>	add endogenous sample selection add endogenous selection using tobit
<pre>extreat() entreat()</pre>	add exogenous treatment assignment add endogenous treatment assignment

You can type

. eregress y x1 x2, endogenous(w = x1 z1 z2)

to add endogenous covariate w to the right-hand side of the model. The option specifies that w's instruments are variables x1, z1, and z2.

If you did not observe y but observed y0 and y1, where $y0 \le y \le y1$, you could fit the equivalent interval regression by typing

. eintreg y0 y1 x1 x2, endogenous(w = x1 z1 z2)

If you observed y but it contained a 0/1 binary outcome, you could fit the equivalent probit model by typing

```
. eprobit y x1 x2, endogenous(w = x1 z1 z2)
```

If y contained 1, 2, or 3 for ordered categories, such as not ambulatory, partially ambulatory, and fully ambulatory, you could fit the equivalent ordered probit model by typing

. eoprobit y x1 x2, endogenous(w = x1 z1 z2)

Syntax is the same regardless of model fit.

Now, let's imagine that the outcome y is observed only when variable selected is true (that is, not equal to 0). Consider a case where the outcome is observed when

 $\gamma_0 + \gamma_1 \mathbf{x} \mathbf{2} + \gamma_2 \mathbf{w} + e.\texttt{selected} > 0$

and, just to make the problem more complicated, assume that w is endogenous. To fit the model with this added complication, type

```
. eregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)
```

You would use the same syntax with the other ERM commands:

```
. eintreg y0 y1 x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)
```

- . eprobit y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)
- . eoprobit y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w)

Now, let's complicate the model even more. We also have the variable treatment, which records whether the observation was treated. treatment also affects y. In fact, measuring the effect of treatment is the primary reason we are fitting this model. Type

. eregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
extreat(treatment)

Option extreat() handles exogenous treatment. Exogenous treatment is more flexible than you might expect. It handles assignment based on all the covariates used in the model, which in this case are x1, x2, and w.

But let us assume in our data that subjects volunteered. Or perhaps health care professionals assigned subjects to being treated based on information not in the model. That would be reasonable: doctors meet their patients and so know more about them than what is recorded in our data. In any case, we will assume that treatment is a function of observed variables w, z2, and z3, and we will assume that the error in the treatment equation is correlated with the error in the outcome equation. It is that last assumption that handles doctors knowing more about their patients than what is recorded in our data. To fit the model, we type

```
. eregress y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
entreat(treatment = w z2 z3)
```

We changed from exogenous to endogenous treatment by swapping option extreat() for entreat().

Shall we continue? We are just trying to convince you how flexible ERMs are and how simple the syntax is to fit them. We will go one more step. Let's assume that y is not continuous but is ordinal. y contains 1, 2, and 3, meaning not ambulatory, partially ambulatory, and fully ambulatory. In that case, we type

```
. eoprobit y x1 x2, endogenous(w = x1 z1 z2) select(selected = x2 w) ///
entreat(treatment = w z2 z3)
```

Normality assumption underlying ERMs

If you are accustomed to fitting models with regress and ivregress, you expect that results do not require that the errors be normally distributed. They merely require that they be independent and identically distributed.

The results produced by ERMs share that feature when all the equations are linear. Linear excludes eintreg, eprobit, and eoprobit, as well as endogenous selection and endogenous treatment, both of which depend on a secondary probit model.

The nonlinear models that ERMs fit depend on normality.

Learning more about ERMs

What follows is a useful footnote. Other Stata commands provide a subset of the features that ERMs provide. We list them below. We will discuss ERMs more in this manual, but ERMs provide so many statistical features that we do not tell you as much about them as you would like. If you would like to know more, read the documentation for the other commands and then use the ERM commands.

8 intro 1 — An introduction to the ERM commands

eregress provides the features of

Feature	Command
linear regression	regress
instrumental variables	ivregress
exogenous treatment assignment endogenous treatment assignment	teffects ra eteffects and etregress
endogenous sample selection	heckman

eintreg provides the features of

Feature	Command
interval regression tobit regression	intreg tobit
instrumental-variables interval regression instrumental-variables tobit regression	ivtobit
exogenous treatment assignment endogenous treatment assignment	
endogenous sample selection	—

eprobit provides the features of

Feature	Command
probit regression	probit
instrumental variables	ivprobit
exogenous treatment assignment endogenous treatment assignment	teffects ra —
endogenous sample selection	heckprobit

eoprobit provides the features of

Feature	Command
ordered probit regression	oprobit
instrumental variables	_
exogenous treatment assignment endogenous treatment assignment	
endogenous sample selection	heckoprobit

Also see

- [ERM] intro 2 The models that ERMs fit
- [ERM] intro 7 A Rosetta stone for extended regression commands
- [ERM] intro 8 Conceptual introduction via worked example

Title

intro 2 — The models that ERMs fit

Description Remarks and examples Also see

Description

The ERM commands fit linear regressions, interval regressions, probit regressions, and ordered probit regressions. These models are described below.

Remarks and examples

Remarks are presented under the following headings:

Linear regression models Interval regression models Probit regression models Ordered probit regression models

In what follows, the expression

$$\beta_1 \mathtt{x} \mathtt{1}_i + \beta_2 \mathtt{x} \mathtt{2}_i + \cdots + \beta_k \mathtt{x} \mathtt{k}_i$$

arises so often that we will write it as

 $\mathbf{x}_i \boldsymbol{\beta}$

x1, x2, ... are variables in your data. They are the explanatory variables—the covariates—of the models that you fit. $x1_i$, $x2_i$, ... are the values of the variables in observation *i*.

Linear regression models

Linear regression is for use with continuous dependent variables. To fit a linear regression, type

. eregress y x1 x2 ... xk

The model fit is

$$\mathbf{y}_i = \beta_0 + \mathbf{x}_i \boldsymbol{\beta} + e_i.\mathbf{y}$$

where e.y is the error and is assumed to be normally distributed with mean 0 and variance σ^2 .

The fitted parameters are β_0 , β , and σ^2 .

When you make predictions based on linear regressions, what is predicted is the expected value of y given x.

Interval regression models

Interval regression is for use with continuous dependent variables. To fit an interval regression, type

. eintreg y1 y2 x1 x2 ... xk

The model fit is the same as that for linear regression except that y is not a variable in the dataset:

$$y_i = \beta_0 + \mathbf{x}_i \boldsymbol{\beta} + e_i.\mathbf{y}$$

The assumptions are the same as for linear regression too. e.y is assumed to be normally distributed with mean 0 and variance σ^2 .

The fitted parameters are β_0 , β , and σ^2 .

When you use eintreg, rather than specify y, the value of the dependent variable, you specify y1 and y2, where

 $y1_i \leq y_i \leq y2_i$

Variables y1 and y2 specify the interval in which y is known to lie. For instance, if subject 1's blood pressure were not precisely recorded but instead a box was checked reporting that the blood pressure was in the range 110 to 139, then y1₁ would equal 110 and y2₁ would equal 139.

If $y1_i = y2_i$ in all observations, eintreg is the same as linear regression. All values are precisely observed.

If $y1_i = y2_i$ in some observations, those observations are precisely observed.

 $y1_i$ may contain a missing value and that means $y1_i = -\infty$. In such observations, all that is known is that $y_i \leq y2_i$. The observation is left-censored. If the box was checked for subject 2's blood pressure being below 120, then $y1_2$ would equal . (missing value) and $y2_2$ would equal 119.

 y_{2_i} may contain a missing value and that means $y_{2_i} = +\infty$. In such observations, all that is known is that $y_i \ge y_{1_i}$. The observations are right-censored. If the box was checked that subject 3's blood pressure was above 160, then y_{1_3} would equal 161 and y_{2_3} would equal . (missing value).

If both $y1_i$ and $y2_i$ contain missing values, then all that is known is that $-\infty \le y_i \le \infty$, and the observation is ignored when fitting the model.

eintreg can be used to fit tobit models. Assume that you have data in which y is left-censored at 0. To fit a tobit model, type

```
. generate y1 = cond(y==0, ., y)
. generate y2 = y
. eintreg y1 y2 x1 x2 ... xk
```

When you make predictions based on interval regressions, predicted is the expected value of the dependent variable, the unobserved y, conditioned on the covariates.

Probit regression models

Probit regression is for use with binary dependent variables. To fit a probit regression, type

. eprobit y x1 x2 ... xk

Variable y in theory should contain the values 0 and 1, but eprobit does not require that. It treats all nonzero (and nonmissing) values as if they were 1, which means a positive outcome, such as "subject was hired" or "subject tested positive". The positive result can be a negative event, such as "subject died".

The model is

$$p_i = \Pr(\text{positive outcome in obs. } i) = \Pr(\beta_0 + \mathbf{x}_i \boldsymbol{\beta} + e_i.\mathbf{y}) > 0$$

where e.y is assumed to be normally distributed with mean 0 and variance 1. With that assumption, the probability of a positive outcome is

$$p_i = \texttt{normal}(\beta_0 + \mathbf{x}_i \boldsymbol{\beta})$$

The fitted parameters are β_0 and β .

When you make predictions based on probit regressions, predicted is the probability of a positive outcome conditional on the covariates.

Ordered probit regression models

Ordered probit regression is for use with ordinal dependent variables. To fit an ordered probit regression, type

. eoprobit y x1 x2 ... xk

Variable y is expected to contain 1, 2, ..., M indicating category number although, just like **oprobit**, **eoprobit** is less demanding. y could contain values 2, 3, 5, and 8 to indicate four ordered categories. What is important is that the categories have a natural ordering and that the numbers used to represent them order the categories in the same way. **eoprobit** could be used with the ordered categories 1) not ambulatory, 2) partially ambulatory, and 3) fully ambulatory. Or the order of the categories could be reversed: 1) fully ambulatory, 2) partially ambulatory, and 3) not ambulatory. Reversing the order reverses the signs of the fitted coefficients but does not substantively change the model.

The model fit is

$$p_{m,i} = \Pr(\text{outcome } m \text{ in obs. } i)$$
$$= \Pr(c_{m-1} \le \mathbf{x}_i \boldsymbol{\beta} + e_i \cdot \mathbf{y} \le c_m$$

where e.y is assumed to be normally distributed with mean 0 and variance 1. Thus, the probability that the outcome is m is

$$p_{m,i} = \text{normal}(c_m - \mathbf{x}_i \boldsymbol{\beta}) - \text{normal}(c_{m-1} - \mathbf{x}_i \boldsymbol{\beta})$$

where c_0 and c_M are $-\infty$ and $+\infty$, and c_1, \ldots, c_{M-1} are fit from the data. The c values play the role of intercepts and are called cutpoints.

The fitted parameters are β and c_1, \ldots, c_{M-1} .

When M = 2, the ordered probit model reduces to the probit model with $c_0 = -\beta_0$.

When you make predictions based on ordered probit regressions, predicted are the probabilities of the dependent variable equaling each category conditional on the covariates.

Also see

[ERM] eintreg — Extended interval regression

[ERM] eoprobit — Extended ordered probit regression

[ERM] eprobit — Extended probit regression

[ERM] eregress — Extended linear regression

intro 3 — Endogenous covariates features

Description Remarks and examples Also see

Description

Whether you fit linear regressions, interval regressions, probits, or ordered probits, the ERM commands provide the same features. One of those features is endogenous covariates, which are explained below.

Remarks and examples

Remarks are presented under the following headings:

What are endogenous and exogenous covariates? Solving the problem of endogenous covariates Solving the problem of reverse causation You can interact endogenous covariates You can have continuous, binary, and ordered endogenous covariates You can have instruments that are themselves endogenous

What are endogenous and exogenous covariates?

Consider the model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} \mathbf{1} + \beta_2 \mathbf{x} \mathbf{2} + e.\mathbf{y}$$

In models like this one, y is called the dependent variable or the outcome variable. x1 and x2 are called explanatory variables, exogenous variables, or (exogenous) covariates; we will simply call them covariates. *e.y* is called the error.

For ERMs or any regression estimator to meaningfully fit models like the one above, it is required

- 1. that there be no omitted (confounding) variables that are correlated with x1 or x2.
- 2. that x1 and x2 be measured without error.
- 3. that there be no reverse causation. x1 and x2 affect y, but y must not affect x1 or x2.
- 4. that x1 and x2 not be correlated with e.y.

Any covariate that meets these requirements is called exogenous. Covariates that are not exogenous are endogenous.

Solving the problem of endogenous covariates

What if x1 violated some of or all the requirements? What if x1 was endogenous? Solving the problem of endogenous covariates is straightforward. You find a variable or set of variables that affect x1 but do not affect y except through their effect on x1. As those variables change, they induce a change in x1. That change in turn induces a change in y, and because that change is known to be caused only by the change in x1, the change can be used to disentangle the problem.

The variables that you use to solve the endogenous covariate problem are called instrumental variables.

In this manual, we tend to use the following notation:

Name starts with	Signifies
у	dependent variable
x w	exogenous covariate endogenous covariate
Z	instrumental variable
Note: The above is notation, r	not a naming requirement. The

software does not require that variables be named this way.

Because we are now assuming that x1 is an endogenous covariate, let us rename it w1 and rewrite our model:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{w} \mathbf{1} + \beta_2 \mathbf{x} \mathbf{2} + e.\mathbf{y}$$

To fit this model, we need one or more variables to serve as instruments for w1. Those variables need to be correlated with w1 and uncorrelated with y. Let z1 and z2 be two such variables. Finding z1 and z2 is more easily said than done, and how you find them is beyond the scope of this manual. Nonetheless, two examples would not be out of order.

- 1. An economist needed an instrument for income and used spouse's income. Incomes of spouses are correlated, and in the research problem, there was no reason to suspect that spouse's income would affect the outcome other than through the correlation.
- 2. A health researcher needed an instrument for whether patients were prescribed a new drug. In the research problem, that variable might be endogenous because doctors are more likely to prescribe drugs they expect will be beneficial to patients based on characteristics unobserved in the data. The researcher used whether the drug was on formulary for the patients' insurance as an instrument because it is expected to be correlated with whether the drug was prescribed but not with the outcome.

Anyway, find one or more variables that are correlated with w1 but not with the dependent variable except through the effect on w1. We will assume variables z1 and z2 meet the criteria. We can then fit a model with w1 as a covariate by typing

```
. eregress y x2, endogenous(w1 = z1 z2)
```

The model has two covariates: exogenous covariate x^2 and endogenous covariate w^1 . w^1 was added to the model by the endogenous() option. If we wished, we could type w^1 among the covariates, but then we have to specify endogenous()'s option nomain so that it does not add w^1 for us. We could type

```
. eregress y x2 w1, endogenous(w1 = z1 z2, nomain)
```

Whichever syntax we use, we are using z1 and z2 as instruments for w1. There is a third instrument we could add to z1 and z2. If we wanted, we could add x2 by typing

. eregress y x2 w1, endogenous(w1 = z1 z2 x2, nomain)

We can add x2 because it is probably correlated with w1, and it most certainly affects y, and it is exogenous. We at StataCorp would add x2 almost by reflex. We explain why below.

Solving the problem of reverse causation

Instrumental variables can solve the four problems we mentioned at the beginning of this section.

- 1. They can solve the problem of omitted variables that are correlated with w1.
- 2. They can solve the problem of w1 being measured with error.
- 3. They can solve the problem of reverse causation, meaning that y affects w1.
- 4. They can solve the problem of x1 and x2 being correlated with e.y.

We are not saying that we have all those problems, but instrumental variables can solve them if we do.

If we do not include x^2 among the instruments, however, problem 3 is not handled. We must include all the exogenous variables predicting y to handle reverse causation. In the model above, we have only one exogenous variable. If our model had been

 $\mathbf{y} = \beta_0 + \beta_1 \mathbf{w} \mathbf{1} + \beta_2 \mathbf{x} \mathbf{2} + \beta_3 \mathbf{x} \mathbf{3} + \beta_4 \mathbf{x} \mathbf{4} + e. \mathbf{y}$

we would have included all of them:

. eregress y w1 x2 x3 x4, endogenous(w1 = z1 z2 x2 x3 x4, nomain)

This solution to reverse causation works with linear models, meaning eregress and eintreg. It does not work with eprobit and eoprobit. There is no solving the reverse-causation problem for those models.

You can interact endogenous covariates

What we have said so far about endogenous covariates applies not only to ERM commands but also to estimation commands in general.

A feature unique to ERMs is that you can use endogenous covariates in interactions. For instance, eregress can fit a model including

. eregress y w1 i.x2 i.x2#c.w1, endogenous(w1 = z1 i.x2, nomain)

In this model, we are assuming that x^2 is a dummy variable, such as attends school. x^2 is 1 when subjects attend school and is 0 otherwise. Therefore, we use *i*. factor-variable notation when we include x^2 in the model. The right-hand-side variables in this model are

w1	a continuous, endogenous variable
i.x2	attends school
i.x2#c.w1	attends school multiplied by w1

The coefficients on these variables are

β_1	effect of the endogenous continuous covariate
β_2	effect of attending school
β_3	extra effect of w1 when attending school

eregress can fit this model. Stata's other instrumental-variable regression command ivregress could not. It would complain about the interaction i.x2#c.w1 because of a limitation on how the usual statistical formulas work. Interactions with endogenous covariates are not allowed.

eregress has no difficulty with such models.

Now, we will tell a different backstory about y, w1, and x2:

37	income	10h	satisfaction,	ate
v	meome,	100	satisfaction,	uu.

- w1 years of schooling after high school
- i.x2 dummy for schooling, whatever the level, being in a STEM subject

STEM stands for science, technology, engineering, and math. In a model such as

```
. eregress y i.x2 w1 i.x2#c.w1, endogenous(w1 = z1 i.x2, nomain)
```

extra years of schooling increase y by β_2 for non-STEM and by $\beta_2 + \beta_3$ for STEM.

ERMs not only allow interactions of endogenous with exogenous covariates, but they also allow interactions of endogenous with endogenous covariates and even allow endogenous covariates to be interacted with themselves! Here is an example:

. eregress y w1 c.w1#c.w1 i.x2, endogenous(w1 = z1 i.x2, nomain)

In this model, the term c.w1#c.w1 means w1². Years of schooling after high school would increase y by β_2 w1 + β_3 w1².

You can also interact endogenous covariates with other endogenous covariates, such as

. eregress y w1 w2 c.w1#c.w2 i.x2, endogenous(w1 = z1 i.x2, nomain) ///
endogenous(w2 = z2 i.x2, nomain)

You can tell your own story about this model.

You can have continuous, binary, and ordered endogenous covariates

We have discussed continuous endogenous covariates. ERMs also allow binary and ordinal covariates. Consider the model

. eregress y w1 i.x2, endogenous(w1 = z1 i.x2, nomain)

Obviously, w1 is an endogenous covariate. In the previous section, we speculated that w1 was years of schooling beyond high school, but what if w1 was instead a dummy variable for having a college degree?

If you used the above model as typed, you would be using the linear probability model to handle w1. Saying that makes the situation sound better than it is. Probabilities are bounded by 0 and 1, and you would be using a linear model to fit them, meaning that some of the predicted probabilities could be below 0 or above 1. You ordinarily would have to live with that. With ERMs, you have a better alternative. You can tell eregress to use the probit model to handle w1! You type

. eregress y i.w1 i.x2, endogenous(w1 = z1 i.x2, probit nomain)

In the equation for y, we now include w1 as a factor variable, i.w1.

Interactions are allowed with binary endogenous covariates just as they are allowed with continuous endogenous covariates. You could type

. eregress y i.x2 i.w1 i.x2#i.w1, endogenous(w1 = z1 i.x2, probit nomain)

w1 could even be an ordered categorical variable. We have imagined that w1 contains values 0 and 1, with 1 meaning schooling in a STEM subject. Let's imagine that w1 contains the values 1, 2, and 3, with 1 meaning a non-STEM program, 2 meaning a mixed program with some courses from a STEM program, and 3 meaning a STEM program. To fit this model, all we have to do is change probit to oprobit:

. eregress y i.x2 i.w1 i.x2#i.w1, endogenous(w1 = z1 i.x2, oprobit nomain)

You can have instruments that are themselves endogenous

When we type

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain)

we are specifying a model with an endogenous covariate and handling the problem of its endogeneity with the instruments z1 and z2. The instruments we specified are exogenous in this example, but the ERM commands do not require that. If z1 had one more of the problems we outlined at the beginning of this manual entry, then it would be endogenous and we might solve the problem that it raises by typing

. eregress y w1 x2, endogenous(w1 = z1 z2, nomain) endogenous(z1 = z3, nomain)

That could be the end of the story. ERMs can fit the above model.

We would have yet another problem, however, if z1 also depended on w1. ERMs cannot fit models in which one dependent variable depends on another that depends on the first. The following model has that problem:

```
. eregress y w1 x2, endogenous(w1 = z1 z2, nomain) ///
endogenous(z1 = w1 z3, nomain)
```

If we tried to fit the model, the command would complain:

```
. eregress y w1 x2, endogenous(w1 = z1 z2, nomain)
> endogenous(z1 = w1 z3, nomain)
endogenous variables do not form a triangular system
The problem may be fixable. See triangularizing the system.
r(459);
```

The message says that the system needs to be triangular, which is another way of saying the system cannot have simultaneous causation. Do not confuse simultaneous causation with reverse causation, which we previously discussed. Reverse causation concerns one equation, its dependent variable, and a covariate. The covariate affects the dependent variable, and the dependent variable affects the covariate. Simultaneous causation concerns two or more equations. Their dependent variables are mutually dependent.

Nonetheless, the workaround for simultaneous causation is a variation on the workaround for reverse causation. If the equations involved are both linear, take one of them, remove the offending endogenous variable, and substitute the removed variable's exogenous variables.

The two equations involved in this example are

endogenous(w1 = z1 z2, nomain)
endogenous(z1 = w1 z3, nomain)

We could remove z1 from the first equation and substitute z3. Or we could remove w1 from the second equation and substitute z2. Doing the former results in

Doing the latter results in

ERMs can fit either model, and results for the main equation will be the same.

The first solution's equation for z1 has an odd feature. The equation for variable z1 is irrelevant because z1 appears nowhere else in the model. We could omit the unnecessary equation and fit the model by typing

. eregress y w1 x2, endogenous(w1 = z3 z2, nomain) (3)

That will produce the same result too.

Statistically, all the solutions are equally good. Numerically, (3) is sometimes better because it is easier for ERMs to fit models with fewer equations.

In any case, these solutions were available to us because the models involved were linear. Had they been nonlinear, there would have been no solution.

If you want to read more about this problem and its solution, see [ERM] triangularize.

Also see

[ERM] intro 8 — Conceptual introduction via worked example

[ERM] **triangularize** — How to triangularize a system of equations

Title

intro 4 — Endogenous sample-selection features

Description Remarks and examples Also see

Description

Endogenous sample-selection problems are handled by the select() option. ERMs provide probit and tobit selection. Probit selection is discussed below. Tobit selection is a variation on probit selection that uses censoring of a normal variable as an indicator of selection.

Remarks and examples

Remarks are presented under the following headings:

Is sample selection a concern in your research problem? The problem and solution of endogenous sample selection Endogenous sample selection handles missing not at random Endogenous sample selection can be used with other features of ERMs Mechanical notes

Is sample selection a concern in your research problem?

Say that you wish to fit the model

. eregress y x1 x2

We will tell you two stories about it. In the first, y is wage-and-salary income. In the second, y is a health outcome for people with a certain malady.

Both of these stories have issues of sample selection. Wages are observed only for people who work. Health outcomes are observed only for people with the malady who seek treatment. Do you care? You might not.

If you are an economist studying the effects of education, you might be perfectly satisfied measuring the return to schooling in terms of increased income of those who work. This would certainly be the situation if you were performing research to determine how schools could be improved.

If you are a medical researcher studying the effect of a treatment, you might be perfectly satisfied measuring the effect of the treatment on those who currently seek it. This would certainly be the situation if you were performing research to determine how the treatment could be improved.

Sample selection is of concern only when changing the selected population—those who work or those who are treated—is under consideration.

The problem and solution of endogenous sample selection

We wish to fit the model

. eregress y x1 x2

We observe y for some of but not all the sample. We observe x1 and x2 for the entire sample.

For instance, we might be doing a study of a walking program run by hospitals for patients after heart attacks. Doctors prescribe the program to patients who they believe will benefit. After six months in the program, recorded for each patient is

У	Meaning
1	I feel worse (tired)
2	I feel about like I did when I started the program
3	I feel better

The variable y will be missing for some of the observations in the data. Those observations correspond to the patients who were not prescribed the program. y could also be missing if patients were prescribed but dropped out of the program—were lost to follow-up—but we will ignore that right now. We will discuss lost to follow-up in [ERM] intro 5.

Variable y is an ordinal variable, so rather than fitting the model by using eregress, we will fit it by using eoprobit:

. eoprobit y x1 x2

Do not type that command yet. If you did, the model would be fit using only the observations on patients who were prescribed the program, because y is missing otherwise. We are about to discuss those other patients. In fact, let's create a variable indicating whether patients were selected for inclusion in the program—we will need it later.

. generate selected = !missing(y)

There are two types of sample selection: exogenous and endogenous. Hardly any issues are created by exogenous sample selection. The real problems are raised by endogenous selection, and to discuss those issues, we need to tell you more about the walking program.

Doctors prescribed the program to their patients based on each patient's x1 and x2 values. Those variables are believed to predict how much a patient would benefit from the program. Indeed, patients in especially poor health might actually be harmed by the program. Say that we are conducting research to evaluate how well x1 and x2 predict a benefit and to consider whether the criteria for being prescribed the program should be loosened or tightened. Would extending the program to more patients be beneficial? Or is the program already being used by too many?

That the sample was selected on x1 and x2 causes no statistical issues, although it can cause complications. Assume that doctors also based their decisions on x3 but that was for administrative reasons. That sounds horrible, but it is not necessarily bad; for example, if a patient lives far from the hospital, the doctor might not prescribe the hospital's walking program as readily. In any case, x3, the distance a patient lives from the hospital, affected the decision but is not believed to affect how beneficial the program is for the patient. If we are certain about that, we can ignore x3. If we are uncertain, we should add x3 to the model to verify that the effect really is 0.

The above situation is called exogenous sample selection. It is not a reasonable story, but perhaps you do not yet see why. Anyway, if the only problem is exogenous sample selection, we can ignore it, and the only issue we have is to decide whether to include x3 in our model. We can fit the model by typing

```
. eoprobit y x1 x2
```

or

. eoprobit y x1 x2 x3

Typing those commands is equivalent to typing

. eoprobit y x1 x2 if selected

or

. eoprobit y x1 x2 x3 if selected

We mention this merely to emphasize that because y is missing in the group for which selected is 0, all observations for which selected is 0 are omitted from the estimation subsample.

The problem with the above story is that doctors know more about their patients than we do. They know more than what is recorded in our database. Doctors meet with their patients and get to know them, and doctors factor everything they know into their decisions. Doctors prescribed the walking program to patients who they believed would benefit. They predicted the benefit on the basis of x1, x2, and x3, as well as on information they know about the patients that is not recorded in the data.

Think of the decision that doctors make as a probit model:

$$p = \Pr(\text{prescribed})$$

= $\Pr(\beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \beta_2 \mathbf{x} \mathbf{2}_i + \beta_3 \mathbf{x} \mathbf{3}_i + e_i.\texttt{selected} > 0)$

The important part of this model is *e.selected*. The error includes everything doctors know about their patients that is not recorded in the data. Because doctors presumably are making decisions in the patients' best interest, *e.selected* will be correlated positively with *e.y*, which is the error in the model's main equation fit by

```
. eoprobit y x1 x2
```

If we fit the model ignoring this correlation, we would obtain results suitable for predicting outcomes among those who participated in the program but not among those who did not participate.

It is the nonzero correlation of e.y and e.selected that makes the sample-selection endogenous. eoprobit will produce estimates accounting for the correlation if we specify the select() option:

. eoprobit y x1 x2, select(selected = x1 x2 x3)

eoprobit will report $\hat{\rho}$ —the estimate of the correlation between the two errors—and it will report the coefficients in the outcome and selection models. Because we have now accounted for the endogenous sample selection, we can interpret the results in terms of the full population, not just those who were prescribed the treatment.

Endogenous sample selection handles missing not at random

select() can handle cases in which data are missing not at random (MNAR), also known as nonignorable missing data. It can handle them as long as that missingness is modeled in the select() equation. It can solve the problem of missing on unobservables.

Endogenous sample selection can be used with other features of ERMs

You can use select() with other features of ERMs, that is, with endogenous covariates and with treatment effects. We have not discussed treatment effects yet. We will show you an example of treatment effects with endogenous sample selection in the next section, [ERM] intro 5.

In the meantime, we will show you one way that endogenous() can be used with select(). Above, we fit the model

. eoprobit y x1 x2, select(selected = x1 x2 x3)

In the story we told, x3 measured an administrative reason we think affected doctors' decisions to prescribe the walking program. Let's imagine that x3 was endogenous for one reason or another. In the original story, x3 was the distance a patient lived from the hospital. Perhaps its value is measured with error. Or perhaps x3 represents some other administrative reason we think is correlated with y. Because it is endogenous, we will now refer to this variable as w3 instead of x3. We can address the problem by using the endogenous() option:

. eoprobit y x1 x2, select(selected = x1 x2 w3) endogenous(w3 = z1 z2, nomain)

We included suboption nomain because we do not want w3 to be added to the main equation. w3 appears only in the selection equation in this model.

Be careful not to omit nomain when it is necessary. Endogenous covariates can appear in the main equation, the selection equation, or both. Consider another example in which x3 is not endogenous but x2 is. Let's call it w2 instead of x2. We could fit that model by typing

. eoprobit y x1, select(selected = x1 w2 x3) endogenous(w2 = z3 z4)

w2 will appear in the main equation because we did not also specify nomain. Some users always type nomain and explicitly specify all the covariates that appear in the main equation. You could fit the same model by typing

. eoprobit y x1 w2, select(selected = x1 w2 x3) endogenous(w2 = z3 z4, nomain)

Mechanical notes

When you specify

. eoprobit y ..., select(selected = ...)

you can specify variables in just the y equation, just the selected equation, or both. When the same variables are specified in both equations, it is called functional-form identification. Statistically speaking, the situation would be better if there were some covariates that appeared in the selected equation that did not appear in the main equation, but no one is suggesting that you add irrelevant covariates to your model. Still, you should think about whether you have any such variables. We found such a variable (x3) in the story above.

Also see

[ERM] intro 8 — Conceptual introduction via worked example

intro 5 — Treatment assignment features

Description Remarks and examples Also see

Description

ERMs can fit treatment-effect models. Treatment can be binary (not treated or treated) or ordinal (not treated or treated or treated extremely).

Option extreat() specifies exogenous treatment effects.

Option entreat() specifies endogenous treatment effects.

ERM's treatment-effect features are explained below.

Remarks and examples

Remarks are presented under the following headings:

What are treatment-effect models? Endogenous and exogenous treatment effects Binary and ordinal treatment effects Sample versus population standard errors Using treatment effects with other ERMs Using treatment effects with other features of ERMs Using treat() and select() to handle lost to follow-up Treatment statistics reported by estat teffects

What are treatment-effect models?

Let's consider a simple binary treatment-effect problem. A treatment is applied to some patients, and we want to measure its effect. We start by imagining that patients are assigned randomly to the treated group. We observe a continuous outcome y, such as blood pressure, and we think the treatment affects y. We think the treatment's effect varies with patients' age, x1.

Here is one way we could fit the model:

. eregress y x1 i.treated i.treated#c.x1

Variable treated specifies which patients were treated. It contains 1 or 0. The model we just fit is

$$y_i = \beta_0 + \beta_1 x \mathbf{1}_i + \beta_2 \texttt{treated}_i + \beta_3 \texttt{treated}_i x \mathbf{1}_i + e_i.y$$

This model says that the outcome for patients who are not treated is

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + e_i \mathbf{y}$$

For those treated, the outcome is

$$y_i = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x\mathbf{1}_i + e_i.y$$

 β_2 and $\beta_3 x1$ measure the effect of being treated. That effect varies observation by observation with the patient's age. Many researchers would stop here, satisfied to have the fitted coefficients.

Researchers who fit treatment-effect models, however, usually want to know the average treatment effect (ATE). We could obtain it.

We would calculate the average outcome when being treated over the entire dataset, the average outcome when not being treated over the entire dataset, and subtract the two results to obtain an ATE for this group of patients. It would not be difficult.

We would calculate new variable if_not_treated equal to

if_not_treated_i =
$$\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x} \mathbf{1}_i$$

We would calculate new variable if_treated equal to

```
if\_treated_i = if\_not\_treated_i + \widehat{\beta}_2 + \widehat{\beta}_3 x \mathbf{1}_i
```

Then, we would subtract them:

```
diff_i = if\_treated_i - if\_not\_treated_i
```

We would finally calculate the mean of diff:

. summarize diff

Stata's margins command is wonderful at doing things like this, and it even reports the standard error! And we do not even have to calculate if_not_treated, if_treated, and diff. Instead, we just type

. margins r.treated

The above is what ERMs would do for us if we started by typing

. eregress y x1, extreat(treated)

and then typed estat teffects. estat teffects reports the ATE.

. estat teffects

Endogenous and exogenous treatment effects

ERMs can fit models far more complicated than the model we just fit. That is good because the story we told above is too simple. For instance, we said that patients were assigned randomly. Ethical considerations sometimes prevent that.

There are two types of treatment effects: exogenous and endogenous. What distinguishes them is the same thing that distinguished them in [ERM] **intro 4**, where we discussed exogenous and endogenous selection effects. It matters whether the error in the selection (treatment assignment) equation is correlated with the error in the main equation.

Here are four examples of treatment assignment.

- 1. Assignment is random (as above). In this case, the assignment equation contains only an error, *e*.treated, and it is uncorrelated with *e*.y. Treatment is exogenous.
- 2. Assignment is determined by hard-and-fast rules. There is no *e*.treated, or if you prefer, it is 0. Either way, it is uncorrelated with *e*.y. Treatment is exogenous.

- 3. Assignment is determined in part by hard-and-fast rules, but if the patient meets them, a coin is flipped to determine whether the patient is treated or untreated. *e*.treated is the coin flip, and it is uncorrelated with *e*.y. Treatment is exogenous.
- 4. Assignment is by whatever rules, if any, plus unobserved judgment. Thus, judgment appears in *e*.treated, and we must consider the possibility that it is correlated with *e*.y. Treatment is endogenous.

ERMs can fit models with exogenous or endogenous treatment assignment. You specify the extreat() or entreat() option. In the four examples above, you would specify

```
1. extreat(treated)
```

```
2. extreat(treated)
```

3. extreat(treated)

```
4. entreat(treated = ...)
```

You could fit

```
. eregress y x1 x2 x3, extreat(treated)
```

or

```
. eregress y x1 x2 x3, entreat(treated = x1 z1 z2)
```

Whichever you type, you can obtain the ATE by typing

. estat teffects

Binary and ordinal treatment effects

We have been assuming that treatment is binary. ERMs can also fit ordinal treatment models. Think of these models as all being the same treatment but of different intensities. For instance,

- 1. A rehabilitative exercise program might be attended not at all, once a week, or twice a week.
- 2. A drug might be administered in different dosages.
- 3. A jobs program might be attended not at all, once a week, or twice a week.
- 4. The amount of post-secondary education could be none, some college, graduated, or graduated plus postgraduate.

When treatment is ordinal, variable treated contains more than two values. The variable might contain 0, 1, or 2; or 1, 2, or 3; or even 2, 3, or 5. If there are four ordered treatments, the variable contains four different values. The particular values do not matter as long as the numeric values order the treatments in the way they should be ordered.

When the treated variable takes on more than two values, entreat() fits the endogenous treatment equation by using ordered probit instead of binary probit.

Sample versus population standard errors

Researchers who fit treatment models usually want population standard errors.

When we fit the treatment model by hand, not using the extreat() or entreat() option, we typed

```
. eregress y x1 i.treated i.treated#c.x1
```

. margins r.treated

When we used the extreat() option to fit the same model, we used estat teffects to obtain the ATE. We typed

```
. eregress y x1, extreat(treated)
. estat teffects
```

In both cases, the standard errors reported for the ATE were the same. The data were treated as fixed and not as a draw from the underlying population.

The standard error would also be treated that way if we fit a model with endogenous instead of exogenous treatment assignment.

```
. eregress y x1 x2 x3, entreat(treated = x1 z1 z2)
. estat teffects
```

Researchers fitting treatment-effect models often want standard errors for ATEs suitable for predicting to the entire population and not just this particular sample. If you want population-based standard errors, you must fit the model by using the vce(robust) option:

```
. eregress y x1, extreat(treated) vce(robust)
. estat teffects
```

Do that and estat teffects will report population-based standard errors.

Returning to the eregress command, when you do not specify vce(robust), it reports OIM standard errors. OIM stands for observed information matrix. The alternative robust standard errors assume less and are therefore less efficient. While less efficient, robust standard errors still have correct coverage. The standard errors themselves just have more sampling variability. Robust standard errors are absolutely required if estat teffects is to report standard errors for the effect in the population.

Requesting the ATE with population standard errors makes sense only if the sample you are using is an unbiased random draw from the population for which you wish to make predictions. If the sample is not, you need to specify your data's probability sampling weights as well. Type

. eregress y x1 [pw = weight], extreat(treated) vce(robust)
. estat teffects

In this case, you can omit the vce(robust) option because it is assumed when probability sampling weights are specified.

Variable weight contains inverse probabilities that the observations were sampled from the population. For instance, if some observations were sampled with probability 0.001 and others with 0.0001, then weight contains 1,000 and 10,000. For our purposes here, the scale of weights does not matter, so weight could just as well contain 1 and 10. Scale of weights matters when you request totals, which estat teffects does not produce.

Using treatment effects with other ERMs

The outcome variable y need not be continuous. It can be interval, binary, or ordinal, meaning that you can use the eintreg, eprobit, or eoprobit command to fit the model.

If we had a binary outcome variable, we would type

. eprobit y x1 x2 x3, entreat(treated = x1 z1 z2)

If we planned on obtaining the ATE with population standard error, we would type

```
. eprobit y x1 x2 x3, entreat(treated = x1 z1 z2) vce(robust)
```

```
. estat teffects
```

Using treatment effects with other features of ERMs

extreat() and entreat() can be used with endogenous() and select(). Said differently, treatment models can contain endogenous covariates and be adjusted to handle endogenous sample selection.

By now, you are familiar with the endogenous() option. Some examples of eregress used with extreat() and entreat() are

```
. eregress y x1 x2 w1, extreat(treated) endogenous(w1 = x1 z1 z2, nomain)
. eregress y x1 x2 w1, entreat(treated = z3 w1) ///
    endogenous(w1 = x1 z1 z2, nomain)
. eregress y x1 x2, entreat(treated = z3 w1) endogenous(w1 = x1 z1 z2, nomain)
```

We used the nomain suboption and explicitly included w1 in the main equation if we wanted it there. In those cases, we could have omitted the explicit mention and deleted option nomain. Equivalent to the first example is

. eregress y x1 x2, extreat(treated) endogenous(w1 = x1 z1 z2)

Next, we consider use of entreat() and extreat() with select() to account for endogenous and exogenous sample selection.

We wish to fit a treatment-effect model but there is a problem. The treatment-effect model we want to fit is

```
. eregress y x1 x2, entreat(treated = x1 z3)
```

The problem is that the information on y was collected at the end of the study, and some patients never showed up—they dropped out along the way. To fit the desired model with the complication, we type

```
. generate selected = !missing(y)
. eregress y x1 x2, entreat(treated = x1 z3) select(selected = x1 z4 z5)
```

To obtain the ATE, we type

```
. estat teffects
```

The model reported by eregress and the ATE reported by estat teffects will be adjusted for both the endogenous treatment assignment and the endogenous selection effects. The latter adjusts for the censored observations in which the final outcome y was not observed.

Reported were sample statistics. If we had wanted population statistics, we would have typed

```
. eregress y x1 x2, entreat(treated = x1 z3) select(selected = x1 z4 z5) ///
vce(robust)
. estat teffects
```

If treatment assignment had been exogenous, we would have specified extreat(treated) instead of entreat(treated = x1 z3).

Note in the above example that treatment can have one arm as in the story we told or it can have multiple arms. In other words, the treatment can be binary or ordinal. Nothing we typed would need to change.

Using treat() and select() to handle lost to follow-up

The important feature of the above example is that the censored observations were lost to follow-up. By that, we mean that the patients did not report for the final meeting, and thus y was unobserved. Specifying the select() equation allowed the error in selection (that is, the unobserved reasons that subjects showed up or did not show up) to be correlated with the error in the main outcome equation (the error in the benefit of the treatment). It also allowed the error in selection to be correlated with the error in the treatment assignment. Said statistically, all endogeneity issues were handled.

This was all possible because the treatment arm was assigned even for the censored observations. Variable treated was not missing. It contained a treatment-arm value just as it does in all the other observations.

What if that is not true? What if censoring occurred before the treatment arm was assigned? Then we have an issue we need to discuss. First, here is how you determine whether your data have this issue. Type

. assert !missing(treat) if selected==0

If assert reports that the assertion is false, your data have this issue. You have censored observations for which the treatment arm is unassigned.

ERMs handle this issue differently for exogenous and endogenous treatment assignment. If you are fitting an exogenous treatment model,

. eregress y x1 x2, extreat(treated) select(selected = x1 z4 z5)

ERMs do not care that the treatment arm is missing. Endogenous selection will be fully handled just as if the treatment arm had been observed. That is, ERMs handle the issue as long as the treatment arm does not appear as an explanatory variable in your selection equation.

It would not be unreasonable to fit a model such as

. eregress y x1 x2, extreat(treated) select(selected = treated x1 z4 z5)

If you are fitting this model, it should be obvious that the treatment arm must be assigned to the censored observations. Your selection equation says that the treatment arm itself will affect whether observations are censored.

Let's put that case aside and return to the usual case of missing treatment with exogenous treatment assignment. The ERM commands fit the model without problem. estat teffects will report the ATE. estat teffects has options for reporting other statistics, all of which will be fine except ATET— the average treatment effect among the treated. ATET is defined to include all treated observations. Because treated is sometimes missing because of selection, the computed ATET will exclude those observations for which treatment assignment is missing.

Now, let's consider endogenous treatment assignment. We want to fit the model

. eregress y x1 x2, entreat(treated = x1 z3) select(selected = x1 z4 z5)

What makes us hesitate is that some of or all the censored observations have treated equal to missing, meaning that treatment was evidently not assigned for them. If we typed the command and fit the model, ERM would fit it omitting those observations. This is equivalent to assuming that the observations were censored completely at random. That could be reasonable. Perhaps most of the censored observations were lost to follow-up—for them, the treatment arm is observed—and only a few were lost before treatment was assigned because of misplaced paperwork.

On the other hand, if all the censored observations were censored before the treatment arm was assigned, the model cannot be fit. Omitting those with missing treatment omits the censored observations, and there is simply no selection equation left to fit. After dropping the observations containing missing values, everyone left in the estimation sample is not censored. The bottom line is that ERMs cannot fit this model. ERMs place selection after treatment assignment because lost to follow-up is the common case.

You might be able to salvage the situation. Is it just that the treatment-arm values are not in your dataset because the data were not entered? If so, retrieve the data. If that is not the case but the experiment is still ongoing, run the censored observations through the treatment-assignment process.

Treatment statistics reported by estat teffects

estat teffects reports ATEs, which are the average effects of the treatment if it had been applied to the entire sample or to the entire underlying population. estat teffects reports its value and standard error. The standard error is for the sample if vce(robust) was not specified when the model was fit and for the population if vce(robust) was specified when the model was fit.

Sometimes ERMs assume vce(robust) even when you do not type it. This happens when you specify features that themselves require vce(robust). Option vce(cluster) requires vce(robust). Actually, it is a variation on vce(robust), but that is not important for this problem. If you specify pweights, then vce(robust) is used too.

The types of standard errors reported will be clearly labeled on the output eregress, eintreg, eprobit, or eoprobit produces. estat teffects indicates clearly in its output, too, whether output is for the sample or the population.

```
estat teffects reports
```

ATE, the average treatment effect for each treatment for the entire sample/population.

```
estat teffects, atet reports
```

ATET, the average treatment effect for each treatment for the treated sample or population.

```
estat teffects, pomeans reports
```

POMEANS, the potential-outcome means for each treatment arm, meaning means for the untreated and means for each of the treated.

Outcomes here are the values of the dependent variable in the main equation, or y.

Potential outcomes are the values, observation by observation, of y_i that would be observed if each was treated and untreated.

Potential-outcome means are the means of treated and, separately, of untreated. The difference between them is the ATE.

All of these statistics can also be reported for subsamples or subpopulations.

Also see

[ERM] intro 8 — Conceptual introduction via worked example

Title

intro 6 — Model interpretation

Description Remarks and examples Also see

Description

After you fit a model using one of the ERM commands, you can interpret the coefficients in the usual way. You can also use margins to produce counterfactuals, but you must specify one of the options predict(base()) or predict(fix()) on the margins command.

In this entry, we discuss how to interpret coefficients, how to use margins, and how to use predict.

Remarks and examples

Remarks are presented under the following headings:

The problem of endogenous covariates How to interpret coefficients How to use margins How to use margins in models without endogenous covariates The two ways to use margins with endogenous covariates Margins with predict(base()) Margins with predict(base()) When to use which How to use margins with predict(base()) How to use margins with predict(fix()) How to use predict

The problem of endogenous covariates

Endogenous covariates in the main equation cause problems, which means that if your model has no endogenous covariates in the main equation, you have no problems. The following models have no endogenous covariates in the main equation:

```
eregress y x1 x2
eregress y x1 x2
eregress y x1 x2 c.x1#c.x2
eregress y x1 x2, select(selected = x1 z1 z2) ///
endogenous(z2 = z3 z4, nomain)
eprobit y x1 x2
eprobit y x1 x2 c.x1#c.x2
eprobit y x1 x2, select(selected = x1 z1 z2) ///
endogenous(z2 = z3 z4, nomain)
```

We showed examples with eregress and eprobit. We could just as well have shown examples with eintreg and eoprobit. Note that the last model for each command we showed has an endogenous covariate, but it is *not* in the main equation.

In any case, if you have no endogenous covariates in the main equation, you interpret coefficients and use margins and predict just as you usually would.

In the rest of the manual entry, when we write about models with or without endogenous covariates, we mean models with or without endogenous covariates in the main equation.

Models with endogenous covariates in the main equation have issues of interpretation that arise even if you fit a model as simple as

eregress y x1, endogenous(x1 = z1, nomain)

There are four ways endogenous covariates can end up in the main equation:

- 1. You specify endogenous (x1 = ...) to add variable x1 to the main equation.
- 2. You specify endogenous (x1 = ..., nomain) and you include x1 in the main equation.
- 3. You specify entreat(treated = ...) to handle endogenous treatment effects. entreat() itself adds endogenous covariate treated to the main equation.
- 4. You specify select(selected = ...) to handle endogenous selection and you include selected in the main equation. select() makes variable selected endogenous, but it does not automatically add it to the main equation.

In what follows, we will show examples of endogenous covariates added to the main equation by option endogenous(), but we could have added them in any of the above ways.

In this manual entry, we depart from our usual practice of naming exogenous covariates x1, x2, ... and naming endogenous covariates w1, w2, We depart from this practice because we will introduce a situation and then say, "if x1 is exogenous, do this; if it is endogenous, do something else".

How to interpret coefficients

The rules for interpreting the coefficients from ERMs are as follows:

```
Rule C1 concerning models fit by eregress and eintreg.
```

Interpret the coefficients in the main equation in the usual way. As is usual, it does not matter whether coefficients are for endogenous or exogenous covariates.

Rule C2 concerning models fit by eprobit and eoprobit that have no endogenous covariates. Interpret the coefficients in the main equation in the usual way. They are in standard deviation units just as they usually are. You can calculate probabilities in the usual way, too, by using the unit-normal distribution.

Rule C3 concerning models fit by eprobit and eoprobit that include endogenous covariates.

You can interpret the coefficients in the usual way—they are in standard deviation units—but you cannot calculate probabilities because the normal distribution used does not have standard deviation 1. Worse, the value of the standard deviation sometimes depends on the questions being asked. The safest approach is to use margins.

For rule C1, it does not matter whether you fit simple models such as

. eregress y x1 x2

or complicated ones such as

The coefficients on x1 and x2 in the main equation will have the usual interpretation. That usual interpretation is that they are the expected change in y for a one-unit change in x1 or x2.

Rule C2 is not surprising at first glance. It states that eprobit and eoprobit models without endogenous covariates are ordinary probit and ordered probit models, and so their coefficients are interpreted in the ordinary way. However, the rule says more than that. It says that if you fit

```
. eprobit y x1 x2, select(selected = x2 z1)
```

or

. eoprobit y x1 x2, select(selected = x2 z1)

then you can interpret the fitted coefficients in the usual way too.

Rule C3 is a disappointment. It says that if you fit eprobit or eoprobit models with endogenous covariates in the main equation, such as

. eprobit y x1 x2, endogenous(x1 = z1, nomain)

then you must be careful in interpreting the coefficients. You can interpret them in almost the usual way because they are in standard-deviation units, but they are not in units for which the standard deviation is 1. In the above model, if the estimate of the coefficient on x1, $\hat{\beta}_1$, is 2 and x1 has an average value of 1, then x1 has a big effect. It is even bigger than usual because the standard deviation of the normal is less than 1. How much bigger? Well, that depends, which we admit is hardly a satisfactory answer.

If the coefficients on x1 and x2, $\hat{\beta}_1$ and $\hat{\beta}_2$, are almost equal, and if x1 and x2 are on roughly the same scale, then the effects of x1 and x2 are roughly the same, and that conclusion does not depend on the standard deviation of the normal distribution being used.

More helpfully, rule C3 suggests that you use the margins command.

How to use margins

We warn you that two of the rules for using margins—rules M3 and M4—are a mouthful. Think of them as a reminder about the issues rather than an explanation of them. We will explain them. In any case, the rules are as follows:

Rule M1 concerning models with no endogenous covariates.

margins can be used just as you ordinarily would use it.

Rule M2 concerning models with endogenous covariates.

You must specify one of the margins options predict(base()) or predict(fix()). Do that, and margins produces the results you expect. If you do not specify one of the options, results will be based on reduced-form predictions, which are not what you want.

Rule M3 concerning models with endogenous covariates.

Often, you will want to specify predict(base()). This produces levels and comparisons (averages and differences) conditional on observing all the covariates in your model. These include the covariates outside of the main equation. The averages and differences that margins reports will be the best predictions possible for subjects with the same characteristics as the subjects in your data.

Rule M4 concerning models with endogenous covariates.

Sometimes, you will need to specify option predict(fix()). This produces levels and comparisons (averages and differences) conditional on observing only the exogenous covariates in the main equation, and with the endogenous covariates set to the values specified. The averages and differences that margins reports will be the best predictions possible for subjects with the same limited set of characteristics as the subjects in your data.

How to use margins in models without endogenous covariates

Rule M1 was reassuring. It says that if your models include no endogenous covariates in the main equation, you can use margins in the ordinary way. Here is how you would ordinarily use margins. The following model has no endogenous covariates:

```
. use http://www.stata-press.com/data/r15/ermexample
(Artificial ERM example data)
. eregress y x1 x2 c.x1#c.x2
(output omitted)
```

The model fit is

 $\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \beta_2 \mathbf{x} \mathbf{2}_i + \beta_3 \mathbf{x} \mathbf{1}_i \mathbf{x} \mathbf{2}_i + e_i \mathbf{.y}$

Assume that our interest is in the effect of x1. One way to interpret the effect is to interpret the coefficients: A one-unit increase in x1 increases y by $\beta_1 + \beta_3 x2$. Another way to interpret the effect is by using counterfactuals. In these data, what would be the average change in y if x1 were increased by 1? margins will tell us if we type

. margins, at	(x1=generate(x1)) at(x1=genera	ate(x1+1))	contrast(at(r)	nowald)				
Contrasts of predictive margins Model VCE : OIM									
Expression	: mean of y, pre	edict()							
1at	: x1	= x1							
2at	: x1	= x1+1							
	Del	ta-method							
	Contrast S	td. Err.	[95% Conf.	Interval]					
_at (2 vs 1)	1.109641 .	1750625 .	.7665246	1.452757					

You can learn about margins, its features, and its syntax in [R] margins. We will tell you enough, however, so that everything we say will make sense.

Assume that the data comprise three subgroups in which we have a special interest. For instance, we want to know how an increase in x1 would affect each subgroup. margins can tell us that too.

1d)

<pre>. margins, at > over(group)</pre>	(x1=generate(x1)) at(x1=gener	ate(x1+1))	contrast(at(r)	nowal
Contrasts of Model VCE	predictive margi : OIM	ns			
Expression over	: mean of y, pre : group	dict()			
1at	: 0.group x1 1.group	= x1			
	x1 2.group	= x1			
•	x1	= x1			
2at	: 0.group x1 1.group	= x1+1			
	x1	= x1+1			
	2.group x1	= x1+1			
	Del	ta-method			
	Contrast S	td. Err.	[95% Conf.	Interval]	
_at@group (2 vs 1) 0	.5561469 .	1960937	.1718103	.9404835	
(2 vs 1) 1 (2 vs 1) 2		1754062 2153742	.7796108 1.218988	1.46719 2.063239	

margins helps us to understand changes that are different in each observation. If we had the simple model eregress y x1 x2, we know the effect of incrementing x1 is to increase y by $\hat{\beta}_1$, which might be 3. The change would be 3 in every observation. In the model we have, however, the effect of incrementing x1 is to increase y by $\beta_1 + \beta_3 x2$. The average effect depends on the distribution of x2.

margins helps us to understand how a change affects the average in our data and subgroups of our data. We are using our sample as a proxy for the population and subpopulations, but that is what we usually do in statistics. We assume that our sample is representative. The issues are the same as we discussed in [ERM] intro 5.

If our sample is representative but we want margins to report population-based standard errors, we need to specify vce(robust) when we fit the model:

. eregress y x1 x2 c.x1#c.x2, vce(robust)

If our sample is not representative, we can weight it with the inverse probability that its observations were sampled from the underlying population. If we want margins to report population-based standard errors, we can type

. eregress y x1 x2 c.x1#c.x2 [pw = weight], vce(robust)

or type

. eregress y x1 x2 c.x1#c.x2 [pw = weight]

We can type either because specifying [pw=weight] implies vce(robust).

Even when we do specify or imply vce(robust), margins will report sample standard errors by default. To obtain population-based standard errors, we must specify or imply vce(robust) when we fit the model and, when we use margins, we must specify its vce(unconditional) option:

```
. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r)) ///
            vce(unconditional)
```

In the linear regression example we have been discussing, we included an interaction in the model and used margins to report averages. We used margins because the interaction caused changes to vary observation by observation. Probit and ordered probit models produce predictions that vary observation by observation even in models with no interactions. Consider the following probit model, which is almost the simplest one possible:

. eprobit y_p x1

The model is

 $Pr(positive outcome) = Pr(\beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + e_i \cdot \mathbf{y} > 0) = normal(\beta_0 + \beta_1 \mathbf{x} \mathbf{1})$

Assume that our interest is in x1 just as it was previously. The effect of a one-unit increase in x1 is to increase the normal index by $\hat{\beta}_1$. Simple, right? No, it is not. The effect in probabilities of that change varies observation by observation. Here is how the results vary if $\hat{\beta}_1$ were 0.5 and we incremented x1 by 1. The effect depends on each subject's initial probability of a positive outcome:

Subject's original Pr(pos. outcome)	Increment by	Subject's new Pr(pos. outcome)	Difference
0.01	0.5 s.d.	0.03	0.02
0.10	0.5 s.d.	0.22	0.12
0.20	0.5 s.d.	0.37	0.17
0.40	0.5 s.d.	0.60	0.20
0.50	0.5 s.d.	0.69	0.19
0.60	0.5 s.d.	0.77	0.17
0.90	0.5 s.d.	0.96	0.06
0.99	0.5 s.d.	1.00	0.01

A subject whose original probability was 0.40 experiences an increase of 0.20 when x1 is incremented by 1. Meanwhile, a subject whose probability was 0.90 experiences a mere 0.06 increase.

Using margins, we can obtain the average changes in probabilities in the data due to incrementing x1 by 1. We type

```
. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
Contrasts of adjusted predictions
Model VCE
             : OIM
             : Pr(y_p==1), predict()
Expression
1._at
              : x1
                                 = x1
2. at
              : x1
                                 = x1+1
                           Delta-method
                             Std. Err.
                                             [95% Conf. Interval]
                  Contrast
         _at
   (2 vs 1)
                  .2961685
                              .0287644
                                             .2397912
                                                         .3525458
```

We can obtain the changes for each of the three subgroups too:

```
. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r) nowald)
> over(group)
Contrasts of adjusted predictions
Model VCE
              : OIM
Expression
              : Pr(y_p==1), predict()
over
              : group
1._at
              : 0.group
                    x1
                                     = x1
                1.group
                    x1
                                     = x1
                2.group
                                     = x1
                    x1
2. at
              : 0.group
                    x1
                                     = v1+1
                1.group
                                     = x1+1
                    x1
                2.group
                                     = x1+1
                    x1
                           Delta-method
                             Std. Err.
                                            [95% Conf. Interval]
                  Contrast
   _at@group
                              .051078
                                                         .4858885
 (2 vs 1) 0
                  .3857775
                                            .2856664
 (2 vs 1) 1
                  .2944176
                             .0294406
                                            .2367152
                                                         .3521201
 (2 vs 1) 2
                  .2096478
                             .0202614
                                            .1699363
                                                         .2493594
```

Counterfactuals are useful in complicated linear models—we had an interaction in ours—and in nonlinear models whether simple or complicated.

The two ways to use margins with endogenous covariates

You may remember that rules M3 and M4 were mouthfuls. These rules said to use margins with the predict(base()) option in one case and predict(fix()) in another. Moreover, each option was "best", albeit under different assumptions. We apologize for that. We can make the distinction clear in a reasonably simple model, namely

```
. eregress y x1 x2, endogenous(x1 = z1, nomain)
```

The model is

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \beta_2 \mathbf{x} \mathbf{2}_i + e_i \mathbf{.y}$$

$$\mathbf{x} \mathbf{1}_i = \gamma_0 + \gamma_1 \mathbf{z} \mathbf{1}_i + e_i \mathbf{.x} \mathbf{1}$$

where $\rho = corr(e.x1, e.y)$ and is nonzero.

Let's imagine that y is a health outcome and x1 is a 0/1 variable indicating whether a treatment was administered that is expected to improve the outcome. Observations are people, and people choose for themselves whether to have the treatment. Given the story, we *should* fit the model by typing

. eregress y i.x1 x2, endogenous(x1 = z1, probit nomain)

Nonetheless, we are going to fit the model without the probit specification and factor-variable notation for endogenous covariate x1:

. eregress y x1 x2, endogenous(x1 = z1, nomain)

We omit probit only because it will be easier for us to explain the difference between predict(base()) and predict(fix()). We need to show you some math, and the math will be simpler in the linear model case.

What is important is that ρ is likely to be nonzero, no matter how the model is fit. ρ is the correlation between *e.y* and *e.x1*. *e.y* includes all the unobserved things that affect how well the treatment works. *e.x1* includes all the unobserved things that affect whether individuals choose the treatment. ρ is likely to be nonzero and positive because people who believe that they are more likely to benefit from the treatment (*e.y* > 0) should be more likely to choose the treatment (*e.x1* > 0).

As a result, the best prediction of y that we can make for people like person 1 in our data—people who have the same value of x1, x2, and z1—includes the effect of $\hat{\rho}$, albeit indirectly. The best prediction of y we can make for people like person 1 is that their expected value of y will be

$$\widehat{\mathbf{y}}_1 = \widehat{eta}_0 + \widehat{eta}_1 \mathbf{x} \mathbf{1}_1 + \widehat{eta}_2 \mathbf{x} \mathbf{2}_1 + \widehat{e}_1. \mathbf{y}$$

 \hat{e}_1 .y is our estimate of the expected value of e.y in the first observation. Expected values of errors are often 0, but not in this case. This one depends on ρ . Given that we know the values $x1_1$ and $z1_1$, we have an estimate of $e_1.x1$, namely

$$\widehat{e}_1.\mathtt{x1} = \mathtt{x1}_1 - \widehat{\gamma}_0 - \widehat{\gamma}_1 \mathtt{z1}_1$$

Because e.x1 and e.y are correlated, we can produce an estimate of $e_1.y$ given $\hat{e}_1.x1$ and $\hat{\rho}$. It is a detail, but the formula is

$$\widehat{e}_{1}.\mathtt{y} = rac{
ho imes \mathtt{s.d.}(e.\mathtt{y})}{\mathtt{s.d.}(e.\mathtt{x1})} imes \widehat{e}_{1}.\mathtt{x1}$$

The value of \hat{e}_1 .y can be calculated, and the best prediction we can make for people like person 1 includes it, and is

$$\widehat{\mathbf{y}}_1 = \widehat{\beta}_0 + \widehat{\beta}_1 \mathbf{x} \mathbf{1}_1 + \widehat{\beta}_2 \mathbf{x} \mathbf{2}_1 + \widehat{e}_1 \mathbf{.y}$$

Margins with predict(base())

Here, we temporarily consider x1 to be continuous because we want to consider what happens if we add 1 to x1.

What is the best prediction we can make for people like person 1 if x1 were incremented by 1? It is

$$\widehat{y}_1 = \widehat{\beta}_0 + \widehat{\beta}_1(\mathtt{x} \mathtt{1}_1 + 1) + \widehat{\beta}_2 \mathtt{x} \mathtt{2}_1 + \widehat{e}_1.\mathtt{y}$$

The above is how margins with option predict(base()) makes the calculation for each observation in the data. Observation by observation, it calculates

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1(\mathbf{x}\mathbf{1}_i + 1) + \widehat{\beta}_2 \mathbf{x}\mathbf{2}_i + \widehat{e}_i.\mathbf{y}$$
(1)

predict(base()) tells margins to include \hat{e}_i .y in the calculations. This is the best prediction for people like the people in our population conditioned on everything we know about them.

Now, we return to considering x1 to be binary.

Margins with predict(fix())

predict(base()) uses (1) and makes its predictions given how the world currently operates. People choose their value of x1, and the choice they make is correlated with the outcomes they expect.

predict(fix()) makes predictions for a world that operates differently. In the alternative world, x1 is fixed at a value such as 1. This means that the population of people like person 1 is expanded from being all people like person 1 who made the same treatment choice to being all people like person 1 regardless of the treatment choice they made. In the expanded definition of people like person 1, the correlation between e.y and e.x1 is broken. The correlation is now 0, and the best prediction for people like person 1 sets $\hat{e}_1.y$ to 0:

$$\widehat{\mathbf{y}}_1 = \widehat{\beta}_0 + \widehat{\beta}_1 \mathbf{x} \mathbf{1}_1 + \widehat{\beta}_2 \mathbf{x} \mathbf{2}_1 \tag{2}$$

In the jargon of statistics, x1 is no longer endogenous—it is fixed, and the entire equation for x1 becomes irrelevant.

When you specify predict(fix()), margins() makes the calculation for each person by using the approach used for person 1 in (2). It uses

$$\widehat{\mathbf{y}}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \mathbf{x} \mathbf{2}_i + \widehat{\beta}_2 \mathbf{x} \mathbf{2}_i$$

These observation-by-observation predictions are called potential outcomes when applied to treatment models. The averages based on them that margins reports are called potential-outcome means (POMs). These averages correspond to what would be observed in a world in which x1 is fixed at a particular value.

We considered x1 being fixed at a constant value. x1 can just as well be fixed at different values for different observations.

When to use which

margins can produce counterfactuals in two ways.

When you specify predict(base()), margins uses

$$\widehat{\mathbf{y}}_i = \beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \beta_2 \mathbf{x} \mathbf{2}_i + \widehat{e}_i . \mathbf{y}$$

~

for the values of x1 and x2 specified. The predictions are a function of x1 and x2 and the covariates appearing in the x1 equation. Those covariates along with $\hat{\rho}$ go into the calculation of \hat{e} .y. These predictions correspond to how the current world operates.

When you specify predict(fix()), margins uses

$$\widehat{\mathbf{y}}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \mathbf{x} \mathbf{1}_i + \widehat{\beta}_2 \mathbf{x} \mathbf{2}_i$$

where x1 is fixed at the value specified. These predictions are based on the exogenous covariates in the main equation (x2 in this case) and the value to which the fixed variable (x1) is set. These predictions correspond to a different world in which x1 is no longer endogenous but is fixed to a particular value.

We have shown results for linear models. The formulas are more complicated when models are nonlinear but the assumptions and their implications are the same.

How to use margins with predict(base())

When we used margins with models in which there were no endogenous covariates, one of the comparisons we ran was

```
. eregress y x1 x2 c.x1#c.x2
. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r))
```

The at() option ran two counterfactuals, although the first was more factual than counterfactual. Margins ran the factual at(x1=x1). It ran the counterfactual at(x1=generate(x1+1)). Had we omitted contrast(at(r)), margins would have reported the means of y under the two scenarios. Because we specified contrast(at(r)), margins instead reported the average value of the difference.

To produce counterfactuals based on changing x1, you must specify option predict(base()) in models containing *any* endogenous covariates in the main equation. You must include the option even if x1 itself is not endogenous.

Let's imagine that we fit one of the models

```
. eregress y x1 x2 c.x1#c.x2, endogenous(x1 = z1, nomain)
. eregress y x1 x2 c.x1#c.x2, endogenous(x2 = z1, nomain)
. eregress y x1 x2 c.x1#c.x2, endogenous(x1 = z1, nomain) ///
endogenous(x2 = z2, nomain)
```

and now we want to produce the same counterfactual we produced when the model had no endogenous covariate, that is, when we typed

```
. margins, at(x1=generate(x1)) at(x1=generate(x1+1)) contrast(at(r))
```

To produce the same counterfactual, we type

We did two things differently:

- 1. We created a new variable containing a copy of x1.
- 2. We added predict(base(x1=x1orig)) to the margins command, which includes the copied variable.
 - If we wanted a comparison of x1+1 with x1+2, we would type

If we requested counterfactuals that involved changing x1 and x2, we would type

That is,

- 1. You must copy all variables that will be temporarily changed by margins.
- 2. You must specify the name of each original variable and the name of each copied variable in the predict(base(*original=copied*)) option.

The variables that margins changes appear in its at() option. They can also appear in *varlist* following the margins command, such as

```
. eregress y x1 i.x2, endogenous(x1 = z1)
```

- . generate $x^2 = x^2$ and $x^2 = x^2$
- . margins r.x2, predict(base(x2=x2orig))
- . drop x2orig

margins r.x2 compares average values of y for each level x2. It reports them as differences in average values from the first level.

For examples using margins with predict(base()), see *Interpreting effects* in [ERM] intro 8 and see [ERM] example 1a.

How to use margins with predict(fix())

You have fit the model

. eregress y i.x1 x2, endogenous(x1 = z1, probit nomain)

This is the same example we discussed in *The two ways to use margins with endogenous covariates* except that now we specify the equation for x1 as a probit equation.

To run the counterfactuals that x1 is fixed at 0 and fixed at 1, type

```
. margins, predict(fix(x1)) at(x1=0 x1=1)
```

Averages of y will be reported based on predictions of y given the values of the exogenous covariates in the main equation (x2 in this case) holding the fixed variable (x1) fixed first at 0 and then at 1.

If the model had two endogenous covariates in the main equation,

```
. eregress y x1 x2 x3, endogenous(x1 = z1, probit nomain) ///
endogenous(x2 = z2 z3, probit nomain) ///
endogenous(z3 = z4, nomain)
```

you could fix both of them by typing

. margins, predict(fix(x1 x2)) at(x1=1 x2=0)

The average of y will be reported given all the values of the exogenous covariates in the main equation (x3 in this case) holding x1 and x2 fixed at the values specified.

You could fix x1 only:

. margins, predict(fix(x1)) at(x1=1)

The average of y will be reported given

- the values of all the exogenous covariates in the main equation (x3 in this case), plus
- the values of x2 and of all the covariates in its equation, whether endogenous or exogenous (x2, z2, and z3 in this case), plus
- all the covariates necessary to predict x2's endogenous covariates (z4 in this case).

Had z4 been endogenous and had an equation, we would have added that equation's variables, and so on.

In this case, the average of y will be reported given x3, x2, z2, z3, and z4. x1 will be fixed.

If the model had been

```
. eregress y x1 x2 x3, endogenous(x1 = z1, probit nomain) ////
endogenous(x2 = x1 z2, probit nomain)
```

then margins would refuse to fix just x1:

```
. margins, predict(fix(x1)) at(x1=1)
endogenous x2 depends on fixed x1
r(498);
```

We tried to fix x1 and x1 also affects x2. margins, predict(fix()) cannot do this.

You could, however, fix x2 because x2 does not affect x1:

```
. margins, predict(fix(x2)) at(x2=1)
```

For examples using margins with predict(fix()), see *Interpreting effects* in [ERM] intro 8 and see [ERM] example 1a.

How to use predict

Regardless of how or why a model was fit, Stata's postestimation predict command is used in three ways:

In-sample prediction.

predict is used to obtain predicted values from the data used to fit the model.

Out-of-sample prediction.

predict is used to obtain predicted values from other data, data not used to fit the model.

Counterfactual prediction.

predict is used to obtain what the predicted values would be if the values of a covariate or covariates were changed. Counterfactual prediction can be performed with the data used to fit the model or other data.

The rules for using predict after ERM depend on the way predict is being used. The rules are the following:

Rule P1 for models with no endogenous covariates.

predict is used for in-sample, out-of-sample, and counterfactual prediction just as you would ordinarily use it. This rule applies to all models with no endogenous covariates in the main equation.

Rule P2 for models with endogenous covariates.

predict is used for in-sample and out-of-sample prediction just as you would ordinarily use it.

Rule P3 for models with endogenous covariates.

You must specify option base() or fix() when using predict for counterfactual prediction.

Here is how predict is ordinarily used. You have fit the model

. eregress y x1 x2 $\,$

The model you fit could just as well be fit by eintreg, eprobit, or eoprobit.

To make in-sample predictions, you type (with the same dataset in memory)

. predict yhat

New variable yhat will contain the predicted values based on the fitted model.

To make out-of-sample predictions, you type

. use anotherdataset

. predict yhat

New variable yhat will contain predicted values based on the fitted model.

You could also use one part of the original dataset to fit the model and make predictions simultaneously both in and outside of the data used to fit the model:

```
. eregress y x1 x2 if subset==1
. predict yhat
```

New variable yhat would contain in-sample predictions in observations for which subset==1 and would contain out-of-sample predictions in the other observations.

You can make counterfactual predictions. You have fit the model

```
. eregress y x1 x2
```

To obtain predicted values of y if x1 were 1 in all observations, you type

```
. eregress y x1 x2
. replace x1 = 1
. predict yhat1
```

New variable yhat1 will contain predicted values conditional on x1 being 1.

You use predict in models with endogenous covariates in the main equation just as we have shown when making in-sample or out-of-sample predictions. To make counterfactual predictions in models with endogenous covariates in the main equation, such as

. eregress y = x1 x2, endogenous(x1 = z1, nomain)

you type

```
. generate x1orig = x1
. replace x1 = 1
. predict yhat1, base(x1=x1orig)
```

```
. replace x1 = x1orig
```

```
. drop x1orig
```

or you type

```
. generate x1orig = x1
```

```
. replace x1 = 1
```

```
. predict yhat1, fix(x1)
```

```
. replace x1 = x1orig
```

```
. drop x1orig
```

You must specify option base() or fix() with predict for the same reasons you must specify option predict(base()) or predict(fix()) with margins. You make the decision about which to specify in the same way you make the decision with margins.

Note that predict used for making counterfactual predictions works just like predict used for making in-sample or out-of-sample predictions in one respect. predict uses the values of the variables in memory. To make counterfactual predictions, you must change the contents of those variables.

Using predict to predict counterfactuals reproduces results produced by margins. Typing

```
. generate x1orig = x1
```

```
. margins, predict(base(x1=x1orig)) at(x1=generate(x1+1))
```

is equivalent to typing

```
. generate x1orig = x1
```

- . replace x1 = 1
- . predict yhat1, base(x1=x1orig)
- . summarize yhat1

Both will report the same result for the average of y if x1 were incremented by 1.

Typing

```
. margins, predict(fix(x1)) at(x1=1)
```

is equivalent to typing

```
. generate x1orig = x1
```

- . replace x1 = 1
- . predict yhat1, fix(x1)
- . summarize yhat1

For your information, margins uses predict in making its calculations, and that explains why the options on margins are named predict(base()) and predict(fix()). When margins uses predict, it specifies to predict the options you specified in option predict().

Also see

[ERM] intro 8 — Conceptual introduction via worked example

[ERM] example 1a — Linear regression with continuous endogenous covariate

Title

intro 7 — A Rosetta stone for extended regression commands

Description Remarks and examples Also see

Description

If you already are familiar with some or all of Stata's other commands that fit models with endogenous covariates, sample selection, and treatment effects, this entry shows you how to use that knowledge to fit equivalent models using ERMs.

Remarks and examples

Aside from providing a single coherent framework that allows complications to be combined, ERMs use similar syntax and the resulting models have the same interpretation.

In most cases, the estimation method used by the ERM commands and that used by other estimators to fit the same model produce results that are the same. Typically, there are small numerical differences because the optimization is different. Also, ancillary parameters, such as variances of errors, are sometimes parameterized differently. In some cases, a different estimation method is used. In this case, results will be asymptotically equivalent, but in finite samples, results will differ.

The table below provides a basic guide for the correspondence between Stata commands you may already be familiar with and the ERM commands.

Command you know	Equivalent extended regression command			
Linear regression with endogenous covariate ivregress liml y1 x (y2 = z)	eregress y1 x, endogenous(y2 = z x)			
Probit model with endogenous covariate ivprobit y1 x (y2 = z)	eprobit y1 x, endogenous(y2 = z x)			
Tobit model with endogenous covariate ivtobit y1 x (y2 = z), ll(0) ul(20)	<pre>generate y1_ll = y1 replace y1_ll = . if y1<=0 generate y1_ul = y1 replace y1_ul = . if y1>=20 & y1<. eintreg y1_ll y1_ul x, endogenous(y2 = z x)</pre>			
Linear regression with exogenous treatment teffects ra (y x1 x2) (t1)	eregress y x1 x2, extreat(t1) vce(robust) estat teffects			
Probit model with exogenous treatment teffects ra (y x1 x2, probit) (t1)	eprobit y x1 x2, extreat(t1) vce(robust) estat teffects			

Linear regression with endogenous treatment	
etregress y x, treat(t1 = x z)	<pre>eregress y x, entreat(t1 = x z, nointeract)</pre>
Linear regression with sample selection	
heckman y x, select(s1 x z)	eregress y x, select(s1 = x z)
Probit model with sample selection	
heckprobit y x, select(s1 x z)	eprobit y x, select(s1 = x z)
Ordered probit model with sample selection	
heckoprobit y x, select(s1 x z)	<pre>eoprobit y x, select(s1 = x z)</pre>

You can build on the basic syntax of the ERM commands by combining options and suboptions, giving you the flexibility to fit a myriad of models. Here is a short list of what you might try.

Linear regression with a continuous endogenous covariate but where the exogenous variable is not included as an instrument

. eregress y1 x, endogenous(y2 = z1)

```
Linear regression with two continuous endogenous covariates
. eregress y1 x, endogenous(y2 y3 = z1 x)
```

As above, but with different instruments for different endogenous covariates . eregress y1 x, endogenous(y2 = z1 x) endogenous(y3 = z2 x)

As above, but with one endogenous covariate being binary . eregress y1 x, endogenous(y2 = z1 x) endogenous(y4 = z3 x, probit)

Linear regression with a continuous endogenous covariate and an endogenous treatment . eregress y1 x, endogenous(y2 = z1 x) entreat(t1 = z3 x)

As above, but instead include a multivalued treatment . eregress y1 x, endogenous(y2 = z1 x) entreat(t2 = z3 x, oprobit)

- As above, and also allow for endogenous selection . eregress y1 x, endogenous(y2 = z1 x) entreat(t2 = z3 x, oprobit) /// select(s1 = w x)
- As above, but where censoring of variable s2 indicates selection status . eregress y1 x, endogenous(y2 = z1 x) entreat(t2 = z3 x, oprobit) /// tobitselect(s2 = w x)
- eprobit or eoprobit may be directly substituted for eregress above to fit a probit or ordered probit regression when y1 is binary or ordinal. To fit a tobit or interval regression, you must use eintreg and specify two dependent variables containing the upper and lower bounds of the interval in place of y1.

Also see

[ERM] intro 1 — An introduction to the ERM commands

[ERM] intro 8 — Conceptual introduction via worked example

Title

intro 8 — Conceptual introduction via worked example

Description Remarks and examples References Also see

Description

This entry introduces the concepts of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection through a series of examples. It also provides an overview of how to interpret the results of ERMs.

Remarks and examples

Remarks are presented under the following headings:

Introduction Complications Endogenous covariates Nonrandom treatment assignment Endogenous sample selection Interpreting effects

Introduction

In a perfect research world, several assumptions we conventionally make about our data and the data-collection process would be true. For example, we could gather data about all the variables that influence the outcome we want to study. These data would be collected on a random sample of the population of interest. Any inferences we made about a relationship between the dependent variable and an independent variable when studying one group would be just as valid if we studied this group again at a different time or even if we conducted the study for a different group.

Often, applied research is complicated when one or more of the classical assumptions are not true. For example, data on key variables of interest may be unavailable. Our interest may lie in a treatment that cannot be randomly assigned or may be endogenous. Or the subjects we have available to study are not representative of the population we want to study.

When any of these things is true, we cannot make accurate inferences using standard regression methods. Stata provides many commands that can be used when one of these complications occurs. The ERM commands allow you to address these problems in isolation and, more importantly, in combination—as they often occur.

Imagine that a large company is considering offering a workplace wellness program to its employees to help them lose weight. They have conducted a pilot study at one location, and all other locations are expected to be similar. In our dataset, the wellpgm variable records whether a given employee participated. After one year, the company wants to know whether the program was effective. Our outcome of interest is weight lost in kilograms. We have called this weightloss0 to distinguish it from the observed weightloss later.

In our fictional data, the number of kilograms lost is also determined by the employee's age in years (age), the employee's sex (sex), and the employee's starting weight in kilograms (weight). Because this is an entirely fictitious example, we have a true measure of willingness to engage in healthy behaviors (health).

More formally, in our simulated data, the process that determines weight lost is

$$\begin{split} \texttt{weightloss0}_i = -4 - 0.1 \times \texttt{age}_i - 1.5 \times \texttt{sex}_i + 0.14 \times \texttt{weight}_i + 1.2 \times \texttt{wellpgm}_i \\ + 0.5 \times \texttt{health}_i + u_i \end{split}$$

Suppose that we are in the situation described above. We observed complete information for all variables for all employees, and participation in the wellness program was unrelated to any employee attributes that we could not observe. In this case, we could fit our model by typing

```
. use http://www.stata-press.com/data/r15/wellness (Fictional workplace wellness data)
```

. regress weightlossO age i.sex weight i.wellpgm health

		-					
Source	SS	df	MS		of obs	=	545 589.61
				• F(5,5	-	=	
Model	2417.76071	5	483.552141	Prob >	F	=	0.0000
Residual	442.044242	539	.820119187	R-squa	red	=	0.8454
				-	squared	=	0.8440
Total	2859.80495	544	5.25699439	•	-	=	.9056
IOUAL	2009.00490	544	5.25055435	noot P	55	-	. 9050
weightloss0	Coef.	Std. Err.	t	P> t	[95% Cor	nf	Intervall
**************************************	00011	boa: HII.	•	1,101	2007 001		incorvarj
	0001014	0000045	00.00	0 000	1000070	`	0010000
age	0991644	.0038045	-26.06	0.000	1066378	5	0916909
sex							
male	-1.481883	.0937504	-15.81	0.000	-1.666044	1	-1.297722
weight	.1359547	.0054405	24.99	0.000	.1252676	3	.1466419
wellpgm						_	
yes	1.254928	.1076792	11.65	0.000	1.043406	5	1.46645
health	.4814308	.0255931	18.81	0.000	.4311564	1	.5317053
_cons	-3.754726	.4432054	-8.47	0.000	-4.625348	3	-2.884105
						-	

. estimates store true

From this model, we can estimate the average treatment effect (ATE) of the wellness program by using the coefficient on wellpgm. We estimate that the ATE is 1.25 kg. In other words, the average weight lost over the course of the year would be 1.25 kg greater if all the company's employees participated in the program versus if no employees participated.

Because we simulated these data, we can confirm that all the confidence intervals contain the true values. If we continued to add more observations, our point estimates would become closer and closer to the real values. This is true because the coefficient estimates shown above are consistent. Because they are consistent, we can make inferences about the effects of each variable on the outcome. We estimates store these values as true for comparison with later models.

Complications

As discussed in [ERM] **intro 3**, a covariate is endogenous if it is correlated with the error term. Practically, this correlation arises for many reasons. For example, we may have omitted an important variable from our model that is correlated with a variable that we included, as we did here. Or we may not have accurately measured one of the covariates in our model. We could also have the case where a variable in the model and the outcome of interest are partially determined by the same unobserved factors. For concreteness, we focus on the role of a single omitted variable in this conceptual introduction.

Often in observational research, the treatment (participation in the wellness program) was not randomly assigned. As discussed in [ERM] **intro 5**, we might be able to ignore this issue if we do not suspect that unobserved factors that affect participation also affect the amount of weight loss. However, in this case, we believe participation in the wellness program is also likely to be determined by factors we cannot observe, such as the now-omitted health variable.

Further, suppose that the pilot study was structured such that baseline information about all employees was collected at a mandatory benefits meeting at the start of the year. At the end of the year, all employees were asked to go to the company gym during business hours to have their year-end weight recorded, regardless of program participation. Because employees were not required to have their final weight recorded, we observe only the weight of employees who voluntarily went to the gym. We have a selected sample in this case.

Whether an employee is observed in the study could be correlated with unobserved factors that also determine how much weight he or she lost. For example, employees with high values of the now-omitted health variable may have generally better diet and exercise habits (independent of the wellness program), leading to higher weight loss. Let's say that for bragging rights, they want to have their superior weight loss recorded, so they are more likely to show up at the end of the year. As discussed in [ERM] intro 4, if selection is related to unobserved factors that are correlated with the outcome, it cannot be ignored.

If we ignore all of these potential complications, we might erroneously fit the model below. In this model, we omit health, and weightloss records the observed weight loss only for employees who went to the gym at the end of the year.

weightloss_i =
$$\beta_1 \times age_i + \beta_2 \times sex_i + \beta_3 \times weight_i + \beta_4 \times wellpgm_i + u_i$$

As before, we could fit the model using regress.

Source SS df MS Number of obs 337 = = F(4, 332) 219.74 Prob > F 1239.17345 4 309.793362 0.0000 Model = Residual 468.060374 332 1.4098204 R-squared 0.7258 = Adj R-squared 0.7225 = 1707.23382 Root MSE Total 336 5.08105304 = 1.1874 Std. Err. t P>|t| [95% Conf. Interval] weightloss Coef. -.0800928 .0063184 -12.68 -.0925219 age 0.000 -.0676637 sex .146934 male -1.023886-6.970.000 -1.312925-.734847weight .0803689 .0074025 10.86 0.000 .0658072 .0949305 wellpgm .1596906 0.000 1.599398 2.227664 yes 1.913531 11.98 _cons -.3699558 .6741312 -0.55 0.584 -1.696063 .9561513

. regress weightloss age i.sex weight i.wellpgm

None of the confidence intervals for our coefficient estimates contain the true values. We store the estimates so that we can compare them with estimates from other models later.

. estimates store base

Endogenous covariates

Continuing with our example, we suspect that weight is endogenous now that we cannot observe health. Employees who are predisposed to healthy behaviors will likely have a lower starting weight, and this could influence how much weight they lose over the course of the year-long study. If we have a suitable model for how weight relates to the unobserved health, we can still estimate the parameters consistently.

Let's suppose we believe that the employee's starting weight is a function of the employee's sex and the number of times the employee visits the company gym. We measure gym use as the employee's average number of visits per month to the company gym before the program (gym). This will be an instrumental variable for weight. Instrumental variables are exogenous covariates that are correlated with the endogenous covariate, not directly related to the outcome, and not correlated with the unobserved error. Because we are using preprogram gym use, we do not expect it to be related to weight loss during the year of the program.

We fit the model using eregress, storing the estimates for later comparison.

```
. eregress weightloss age i.sex i.wellpgm, endogenous(weight = i.sex gym)
  (output omitted)
```

. estimates store endog

Now, we view and compare the results from each of the commands. We focus on the coefficients here because our interest lies in illustrating how the point estimates change as we address different complications. At the end of the introduction, we show the full output of eregress and discuss its interpretation.

Variable	true	base	endog
age	09916437	08009282	07964086
sex male	-1.481883	-1.023886	-1.6411717
weight	.13595472	.08036889	.14701973
wellpgm yes	1.2549281	1.9135311	1.9008534
health _cons	.48143082 -3.7547263	36995584	-5.5172377
N	545	337	337

. estimates table true base endog, stats(N) equations(1) keep(#1:)

Once we account for the endogeneity of weight, the coefficients for sex and weight are close to those of the true model and have the correct signs. The estimates for age and wellpgm, however, are close to each other in the base and endog models but not close to the true values. Our estimates remain inconsistent because we have not yet addressed the endogeneity of the wellpgm program indicator.

Endogenous covariates in ERMs need not be continuous. We could instead have an endogenous binary or ordinal covariate. To address the endogeneity of wellpgm, we could include an additional model by adding another endogenous() option; see [ERM] intro 3 for more on specifying models with different types of endogenous covariates. Another way to approach the analysis of binary and ordinal endogenous covariates is in the potential-outcomes framework.

Nonrandom treatment assignment

Treatment-effect regressions model the effect of a discrete treatment or intervention on the outcome. In observational data, we cannot randomly assign a treatment of interest to individuals. Treatment status may be related to other covariates that we measure. It may even be related to the unobserved factors that affect the outcome and be endogenous. We cannot just take the sample means of the treated and untreated to estimate the ATE. Instead, we can use the potential-outcomes framework to estimate a treatment effect.

In the potential-outcomes framework, the treatment effect is the difference between the outcome that would occur when a given subject receives the treatment and the outcome that would occur when the subject receives the control instead. We only observe the potential outcome associated with that subject's observed treatment value (either treated or control). However, we can estimate both potential outcomes, conditional on covariates, by using information from the model. For more information about the potential-outcomes framework, see [TE] teffects intro advanced.

The ERM commands may be used with an exogenous or endogenous treatment where the treatment variable is binary or ordinal.

To address the endogenous selection of participation in the wellness program, we need a model for wellpgm. Whether the employee was a smoker at the beginning of the year (smoke) is an additional covariate in our treatment model. Because smoking signals a lower willingness to engage in healthy behaviors, it should be correlated with participation in the program, but smoking status measured before the program was offered should not be independently associated with weight loss during the program.

```
. eregress weightloss age i.sex, endogenous(weight = i.sex gym)
> entreat(wellpgm = age i.smoke, nointeract)
  (output omitted)
. estimates store entrt
```

By specifying nointeract, we keep the same coefficients for both treatment groups in the main equation. This is not the most common approach. However, we simulated the data this way to keep the estimates table results compact and easy to compare across models. We will show you a more interesting model later.

Now, we view and compare the results for the main equation for each of the models.

Variable	true	base	endog	entrt
age	09916437	08009282	07964086	10430319
sex male	-1.481883	-1.023886	-1.6411717	-1.5995888
weight	.13595472	.08036889	.14701973	.14151952
wellpgm yes	1.2549281	1.9135311	1.9008534	.83556752
health _cons	.48143082 -3.7547263	36995584	-5.5172377	-3.488841
N	545	337	337	337

. estimates table true base endog entrt, stats(N) equations(1) keep(#1:)

In the entrt model, where we have accounted for the endogeneity of starting weight and the endogenous treatment assignment to the wellness program, we estimate that the effect of participating in the program is 0.84 kg lost. This is closer to the 1.25 kg we estimated in the true model than the 1.90 kg we estimated in the endog model that did not account for treatment assignment.

Endogenous sample selection

Sample selection is an ambiguous term because different authors have used it to mean different things. To add more ambiguity, sample selection has been equated with nonresponse bias and selection bias in some disciplines. Much of the ambiguity arises from authors not being precise about when sample selection is ignorable.

Sample selection is like treatment assignment: a process maps each individual into or out of the sample. This process depends on observable covariates and unobservable factors. When unobservable factors that affect who is in the sample are independent of unobservable factors that affect the outcome, then the sample selection is not endogenous. In this case, the sample selection is ignorable—our estimator that ignores sample selection is still consistent.

In contrast, when the unobservable factors that affect who is included in the sample are correlated with the unobservable factors that affect the outcome, the sample selection is endogenous and it is not ignorable, because estimators that ignore endogenous sample selection are not consistent.

The ERM commands may be used with endogenous sample selection with a probit or tobit selection model. A probit selection model is used when we have a binary indicator of selection. A tobit selection model is used when we have a continuous indicator for selection.

We suspect that unobserved factors that influence whether employees came to the gym for the year-end weigh-in also influence the amount of weight lost. In other words, we believe we may have endogenous sample selection. Our true model included all information on all 545 employees. In reality, only 337 completed the final weigh-in for our study. However, we still want to know what the potential effect of the program was for all employees. The 0.84 kg that we estimated in *Nonrandom treatment assignment* is not a consistent estimate of the program's ATE in the company if the 337 employees in our study are not representative of the population.

By modeling the sample-selection process, we can include all 545 employees in our estimation sample. The variable completed indicates whether the employee completed the final weigh-in. Employees with completed = 0 have missing values for weightloss. However, because all other data were gathered at a mandatory meeting at the start of the year (such as starting weight) or collected from administrative records (such as prior-year visits to the company gym), we have complete information for all other variables.

We include the employee's job classification (salaried) and years employed at the company (experience) as additional covariates in our selection model that are excluded from the main equation. salaried is 1 if the employee is salaried and is 0 if the employee is paid hourly. We anticipate that salaried employees will have more opportunity to visit the gym during the day and that employees who have been with the company longer will be more motivated to help complete the study. Aside from their effect on completing the weigh-in, we do not believe that salaried or experience have any direct effect on weightloss.

We fit our model, accounting for the potentially endogenous selection.

- . eregress weightloss age i.sex, endogenous(weight = i.sex gym)
- > entreat(wellpgm = age i.smoke, nointeract)
- > select(completed = i.wellpgm experience i.salaried)
 (output omitted)
- . estimates store endsel

Variable	true	base	endog	entrt	endsel
age	09916437	08009282	07964086	10430319	11149981
sex male	-1.481883	-1.023886	-1.6411717	-1.5995888	-1.5607651
weight	.13595472	.08036889	.14701973	.14151952	.14353999
wellpgm yes	1.2549281	1.9135311	1.9008534	.83556752	.92462755
health _cons	.48143082 -3.7547263	36995584	-5.5172377	-3.488841	-3.6798876
N	545	337	337	337	545

Then, we compare these estimates with those from our previous models.

. estimates table true base endog entrt endsel, stats(N) equations(1) keep(#1:)

After accounting for the potentially endogenous selection that occurs because some employees chose not to complete the final weigh-in, we see that our estimated ATE is 0.925, which is closer to its true value than in the models that did not address selection.

Interpreting effects

In the previous sections, we showed only the coefficient estimates from the main outcome equation. The full output for eregress and the other ERM commands includes estimates of coefficients of covariates in the auxiliary models, error variances, and error correlation terms.

For many models, the coefficient estimates themselves are not directly useful. You will need to use margins or estat teffects to obtain interpretable effects. However, the correlation estimates always provide relevant information.

The full results for the last eregress command that we estimated are as follows:

. eregress weightloss age i.sex, endogenous(weight = i.sex gym)

> entreat(wellpgm = age i.smoke, nointeract)
> select(completed = i.wellpgm experience i.salaried)

4.902936

_cons

.3973849

> select(completed = 1.wellpgm experience 1.salaried)
(iteration log omitted)

Extended linear regression					of obs = Gelected = Monselected = Mi2(4) =	545 337 208 749.04
Log likelihoo	d = −2800.8318	3		Prob >	chi2 =	0.0000
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
weightloss age	1114998	.0083531	-13.35	0.000	1278715	0951281
sex male weight	-1.560765 .14354	.2062746 .0175073	-7.57 8.20	0.000	-1.965056 .1092263	-1.156474 .1778537
wellpgm yes _cons	.9246275 -3.679888	.2750269 1.464123	3.36 -2.51	0.001 0.012	.3855848 -6.549515	1.46367 81026
completed wellpgm yes experience	.6553902 8153984	.2263862	2.90 -13.19	0.004	.2116814 9365196	1.099099
salaried yes	.4709859	.1419878	3.32	0.001	.192695	.7492768

_000115	1.002000	.0010010	12.01	0.000	1.121010	0.001/00
wellpgm						
age	0938617	.0072734	-12.90	0.000	1081173	079606
smoke						
yes	-1.477078	.1772103	-8.34	0.000	-1.824404	-1.129752
_cons	4.228481	.337379	12.53	0.000	3.56723	4.889732
weight						
sex						
male	9.506396	.6960864	13.66	0.000	8.142091	10.8707
gym	8184902	.0779351	-10.50	0.000	9712401	6657402
_cons	80.10245	.5407952	148.12	0.000	79.04251	81.16239
var(e.weig~s)	2.015328	.263477			1.559777	2.603927
var(e.weight)	65.98395	3.997213			58.59678	74.30241
corr(e.com~d,						
e.weightloss)	.5434105	.0824836	6.59	0.000	.362338	.6849556
corr(e.wel~m,						
e.weightloss)	.5878321	.1054098	5.58	0.000	.3440372	.7573749
corr(e.wei~t,						
e.weightloss)	4801763	.089175	-5.38	0.000	6353685	2877017
corr(e.wel~m,						
e.completed)	.3753168	.1523364	2.46	0.014	.0470351	.6304273
corr(e.wei~t,						
e.completed)	0643813	.0718768	-0.90	0.370	2030702	.0768401
corr(e.wei~t,						
e.wellpgm)	096324	.0691411	-1.39	0.164	2292586	.0401382

12.34

0.000

4.124076

5.681796

The completed, wellpgm, and weight equations provide the coefficient estimates for the auxiliary endogenous selection, treatment assignment, and endogenous covariate models.

The correlation estimates tell us about the endogeneity in our model. For example, we speculated that we might have endogenous selection. The error correlation corr(e.completed,e.weightloss) is an estimate of the correlation between the error from the selection equation and the error from the outcome equation. The estimate is significant, so we reject the hypothesis that there is no endogenous selection. It is positive, so we conclude that unobserved factors that increase the likelihood of being in the sample tend to occur with unobserved factors that increase the amount of weight lost. Looking at the other correlations, we find that our suspicions of endogenous treatment choice and the endogeneity of initial weight are likewise confirmed.

We estimated an ATE in our running example. In our simple illustration, we were able to use the coefficient on wellpgm. If wellpgm had been interacted with other covariates in the model, we would have needed to use estat teffects. We also could have estimated the effect of the wellness program on just those employees who participated, the average treatment effect on the treated (ATET).

Using this regression, if we ask questions about how participating in wellpgm affects the expected change in weightloss, we will almost always get the same answer: 0.92 kg greater weight loss with the program than without. That is the coefficient on wellpgm in the main outcome equation. This model is linear and contains no interactions between the treatment and other covariates. So, whether we ask about the ATE or the ATET, the answer is 0.92. Whether we ask about the expected additional weightloss for a person who chose to participate or about all the women who chose to participate, the answer is the same. No matter what, the expected change is always 0.92.

To make this interesting, we will need a more complex model. We could take the nointeract suboption off the entreat() option. If we did that and refit the model, all the questions above would produce different answers. But, as we said, our data are simulated with no interaction. So let's use another artifice.

Let's assume that the clerk in charge of the final weigh-in overheard management discussing the new program. The managers seemed particularly interested in participants losing at least 4 kg (8.8 pounds). Thinking he was being helpful, our clerk decided to save everyone some effort and did not record actual weights. Instead, he recorded only whether employees were at least 4 kg lighter than they had been at the initial weigh-in.

We can no longer analyze weight loss, but we can analyze the probability of losing at least 4 kg. We fit the same full model but this time use eprobit, and our dependent variable becomes lost4, which is 0 if the employee lost less than 4 kg and is 1 if the employee lost 4 kg or more.

<pre>. eprobit lost4 age i.sex, endogenous(weight = i.sex gym) > entreat(wellpgm = age i.smoke, nointeract) > select(completed = i.wellpgm experience i.salaried) vce(robust)</pre>											
(itera	(iteration log omitted)										
Extended probit regression					S	of obs = Selected = Nonselected =	545 337 208				
Log ps	Log pseudolikelihood = -2392.5364					= = = = = = = = = = = = = = = = = = =	184.27 0.0000				
		Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]				
lost4	age	0461113	.0129744	-3.55	0.000	0715406	020682				
	sex male	-1.192968	.1806428	-6.60	0.000	-1.547022	8389148				

mare	1.132300	.1000420	0.00	0.000	1.04/022	.0303140
weight	.1131467	.0108868	10.39	0.000	.0918089	.1344844
wellpgm						
yes	1.370215	.4048158	3.38	0.001	.5767905	2.163639
•	-8.034426	1.199574	-6.70	0.000	-10.38555	-5.683305
_cons	-0.034420	1.199574	-0.70	0.000	-10.30555	-0.000000
completed						
wellpgm						
yes	.6534203	.2310957	2.83	0.005	.200481	1.10636
experience	801973	.0676059	-11.86	0.000	9344781	6694679
1						
salaried						
	2055000	1540040	0 55	0 011	0017055	6000001
yes	.3955088	.1549943	2.55	0.011	.0917255	.6992921
_cons	4.862419	.4186367	11.61	0.000	4.041906	5.682932
wellpgm						
age	0958611	.0071251	-13.45	0.000	109826	0818963
smoke						
yes	-1.515911	.1754356	-8.64	0.000	-1.859758	-1.172063
0	4.310847	.338842	12.72	0.000	3.646728	4.974965
_cons	4.310047	.330042	12.72	0.000	3.040720	4.9/4905
weight						
sex						
male	9.501602	.6983151	13.61	0.000	8.13293	10.87028
gym	8162669	.0765488	-10.66	0.000	9662998	666234
_cons	80.09771	.5302486	151.06	0.000	79.05844	81.13697
<pre>var(e.weight)</pre>	65.98399	3.805168			58.93203	73.8798
vui (01 woight)		0.000100				10:0100
J						
corr(e.com~d,						
e.lost4)	.5236573	.1297834	4.03	0.000	.2268709	.7314522
corr(e.wel~m,						
e.lost4)	.249717	.2438804	1.02	0.306	2493086	.6439525
corr(e.wei~t,						
e.lost4)	6846067	.096236	-7.11	0.000	8314263	448426
corr(e.wel~m,	10010001	.000200		0.000	.0011200	. 110 120
	0070057	1000010	0.05	0.005	014000	6000764
e.completed)	.3678357	.1636913	2.25	0.025	.014886	.6392761
corr(e.wei~t,						
e.completed)	0821217	.074566	-1.10	0.271	2255026	.0647412
corr(e.wei~t,						
e.wellpgm)	0888819	.0671873	-1.32	0.186	218281	.0435887
r/8m/						

These parameter estimates are pretty close to those from running eregress on weightloss. But unless you like thinking in terms of shifts along a standardized normal distribution, the coefficient of 1.37 on wellpgm is difficult to interpret. We still know that the effect of the program is statistically significant, but little more.

Note that we added vce(robust). This will allow us to treat our sample as a draw from a population when using estat teffects and margins, and thus make inferences about the population. Otherwise, we would be taking the sample as fixed and not as a draw from a population.

If management is thinking about expanding the program, they will want to evaluate its effectiveness. What proportion of employees across all facilities would lose 4 kg or more naturally, either through all employees not participating or through the program simply not being offered? What proportion would lose 4 kg or more if all employees participated? More to the point, what is the difference in those averages? We type

. estat teffed Predictive man				Number o	of obs	=	545
	Margin	Unconditional Std. Err.	Z	P> z	[95%	Conf.	Interval]
ATE wellpgm (yes vs no)	. 3857447	.1195805	3.23	0.001	. 1513	3712	.6201182

Only about 40% of employees would be expected to lose 4 kg; that is the ATE.

A related question is, What is the expected average increase in participants losing 4 kg? Let's estimate the expected effect of the wellness program on just those employees who choose to participate, the ATET.

. estat teffe	cts, atet					
Predictive man	rgins			Number	of obs =	545
				Subpop.	no. obs =	208
	Margin	Unconditional Std. Err.	z	P> z	[95% Conf.	Interval]
ATET wellpgm (yes vs no)	.5335926	.1322879	4.03	0.000	.274313	.7928722

The ATET of 0.53 implies that just over half of those who choose to participate across all facilities would be expected to lose 4 kg. Recall that we believed success in the program would be positively correlated with employees' decision to participate. That is what made the decision endogenous. It is not surprising that we expect better results for participants than we do for all the employees as a whole.

We are going to need margins to answer some other questions, so let's introduce it by reestimating the ATET. First though, we generate a copy of the wellpgm variable in wellpgmT; margins will need it.

. generate we	llpgmT = wellp	ogm				
<pre>. margins r(0 > contrast(eff</pre>	10	f wellpgm, p	redict()	base(well	lpgm=wellpgmT))
	Contrasts of predictive margins Model VCE : Robust					
Expression	: Pr(lost4==1)), predict(bas	se(well]	pgm=wellp	ogmT))	
	-	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
wellpgm (yes vs no)	. 5335926	.13197	4.04	0.000	.2749361	.7922491

We have reproduced the estimate.

wellpgm (yes vs no)

.6472455

There is a lot happening in that margins command.

- r(0 1).wellpgm tells margins to form two counterfactuals—one at wellpgm=0 and another at wellpgm=1—and to then take the reference (r) contrast (difference) of those two counterfactuals.
- if wellpgm restricts the sample to those who participated in the wellness program.
- predict(base(wellpgm=wellpgmT)) specifies that each counterfactual prediction be conditioned on the employee's actual decision to participate in the program. These values are recorded in wellpgmT. Recall that margins changes the data to form the counterfactuals, and thus predict must be told where to find the employee's actual choice. The use and meaning of predict(base()) are discussed more in [ERM] intro 6.
- contrast(effects nowald) tells margins to report the z statistic and probability > z, which are not shown by default. It also tells margins to suppress the overall Wald statistic.

The standard errors are slightly smaller than those from estat teffects. If we wanted them to match exactly, we would use the vce(unconditional) option with margins. That option creates standard errors appropriate to make inferences about the population. The standard errors are so close that we will dispense with vce(unconditional) in this section.

Now, let's ask a series of different questions from a different perspective.

The physical trainer for our fictional company is having lunch with a new employee, Betty. The trainer mentions the wellness program, and Betty asks if it is likely to do her much good. Betty looks to be mid thirties and average weight. She says she goes to the gym a couple of times a month. The trainer recalls people with those characteristics doing well with the program. Betty's data are already in the company's database, so the trainer opens Stata on her laptop and types

4.79

0 000

.3825287

.9119622

```
. margins r(0 1).wellpgm if name=="Betty", predict(fix(wellpgm))
> contrast(effects nowald) noesample
Warning: prediction constant over observations.
Contrasts of predictive margins
Model VCE : Robust
Expression : Pr(lost4==1), predict(fix(wellpgm))

Delta-method
Contrast Std. Err. z P>|z| [95% Conf. Interval]
```

.1350621

The trainer tells Betty that employees with her characteristics have about a 65% chance of losing 4 kg when they are in the program.

Later, another new employee, Fred, asks whether the program is likely to help him lose that last few kilograms. He is thin, in his upper fifties, and he already goes to the gym about twice a week. Our trainer types

. margins r(0 1).w	ellpgm if name=="Fred", predict(fix(wellpgm))
<pre>> contrast(effects</pre>	nowald) noesample
Warning: prediction	n constant over observations.
Contrasts of prediction Model VCE : Robe	6
Expression : Pr(<pre>lost4==1), predict(fix(wellpgm))</pre>
	Delta-method

	Contrast	Std. Err.	Z	P> z	[95% Conf.	Interval]
wellpgm (yes vs no)	.0184247	.0225112	0.82	0.413	0256965	.0625459

She tells Fred that the program might be good for him but not to expect it to create much weight loss. Fred says he would like to sign up, just so he can meet some other employees.

When Fred leaves, our trainer calls her office mate and makes a wager that Fred will not lose 4 kg on the program. The trainer then realizes that she placed a bet on overall weight loss, not just the loss attributable to the wellness program. To be certain, she checks the potential outcomes of weight loss for Fred being in the program and for Fred being out of the program.

. margins i(0 1).wellpgm if name=="Fred", Warning: prediction constant over observa	1 10	noesample	
Predictive margins Model VCE : Robust	Number of obs	=	1
<pre>Expression : Pr(lost4==1), predict(fix()</pre>	wellpgm))		
Delta-method			_ 7

	Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
wellpgm no yes	.0000365 .0184612	.0000718 .0225357	0.51 0.82	0.612 0.413	0001043 025708	.0001773 .0626304

With a negligible chance of losing 4 kg if Fred chooses not to participate and a slim 2% chance if Fred does participate, our trainer feels pretty good about her wager. Even the upper bound of the confidence intervals makes the trainer confident. Of course, these are the expected results for all employees with Fred's characteristics; Fred might be an overachiever.

Note that our trainer used predict(fix(wellpgm)) to answer all of these questions. That is both the right and the only thing to do. Neither of these new employees has yet made a choice whether to participate. They have not revealed their unobserved characteristics that cause their weight loss and their decision to participate to be correlated. We called this unobserved characteristic the "willingness to engage in healthy behaviors" when we described the model for our data. Unlike when we computed ATET, we do not yet know Fred's and Betty's treatment choices, so we cannot use base() and thus condition our inferences on that additional information. We can make statements only about fixed levels of treatment.

The counterfactuals and contrasts that we computed for Betty and Fred are the expected values from our model conditioned only on the exogenous covariates in the main equation, age and sex,

and on fixing the values of wellpgm first to 0 and then to 1. By "fixing", we mean setting them to 0 and 1, not letting Betty or Fred choose 0 or 1. These estimates are no better or worse than the ATETs we estimated using base(). They are based on less information but use all the information we have about Betty and Fred. The estimates for Betty are what we would expect if we averaged over hundreds of employees who match Betty's age and sex. The same applies to Fred.

Also note that we typed $r(0 \ 1)$, rather than just r. That is because we are operating on a single observation, and margins cannot determine the appropriate levels of wellpgm for which to form counterfactuals. We had to tell margins to use 0 and 1.

It is unlikely that our trainer has Stata on her laptop or has the inclination to type margins commands. As analysts, however, we might create a table for her that she can use to assess candidates and help employees form realistic expectations.

Our dataset already has grouping variables for age, gym, weight, and sex. We can estimate the expected additional probability of losing more than 4 kg for each combination of these groups by using an over() option.

```
. margins r.wellpgm, predict(fix(wellpgm)) contrast(effects nowald)
> over(agegrp gymgrp wtgrp sex)
Contrasts of predictive margins
Model VCE : Robust
Expression : Pr(lost4==1), predict(fix(wellpgm))
over : agegrp gymgrp wtgrp sex

Delta-method
Contrast Std. Err. z P>|z| [95% Conf. Interval]
wellpgm@ag~p#
```

wellpgm@ag~p# gymgrp# wtgrp#sex (yes vs no) 20-29 0						
60-69 female (yes vs no)	.6430664	.1601075	4.02	0.000	.3292614	.9568714
20-29 0 60-69 male	0	(omitted)				
(output omitted)					
(yes vs no) 60 up 11 up < 60 female (yes vs no)	.0032702	.0059912	0.55	0.585	0084723	.0150128
60 up 11 up < 60 male	0	(omitted)				

Those rows marked (omitted) represent combinations of characteristics for which we do not have any employees in our sample. We could use our model to extrapolate to those groups, but we are not going to do that. What we do have for each combination of groups is an estimate of the expected increase in the probability of losing 4 kg, a test that the probability is greater than 0, and a 95% confidence interval.

Those results will take a lot of transcription to create something compact for the trainer. And while our hearts are warmed by the tests and confidence intervals, the trainer might not feel the same way. If we wanted to be exceptionally helpful, we could build a table manually showing ATEs for each group. . predict te, te

. table gymgrp wtgrp sex, by(agegrp) contents(mean te) format(%4.2f)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Age groups and Gym visit		Em	ployee female		female,	1=male a	nd Weig	ht grou — male	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 60	60-69			90 up	< 60	60-69			90 up
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20-29										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.53	0.41				0.62	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.64	0.65					0.58	0.64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 up		0.40						0.35		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30-39										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.48		0.65	0.62	0.61			0.61	0.65	0.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0-5		0.48	0.64	0.64					0.56	0.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-10	0.21	0.39	0.54	0.60			0.27	0.31	0.51	0.48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 up		0.34	0.43					0.24		0.53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40-49										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		0.45	0.57	0.62	0.65			0.33	0.50	0.62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-5		0.39	0.48	0.59	0.61			0.27	0.38	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-10		0.22	0.33	0.38			0.09	0.14	0.25	0.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 up	0.07	0.10		0.28			0.09	0.08	0.19	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50-59										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.26	0.35	0.46	0.62			0.25	0.29	0.47
11 up 0.01 0.01 0.05 0.01 0.01 60 up 0 0.17 0.25 0.37 0.07 0.12 0.26 0-5 0.07 0.33 0.28 0.02 0.03 0.11 6-10 0.02 0.04 0.10 0.01 0.02 0.03 0.08	0-5	0.06		0.22	0.40	0.62			0.12	0.20	0.32
60 up 0.17 0.25 0.37 0.07 0.12 0.26 0-5 0.07 0.33 0.28 0.02 0.03 0.11 6-10 0.02 0.04 0.10 0.01 0.02 0.03 0.08	6-10	0.05	0.04	0.22	0.16	0.39			0.05	0.10	0.13
0 0.17 0.25 0.37 0.07 0.12 0.26 0-5 0.07 0.33 0.28 0.02 0.03 0.11 6-10 0.02 0.04 0.10 0.01 0.02 0.03 0.08	11 up	0.01	0.01	0.05				0.01	0.01		
0 0.17 0.25 0.37 0.07 0.12 0.26 0-5 0.07 0.33 0.28 0.02 0.03 0.11 6-10 0.02 0.04 0.10 0.01 0.02 0.03 0.08	 60 up										
0-5 0.07 0.33 0.28 0.02 0.03 0.11 6-10 0.02 0.04 0.10 0.01 0.02 0.03 0.08				0.17	0.25	0.37			0.07	0.12	0.26
6-10 0.02 0.04 0.10 0.01 0.02 0.03 0.08								0.02			
11 up 0.00 0.02 0.03 0.00 0.02 0.03			0.02						0.02		
	11 up	0.00		0.02					0.00	0.02	0.03

We first predicted the expected treatment effects for each observation in our sample. Then, we let table average those values for each combination of groups. For any combination of groups, these estimates match those from margins.

References

Cameron, A. C., and P. K. Trivedi. 2005. *Microeconometrics: Methods and Applications*. New York: Cambridge University Press.

-. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.

Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. Stata Journal 11: 159-206.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

[ERM] **intro** 1 — An introduction to the ERM commands

[ERM] **intro 6** — Model interpretation

[ERM] Glossary

Title

eintreg — Extended interval regression

Description Quick Options Rema References Also

Quick start Remarks and examples Also see Menu Stored results Syntax Methods and formulas

Description

eintreg fits an interval regression model that accommodates any combination of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample selection.

Quick start

All quick start examples use an interval-measured dependent variable with the interval's lower bound recorded in y_u .

- Regression of $[y_1, y_u]$ on x with continuous endogenous covariate y2 modeled by x and z eintreg y_1 y_u x, endogenous(y2 = x z)
- As above, but adding continuous endogenous covariate y3 modeled by x and z2 eintreg y_l y_u x, endogenous(y2 = x z) endogenous(y3 = x z2)
- Regression of [y_l,y_u] on x with binary endogenous covariate d modeled by x and z eintreg y_l y_u x, endogenous(d = x z, probit)
- Regression of $[y_1, y_u]$ on x with endogenous treatment recorded in trtvar and modeled by x and z

eintreg y_l y_u x, entreat(trtvar = x z)

- Regression of [y_l,y_u] on x with exogenous treatment recorded in trtvar eintreg y_l y_u x, extreat(trtvar)
- Regression of $[y_1, y_u]$ on x with endogenous sample-selection indicator selvar modeled by x and z

eintreg y_l y_u x, select(selvar = x z)

- As above, but adding endogenous covariate y2 modeled by x and z2 eintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2)
- As above, but adding endogenous treatment recorded in trtvar and modeled by x and z3 eintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2) /// entreat(trtvar = x z3)

Menu

Statistics > Endogenous covariates > Models adding selection and treatment > Interval regression

Syntax

```
Basic interval regression with endogenous covariates
eintreg depvar<sub>1</sub> depvar<sub>2</sub> [indepvars],
endogenous(depvars<sub>en</sub> = varlist<sub>en</sub>) [options]
```

Basic interval regression with endogenous treatment assignment eintreg depvar₁ depvar₂ [indepvars], <u>entreat(depvar_{tr} [= varlist_{tr}]) [options]</u>

Basic interval regression with exogenous treatment assignment
eintreg depvar1 depvar2 [indepvars],
 extremat(tvar) [options]

Basic interval regression with sample selection eintreg depvar₁ depvar₂ [indepvars], <u>select(depvar_s = varlist_s) [options]</u>

Basic interval regression with tobit sample selection eintreg depvar₁ depvar₂ [indepvars], <u>tobitsel</u>ect(depvar_s = varlist_s) [options]

Interval regression combining endogenous covariates, treatment, and selection eintreg $depvar_1 \ depvar_2 \ [indepvars] \ [if] \ [in] \ [weight] \ [, extensions options]$

 $depvar_1$ and $depvar_2$ should have the following form:

Type of data		$depvar_1$	$depvar_2$
point data	a = [a, a]	a	a
interval data	[a,b]	a	b
left-censored data	$(-\infty,b]$	•	b
right-censored data	$[a,+\infty)$	a	•
missing		•	

64 eintreg — Extended interval regression

extensions	Description
Model	
endogenous(<i>enspec</i>)	model for endogenous covariates; may be repeated
entreat(entrspec)	model for endogenous treatment assignment
extreat(<i>extrspec</i>)	exogenous treatment
<u>sel</u> ect(<i>selspec</i>)	probit model for selection
<pre>tobitselect(tselspec)</pre>	tobit model for selection
options	Description
Model	
<u>nocons</u> tant	suppress constant term
$\underline{off}set(varname_o)$	include varname _o in model with coefficient constrained to 1
<pre><u>const</u>raints(numlist)</pre>	apply specified linear constraints
<u>col</u> linear	keep collinear variables
SE/Robust	
vce(vcetype)	<pre>vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife</pre>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<pre>intpoints(#)</pre>	set the number of integration (quadrature) points for integration over four or more dimensions; default is intpoints(128)
<pre>triintpoints(#)</pre>	set the number of integration (quadrature) points for integration over three dimensions; default is triintpoints(10)
Maximization	
maximize_options	control the maximization process; seldom used
<u>coefl</u> egend	display legend instead of statistics

enspec is depvars_{en} = varlist_{en} [, enopts]

where $depvars_{en}$ is a list of endogenous covariates. Each variable in $depvars_{en}$ specifies an endogenous covariate model using the common *varlist*_{en} and options.

entrspec is $depvar_{tr} = varlist_{tr}$ [, tropts]

where $depvar_{tr}$ is a variable indicating treatment assignment. $varlist_{tr}$ is a list of covariates predicting treatment assignment.

```
extrspec is tvar [, <u>nomain noint</u>eract]
```

where tvar is a variable indicating treatment assignment.

```
selspec is depvar<sub>s</sub> = varlist<sub>s</sub> [, <u>noconstant offset(varname_o)</u>]
```

where $depvar_s$ is a variable indicating selection status. $depvar_s$ must be coded as 0, indicating that the observation was not selected, or 1, indicating that the observation was selected. $varlist_s$ is a list of covariates predicting selection.

```
tselspec is depvar_s = varlist_s [, tselopts]
```

where $depvar_s$ is a continuous variable. $varlist_s$ is a list of covariates predicting $depvar_s$. The censoring status of $depvar_s$ indicates selection, where a censored $depvar_s$ indicates that the observation was not selected and a noncensored $depvar_s$ indicates that the observation was selected.

enopts	Description
Model	
probit	treat endogenous covariate as binary
oprobit	treat endogenous covariate as ordinal
nomain	do not add endogenous covariate to main equation
noconstant	suppress constant term
tropts	Description
Model	
<u>nom</u> ain	do not add treatment indicator to main equation
<u>noint</u> eract	do not interact treatment with covariates in main equation
<u>nocons</u> tant	suppress constant term
$\underline{off}_{set}(varname_o)$	include $varname_o$ in model with coefficient constrained to 1
tselopts	Description
Model	
11(<i>varname</i> #)	left-censoring variable or limit
ul(<i>varname</i> #)	right-censoring variable or limit
main	add censored selection variable to main equation
<u>nocons</u> tant	suppress constant term
$offset(varname_o)$	include $varname_o$ in model with coefficient constrained to 1

indepvars, varlist_{en}, varlist_{tr}, and varlist_s may contain factor variables; see [U] 11.4.3 Factor variables.

depvar₁, depvar₂, indepvar_s, depvar_sen, varlisten, depvar_{tr}, varlist_{tr}, tvar, depvar_s, and varlist_s may contain time-series operators; see [U] **11.4.4 Time-series varlists**.

bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec), tobitselect(tselspec); see [ERM] erm options.

noconstant, offset(varname_o), constraints(numlist), collinear; see [R] estimation options.

SE/Robust

vce(vcetype); see [ERM] erm options.

Reporting

level(#), nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

Integration

intpoints(#), triintpoints(#); see [ERM] erm options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with eintreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

eintreg fits models that we refer to as "extended interval regression models", meaning that they accommodate endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. eintreg can account for these complications whether they arise individually or in combination.

In this entry, you will find information on the eintreg command syntax. You can see *Methods* and formulas for a full description of the models that can be fit with eintreg and details about how those models are fit.

More information on extended interval regression models is found in the separate introductions and example entries. We recommend reading those entries to learn how to use eintreg. Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eintreg and the other extended regression commands (eregress, eprobit, and eoprobit), see [ERM] intro 1-[ERM] intro 8.

[ERM] intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] intro 2 provides background on the four types of models—linear regression, interval regression, probit regression, and ordered probit regression—that can be fit using ERM commands. This intro also demonstrates how to fit a tobit model using eintreg by transforming your dependent variable into the required format.

[ERM] intro 3 considers the problem of endogenous covariates and how to solve it using ERM commands.

[ERM] intro 4 gives an overview of endogenous sample selection and using ERM commands to account for it.

[ERM] **intro 5** covers nonrandom treatment assignment and how to account for it using **eintreg** or any of the other ERM commands.

[ERM] intro 6 discusses interpretation of results. You can interpret coefficients from eintreg in the usual way, but this introduction goes beyond the interpretation of coefficients. We demonstrate how to find answers to interesting questions by using margins. If your model includes an endogenous covariate or an endogenous treatment, the use of margins differs from its use after other estimation commands, so we strongly recommend reading this intro if you are fitting these types of models.

[ERM] **intro 7** will be helpful if you are familiar with ivtobit and other commands that address endogenous covariates, sample selection, or nonrandom treatment assignment. This introduction is a Rosetta stone that maps the syntax of those commands to the syntax of eintreg.

[ERM] intro 8 walks you through an example that gives insight into the concepts of endogenous covariates, treatment assignment, and sample selection while fitting models with eregress that address these complications. Although the example uses eregress, the discussion applies equally to eintreg. This intro also demonstrates how to interpret results by using margins and estat teffects.

Additional examples are presented in [ERM] example 1a-[ERM] example 6b. For examples using eintreg, see

[ERM] example 1b Interval regression with continuous endogenous covariate

[ERM] example 1c Interval regression with endogenous covariate and sample selection

See *Examples* in [ERM] **intro** for an overview of all the examples. These examples demonstrate all four extended regression commands, and all may be interesting because they handle complications in the same way. Examples using **eregress** will be of particular interest because results of models fit by **eintreg** are interpreted in the same way.

You can also find in literature discussion and examples of many models that eintreg can fit. For instance, the tobit model was originally conceived in Tobin (1958) as a model of consumption of consumer durables, where purchases were left-censored at 0. Wooldridge (2016, sec. 17.4) introduces censored and truncated regression models. Cameron and Trivedi (2010, chap. 16) discuss the tobit model using Stata examples. eintreg can also fit models like the tobit regression model with continuous endogenous regressors (Newey 1987) and models like the censored regression model with binary endogenous regressors (Angrist 2001). Roodman (2011) investigated interval regression models with endogenous covariates and endogenous sample selection, and demonstrated how multiple observational data complications could be addressed with a triangular model structure. His work has been used to model processes like the effect of innovation on labor productivity (Mairesse and Robin 2009) and the effect of insect-resistant crops on pesticide demand (Fernandez-Cornejo and Wechsler 2012).

Stored results

eintreg stores the following in e():
Sector:

Scalars	
e(N)	number of observations
e(N_selected)	number of selected observations
e(N_nonselected)	number of nonselected observations
e(N_unc)	number of uncensored observations
e(N_lc)	number of left-censored observations
e(N_rc)	number of right-censored observations
e(N_int)	number of interval-censored observations
e(k)	number of parameters
e(k_cat#)	number of categories for the #th depvar, ordinal
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(k_dv)	number of dependent variables
e(k_aux)	number of auxiliary parameters
e(df_m)	model degrees of freedom
e(11)	log likelihood
e(N_clust)	number of clusters
e(chi2)	χ^2
e(p)	significance
e(n_quad)	number of integration points for multivariate normal
e(n_quad3)	number of integration points for trivariate normal
e(rank)	rank of e(V)
e(ic)	number of iterations
e(rc)	return code
e(converged)	1 if converged, 0 otherwise
Macros	
e(cmd)	eintreg
e(cmdline)	command as typed
e(depvar)	names of dependent variables
e(wtype)	weight type
e(wexp)	weight expression
e(title)	title in estimation output
e(clustvar)	name of cluster variable
e(offset#)	offset for the #th depvar
e(chi2type)	Wald; type of model χ^2 test
e(vce)	vcetype specified in vce()
e(vcetype)	title used to label Std. Err.
e(opt)	type of optimization
e(which)	max or min; whether optimizer is to perform maximization or minimization
e(ml_method)	type of ml method
e(user)	name of likelihood-evaluator program
e(technique)	maximization technique
e(properties)	b V
e(estat_cmd)	program used to implement estat
e(predict)	program used to implement predict
e(marginsok)	predictions allowed by margins
e(marginsnotok)	predictions disallowed by margins
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(cat#)	categories for the #th depvar, ordinal
e(Cns)	constraints matrix
e(ilog)	iteration log (up to 20 iterations)
e(gradient)	gradient vector
e(V)	variance–covariance matrix of the estimators
e(V_modelbased)	model-based variance
Functions	
e(sample)	marks estimation sample
0 (2 amp 2 5)	

Methods and formulas

The methods and formulas presented here are for the interval-outcome model. They are a special case of the methods and formulas derived by Roodman (2011).

Methods and formulas are presented under the following headings:

Introduction Endogenous covariates Continuous endogenous covariates Binary and ordinal endogenous covariates Treatment Endogenous sample selection Probit endogenous sample selection Tobit endogenous sample selection Combinations of features Confidence intervals

Introduction

A regression model of outcome y_i on covariates \mathbf{x}_i may be written as

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$$

where ϵ_i is normal with mean 0 and variance σ^2 . Instead of observing y_i , we observe the endpoints y_{li} and y_{ui} .

If y_i is left-censored, the lower endpoint $y_{li} = -\infty$ and we know that $y_i \le y_{ui}$. If y_i is right-censored, the upper endpoint $y_{ui} = +\infty$ and we know that $y_i \ge y_{li}$. If there is no censoring, $y_{li} = y_{ui} = y_{i}$. When y_{li} and y_{ui} are real valued and not equal, we know that $y_{li} \le y_i \le y_{ui}$.

The log likelihood is

$$\begin{split} \ln L &= \sum_{i \in U} w_i \ln \phi \left(y_i - \mathbf{x}_i \boldsymbol{\beta}, \sigma^2 \right) \\ &+ \sum_{i \in L} w_i \ln \Phi \left(\frac{y_{ui} - \mathbf{x}_i \boldsymbol{\beta}}{\sigma} \right) \\ &+ \sum_{i \in R} w_i \ln \Phi \left(\frac{-y_{li} + \mathbf{x}_i \boldsymbol{\beta}}{\sigma} \right) \\ &+ \sum_{i \in I} w_i \ln \left\{ \Phi \left(\frac{y_{ui} - \mathbf{x}_i \boldsymbol{\beta}}{\sigma} \right) - \Phi \left(\frac{y_{li} - \mathbf{x}_i \boldsymbol{\beta}}{\sigma} \right) \right\} \end{split}$$

where U is the set of observations where y_i is not censored, L is the set of observations where y_i is left-censored, R is the set of observations where y_i is right-censored, I is the set of observations where y_i is interval-censored, and w_i are the weights.

The conditional mean of y_i is

$$E(y_i|\mathbf{x}_i) = \mathbf{x}_i \boldsymbol{\beta}$$

If we wished to condition on the censoring, we could calculate an expectation on $y_i^* = \max\{y_{li}, \min(y_{ij}, y_{ui})\}$ or a constrained mean $E(y_i|y_{li} < y_i < y_{ui})$. See Predictions considering total effects in [ERM] eprobit postestimation for details on how this is done.

If you are willing to take our word for some derivations and notation, the following is complete. Longer explanations and derivations for some terms and functions are provided in *Methods and formulas* of [ERM] **eprobit**. For example, we need the two-sided probability function Φ_d^* that is discussed in *Introduction* in [ERM] **eprobit**.

If you are interested in all the details, we suggest you read *Methods and formulas* of [ERM] **eprobit** in its entirety before reading this section. Here, we mainly show how the complications that arise in ERMs are handled in an interval regression framework.

Endogenous covariates

Continuous endogenous covariates

An interval regression of y_i on exogenous covariates \mathbf{x}_i and C continuous endogenous covariates \mathbf{w}_{ci} has the form

$$y_i = \mathbf{x}_i \boldsymbol{eta} + \mathbf{w}_{ci} \boldsymbol{eta}_c + \epsilon_i$$

 $\mathbf{w}_{ci} = \mathbf{z}_{ci} \mathbf{A}_c + \epsilon_{ci}$

As in *Introduction*, we do not observe y_i but instead observe the endpoints y_{li} and y_{ui} . The vector \mathbf{z}_{ci} contains variables from \mathbf{x}_i and other covariates that affect \mathbf{w}_{ci} . For the model to be identified, \mathbf{z}_{ci} must contain one extra exogenous covariate not in \mathbf{x}_i for each of the endogenous regressors in \mathbf{w}_{ci} . The unobserved errors ϵ_i and ϵ_{ci} are multivariate normal with mean 0 and covariance

$$\mathbf{\Sigma} = egin{bmatrix} \sigma^2 & m{\sigma}_{1c} \ m{\sigma}_{1c} & m{\Sigma}_c \end{bmatrix}$$

Conditional on the endogenous and exogenous covariates, ϵ_i has mean and variance

$$\mu_{1|c,i} = E\left(\epsilon_i | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}\right) = \boldsymbol{\sigma}_{1c}' \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c\right)'$$

$$\sigma_{1|c}^2 = \operatorname{Var}\left(\epsilon_i | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}\right) = \sigma^2 - \boldsymbol{\sigma}_{1c}' \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\sigma}_{1c}$$

Let

$$r_{li} = y_{li} - \mathbf{x}_i \boldsymbol{\beta} - \mathbf{w}_{ci} \boldsymbol{\beta}_c - \mu_{1|c,i}$$
$$r_{ui} = y_{ui} - \mathbf{x}_i \boldsymbol{\beta} - \mathbf{w}_{ci} \boldsymbol{\beta}_c - \mu_{1|c,i}$$

The log likelihood is

$$\begin{aligned} \ln L &= \sum_{i \in U} w_i \ln \phi \left(r_{li}, \sigma_{1|c}^2 \right) \\ &+ \sum_{i \in L} w_i \ln \Phi_1^* \left(-\infty, r_{ui}, \sigma_{1|c}^2 \right) \\ &+ \sum_{i \in R} w_i \ln \Phi_1^* \left(r_{li}, \infty, \sigma_{1|c}^2 \right) \\ &+ \sum_{i \in I} w_i \ln \Phi_1^* \left(r_{li}, r_{ui}, \sigma_{1|c}^2 \right) \\ &+ \sum_{i=1}^N w_i \ln \phi_C (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c, \mathbf{\Sigma}_c) \end{aligned}$$

where U is the set of observations where y_i is not censored, L is the set of observations where y_i is left-censored, R is the set of observations where y_i is right-censored, and I is the set of observations where y_i is interval-censored.

The conditional mean of y_i is

$$E(y_i|\mathbf{x}_i, \mathbf{w}_{ci}, \mathbf{z}_{ci}) = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_{ci} \boldsymbol{\beta}_c + \boldsymbol{\sigma}_{1c}' \boldsymbol{\Sigma}_c^{-1} (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c)$$

Binary and ordinal endogenous covariates

Here, we begin by formulating the interval regression of y_i on exogenous covariates \mathbf{x}_i and B binary and ordinal endogenous covariates $\mathbf{w}_{bi} = [w_{b1i}, \ldots, w_{bBi}]$. Indicator (dummy) variables for the levels of each binary and ordinal covariate are used in the model. You can also interact other covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariates \mathbf{w}_{bi} are formulated as in *Binary and ordinal* endogenous covariates in [ERM] eprobit. So we have

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB} + \epsilon_i$$

The wind_{bji} vectors are defined in *Binary and ordinal endogenous covariates* in [ERM] eprobit. As in *Introduction*, we do not observe y_i but instead observe the endpoints y_{li} and y_{ui} . The binary and ordinal endogenous errors $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ and outcome error ϵ_i are multivariate normal with 0 mean and covariance

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_b & oldsymbol{\sigma}_{1b} \ oldsymbol{\sigma}_{1b}' & oldsymbol{\sigma}^2 \end{bmatrix}$$

From here, we discuss the model with ordinal endogenous covariates. The results for binary endogenous covariates are similar.

As in *Binary and ordinal endogenous covariates* in [ERM] **eregress**, for the uncensored observations, we write the joint density of y_i and \mathbf{w}_{bi} using the conditional density of $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ on ϵ_i . For the censored observations, we use tools discussed in *Likelihood for multiequation models* in [ERM] **eprobit** to formulate the joint density directly.

For $i \in U$, the uncensored observations, define

$$r_i = y_i - (\mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB})$$

For the censored observations, define

$$r_{li} = y_{li} - (\mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB})$$

$$r_{ui} = y_{ui} - (\mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB})$$

Let

$$\mathbf{\Sigma}_{b|1} = \mathbf{\Sigma} - rac{\mathbf{\sigma}_{1b}\mathbf{\sigma}'_{1b}}{\sigma^2}$$

Now, the log likelihood is

$$\begin{aligned} \ln L &= \sum_{i \in U} w_i \ln \left\{ \Phi_B^*(\mathbf{l}_i, \mathbf{u}_i, \mathbf{\Sigma}_{b|1}) \phi(r_i, \sigma^2) \right\} \\ &+ \sum_{i \in L} w_i \ln \Phi_{B+1}^*([\mathbf{l}_{bi} -\infty], [\mathbf{u}_{bi} -r_{ui}], \mathbf{\Sigma}) \\ &+ \sum_{i \in R} w_i \ln \Phi_{B+1}^*([\mathbf{l}_{bi} -r_{li}], [\mathbf{u}_{bi} -\infty], \mathbf{\Sigma}) \\ &+ \sum_{i \in I} w_i \ln \Phi_{B+1}^*([\mathbf{l}_{bi} -r_{li}], [\mathbf{u}_{bi} -r_{ui}], \mathbf{\Sigma}) \end{aligned}$$

where U is the set of observations where y_i is not censored, L is the set of observations where y_i is left-censored, R is the set of observations where y_i is right-censored, and I is the set of observations where y_i is interval-censored. The vectors \mathbf{l}_{bi} and \mathbf{u}_{bi} are the upper and lower limits for the binary and ordinal endogenous regressors defined in *Binary and ordinal endogenous covariates* in [ERM] **eprobit**. The vectors \mathbf{l}_i and \mathbf{u}_i are the upper and lower limits for the binary and ordinal endogenous regressors defined in *Binary and ordinal endogenous covariates* in [ERM] **eregress**.

The expected value of y_i conditional on \mathbf{w}_{bi} can be calculated using the techniques discussed in *Predictions considering total effects* in [ERM] eprobit postestimation.

Treatment

In the potential-outcomes framework, the treatment t_i is a discrete variable taking T values, indexing the T potential outcomes of the outcome $y_i: y_{1i}, \ldots, y_{Ti}$.

When we observe treatment t_i with levels v_1, \ldots, v_T , we have

$$y_i = \sum_{j=1}^T \mathbb{1}(t_i = v_j) y_{ji}$$

So for each observation, we only observe the potential outcome associated with that observation's treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect estimation method. See [TE] teffects intro advanced. We do not model the treatment assignment process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent to what we provide here for endogenous treatments. The treatment effect on the treated for x_i for an exogenous treatment is equivalent to what we provide here for the endogenous treatment when the correlation parameter between the outcome and treatment errors is set to 0. The average treatment effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous manner to what we describe here for endogenous treatments.

From here, we assume an endogenous treatment t_i . As in *Treatment* in [ERM] **eprobit**, we model the treatment assignment process with a probit or ordered probit model, and we call the treatment assignment error ϵ_{ti} . An interval regression of y_i on exogenous covariates \mathbf{x}_i and endogenous treatment t_i taking values v_1, \ldots, v_T has the form

$$y_{1i} = \mathbf{x}_i \boldsymbol{\beta}_1 + \epsilon_{1i}$$

$$\vdots$$

$$y_{Ti} = \mathbf{x}_i \boldsymbol{\beta}_T + \epsilon_{Ti}$$

$$y_i = \sum_{j=1}^T \mathbf{1}(t_i = v_j) y_{ji}$$

As in *Introduction*, we do not observe y_i but instead observe the endpoints y_{li} and y_{ui} .

For j = 1, ..., T, ϵ_{ii} and ϵ_{ti} are bivariate normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & \sigma \rho_{1t} \\ \sigma \rho_{1t} & 1 \end{bmatrix}$$

The treatment is exogenous if $\rho_{1t} = 0$. Note that we did not specify the structure of the correlations between the potential-outcome errors. We do not need information about these correlations to estimate POMs and treatment effects because all covariates and the outcome are observed in observations from each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary treatment models are similar. The likelihood is derived in a similar manner to *Binary and ordinal endogenous covariates*.

For $i \in U$, the uncensored observations, define

$$r_i = y_i - \mathbf{x}_i \boldsymbol{\beta}_j$$
 if $t_i = v_j$

For the censored observations, define

$$r_{li} = y_{li} - \mathbf{x}_i \boldsymbol{\beta}_j \quad \text{if} \quad t_i = v_j$$

$$r_{ui} = y_{ui} - \mathbf{x}_i \boldsymbol{\beta}_j \quad \text{if} \quad t_i = v_j$$

Now, the log likelihood is

$$\begin{aligned} \ln L &= \sum_{i \in U} w_i \ln \left\{ \Phi_1^* \left(l_{ti} - \frac{\rho_{1t}}{\sigma} r_i, u_{ti} - \frac{\rho_{1t}}{\sigma} r_i, 1 - \rho_{1t}^2 \right) \phi(r_i, \sigma^2) \right\} \\ &+ \sum_{i \in L} w_i \ln \Phi_2^* ([l_{ti} - \infty], [u_{ti} - r_{ui}], \Sigma) \\ &+ \sum_{i \in R} w_i \ln \Phi_2^* ([l_{ti} - r_{li}], [u_{ti} - \infty], \Sigma) \\ &+ \sum_{i \in I} w_i \ln \Phi_2^* ([l_{ti} - r_{li}], [u_{ti} - r_{ui}], \Sigma) \end{aligned}$$

where U is the set of observations where y_i is not censored, L is the set of observations where y_i is left-censored, R is the set of observations where y_i is right-censored, and I is the set of observations where y_i is interval-censored. l_{ti} and u_{ti} are the limits for the treatment probability given in *Treatment* in [ERM] eprobit.

The treatment effect $y_{ji} - y_{1i}$ is the difference in the outcome for individual *i* if the individual receives the treatment $t_i = v_j$ and what the difference would have been if the individual received the control treatment $t_i = v_1$ instead.

The conditional POM for treatment group j is

$$\operatorname{POM}_{j}(\mathbf{x}_{i}) = E\left(y_{ji}|\mathbf{x}_{i}\right) = \mathbf{x}_{i}\boldsymbol{\beta}_{j}$$

For treatment group j, the treatment effect conditioned on \mathbf{x}_i is

$$\operatorname{TE}_{j}(\mathbf{x}_{i}) = E\left(y_{ji} - y_{1i} | \mathbf{x}_{i}\right) = \operatorname{POM}_{j}(\mathbf{x}_{i}) - \operatorname{POM}_{1}(\mathbf{x}_{i})$$

For treatment group j, the treatment effect on the treated (TET) in group h is

$$\operatorname{TET}_{j}(\mathbf{x}_{i}, t_{i} = v_{h}) = E\left(y_{ji} - y_{1i}|\mathbf{x}_{i}, t_{i} = v_{h}\right)$$
$$= \mathbf{x}_{i}\boldsymbol{\beta}_{j} - \mathbf{x}_{i}\boldsymbol{\beta}_{1} + E\left(\epsilon_{ji}|\mathbf{x}_{i}, t_{i} = v_{h}\right) - E\left(\epsilon_{1i}|\mathbf{x}_{i}, t_{i} = v_{h}\right)$$

Remembering that the outcome errors and the treatment error ϵ_{ti} are multivariate normal, for $j = 1, \ldots, T$ we can decompose ϵ_{ji} such that

$$\epsilon_{ji} = \sigma \rho_{1t} \epsilon_{ti} + \psi_{ji}$$

where ψ_{ii} has mean 0.

It follows that

$$\operatorname{TET}_{i}(\mathbf{x}_{i}, t_{i} = v_{h}) = \mathbf{x}_{i}\boldsymbol{\beta}_{i} - \mathbf{x}_{i}\boldsymbol{\beta}_{1}$$

We can take the expectation of these conditional predictions over the covariates to get population average parameters. The estat teffects or margins commands are used to estimate the expectations as predictive margins once the model is estimated with eintreg. The POM for treatment group j is

$$\operatorname{POM}_{j} = E\left(y_{ji}\right) = E\left\{\operatorname{POM}_{j}(\mathbf{x}_{i})\right\}$$

The ATE for treatment group j is

$$ATE_j = E\left(y_{ji} - y_{1i}\right) = E\left\{TE_j(\mathbf{x}_i)\right\}$$

For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

$$ATET_{jh} = E(y_{ji} - y_{1i}|t_i = v_h) = E\{TET_j(\mathbf{x}_i, t_i = v_h)|t_i = v_h\}$$

The conditional mean of y_i at treatment level v_i is

$$E(y_i|\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_j) = \mathbf{x}_i \boldsymbol{\beta}_j + E(\epsilon_i|\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_j)$$

In Predictions considering total effects in [ERM] eprobit postestimation, we discuss how the conditional mean of ϵ_i is calculated.

Endogenous sample selection

Probit endogenous sample selection

The regression for outcome y_i with selection on s_i has the form

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$$

$$s_i = 1 \left(\mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} > 0 \right)$$

where \mathbf{x}_i are covariates that affect the outcome and \mathbf{z}_{si} are covariates that affect selection. As in the *Introduction* above, we do not observe y_i but instead observe the endpoints y_{li} and y_{ui} . If $s_i = 1$, then the observation is selected, and there is an interval regression contribution to the likelihood. If $s_i = 0$, then the observation is not selected, and there is no interval regression contribution to the likelihood.

The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & \sigma \rho_{1s} \\ \sigma \rho_{1s} & 1 \end{bmatrix}$$

The likelihood is derived in a similar manner to that in Treatment.

For $i \in U$, the uncensored and selected observations, define

$$r_i = y_i - \mathbf{x}_i \boldsymbol{\beta}$$

Let

$$\mu_{s|1,i} = \frac{\rho_{1s}}{\sigma} r_i$$
$$\sigma_{s|1} = 1 - \rho_{1s}^2$$

For the selection indicator s_i , the lower and upper limits on ϵ_{si} are

$$l_{si} = \begin{cases} -\infty & s_i = 0 \\ & & u_{si} = \end{cases} \quad u_{si} = \begin{cases} -\mathbf{z}_{si} \alpha_s & s_i = 0 \\ \\ -\mathbf{z}_{si} \alpha_s & s_i = 1 \end{cases}$$

For the censored but selected observations, $i \notin U$, define

$$r_{li} = y_{li} - \mathbf{x}_i \boldsymbol{\beta}_j$$
$$r_{ui} = y_{ui} - \mathbf{x}_i \boldsymbol{\beta}_j$$

Now, the log likelihood is

$$\begin{aligned} \ln L &= \sum_{i \in U} w_i \ln \left\{ \Phi_1^* (l_{si} - \mu_{s|1,i}, u_{si} - \mu_{s|1,i}, \sigma_{s|1}^2) \phi(r_i, \sigma^2) \right\} \\ &+ \sum_{i \in L} w_i \ln \Phi_2^* ([l_{si} - \infty], [u_{si} - r_{ui}], \Sigma) \\ &+ \sum_{i \in R} w_i \ln \Phi_2^* ([l_{si} - r_{li}], [u_{si} - \infty], \Sigma) \\ &+ \sum_{i \in I} w_i \ln \Phi_2^* ([l_{si} - r_{li}], [u_{si} - r_{ui}], \Sigma) \\ &\sum_{i \notin S} w_i \ln \Phi_1^* (l_{si}, u_{si}, 1) \end{aligned}$$

where U is the set of observations where y_i is not censored, L is the set of observations where y_i is left-censored, R is the set of observations where y_i is right-censored, I is the set of observations where y_i is interval-censored, and S is the set of selected observations.

The conditional mean of y_i is

$$E(y_i|\mathbf{x}_i) = \mathbf{x}_i \boldsymbol{\beta}$$

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses a censored continuous endogenous sample-selection indicator. We allow the selection variable to be left-censored or right-censored. The underlying regression model for y_i with tobit selection on s_i has the form

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$$

We observe the selection indicator s_i , which indicates the censoring status of the latent selection variable s_i^* ,

$$\begin{split} s_i^{\uparrow} &= \mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} \\ s_i &= \begin{cases} l_i & s_i^{\star} \leq l_i \\ s_i^{\star} & l_i < s_i^{\star} < u_i \\ u_i & s_i^{\star} \geq u_i \end{cases} \end{split}$$

where \mathbf{z}_{si} are covariates that affect selection, and l_i and u_i are fixed lower and upper limits.

As in *Introduction*, y_i is observed via the endpoints y_{li} and y_{ui} . If s_i^* is not censored ($l_i < s_i^* < u_i$), then the observation is selected and there is an interval regression contribution to the likelihood. Otherwise, if s_i^* is left-censored ($s_i^* < l_i$) or right-censored ($s_i^* > l_i$), then the observation is not selected, and there is no interval regression contribution to the likelihood. The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\mathbf{\Sigma} = egin{bmatrix} \sigma^2 & \sigma_{1s} \ \sigma_{1s} & \sigma_s^2 \end{bmatrix}$$

For the selected observations, we can treat s_i as a continuous endogenous regressor, as in *Continuous endogenous covariates.* In fact, s_i may even be used as a regressor for y_i in eintreg (specify tobitselect(..., main)). On the nonselected observations, we treat s_i like the probit endogenous sample-selection indicator in *Probit endogenous sample selection*.

Conditional on s_i^{\star} and the exogenous covariates, ϵ_i has mean and variance

$$\mu_{1|s,i} = E\left(\epsilon_i | s_i^{\star}, \mathbf{x}_i, \mathbf{z}_{si}\right) = \sigma_{1s} \sigma_s^{-2} \left(\mathbf{s}_i^{\star} - \mathbf{z}_{si} \boldsymbol{\alpha}_s\right)$$
$$\sigma_{1|s}^2 = \operatorname{Var}\left(\epsilon_i | s_i^{\star}, \mathbf{x}_i, \mathbf{z}_{si}\right) = \sigma^2 - \sigma_{1s} \sigma_s^{-2} \sigma_{1s}$$

Let

$$r_{li} = y_{li} - \mathbf{x}_i \boldsymbol{\beta} - \mu_{1|s,i}$$
$$r_{ui} = y_{ui} - \mathbf{x}_i \boldsymbol{\beta} - \mu_{1|s,i}$$

The log likelihood is

$$\begin{split} \ln L &= \sum_{i \in U} w_i \ln \phi \Big(r_{li}, \sigma_{1|s}^2 \Big) \\ &+ \sum_{i \in L} w_i \ln \Phi_1^* \left(-\infty, r_{ui}, \sigma_{1|s}^2 \right) \\ &+ \sum_{i \in R} w_i \ln \Phi_1^* \left(r_{li}, \infty, \sigma_{1|s}^2 \right) \\ &+ \sum_{i \in I} w_i \ln \Phi_1^* \left(r_{li}, r_{ui}, \sigma_{1|s}^2 \right) \\ &+ \sum_{i \in S} w_i \ln \phi (s_i - \mathbf{z}_{si} \alpha_s, \sigma_s^2) \\ &+ \sum_{i \in L_n} w_i \ln \Phi_1^* (l_{li}, u_{li}, 1) \\ &+ \sum_{i \in R_n} w_i \ln \Phi_1^* (l_{ui}, u_{ui}, 1) \end{split}$$

where S is the set of observations for which y_{li} and y_{ui} are observed, $U \subset S$ is the set of observations where y_i is not censored, $L \subset S$ is the set of observations where y_i is left-censored, $R \subset S$ is the set of observations where y_i is right-censored, $I \subset S$ is the set of observations where y_i is interval-censored, L_n is the set of observations for which s_i^* is left-censored, and R_n is the set of observations for which s_i^* is right-censored. The lower and upper limits for selection— l_{li} , u_{li} , l_{ui} , and u_{ui} —are defined in *Tobit endogenous sample selection* in [ERM] **eprobit**.

When s_i is not a covariate in \mathbf{x}_i , we use the standard conditional mean formula,

$$E(y_i|\mathbf{x}_i) = \mathbf{x}_i\boldsymbol{\beta}$$

Otherwise, we use

$$E(y_i|\mathbf{x}_i, s_i, z_{si}) = \mathbf{x}_i \boldsymbol{\beta} + \frac{\sigma_{1s}}{\sigma_s^2} (s_i - z_{si} \boldsymbol{\alpha}_s)$$

Combinations of features

Extended interval regression models that involve multiple features can be formulated using the techniques discussed in *Likelihood for multiequation models* in [ERM] **eprobit**. Essentially, the density of the observed endogenous covariates can be written in terms of the unobserved normal errors. The observed endogenous and exogenous covariates determine the range of the errors, and the joint density can be evaluated as multivariate normal probabilities and densities.

Confidence intervals

The estimated variances will always be nonnegative, and the estimated correlations will always fall in (-1, 1). To obtain confidence intervals that accommodate these ranges, we must use transformations.

We use the log transformation to obtain the confidence intervals for variance parameters and the atanh transformation to obtain confidence intervals for correlation parameters. For details, see *Confidence intervals* in [ERM] **eprobit**.

References

- Angrist, J. D. 2001. Estimation of limited dependent variable models with dummy endogenous regressors: Simple strategies for empirical practice. Journal of Business and Economic Statistics 19: 2–16.
- Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.
- Fernandez-Cornejo, J., and S. Wechsler. 2012. Revisiting the Impact of Bt Corn Adoption by U.S. Farmers. Agricultural and Resource Economics Review 41: 377–390.
- Mairesse, J., and S. Robin. 2009. Innovation and productivity: A firm-level analysis for French manufacturing and services using CIS3 and CIS4 data (1998–2000 and 2002–2004). CREST–ENSAE. congres.afse.fr/docs/2010/543572jmsr_ep2009.pdf.
- Newey, W. K. 1987. Efficient estimation of limited dependent variable models with endogenous explanatory variables. *Journal of Econometrics* 36: 231–250.

Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. Stata Journal 11: 159-206.

Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26: 24-36.

Wooldridge, J. M. 2016. Introductory Econometrics: A Modern Approach. 6th ed. Boston: Cengage.

Also see

[ERM] eintreg postestimation — Postestimation tools for eintreg

- [ERM] eintreg predict predict after eintreg
- [ERM] estat teffects Average treatment effects for extended regression models
- [ERM] **intro** 8 Conceptual introduction via worked example
- [R] **intreg** Interval regression
- [R] **ivtobit** Tobit model with continuous endogenous covariates
- [R] **tobit** Tobit regression
- [SVY] svy estimation Estimation commands for survey data
- [U] 20 Estimation and postestimation commands

eintreg postestimation — Postestimation tools for eintreg

Postestimation commandspredictmarginsRemarks and examplesMethods and formulasAlso see

Postestimation commands

The following postestimation command is of special interest after eintreg:

Command	Description
estat teffects	treatment effects and potential-outcome means

The following standard postestimation commands are also available after eintreg:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
*forecast	dynamic forecasts and simulations
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

* forecast and lrtest are not appropriate with svy estimation results.

predict

Predictions after eintreg are described in

[ERM] eintreg predict	predict after eintreg
[ERM] predict treatment	predict for treatment statistics
[ERM] predict advanced	predict's advanced features

[ERM] eintreg predict describes the most commonly used predictions. If you fit a model with treatment effects, predictions specifically related to these models are detailed in [ERM] predict treatment. [ERM] predict advanced describes less commonly used predictions, such as predictions of outcomes in auxiliary equations.

margins

Description for margins

margins estimates margins of response for means, probabilities, potential-outcome means, treatment effects, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

<pre>margins [marginlist] [, options] margins [marginlist], predict(statistic) [predict(statistic)] [options]</pre>		
statistic	Description	
Main		
mean	mean; the default	
pr	probability for binary or ordinal y_j	
pomean	potential-outcome mean	
te	treatment effect	
tet	treatment effect on the treated	
xb	linear prediction	
pr(a,b)	$Pr(a < y_j < b)$ for continuous y_j	
_ e(a,b)	$E(y_j a < y_j < b)$ for continuous y_j	
$\underline{ys}tar(a,b)$	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$ for continuous y_j	

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

See [ERM] intro 6 for an overview of using margins and predict after eintreg. For examples using margins, predict, and estat teffects, see *Interpreting effects* in [ERM] intro 8 and see [ERM] example 1a.

Methods and formulas

Counterfactual predictions and inferences for the underlying model in interval regression can be evaluated as in a linear regression model. These predictions and effects are described in *Methods and formulas* of [ERM] **eregress postestimation**. Methods and formulas for all other predictions are given in *Methods and formulas* of [ERM] **eintreg**.

Also see

[ERM] eintreg — Extended interval regression

[ERM] eintreg predict — predict after eintreg

[ERM] predict treatment — predict for treatment statistics

[ERM] predict advanced — predict's advanced features

[ERM] eprobit postestimation — Postestimation tools for eprobit

[U] 20 Estimation and postestimation commands

eintreg predict — predict after eintreg

Description Options for statistics Remarks and examples Also see Syntax Options for how results are calculated Methods and formulas

Description

In this entry, we show how to create new variables containing observation-by-observation predictions after fitting a model with eintreg.

Syntax

You previously fit the model

eintreg yl yu x1 ..., ...

The equation specified immediately after the eintreg command is called the main equation. It is

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \dots + e_i \mathbf{.y}$$

where $yl_i \leq y_i \leq yu_i$.

predict calculates predictions for y in the main equation. The other equations in the model are called auxiliary equations or complications.

The syntax of predict is

predict [type] newvar [if] [in] [, stdstatistics howcalculated]

stdstatistics	Description
mean	linear prediction; the default
xb	linear prediction excluding all complications
$\underline{ys}tar(a,b)$	$E(y*_j), y*_j = \max\{a, \min(y_j, b)\}$

a and b are numeric values, missing (.), or variable names.

howcalculated	Description
default	not fixed; base values from data
<pre>fix(endogvars)</pre>	fix specified endogenous covariates
base(valspecs)	specify base values of any variables
<pre>target(valspecs)</pre>	more convenient way to specify fix() and base()

Note: The fix() and base() options affect results only in models with endogenous variables in the main equation. The target() option is sometimes a more convenient way to specify the fix() and base() options.

endogvars are names of one or more endogenous variables appearing in the main equation.

valspecs specify the values for variables at which predictions are to be evaluated. Each *valspec* is of the form

varname = #
varname = (exp)
varname = othervarname

For instance, base(valspecs) could be base(w1=0) or base(w1=0 w2=1).

Notes:

- (1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
- (2) predict can also make predictions for the other equations in addition to the main-equation predictions discussed here. See [ERM] predict advanced.

Options for statistics

- mean specifies that the linear prediction be calculated. In each observation, the linear prediction is the expected value of the dependent variable y conditioned on the covariates. Results depend on how complications are handled, which is determined by the *howcalculated* options.
- xb specifies that the linear prediction be calculated ignoring all complications. This prediction corresponds to what would be observed in data in which all the covariates in the main equation were exogenous.
- ystar(a, b) specifies that the linear prediction be censored between a and b. If a is missing (.), then a is treated as $-\infty$. If b is missing (.), then b is treated as $+\infty$. a and b can be specified as numeric values, missing (.), or variable names.

Options for how results are calculated

By default, predictions are calculated taking into account all complications. This is discussed in *Remarks and examples* of [ERM] **eregress predict**.

- fix(*varname*...) specifies a list of endogenous variables from the main equation to be treated as if they were exogenous. This was discussed in [ERM] **intro 3** and is discussed further in *Remarks and examples* of [ERM] **eregress predict**.
- base(varname = ...) specifies a list of variables from any equation and values for them. Those values will be used in calculating the expected value of e_i .y. Errors from other equations spill over into the main equation because of correlations between errors. The correlations were estimated when the model was fit. The amount of spillover depends on those correlations and the values of the errors. This issue was discussed in [ERM] intro 3 and is discussed further in *Remarks and examples* of [ERM] eregress predict.
- target(varname = ...) is sometimes a more convenient way to specify the fix() and base() options. You specify a list of variables from the main equation and values for them. Those values override the values of the variables calculating $\beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \cdots$. Use of target() is discussed in *Remarks and examples* of [ERM] eregress predict.

Remarks and examples

Predictions after fitting models with eintreg are handled the same as they are after fitting models with eregress. The issues are the same. See [ERM] eregress predict.

Note that censoring is treated as a nuisance in eintreg. Predicted values are not yl and yu, they are y.

Methods and formulas

See Methods and formulas in [ERM] eintreg postestimation.

Also see

[ERM] eintreg postestimation — Postestimation tools for eintreg

[ERM] eintreg — Extended interval regression

Title

eoprobit — Extended ordered probit regression

Description Options References Quick start Remarks and examples Also see Menu Stored results Syntax Methods and formulas

Description

eoprobit fits an ordered probit regression model that accommodates any combination of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample selection.

Quick start

- Ordered probit regression of y on x with continuous endogenous covariate y2 modeled by x and z eoprobit y x, endogenous(y2 = x z)
- As above, but adding continuous endogenous covariate y3 modeled by x and z2

eoprobit y x, endogenous(y2 = x z) endogenous(y3 = x z2)

- Ordered probit regression of y on x with binary endogenous covariate d modeled by x and z eoprobit y x, endogenous(d = x z, probit)
- Ordered probit regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z

eoprobit y x, entreat(trtvar = x z)

- Ordered probit regression of y on x with exogenous treatment recorded in trtvar eoprobit y x, extreat(trtvar)
- Ordered probit regression of y on x with endogenous sample-selection indicator selvar modeled by x and z

eoprobit y x, select(selvar = x z)

As above, but adding endogenous covariate y2 modeled by x and z2 eoprobit y x, select(selvar = x z) endogenous(y2 = x z2)

As above, but adding endogenous treatment recorded in trtvar and modeled by x and z3 eoprobit y x, select(selvar = x z) endogenous(y2 = x z2) /// entreat(trtvar = x z3)

Menu

Statistics > Endogenous covariates > Models adding selection and treatment > Ordered probit regression

Syntax

Basic ordered probit regression with endogenous covariates
eoprobit depvar [indepvars],
endogenous(depvarsen = varlisten) [options]

Basic ordered probit regression with endogenous treatment assignment
eoprobit depvar [indepvars],
 <u>entreat(depvartr [= varlistr]) [options]</u>

Basic ordered probit regression with exogenous treatment assignment

eoprobit depvar [indepvars],
 <u>extr</u>eat(tvar) [options]

```
Basic ordered probit regression with sample selection
eoprobit depvar [indepvars],
    select(depvars = varlists) [options]
```

Basic ordered probit regression with tobit sample selection
eoprobit depvar [indepvars],
 tobitselect(depvars = varlists) [options]

Ordered probit regression combining endogenous covariates, treatment, and selection eoprobit depvar [indepvars] [if] [in] [weight] [, extensions options]

extensions	Description
Model	
endogenous(<i>enspec</i>)	model for endogenous covariates; may be repeated
<u>entr</u> eat(<i>entrspec</i>)	model for endogenous treatment assignment
<pre><u>extr</u>eat(extrspec)</pre>	exogenous treatment
<u>sel</u> ect(<i>selspec</i>)	probit model for selection
<pre>tobitselect(tselspec)</pre>	tobit model for selection
options	Description
Model	
<u>off</u> set(<i>varname</i> _o)	include varname _o in model with coefficient constrained to 1
<pre><u>const</u>raints(numlist)</pre>	apply specified linear constraints
<u>col</u> linear	keep collinear variables
SE/Robust	
vce(<i>vcetype</i>)	<pre>vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife</pre>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<pre>intpoints(#)</pre>	set the number of integration (quadrature) points for integration over four or more dimensions; default is intpoints(128)
<pre>triintpoints(#)</pre>	set the number of integration (quadrature) points for integration over three dimensions; default is triintpoints(10)
Maximization	
maximize_options	control the maximization process; seldom used
<u>coefl</u> egend	display legend instead of statistics

enspec is depvars_{en} = varlist_{en} [, enopts]

where $depvars_{en}$ is a list of endogenous covariates. Each variable in $depvars_{en}$ specifies an endogenous covariate model using the common *varlist*_{en} and options.

entrspec is $depvar_{tr}[=varlist_{tr}][$, tropts]

where $depvar_{tr}$ is a variable indicating treatment assignment. $varlist_{tr}$ is a list of covariates predicting treatment assignment.

extrspec is tvar [, nomain nocutsinteract nointeract]

where tvar is a variable indicating treatment assignment.

selspec is depvar_s = varlist_s [, <u>noconstant offset(varname_o)</u>]

where $depvar_s$ is a variable indicating selection status. $depvar_s$ must be coded as 0, indicating that the observation was not selected, or 1, indicating that the observation was selected. $varlist_s$ is a list of covariates predicting selection.

```
tselspec is depvar_s = varlist_s [, tselopts]
```

where $depvar_s$ is a continuous variable. $varlist_s$ is a list of covariates predicting $depvar_s$. The censoring status of $depvar_s$ indicates selection, where a censored $depvar_s$ indicates that the observation was not selected and a noncensored $depvar_s$ indicates that the observation was selected.

enopts	Description
Model	
probit	treat endogenous covariate as binary
oprobit	treat endogenous covariate as ordinal
nomain	do not add endogenous covariate to main equation
<u>nocons</u> tant	suppress constant term
tropts	Description
Model	
<u>nom</u> ain	do not add treatment indicator to main equation
<u>nocutsint</u> eract	do not interact treatment with cutpoints
<u>noint</u> eract	do not interact treatment with covariates in main equation
<u>nocons</u> tant	suppress constant term
$\underline{off}set(varname_o)$	include $varname_o$ in model with coefficient constrained to 1
tselopts	Description
Model	
ll(<i>varname</i> #)	left-censoring variable or limit
ul(<i>varname</i> #)	right-censoring variable or limit
main	add censored selection variable to main equation
<u>nocons</u> tant	suppress constant term
$offset(varname_o)$	include $varname_o$ in model with coefficient constrained to 1

indepvars, varlisten, varlister, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec), tobitselect(tselspec); see [ERM] erm options.

offset($varname_o$), constraints(numlist), collinear; see [R] estimation options.

SE/Robust

vce(vcetype); see [ERM] erm options.

Reporting

level(#), nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

Integration

intpoints(#), triintpoints(#); see [ERM] erm options.

∫ Maximization]

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with eoprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

eoprobit fits models that we refer to as "extended ordered probit regression models", meaning that they accommodate endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. eoprobit can account for these complications whether they arise individually or in combination.

In this entry, you will find information on the eoprobit command syntax. You can see *Methods* and *formulas* for a full description of the models that can be fit with eoprobit and details about how those models are fit.

More information on extended ordered probit models is found in the separate introductions and example entries. We recommend reading those entries to learn how to use eoprobit. Below, we provide a guide to help you locate the ones that will be helpful to you. For an introduction to eoprobit and the other extended regression commands (eregress, eintreg, and eprobit), see [ERM] intro 1–[ERM] intro 8.

[ERM] intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] **intro 2** provides background on the four types of models—linear regression, interval regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] intro 3 considers the problem of endogenous covariates and how to solve it using ERM commands.

[ERM] intro 4 gives an overview of endogenous sample selection and using ERM commands to account for it when fitting a linear, interval, probit, or ordered probit model.

[ERM] **intro 5** covers nonrandom treatment assignment and how to account for it using eoprobit or any of the other ERM commands.

[ERM] intro 6 discusses interpretation of results. You can interpret coefficients from eoprobit in the usual way, but this introduction goes beyond the interpretation of coefficients. We demonstrate how to find answers to interesting questions by using margins. If your model includes an endogenous covariate or an endogenous treatment, the use of margins differs from its use after other estimation commands, so we strongly recommend reading this intro if you are fitting these types of models.

[ERM] intro 7 will be particularly helpful if you are familiar with heckoprobit and other commands that address endogenous covariates, sample selection, or nonrandom treatment assignment. This introduction is a Rosetta stone that maps the syntax of those commands to the syntax of eoprobit.

[ERM] intro 8 walks you through an example that gives insight into the concepts of endogenous covariates, treatment assignment, and sample selection while fitting models with eregress that address these complications. Although the example uses eregress, the discussion applies equally to eoprobit. This intro also demonstrates how to interpret results by using margins and estat teffects.

Additional examples are presented in [ERM] example 1a-[ERM] example 6b. For examples using eoprobit, see

[ERM] example 6aOrdered probit regression with endogenous treatment[ERM] example 6bOrdered probit regression with endogenous covariate
and treatment

See *Examples* in [ERM] **intro** for an overview of all the examples. These examples demonstrate all four extended regression commands, and all may be interesting because they handle complications in the same way.

You can also find in literature discussion and examples of many models that eoprobit can fit. For instance, eoprobit can be used to fit models like the ordered probit model with endogenous sample selection discussed in De Luca and Perotti (2011) and the ordered probit models with continuous or binary endogenous covariates discussed in Wooldridge (2010, sec. 16.3.3). Roodman (2011) investigated ordered probit models with endogenous covariates and endogenous sample selection, and demonstrated how multiple observational data complications could be addressed with a triangular model structure. His work has been used to model processes like the effect of living with a child on the happiness of the elderly (Chyi and Mao 2012) and the effect of parental migration on child education (Botezat and Pfeiffer 2014).

Stored results

eoprobit stores the following in e():

Scalars	
e(N)	number of observations
e(N_selected)	number of uncensored observations
e(N_nonselected)	number of censored observations
e(k)	number of parameters
e(k_cat#)	number of categories for the #th depvar, ordinal
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(k_dv)	number of dependent variables
e(k_aux)	number of auxiliary parameters
e(df_m)	model degrees of freedom
e(11)	log likelihood
e(N_clust)	number of clusters
e(chi2)	χ^2
e(p)	significance
e(n_quad)	number of integration points for multivariate normal
e(n_quad3)	number of integration points for trivariate normal
e(rank)	rank of e(V)
e(ic)	number of iterations
e(rc)	return code
e(converged)	1 if converged, 0 otherwise
Macros	
e(cmd)	eoprobit
e(cmdline)	command as typed
e(depvar)	names of dependent variables
e(wtype)	weight type
e(wexp)	weight expression
e(title)	title in estimation output
e(clustvar)	name of cluster variable
e(offset#)	offset for the #th depvar
e(chi2type)	Wald; type of model χ^2 test
e(vce)	vcetype specified in vce()
e(vcetype)	title used to label Std. Err.
e(opt)	type of optimization
e(which)	max or min; whether optimizer is to perform maximization or minimization
e(ml_method)	type of ml method
e(user)	name of likelihood-evaluator program
e(technique)	maximization technique
e(properties)	b V
e(estat_cmd)	program used to implement estat
e(predict)	program used to implement predict
e(marginsok)	predictions allowed by margins
e(marginsnotok)	predictions disallowed by margins
e(marginsdefault)	default predict() specification for margins
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(cat#)	categories for the #th depvar, ordinal
e(Cns)	constraints matrix
e(ilog)	iteration log (up to 20 iterations)
e(gradient)	gradient vector
e(V)	variance-covariance matrix of the estimators
e(V_modelbased)	model-based variance
Functions	
e(sample)	marks estimation sample

Methods and formulas

The methods and formulas presented here are for the ordered probit-outcome model. They are a special case of the methods and formulas derived by Roodman (2011) and extend the methods and formulas for extended probit regressions described in *Methods and formulas* of [ERM] **eprobit** to extended ordered probit regression models.

Methods and formulas are presented under the following headings:

Introduction Endogenous covariates Continuous endogenous covariates Binary and ordinal endogenous covariates Treatment Endogenous sample selection Probit endogenous sample selection Tobit endogenous sample selection Combinations of features Confidence intervals

Introduction

An ordered probit regression of outcome y_i on covariates \mathbf{x}_i may be written as

$$y_i = v_h$$
 iff $\kappa_{h-1} < \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i \leq \kappa_h$

The values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$. The unobserved error ϵ_i is standard normal.

The log likelihood for this model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \begin{bmatrix} 1(y_i = v_1)\Phi(-\mathbf{x}_i\boldsymbol{\beta}) \\ + \sum_{h=2}^{H-1} 1(y_i = v_h) \left\{ \Phi(\kappa_h - \mathbf{x}_i\boldsymbol{\beta}) - \Phi(\kappa_{h-1} - \mathbf{x}_i\boldsymbol{\beta}) \right\} \\ + 1(y_i = v_H)\Phi(\mathbf{x}_i\boldsymbol{\beta}) \end{bmatrix}$$

where w_i are the weights.

For $h = 0, \ldots, H$, define

$$c_{ih} = \begin{cases} -\infty & h = 0\\ \kappa_h - \mathbf{x}_i \boldsymbol{\beta} & h = 1, \dots, H - 1\\ \infty & h = H \end{cases}$$
(1)

This leads to the limits

$$l_{1i} = c_{i(h-1)} \quad \text{if} \quad y_i = v_h \tag{2}$$

and

$$u_{1i} = c_{ih} \quad \text{if} \quad y_i = v_h \tag{3}$$

These are limits on the unobserved ϵ_i based on the observed values of y_i and \mathbf{x}_i . They let us rewrite the log likelihood concisely as

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_1^*(l_{1i}, u_{1i}, 1)$$

The conditional probabilities of success can be written using similar notation. For h = 1, ..., H,

$$\Pr\left(y_{i} = v_{h} | \mathbf{x}_{i}\right) = \Phi_{1}^{*}(c_{i(h-1)}, c_{ih}, 1)$$
(4)

If you are willing to take our word for some derivations and notation, the following is complete. Longer explanations and derivations for some terms and functions are provided in *Methods and formulas* of [ERM] **eprobit**. For example, we need the two-sided probability function Φ_d^* that is discussed in *Introduction* in [ERM] **eprobit**.

If you are interested in all the details, we suggest you read *Methods and formulas* of [ERM] **eprobit** in its entirety before reading this section. Here, we mainly show how the complications that arise in ERMs are handled in an ordered probit framework.

Endogenous covariates

Continuous endogenous covariates

An ordered probit regression of y_i on exogenous covariates \mathbf{x}_i and C continuous endogenous covariates \mathbf{w}_{ci} has the form

$$y_i = v_h$$
 iff $\kappa_{h-1} < \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_{ci} \boldsymbol{\beta}_c + \epsilon_i \leq \kappa_h$
 $\mathbf{w}_{ci} = \mathbf{z}_{ci} \mathbf{A}_c + \epsilon_{ci}$

The values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$. The vector \mathbf{z}_{ci} contains variables from \mathbf{x}_i and other covariates that affect \mathbf{w}_{ci} . The unobserved errors ϵ_i and ϵ_{ci} are multivariate normal with mean 0 and covariance

$$egin{bmatrix} 1 & \pmb{\sigma}_{1c}' \ \pmb{\sigma}_{1c} & \pmb{\Sigma}_c \end{bmatrix}$$

As in *Continuous endogenous covariates* in [ERM] **eprobit**, the likelihood can be written using the conditional density of ϵ_i on \mathbf{w}_{ci} .

Now, for $h = 0, \ldots, H$, define

$$c_{ih} = \begin{cases} -\infty & h = 0\\ \kappa_h - \mathbf{x}_i \boldsymbol{\beta} - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c \right)' & h = 1, \dots, H - 1\\ \infty & h = H \end{cases}$$

These expressions used the conditional mean of ϵ_i . The lower and upper limits for the y_i probability are

$$l_{1i} = c_{i(h-1)}$$
 if $y_i = v_h$

and

$$u_{1i} = c_{ih}$$
 if $y_i = v_h$

Using these limits, the conditional variance, and the conditional density of \mathbf{w}_{ci} , we obtain the log likelihood

$$\ln L = \sum_{i=1}^{N} w_i \left\{ \ln \Phi_1^* \left(l_{1i}, u_{1i}, 1 - \boldsymbol{\sigma}_{1c}' \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\sigma}_{1c} \right) + \ln \phi_C (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c, \boldsymbol{\Sigma}_c) \right\}$$

The conditional probabilities of success can be written using similar notation. For h = 1, ..., H,

$$\Pr\left(y_i = v_h | \mathbf{x}_i\right) = \Phi_1^*(c_{i(h-1)}, c_{ih}, 1 - \boldsymbol{\sigma}_{1c}' \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\sigma}_{1c})$$

Binary and ordinal endogenous covariates

Here, we begin by formulating the ordered probit regression of y_i on exogenous covariates \mathbf{x}_i and B binary and ordinal endogenous covariates $\mathbf{w}_{bi} = [w_{b1i}, \ldots, w_{bBi}]$. Indicator (dummy) variables for the levels of each binary and ordinal covariate are used in the model. You can also interact other covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariates \mathbf{w}_{bi} are formulated as in *Binary and ordinal* endogenous covariates in [ERM] eprobit. So we have

$$y_i = v_h$$
 iff $\kappa_{h-1} < \mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB} + \epsilon_i \leq \kappa_h$

where the values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$. The **wind**_{bji} vectors are defined in *Binary and ordinal endogenous covariates* in [ERM] **eprobit**. The outcome error ϵ_i and binary and ordinal endogenous errors $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ are multivariate normal with mean 0 and covariance

$$\mathbf{\Sigma} = egin{bmatrix} 1 & oldsymbol{
ho}_{1b} \ oldsymbol{
ho}_{1b} & oldsymbol{\Sigma}_b \end{bmatrix}$$

From here, we discuss the model with ordinal endogenous covariates. The results for binary endogenous covariates are similar.

Now, for $h = 0, \ldots, H$, define

$$c_{ih} = \begin{cases} -\infty & h = 0\\ \kappa_h - \mathbf{x}_i \boldsymbol{\beta} - \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} - \dots - \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB} & h = 1, \dots, H-1\\ \infty & h = H \end{cases}$$

The lower and upper limits for the y_i probability are

$$l_{1i} = c_{i(h-1)}$$
 if $y_i = v_h$

and

$$u_{1i} = c_{ih}$$
 if $y_i = v_h$

Let

$$\mathbf{l}_i = \begin{bmatrix} l_{1i} & l_{b1i} & \dots & l_{bBi} \end{bmatrix}$$
$$\mathbf{u}_i = \begin{bmatrix} u_{1i} & u_{b1i} & \dots & u_{bBi} \end{bmatrix}$$

where the l_{bji} and u_{bji} are the lower and upper limits for the binary and ordinal endogenous covariate probabilities. They are defined in *Binary and ordinal endogenous covariates* in [ERM] **eprobit**.

So the log likelihood for this model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_{B+1}^*(\mathbf{l}_i, \mathbf{u}_i, \boldsymbol{\Sigma})$$

Now, let

$$\mathbf{l}_{bi} = \begin{bmatrix} l_{b1i} & \dots & l_{bBi} \end{bmatrix}$$
$$\mathbf{u}_{bi} = \begin{bmatrix} u_{b1i} & \dots & u_{bBi} \end{bmatrix}$$
$$\mathbf{l}_{ih1} = \begin{bmatrix} c_{i(h-1)} & \mathbf{l}_{bi} \end{bmatrix}$$
$$\mathbf{u}_{ih1} = \begin{bmatrix} c_{ih} & \mathbf{u}_{bi} \end{bmatrix}$$

The conditional probabilities are

$$\Pr\left(y_{i}=v_{h}|\mathbf{x}_{i},\mathbf{z}_{b1i},\ldots,\mathbf{z}_{bBi},\mathbf{w}_{bi}\right)=\frac{\Phi_{B+1}^{*}(\mathbf{l}_{ih1},\mathbf{u}_{ih1},\boldsymbol{\Sigma})}{\Phi_{B}^{*}(\mathbf{l}_{bi},\mathbf{u}_{bi},\boldsymbol{\Sigma}_{b})}$$

Treatment

In the potential-outcomes framework, the treatment t_i is a discrete variable taking T values, indexing the T potential outcomes of the outcome y_i : y_{1i}, \ldots, y_{Ti} .

When we observe treatment t_i with levels v_1, \ldots, v_T , we have

$$y_i = \sum_{j=1}^T 1(t_i = v_{tj})y_{ji}$$

So for each observation, we only observe the potential outcome associated with that observation's treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect estimation method. See [TE] teffects intro advanced. We do not model the treatment assignment process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent to what we provide here for endogenous treatments. The treatment effect on the treated for x_i for an exogenous treatment is equivalent to what we provide here for the endogenous treatment when the correlation parameter between the outcome and treatment errors is set to 0. The average treatment effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous manner to what we describe here for endogenous treatments.

From here, we assume an endogenous treatment t_i . As in *Treatment* in [ERM] eprobit, we model the treatment assignment process with a probit or ordered probit model, and we call the treatment assignment error ϵ_{ti} . An ordered probit regression of y_i on treatment t_i with levels v_{t1}, \ldots, v_{tT} has the form

$$y_i = \sum_{j=1}^T 1(t_i = v_{tj})y_{ji}$$

where for j = 1, ..., T and exogenous covariates \mathbf{x}_i

$$y_{ji} = v_h$$
 iff $\kappa_{(h-1)j} < \mathbf{x}_i \boldsymbol{\beta}_j + \epsilon_{ji} \leq \kappa_{hj}$

The values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. For $j = 1, \ldots, T$, κ_{0j} is taken as $-\infty$ and κ_{Hj} is taken as $+\infty$. For $j = 1, \ldots, T$, ϵ_{ji} and ϵ_{ti} are bivariate normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho_{1t} \\ \rho_{1t} & 1 \end{bmatrix}$$

The treatment is exogenous if $\rho_{1t} = 0$. Note that we did not specify the structure of the correlations between the potential-outcome errors. We do not need information about these correlations to estimate POMs and treatment effects because all covariates and the outcome are observed in observations from each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary treatment models are similar. Because the unobserved errors are bivariate normal, we can express the log likelihood in terms of the Φ_2^* function.

For j = 1, ..., T and h = 0, ..., H, let

$$c_{1ihj} = \begin{cases} -\infty & h = 0\\ \kappa_{hj} - \mathbf{x}_i \boldsymbol{\beta}_j & h = 1, \dots, H-1\\ \infty & h = H \end{cases}$$

The lower and upper limits for the y_i probability are

$$l_{1i} = c_{i(h-1)j}$$
 if $y_i = v_h, t_i = v_{tj}$

and

$$u_{1i} = c_{ihj}$$
 if $y_i = v_h, t_i = v_{tj}$

The log likelihood for the model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_2^*([l_{1i} \quad l_{ti}], [u_{1i} \quad u_{ti}], \Sigma)$$

where the lower and upper limits for the treatment probability, l_{ti} and u_{ti} , are defined in *Treatment* in [ERM] **eprobit**.

The conditional probability of obtaining treatment level v_{th} is

$$\Pr(t_i = v_{th} | \mathbf{z}_{ti}) = \Phi_1^*(c_{ti(h-1)}, c_{tih}, 1)$$

where the cutpoints for the treatment probabilities c_{tij} are defined in *Treatment* in [ERM] eprobit.

For h = 1, ..., H, the conditional probabilities for outcome level v_h at treatment level v_{tj} are

$$\Pr(y_i = v_h | \mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_{tj}) = \frac{\Phi_2^*([c_{1i(h-1)j} \ c_{ti(j-1)}], [c_{1ihj} \ c_{tij}], \mathbf{\Sigma})}{\Phi_1^*(c_{ti(j-1)}, c_{tij}, 1)}$$

The conditional POM for treatment group j and outcome category h is

$$POM_{hj}(\mathbf{x}_i) = E\{1(y_{ji} = v_h) | \mathbf{x}_i\} = \Phi_1^*(c_{1i(h-1)j}, c_{1i(h-1)j}, 1)$$

Conditional on the covariates \mathbf{x}_i and \mathbf{z}_{ti} and the treatment $t_i = v_m$, the POM for treatment group j and outcome category h is

$$POM_{hj}(\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_m) = E \{ 1(y_{ji} = v_h) | \mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_{tm} \}$$
$$= \frac{\Phi_2^*([c_{1i(h-1)j} \ c_{ti(m-1)}], [c_{1ihj} \ c_{tim}], \mathbf{\Sigma})}{\Phi_1^*(c_{ti(m-1)}, c_{tim}, 1)}$$

Without loss of generality, $t_i = v_{t1}$ corresponds to the control or base level of the treatment. Treatment effects are the differences between the potential outcomes y_{2i}, \ldots, y_{Ti} and the control y_{1i} . When the potential outcomes are ordered probit, the treatment effect on a particular category is of interest.

The treatment effect of treatment group j on category h is $1(y_{ji} = v_h) - 1(y_{1i} = v_h)$, the difference in the outcome for individual i on being in category h if the individual receives the treatment $t_i = v_{tj}$ instead of the control $t_i = v_{t1}$. Evaluating this treatment effect lets us see how the treatment affects the probability of belonging to outcome category h.

For treatment group j, the treatment effect on category h conditioned on \mathbf{x}_i is

$$TE_{hj}(\mathbf{x}_i) = E \{ 1(y_{ji} = v_h) - 1(y_{1i} = v_h) | \mathbf{x}_i \}$$
$$= POM_{hj}(\mathbf{x}_i) - POM_{h1}(\mathbf{x}_i)$$

For treatment group j, the treatment effect on the treated (TET) on category h in treatment group m conditioned on \mathbf{x}_i and \mathbf{z}_{ti} is

$$\text{TET}_{hj}(\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_m) = E \{ 1(y_{ji} = v_h) - 1(y_{1i} = v_h) | \mathbf{x}_i, t_i = v_{t,m} \}$$

= $\text{POM}_{hj}(\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_m) - \text{POM}_{h1}(\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_m)$

We can take the expectation of these conditional predictions over the covariates to get population average parameters. The estat teffects or margins command is used to estimate the expectations as predictive margins once the model is fit with eoprobit. The POM for treatment group j and outcome category h is

$$POM_{hj} = E \{ 1(y_{ji} = v_h) \} = E \{ POM_{hj}(\mathbf{x}_i) \}$$

The ATE for treatment group j and outcome category h is

$$ATE_{hj} = E\{1(y_{ji} = v_h) - 1(y_{1i} = v_h)\} = E\{TE_{hj}(\mathbf{x}_i)\}$$

For treatment group j, the average treatment effect on the treated (ATET) for outcome category h in treatment group m is

$$\begin{aligned} \text{ATET}_{hjm} &= E \left\{ 1(y_{ji} = v_h) - 1(y_{1i} = v_h) | t_i = v_m \right\} \\ &= E \left\{ \text{TET}_{hj}(\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_m) | t_i = v_m \right\} \end{aligned}$$

Endogenous sample selection

Probit endogenous sample selection

An ordered probit model for outcome y_i with selection on s_i has the form

$$y_i = v_h$$
 iff $\kappa_{h-1} < \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i \le \kappa_h$
 $s_i = 1 (\mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} > 0)$

where \mathbf{x}_i are covariates that affect the outcome and \mathbf{z}_{si} are covariates that affect selection. The outcome y_i is observed if $s_i = 1$ and is not observed if $s_i = 0$. The values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$.

The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho_{1s} \\ \rho_{1s} & 1 \end{bmatrix}$$

The lower and upper limits for the y_i probability, l_{1i} and u_{1i} , are as defined in (1)–(3). For the selection indicator, the lower and upper limits l_{si} and u_{si} are defined in *Probit endogenous sample selection* in [ERM] **eprobit**.

The log likelihood for the model is

$$\ln L = \sum_{i \in S} w_i \ln \Phi_2^*([l_{1i} \quad l_{si}], [u_{1i} \quad u_{si}], \Sigma) + \sum_{i \notin S} w_i \ln \Phi_1^*(l_{si}, u_{si}, 1)$$

where S is the set of observations for which y_i is observed.

In this model, the probability of success is usually predicted conditional on the covariates \mathbf{x}_i and not on the selection status s_i . The formulas for the conditional probability are thus the same as in (4).

The conditional probability of selection is

$$\Pr\left(s_i = 1 | \mathbf{z}_{si}\right) = \Phi_1^*(-\mathbf{z}_{si}\boldsymbol{\alpha}_s, \infty, 1)$$

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses a censored continuous sample-selection indicator. We allow the selection variable to be left- or right-censored.

An ordered probit model for outcome y_i with tobit selection on s_i has the form

 $y_i = v_h$ iff $\kappa_{h-1} < \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i \leq \kappa_h$

where the values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$.

We observe the selection indicator s_i , which indicates the censoring status of the latent selection variable s_i^* ,

$$s_i^{\star} = \mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si}$$
$$s_i = \begin{cases} l_i & s_i^{\star} \le l_i \\ s_i^{\star} & l_i < s_i^{\star} < u_i \\ u_i & s_i^{\star} \ge u_i \end{cases}$$

where \mathbf{z}_{si} are covariates that affect selection, and l_i and u_i are fixed lower and upper limits.

The outcome y_i is observed when s_i^* is not censored. If $l_i < s_i^* < u_i$, then y_i is observed. y_i is not observed if $s_i^* \le l_i$, that is, if s_i^* is left-censored. y_i is also not observed if s_i^* is right-censored, $s_i^* \ge u_i$. The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\begin{bmatrix} 1 & \rho_{1s}\sigma_s \\ \rho_{1s}\sigma_s & \sigma_s^2 \end{bmatrix}$$

For the selected observations, we can treat s_i as a continuous endogenous regressor, as in *Continuous* endogenous covariates. In fact, s_i may even be used as a regressor for y_i in eoprobit (specify tobitselect(..., main)). On the nonselected observations, we treat s_i like the probit endogenous sample selection indicator in *Probit endogenous sample selection*.

The conditional mean of ϵ_i is used in the lower and upper limits for the y_i probability for selected observations. Let

$$c_{i,h} = \begin{cases} -\infty & h = 0\\ \kappa_h - \mathbf{x}_i \boldsymbol{\beta} - \rho_{1s} \sigma_s^{-1} \left(s_i - \mathbf{z}_{si} \alpha_c \right) & h = 1, \dots, H-1\\ \infty & h = H \end{cases}$$

The limits for the y_i probability for selected observations are

$$l_{1i} = c_{i(h-1)}$$
 if $y_i = v_h$

and

$$u_{1i} = c_{ih}$$
 if $y_i = v_h$

It follows that the log likelihood is

$$\begin{split} \ln L &= \sum_{i \in S} w_i \left\{ \ln \Phi_1^*(l_{1i}, \, u_{1i}, 1 - \rho_{1s}^2) + \ln \phi(s_i - \mathbf{z}_{si} \boldsymbol{\alpha}_s, \sigma_s^2) \right\} \\ &+ \sum_{i \in L} w_i \ln \Phi_1^*(l_{li}, u_{li}, 1) \\ &+ \sum_{i \in U} w_i \ln \Phi_1^*(l_{ui}, u_{ui}, 1) \end{split}$$

where S is the set of observations for which y_i is observed, L is the set of observations where s_i^* is left-censored, and U is the set of observations where s_i^* is right-censored. The lower and upper limits for selection— l_{li} , u_{li} , l_{ui} , and u_{ui} —are defined in *Tobit endogenous sample selection* in [ERM] eprobit.

The conditional probabilities on $s_i = S_i$ are

$$\Pr(y_i = v_h | \mathbf{x}_i) = \Phi_1^*(c_{i(h-1)}, c_{ih}, 1 - \rho_{1s}^2)$$

If we do not include s_i in the main outcome equation, the probability of success is calculated as (4) again.

Combinations of features

Extended ordered probit regression models that involve multiple features can be formulated using the techniques discussed in *Likelihood for multiequation models* in [ERM] **eprobit**. Essentially, the density of the observed endogenous covariates can be written in terms of the unobserved normal errors. The observed endogenous and exogenous covariates determine the range of the errors, and the joint density can be evaluated as multivariate normal probabilities and densities.

Confidence intervals

The estimated variances will always be nonnegative, and the estimated correlations will always fall in (-1, 1). To obtain confidence intervals that accommodate these ranges, we must use transformations.

We use the log transformation to obtain confidence intervals for variance parameters, and we use the atanh transformation to obtain confidence intervals for correlation parameters. For details, see *Confidence intervals* in [ERM] **eprobit**.

References

- Botezat, A., and F. Pfeiffer. 2014. The impact of parents' migration on the well-being of children left behind: Initial evidence from Romania. IZA Discussion Paper No. 8225, Institute for the Study of Labor (IZA). http://ftp.iza.org/dp8225.pdf
- Chyi, H., and S. Mao. 2012. The determinants of happiness of China's elderly population. Journal of Happiness Studies 13: 167–185.
- De Luca, G., and V. Perotti. 2011. Estimation of ordered response models with sample selection. Stata Journal 11: 213–239.
- Gregory, C. A. 2015. Estimating treatment effects for ordered outcomes using maximum simulated likelihood. Stata Journal 15: 756–774.
- Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. Stata Journal 11: 159-206.
- Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

- [ERM] eoprobit postestimation Postestimation tools for eoprobit
- [ERM] eoprobit predict predict after eoprobit
- [ERM] estat teffects Average treatment effects for extended regression models
- [ERM] intro 8 Conceptual introduction via worked example
- [R] heckoprobit Ordered probit model with sample selection
- [R] oprobit Ordered probit regression
- [SVY] svy estimation Estimation commands for survey data
- [U] 20 Estimation and postestimation commands

eoprobit postestimation — Postestimation tools for eoprobit

Postestimation commandspredictmarginsMethods and formulasReferencesAlso see

Remarks and examples

Postestimation commands

The following postestimation command is of special interest after eoprobit:

Command	Description
estat teffects	treatment effects and potential-outcome means

The following standard postestimation commands are also available after eoprobit:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
*forecast	dynamic forecasts and simulations
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

* forecast and lrtest are not appropriate with svy estimation results.

predict

Predictions after eoprobit are described in

[ERM] eoprobit predict	predict after eoprobit
[ERM] predict treatment	predict for treatment statistics
[ERM] predict advanced	predict's advanced features

[ERM] **eoprobit predict** describes the most commonly used predictions. If you fit a model with treatment effects, predictions specifically related to these models are detailed in [ERM] **predict treatment**. [ERM] **predict advanced** describes less commonly used predictions, such as predictions of outcomes in auxiliary equations.

margins

Description for margins

margins estimates margins of response for probabilities, means, potential-outcome means, treatment effects, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist] [, options]	
<pre>margins [marginlist], predict(statistic) [predict(statistic)] [options]</pre>	
statistic	Description
Main	
pr	probability for binary or ordinal y_j ; the default
mean	mean
pomean	potential-outcome mean
te	treatment effect
tet	treatment effect on the treated
xb	linear prediction
pr(a,b)	$Pr(a < y_j < b)$ for continuous y_j
_ e(a,b)	$E(y_j a < y_j < b)$ for continuous y_j
\underline{ys} tar(a , b)	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$ for continuous y_j

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

See [ERM] intro 6 for an overview of using margins and predict after eoprobit. For examples using margins, predict, and estat teffects, see *Interpreting effects* in [ERM] intro 8 and see [ERM] example 1a.

Methods and formulas

This section contains methods and formulas for counterfactual predictions and inference. Methods and formulas for all other predictions are given in *Methods and formulas* of [ERM] **eoprobit**. In *Methods and formulas* of [ERM] **eoprobit**, we discussed how treatment effects are evaluated in extended ordered probit regression models. Here, we discuss the counterfactual framework used to evaluate the effects of other covariates.

In the extended ordered probit regression model for y_i on exogenous covariates \mathbf{x}_i and \mathbf{w}_i , we partition each set of covariates into two groups. The exogenous covariates \mathbf{x}_i are partitioned into \mathbf{x}_i^c and \mathbf{x}_i^{nc} , where we are interested in the effect of changes in \mathbf{x}_i^c . Similarly, the endogenous covariates \mathbf{w}_i are partitioned into \mathbf{w}_i^c and \mathbf{w}_i^{nc} , where the effect of changes in \mathbf{w}_i^c is of interest. The superscripts indicate what is a counterfactual value (c) and what is not (nc).

If $\mathbf{x}_i^c = \mathbf{a}_0$ and $\mathbf{w}_i^c = \mathbf{a}_{20}$, for covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} we would observe the outcome

$$y_{0i} = v_h \quad \text{iff} \quad \kappa_{h-1} < \boldsymbol{\beta}_{0nc} \mathbf{x}_i^{nc} + \boldsymbol{\beta}_{20nc} \mathbf{w}_i^{nc} + \boldsymbol{\beta}_c \mathbf{a}_0 + \boldsymbol{\beta}_{2c} \mathbf{a}_{20} + \boldsymbol{\epsilon}_{0i} \leq \kappa_h$$

The values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$. Where the unobserved error ϵ_{0i} is standard normal. We treat $\beta_c \mathbf{a}_0 + \beta_{2c} \mathbf{a}_{20} = \beta_{c0}$ as a constant intercept, because it is the same for each value combination of the covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} and the error ϵ_{0i} .

Similarly, if $\mathbf{x}_i^c = \mathbf{a}_1$ and $\mathbf{w}_i^c = \mathbf{a}_{21}$, for covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} we would observe the outcome

$$y_{1i} = v_h \quad \text{iff} \quad \kappa_{h-1} < \boldsymbol{\beta}_{1nc} \mathbf{x}_i^{nc} + \boldsymbol{\beta}_{21nc} \mathbf{w}_i^{nc} + \boldsymbol{\beta}_c \mathbf{a}_1 + \boldsymbol{\beta}_{2c} \mathbf{a}_{21} + \boldsymbol{\epsilon}_{1i} \le \kappa_h$$

To define the effects, for j = 0, 1 and h = 1, ..., H, we can examine the variables

$$y_{jhi} = \begin{cases} 1 & \text{if } y_{ji} = v_h \\ 0 & \text{if } y_{ji} \neq v_h \end{cases}$$

The effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} on the probability that $y_i = v_h$ is the expected difference between \mathbf{y}_{1hi} and \mathbf{y}_{0hi} .

To obtain this difference, we average the conditional probabilities of y_{1hi} and y_{0hi} as a predictive margin.

For j = 0, 1 and h = 1, ..., H, we can predict the counterfactual probability for group j using the tools discussed in *Predictions using the full model* in [ERM] **eprobit postestimation**:

$$\operatorname{CP}_{jh}(\mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{z}_i) = \operatorname{Pr}(y_{jhi} = 1 | \mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{x}_i^{c} = \mathbf{a}_j, \mathbf{z}_i)$$

where z_i are instruments necessary for modeling the endogenous regressors w_i^{nc} . By the law of iterated expectations, we have

$$E(y_{1hi} - y_{0hi}) = E\{CP_{1h}(\mathbf{w}_{i}^{nc}, \mathbf{x}_{i}^{nc}, \mathbf{z}_{i})\} - E\{CP_{0h}(\mathbf{w}_{i}^{nc}, \mathbf{x}_{i}^{nc}, \mathbf{z}_{i})\}$$

So the effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} can be estimated as a predictive margin on the counterfactual probabilities.

104 eoprobit postestimation — Postestimation tools for eoprobit

We can use predict with the fix() and target() options to predict the counterfactual probabilities. The fix() option is used to indicate the endogenous covariates in \mathbf{w}_i^c . The target() option can be used to set the counterfactual values a_i and a_{2i} of \mathbf{x}_i^c and \mathbf{w}_i^c .

When \mathbf{w}_i^c corresponds to a single ordinal or binary regressor, the difference in counterfactual probabilities corresponds to a treatment effect of \mathbf{w}_i^c . We can also evaluate the effect of a change in \mathbf{w}_i^c and \mathbf{x}_i^c , conditioned on \mathbf{w}_i^c . This effect is analogous to the treatment effect on the treated discussed in *Methods and formulas* of [ERM] **eoprobit**. We are conditioning the effect on some base value for \mathbf{w}_i^c , $\mathbf{w}_i^c = \mathbf{b}$.

Now, the counterfactual probabilities are conditioned on $\mathbf{w}_i^c = \mathbf{b}$. So for j = 0, 1 and $h = 1, \dots, H$, we have

$$CP_{bjh}(\mathbf{w}_i^{nc}, \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) = Pr(y_{jhi} = 1 | \mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{x}_i^c = \mathbf{a}_j, \mathbf{z}_{bi})$$

where \mathbf{z}_{bi} are instruments necessary for modeling the endogenous regressors \mathbf{w}_i^{nc} and \mathbf{w}_i^c . This counterfactual probability can be evaluated using the tools discussed in *Predictions using the full model* in [ERM] **eprobit postestimation**.

By the law of iterated expectations, we have

$$E(y_{1hi} - y_{0hi} | \mathbf{w}_i^c = \mathbf{b}) = E \left\{ CP_{b1h}(\mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) | \mathbf{w}_i^c = \mathbf{b} \right\} - E \left\{ CP_{b0h}(\mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) | \mathbf{w}_i^c = \mathbf{b} \right\}$$

So the effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} conditioned on $\mathbf{w}_i^c = \mathbf{b}$ can be estimated as a predictive margin on the counterfactual probabilities.

The base values **b** for \mathbf{w}_i^c are specified in the base() option. As before, target() can be used to specify the counterfactual values for \mathbf{x}_i^c and \mathbf{w}_i^c .

When $\mathbf{x}_i^c = \mathbf{x}_i$ and $\mathbf{w}_i^c = \mathbf{w}_i$, the counterfactual probability matches the average structural probability (ASP). Applying the average structural function (ASF) discussed by Blundell and Powell (2003), Blundell and Powell (2004), Wooldridge (2005), and Wooldridge (2014) to a conditional probability on the covariates and unobserved endogenous error produces the ASP.

In the ordered probit model, for exogenous covariates x_i and endogenous regressors w_i , we have

$$y_i = v_h$$
 iff $\kappa_{h-1} < \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_i \boldsymbol{\beta}_2 + \epsilon_i \leq \kappa_h$

The values v_1, \ldots, v_H are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_H is taken as $+\infty$. The error ϵ_i is standard normal and correlated with \mathbf{w}_i .

The ASP provides a structural interpretation of β and β_2 when the \mathbf{w}_i are correlated with ϵ_i . Because ϵ_i is a normally distributed, mean 0, random variable, we can split it into two mean 0, normally distributed, independent parts,

$$\epsilon_i = u_i + \psi_i$$

where $u_i = \gamma \epsilon_{2i}$ is the unobserved heterogeneity that gives rise to the endogeneity and ψ_i is an error term with variance σ_{ψ}^2 .

For $h = 0, \ldots, H$, define

$$c_{ih} = \begin{cases} -\infty & h = 0\\ \kappa_h - \mathbf{x}_i \boldsymbol{\beta} - \mathbf{w}_i \boldsymbol{\beta}_2 - u_i & h = 1, \dots, H - 1\\ \infty & h = H \end{cases}$$

Conditional on the covariates and the unobserved heterogeneity, we have

$$E\{\mathbf{1}(y_i = v_h) | \mathbf{x}_i, \mathbf{w}_i, u_i\} = \Pr(y_i = v_h | \mathbf{x}_i, \mathbf{w}_i, u_i)$$
$$= \Phi_1^*(c_{i(h-1)}, c_{ih}, \sigma_{\psi}^2)$$

Because u_i is an unobserved random variable, these conditional probabilities are not observable. Integrating out the u_i , just like we do with random effects in panel-data models, produces the ASP for each category,

$$ASP_{h}(\mathbf{x}_{i}^{0}, \mathbf{w}_{i}^{0}) = \int E\{\mathbf{1}(y_{i} = v_{h}) | \mathbf{x}_{i}^{0}, \mathbf{w}_{i}^{0}, u_{i}\} f(u_{i}) du_{i}$$

where $f(u_i)$ is the marginal distribution of u_i , and \mathbf{x}_i^0 and \mathbf{w}_i^0 are given covariate values.

References

Blundell, R. W., and J. L. Powell. 2003. Endogeity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, ed. M. Dewatripont, L. P. Hansen, and S. J. Turnovsky, vol. 2, 312–357. Cambridge: Cambridge University Press.

—. 2004. Endogeneity in semiparametric binary response models. Review of Economic Studies 71: 655–679.

Wooldridge, J. M. 2005. Unobserved heterogeneity and estimation of average partial effects. In *Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg*, ed. D. W. K. Andrews and J. H. Stock, 27–55. New York: Cambridge University Press.

—. 2014. Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables. *Journal of Econometrics* 182: 226–234.

Also see

[ERM] eoprobit — Extended ordered probit regression

[ERM] eoprobit predict — predict after eoprobit

[ERM] **predict treatment** — predict for treatment statistics

[ERM] predict advanced — predict's advanced features

[ERM] eprobit postestimation — Postestimation tools for eprobit

[U] 20 Estimation and postestimation commands

eoprobit predict - predict after eoprobit

Description Options for statistics Remarks and examples Also see Syntax Options for how results are calculated Methods and formulas

Description

In this entry, we show how to create new variables containing observation-by-observation predictions after fitting a model with eoprobit.

Syntax

You previously fit the model

eoprobit y x1 ..., ...

The equation specified immediately after the eoprobit command is called the main equation. It is

 $\Pr(y_i = m) = \Pr(c_{m-1} \le \mathbf{x}_i \beta + e_i \cdot \mathbf{y} \le c_m)$

Note that the equation produces a probability for each outcome m, m = 1 to M. predict calculates predictions for the probabilities in the main equation. The other equations in the model are called auxiliary equations or complications.

The syntax of predict is

```
predict [type] { stub* | newvarlist } [if] [in] [, stdstatistics howcalculated]
```

stdstatistics	Description	
pr outlevel(#) xb	probability of each outcome; the default calculate probability for $m = \#$ only linear prediction excluding all complications	
howcalculated	Description	
<pre>default fix(endogvars) base(valspecs) target(valspecs)</pre>	not fixed; base values from data fix specified endogenous covariates specify base values of any variables more convenient way to specify fix() and base()	

Note: The fix() and base() options affect results only in models with endogenous variables in the main equation. The target() option is sometimes a more convenient way to specify the fix() and base() options.

endogvars are names of one or more endogenous variables appearing in the main equation.

valspecs specify the values for variables at which predictions are to be evaluated. Each *valspec* is of the form

varname = #
varname = (exp)
varname = othervarname

For instance, base(valspecs) could be base(w1=0) or base(w1=0 w2=1).

Notes:

- (1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
- (2) predict can also make predictions for the other equations in addition to the main-equation predictions discussed here. See [ERM] predict advanced.

Options for statistics

- pr calculates the predicted probability for each outcome. In each observation, the predictions are the probabilities conditioned on the covariates. Results depend on how complications are handled, which is determined by the *howcalculated* options.
- outlevel(#) specifies to calculate only the probability for outcome m = # rather than calculating M probabilities. If you do not specify this option, y records three outcomes. You type

. predict p1 p2 p3

to obtain the probabilities for each outcome. If you want only the probability of the third outcome, you can type

```
. predict p3, outlevel(#3)
```

If the third outcome corresponded to y==3, you could instead type

```
. predict p3, outlevel(3)
```

If the third outcome corresponded to y==57, you could instead type

. predict p3, outlevel(57)

Most users number the outcomes 1, 2, and 3. Some users number them 0, 1, and 2. You could even number them 3, 5, and 57. Stata does not care how they are numbered.

xb specifies that the linear prediction be calculated ignoring all complications.

Options for how results are calculated

By default, predictions are calculated taking into account all complications. This is discussed in *Remarks and examples* of [ERM] **eregress predict**.

fix (*varname*...) specifies a list of endogenous variables from the main equation to be treated as if they were exogenous. This was discussed in [ERM] **intro 3** and is discussed further in *Remarks and examples* of [ERM] **eregress predict**.

base (varname = ...) specifies a list of variables from any equation and values for them. If eoprobit were a linear model, we would tell you those values will be used in calculating the expected value of e_i .y. That thinking will not mislead you but is not formally correct in the case of eoprobit. Linear or nonlinear, errors from other equations spill over into the main equation because of correlations between errors. The correlations were estimated when the model was fit. The amount of spillover depends on those correlations and the values of the errors. This issue was discussed in [ERM] intro 3 and is further discussed in *Remarks and examples* of [ERM] eregress predict.

target(varname = ...) is sometimes a more convenient way to specify the fix() and base() options. You specify a list of variables from the main equation and values for them. Those values override the values of the variables calculating $\beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \cdots$. Use of target() is discussed in Remarks and examples of [ERM] eregress predict.

Remarks and examples

Remarks are presented under the following headings:

Using predict after eoprobit How to think about nonlinear models

Using predict after eoprobit

eoprobit fits ordinal probit models. The outcome variable y takes on various values such as 1, 2, 3, and 4, and each represents an ordered category, such as cannot walk, walks with difficulty, walks with few problems, and walks well. When you use predict after eoprobit, remember to specify variables corresponding to each category.

. predict p1 p2 p3 p4

Alternatively, specify the outlevel(#) option.

With this exception, predictions after fitting models with eoprobit are handled the same as they are after fitting models with eregress. The issues are the same. See [ERM] eregress predict.

How to think about nonlinear models

What we wrote in [ERM] **eprobit predict** applies equally to the use of predict after eoprobit. We wrote

Probit is a nonlinear model, and yet we just said that predictions after fitting models with eprobit are handled the same as they are after fitting models with eregress. That statement is partly true, not misleading, but false in its details.

The regression-base discussion that we routed you to is framed in terms of expected values. In the nonlinear models, it needs to be framed in terms of distributional assumptions about the errors. For instance, predict after eprobit does not predict the expected value (mean) of e_i .y. It calculates the probability that e_i .y exceeds $-\mathbf{x}_i\beta$. These details matter hugely in implementation but can be glossed over for understanding the issues. For a full treatment of the issues, see *Methods and formulas* of [ERM] eprobit.

Methods and formulas

See Methods and formulas of [ERM] eoprobit postestimation.

Also see

[ERM] eoprobit postestimation — Postestimation tools for eoprobit

[ERM] eoprobit — Extended ordered probit regression

Title

eprobit — Extended probit regression

Description Quick start Options Remarks and examples References Also see Menu Stored results Syntax Methods and formulas

Description

eprobit fits a probit regression model that accommodates any combination of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample selection.

Quick start

```
Probit regression of y on x with continuous endogenous covariate y2 modeled by x and z
eprobit y x, endogenous(y2 = x z)
```

- As above, but adding continuous endogenous covariate y3 modeled by x and z2 eprobit y x, endogenous(y2 = x z) endogenous(y3 = x z2)
- Probit regression of y on x with binary endogenous covariate d modeled by x and z eprobit y x, endogenous(d = x z, probit)
- Probit regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z eprobit y x, entreat(trtvar = x z)
- Probit regression of y on x with exogenous treatment recorded in trtvar eprobit y x, extreat(trtvar)
- Probit regression of y on x with endogenous sample-selection indicator selvar modeled by x and z eprobit y x, select(selvar = x z)
- As above, but adding endogenous covariate y2 modeled by x and z2 eprobit y x, select(selvar = x z) endogenous(y2 = x z2)
- As above, but adding endogenous treatment recorded in trtvar and modeled by x and z3 eprobit y x, select(selvar = x z) endogenous(y2 = x z2) /// entreat(trtvar = x z3)

Menu

Statistics > Endogenous covariates > Models adding selection and treatment > Probit regression

Syntax

Basic probit regression with endogenous covariates

```
eprobit depvar [indepvars],
endogenous(depvarsen = varlisten) [options]
```

Basic probit regression with endogenous treatment assignment

```
eprobit depvar [indepvars],
    entreat(depvartr [= varlistr]) [options]
```

Basic probit regression with exogenous treatment assignment

eprobit depvar [indepvars],
 <u>extr</u>eat(tvar) [options]

```
Basic probit regression with sample selection

eprobit depvar [indepvars],

<u>select(depvars</u> = varlist<sub>s</sub>) [options]
```

Basic probit regression with tobit sample selection
eprobit depvar [indepvars],
tobitselect(depvars = varlists) [options]

Probit regression combining endogenous covariates, treatment, and selection eprobit depvar [indepvars] [if] [in] [weight] [, extensions options]

112 eprobit — Extended probit regression

extensions	Description
Model	
endogenous(<i>enspec</i>)	model for endogenous covariates; may be repeated
<u>entr</u> eat(<i>entrspec</i>)	model for endogenous treatment assignment
<pre><u>extr</u>eat(extrspec)</pre>	exogenous treatment
<u>sel</u> ect(<i>selspec</i>)	probit model for selection
<pre>tobitselect(tselspec)</pre>	tobit model for selection
options	Description
Model	
<u>nocons</u> tant	suppress constant term
$offset(varname_o)$	include $varname_o$ in model with coefficient constrained to 1
<pre><u>const</u>raints(numlist)</pre>	apply specified linear constraints
<u>col</u> linear	keep collinear variables
SE/Robust	
vce(vcetype)	vcetype may be oim, <u>r</u> obust, <u>cl</u> uster <i>clustvar</i> , opg, <u>boot</u> strap, or <u>jackknife</u>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<pre>intpoints(#)</pre>	set the number of integration (quadrature) points for integration over four or more dimensions; default is intpoints(128)
<pre>triintpoints(#)</pre>	set the number of integration (quadrature) points for integration over three dimensions; default is triintpoints(10)
Maximization	
maximize_options	control the maximization process; seldom used
<u>coefl</u> egend	display legend instead of statistics

enspec is depvars_{en} = varlist_{en} [, enopts]

where $depvars_{en}$ is a list of endogenous covariates. Each variable in $depvars_{en}$ specifies an endogenous covariate model using the common *varlist*_{en} and options.

entrspec is $depvar_{tr} = varlist_{tr}$ [, tropts]

where $depvar_{tr}$ is a variable indicating treatment assignment. $varlist_{tr}$ is a list of covariates predicting treatment assignment.

```
extrspec is tvar [, <u>nomain noint</u>eract]
```

where tvar is a variable indicating treatment assignment.

```
selspec is depvar<sub>s</sub> = varlist<sub>s</sub> [, <u>noconstant offset(varname_o)</u>]
```

where $depvar_s$ is a variable indicating selection status. $depvar_s$ must be coded as 0, indicating that the observation was not selected, or 1, indicating that the observation was selected. $varlist_s$ is a list of covariates predicting selection.

```
tselspec is depvar_s = varlist_s [, tselopts]
```

where $depvar_s$ is a continuous variable. $varlist_s$ is a list of covariates predicting $depvar_s$. The censoring status of $depvar_s$ indicates selection, where a censored $depvar_s$ indicates that the observation was not selected and a noncensored $depvar_s$ indicates that the observation was selected.

enopts	Description	
Model		
probit	treat endogenous covariate as binary	
oprobit	treat endogenous covariate as ordinal	
nomain	do not add endogenous covariate to main equation	
noconstant	suppress constant term	
tropts	Description	
Model		
<u>nom</u> ain	do not add treatment indicator to main equation	
<u>noint</u> eract	do not interact treatment with covariates in main equation	
<u>nocons</u> tant	suppress constant term	
$offset(varname_o)$ include $varname_o$ in model with coefficient constrain	include $varname_o$ in model with coefficient constrained to 1	
tselopts	Description	
Model		
11(<i>varname</i> #)	left-censoring variable or limit	
ul(<i>varname</i> #)	right-censoring variable or limit	
main	add censored selection variable to main equation	
<u>nocons</u> tant	suppress constant term	
$\underline{off}set(varname_o)$	include $varname_o$ in model with coefficient constrained to 1	

indepvars, varlisten, varlisttr, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec), tobitselect(tselspec); see [ERM] erm options.

noconstant, offset(varname_o), constraints(numlist), collinear; see [R] estimation options.

SE/Robust

vce(vcetype); see [ERM] erm options.

Reporting

level(#), nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

Integration

intpoints(#), triintpoints(#); see [ERM] erm options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with eprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

eprobit fits models that we refer to as "extended probit regression models", meaning that they accommodate endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. eprobit can account for these complications whether they arise individually or in combination.

In this entry, you will find information on the eprobit command syntax. You can see *Methods* and *formulas* for a full description of the models that can be fit with eprobit and details about how those models are fit.

More information on extended probit regression models is found in the separate introductions and example entries. We recommend reading those entries to learn how to use eprobit. Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eprobit and the other extended regression commands (eregress, eintreg, and eoprobit), see [ERM] intro 1–[ERM] intro 8.

[ERM] **intro** 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] **intro 2** provides background on the four types of models—linear regression, interval regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] intro 3 considers the problem of endogenous covariates and how to solve it using ERM commands.

[ERM] intro 4 gives an overview of endogenous sample selection and using ERM commands to account for it.

[ERM] **intro 5** covers nonrandom treatment assignment and how to account for it using eprobit or any of the other ERM commands.

[ERM] intro 6 discusses interpretation of results. You can interpret coefficients from eprobit in the usual way, but this introduction goes beyond the interpretation of coefficients. We demonstrate how to find answers to interesting questions by using margins. If your model includes an endogenous covariate or an endogenous treatment, the use of margins differs from its use after other estimation commands, so we strongly recommend reading this intro if you are fitting these types of models.

[ERM] intro 7 will be particularly helpful if you are familiar with ivprobit, heckprobit, and other commands that address endogenous covariates, sample selection, or nonrandom treatment assignment. This introduction is a Rosetta stone that maps the syntax of those commands to the syntax of eprobit.

[ERM] intro 8 walks you through an example that gives insight into the concepts of endogenous covariates, treatment assignment, and sample selection while fitting models with eregress that address these complications. Although the example uses eregress, the discussion applies equally to eprobit. This intro also demonstrates how to interpret results by using margins and estat teffects.

Additional examples are presented in [ERM] example 1a-[ERM] example 6b. For examples using eprobit, see

[ERM] example 3a	Probit regression with continuous endogenous covariate
[ERM] example 3b	Probit regression with endogenous covariate and treatment
[ERM] example 4a	Probit regression with endogenous sample selection
[ERM] example 4b	Probit regression with endogenous treatment and sample selection
[ERM] example 5	Probit regression with endogenous ordinal treatment

See *Examples* in [ERM] **intro** for an overview of all the examples. These examples demonstrate all four extended regression commands, and all may be interesting because they handle complications in the same way.

You can also find in literature discussion and examples of many models that eprobit can fit. This includes discussion of the probit model with continuous endogenous covariates (Newey 1987), the probit model with multiple endogenous binary covariates (Arendt and Holm 2006), and the probit model with an endogenous treatment (Angrist [2001] and Pindyck and Rubinfeld [1998]). eprobit can also be used for probit models with selection, such as that discussed by Van de Ven and Van Pragg (1981), and for the model with a tobit selection equation, discussed in Wooldridge (2010, sec. 19.7). Roodman (2011) investigated probit models with endogenous covariates and endogenous sample selection, and demonstrated how multiple observational data complications could be addressed with a triangular model structure. His work has been used to model processes like the impact of finance on the probability of being an entrepreneur (Karymshakov, Sultakeev, and Sulaimanova 2015) and the impact of foreign direct investment on the probability of creating an innovative product (Vahter 2011).

Stored results

eprobit stores the following in e():

Scalars	
e(N)	number of observations
e(N_selected)	number of uncensored observations
e(N_nonselected)	number of censored observations
e(k)	number of parameters
e(k_cat#)	number of categories for the #th depvar, ordinal
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(k_dv)	number of dependent variables
e(k_aux)	number of auxiliary parameters
e(df_m)	model degrees of freedom
e(11)	log likelihood
e(N_clust)	number of clusters
e(chi2)	χ^2
e(p)	significance
e(n_quad)	number of integration points for multivariate normal
e(n_quad3)	number of integration points for trivariate normal
e(rank)	rank of e(V)
e(ic)	number of iterations
e(rc)	return code
e(converged)	1 if converged, 0 otherwise
Macros	
e(cmd)	eprobit
e(cmdline)	command as typed
e(depvar)	names of dependent variables
e(wtype)	weight type
e(wexp)	weight expression
e(title)	title in estimation output
e(clustvar)	name of cluster variable
e(offset#)	offset for the #th depvar
e(chi2type)	Wald; type of model χ^2 test
e(vce)	vcetype specified in vce()
e(vcetype)	title used to label Std. Err.
e(opt)	type of optimization
e(which)	max or min; whether optimizer is to perform maximization or minimization
e(ml_method)	type of ml method
e(user)	name of likelihood-evaluator program
e(technique)	maximization technique
e(properties)	b V
e(estat_cmd)	program used to implement estat
e(predict)	program used to implement predict
e(marginsok)	predictions allowed by margins
e(marginsnotok)	predictions disallowed by margins
e(asbalanced)	factor variables fyset as asbalanced
e(asobserved)	factor variables fyset as asobserved
Matrices	
e(b)	coefficient vector
e(cat#)	categories for the #th <i>depvar</i> , ordinal
e(Cat#) e(Cns)	constraints matrix
e(ilog)	iteration log (up to 20 iterations)
e(gradient)	gradient vector
e(V) e(V_modelbased)	variance-covariance matrix of the estimators model-based variance
	mouti-dastu vallante
Functions	
e(sample)	marks estimation sample

Methods and formulas

The methods and formulas presented here are for the probit-outcome model. They are a special case of the methods and formulas derived by Roodman (2011).

Methods and formulas are presented under the following headings:

Introduction Endogenous covariates Continuous endogenous covariates Binary and ordinal endogenous covariates Treatment Endogenous sample selection Probit endogenous sample selection Tobit endogenous sample selection Combined model Confidence intervals Likelihood for multiequation models

Introduction

A probit regression of outcome y_i on covariates \mathbf{x}_i may be written as

$$y_i = 1 \left(\mathbf{x}_i \boldsymbol{\beta} + \epsilon_i > 0 \right)$$

where the errors ϵ_i are distributed as standard normal. The log likelihood is

$$\ln L = \sum_{i=1}^{N} w_i \left\{ y_i \ln \Phi \left(\mathbf{x}_i \boldsymbol{\beta} \right) + (1 - y_i) \ln \Phi \left(-\mathbf{x}_i \boldsymbol{\beta} \right) \right\}$$

where w_i are the weights. The conditional probability of success is

$$E(y_i|\mathbf{x}_i) = \Pr(y_i = 1|\mathbf{x}_i) = \Phi(\mathbf{x}_i\boldsymbol{\beta})$$

The standard normal cumulative distribution function $\Phi(\cdot)$ used in these expressions is a one-sided probability that the random variable is below a certain point. In the models we describe later, it will be useful to use two-sided probabilities. For two-sided probabilities, we define Φ_d^* with three inputs. The first two inputs are *d*-dimensional row vectors **l** and **u** that have values in $IR \cup \{-\infty, \infty\}$, the extended real line. The final input is a $d \times d$ real-valued and positive-definite matrix Σ .

$$\Phi_d^*(\mathbf{l}, \mathbf{u}, \boldsymbol{\Sigma}) = \int_{l_1}^{u_1} \dots \int_{l_d}^{u_d} \phi_d(\boldsymbol{\epsilon}, \boldsymbol{\Sigma}) \, d\boldsymbol{\epsilon}_1 \dots d\boldsymbol{\epsilon}_d$$

where ϕ_d is the density of a mean 0, multivariate normal random variable. For details on the calculation of Φ_d^* , see [M-5] **mvnormal()**. The probabilities are approximated using numeric integration. The number of integration or quadrature points can be varied to attain better approximations. For trivariate errors, we use the method of Drezner (1994). For four or more errors, we use the method of Miwa, Hayter, and Kuriki (2003).

The lower and upper limits l_{1i} and u_{1i} on the unobserved ϵ_i are based on the observed values of y_i and \mathbf{x}_i and are defined as

$$l_{1i} = \begin{cases} -\infty & y_i = 0 \\ & & \\ -\mathbf{x}_i \boldsymbol{\beta} & y_i = 1 \end{cases} \qquad \qquad u_{1i} = \begin{cases} -\mathbf{x}_i \boldsymbol{\beta} & y_i = 0 \\ \\ \infty & y_i = 1 \end{cases}$$
(1)

They let us rewrite the log likelihood concisely as

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_1^*(l_{1i}, u_{1i}, 1)$$

The conditional probability of success can be written using similar notation:

$$\Pr\left(y_i = 1 | \mathbf{x}_i\right) = \Phi_1^*(-\mathbf{x}_i \boldsymbol{\beta}, \infty, 1) \tag{2}$$

Endogenous covariates

Continuous endogenous covariates

A probit regression of y_i on exogenous covariates \mathbf{x}_i and C continuous endogenous covariates \mathbf{w}_{ci} has the form

$$y_i = 1 \left(\mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_{ci} \boldsymbol{\beta}_c + \epsilon_i > 0 \right)$$
$$\mathbf{w}_{ci} = \mathbf{z}_{ci} \mathbf{A}_c + \epsilon_{ci}$$

The vector \mathbf{z}_{ci} contains variables from \mathbf{x}_i and other covariates that affect \mathbf{w}_{ci} . The unobserved errors ϵ_i and ϵ_{ci} are multivariate normal with mean 0 and covariance

$$egin{bmatrix} 1 & \pmb{\sigma}_{1c}' \ \pmb{\sigma}_{1c} & \pmb{\Sigma}_c \end{bmatrix}$$

We can write the joint density of the dependent variables as a product:

$$f(y_i, \mathbf{w}_{ci} | \mathbf{x}_i, \mathbf{z}_{ci}) = f(y_i | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}) f(\mathbf{w}_{ci} | \mathbf{x}_i, \mathbf{z}_{ci})$$

The conditional density of \mathbf{w}_{ci} is

$$f(\mathbf{w}_{ci}|\mathbf{x}_i, \mathbf{z}_{ci}) = \phi_C(\mathbf{w}_{ci} - \mathbf{z}_{ci}\mathbf{A}_c, \mathbf{\Sigma}_c)$$

Note that

$$\Pr(y_i = 1 | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}) = \Pr(\mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_{ci} \boldsymbol{\beta}_c + \epsilon_i > 0 | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci})$$

So the conditional density of y_i can be written as a probability for ϵ_i . Thus, the conditional distribution of ϵ_i can be used to find the conditional density of y_i . Conditional on the endogenous and exogenous covariates, ϵ_i has mean and variance

$$E(\epsilon_i | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}) = \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c)'$$

Var $(\epsilon_i | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}) = 1 - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\sigma}_{1c}$

The conditional mean is used in the lower and upper limits for the y_i probability, which are

$$l_{1i} = \begin{cases} -\infty & y_i = 0\\ -\mathbf{x}_i \boldsymbol{\beta} - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c \right)' & y_i = 1 \end{cases}$$
$$u_{1i} = \begin{cases} -\mathbf{x}_i \boldsymbol{\beta} - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c \right)' & y_i = 0\\ \infty & y_i = 1 \end{cases}$$

Using these limits, the conditional variance, and the conditional density of \mathbf{w}_{ci} , we obtain the log likelihood

$$\ln L = \sum_{i=1}^{N} w_i \left\{ \ln \Phi_1^* \left(l_{1i}, u_{1i}, 1 - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\sigma}_{1c} \right) + \ln \phi_C (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c, \boldsymbol{\Sigma}_c) \right\}$$

Letting

$$l_{1i1} = -\mathbf{x}_i \boldsymbol{\beta} - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c \right)'$$
$$u_{1i1} = \infty$$

the conditional probability of success is

$$\Pr(y_i = 1 | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{ci}) = \Phi_1^*(l_{1i1}, u_{1i1}, 1 - \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\sigma}_{1c})$$

Binary and ordinal endogenous covariates

Here, we begin by formulating the probit regression of y_i on exogenous covariates \mathbf{x}_i and B binary and ordinal endogenous covariates $\mathbf{w}_{bi} = [w_{b1i}, \ldots, w_{bBi}]$. Indicator (dummy) variables for the levels of each binary and ordinal covariate are used in the model. You can also interact other covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

Let $j = 1, \ldots, B$. We use a probit model for binary endogenous covariates

$$w_{bji} = 1 \left(\mathbf{z}_{bji} \boldsymbol{\alpha}_{bj} + \epsilon_{bji} > 0 \right)$$

For ordinal endogenous covariate w_{bji} that takes values $v_{bj1}, \ldots, v_{bjB_j}$ with covariates \mathbf{z}_{bji} , we have the ordered probit model

$$w_{bji} = v_{bjh}$$
 iff $\kappa_{bj(h-1)} < \mathbf{z}_{bji} \boldsymbol{\alpha}_{bj} + \epsilon_{bji} \le \kappa_{bjh}$ (3)

The values $v_{bj1}, \ldots, v_{bjB_j}$ are real numbers such that $v_{bjh} < v_{bjm}$ for h < m. κ_{bj0} is taken as $-\infty$ and κ_{bjB_j} is taken as $+\infty$. The errors $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ are multivariate normal with mean 0 and covariance

$$\boldsymbol{\Sigma}_{b} = \begin{bmatrix} 1 & \rho_{b12} & \cdots & \rho_{b1B} \\ \rho_{b12} & 1 & \cdots & \rho_{b2B} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{b1B} & \rho_{b2B} & \cdots & 1 \end{bmatrix}$$

Because the covariate w_{bji} is binary or ordinal, the effect of each category in the outcome equation is made with an indicator variable.

$$\mathbf{wind}_{bji} = \begin{bmatrix} 1(w_{bji} = v_{bj1}) \\ \vdots \\ 1(w_{bji} = v_{bjB_j}) \end{bmatrix}'$$
(4)

So we have

$$y_i = 1(\mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB} + \epsilon_i > 0)$$

where the outcome error ϵ_i and binary and ordinal endogenous errors $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ are multivariate normal with mean 0 and covariance

$$oldsymbol{\Sigma} = egin{bmatrix} 1 & oldsymbol{
ho}_{1b} \ oldsymbol{
ho}_{1b} & oldsymbol{\Sigma}_b \end{bmatrix}$$

From here, we discuss the model with ordinal endogenous covariates. The results for binary endogenous covariates are similar.

For j = 1, ..., B and $h = 0, ..., B_j$, let

$$c_{bjih} = \begin{cases} -\infty & h = 0\\ \kappa_{bjh} - \mathbf{z}_{bji} \boldsymbol{\alpha}_{bj} & h = 1, \dots, B_j - 1\\ \infty & h = B_j \end{cases}$$

The probability for w_{bji} has lower limit

$$l_{bji} = c_{bji(h-1)} \quad \text{if} \quad w_{bji} = v_{bjh} \tag{5}$$

and upper limit

$$u_{bji} = c_{bjih} \quad \text{if} \quad w_{bji} = v_{bjh} \tag{6}$$

Letting

$$c_{bi} = -\mathbf{x}_i \boldsymbol{\beta} - \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} - \ldots - \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB}$$

the lower and upper limits for the y_i probability are

$$l_{1i} = \begin{cases} -\infty & y_i = 0 \\ & & \\ c_{bi} & y_i = 1 \end{cases} \qquad \qquad u_{1i} = \begin{cases} c_{bi} & y_i = 0 \\ \\ \infty & y_i = 1 \end{cases}$$

and

$$\mathbf{l}_i = \begin{bmatrix} l_{1i} & l_{b1i} & \dots & l_{bBi} \end{bmatrix}$$
$$\mathbf{u}_i = \begin{bmatrix} u_{1i} & u_{b1i} & \dots & u_{bBi} \end{bmatrix}$$

The log likelihood for this model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_{B+1}^*(\mathbf{l}_i, \mathbf{u}_i, \boldsymbol{\Sigma})$$

Now, let

$$\mathbf{l}_{bi} = \begin{bmatrix} l_{b1i} & \dots & l_{bBi} \end{bmatrix}$$
$$\mathbf{u}_{bi} = \begin{bmatrix} u_{b1i} & \dots & u_{bBi} \end{bmatrix}$$
$$\mathbf{l}_{i1} = \begin{bmatrix} -\infty & \mathbf{l}_{bi} \end{bmatrix}$$
$$\mathbf{u}_{i1} = \begin{bmatrix} c_{bi} & \mathbf{u}_{bi} \end{bmatrix}$$

The conditional probability of success is

$$\Pr(y_i = 1 | \mathbf{x}_i, \mathbf{z}_{b1i}, \dots, \mathbf{z}_{bBi}, \mathbf{w}_{bi}) = \frac{\Phi_{B+1}^*(\mathbf{l}_{i1}, \mathbf{u}_{i1}, \boldsymbol{\Sigma})}{\Phi_B^*(\mathbf{l}_{bi}, \mathbf{u}_{bi}, \boldsymbol{\Sigma}_b)}$$

Treatment

In the potential-outcomes framework, the treatment t_i is a discrete variable taking T values, indexing the T potential outcomes of the outcome $y_i: y_{1i}, \ldots, y_{Ti}$.

When we observe treatment t_i with levels v_1, \ldots, v_T , we have

$$y_i = \sum_{j=1}^T \mathbb{1}(t_i = v_j) y_{ji}$$

So for each observation, we only observe the potential outcome associated with that observation's treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect estimation method. See [TE] teffects intro advanced. We do not model the treatment assignment process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent to what we provide here for endogenous treatments. The treatment effect on the treated for \mathbf{x}_i for an exogenous treatment is equivalent to what we provide here for the endogenous treatment when the correlation parameter between the outcome and treatment errors is set to 0. The average treatment effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous manner to what we describe here for endogenous treatments.

From here, we assume an endogenous treatment t_i . For ordinal treatment t_i with covariates \mathbf{z}_{ti} , we have the ordered probit model

$$t_i = v_h \quad \text{iff} \quad \kappa_{h-1} < \mathbf{z}_{ti} \boldsymbol{\alpha}_t + \epsilon_{ti} \le \kappa_h \tag{7}$$

The treatment values v_1, \ldots, v_T are real numbers such that $v_h < v_m$ for h < m. κ_0 is taken as $-\infty$ and κ_T is taken as $+\infty$. The treatment error ϵ_{ti} is standard normal.

We use a probit model for binary treatments that take values in $\{0, 1\}$,

$$t_i = 1 \left(\mathbf{z}_{ti} \boldsymbol{\alpha}_t + \epsilon_{ti} > 0 \right)$$

A probit regression of y_i on exogenous covariates \mathbf{x}_i and endogenous treatment t_i taking values v_1, \ldots, v_T has the form

$$y_{1i} = 1 (\mathbf{x}_i \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}_{1i} > 0)$$

$$\vdots$$

$$y_{Ti} = 1 (\mathbf{x}_i \boldsymbol{\beta}_T + \boldsymbol{\epsilon}_{Ti} > 0)$$

$$y_i = \sum_{j=1}^T 1(t_i = v_j) y_{ji}$$

For j = 1, ..., T, ϵ_{ji} and ϵ_{ti} are bivariate normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho_{1t} \\ \rho_{1t} & 1 \end{bmatrix}$$

The treatment is exogenous if $\rho_{1t} = 0$. Note that we did not specify the structure of the correlations between the potential-outcome errors. We do not need information about these correlations to estimate POMs and treatment effects because all covariates and the outcome are observed in observations from each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary treatment models are similar. Because the unobserved errors are bivariate normal, we can express the log likelihood in terms of the Φ_2^* function.

For j = 1, ..., T, let

$$c_{1ij} = -\mathbf{x}_i \boldsymbol{\beta}_j$$

The lower and upper limits for the y_i probability are

$$l_{1i} = \begin{cases} -\infty & y_i = 0\\ \\ c_{1ij} & y_i = 1, t_i = v_j \end{cases} u_{1i} = \begin{cases} c_{1ij} & y_i = 0, t_i = v_j\\ \\ \infty & y_i = 1 \end{cases}$$

For $j = 0, \ldots, T$, define

$$c_{tij} = \begin{cases} -\infty & j = 0\\ \kappa_j - \mathbf{z}_{ti} \boldsymbol{\alpha}_t & j = 1, \dots, T-1\\ \infty & j = T \end{cases}$$

So for the t_i probability, we have lower limit

$$l_{ti} = c_{ti(j-1)} \quad \text{if} \quad t_i = v_j \tag{8}$$

and upper limit

$$u_{ti} = c_{tij} \quad \text{if} \quad t_i = v_j \tag{9}$$

The log likelihood for the model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_2^*([l_{1i} \quad l_{ti}], [u_{1i} \quad u_{ti}], \Sigma)$$

The conditional probability of obtaining treatment level v_h is

$$\Pr(t_i = v_h | \mathbf{z}_{ti}) = \Phi_1^*(c_{ti(h-1)}, c_{tih}, 1)$$

The conditional probability of success at treatment level v_j is

$$\Pr(y_i = 1 | \mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_j) = \frac{\Phi_2^*([c_{1ij} \ c_{ti(j-1)}], [\infty \ c_{tij}], \mathbf{\Sigma})}{\Phi_1^*(c_{ti(j-1)}, c_{tij}, 1)}$$

The conditional POM for treatment group j is

$$POM_j(\mathbf{x}_i) = E(y_{ji}|\mathbf{x}_i) = \Phi_1^*(c_{1ij}, \infty, 1)$$

Conditional on the covariates \mathbf{x}_i and \mathbf{z}_{ti} and the treatment $t_i = v_h$, the POM for treatment group j is

$$\operatorname{POM}_{j}(\mathbf{x}_{i}, \mathbf{z}_{ti}, t_{i} = v_{h}) = E\left(y_{ji} | \mathbf{x}_{i}, \mathbf{z}_{ti}, t_{i} = v_{h}\right)$$
$$= \frac{\Phi_{2}^{*}([c_{1ij} \quad c_{ti(h-1)}], [\infty \quad c_{tih}], \mathbf{\Sigma})}{\Phi_{1}^{*}(c_{ti(h-1)}, c_{tih}, 1)}$$

The treatment effect $y_{ji} - y_{1i}$ is the difference in the outcome for individual *i* if the individual receives the treatment $t_i = v_j$ instead of the control $t_i = v_1$ and what the difference would have been if the individual received the control treatment instead.

For treatment group j, the treatment effect conditioned on \mathbf{x}_i is

$$\operatorname{TE}_{j}(\mathbf{x}_{i}) = E\left(y_{ji} - y_{1i} | \mathbf{x}_{i}\right) = \operatorname{POM}_{j}(\mathbf{x}_{i}) - \operatorname{POM}_{1}(\mathbf{x}_{i})$$

For treatment group j, the treatment effect on the treated (TET) in treatment group h conditioned on \mathbf{x}_i and \mathbf{z}_{ti} is

$$\operatorname{TET}_{j}(\mathbf{x}_{i}, \mathbf{z}_{ti}, t_{i} = v_{h}) = E\left(y_{ji} - y_{1i} | \mathbf{x}_{i}, \mathbf{z}_{ti}, t_{i} = v_{h}\right)$$
$$= \operatorname{POM}_{j}(\mathbf{x}_{i}, \mathbf{z}_{ti}, t_{i} = v_{h}) - \operatorname{POM}_{1}(\mathbf{x}_{i}, \mathbf{z}_{ti}, t_{i} = v_{h})$$

We can take the expectation of these conditional predictions over the covariates to get population average parameters. The margins command is used to estimate the expectations as predictive margins once the model is fit with eprobit. The POM for treatment group j is

$$\operatorname{POM}_{i} = E(y_{ii}) = E\left\{\operatorname{POM}_{i}(\mathbf{x}_{i})\right\}$$

The ATE for treatment group j is

$$ATE_j = E\left(y_{ji} - y_{1i}\right) = E\left\{TE_j(\mathbf{x}_i)\right\}$$

For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

$$\begin{aligned} \text{ATET}_{jh} &= E\left(y_{ji} - y_{1i}|t_i = v_h\right) \\ &= E\left\{\text{TET}_j(\mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_h)|t_i = v_h\right\}\end{aligned}$$

Endogenous sample selection

Probit endogenous sample selection

A probit model for outcome y_i with selection on s_i has the form

$$y_i = 1 \left(\mathbf{x}_i \boldsymbol{\beta} + \epsilon_i > 0 \right)$$
$$s_i = 1 \left(\mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} > 0 \right)$$

where \mathbf{x}_i are covariates that affect the outcome and \mathbf{z}_{si} are covariates that affect selection. The outcome y_i is observed if $s_i = 1$ and not observed if $s_i = 0$. The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho_{1s} \\ \rho_{1s} & 1 \end{bmatrix}$$

The lower and upper limits for the y_i probability, l_{1i} and u_{1i} , are as defined in (1). For the selection indicator, we have lower and upper limits

$$l_{si} = \begin{cases} -\infty & s_i = 0 \\ & u_{si} = \end{cases} \begin{pmatrix} -\mathbf{z}_{si}\boldsymbol{\alpha}_s & s_i = 0 \\ & & u_{si} = 1 \end{pmatrix} \qquad (10)$$

The log likelihood for the model is

$$\begin{aligned} \ln L &= \sum_{i \in S} w_i \ln \Phi_2^*([l_{1i} \quad l_{si}], [u_{1i} \quad u_{si}], \Sigma) &+ \\ &\sum_{i \notin S} w_i \ln \Phi_1^*(l_{si}, u_{si}, 1) \end{aligned}$$

where S is the set of observations for which y_i is observed.

In this model, the probability of success is usually predicted conditional on the covariates \mathbf{x}_i and not on the selection status s_i . The formulas for the conditional probability are thus the same as in (2).

The conditional probability of selection is

$$\Pr\left(s_i = 1 | \mathbf{z}_{si}\right) = \Phi_1^*(-\mathbf{z}_{si}\boldsymbol{\alpha}_s, \infty, 1)$$

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses a censored continuous sample-selection indicator. We allow the selection variable to be left- or right-censored.

A probit model for outcome y_i with tobit selection on s_i has the form

$$y_i = 1 \left(\mathbf{x}_i \boldsymbol{\beta} + \boldsymbol{\epsilon}_i > 0 \right)$$

We observe the selection indicator s_i , which indicates the censoring status of the latent selection variable s_i^* ,

$$s_i^{\star} = \mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si}$$
$$s_i = \begin{cases} l_i & s_i^{\star} \le l_i \\ s_i^{\star} & l_i < s_i^{\star} < u_i \\ u_i & s_i^{\star} \ge u_i \end{cases}$$

where \mathbf{z}_{si} are covariates that affect selection, and l_i and u_i are fixed lower and upper limits.

The outcome y_i is observed when s_i^* is not censored $(l_i < s_i^* < u_i)$. The outcome y_i is not observed when s_i^* is left-censored $(s_i^* \le l_i)$ or s_i^* is right-censored $(s_i^* \ge u_i)$. The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\begin{bmatrix} 1 & \rho_{1s}\sigma_s \\ \rho_{1s}\sigma_s & \sigma_s^2 \end{bmatrix}$$

For the selected observations, we can treat s_i as a continuous endogenous regressor, as in *Continuous endogenous covariates*. In fact, s_i may even be used as a regressor for y_i in eprobit (specify tobitselect(..., main)). On the nonselected observations, we treat s_i like the probit endogenous sample-selection indicator in *Probit endogenous sample selection*.

For nonselected observations, we have

$$\begin{aligned} \Pr(s_i^{\star} \leq l_i | \mathbf{z}_{si}, \mathbf{x}_i) &= \Pr(\mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} \leq l_i) \\ &= \Phi\left(\frac{l_i - \mathbf{z}_{si} \boldsymbol{\alpha}_s}{\sigma_s}\right) \end{aligned}$$

and

$$\begin{aligned} \Pr(s_i^{\star} \ge u_i | \mathbf{z}_{si}, \mathbf{x}_i) &= \Pr(\mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} \ge u_i) \\ &= \Phi\left(\frac{\mathbf{z}_{si} \boldsymbol{\alpha}_s - u_i}{\sigma_s}\right) \end{aligned}$$

The lower and upper limits for the s_i probability for nonselected observations where s_i^{\star} is left-censored are

$$u_{li} = -\infty$$
$$u_{li} = \frac{l_i - \mathbf{z}_{si} \alpha_s}{\sigma_s}$$

The lower and upper limits for the s_i probability for nonselected observations where s_i^* is right-censored are

$$l_{ui} = \frac{u_i - \mathbf{z}_{si} \alpha_s}{\sigma_s}$$
$$u_{ui} = \infty$$

Now, we consider the selected observations. For $s_i = s_i^* = S_i$, we can write the joint density of the dependent variables as a product,

$$f(y_i, s_i = S_i | \mathbf{x}_i, \mathbf{z}_{si}) = f(y_i | s_i = S_i, \mathbf{x}_i, \mathbf{z}_{si}) f(s_i = S_i | \mathbf{x}_i, \mathbf{z}_{si})$$

The marginal density of $s_i = S_i$ is

$$f(s_i = S_i | \mathbf{x}_i, \mathbf{z}_{s,i}) = \phi(S_i - \mathbf{z}_{si} \boldsymbol{\alpha}_s, \sigma_s^2)$$

The conditional density of y_i can be written as a probability for ϵ_i . Thus, the conditional distribution of ϵ_i can be used to find the conditional density of y_i . Conditional on $s_i = S_i$, ϵ_i has mean and variance

$$E\left(\epsilon_{i}|s_{i}=S_{i},\mathbf{x}_{i},\mathbf{z}_{si}\right) = \rho_{1s}\sigma_{s}^{-1}\left(S_{i}-\mathbf{z}_{si}\alpha\right)$$
$$\operatorname{Var}\left(\epsilon_{i}|s_{i}=S_{i},\mathbf{x}_{i},\mathbf{z}_{si}\right) = 1-\rho_{1,s}^{2}$$

The conditional mean is used in the lower and upper limits for the y_i probability for selected observations, which are

$$l_{1i} = \begin{cases} -\infty & y_i = 0\\ -\mathbf{x}_i \boldsymbol{\beta} - \rho_{1s} \sigma_s^{-1} \left(s_i - \mathbf{z}_{si} \boldsymbol{\alpha} \right) & y_i = 1 \end{cases}$$
$$u_{1i} = \begin{cases} -\mathbf{x}_i \boldsymbol{\beta} - \rho_{1s} \sigma_s^{-1} \left(s_i - \mathbf{z}_{si} \boldsymbol{\alpha} \right) & y_i = 0\\ \infty & y_i = 1 \end{cases}$$

It follows that the log likelihood is

$$\begin{split} \ln L &= \sum_{i \in S} w_i \left\{ \ln \Phi_1^*(l_{1i}, u_{1i}, 1 - \rho_{1s}^2) + \ln \phi(s_i - \mathbf{z}_{si} \alpha_s, \sigma_s^2) \right\} \\ &+ \sum_{i \in L} w_i \ln \Phi_1^*(l_{li}, u_{li}, 1) \\ &+ \sum_{i \in U} w_i \ln \Phi_1^*(l_{ui}, u_{ui}, 1) \end{split}$$

where S is the set of observations for which y_i is observed, L is the set of observations where s_i^* is left-censored, and U is the set of observations where s_i^* is right-censored.

The probability of success conditional on $s_i = s_i^{\star} = S_i$ is

$$\Pr(y_i = 1 | \mathbf{x}_i, s_i = s_i^* = S_i) = \Phi_1^* \{ -\mathbf{x}_i \beta - \rho_{1s} \sigma_s^{-1} (S_i - \mathbf{z}_{si} \alpha), \infty, 1 - \rho_{1s}^2 \}$$

If we do not include s_i in the main outcome equation, the probability of success is calculated as (2) again.

Combined model

The probit model with continuous endogenous covariates, ordinal endogenous covariates, an ordinal endogenous treatment, and endogenous sample selection combines all the extensions to the standard probit model that are supported by eprobit. The formulation of other combinations of model features can be easily derived from this combined model. In *Likelihood for multiequation models*, we describe the general framework for ERMs with multiple features. Deriving the combined model with tobit rather than probit endogenous sample selection is straightforward. On selected observations, the selection indicator would be treated like a continuous endogenous covariate. On nonselected observations, the model would be identical to the combined model with probit selection.

In this model, the treatment t_i takes T values, indexing the potential outcomes of the main outcome $y_i: y_{1i}, \ldots, y_{Ti}$. The relationship between the ordinal treatment t_i , treatment covariates $\mathbf{z}_{t,i}$, and error ϵ_{ti} is described in (7). For $j = 1, \ldots, B$, the relationship between the ordinal endogenous covariates \mathbf{z}_{bji} , exogenous covariates \mathbf{z}_{bji} , and error ϵ_{bji} is given in (3). The model also uses the **wind**_{bji} terms that are defined in (4).

The probit regression of y_i on exogenous covariates \mathbf{x}_i , C continuous endogenous covariates \mathbf{w}_{ci} , and B ordinal endogenous covariates $\mathbf{w}_{bi} = [w_{b1i}, \ldots, w_{bBi}]$ with endogenous treatment t_i and endogenous sample selection on s_i has the form

$$y_{1i} = 1 \left(\mathbf{x}_{i} \boldsymbol{\beta}_{1} + \mathbf{w}_{ci} \boldsymbol{\beta}_{c1} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b11} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB1} + \epsilon_{1i} > 0 \right)$$

$$\vdots$$

$$y_{Ti} = 1 \left(\mathbf{x}_{i} \boldsymbol{\beta}_{T} + \mathbf{w}_{ci} \boldsymbol{\beta}_{cT} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1T} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bBT} + \epsilon_{Ti} > 0 \right)$$

$$y_{i} = \sum_{j=1}^{T} 1(t_{i} = v_{j}) y_{ji}$$

$$\mathbf{w}_{ci} = \mathbf{z}_{ci} \mathbf{A}_{c} + \epsilon_{ci}$$

$$s_{i} = 1 \left(\mathbf{z}_{ci} \boldsymbol{\alpha}_{e} + \epsilon_{ci} > 0 \right)$$

where \mathbf{z}_{si} are covariates that affect selection and \mathbf{z}_{ci} are covariates that affect the continuous endogenous covariates. The outcome y_i is observed if $s_i = 1$ and is not observed if $s_i = 0$.

For j = 1, ..., T, the unobserved errors $\epsilon_{ji}, \epsilon_{si}, \epsilon_{ti}, \epsilon_{b1i}, ..., \epsilon_{bBi}, \epsilon_{ci}$ are multivariate normal with mean 0 and covariance

$$\mathbf{\Sigma} = egin{bmatrix} 1 &
ho_{1s} &
ho_{1t} &
ho_{1b}' & \sigma_{1c}' \
ho_{1s} & 1 &
ho_{st} &
ho_{sb}' & \sigma_{sc}' \
ho_{1t} &
ho_{st} & 1 &
ho_{tb}' & \sigma_{tc}' \
ho_{1b} &
ho_{st} & \Sigma_{b} & \Sigma_{bc}' \ \sigma_{1c}' & \sigma_{sc} & \sigma_{tc} & \Sigma_{bc} & \Sigma_{c}' \end{bmatrix}$$

As in *Continuous endogenous covariates*, we can write the joint density of the dependent variables as a product. We have

$$f(y_i, s_i, t_i, \mathbf{w}_{bi}, \mathbf{w}_{ci} | \mathbf{x}_i, \mathbf{z}_{si}, \mathbf{z}_{ti}, \mathbf{z}_{b1i}, \dots, \mathbf{z}_{bBi}, \mathbf{z}_{ci}) = f(y_i, s_i, t_i, \mathbf{w}_{bi} | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{si}, \mathbf{z}_{ti}, \mathbf{z}_{b1i}, \dots, \mathbf{z}_{bBi}, \mathbf{z}_{ci}) f(\mathbf{w}_{ci} | \mathbf{z}_{ci})$$

We can then use the conditional distribution of $\epsilon_{ji}, \epsilon_{si}, \epsilon_{ti}, \epsilon_{b1i}, \ldots, \epsilon_{bBi}$ to obtain the conditional density of y_i, s_i, t_i , and \mathbf{w}_{bi} .

For j = 1, ..., T, conditional on \mathbf{w}_{ci} and the exogenous covariates, ϵ_{ji} has mean

$$e_{1i} = E\left(\epsilon_{ji} | \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{si}, \mathbf{z}_{ti}, \mathbf{z}_{b1i}, \dots, \mathbf{z}_{bBi}, \mathbf{z}_{ci}\right)$$
$$= \boldsymbol{\sigma}'_{1,c} \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{w}_{ci} - \mathbf{z}_{c,i} \mathbf{A}_c\right)'$$

Now, for $j = 1, \ldots, T$, let

$$c_{1ij} = \begin{cases} -\mathbf{x}_i \boldsymbol{\beta}_1 - \mathbf{w}_{ci} \boldsymbol{\beta}_{c,1} - \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b11} - \dots - \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB1} - e_{1i} & j = 1 \\ \vdots \\ -\mathbf{x}_i \boldsymbol{\beta}_T - \mathbf{w}_{ci} \boldsymbol{\beta}_{cT} - \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1T} - \dots - \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bBT} - e_{1i} & j = T \end{cases}$$

The lower and upper limits for the y_i probability are

$$l_{1i} = \begin{cases} -\infty & y_i = 0\\ & & \\ c_{1ij} & y_i = 1, t_i = v_j \end{cases} u_{1i} = \begin{cases} c_{1ij} & y_i = 0, t_i = v_j\\ & & \\ \infty & y_i = 1 \end{cases}$$

The conditional means of the unobserved errors ϵ_{si} , ϵ_{ti} , ϵ_{b1i} , ..., ϵ_{bBi} have similar forms to e_{1i} . Denote these means by e_{si} , e_{ti} , e_{b1i} , ..., e_{bBi} . The lower and upper probability limits for s_i , t_i , and the ordinal endogenous covariates are obtained by subtracting the means from the limits defined in (10), (8), (9), (5), and (6).

$$l_{si}^{*} = l_{si} - e_{si}$$

$$u_{si}^{*} = u_{si} - e_{si}$$

$$l_{ti}^{*} = l_{ti} - e_{ti}$$

$$u_{ti}^{*} = u_{ti} - e_{ti}$$

$$l_{b1i}^{*} = l_{b1i} - e_{b1i}$$

$$u_{b1i}^{*} = u_{b1i} - e_{b1i}$$

$$\vdots$$

$$l_{bBi}^{*} = l_{bBi} - e_{bBi}$$

$$u_{bBi}^{*} = u_{bBi} - e_{bBi}$$

We have lower and upper limits; we need a conditional covariance and the conditional density of \mathbf{w}_{ci} to formulate the likelihood. For j = 1, ..., T, conditional on \mathbf{w}_{ci} and the exogenous covariates, $\epsilon_{ji}, \epsilon_{si}, \epsilon_{ti}, \epsilon_{b1i}, ..., \epsilon_{bBi}$ have covariance

$$\boldsymbol{\Sigma}_{o|c} = \begin{bmatrix} 1 & \rho_{1s} & \rho_{1t} & \rho_{1b}' \\ \rho_{1s} & 1 & \rho_{st} & \rho_{sb}' \\ \rho_{1t} & \rho_{st} & 1 & \rho_{tb}' \\ \rho_{1b} & \rho_{sb} & \rho_{tb} & \boldsymbol{\Sigma}_{b} \end{bmatrix} - \begin{bmatrix} \boldsymbol{\sigma}_{1c}' \\ \boldsymbol{\sigma}_{sc}' \\ \boldsymbol{\sigma}_{tc}' \\ \boldsymbol{\Sigma}_{bc}' \end{bmatrix} \boldsymbol{\Sigma}_{c}^{-1} \begin{bmatrix} \boldsymbol{\sigma}_{1c}' \\ \boldsymbol{\sigma}_{sc}' \\ \boldsymbol{\sigma}_{tc}' \\ \boldsymbol{\Sigma}_{bc}' \end{bmatrix}'$$

The conditional density of \mathbf{w}_{ci} is

$$f(\mathbf{w}_{ci}|\mathbf{z}_{ci}) = \phi_C(\mathbf{w}_{ci} - \mathbf{z}_{ci}\mathbf{A}_c, \mathbf{\Sigma}_c)$$

Let

$$\mathbf{l}_{1i} = \begin{bmatrix} l_{1i} & l_{si}^* & l_{ti}^* & l_{b1i}^* & \dots & l_{bBi}^* \end{bmatrix}$$
$$\mathbf{u}_{1i} = \begin{bmatrix} u_{1i} & u_{si}^* & u_{ti}^* & u_{b1i}^* & \dots & u_{bBi}^* \end{bmatrix}$$
$$\mathbf{l}_i = \begin{bmatrix} l_{si}^* & l_{ti}^* & l_{b1i}^* & \dots & l_{bBi}^* \end{bmatrix}$$
$$\mathbf{u}_i = \begin{bmatrix} u_{si}^* & u_{ti}^* & u_{b1i}^* & \dots & u_{bBi}^* \end{bmatrix}$$

The log likelihood of the model is

$$\begin{aligned} \ln L &= \sum_{i \in S} w_i \ln \Phi_{3+B}^* \left(\mathbf{l}_{1i}, \mathbf{u}_{1i}, \boldsymbol{\Sigma}_{o|c} \right) + \\ &\sum_{i \notin S} w_i \ln \Phi_{2+B}^* \left(\mathbf{l}_i, \mathbf{u}_i, \boldsymbol{\Sigma}_{o|c,-1} \right) + \\ &\sum_{i=1}^N w_i \ln \phi_C (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c, \boldsymbol{\Sigma}_c) \end{aligned}$$

where S is the set of observations where y_i is observed, and $\Sigma_{o|c,-1}$ is $\Sigma_{o|c}$ with the first row and column removed.

As in previous sections, we use the joint and marginal probabilities to determine conditional probabilities.

For $j = 1, \ldots, T$ and i such that $t_i = v_j$, let

$$\mathbf{l}_{i11} = \begin{bmatrix} c_{1ij} & l_{ti}^* & l_{b1i}^* & \dots & l_{bBi}^* \end{bmatrix}$$
$$\mathbf{u}_{i11} = \begin{bmatrix} \infty & u_{ti}^* & u_{b1i}^* & \dots & u_{bBi}^* \end{bmatrix}$$
$$\mathbf{l}_{i12} = \begin{bmatrix} l_{ti}^* & l_{b1i}^* & \dots & l_{bBi}^* \end{bmatrix}$$
$$\mathbf{u}_{i12} = \begin{bmatrix} u_{ti}^* & u_{b1i}^* & \dots & u_{bBi}^* \end{bmatrix}$$

Let $\Sigma_{o|c,-s}$ be $\Sigma_{o|c}$ with the second row and column removed. This is the conditional covariance matrix without the endogenous sample-selection equation components. Let $\Sigma_{o|c,-s-1}$ be $\Sigma_{o|c,-s}$ with the first row and column removed.

The conditional probability of success at treatment level $t_i = v_j$ is

$$\Pr(y_i = 1 | \mathbf{t}_i = v_j, \mathbf{w}_{bi}, \mathbf{w}_{ci}, \mathbf{x}_i, \mathbf{z}_{si}, \mathbf{z}_{ti}, \mathbf{z}_{b1i}, \dots, \mathbf{z}_{bBi}, \mathbf{z}_{ci}) = \frac{\Phi_{2+B}^* \left(\mathbf{l}_{i11}, \mathbf{u}_{i11}, \boldsymbol{\Sigma}_{o|c, -s} \right)}{\Phi_{1+B}^* \left(\mathbf{l}_{i12}, \mathbf{u}_{i12}, \boldsymbol{\Sigma}_{o|c, -s-1} \right)}$$

The conditional probabilities of treatment, selection, and the ordinal endogenous covariates are derived in similar ways. We condition on the treatment and the other endogenous covariates together with the exogenous covariates that affect the outcome. POMs and treatment effects are conditioned on the endogenous and exogenous covariates. See *Predictions considering total effects* in [ERM] **eprobit postestimation** for more details.

Confidence intervals

The estimated variances will always be nonnegative, and the estimated correlations will always fall in (-1, 1). We use transformations to obtain confidence intervals that accommodate these ranges.

We use the log transformation to obtain the confidence intervals for variance parameters. Let $\hat{\sigma}^2$ be a point estimate for the variance parameter σ^2 , and let $\widehat{SE}(\hat{\sigma}^2)$ be its standard error. The $(1-\alpha) \times 100\%$ confidence interval for $\ln(\sigma^2)$ is

$$\ln(\widehat{\sigma}^2) \pm z_{\alpha/2} \frac{\widehat{\operatorname{SE}}(\widehat{\sigma}^2)}{\widehat{\sigma}^2}$$

where $z_{\alpha/2}$ is the $1 - \alpha/2$ quantile of the standard normal distribution. Let k_u be the upper endpoint of this interval, and let k_l be the lower. The $(1 - \alpha) \times 100\%$ confidence interval for σ^2 is then given by

$$\left(e^{k_l}, e^{k_u}\right)$$

We use the inverse hyperbolic tangent transformation to obtain confidence intervals for correlation parameters; for details on the hyperbolic functions, see [FN] **Trigonometric functions**. Let $\hat{\rho}$ be a point estimate for the correlation parameter ρ , and let $\widehat{SE}(\hat{\rho})$ be its standard error. The $(1-\alpha) \times 100\%$ confidence interval for $\mathtt{atanh}(\rho)$ is

$$\operatorname{\mathtt{atanh}}(\widehat{
ho}) \pm z_{\alpha/2} \widehat{\operatorname{SE}}(\widehat{
ho}) rac{1}{1 - \widehat{
ho}^2}$$

where $z_{\alpha/2}$ is the $1 - \alpha/2$ quantile of the standard normal distribution. Let k_u be the upper endpoint of this interval, and let k_l be the lower. The $(1 - \alpha) \times 100\%$ confidence interval for ρ is then given by

$$\{ \texttt{tanh}(k_l), \texttt{tanh}(k_u) \}$$

Likelihood for multiequation models

The general framework for ERMs is formulated such that it accommodates multiple features. Binary and ordinal endogenous covariates may occur together with continuous endogenous covariates in ERMs. Endogenous covariates may also occur together with endogenous sample selection or treatments in ERMs.

Here, we show how the log likelihood is formulated when we have multiple auxiliary equations.

Suppose that we have H auxiliary equations with endogenous outcomes y_{1i}, \ldots, y_{Hi} . We will treat the main outcome y_i as stage J = H + 1, so $y_{Ji} = y_i$. The ERMs that we fit with eintreg, eoprobit, eprobit, and eregress are triangular, so we can order the equations such that the first depends only on exogenous covariates—say, $\mathbf{w}_{1i} = \mathbf{z}_i$ —and for $j = 2, \ldots, J$, equation j depends only on the exogenous covariates \mathbf{z}_i and the endogenous covariates from equation h = j - 1 and below y_{1i}, \ldots, y_{hi} . These are stored together in \mathbf{w}_{ji} .

So we have

$$y_{1i} = g_{1i}(\mathbf{w}_{1i}\boldsymbol{\beta}_1 + v_{1i})$$

$$\vdots$$

$$y_{Hi} = g_{Hi}(\mathbf{w}_{Hi}\boldsymbol{\beta}_H + v_{Hi})$$

$$y_i = y_{Ji} = g_{Ji}(\mathbf{w}_{Ji}\boldsymbol{\beta}_J + v_{Ji} > 0)$$

where the form of the functions $g_{ji}(\cdot)$ is determined by whether the outcome y_{ji} has a linear, probit, or interval model. The errors v_{1i}, \ldots, v_{Ji} are multivariate normal with mean 0 and covariance Σ .

The covariates \mathbf{w}_{ji} and the outcome y_{ji} determine a range for the error v_{ji} . For example, if y_{ji} has a linear model, then $v_{ji} = y_{ji} - \mathbf{w}_{ji}\beta_j$, the residual. If $y_{ji} = 1$ and y_{ji} has a probit model, then v_{ji} is in the range $(-\mathbf{w}_{ji}\beta_i, \infty)$. If y_{ij} is left-censored at l_i , then v_{ji} is in the range $(-\infty, l_i - \mathbf{w}_{ji}\beta_j)$.

The density of the endogenous variables can be represented using a multivariate normal density function that is evaluated at the residuals for the continuous outcomes and integrated over the error ranges of the noncontinuous outcomes.

The conditional density of the error v_{ji} on \mathbf{w}_{ji} has the form

$$f(v_{ji}|\mathbf{w}_{ji}) = \frac{\int_{\mathbf{V}_{hi}^{\star}} \phi_j(v_{1i}, \dots, v_{ji}, \mathbf{\Sigma}_j) d\mathbf{v}_{hi}^{\star}}{\int_{\mathbf{V}_{hi}^{\star}} \phi_h(v_{1i}, \dots, v_{hi}, \mathbf{\Sigma}_h) d\mathbf{v}_{hi}^{\star}}$$

where Σ_j is the covariance of v_{1i}, \ldots, v_{ji} and Σ_h is the covariance of v_{1i}, \ldots, v_{hi} where h = j - 1. The vector \mathbf{v}_{hi}^{\star} contains the errors that correspond to binary, ordinal, or censored outcomes in y_{1i} , \ldots, y_{hi} . These outcomes induce the error ranges \mathbf{V}_{hi}^{\star} , which we integrate over. The other errors are determined by the outcomes and covariates as residuals.

If y_{ii} is continuous, then

$$f(y_{ji}|\mathbf{w}_{ji}) = f(v_{ji}|\mathbf{w}_{ji}) \tag{11}$$

When y_{ii} is a binary, ordinal, or censored outcome, we have

$$f(y_{ji}|\mathbf{w}_{ji}) = \frac{\int_{\mathbf{V}_{ji}^{\star}} \phi_j(v_{1i}, \dots, v_{ji}, \mathbf{\Sigma}_j) d\mathbf{v}_{ji}^{\star}}{\int_{\mathbf{V}_{hi}^{\star}} \phi_h(v_{1i}, \dots, v_{hi}, \mathbf{\Sigma}_h) d\mathbf{v}_{hi}^{\star}}$$
(12)

So we also integrate over the range of the error v_{ii} when y_{ii} is not continuous.

We can express the joint density of the main outcome and the endogenous covariates in terms of the marginal and conditional densities. The denominator in (11) or (12) in the higher stage will cancel out the numerator of (11) or (12) in the lower stage, so we have

$$f(y_{1i},\ldots,y_{ji}|\mathbf{z}_i) = \int_{\mathbf{V}_{ji}^{\star}} \phi_j(v_{1i},\ldots,v_{ji},\mathbf{\Sigma}_j) d\mathbf{v}_{ji}^{\star}$$
(13)

If we only have continuous endogenous variables, we have

$$f(y_{1i},\ldots,y_{ji}|\mathbf{z}_i) = \phi_j(v_{1i},\ldots,v_{ji},\mathbf{\Sigma}_j)$$

If \mathbf{V}_{ji}^{\star} has dimension j, we can calculate the integral given in (13) by using the Φ_j^{\star} . Let \mathbf{l}_i contain the lower endpoints and \mathbf{u}_i contain the upper endpoints for \mathbf{V}_{ji}^{\star} . When we do not have continuous endogenous covariates, we have

$$f(y_{1i},\ldots,y_{ji}|\mathbf{z}_i) = \Phi_j^*(\mathbf{l}_i,\mathbf{u}_i,\boldsymbol{\Sigma}_j)$$

Now, suppose that we have C < j continuous outcomes in y_{1i}, \ldots, y_{ji} , so the dimension of \mathbf{V}_{ji}^{\star} is j - C. Without loss of generality, these C correspond to the last C endogenous covariates $y_{(j-C+1)i}, \ldots, y_{ji}$. The covariates can be reordered as needed.

We partition the covariance

$$oldsymbol{\Sigma}_j = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{12} & oldsymbol{\Sigma}_{22} \end{bmatrix}$$

where Σ_{22} is the covariance of the last C errors.

Conditional on $v_{(j-C+1)i}, \ldots, v_{ji}$, the errors $v_{1i}, \ldots, v_{(j-C)i}$ have mean and variance

$$\boldsymbol{\mu}_{1|2,i} = \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \begin{bmatrix} v_{(j-C+1)i} \\ \vdots \\ v_{ji} \end{bmatrix}$$
$$\boldsymbol{\Sigma}_{1|2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}'$$

By conditioning on $v_{(j-C+1)i}, \ldots, v_{ji}$, we can express the density in terms of ϕ_C and Φ_{j-C}^* . We can write the joint density in terms of the marginal and conditional densities to obtain

 $f(y_{1i},\ldots,y_{ji}|\mathbf{z}_i) = \phi_C(v_{(j-C+1)i},\ldots,v_{ji},\boldsymbol{\Sigma}_{22})\Phi_{j-C}^*(\mathbf{l}_i - \boldsymbol{\mu}_{1|2,i},\mathbf{u}_i - \boldsymbol{\mu}_{1|2,i},\boldsymbol{\Sigma}_{1|2})$

The natural logarithm of the density $f(y_{1i}, \ldots, y_{Ji} | \mathbf{z}_i)$ is the log likelihood of the model. We maximize the log likelihood to estimate the model parameters.

References

- Angrist, J. D. 2001. Estimation of limited dependent variable models with dummy endogenous regressors: Simple strategies for empirical practice. Journal of Business and Economic Statistics 19: 2–16.
- Arendt, J. N., and A. Holm. 2006. Probit models with binary endogenous regressors. Discussion Papers on Business and Economics No. 4/2006, Department of Business and Economics, University of Southern Denmark. static.sdu.dk/mediafiles/Files/Om_SDU/Institutter/Ivoe/Disc_papers/Disc_2006/dpbe4 2006 pdf.pdf.
- Drezner, Z. 1994. Computation of the trivariate normal integral. Mathematics of Computation 62: 289-294.
- Karymshakov, K., K. Sultakeev, and B. Sulaimanova. 2015. The impact of microfinance on entrepreneurship in Kyrgyzstan. International Conference on Eurasian Economies, paper ID 1412. Eurasian Economists Association: Kazan, Russia. http://www.avekon.org/papers/1412.pdf.
- Miwa, T., A. J. Hayter, and S. Kuriki. 2003. The evaluation of general non-centred orthant probabilities. *Journal of the Royal Statistical Society, Series B* 65: 223–234.
- Miwa, T., A. J. Hayter, and W. Liu. 2000. Calculations of level probabilities for normal random variables with unequal variances with applications to Bartholomew's test in unbalanced one-way models. *Computational Statistics & Data Analysis* 34: 17–32.
- Newey, W. K. 1987. Efficient estimation of limited dependent variable models with endogenous explanatory variables. *Journal of Econometrics* 36: 231–250.
- Pindyck, R. S., and D. L. Rubinfeld. 1998. Econometric Models and Economic Forecasts. 4th ed. New York: McGraw-Hill.
- Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. Stata Journal 11: 159-206.
- Vahter, P. 2011. Does FDI spur productivity, knowledge sourcing and innovation by incumbent firms? Evidence from manufacturing industry in Estonia. World Economy 34: 1308–1326.
- Van de Ven, W. P. M. M., and B. M. S. Van Pragg. 1981. The demand for deductibles in private health insurance: A probit model with sample selection. *Journal of Econometrics* 17: 229–252.
- Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

- [ERM] eprobit postestimation Postestimation tools for eprobit
- [ERM] eprobit predict predict after eprobit
- [ERM] estat teffects Average treatment effects for extended regression models
- [ERM] **intro 8** Conceptual introduction via worked example
- [R] **biprobit** Bivariate probit regression
- [R] heckprobit Probit model with sample selection
- [R] **ivprobit** Probit model with continuous endogenous covariates
- [R] probit Probit regression
- [SVY] svy estimation Estimation commands for survey data
- [U] 20 Estimation and postestimation commands

eprobit postestimation - Postestimation tools for eprobit

Postestimation commands Methods and formulas

predict References margins Also see Remarks and examples

Postestimation commands

The following postestimation command is of special interest after eprobit:

Command	Description
estat teffects	treatment effects and potential-outcome means

The following standard postestimation commands are also available after eprobit:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
*forecast	dynamic forecasts and simulations
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

* forecast and lrtest are not appropriate with svy estimation results.

predict

Predictions after eprobit are described in

[ERM] eprobit predict	predict after eprobit
[ERM] predict treatment	predict for treatment statistics
[ERM] predict advanced	predict's advanced features

[ERM] **eprobit predict** describes the most commonly used predictions. If you fit a model with treatment effects, predictions specifically related to these models are detailed in [ERM] **predict treatment**. [ERM] **predict advanced** describes less commonly used predictions, such as predictions of outcomes in auxiliary equations.

margins

Description for margins

margins estimates margins of response for probabilities, means, potential-outcome means, treatment effects, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins	[marginlist] [, options]
margins	[marginlist], predict(statistic) [predict(statistic)] [options]
statistic	Description
Main	
pr	probability for binary or ordinal y_j ; the default
mean	mean
pomean	potential-outcome mean
te	treatment effect
tet	treatment effect on the treated
xb	linear prediction
pr(a,b)	$Pr(a < y_j < b)$ for continuous y_j
_ e(a,b)	$E(y_j a < y_j < b)$ for continuous y_j
\underline{ys} tar(a, b)	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$ for continuous y_j

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

See [ERM] intro 6 for an overview of using margins and predict after eprobit. For examples using margins, predict, and estat teffects, see *Interpreting effects* in [ERM] intro 8 and see [ERM] example 1a.

Methods and formulas

These methods build on the discussions in Methods and formulas of [ERM] eprobit.

Methods and formulas are presented under the following headings:

Counterfactual predictions and inferences Predictions using the full model

Counterfactual predictions and inferences

In *Methods and formulas* of [ERM] **eprobit**, we discussed how treatment effects are evaluated in extended probit regression models. Here, we discuss the counterfactual framework used to evaluate the effects of other changes to covariates.

In the extended probit regression model for y_i on exogenous covariates \mathbf{x}_i and \mathbf{w}_i , we partition each set of covariates into two groups. The exogenous covariates \mathbf{x}_i are partitioned into \mathbf{x}_i^c and \mathbf{w}_i^{nc} , where we are interested in the effect of changes in \mathbf{x}_i^c . Similarly, the endogenous covariates \mathbf{w}_i are partitioned into \mathbf{w}_i^c and \mathbf{w}_i^{nc} , where the effect of changes in \mathbf{w}_i^c is of interest. The superscripts indicate what is a counterfactual value (c) and what is not (nc).

If $\mathbf{x}_i^c = \mathbf{a}_0$ and $\mathbf{w}_i^c = \mathbf{a}_{20}$, for covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} we would observe the outcome

$$y_{0i} = \mathbf{1}(\boldsymbol{\beta}_{0nc}\mathbf{x}_i^{nc} + \boldsymbol{\beta}_{20nc}\mathbf{w}_i^{nc} + \boldsymbol{\beta}_c\mathbf{a}_0 + \boldsymbol{\beta}_{2c}\mathbf{a}_{20} + \epsilon_{0i} > 0)$$
$$= \mathbf{1}(\boldsymbol{\beta}_{0nc}\mathbf{x}_i^{nc} + \boldsymbol{\beta}_{20nc}\mathbf{w}_i^{nc} + \beta_{c0} + \epsilon_{0i} > 0)$$

where the unobserved error ϵ_{0i} is standard normal. We treat $\beta_c \mathbf{a}_0 + \beta_{2c} \mathbf{a}_{20} = \beta_{c0}$ as a constant intercept, because it is the same for each value combination of the covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} and the error ϵ_{0i} .

Similarly, if $\mathbf{x}_i^c = \mathbf{a}_1$ and $\mathbf{w}_i^c = \mathbf{a}_{21}$, for covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} we would observe the outcome

$$y_{1i} = \mathbf{1}(\boldsymbol{\beta}_{1nc}\mathbf{x}_i^{nc} + \boldsymbol{\beta}_{21nc}\mathbf{w}_i^{nc} + \boldsymbol{\beta}_c\mathbf{a}_1 + \boldsymbol{\beta}_{2c}\mathbf{a}_{21} + \epsilon_{1i} > 0)$$
$$= \mathbf{1}(\boldsymbol{\beta}_{1nc}\mathbf{x}_i^{nc} + \boldsymbol{\beta}_{21nc}\mathbf{w}_i^{nc} + \beta_{c1} + \epsilon_{1i} > 0)$$

The effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} on y_i is the expected difference between \mathbf{y}_{1i} and \mathbf{y}_{0i} .

To obtain this difference, we average the conditional probabilities of y_{1i} and y_{0i} as a predictive margin.

For j = 0, 1, we can predict the counterfactual probability for group j by using the tools discussed in *Predictions using the full model*,

$$\operatorname{CP}_{j}(\mathbf{w}_{i}^{nc}, \mathbf{x}_{i}^{nc}, \mathbf{z}_{i}) = \operatorname{Pr}(y_{ji} = 1 | \mathbf{w}_{i}^{nc}, \mathbf{x}_{i}^{nc}, \mathbf{x}_{i}^{c} = \mathbf{a}_{j}, \mathbf{z}_{i})$$

where z_i are instruments necessary for modeling the endogenous regressors w_i^{nc} . By the law of iterated expectations, we have

$$E(y_{1i} - y_{0i}) = E\{CP_1(\mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{z}_i)\} - E\{CP_0(\mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{z}_i)\}$$

So the effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} can be estimated as a predictive margin on the counterfactual probabilities.

We can use predict with the fix() and target() options to predict the counterfactual probabilities. The fix() option is used to indicate the endogenous covariates in \mathbf{w}_i^c . The target() option can be used to set the counterfactual values a_i and a_{2i} of \mathbf{x}_i^c and \mathbf{w}_i^c .

When \mathbf{w}_i^c corresponds to a single ordinal or binary regressor, the difference in counterfactual probabilities corresponds to a treatment effect of \mathbf{w}_i^c . We can also evaluate the structural effect of a change in \mathbf{w}_i^c and \mathbf{x}_i^c , conditioned on \mathbf{w}_i^c . This effect is analogous to the treatment effect on the treated discussed in *Methods and formulas* of [ERM] **eprobit**. We are conditioning the effect on some base value for \mathbf{w}_i^c , $\mathbf{w}_i^c = \mathbf{b}$.

Now, the counterfactual probabilities are conditioned on $\mathbf{w}_i^c = \mathbf{b}$. So for j = 0, 1, we have

$$\operatorname{CP}_{bj}(\mathbf{w}_i^{nc}, \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) = \operatorname{Pr}(y_{ji} = 1 | \mathbf{w}_i^{nc}, \mathbf{w}_i^{c} = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{x}_i^{c} = \mathbf{a}_j, \mathbf{z}_{bi})$$

where \mathbf{z}_{bi} are instruments necessary for modeling the endogenous regressors \mathbf{w}_i^{nc} and \mathbf{w}_i^{c} . This counterfactual probability can be evaluated using the tools discussed in *Predictions using the full model*.

By the law of iterated expectations, we have

$$E(y_{1i} - y_{0i} | \mathbf{w}_i^c = \mathbf{b}) = E \left\{ CP_{b1}(\mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) | \mathbf{w}_i^c = \mathbf{b} \right\} - E \left\{ CP_{b0}(\mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) | \mathbf{w}_i^c = \mathbf{b} \right\}$$

So the effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} conditioned on $\mathbf{w}_i^c = \mathbf{b}$ can be estimated as a predictive margin on the counterfactual probabilities.

The base values **b** for \mathbf{w}_i^c are specified in the base() option. As before, target() can be used to specify the counterfactual values for \mathbf{x}_i^c and \mathbf{w}_i^c .

When $\mathbf{x}_i^c = \mathbf{x}_i$ and $\mathbf{w}_i^c = \mathbf{w}_i$, the counterfactual probability matches the average structural probability (ASP). Applying the average structural function (ASF) discussed by Blundell and Powell (2003), Blundell and Powell (2004), Wooldridge (2005), and Wooldridge (2014) to a conditional probability on the covariates and unobserved endogenous error produces the ASP.

In the probit model, for exogenous covariates x_i and endogenous covariates w_i , we have

$$y_i = \mathbf{1}(\mathbf{x_i}\boldsymbol{\beta} + \mathbf{w_i}\boldsymbol{\beta_2} + \epsilon_i > \mathbf{0})$$

where ϵ_i is a standard normal error.

The ASP provides a structural interpretation of β and β_2 when the \mathbf{w}_i are correlated with ϵ_i . Because ϵ_i is a normally distributed, mean 0, random variable, we can split it into two mean 0, normally distributed, independent parts,

$$\epsilon_i = u_i + \psi_i$$

where $u_i = \gamma \epsilon_{2i}$ is the unobserved heterogeneity that gives rise to the endogeneity and ψ_i is an error term with variance σ_{ψ}^2 . Conditional on the covariates and the unobserved heterogeneity, the probability that $y_i = 1$ is

$$\Pr(y_i = 1 | \mathbf{x}_i, \mathbf{w}_i, u_i) = \Phi\left(\frac{\mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_i \boldsymbol{\beta}_2 + u_i}{\sigma_{\psi}}\right)$$

Because u_i is an unobserved random variable, this conditional probability is not observable. Integrating out the u_i , just like we do with random effects in panel-data models, produces the ASP,

$$\operatorname{ASP}(\mathbf{x}_i^0, \mathbf{w}_i^0) = \int \operatorname{Pr}(y_i = 1 | \mathbf{x}_i^0, \mathbf{w}_i^0, u_i) f(u_i) du_i$$

where $f(u_i)$ is the marginal distribution of u_i , and \mathbf{x}_i^0 and \mathbf{w}_i^0 are given covariate values.

Predictions using the full model

In this section, we discuss the general framework for predictions made after ERMs with multiple auxiliary equations and conditioned on both the covariates and the instruments. The predictions consider the total effect of all the covariates and instruments on the outcome. See *Counterfactual predictions and inferences* for a discussion of predictions that may not involve all the covariates and instruments.

Suppose that we have H auxiliary equations with endogenous outcomes y_{1i}, \ldots, y_{Hi} . We will treat the main outcome y_i as stage J = H + 1, so $y_{Ji} = y_i$. The ERMs that we fit with eintreg, eoprobit, eprobit, and eregress are triangular, so we can order the equations such that the first depends only on exogenous covariates and instruments—say, $\mathbf{w}_{1i} = \mathbf{z}_i$ —and for $j = 2, \ldots, J$, equation j depends only on the exogenous covariates and instruments \mathbf{z}_i and the endogenous covariates from equation h = j - 1 and below y_{1i}, \ldots, y_{hi} . These are stored together in \mathbf{w}_{ji} .

When we predict conditional probabilities for binary and ordinal outcomes, we condition on all the endogenous and exogenous covariates and instruments that affect y_{ji} . Conditional probabilities are calculated as the ratio of the joint density over the marginal density of the conditioning covariates. For binary or ordinal outcome y_{ji} , we have

$$\Pr(y_{ji} = Y | y_{1i}, \dots, y_{(j-1)i}, \mathbf{z}_i) = \frac{f(Y, y_{1i}, \dots, y_{(j-1)i} | \mathbf{z}_i)}{f(y_{1i}, \dots, y_{(j-1)i} | \mathbf{z}_i)}$$

where the densities can be computed as described in [ERM] eprobit.

Now, suppose instead that y_{ji} is continuous. We can predict the probability that y_{ji} lies in the range (l_{ji}, u_{ji}) :

$$\begin{aligned} \Pr(l_{ji}, u_{ji}) &= \Pr(l_{ji} < y_{ji} < u_{ji} | y_{1i}, \dots, y_{(j-1)i}, \mathbf{z}_i) \\ &= \int_{(l_{ji}, u_{ji}) \times \mathbf{V}^{\star}_{(j-1)i}} \phi_j(v_{1i}, \dots, v_{ji}, \mathbf{\Sigma}_j) dv_{ji} d\mathbf{v}^{\star}_{(j-1)i} \end{aligned}$$

This integral can be evaluated using the methods discussed in *Likelihood for multiequation models* in [ERM] **eprobit**.

The conditional mean of continuous outcome y_{ji} is

$$E(y_{ji}|\mathbf{w}_{ji}) = \mathbf{w}_{ji}\boldsymbol{\beta}_{i} + E(v_{ji}|\mathbf{w}_{ji})$$

where \mathbf{w}_{ji} contains the endogenous covariates $y_{1i}, \ldots, y_{(j-1)i}$ and exogenous covariates \mathbf{z}_i that affect y_{ji} .

138 eprobit postestimation — Postestimation tools for eprobit

By conditioning on the binary and ordinal endogenous covariates $y_{1i}, \ldots, y_{(j-1)i}$, the errors v_{hi}, \ldots, v_{Ji} become truncated normal. Together with v_{ji} , they have a truncated multivariate distribution. So the mean of the continuous endogenous covariate is calculated using the moment formulas for the truncated multivariate normal. The first and second moments of the doubly truncated multivariate normal were derived in Manjunath and Wilhelm (2012). Tallis (1961) derived the first and second moments of the multivariate normal with one-sided truncation.

A key result in Manjunath and Wilhelm (2012) is that

$$\int_{l_1}^{u_1} \dots \int_{l_d}^{u_d} \epsilon_f \phi_d(\boldsymbol{\epsilon}, \boldsymbol{\Sigma}) \quad d\epsilon_1 \dots d\epsilon_d = \sum_{k=1}^d \sigma_{fk} \left\{ F_k(l_k) - F_k(u_k) \right\}$$
(1)

where the functions $F_k(\cdot)$ are defined as

$$F_k(e) = \int_{l_1}^{u_1} \dots \int_{l_{k-1}}^{u_{k-1}} \int_{l_{k+1}}^{u_{k+1}} \phi_d(e_1, \dots, e_{k-1}, e, e_{k+1}, \dots, e_k, \mathbf{\Sigma}) de_1 \dots de_{k-1} de_{k+1} \dots de_d$$

The $F_k(\cdot)$ functions can be computed like the joint density in *Likelihood for multiequation models* in [ERM] **eprobit**. So we have

$$E(v_{ji}|\mathbf{w}_{ji}) = \frac{\sum_{k=j}^{J} \sigma_{jk} \left\{ F_k(l_{ki}) - F_k(u_{ki}) \right\}}{\Phi_J^*(\mathbf{l}_i, \mathbf{u}_i, \boldsymbol{\Sigma}_j)}$$

where $l_{ji} = -\infty$ and $u_{ji} = \infty$.

If there are continuous endogenous regressors in y_{1i}, \ldots, y_{ji} , we condition on them in calculating (1). As in the calculation of the joint density in *Likelihood for multiequation models* in [ERM] **eprobit**, we multiply by the marginal density and adjust the cutpoints and variance.

The constrained mean of continuous outcome y_{ji} , the mean of y_{ji} when y_{ji} falls between l_{ji} and u_{ji} , is

$$E(l_{ji}, u_{ji}) = E(y_{ji} | \mathbf{w}_{ji}, l_{ji} < y_{ji} < u_{ji})$$

= $\mathbf{w}_{ji} \boldsymbol{\beta}_j + E(v_{ji} | \mathbf{w}_{ji}, l_{ji} - \mathbf{w}_{ji} \boldsymbol{\beta}_j < \epsilon_{ji} < v_{ji} - \mathbf{w}_{ji} \boldsymbol{\beta}_j)$

We use the same method as for the unconstrained mean, with cutpoints $l_{ji} - \mathbf{w}_{ji}\beta_j$ and $u_{ji} - \mathbf{w}_{ji}\beta_j$ instead of $-\infty$ and ∞ .

Finally, the expected value of continuous y_{ji} with censoring at l_{ji} and u_{ji} is

$$E(y_{ji}^{\star}|\mathbf{w}_{ji}) = l_{ji}\mathbf{1}(\mathbf{w}_{ji}\boldsymbol{\beta}_{j} + \epsilon_{ji} < l_{ji}) + u_{ji}\mathbf{1}(\mathbf{w}_{ji}\boldsymbol{\beta}_{j} + \epsilon_{ji} > u_{ji}) + (\mathbf{w}_{ji}\boldsymbol{\beta}_{i} + \epsilon_{ji})\mathbf{1}(l_{ji} \le \mathbf{w}_{ji}\boldsymbol{\beta}_{j} + \epsilon_{ji} \le u_{ji})$$

where $y_{ji}^{\star} = \max\{l_{ij}, \min(y_{ij}, u_{ij})\}$. This can be calculated using predictions we have already discussed:

$$E(y_{ji}^{\star}|\mathbf{w}_{ji}) = \Pr(-\infty, l_{ji})l_{ji} + \Pr(l_{ji}, u_{ji})E(l_{ji}, u_{ji}) + \Pr(u_{ji}, \infty)u_{ji}$$

All the predictions above can be made after estimation by using predict. By also specifying either the pr or the $pr(l_{ji}, u_{ji})$ option in predict, we can obtain conditional probabilities for a binary or ordinal outcome or the conditional probability that a continuous outcome lies in the specified range (l_{ji}, u_{ji}) .

By also specifying the mean option, we obtain the conditional mean of a continuous endogenous covariate. The $e(l_{ji}, u_{ji})$ option is used to obtain the constrained mean, and $ystar(l_{ji}, u_{ji})$ is used to obtain the expected value with censoring.

Prediction of treatment effects and potential-outcome means in models with endogenous covariates use the above formulas for the conditional mean and probabilities applied to the potential outcomes y_{1i}, \ldots, y_{Ti} rather than the observed y_i . Methods and formulas for other predictions are given in the Methods and formulas sections of [ERM] **eoprobit**, [ERM] **eintreg**, and [ERM] **eregress**.

References

- Blundell, R. W., and J. L. Powell. 2003. Endogeity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, ed. M. Dewatripont, L. P. Hansen, and S. J. Turnovsky, vol. 2, 312–357. Cambridge: Cambridge University Press.
- -----. 2004. Endogeneity in semiparametric binary response models. Review of Economic Studies 71: 655-679.
- Manjunath, B. G., and S. Wilhelm. 2012. Moments calculation for the doubly truncated multivariate normal density. https://arxiv.org/pdf/1206.5387.pdf.
- Tallis, G. M. 1961. The moment generating function of the truncated multi-normal distribution. *Journal of the Royal Statistical Society, Series B* 23: 223–229.
- Wooldridge, J. M. 2005. Unobserved heterogeneity and estimation of average partial effects. In *Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg*, ed. D. W. K. Andrews and J. H. Stock, 27–55. New York: Cambridge University Press.
- -----. 2014. Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables. *Journal of Econometrics* 182: 226–234.

Also see

- [ERM] eprobit Extended probit regression
- [ERM] eprobit predict predict after eprobit
- [ERM] **predict treatment** predict for treatment statistics
- [ERM] **predict advanced** predict's advanced features
- [U] 20 Estimation and postestimation commands

eprobit predict — predict after eprobit

Description Options for statistics Remarks and examples Also see Syntax Options for how results are calculated Methods and formulas

Description

In this entry, we show how to create new variables containing observation-by-observation predictions after fitting a model with eprobit.

Syntax

You previously fit the model

eprobit y x1 ..., ...

The equation specified immediately after the eprobit command is called the main equation. It is

 $\Pr(y_i) = \Pr(\beta_0 + \beta_1 \mathtt{x} \mathtt{1}_i + \dots + e_i . \mathtt{y} > 0)$

predict calculates predictions for Pr(y) in the main equation. The other equations in the model are called auxiliary equations or complications.

The syntax of predict is

predict [type] newvar [if] [in] [, stdstatistics howcalculated]

stdstatistics	Description
pr xb	probability of positive outcome; the default linear prediction excluding all complications
howcalculated	Description
<pre>default fix(endogvars) base(valspecs) target(valspecs)</pre>	not fixed; base values from data fix specified endogenous covariates specify base values of any variables more convenient way to specify fix() and base()

Note: The fix() and base() options affect results only in models with endogenous variables in the main equation. The target() option is sometimes a more convenient way to specify the fix() and base() options.

endogvars are names of one or more endogenous variables appearing in the main equation.

valspecs specify the values for variables at which predictions are to be evaluated. Each *valspec* is of the form

varname = #
varname = (exp)
varname = othervarname

For instance, base(valspecs) could be base(w1=0) or base(w1=0 w2=1).

Notes:

- (1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
- (2) predict can also make predictions for the other equations in addition to the main-equation predictions discussed here. See [ERM] predict advanced.

Options for statistics

pr calculates the predicted probability of a positive outcome. In each observation, the prediction is the probability conditioned on the covariates. Results depend on how complications are handled, which is determined by the *howcalculated* options.

xb specifies that the linear prediction be calculated ignoring all complications.

Options for how results are calculated

By default, predictions are calculated taking into account all complications. This is discussed in *Remarks and examples* of [ERM] **eregress predict**.

- fix(*varname*...) specifies a list of endogenous variables from the main equation to be treated as if they were exogenous. This was discussed in [ERM] intro 3 and is discussed further in *Remarks and examples* of [ERM] eregress predict.
- base (varname = ...) specifies a list of variables from any equation and values for them. If eprobit were a linear model, we would tell you those values will be used in calculating the expected value of e_i .y. That thinking will not mislead you but is not formally correct in the case of eprobit. Linear or nonlinear, errors from other equations spill over into the main equation because of correlations between errors. The correlations were estimated when the model was fit. The amount of spillover depends on those correlations and the values of the errors. This issue was discussed in [ERM] intro 3 and is discussed further in *Remarks and examples* of [ERM] eregress predict.
- target(varname = ...) is sometimes a more convenient way to specify the fix() and base() options. You specify a list of variables from the main equation and values for them. Those values override the values of the variables calculating $\beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \cdots$. Use of target() is discussed in *Remarks and examples* of [ERM] eregress predict.

Remarks and examples

Remarks are presented under the following headings:

Using predict after eprobit How to think about nonlinear models

Using predict after eprobit

Predictions after fitting models with eprobit are handled the same as they are after fitting models with eregress. The issues are the same. See [ERM] eregress predict.

How to think about nonlinear models

Probit is a nonlinear model, and yet we just said that predictions after fitting models with eprobit are handled the same as they are after fitting models with eregress. That statement is partly true, not misleading, but false in its details.

The regression-base discussion that we routed you to is framed in terms of expected values. In the nonlinear models, it needs to be framed in terms of distributional assumptions about the errors. For instance, predict after eprobit does not predict the expected value (mean) of e_i .y. It calculates the probability that e_i .y exceeds $-\mathbf{x}_i\beta$. These details matter hugely in implementation but can be glossed over for understanding the issues. For a full treatment of the issues, see *Methods and formulas* in [ERM] eprobit.

Methods and formulas

See Methods and formulas in [ERM] eprobit postestimation.

Also see

[ERM] **eprobit postestimation** — Postestimation tools for eprobit [ERM] **eprobit** — Extended probit regression

Title

eregress - Extended linear regression

Description Options References Quick start Remarks and examples Also see Menu Stored results Syntax Methods and formulas

Description

eregress fits a linear regression model that accommodates any combination of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample selection.

Quick start

```
Regression of y on x with continuous endogenous covariate y2 modeled by x and z
eregress y x, endogenous(y2 = x z)
```

As above, but adding continuous endogenous covariate y3 modeled by x and z2 eregress y x, endogenous(y2 = x z) endogenous(y3 = x z2)

Regression of y on x with binary endogenous covariate d modeled by x and z eregress y x, endogenous(d = x z, probit)

Regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z eregress y x, entreat(trtvar = x z)

Regression of y on x with exogenous treatment recorded in trtvar eregress y x, extreat(trtvar)

Regression of y on x with endogenous sample-selection indicator selvar modeled by x and z eregress y x, select(selvar = x z)

As above, but adding endogenous covariate y2 modeled by x and z2 eregress y x, select(selvar = x z) endogenous(y2 = x z2)

As above, but adding endogenous treatment recorded in trtvar and modeled by x and z3 eregress y x, select(selvar = x z) endogenous(y2 = x z2) /// entreat(trtvar = x z3)

Menu

 ${
m Statistics}$ > Endogenous covariates > Models adding selection and treatment > Linear regression

Syntax

Basic linear regression with endogenous covariates eregress depvar [indepvars], endogenous(depvarsen = varlisten) [options]

Basic linear regression with endogenous treatment assignment

```
eregress depvar [indepvars],
    entreat(depvartr [= varlistr]) [options]
```

Basic linear regression with exogenous treatment assignment

Basic linear regression with sample selection

eregress depvar [indepvars],
 select(depvars = varlists) [options]

Basic linear regression with tobit sample selection

```
eregress depvar [indepvars],
    tobitselect(depvars = varlists) [options]
```

Linear regression combining endogenous covariates, treatment, and selection

eregress depvar [indepvars] [if] [in] [weight] [, extensions options]

extensions	Description
Model	
endogenous(<i>enspec</i>)	model for endogenous covariates; may be repeated
<u>entr</u> eat(<i>entrspec</i>)	model for endogenous treatment assignment
<pre><u>extr</u>eat(extrspec)</pre>	exogenous treatment
<u>sel</u> ect(<i>selspec</i>)	probit model for selection
<pre>tobitselect(tselspec)</pre>	tobit model for selection
options	Description
Model	
<u>nocons</u> tant	suppress constant term
<u>off</u> set(<i>varname</i> _o)	include varname _o in model with coefficient constrained to 1
<pre><u>const</u>raints(numlist)</pre>	apply specified linear constraints
<u>col</u> linear	keep collinear variables
SE/Robust	
vce(vcetype)	<i>vcetype</i> may be oim, <u>r</u> obust, <u>cl</u> uster <i>clustvar</i> , opg, <u>boot</u> strap, or <u>jackknife</u>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<pre>intpoints(#)</pre>	set the number of integration (quadrature) points for integration over four or more dimensions; default is intpoints(128)
<pre>triintpoints(#)</pre>	set the number of integration (quadrature) points for integration over three dimensions; default is triintpoints(10)
Maximization	
maximize_options	control the maximization process; seldom used
<u>coefl</u> egend	display legend instead of statistics

enspec is depvarsen = varlisten [, enopts]

where $depvars_{en}$ is a list of endogenous covariates. Each variable in $depvars_{en}$ specifies an endogenous covariate model using the common *varlist*_{en} and options.

entrspec is $depvar_{tr} = varlist_{tr}$ [, tropts]

where $depvar_{tr}$ is a variable indicating treatment assignment. $varlist_{tr}$ is a list of covariates predicting treatment assignment.

```
extrspec is tvar [, <u>nomain noint</u>eract]
```

where tvar is a variable indicating treatment assignment.

selspec is depvar_s = varlist_s [, <u>noconstant offset(varname_o)</u>]

where $depvar_s$ is a variable indicating selection status. $depvar_s$ must be coded as 0, indicating that the observation was not selected, or 1, indicating that the observation was selected. $varlist_s$ is a list of covariates predicting selection.

```
tselspec is depvar_s = varlist_s [, tselopts]
```

where $depvar_s$ is a continuous variable. $varlist_s$ is a list of covariates predicting $depvar_s$. The censoring status of $depvar_s$ indicates selection, where a censored $depvar_s$ indicates that the observation was not selected and a noncensored $depvar_s$ indicates that the observation was selected.

enopts	Description
Model	
probit	treat endogenous covariate as binary
oprobit	treat endogenous covariate as ordinal
nomain	do not add endogenous covariate to main equation
<u>nocons</u> tant	suppress constant term
tropts	Description
Model	
<u>nom</u> ain	do not add treatment indicator to main equation
<u>noint</u> eract	do not interact treatment with covariates in main equation
<u>nocons</u> tant	suppress constant term
$\underline{off}_{set}(varname_o)$	include $varname_o$ in model with coefficient constrained to 1
tselopts	Description
Model	
11(<i>varname</i> #)	left-censoring variable or limit
ul(<i>varname</i> #)	right-censoring variable or limit
main	add censored selection variable to main equation
<u>nocons</u> tant	suppress constant term
\underline{off}_{o} set(<i>varname</i> _o)	include $varname_o$ in model with coefficient constrained to 1

indepvars, varlisten, varlister, and varlists may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvars, and varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec), tobitselect(tselspec); see [ERM] erm options.

noconstant, offset(varname_o), constraints(numlist), collinear; see [R] estimation options.

SE/Robust

vce(vcetype); see [ERM] erm options.

Reporting

level(#), nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

Integration

intpoints(#), triintpoints(#); see [ERM] erm options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with eregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

eregress fits models that we refer to as "extended linear regression models". We use this term to mean linear regression models that accommodate endogenous covariates, nonrandom treatment assignment, and endogenous sample selection. eregress can account for these complications whether they arise individually or in combination.

In this entry, you will find information on the eregress command syntax. You can see *Methods* and *formulas* for a full description of the models that can be fit with eregress and details about how those models are fit.

More information on extended linear regression models is found in the separate introductions and example entries. We recommend reading those entries to learn how to use eregress. Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eregress and the other extended regression commands (eintreg, eprobit, and eoprobit), see [ERM] intro 1–[ERM] intro 8.

[ERM] intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] **intro 2** provides background on the four types of models—linear regression, interval regression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] intro 3 considers the problem of endogenous covariates and how to solve it using ERM commands.

[ERM] intro 4 gives an overview of endogenous sample selection and using ERM commands to account for it.

[ERM] **intro 5** covers nonrandom treatment assignment and how to account for it using **eregress** or any of the other ERM commands.

[ERM] intro 6 discusses interpretation of results. You can interpret coefficients from eregress in the usual way, but this introduction goes beyond the interpretation of coefficients. We demonstrate how to find answers to interesting questions by using margins. If your model includes an endogenous covariate or an endogenous treatment, the use of margins differs from its use after other estimation commands, so we strongly recommend reading this intro if you are fitting these types of models.

[ERM] intro 7 will be helpful if you are familiar with heckman, ivregress, etregress, and other commands that address endogenous covariates, sample selection, or nonrandom treatment assignment. This introduction is a Rosetta stone that maps the syntax of those commands to the syntax of eregress.

[ERM] intro 8 walks you through an example that gives insight into the concepts of endogenous covariates, treatment assignment, and sample selection while fitting models with eregress that address these complications. This intro also demonstrates how to interpret results by using margins and estat teffects.

Additional examples are presented in [ERM] example 1a-[ERM] example 6b. For examples using eregress, see

[ERM] example 1a	Linear regression with continuous endogenous covariate
[ERM] example 2a	Linear regression with binary endogenous covariate
[ERM] example 2b	Linear regression with exogenous treatment
[ERM] example 2c	Linear regression with endogenous treatment

See *Examples* in [ERM] **intro** for an overview of all the examples. These examples demonstrate all four extended regression commands, and all may be interesting because they handle complications in the same way.

You can also find in literature discussion and examples of many models that eregress can fit. For example, eregress can fit the linear regression model with endogenous sample selection (Heckman 1976), the linear regression model with an endogenous treatment (Heckman 1978; Maddala 1983), and the linear regression model with a tobit selection equation (Amemiya 1985; Wooldridge 2010, sec. 19.7). The linear regression model with endogenous regressors and endogenous sample selection discussed in Wooldridge (2010, sec 19.6) is also supported, along with the tobit selection regression with endogenous regressors discussed in Wooldridge (2010, sec 19.7). Roodman (2011) investigated linear regression models with endogenous covariates and endogenous sample selection, and demonstrated how multiple observational data complications could be addressed with a triangular model structure. His work has been used to model processes like the effect of aphid infestations and virus outbreaks on crop yields (Elbakidze, Lu, and Eigenbrode 2011) and the effect of calorie intake per day on food security in poor neighborhoods (Maitra and Rao 2014).

Stored results

eregress stores the following in e():

Sca	lars	
	e(N)	number of observations
	e(N_selected)	number of uncensored observations
	e(N_nonselected)	number of censored observations
	e(k)	number of parameters
	e(k_cat#)	number of categories for the #th depvar, ordinal
	e(k_eq)	number of equations in e(b)
	e(k_eq_model)	number of equations in overall model test
	e(k_dv)	number of dependent variables
	e(k_aux)	number of auxiliary parameters
	e(df_m)	model degrees of freedom
	e(11)	log likelihood
	e(N_clust)	number of clusters
	e(chi2)	χ^2
	e(p)	significance
	e(n_quad)	number of integration points for multivariate normal
	e(n_quad3)	number of integration points for trivariate normal
	e(rank)	rank of e(V)
	e(ic)	number of iterations
	e(rc)	return code
	e(converged)	1 if converged, 0 otherwise
Mao	cros	-
Ivia	e(cmd)	eregress
	e(cmdline)	command as typed
	e(depvar)	names of dependent variables
	e(wtype)	weight type
	e(wexp)	weight expression
	e(title)	title in estimation output
	e(clustvar)	name of cluster variable
	e(offset#)	offset for the #th depvar
	e(chi2type)	Wald; type of model χ^2 test
	e(vce)	vcetype specified in vce()
	e(vcetype)	title used to label Std. Err.
	e(opt)	type of optimization
	e(which)	max or min; whether optimizer is to perform maximization or minimization
	e(ml_method)	type of m1 method
	e(user)	name of likelihood-evaluator program
	e(technique)	maximization technique
	e(properties)	b V
	e(estat_cmd)	program used to implement estat
	e(predict)	program used to implement predict
	e(marginsok)	predictions allowed by margins
	e(marginsnotok)	predictions disallowed by margins
	e(asbalanced)	factor variables fyset as asbalanced
	e(asobserved)	factor variables fyset as asobserved
Mat		
Ivia	rices e(b)	coefficient vector
	e(b) e(cat#)	
		categories for the #th <i>depvar</i> , ordinal
	e(Cns)	constraints matrix iteration log (up to 20 iterations)
	e(ilog)	iteration log (up to 20 iterations)
	e(gradient)	gradient vector variance–covariance matrix of the estimators
	e(V) e(V_modelbased)	model-based variance
_		mouci-based variallee
Fun	ctions	
	e(sample)	marks estimation sample

Methods and formulas

The methods and formulas presented here are for the linear-outcome model. They are a special case of the methods and formulas derived by Roodman (2011).

Methods and formulas are presented under the following headings:

Introduction Endogenous covariates Continuous endogenous covariates Binary and ordinal endogenous covariates Treatment Endogenous sample selection Probit endogenous sample selection Tobit endogenous sample selection Combinations of features Confidence intervals

Introduction

A linear regression of outcome y_i on covariates \mathbf{x}_i may be written as

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$$

where the error ϵ_i is normal with mean 0 and variance σ^2 . The log likelihood is

$$\ln L = \sum_{i=1}^{N} w_i \ln \phi (y_i - \mathbf{x}_i \boldsymbol{\beta}, \sigma^2)$$

The conditional mean of y_i is

$$E(y_i|\mathbf{x}_i) = \mathbf{x}_i\boldsymbol{\beta}$$

If you are willing to take our word for some derivations and notation, the following is complete. Longer explanations and derivations for some terms and functions are provided in the *Methods and* formulas of [ERM] eprobit. For example, we need the two-sided probability function Φ_d^* that is discussed in *Introduction* in [ERM] eprobit.

If you are interested in all the details, we suggest you read *Methods and formulas* of [ERM] **eprobit** in its entirety, before reading this section. Here, we mainly show how the complications that arise in ERMs are handled in a linear regression framework.

Endogenous covariates

Continuous endogenous covariates

A linear regression of y_i on exogenous covariates \mathbf{x}_i and C continuous endogenous covariates \mathbf{w}_{ci} has the form

$$y_i = \mathbf{x}_i \boldsymbol{eta} + \mathbf{w}_{ci} \boldsymbol{eta}_c + \epsilon_i$$

 $\mathbf{w}_{ci} = \mathbf{z}_{ci} \mathbf{A}_c + \epsilon_{ci}$

The vector \mathbf{z}_{ci} contains variables from \mathbf{x}_i and other covariates that affect \mathbf{w}_{ci} . For the model to be identified, \mathbf{z}_{ci} must contain one extra exogenous covariate not in \mathbf{x}_i for each of the endogenous regressors in \mathbf{w}_{ci} . The unobserved errors ϵ_i and ϵ_{ci} are multivariate normal with mean 0 and covariance

$$\mathbf{\Sigma} = egin{bmatrix} \sigma^2 & m{\sigma}_{1c} \ m{\sigma}_{1c} & m{\Sigma}_c \end{bmatrix}$$

The log likelihood is

$$\ln L = \sum_{i=1}^{N} w_i \ln \phi_{C+1}(\mathbf{r}_i, \boldsymbol{\Sigma})$$

where

$$\mathbf{r}_i = \begin{bmatrix} y_i - \mathbf{x}_i & \mathbf{w}_{ci} - \mathbf{z}_{ci}\mathbf{A}_c \end{bmatrix}$$

The conditional mean of y_i is

$$E(y_i|\mathbf{x}_i, \mathbf{w}_{ci}, \mathbf{z}_{ci}) = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_{ci} \boldsymbol{\beta}_c + \boldsymbol{\sigma}'_{1c} \boldsymbol{\Sigma}_c^{-1} (\mathbf{w}_{ci} - \mathbf{z}_{ci} \mathbf{A}_c)'$$

Binary and ordinal endogenous covariates

Here, we begin by formulating the linear regression of y_i on exogenous covariates \mathbf{x}_i and B binary and ordinal endogenous covariates $\mathbf{w}_{bi} = [w_{b1i}, \ldots, w_{bBi}]$. Indicator (dummy) variables for the levels of each binary and ordinal covariate are used in the model. You can also interact other covariates with the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariates \mathbf{w}_{bi} are formulated as in *Binary and ordinal* endogenous covariates in [ERM] **eprobit**. So we have

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB} + \epsilon_i$$

The wind_{bji} vectors are defined in *Binary and ordinal endogenous covariates* in [ERM] eprobit. The binary and ordinal endogenous errors $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ and outcome error ϵ_i are multivariate normal with mean 0 and covariance

$$\mathbf{\Sigma} = egin{bmatrix} \mathbf{\Sigma}_b & m{\sigma}_{1b} \ m{\sigma}_{1b}' & m{\sigma}^2 \end{bmatrix}$$

From here, we discuss the model with ordinal endogenous covariates. The results for binary endogenous covariates are similar.

Using results from Likelihood for multiequation models in [ERM] eprobit, the joint density of y_i and \mathbf{w}_{bi} can be written using the conditional density of $\epsilon_{b1i}, \ldots, \epsilon_{bBi}$ on ϵ_i .

Define

$$r_i = y_i - (\mathbf{x}_i \boldsymbol{\beta} + \mathbf{wind}_{b1i} \boldsymbol{\beta}_{b1} + \dots + \mathbf{wind}_{bBi} \boldsymbol{\beta}_{bB})$$

Let

$$egin{aligned} oldsymbol{\mu}_{b|1,i} &= rac{oldsymbol{\sigma}'_{1b}}{\sigma^2} r_i = [\,e_{b1i}\dots e_{bBi}\,] \ oldsymbol{\Sigma}_{b|1} &= oldsymbol{\Sigma}_b - rac{oldsymbol{\sigma}_{1b}}{\sigma^2} \end{aligned}$$

For j = 1, ..., B and $h = 0, ..., B_j$, let

$$c_{bjih} = \begin{cases} -\infty & h = 0\\ \kappa_{bjh} - \mathbf{z}_{bji} \boldsymbol{\alpha}_{bj} - e_{bji} & h = 1, \dots, B_j - 1\\ \infty & h = B_j \end{cases}$$

So, for j = 1, ..., B, the probability for w_{bji} has lower limit

$$l_{bji} = c_{bji(h-1)}$$
 if $w_{bji} = v_{bjh}$

and upper limit

 $u_{bji} = c_{bjih}$ if $w_{bji} = v_{bjh}$

Let

$$\mathbf{l}_i = \begin{bmatrix} l_{b1i} & \dots & l_{bBi} \end{bmatrix}$$
$$\mathbf{u}_i = \begin{bmatrix} u_{b1i} & \dots & u_{bBi} \end{bmatrix}$$

So, the log likelihood for this model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \left\{ \Phi_B^*(\mathbf{l}_i, \mathbf{u}_i, \boldsymbol{\Sigma}_{b|1}) \phi(r_i, \sigma^2) \right\}$$

The expected value of y_i on \mathbf{w}_{bi} can be calculated using the techniques discussed in *Predictions* using the full model in [ERM] eprobit postestimation.

Treatment

In the potential-outcomes framework, the treatment t_i is a discrete variable taking T values, indexing the T potential outcomes of the outcome $y_i: y_{1i}, \ldots, y_{Ti}$.

When we observe treatment t_i with levels v_1, \ldots, v_T , we have

$$y_i = \sum_{j=1}^T \mathbb{1}(t_i = v_j)y_{ji}$$

So for each observation, we only observe the potential outcome associated with that observation's treatment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect estimation method. See [TE] teffects intro advanced. We do not model the treatment assignment process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent to what we provide here for endogenous treatments. The treatment effect on the treated for \mathbf{x}_i for an exogenous treatment is equivalent to what we provide here for the endogenous treatment when the correlation parameter between the outcome and treatment errors is set to 0. The average treatment effects (ATEs) and POMs for exogenous treatments are estimated as predictive margins in an analogous manner to what we describe here for endogenous treatments.

From here, we assume an endogenous treatment t_i . As in *Treatment* in [ERM] **eprobit**, we model the treatment assignment process with a probit or ordered probit model, and we call the treatment assignment error ϵ_{ti} . A linear regression of y_i on exogenous covariates \mathbf{x}_i and endogenous treatment t_i taking values v_1, \ldots, v_T has the form

$$y_{1i} = \mathbf{x}_i \boldsymbol{\beta}_1 + \epsilon_{1i}$$

$$\vdots$$

$$y_{Ti} = \mathbf{x}_i \boldsymbol{\beta}_T + \epsilon_{Ti}$$

$$y_i = \sum_{j=1}^T \mathbf{1} (t_i = v_j) y_{ji}$$

For j = 1, ..., T, ϵ_{ii} and ϵ_{ti} are bivariate normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & \sigma \rho_{1t} \\ \sigma \rho_{1t} & 1 \end{bmatrix}$$

The treatment is exogenous if $\rho_{1t} = 0$. Note that we did not specify the structure of the correlations between the potential-outcome errors. We do not need information about these correlations to estimate POMs and treatment effects because all covariates and the outcome are observed in observations from each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary treatment models are similar.

As in Binary and ordinal endogenous covariates, using the results from Likelihood for multiequation models in [ERM] eprobit, the joint density of y_i and t_i can be written using the conditional density of the treatment error ϵ_{ti} on the outcome errors $\epsilon_{i1}, \ldots, \epsilon_{Ti}$.

Define

$$r_i = y_i - \mathbf{x}_i \boldsymbol{\beta}_i$$
 if $t_i = v_i$

The log likelihood for the model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \left\{ \Phi_1^* \left(l_{ti} - \frac{\rho_{1t}}{\sigma} r_i, u_{ti} - \frac{\rho_{1t}}{\sigma} r_i, 1 - \rho_{1t}^2 \right) \phi \left(r_i, \sigma^2 \right) \right\}$$

where l_{ti} and u_{ti} are the limits for the treatment probability given in *Treatment* in [ERM] eprobit.

The treatment effect $y_{ji} - y_{1i}$ is the difference in the outcome for individual *i* if the individual receives the treatment $t_i = v_j$ instead of the control $t_i = v_1$ and what the difference would have been if the individual received the control treatment instead.

The conditional POM for treatment group j is

$$\operatorname{POM}_{j}(\mathbf{x}_{i}) = E\left(y_{ji}|\mathbf{x}_{i}\right) = \mathbf{x}_{i}\boldsymbol{\beta}_{j}$$

For treatment group j, the treatment effect (TE) conditioned on \mathbf{x}_i is

$$\operatorname{TE}_{j}(\mathbf{x}_{i}) = E\left(y_{ji} - y_{1i} | \mathbf{x}_{i}\right) = \operatorname{POM}_{j}(\mathbf{x}_{i}) - \operatorname{POM}_{1}(\mathbf{x}_{i})$$

For treatment group j, the treatment effect on the treated (TET) in group h for covariates x_i is

$$\operatorname{TET}_{j}(\mathbf{x}_{i}, t_{i} = v_{h}) = E(y_{ji} - y_{1i} | \mathbf{x}_{i}, t_{i} = v_{h})$$
$$= \mathbf{x}_{i} \boldsymbol{\beta}_{j} - \mathbf{x}_{i} \boldsymbol{\beta}_{1}$$
$$+ E(\epsilon_{ji} | \mathbf{x}_{i}, t_{i} = v_{h}) - E(\epsilon_{1i} | \mathbf{x}_{i}, t_{i} = v_{h})$$

Remembering that the outcome errors and the treatment error ϵ_{ti} are multivariate normal, for $j = 1, \ldots, T$ we can decompose ϵ_{ji} such that

$$\epsilon_{ji} = \sigma \rho_{1t} \epsilon_{ti} + \psi_{ji}$$

where ψ_{ii} has mean 0.

It follows that

$$\operatorname{TET}_{i}(\mathbf{x}_{i}, t_{i} = v_{h}) = \mathbf{x}_{i}\boldsymbol{\beta}_{i} - \mathbf{x}_{i}\boldsymbol{\beta}_{1}$$

We can take the expectation of these conditional predictions over the covariates to get population average parameters. The estat teffects or margins command is used to estimate the expectations as predictive margins once the model is estimated with eregress. The POM for treatment group j is

$$\operatorname{POM}_{j} = E(y_{ji}) = E\left\{\operatorname{POM}_{j}(\mathbf{x}_{i})\right\}$$

The ATE for treatment group j is

$$ATE_j = E\left(y_{ji} - y_{1i}\right) = E\left\{TE_j(\mathbf{x}_i)\right\}$$

For treatment group j, the average treatment effect on the treated (ATET) in treatment group h is

$$\begin{aligned} \text{ATET}_{jh} &= E\left(y_{ji} - y_{1i}|t_i = v_h\right) \\ &= E\left\{\text{TET}_j(\mathbf{x}_i, t_i = v_h)|t_i = v_h\right\}\end{aligned}$$

The conditional mean of y_i at treatment level v_j is

$$E(y_i | \mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_j) = \mathbf{x}_i \boldsymbol{\beta}_j + E(\epsilon_i | \mathbf{x}_i, \mathbf{z}_{ti}, t_i = v_j)$$

In Predictions using the full model in [ERM] eprobit postestimation, we discuss how the conditional mean of ϵ_i is calculated.

Endogenous sample selection

Probit endogenous sample selection

A linear regression for outcome y_i with selection on s_i has the form

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i > 0$$

$$s_i = 1 \left(\mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si} > 0 \right)$$

where \mathbf{x}_i are covariates that affect the outcome and \mathbf{z}_{si} are covariates that affect selection. The outcome y_i is observed if $s_i = 1$ and is not observed if $s_i = 0$. The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & \sigma \rho_{1s} \\ \sigma \rho_{1s} & 1 \end{bmatrix}$$

As in the previous section, using the results from Likelihood for multiequation models in [ERM] eprobit, the joint density of y_i and s_i can be written using the conditional density of the selection error ϵ_{si} on the outcome error ϵ_i .

For the selection indicator s_i , we have lower and upper limits

$$l_{si} = \begin{cases} -\infty & s_i = 0\\ -\mathbf{z}_{si}\boldsymbol{\alpha}_s - \frac{\rho_{1s}}{\sigma} \left(y_i - \mathbf{x}_i \boldsymbol{\beta} \right) & s_i = 1 \end{cases} \qquad \qquad u_{si} = \begin{cases} -\mathbf{z}_{si}\boldsymbol{\alpha}_s & s_i = 0\\ \infty & s_i = 1 \end{cases}$$

The log likelihood for the model is

$$\ln L = \sum_{i=1}^{N} w_i \ln \Phi_1^* \left(l_{si}, u_{si}, 1 - s_i \rho_{1s}^2 \right) + \sum_{i \in S} w_i \ln \phi \left(y_i - \mathbf{x}_i \boldsymbol{\beta}, \sigma^2 \right)$$

where S is the set of observations for which y_i is observed.

The conditional mean of y_i is

$$E(y_i|\mathbf{x}_i) = \mathbf{x}_i\boldsymbol{\beta}$$

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses a censored continuous sample-selection indicator. We allow the selection variable to be left-censored or right-censored.

A linear regression model for outcome y_i with tobit selection on s_i has the form

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i > 0$$

We observe the selection indicator s_i , which indicates the censoring status of the latent selection variable s_i^* ,

$$s_i^{\star} = \mathbf{z}_{si} \boldsymbol{\alpha}_s + \epsilon_{si}$$
$$s_i = \begin{cases} l_i & s_i^{\star} \le l_i \\ s_i^{\star} & l_i < s_i^{\star} < u_i \\ u_i & s_i^{\star} \ge u_i \end{cases}$$

where \mathbf{z}_{si} are covariates that affect selection, and l_i and u_i are fixed lower and upper limits.

The outcome y_i is observed when s_i^* is not censored $(l_i < s_i^* < u_i)$. The outcome y_i is not observed when s_i^* is left-censored $(s_i^* \le l_i)$ or s_i^* is right-censored $(s_i^* \ge u_i)$. The unobserved errors ϵ_i and ϵ_{si} are normal with mean 0 and covariance

$$\begin{bmatrix} \sigma^2 & \sigma_{1s} \\ \sigma_{1s} & \sigma_s^2 \end{bmatrix}$$

For the selected observations, we can treat s_i as a continuous endogenous regressor, as in *Continuous endogenous covariates*. In fact, s_i may even be used as a regressor for y_i in eregress (specify tobitselect(..., main)). On the nonselected observations, we treat s_i like the probit sample-selection indicator in *Probit endogenous sample selection*.

The log likelihood is

$$\begin{split} \ln L &= \sum_{i \in S} w_i \ln \phi_2 \left(y_i - \mathbf{x}_i \boldsymbol{\beta}, s_i - \mathbf{z}_{si} \boldsymbol{\alpha}_s, \boldsymbol{\Sigma} \right) \\ &+ \sum_{i \in L} w_i \ln \Phi_1^* (l_{li}, u_{li}, 1) \\ &+ \sum_{i \in U} w_i \ln \Phi_1^* (l_{ui}, u_{ui}, 1) \end{split}$$

where S is the set of observations for which y_i is observed, L is the set of observations where s_i^* is left-censored, and U is the set of observations where s_i^* is right-censored. The lower and upper limits for selection— l_{li} , u_{li} , l_{ui} , and u_{ui} —are defined in *Tobit endogenous sample selection* in [ERM] eprobit.

When s_i is not a covariate in \mathbf{x}_i , we use the standard conditional mean formula,

$$E(y_i|\mathbf{x}_i) = \mathbf{x}_i \boldsymbol{\beta}$$

Otherwise, we use

$$E(y_i|\mathbf{x}_i, s_i, z_{si}) = \mathbf{x}_i \boldsymbol{\beta} + \frac{\sigma_{1s}}{\sigma_s^2} (s_i - z_{si} \boldsymbol{\alpha}_s)$$

Combinations of features

Extended linear regression models that involve multiple features can be formulated using the techniques discussed in *Likelihood for multiequation models* in [ERM] **eprobit**. Essentially, the density of the observed endogenous covariates can be written in terms of the unobserved normal errors. The observed endogenous and exogenous covariates determine the range of the errors, and the joint density can be evaluated as multivariate normal probabilities and densities.

Confidence intervals

The estimated variances will always be nonnegative, and the estimated correlations will always fall in (-1, 1). To obtain confidence intervals that accommodate these ranges, we must use transformations.

We use the log transformation to obtain the confidence intervals for variance parameters, and we use the atanh transformation to obtain confidence intervals for correlation parameters. For details, see *Confidence intervals* in [ERM] **eprobit**.

References

Amemiya, T. 1985. Advanced Econometrics. Cambridge, MA: Harvard University Press.

- Elbakidze, L., L. Lu, and S. Eigenbrode. 2011. Evaluating vector-virus-yield interactions for peas and lentils under climatic variability: A limited dependent variable analysis. *Journal of Agricultural and Resource Economics* 36: 504–520.
- Heckman, J. 1976. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. *Annals of Economic and Social Measurement* 5: 475–492.
- ----. 1978. Dummy endogenous variables in a simultaneous equation system. Econometrica 46: 931-959.
- Keshk, O. M. G. 2003. Simultaneous equations models: What are they and how are they estimated. Program in Statistics and Methodology, Department of Political Science, Ohio State University. https://polisci.osu.edu/sites/polisci.osu.edu/files/Simultaneous Equations.pdf.
- Maddala, G. S. 1983. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press.
- Maitra, C., and P. Rao. 2014. An empirical investigation into measurement and determinants of food security in slums of Kolkata. School of Economics Discussion Paper No. 531, School of Economics, University of Queensland. espace.library.uq.edu.au/view/UQ:352184

Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. Stata Journal 11: 159-206.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

[ERM] eregress postestimation — Postestimation tools for eregress

- [ERM] eregress predict predict after eregress
- [ERM] estat teffects Average treatment effects for extended regression models
- [ERM] intro 8 Conceptual introduction via worked example
- [R] heckman Heckman selection model
- [R] ivregress Single-equation instrumental-variables regression
- [R] **regress** Linear regression
- [SVY] svy estimation Estimation commands for survey data
- [TE] etregress Linear regression with endogenous treatment effects
- [U] 20 Estimation and postestimation commands

eregress postestimation — Postestimation tools for eregress

Postestimation commands prec Methods and formulas Refe

predict References margins Also see Remarks and examples

Postestimation commands

The following postestimation command is of special interest after eregress:

Command	Description
estat teffects	treatment effects and potential-outcome means

The following standard postestimation commands are also available after eregress:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
*forecast	dynamic forecasts and simulations
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

* forecast and lrtest are not appropriate with svy estimation results.

predict

Predictions after eregress are described in

[ERM] eregress predict	predict after eregress
[ERM] predict treatment	predict for treatment statistics
[ERM] predict advanced	predict's advanced features

[ERM] eregress predict describes the most commonly used predictions. If you fit a model with treatment effects, predictions specifically related to these models are detailed in [ERM] predict treatment. [ERM] predict advanced describes less commonly used predictions, such as predictions of outcomes in auxiliary equations.

margins

Description for margins

margins estimates margins of response for means, probabilities, potential-outcome means, treatment effects, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

-	<pre>[marginlist] [, options] [marginlist] , predict(statistic) [predict(statistic)] [options]</pre>
statistic	Description
Main	
mean	mean; the default
pr	probability for binary or ordinal y_j
pomean	potential-outcome mean
te	treatment effect
tet	treatment effect on the treated
xb	linear prediction
pr(<i>a</i> , <i>b</i>)	$Pr(a < y_j < b)$ for continuous y_j
_ e(a,b)	$E(y_j a < y_j < b)$ for continuous y_j
$\underline{ys}tar(a,b)$	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$ for continuous y_j

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

See [ERM] intro 6 for an overview of using margins and predict after eregress. For examples using margins, predict, and estat teffects, see *Interpreting effects* in [ERM] intro 8 and see [ERM] example 1a.

Methods and formulas

This section contains methods and formulas for counterfactual predictions and inference. Methods and formulas for all other predictions are given in *Methods and formulas* of [ERM] **eregress**. In *Methods and formulas* of [ERM] **eregress**, we discussed how treatment effects are evaluated in extended linear regression models. Here, we discuss the counterfactual framework used to evaluate the effects of other covariates.

In the extended linear regression model for y_i on exogenous covariates \mathbf{x}_i and \mathbf{w}_i , we partition each set of covariates into two groups. The exogenous covariates \mathbf{x}_i are partitioned into \mathbf{x}_i^c and \mathbf{w}_i^{nc} , where we are interested in the effect of changes in \mathbf{x}_i^c . Similarly, the endogenous covariates \mathbf{w}_i are partitioned into \mathbf{w}_i^c and \mathbf{w}_i^{nc} , where the effect of changes in \mathbf{w}_i^c are of interest. The superscripts indicate what is a counterfactual value (c) and what is not (nc).

If $\mathbf{x}_i^c = \mathbf{a}_0$ and $\mathbf{w}_i^c = \mathbf{a}_{20}$, for covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} we would observe the outcome

$$y_{0i} = \beta_{0nc} \mathbf{x}_i^{nc} + \beta_{20nc} \mathbf{w}_i^{nc} + \beta_c \mathbf{a}_0 + \beta_{2c} \mathbf{a}_{20} + \epsilon_{0i}$$
$$= \beta_{0nc} \mathbf{x}_i^{nc} + \beta_{20nc} \mathbf{w}_i^{nc} + \beta_{c0} + \epsilon_{0i}$$

where the unobserved error ϵ_{0i} is normal with mean 0. We treat $\beta_c \mathbf{a}_0 + \beta_{2c} \mathbf{a}_{20} = \beta_{c0}$ as a constant intercept, because it is the same for each value combination of the covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} and the error ϵ_{0i} .

Similarly, if $\mathbf{x}_i^c = \mathbf{a}_1$ and $\mathbf{w}_i^c = \mathbf{a}_{21}$, for covariates \mathbf{w}_i^{nc} and \mathbf{x}_i^{nc} we would observe the outcome

$$y_{1i} = \beta_{1nc} \mathbf{x}_i^{nc} + \beta_{21nc} \mathbf{w}_i^{nc} + \beta_c \mathbf{a}_1 + \beta_{2c} \mathbf{a}_{21} + \epsilon_{1i}$$
$$= \beta_{1nc} \mathbf{x}_i^{nc} + \beta_{21nc} \mathbf{w}_i^{nc} + \beta_{c1} + \epsilon_{1i}$$

The effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} on y_i is the expected difference between \mathbf{y}_{1i} and \mathbf{y}_{0i} .

To obtain this difference, we average the conditional means of y_{1i} and y_{0i} as a predictive margin.

For j = 0, 1, we can predict the counterfactual mean for group j by using the tools discussed in *Predictions using the full model* in [ERM] **eprobit postestimation**,

$$CM_j(\mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{z}_i) = E(y_{ji} | \mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{x}_i^{c} = \mathbf{a}_j, \mathbf{z}_i)$$

where z_i are instruments necessary for modeling the endogenous regressors w_i^{nc} . By the law of iterated expectations, we have

$$E(y_{1i} - y_{0i}) = E\left\{ \mathsf{CM}_1(\mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{z}_i) \right\} - E\left\{ \mathsf{CM}_0(\mathbf{w}_i^{nc}, \mathbf{x}_i^{nc}, \mathbf{z}_i) \right\}$$

So the effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} can be estimated as a predictive margin on the counterfactual means.

We can use predict with the fix() and target() options to predict the counterfactual probabilities. The fix() option is used to indicate the endogenous covariates in \mathbf{w}_i^c . The target() option can be used to set the counterfactual values a_i and a_{2i} of \mathbf{x}_i^c and \mathbf{w}_i^c .

When \mathbf{w}_i^c corresponds to a single ordinal or binary regressor, the difference in counterfactual probabilities corresponds to a treatment effect of \mathbf{w}_i^c . We can also evaluate the effect of a change in \mathbf{w}_i^c and \mathbf{x}_i^c , conditioned on \mathbf{w}_i^c . This effect is analogous to the treatment effect on the treated discussed in *Methods and formulas* of [ERM] **eregress**. We are conditioning the effect on some base value for \mathbf{w}_i^c , $\mathbf{w}_i^c = \mathbf{b}$.

Now, the counterfactual means are conditioned on $\mathbf{w}_i^c = \mathbf{b}$. So for j = 0, 1, we have

$$CM_{bj}(\mathbf{w}_i^{nc}, \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) = E(y_{ji} | \mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{x}_i^c = \mathbf{a}_j, \mathbf{z}_{bi})$$

where \mathbf{z}_{bi} are instruments necessary for modeling the endogenous regressors \mathbf{w}_i^{nc} and \mathbf{w}_i^{c} . This counterfactual mean can be evaluated using the tools discussed in *Predictions using the full model* in [ERM] **eprobit postestimation**.

By the law of iterated expectations, we have

$$E(y_{1i} - y_{0i} | \mathbf{w}_i^c = \mathbf{b}) = E \left\{ CM_{b1}(\mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) | \mathbf{w}_i^c = \mathbf{b} \right\} - E \left\{ CM_{b0}(\mathbf{w}_i^{nc}, \mathbf{w}_i^c = \mathbf{b}, \mathbf{x}_i^{nc}, \mathbf{z}_i) | \mathbf{w}_i^c = \mathbf{b} \right\}$$

So the effect of changing \mathbf{x}_i^c and \mathbf{w}_i^c from \mathbf{a}_0 and \mathbf{a}_{20} to \mathbf{a}_1 and \mathbf{a}_{21} conditioned on $\mathbf{w}_i^c = \mathbf{b}$ can be estimated as a predictive margin on the counterfactual means.

The base values **b** for \mathbf{w}_i^c are specified in the base() option. As before, target() can be used to specify the counterfactual values for \mathbf{x}_i^c and \mathbf{w}_i^c .

When $\mathbf{x}_i^c = \mathbf{x}_i$ and $\mathbf{w}_i^c = \mathbf{w}_i$, the counterfactual mean matches the average structural mean (ASM). Applying the average structural function (ASF) discussed by Blundell and Powell (2003), Blundell and Powell (2004), Wooldridge (2005), and Wooldridge (2014) to a conditional mean on the covariates and unobserved endogenous error produces the ASM.

In the linear regression model, for exogenous covariates \mathbf{x}_i and C endogenous regressors \mathbf{w}_i , we have

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_i \boldsymbol{\beta}_2 + \epsilon_i$$

where the error ϵ_i is normal and correlated with \mathbf{w}_i .

The ASM provides a useful interpretation of β and β_2 when the \mathbf{w}_i are correlated with ϵ_i . Because ϵ_i is a normally distributed, mean 0, random variable, we can split it into two mean 0, normally distributed, independent parts,

$$\epsilon_i = u_i + \psi_i$$

where $u_i = \gamma \epsilon_{2i}$ is the unobserved heterogeneity that gives rise to the endogeneity and ψ_i is an error term with variance σ_{ψ}^2 .

Conditional on the covariates and the unobserved heterogeneity, the conditional mean of y_i is

$$E(y_i|\mathbf{x}_i, \mathbf{w}_i, u_i) = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_i \boldsymbol{\beta}_2 + u_i$$

Because u_i is an unobserved random variable, this conditional expectation is not observable. Integrating out the u_i , just like we do with random effects in panel-data models, produces the ASM,

$$ASM(\mathbf{x}_i^0, \mathbf{w}_i^0) = \int E(y_i | \mathbf{x}_i^0, \mathbf{w}_i^0, u_i) f(u_i) du_i$$

where $f(u_i)$ is the marginal distribution of u_i , and \mathbf{x}_i^0 and \mathbf{w}_i^0 are given covariate values.

Because u_i has mean 0, we have

$$\operatorname{ASM}(\mathbf{x}_i^0, \mathbf{w}_i^0) = \mathbf{x}_i^0 \boldsymbol{\beta} + \mathbf{w}_i^0 \boldsymbol{\beta}_2$$

So, the ASM is the linear prediction of the main outcome.

References

- Blundell, R. W., and J. L. Powell. 2003. Endogeity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, ed. M. Dewatripont, L. P. Hansen, and S. J. Turnovsky, vol. 2, 312–357. Cambridge: Cambridge University Press.
- ----. 2004. Endogeneity in semiparametric binary response models. Review of Economic Studies 71: 655-679.
- Wooldridge, J. M. 2005. Unobserved heterogeneity and estimation of average partial effects. In *Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg*, ed. D. W. K. Andrews and J. H. Stock, 27–55. New York: Cambridge University Press.

-----. 2014. Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables. *Journal of Econometrics* 182: 226–234.

Also see

- [ERM] eregress Extended linear regression
- [ERM] eregress predict predict after eregress
- [ERM] **predict treatment** predict for treatment statistics
- [ERM] **predict advanced** predict's advanced features
- [ERM] eprobit postestimation Postestimation tools for eprobit
- [U] 20 Estimation and postestimation commands

eregress predict — predict after eregress

Description Options for statistics Remarks and examples Also see Syntax Options for how results are calculated Methods and formulas

Description

In this entry, we show how to create new variables containing observation-by-observation predictions after fitting a model with eregress.

Syntax

You previously fit the model

eregress y x1 ..., ...

The equation specified immediately after the eregress command is called the main equation. It is

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \dots + e_i \mathbf{.y}$$

predict calculates predictions for y in the main equation. The other equations in the model are called auxiliary equations or complications.

The syntax of predict is

predict [type] newvar [if] [in] [, stdstatistics howcalculated]

stdstatistics	Description
<u>m</u> ean xb	linear prediction; the default linear prediction excluding all complications
howcalculated	Description
<pre>default fix(endogvars) base(valspecs) target(valspecs)</pre>	not fixed; base values from data fix specified endogenous covariates specify base values of any variables more convenient way to specify fix() and base()

Note: The fix() and base() options affect results only in models with endogenous variables in the main equation. The target() option is sometimes a more convenient way to specify the fix() and base() options.

endogvars are names of one or more endogenous variables appearing in the main equation.

valspecs specify the values for variables at which predictions are to be evaluated. Each *valspec* is of the form

varname = #
varname = (exp)
varname = othervarname

For instance, base(valspecs) could be base(w1=0) or base(w1=0 w2=1).

Notes:

- (1) predict can also calculate treatment-effect statistics. See [ERM] predict treatment.
- (2) predict can also make predictions for the other equations in addition to the main-equation predictions discussed here. See [ERM] predict advanced.

Options for statistics

- mean specifies that the linear prediction be calculated. In each observation, the linear prediction is the expected value of the dependent variable conditioned on the covariates. Results depend on how complications are handled, which is determined by the *howcalculated* options.
- xb specifies that the linear prediction be calculated ignoring all complications. This prediction corresponds to what would be observed in data in which all the covariates in the main equation were exogenous.

Options for how results are calculated

By default, predictions are calculated taking into account all complications. This is discussed in *Remarks and examples*.

- fix (*varname*...) specifies a list of endogenous variables from the main equation to be treated as if they were exogenous. This was discussed in [ERM] **intro 3** and is discussed further in *Remarks and examples* below.
- base (varname = ...) specifies a list of variables from any equation and values for them. Those values will be used in calculating the expected value of e_i .y. Errors from other equations spill over into the main equation because of correlations between errors. The correlations were estimated when the model was fit. The amount of spillover depends on those correlations and the values of the errors. This issue was discussed in [ERM] intro 3 and is discussed further in *Remarks and examples* below.
- target(*varname* = ...) is sometimes a more convenient way to specify the fix() and base() options. You specify a list of variables from the main equation and values for them. Those values override the values of the variables calculating $\beta_0 + \beta_1 \mathbf{x} \mathbf{1}_i + \cdots$. Use of target() is discussed in *Remarks and examples* below.

Remarks and examples

Remarks are presented under the following headings:

How to think about the model you fit How to think about predictions The default calculation The fix() calculation The base() calculation The alternative target() option for making the fix() and base() calculations

How to think about the model you fit

or

or

You have fit a model, perhaps by typing

```
. eregress y x1 x2 (1)
. eregress y x1 x2, endogenous(x1 = z1 z2, nomain) (2)
. eregress y x1 x2 selected, endogenous(x1 = z1 z2, nomain) (3)
> select(selected = x1 z3 z4)
```

The equation specified immediately after the eregress command is called the main equation. In the models above, it is

eregress y x1 x2	(1)
eregress y x1 x2	(2)
eregress y x1 x2 selected	(3)

The equations specified in the options are called the auxiliary equations or complications. In the models above, they are

none	(1)
. endogenous(x1 = z1 z2, nomain)	(2)
. endogenous(x1 = z1 z2, nomain) select(selected = x1 z3 z4)	(3)

The auxiliary equations arose because of complications in the data you used to fit the model. The focus of ERMs is on fitting the main equation correctly in the presence of complications.

How to think about predictions

predict can make different kinds of predictions. The kind is specified by the how-to-calculate options.

Option	Result
none specified calculate \hat{y}_i for data assuming they were generated just as the data used the model were generated	
fix()	calculate \hat{y}_i for data generated with the complication for the specified variable removed
<pre>base()</pre>	calculate \hat{y}_i just as in the none specified case, but calculate correlation-of-errors effects using the values for the covariates specified

The default calculation

When you use predict without options, you type

. predict yhat

predict calculates the expected values of y_i that would be observed given the complications present in your data.

Let's consider the three models we mentioned earlier.

	eregress y x1 x2	(1)
	eregress y x1 x2, endogenous(x1 = z1 z2, nomain)	(2)
	<pre>eregress y x1 x2 selected, endogenous(x1 = z1 z2, nomain)</pre>	(3)
>	select(selected = x2 z3 z4)	

The result from typing predict yhat without options will be

1. The expected values of y_i given x1 and x2.

- 2. Same as (1) and taking into account that x1 is endogenous and predicted by z1 and x1.
- 3. Same as (2) and taking into account that y is observed only if the observation is selected and that selected is endogenous and given by x2, z3, and z4.

The other calculation options affect how the auxiliary equations are handled. Because model (1) has no auxiliary equations, the default prediction is the only one possible in its case.

predict without options can be used to calculate expected values with the data used in fitting the model and with other data that include the same complications. After fitting the model, you can type

. use anotherdataset

```
. predict yhat
```

You will sometimes use predict to calculate counterfactuals. If you do that, the default calculation can be used for changes in covariates that are exogenous in the main equation and appear in the main equation only.

Having fit any of the above models, you could type

. generate x2orig = x2 . replace x2 = 1000 . predict yhat . replace x2 = x2orig

The predictions obtained would be the expected value of y given that each subject had x^2 set to 1,000.

A safer approach, however, is to specify the base() option. We will discuss base() in detail below, but the better solution is

```
. generate x2orig = x2
. replace x2 = 1000
. predict yhat, base(x2=x2orig)
. replace x2 = x2orig
```

If base() is unnecessary, it will cause no harm to specify it.

The fix() calculation

The purpose of the other calculation options is to make meaningful counterfactuals when you change the values of endogenous covariates. Option fix(varname ...) makes predictions as if the complications associated with varname were removed.

Assume you have fit model (3):

```
. eregress y x1 x2 selected, endogenous(x1 = z1 z2, nomain) (3)
> select(selected = x2 z3 z4)
```

Then,

. predict yhat1, fix(x1)

would produce predictions that correspond to "what would have been observed" if the complication for x1 had not been present either in the data or in the fitted model. These predicted values would correspond to a world in which the data-generating process was

. eregress y x1 x2 selected, select(selected = x2 z3 z4) (3')

In this counterfactual world, x1 is no longer endogenous. This switch from being endogenous to being exogenous is not a technicality. It is full of import. In the real world, e.x1 is correlated with e.y. When we made the default prediction in the previous section, that correlation was taken into account. In this alternative world, there is no correlation. Perhaps x1 records each subject's amount of health insurance coverage and y is a health outcome. In the world of the data used to fit the model, subjects chose to purchase health insurance, and presumably those who perceived a larger benefit would purchase more. Thus, the correlation between e.x1 and e.y was positive. In the counterfactual world, perhaps purchase of health insurance is mandatory or it is free. Either way, the correlation between e.x1 and e.y becomes 0.

Let's consider another prediction involving changing an endogenous variable.

. predict yhat2, fix(selected)

In this counterfactual world, selection is no longer endogenous. The predicted values would correspond to a world in which the data-generating process is

. eregress y x1 x2 selected, endogenous(x1 = z1 z2, nomain) (3'')

In this counterfactual world, x1 is back to being endogenous, but selection no longer is. That breaks the correlation between *e.selected* and *e.y* in the same way the previous counterfactual broke the correlation between *e.x1* and *e.y*.

Another possible prediction is

. predict yhat2, fix(x1 selected)

The predicted values would correspond to a world in which the data-generating process is

. eregress y x1 x2 selected

When you use fix(), you ordinarily change the values of the variable being fixed. You might type

(3,,,)

- . predict yhat2, fix(x1)
- . replace x1 = x1 orig

```
. generate selectedorig = selected
. replace selected = 1 // or 0 as you please
. predict yhat2, fix(x1 selected)
. replace selected = selectedorig
. generate xlorig = x1
. generate selectedorig = selected
. replace x1 = 1 // $1 million
. replace selected = 1 // or 0 as you please
. predict yhat2, fix(x1 selected)
. replace selected = selectedorig
. replace x1 = xlorig
```

The base() calculation

or

or

fix() is one way of handling predictions of counterfactuals when an endogenous variable in the main equation is changed. base() is the other.

Let's assume you have fit either model (2) or model (3):

```
. eregress y x1 x2, endogenous(x1 = z1 z2, nomain) (2)
. eregress y x1 x2 selected, endogenous(x1 = z1 z2, nomain) (3)
> select(selected = x2 z3 z4)
```

You cannot haphazardly change the value of an endogenous variable such as x1 and expect to produce meaningful results. Because of that, you should *not* type

```
. generate x1orig = x1
. replace x1 = x1 + 1
. predict yhat
. replace x1 = x1orig
```

What would happen if you did? In either of the above models, there is an equation for x1. It is

endogenous(x1 = z1 z2, nomain)

which, written mathematically, is

$$\mathbf{x}\mathbf{1}_i = \gamma_0 + \gamma_1 \mathbf{z}\mathbf{1}_i + \gamma_2 \mathbf{z}\mathbf{2}_i + e_i.\mathbf{x}\mathbf{1}$$

You increased x1 by 1 but did not change anything else. The equation above still holds, and so incrementing x1 increased e_i .x1 by 1 too.

What does it mean to increase e_i .x1? You are assuming that x1 increased by 1 because the subjects decided to choose x1+1 instead of x1. The only way that could happen is if they were different subjects.

Here is the thought experiment you just performed. You have data on subjects. What if you had different data on different subjects, each with the same characteristics as the current subjects, but who had chosen a value of x1 that was one unit larger. Well, if these alternate subjects had chosen a value one unit larger than the current subjects, they would have done so for good reason, and their larger e.x1 would have passed along its effect to the e.y because of the correlation. The new value of y would be the direct effect of x1 in the y equation plus the change in e.y.

predict yhat without options produces the answer to the question that you never wanted to ask. What you wanted to ask was what would be the effect on y for the current subjects if endogenous variable x1 was "exogenously" incremented by 1.

predict, base() will answer that question.

The subjects in your data are who they are because of their errors. Errors such as e.x1 are the unobserved things about them that affect their choice of x1. You cannot change their errors without changing those unobserved things that make them who they are. If you want to ask about the effects of changes in x1 holding the subjects constant, you need to ask about changes in x1 holding $e_i.x1$ constant.

base() does that and here is how you use it:

The option says that the unobserved components about the subjects in your data—the unobserved components that make them who they are—are to be calculated ignoring the values stored in x1 (values that you have changed) and are instead to be calculated at the original values of x1 (the values that will produce the same endogenously chosen solution). Then, we increase x1 by 1.

The alternative target() option for making the fix() and base() calculations

target() is sometimes a more convenient way to make predictions using the fix() and base()
calculations.

In the section above, one of the predictions was made by typing

```
. generate x1orig = x1
```

```
. replace x1 = x1 + 1 // or whatever new values you please
```

- . predict yhat3, base(x1=x1orig)
- . replace x1 = x1orig

We could have made the same prediction with target() by typing

```
. predict yhat3, target(x1=(x1+1))
```

Using target(), we specify the counterfactual calculation and leave variable x1 unchanged. The unobserved components will be calculated on the basis of the values in variable x1.

In the section on fix(), one of the predictions was made by typing

We could have made the same prediction with target() by typing

. predict yhat, fix(x1) target(x1=1)

You can use target() by itself as a substitute for base(), and you can use target() with fix(). In both cases, target() specifies the counterfactual, and you do not change the data in memory.

Methods and formulas

See Methods and formulas in [ERM] eregress postestimation.

Also see

[ERM] eregress postestimation — Postestimation tools for eregress

[ERM] eregress — Extended linear regression n

Title

erm options — Extended regression model options

Description Syntax Options Also see

Description

This entry describes the options that are common to the extended regression commands; see [ERM] eregress, [ERM] eprobit, [ERM] eoprobit, and [ERM] eintreg.

Syntax

```
erm_cmd ... [, extensions options]
```

erm_cmd is one of eregress, eprobit, eoprobit, or eintreg.

extensions	Description
Model	
endogenous(<i>enspec</i>)	model for endogenous covariates; may be repeated
entreat(entrspec)	model for endogenous treatment assignment
<pre>extreat(extrspec)</pre>	exogenous treatment
<pre>select(selspec)</pre>	probit model for selection
<pre>tobitselect(tselspec)</pre>	tobit model for selection

options	Description
Model	
<u>nocons</u> tant	suppress constant term
$offset(varname_o)$	include varname _o in model with coefficient constrained to 1
<pre><u>const</u>raints(numlist)</pre>	apply specified linear constraints
<u>col</u> linear	keep collinear variables
SE/Robust	
vce(vcetype)	<pre>vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife</pre>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<u>nocnsr</u> eport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Integration	
<pre>intpoints(#)</pre>	set the number of integration (quadrature) points for integration over four or more dimensions; default is intpoints(128)
<pre>triintpoints(#)</pre>	set the number of integration (quadrature) points for integration over three dimensions; default is triintpoints(10)
Maximization	
maximize_options	control the maximization process; seldom used
<u>coefl</u> egend	display legend instead of statistics

enspec is depvars_{en} = varlist_{en} [, enopts]

where $depvars_{en}$ is a list of endogenous covariates. Each variable in $depvars_{en}$ specifies an endogenous covariate model using the common *varlist_en* and options.

entrspec is $depvar_{tr} = varlist_{tr}$, tropts

where $depvar_{tr}$ is a variable indicating treatment assignment. $varlist_{tr}$ is a list of covariates predicting treatment assignment.

extrspec is tvar [, <u>nomain noint</u>eract]

where tvar is a variable indicating treatment assignment.

selspec is depvar_s = varlist_s $\left[, \underline{\text{nocons}} \text{tant } \underline{\text{off}} \text{set}(varname_o) \right]$

where $depvar_s$ is a variable indicating selection status. $depvar_s$ must be coded as 0, indicating that the observation was not selected, or 1, indicating that the observation was selected. $varlist_s$ is a list of covariates predicting selection.

```
tselspec is depvar_s = varlist_s [, tselopts]
```

where $depvar_s$ is a continuous variable. $varlist_s$ is a list of covariates predicting $depvar_s$. The censoring status of $depvar_s$ indicates selection, where a censored $depvar_s$ indicates that the observation was not selected and a noncensored $depvar_s$ indicates that the observation was selected.

enopts	Description
lodel	
probit	treat endogenous covariate as binary
oprobit	treat endogenous covariate as ordinal
nomain	do not add endogenous covariate to main equation
noconstant	suppress constant term
tropts	Description
lodel	
<u>nom</u> ain	do not add treatment indicator to main equation
<u>nocutsint</u> eract	do not interact treatment with cutpoints
<u>noint</u> eract	do not interact treatment with covariates in main equation
<u>nocons</u> tant	suppress constant term
<u>off</u> set(<i>varname</i> _o)	include $varname_o$ in model with coefficient constrained to 1
nocutsinteract is only a	vailable with eoprobit.
tselopts	Description
lodel	
11(<i>varname</i> #)	left-censoring variable or limit
ul(<i>varname</i> #)	right-censoring variable or limit
main	add censored selection variable to main equation
<u>nocons</u> tant	suppress constant term
<u>off</u> set(<i>varname</i> _o)	include $varname_o$ in model with coefficient constrained to 1

172 erm options — Extended regression model options

Options

Model

endogenous ($depvars_{en} = varlist_{en}$ [, enopts]) specifies the model for endogenous covariates. $depvars_{en}$ is a list of one or more endogenous covariates modeled with $varlist_{en}$. This option may be repeated to allow a different model specification for each endogenous covariate. By default, the endogenous covariates are assumed to be continuous, and a linear Gaussian model is used. Unless the nomain suboption is specified, the variables specified in $depvars_{en}$ are automatically included in the main equation. The following *enopts* are available:

probit specifies to use a probit model for the endogenous covariates. probit may not be specified with oprobit; however, you may specify endogenous(..., probit) and endogenous(..., oprobit).

oprobit specifies to use an ordered probit model for the endogenous covariates. oprobit may not be specified with probit; however, you may specify endogenous(..., probit) and endogenous(..., oprobit).

nomain specifies that the endogenous covariate of covariates be excluded from the main model, thus removing the effect. This option is for those who intend to manually construct the effect by adding it to the main model in their own way.

noconstant suppresses the constant term (intercept) in the model for the endogenous covariates.

- entreat() and extreat() specify a model for treatment assignment. You may specify only one.
 - entreat($depvar_{tr} \models varlist_{tr} \rfloor$ [, $trtopts \ modopts$]) specifies a model for endogenous treatment assignment with $depvar_{tr} = 1$ indicating treatment and $depvar_{tr} = 0$ indicating no treatment. $varlist_{tr}$ are the covariates for the treatment model; they are optional.
 - $extreat(depvar_{tr} [, trtopts])$ specifies a variable that signals exogenous treatment. $depvar_{tr} = 1$ indicates treatment and $depvar_{tr} = 0$ indicates no treatment.

trtopts are

- nomain, nocutsinteract, and nointeract affect the way the treatment enters the main equation.
 - nomain specifies that the main effect of treatment be excluded from the main equation. Thus, a separate intercept is not estimated for each treatment level. In the case of eoprobit, this means separate cutpoints are not added.
 - nocutsinteract specifies that instead of the default of having separate cutpoints for each treatment level, you get one set of cutpoints that are shifted by a constant value for each treatment level. This is implemented by placing a separate constant in the main equation for each treatment level. nocutsinteract is available only with eoprobit.
 - nointeract specifies that the treatment variable not be interacted with the other covariates in the main equation.

These options allow you to customize how the treatment enters the main equation. When nomain and nointeract are specified together, they remove the effect entirely, and you will need to explicitly reintroduce the treatment effect.

modopts are

noconstant suppresses the constant term (intercept) in the treatment model.

offset(*varname*_o) specifies that *varname*_o be included in the treatment model with the coefficient constrained to 1.

- select() and tobitselect() specify a model for endogenous sample selection. You may specify
 only one.
 - select(depvar_s = varlist_s [, modopts]) specifies a probit model for sample selection with varlist_s as the covariates for the selection model. When depvar_s = 1, the model's dependent variable is treated as observed (selected); when depvar_s = 0, it is treated as unobserved (not selected).
 - tobitselect($depvar_s = varlist_s$ [, ll(varname | #) ul(varname | #) main modopts]) specifies a tobit model for sample selection with $depvar_s$ as a censored selection variable and $varlist_s$ as the covariates for the selection model.
 - 11(arg) specifies that when $depvar_s \leq arg$, the selection variable is treated as censored and the model's dependent variable is unobserved (not selected).
 - ul (arg) specifies that when $depvar_s \ge arg$, the selection variable is treated as censored and the model's dependent variable is unobserved (not selected).
 - main specifies that the censored selection variable be included as a covariate in the main equation. By default, it is excluded from the main equation.

Only the uncensored values of the selection variable contribute to the likelihood through the main equation. Thus, the selection variable participates as though it were uncensored.

modopts are

noconstant suppresses the constant term (intercept) in the selection model.

- offset(*varname*_o) specifies that $varname_o$ be included in the selection model with the coefficient constrained to 1.
- noconstant, offset(varname_o), constraints(numlist), and collinear; see [R] estimation
 options.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

level(#) and nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, notvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

Integration

- intpoints(#) and triintpoints(#) control the number of integration (quadrature) points used to approximate multivariate normal probabilities in the likelihood and scores.
 - intpoints() sets the number of integration (quadrature) points for integration over four or more dimensions. The number of integration points must be between 3 and 5,000. The default is intpoints(128).
 - triintpoints() sets the number of integration (quadrature) points for integration over three dimensions. The number of integration points must be between 3 and 5,000. The default is triintpoints(10).

When four dimensions of integration are used in the likelihood, three will be used in the scores. The algorithm for integration over four or more dimensions differs from the algorithm for integration over three dimensions.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with *erm_cmd* but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Also see

- [ERM] eintreg Extended interval regression
- [ERM] eoprobit Extended ordered probit regression
- [ERM] eprobit Extended probit regression
- [ERM] eregress Extended linear regression

Title

estat teffects - Average treatment effects for extended regression models

Description	Menu	Syntax	Options
Remarks and examples	Stored results	Also see	

Description

estat teffects estimates the average treatment effect, average treatment effect on the treated, and potential-outcome mean for ERMs.

Menu

Statistics > Postestimation

Syntax

estat	teffects	,	options	
-------	----------	---	---------	--

options	Description
ate	estimate average treatment effect; the default
atet	estimate average treatment effect on the treated
pomean	estimate potential-outcome mean
tlevel(numlist)	calculate treatment effects or potential-outcome means for specified treatment levels
<pre>outlevel(numlist)</pre>	calculate treatment effects or potential-outcome means for specified levels of ordinal dependent variable
<pre>subpop(subspec)</pre>	estimate for subpopulation
<u>l</u> evel(#) display_options	set confidence level; default is level(95) control columns and column formats, row spacing, line width and factor-variable labeling

Options

ate estimates the average treatment effect (ATE). This is the default.

atet estimates the average treatment effect on the treated (ATET). For binary treatments, the ATET is reported for the treated group subpopulation. For ordinal treatments, by default, the ATET is reported for the first noncontrol treatment group subpopulation. You can use the subpop() option to calculate the ATET for a different treatment group.

pomean estimates the potential-outcome mean (POM).

tlevel(*numlist*) specifies the treatment levels for which treatment effects or POMs are calculated. By default, the treatment effects are computed for all noncontrol treatment levels, and the POMs are computed for all treatment levels.

- outlevel(*numlist*) specifies the levels of the ordinal dependent variable for which treatment effects or POMs are to be calculated. By default, treatment effects or POMs are computed for all levels of the ordinal dependent variable. This option is only available after eoprobit.
- subpop($\lfloor varname \rfloor \lfloor if \rfloor$) specifies the subpopulation for which the ATE, ATET, and POM are calculated. The subpopulation is identified by the indicator variable, by the if expression, or by both. A 0 indicates that the observation be excluded, a nonzero indicates that it be included, and a missing value indicates that it be treated as outside of the population (and thus ignored). For instance, for an ordinal treatment trtvar with levels 1, 2, and 3, you can specify subpop(if trtvar=3) to obtain the ATETs for trtvar = 3.
- level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.
- display_options: noci, nopvalues, vsquish, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch.
 - noci suppresses confidence intervals from being reported in the coefficient table.
 - nopvalues suppresses *p*-values and their test statistics from being reported in the coefficient table.
 - vsquish specifies that the blank space separating factor-variable terms or time-series-operated variables from other variables in the model be suppressed.
 - nofvlabel displays factor-variable level values rather than attached value labels. This option overrides the fvlabel setting; see [R] set showbaselevels.
 - fvwrap(#) allows long value labels to wrap the first # lines in the coefficient table. This option
 overrides the fvwrap setting; see [R] set showbaselevels.
 - fvwrapon(*style*) specifies whether value labels that wrap will break at word boundaries or break based on available space.
 - fvwrapon(word), the default, specifies that value labels break at word boundaries.
 - fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

- cformat(% fmt) specifies how to format estimates, standard errors, and confidence limits in the estimates table. The maximum format width is 9.
- pformat(%fmt) specifies how to format *p*-values in the estimates table. The maximum format width is 5.
- sformat(%fmt) specifies how to format test statistics in the estimates table. The maximum format
 width is 8.
- nolstretch specifies that the width of the estimates table not be automatically widened to accommodate longer variable names. The default, lstretch, is to automatically widen the estimates table up to the width of the Results window. To change the default, use set lstretch off. nolstretch is not shown in the dialog box.

Remarks and examples

estat teffects estimates ATES, ATETS, and POMs after extended regression commands. These are calculated as means of predictions by using margins on the predictions from predict after the extended regression commands. If the ERM command reported robust standard errors, estat teffects reports unconditional standard errors so that inference is for the population effect instead of the sample effect. See Unconditional standard errors in [R] margins for more information.

See [ERM] **intro 8** for an example using estat teffects. Methods and formulas for treatmenteffect estimation are given in *Methods and formulas* of [ERM] **eprobit**, [ERM] **eoprobit**, [ERM] **eregress**, and [ERM] **eintreg**.

Stored results

estat teffects stores the following in r():

Macros	
r(vce)	vcetype specified in vce()
r(vcetype)	title used to label Std. Err.
r(clustvar)	name of cluster variable
Matrices	estimates
r(b)	variance–covariance matrix of the estimates
r(V)	matrix containing the estimates with their standard errors, test statistics, <i>p</i> -values, and
r(table)	confidence intervals

Also see

[ERM]	eintreg postestimation — Postestimation tools for eintreg
[ERM]	eoprobit postestimation — Postestimation tools for eoprobit
[ERM]	eprobit postestimation — Postestimation tools for eprobit
[ERM]	eregress postestimation — Postestimation tools for eregress

Title

example 1a — Linear regression with continuous endogenous covariate

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model with a continuous outcome and continuous endogenous covariate.

Remarks and examples

The fictional State University is studying the relationship between the high school grade point average (GPA) of the students it admits and their final college GPA. They suspect that unobserved ability affects both high school GPA and college GPA. Thus, high school GPA is an endogenous covariate.

Using data on the 2,500 students in the cohort expected to graduate in 2010, the researchers at State U model college GPA (gpa) as a function of high school GPA (hsgpa). In both cases, GPA is measured in 0.01 increments, and we ignore complications due to the boundary points. We also ignore that, unfortunately, State U has a high dropout rate and college GPA is missing for these students, leaving the researchers with a sample of about 1,500 students.

The State U researchers expect that the effect of high school competitiveness on college GPA is negligible once high school GPA is controlled for. So they include a ranking of the high school (hscomp) as an instrumental covariate for high school GPA. They include parental income measured in \$10,000s, which they believe may also influence student performance, in the main model and in the model for high school GPA.

. use http://www.stata-press.com/data/r15/class10 (Class of 2010 profile)									
. eregress gpa	a income, end	ogenous(hsgp	a = incor	ne i.hsco	omp)				
Iteration 0: Iteration 1: Iteration 2:	Iteration 1: log likelihood = -638.58194								
Extended lines	Extended linear regression Number of obs = 1,528								
				Wald ch	= = = = = = = = = = = = = = = = = = =	1167.79			
Log likelihood = -638.58194				Prob >	chi2 =	0.0000			
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]			
gpa									
income	.0575145	.0055174	10.42	0.000	.0467007	.0683284			
hsgpa	1.235868	.133686	9.24	0.000	.9738484	1.497888			
_cons	-1.217141	.3828614	-3.18	0.001	-1.967535	4667464			
hsgpa									
income	.0356403	.0019553	18.23	0.000	.0318079	.0394726			
hscomp									
moderate	1310549	.0136503	-9.60	0.000	1578091	1043008			
high	2331173	.0232712	-10.02	0.000	278728	1875067			
_cons	2.951233	.0164548	179.35	0.000	2.918982	2.983483			
var(e.gpa)	.1436991	.0083339			.1282592	.1609977			
var(e.hsgpa)	.0591597	.0021403			.05511	.063507			
corr(e.hsgpa, e.gpa)	.2642138	.0832669	3.17	0.002	.0948986	.4186724			

The estimate of the correlation between the errors from the main and auxiliary equations is 0.26. The z statistic may be used for a Wald test of the null hypothesis that there is no endogeneity. The researchers reject this hypothesis. Because the estimate is positive, they conclude that unobservable factors that increase high school GPA tend to also increase college GPA.

Having satisfied themselves that it is appropriate to account for endogeneity of high school GPA, they examine the coefficient estimates. The estimates for the main equation are interpreted just like those from regress; see [R] regress. For example, the researchers expect the difference in college GPA is about 1.24 points for students with a difference of 1 point in high school GPA.

As we discussed in [ERM] intro 8, the coefficients on hsgpa and income in this regression pretty much say everything there is to say about how college GPA changes when either high school GPA or parents' income changes. This is true because our model is linear and we have no interactions. We could make this the end of our story. But it is not the end if we want to ask questions about expected levels of college GPA.

If we want to ask questions about the eventual level of college GPA, we must be specific about how we arrived at our values for hsgpa. Let's look at a single observation; we will pretend it is for Billy.

```
. gen str name = "Billy" in 537
(2,499 missing values generated)
. list income if name=="Billy"
537. 2
```

What if we don't have records from Billy's high school and all we know about Billy is his parents' income? We could form counterfactuals about Billy. We could fix Billy's high school GPA at 2.00, and we could fix his high school GPA at 3.00. These are values we are choosing, not the value that Billy arrived at through his own actions. We'll let margins give us the expected values for college GPA under these two counterfactuals.

. margins if r Warning: predi		01	-	dict(fix	(hs	(gpa)	
Predictive man Model VCE	rgins OIM			Number	of	obs	=	1
Expression :	mean of gpa,	, predict(fi	x(hsgpa))					
1at :	hsgpa	=	2					
2at :	hsgpa	=	3					
	I Margin	Delta-method Std. Err.		P> z		[95%	Conf.	Interval]
_at 1 2	1.369625 2.605493		10.94 136.84			1.124 2.568		1.614948 2.642811

When we set Billy's high school GPA to 2.00 and consider his parents' income of \$20,000, Billy's expected college GPA is 1.37. More correctly, this is the expected GPA for anyone whose parents' income is \$20,000 and whose high school GPA is fixed at 2.00. Keeping his parents' income constant and fixing his high school GPA at 3.00, we see that Billy's expected college GPA rises to 2.61.

But in reality, we know more about Billy.

```
. list gpa hsgpa income hscomp if name=="Billy"
```

	gpa	hsgpa	income	hscomp
537.	1.03	2	2	high

And with this, we can ask a slightly different question. What is Billy's expected GPA given all that we know about him, including the competitiveness of his high school and the unobserved thing or things that drive the correlation between high school and college GPAs? What if we further ask how that expectation would change if we granted Billy one additional unit of high school GPA, taking him from 2.00 to 3.00. These are the same two counterfactuals for the value of high school GPA, but a different assumption about how Billy arrived at a 2.00. To obtain these counterfactuals, we run the same margins command, changing the fix() option to base().

. generate hsgpaT = hsgpa // Observed ("True") H.S. GPA . margins if name=="Billy", at(hsgpa=(2 3)) predict(base(hsgpa=hsgpaT)) Warning: prediction constant over observations.							
Predictive man Model VCE	rgins : OIM			Number o	of obs =	1	
Expression	: mean of gpa,	predict(ba	.se(hsgpa=	=hsgpaT))			
1at	: hsgpa	=	2				
2at	: hsgpa	=	3				
	I)elta-method	[
	Margin	Std. Err.	z	P> z	[95% Conf	. Interval]	
_at							
1	1.044564	.1242365	8.41	0.000	.8010648	1.288063	
2	2.280432	.0207685	109.80	0.000	2.239726	2.321138	

The numbers are not the same. The expected GPA of 1.04 is closer to Billy's true value of 1.03 than was the estimate using only income. That need not be the case for any individual, but given that we used more information, we would expect it to be true if we averaged over others with the same characteristics.

As discussed in [ERM] intro 8, we needed to save Billy's true value of hsgpa because margins manipulates the data to obtain its results. We did not need to do this with the fix() option because predictions using fix() do not care what Billy's true value of hsgpa is or how he arrived at that value. Predictions using base(), on the other hand, use Billy's true value of hsgpa and all information from the model about how Billy arrived at that GPA. The base() option instructs margins to use true hsgpaT when it formed both of its counterfactuals. Thus, both counterfactuals include information about his high school's competitiveness and information about the unobserved factor or factors creating the correlation between GPAs. The same values for this information are used when margins creates each counterfactuals include more of what makes Billy, Billy. They are still the expected value for anyone with the same covariates, but they incorporate the fact that the GPA of 2.0 was arrived at through Billy's own actions and include the competitiveness of his high school.

In the parlance of treatment effects, our first set of estimates could be called the potential outcomes given the fixed treatment levels: 2.00 and 3.00. If that doesn't help your understanding, then skip this paragraph. The second set of values would be the counterfactuals required to estimate the treatment effect on the untreated (TEU). Why are we being so cagey with the language—"could be" instead of "are" and "counterfactual" instead of "potential outcome" in the second case? Experts in treatment effects don't like applying the term "potential outcome" when the treatment is continuous. That implies an infinite number of potential outcomes. They are even protective of the term when used to create the pieces needed for the TEU. Regardless, the computation is exactly what would be done to form these potential outcomes for a binary or ordinal treatment, and the interpretation conveys the same meaning.

Neither the fix() nor the base() counterfactuals can be said to be better. They simply answer different questions. When we consider exogenous changes to variables like high school GPA, the counterfactuals from base() will often be more relevant to answering many questions. Whether a guidance counselor or a policy maker is asking the question, both are likely to face the existing GPAs of individual students or those in the population.

Let's take the next step and estimate the resulting changes in expected college GPA for our two situations. We just need to add contrast(at(r)) to each of our two margins commands.

<pre>. margins if name=="Billy", at(hsgpa=(2 3)) predict(fix(hsgpa)) > contrast(at(r) effects nowald) Warning: prediction constant over observations.</pre>						
Contrasts of j Model VCE	predictive mar : OIM	rgins				
Expression	: mean of gpa,	predict(fix	(hsgpa)))		
1at	: hsgpa	=	2			
2at	: hsgpa	=	3			
	-)elta-method				
	Contrast	Std. Err.	z	P> z	[95% Conf.	Interval]
_at (2 vs 1)	1.235868	.133686	9.24	0.000	.9738484	1.497888
. margins if n > contrast(at Warning: pred:	(r) effects no	owald)			(hsgpa=hsgpa	T))
Contrasts of j Model VCE	•	rgins				
Expression	: mean of gpa,	predict(bas	e(hsgpa=	=hsgpaT))		
1at	: hsgpa	=	2			
2at	: hsgpa	=	3			
	-)elta-method Std. Err.	z	P> z	[95% Conf.	Interval]
_at (2 vs 1)	1.235868	.133686	9.24	0.000	.9738484	1.497888

As we have said repeatedly, the estimates of the effects are the same. It does not matter how Billy arrived at his 2.00. What's more, the standard errors are the same, and they are the same as the standard error of the regression coefficient from our eregress output. In this case, the additional information that was so important in getting the right GPA estimates is subtracted out when we compute the differences. That is a direct result of the model being linear and having additive errors. Stretching the parlance of treatment effects again, we could call our first contrast an estimate of the treatment effect and the second a treatment effect on the untreated. For linear models without interactions, these are always the same value.

Would we see anything different if we averaged the effects over the sample to get estimates of the effects in the population? Just remove Billy from the commands.

. margins, at	(hsgpa=(2 3))	<pre>predict(fix(</pre>	hsgpa))	contrast	(at(r) effect	s nowald)
Contrasts of j Model VCE	predictive man : OIM	rgins				
Expression	: mean of gpa	, predict(fix	(hsgpa)))		
1at	: hsgpa	=	2			
2at	: hsgpa	=	3			
	-	Delta-method Std. Err.	Z	P> z	[95% Conf.	Intervall
_at (2 vs 1)	1.235868	.133686	9.24	0.000	.9738484	1.497888

. margins, at(hsgpa=(2 3)) predict(base(hsgpa=hsgpaT)) contrast(at(r) effects nowald)
 (output omitted)

Not surprisingly, the estimated effect is still 1.24—the same value we have gotten every time, the same value as the coefficient on hsgpa. Perhaps more surprisingly, the standard error of the population-average estimate is also the same as the standard error of the coefficient. We don't gain or lose any information when we take an average over an estimate that is constant for all the observations.

We leave it to you to run the last command and see that fix() and base() produce the same results.

In linear models without interactions, we have just seen that the effects are the same for many questions, but the levels are often different. In nonlinear models, these differences in the levels will lead to differences in the effects.

The models in the remaining two examples in this series, [ERM] **example 1b** and [ERM] **example 1c**, have exactly the same interpretation we gave to the model in this entry. Adding interval censoring and endogenous sample selection do not affect either the relevant questions or how they are answered.

Also see

- [ERM] eregress Extended linear regression
- [ERM] eregress postestimation Postestimation tools for eregress
- [ERM] intro 3 Endogenous covariates features
- [ERM] intro 8 Conceptual introduction via worked example

example 1b — Interval regression with continuous endogenous covariate

Description Remarks and examples Also see

Description

Continuing from [ERM] example 1a, we now consider the case where the dependent variable is interval-censored. We fit this model using eintreg.

Remarks and examples

We now assume that, for reasons of confidentiality, the researchers conducting the study do not observe the actual college GPA for those with a GPA below 2.0. For the rest, they are given college GPA only in increments of 0.5 points. So the outcome has both left- and interval-censored observations. The model remains the same.

The lower and upper endpoints for college GPA are stored in gpal and gpau. Both variables contain a missing value for students who dropped out of college. Other than the change in command name and specification of the dependent variable, the command to fit the model is exactly the same.

=

=

=

1,528

1,378

912.68

0.0000

0

0

150

. eintreg gpal gpau income, endogenous(hsgpa = income i.hscomp) Iteration 0: \log likelihood = -1716.9969 Iteration 1: \log likelihood = -1716.9968 Extended interval regression Number of obs Uncensored Left-censored = Right-censored = Interval-cens. = Wald chi2(2) Log likelihood = -1716.9968Prob > chi2 =

Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
.0551638	.0057859	9.53	0.000	.0438236	.066504
1.111672	.1407083	7.90	0.000	.8358891	1.387456
8180699	.4032468	-2.03	0.042	-1.608419	0277207
.0356351	.0019553	18.22	0.000	.0318027	.0394675
1317151	.0136277	-9.67	0.000	1584249	1050052
2320803	.0233633	-9.93	0.000	2778715	186289
2.951568	.0164465	179.46	0.000	2.919333	2.983802
.1354248	.0090267			.1188397	.1543245
.0591594	.0021403			.0551097	.0635066
.2700108	.0897936	3.01	0.003	.0868241	. 4355353
	.0551638 1.111672 8180699 .0356351 1317151 2320803 2.951568 .1354248 .0591594	.0551638 .0057859 1.111672 .1407083 8180699 .4032468 .0356351 .0019553 1317151 .0136277 2320803 .0233633 2.951568 .0164465 .1354248 .0090267 .0591594 .0021403	.0551638 .0057859 9.53 1.111672 .1407083 7.90 8180699 .4032468 -2.03 .0356351 .0019553 18.22 1317151 .0136277 -9.67 2320803 .0233633 -9.93 2.951568 .0164465 179.46 .1354248 .0090267 .0591594 .0021403	.0551638 .0057859 9.53 0.000 1.111672 .1407083 7.90 0.000 8180699 .4032468 -2.03 0.042 .0356351 .0019553 18.22 0.000 1317151 .0136277 -9.67 0.000 2320803 .0233633 -9.93 0.000 2.951568 .0164465 179.46 0.000 .1354248 .0090267 .0021403 .0021403	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

We again find that unobservable factors that increase high school GPA tend to increase college GPA. The parameter estimates here are interpreted just as we did in [ERM] example 1a. In that example, the estimated coefficient on hsgpa was 1.24; here it is 1.11. Like the relationship between regress and intreg, the 1.24 and 1.11 estimate the same parameter, the relationship between hsgpa and the uncensored outcome.

We will not further interpret this model here. Instead we refer you to the interpretation in [ERM] **example 1a**. The interval censoring of the dependent variable demonstrated here makes no difference in what commands you would type to answer questions or in how you would interpret the results of those commands. In fact, we encourage you to run the commands discussed in [ERM] **example 1a** on this model and compare the results.

Because interval regression is a generalization of tobit regression, you can also use eintreg to fit a tobit model with endogenous selection. However, you must convert your dependent variable into interval form. We illustrate how to do this in [ERM] intro 7.

Also see

- [ERM] eintreg Extended interval regression
- [ERM] eintreg postestimation Postestimation tools for eintreg
- [ERM] **intro 3** Endogenous covariates features
- [ERM] intro 8 Conceptual introduction via worked example

example 1c — Interval regression with endogenous covariate and sample selection

Description Remarks and examples Also see

Description

In [ERM] example 1a and [ERM] example 1b, we ignored the observations that were dropped because of missing data on GPA. In this example, we show you how to fit a model that includes a continuous endogenous covariate, a censored outcome, and endogenous sample selection.

Remarks and examples

In the previous two examples, the researchers excluded students who dropped out of college because they are missing college GPA data on these students. So they were estimating parameters for the population of students who graduate from college. Let's suppose they are interested in expected college GPA for all students who enroll, even those who drop out. They suspect that unobserved ability affects both the decision to stay in school and college GPA and thus that they have an endogenously selected sample.

To model the selection, they need a covariate that affects the probability that they observe a student's GPA but does not affect the level of the student's GPA. They include an indicator for whether the student participated in a retention program and whether the student had a roommate who also went to State U. They expect that students with a roommate who went to the same college were more likely to remain in school because they felt more included in the college environment.

. eintreg gpal gpau income, endogenous(hsgpa = income i.hscomp)

> select(graduate = hsgpa income i.roommate i.program)

(iteration log omitted)

(neration log on	intee)					
Extended inter	J			Nons Unce Left Righ	ected = selected = c-censored = nt-censored = erval-cens. = ni2(2) =	2,500 1,528 972 0 150 0 1,378 734.96 0.0000
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
income hsgpa _cons	.0338548 1.19378 7895643	.0075484 .1443563 .3908796	4.49 8.27 -2.02	0.000 0.000 0.043	.0190602 .9108467 -1.555674	.0486495 1.476713 0234543
graduate hsgpa income	2.215481 .1920393	.4411331 .0162334	5.02 11.83	0.000	1.350876 .1602224	3.080086 .2238563
roommate yes 1.program _cons	.1547087 .4858749 -7.524521	.0455906 .0523443 1.237529	3.39 9.28 -6.08	0.001 0.000 0.000	.0653528 .383282 -9.950034	.2440645 .5884678 -5.099008
hsgpa income	.047866	.0016981	28.19	0.000	.0445377	.0511942
hscomp moderate high	1337635 2284481	.0115749 .0190089	-11.56 -12.02	0.000 0.000	1564499 2657049	1110771 1911914
_cons	2.793802	.0132125	211.45	0.000	2.767906	2.819698
var(e.gpal) var(e.hsgpa)	.1753568 .0685863	.0085604 .0019399			.1593564 .0648876	.1929636 .0724958
<pre>corr(e.gra~e,</pre>	9124422	.0327448	-27.87	0.000	9583429	8205981
e.gpal) corr(e.hsgpa, e.graduate)	.0534114 .2747613	.0937195	0.57	0.569	1300101	. 2332982 . 4498437

The coefficients from the main equation for hsgpa continue to be interpreted as in [ERM] example 1b. Now, however, they are estimates for the population of all admitted students, not the population of all graduates. The estimated effect of high school GPA for this population is slightly higher, 1.19 compared with 1.11.

As with [ERM] example 1b, we will not further interpret this model here. Instead we refer you to the interpretation performed in [ERM] example 1a. The addition of endogenous sample selection makes no difference in what commands you would type to answer questions or to how you would interpret the results of those commands. In fact, we encourage you to run the commands discussed in [ERM] example 1a on this model and compare the results. The only thing to keep in mind is that now the population we are making inferences about is all students admitted to school.

Also see

- [ERM] eintreg Extended interval regression
- [ERM] eintreg postestimation Postestimation tools for eintreg
- [ERM] intro 3 Endogenous covariates features
- [ERM] intro 4 Endogenous sample-selection features
- [ERM] intro 8 Conceptual introduction via worked example

Title

example 2a — Linear regression with binary endogenous covariate

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model with a continuous outcome and endogenous binary covariate.

Remarks and examples

Suppose that we want to study the effect of having a college degree on wages. One way to approach the problem is to look at the coefficient on an indicator for whether an individual has a college degree. This gives us an idea of how different the average wage is for individuals with a college degree compared with those without one. However, as in [ERM] example 1a, we suspect that unobserved factors such as ability affect both the probability of graduating from college and wage level. Thus, we need to account for the potential endogeneity of the indicator for having a college degree.

In our fictional study, we collect data on the hourly wages (wage) and educational attainment (college) of 6,000 adults. We believe that differences in job tenure (tenure) and age (age) may also affect wages. We can control for these covariates by specifying them in the main equation. We specify college in the endogenous() option, but this time we also include the probit suboption to indicate that the variable is binary. We model graduation as a function of the level of parental education (peduc), which we assume does not have a direct effect on wage.

. use http://www.stata-press.com/data/r15/wagee (Wages for 20 to 74 year olds, 2015)	d			
<pre>. eregress wage c.age##c.age tenure, endogenous > vce(robust)</pre>	(college = i.peduc	;, pro	bit)	
Iteration 0: log pseudolikelihood = -18063.14	8			
Iteration 1: log pseudolikelihood = -18060.	2			
Iteration 2: log pseudolikelihood = -18060.16	4			
Iteration 3: log pseudolikelihood = -18060.16	4			
Extended linear regression	Number of obs	=	6,000	
ç	Wald chi2(4)	=	7584.74	
Log pseudolikelihood = -18060.164 Prob > chi2 = 0.000				

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
wage						
age	.4200372	.0163312	25.72	0.000	.3880286	.4520457
c.age#c.age	0033523	.0001759	-19.06	0.000	003697	0030075
tenure	.4921838	.0182788	26.93	0.000	.4563581	.5280095
college						
yes	5.238087	.1721006	30.44	0.000	4.900776	5.575398
_cons	5.524288	.3428735	16.11	0.000	4.852268	6.196307
college						
peduc						
college	.8605996	.0361723	23.79	0.000	.7897032	.9314959
graduate	1.361257	.0490862	27.73	0.000	1.26505	1.457465
doctorate	1.583818	.119513	13.25	0.000	1.349577	1.818059
_cons	9731264	.0294779	-33.01	0.000	-1.030902	9153508
var(e.wage)	8.99487	.2465919			8.524314	9.491402
corr(e.col~e,						
e.wage)	.5464027	.0286061	19.10	0.000	.4879055	.600014

The estimated correlation between the errors from the main and auxiliary equations is 0.55 and is significantly different from 0. We conclude that having a college degree is endogenous and that unobservable factors that increase the probability of graduating from college tend to also increase wages.

We find that graduating from college increases the expected wage by \$5.24 given a person's age and employment tenure. This estimate is different than comparing the average wages for college graduates and noncollege graduates.

. tabulate co	ollege, summarize(wage)	
indicator for college degree	Summary of hourly wage Mean Std. Dev.	Freq.
no yes	17.768516 3.0674174 25.520703 5.045888	3,766 2,234
Total	20.654913 5.4248886	6,000

The difference in the average wages is \$7.75, but unlike our regression coefficient, that value does not adjust for the different distribution of ages and tenures among college graduates and noncollege graduates.

Another approach to this problem is the potential-outcomes framework. With this approach, we consider the expected wage for each individual without a college degree versus the expected wage for each individual with a college degree. Specifically, we might like to know the average expected change in wages for those who complete college. This is called the average treatment effect on the treated. We consider this approach in [ERM] example 2b and [ERM] example 2c.

[ERM] example 2c also includes an interpretation of how the expected level of income varies by age, tenure, and whether one graduates from college. That analysis could also be applied to this model.

Also see

[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 8 — Conceptual introduction via worked example

Title

example 2b — Linear regression with exogenous treatment

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model with a continuous outcome and exogenous binary treatment.

Remarks and examples

In [ERM] example 2a, we analyzed the effect of having a college degree on wages as a binary endogenous covariate. Now suppose that we approach our research question instead in the potentialoutcomes framework. With this approach, we consider the expected wage for each individual without a college degree versus the expected wage for each individual with a college degree. Specifically, we might like to know the average expected change in wages for those who complete college, the average treatment effect on the treated (ATET).

As before, we use wageed.dta with educational attainment data on 6,000 adults. We control for differences in job tenure (tenure) and age (age) by specifying them in the main equation. For the time being, we consider the treatment (college) to be exogenous. We want to make inferences about the average effect of a college degree on the wages of all individuals who complete college, not just the subjects in our study sample, so we specify vce(robust). This will allow us to estimate the standard errors of the ATET accounting for the fact the variables in our sample represent just one draw from the population.

```
. use http://www.stata-press.com/data/r15/wageed
(Wages for 20 to 74 year olds, 2015)
. eregress wage c.age##c.age tenure, extreat(college) vce(robust)
Iteration 0:
               log pseudolikelihood = -13989.589
               log pseudolikelihood = -13989.586
Iteration 1:
Iteration 2:
               log pseudolikelihood = -13989.586
Extended linear regression
                                                Number of obs
                                                                  =
                                                                         6,000
                                                Wald chi2(8)
                                                                  = 439363.91
Log pseudolikelihood = -13989.586
                                                Prob > chi2
                                                                  =
                                                                        0.0000
```

wage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
college#						
c.age						
no	.2454534	.0180052	13.63	0.000	.2101638	.280743
yes	.7042756	.0225386	31.25	0.000	.6601007	.7484505
college#						
c.age#c.age						
no	0018998	.0001935	-9.82	0.000	002279	0015206
yes	0054223	.000243	-22.31	0.000	0058986	0049459
college#						
c.tenure	2006065	0007464	15 40	0 000	0000001	264.04
no	.3206065	.0207164	15.48	0.000	.2800031	.36121
yes	.4935213	.0257599	19.16	0.000	.4430329	.5440097
college						
no	9.851871	.3701276	26.62	0.000	9.126435	10.57731
yes	4.384709	.4654545	9.42	0.000	3.472435	5.296983
var(e.wage)	6.20477	.1152627	,		5.982922	6.434843

Because we specified the command as a treatment-effects model, eregress automatically interacts the college variable with all other covariates in the model, thus essentially creating separate models for those who graduate from college and those who do not. There is nothing wrong with interpreting the coefficients. This is, after all, just a regression. The coefficients labeled no are the estimates of the parameters of the wage model for those who are not college graduates. The coefficients labeled yes are the estimates of the parameters for the model of those who are college graduates. Tenure in the company has a larger effect for college graduates than nongraduates. It is 49 cents an hour per tenure year for college graduates and 32 cents for nongraduates. The effect of age is more difficult to interpret because of the quadratic term. The effect of age is clearly different between the groups, but the pattern of that difference is not obvious. See [ERM] example 2c for some tools you could apply to this model that would make that pattern obvious. The effect of college graduation is harder still to see. For any person, it would be the difference of the values predicted by the two models. Again, see [ERM] example 2c for ways to visualize the effect.

If we are interested only in the average effect, we can estimate that using the estat teffects command.

. estat teffects, atet Predictive margins				Number Subpop.	of obs = no. obs =	0,000
	Margin	Unconditional Std. Err.	L z	P> z	[95% Conf	. Interval]
ATET college (yes vs no)	7.62719	.0863465	88.33	0.000	7.457954	7.796426

The average wage is estimated to be \$7.63 higher per hour for the population of college graduates than the wage would have been if those same individuals had not completed college.

We have ignored several potential complications in this example. One of which is that unobserved factors such as ability that influence whether individuals complete college could also influence their wage. In that case, the treatment assignment (obtaining a college degree) would be endogenous. If the treatment were endogenous, we would model its coefficients and the correlation between the treatment assignment errors and the outcome errors. See [ERM] **example 2c** for an example with an endogenous treatment.

Also see

[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 8 — Conceptual introduction via worked example

example 2c — Linear regression with endogenous treatment

Description Remarks and examples Also see

Description

Continuing from [ERM] example 2b, we now consider the case where the treatment is endogenous.

Remarks and examples

In [ERM] example 2b, we assumed that graduating from college was an exogenous treatment. However, unobserved factors such as ability may affect whether individuals graduate from college and also affect their wage. Thus, it may be more appropriate for us to treat having a college degree as an endogenous treatment. We found endogeneity in [ERM] example 2a, which analyzes the treatment instead as a binary endogenous covariate. You may want to compare the result of this example with the results from [ERM] example 2b.

Because college graduation is now assumed to be endogenous, we must specify a model for college. We model graduation as a function of the level of parental education (peduc), which we further assume does not have a direct effect on wage. The endogenous treatment equation is specified in option entreat().

. eregress wag	ge c.age##c.ag	ge tenure, e	entreat(co	ollege =	i.peduc) vce((robust)
Iteration 0:	log pseudol:	ikelihood =	-17382.44	46		
Iteration 1:	log pseudol:		-17381.93	22		
Iteration 2:	log pseudol:	ikelihood =	-17381.9	92		
Extended lines	0			Number Wald ch	mi2(8) =	6,000 348743.60
Log pseudolike	elihood = -17	7381.92		Prob >	chi2 =	0.0000
		Robust				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
wage						
college#						
c.age						0.004.000
no	.2338084	.0176633	13.24	0.000	.199189	.2684279
yes	.6777385	.0219827	30.83	0.000	.6346531	.7208239
college#						
c.age#c.age						
no	0018611	.00019	-9.79	0.000	0022335	0014887
yes	0052533	.0002372	-22.14	0.000	0057183	0047883
college#						
c.tenure						
no	.3948863	.0207452	19.04	0.000	.3542263	.4355462
yes	.5883544	.0257213	22.87	0.000	.5379415	.6387673
č						
college						
no	10.86301	.3675208	29.56	0.000	10.14268	11.58333
yes	3.184255	.4612019	6.90	0.000	2.280316	4.088194
college						
peduc						
college	.849575	.0356419	23.84	0.000	.7797181	.9194318
graduate	1.347272	.0491996	27.38	0.000	1.250843	1.443701
doctorate	1.541025	.1174797	13.12	0.000	1.310769	1.771281
_cons	973061	.0292791	-33.23	0.000	-1.030447	9156749
<pre>var(e.wage)</pre>	7.629807	.2245651			7.202122	8.082889
corr(e.col~e,						
e.wage)	.623109	.0267317	23.31	0.000	.5679046	.6727326

As in [ERM] example 2b, most of the coefficients are difficult to directly interpret. The estimated correlation between the errors from the main and auxiliary equations is 0.62. The z statistic may be used for a Wald test of the null hypothesis that there is no endogenous treatment. We reject this hypothesis and conclude that having a college degree is an endogenous treatment. Because the estimate is positive, we conclude that unobserved factors that increase the chance of having a college degree also tend to increase wage.

We can use estat teffects to estimate the average effect of a college degree on wage. We use the atet option to estimate the ATET.

. estat teffects, atet Predictive margins				Number Subpop.	of obs = no. obs =	6,000 2,234
	Margin	Jnconditional Std. Err.	L z	P> z	[95% Conf.	Interval]
ATET college (yes vs no)	5.144136	.1656339	31.06	0.000	4.819499	5.468772

We estimate that the average wage for those who graduated from college is \$5.14 higher than it would have been had those same individuals not graduated from college. This is \$2.49 less than the result from our model in [ERM] example 2b that did not account for the endogeneity of college graduation. We said "same individuals" to emphasize that \$5.14 is a treatment effect on those who chose to attend college and graduated. More formally, it is our estimate of what the average increase in wage is in the whole population for everyone who chose to attend college and graduated.

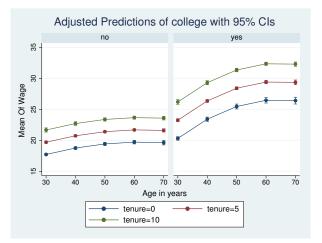
Is this effect constant for everyone? Let's approach that question by first profiling expected wages for some representative values of age and tenure. We can ask margins to do that by typing

```
. margins college, predict(base(college=1)) vce(unconditional)
> at(age=(30(10)70) tenure=(0 5 10) peduc=2)
  (output omitted)
```

We used the at() option to request values of age from 30 to 70 in units of 10 years and, for each of those ages, tenures of 0, 5, and 10. We also requested college = 0 and college = 1, but we did that by typing college right after the margins command. We could have instead typed college=(0 1) in our at() option, but this is better. You will see that in a minute. We still want estimates for those who chose to go to college and graduated, so we specify predict(base(college=1)). That means we are further conditioning on the unobservable factors that increased the probability of graduating from college.

If you run the margins command, you will see that it takes a few seconds and that it produces a lot of output. Let's graph the results,

```
. marginsplot, by(college)
```



The first thing we notice is that these results are far too regular, and we should review our data collection process. That aside, the age–earnings profiles on the left, where we have taken the degrees away from our college graduates, are distinctly different from those on the right, where they get to retain their degrees. We see that tenure does have an effect, and if we look closely, it has a larger effect on college graduates: the profiles are further apart on the right. What do the points on this graph represent? Each point in the panel on the right is the expected wage for someone who graduated from college, whose parents graduated from college, and who has the age and tenure shown on the graph. Each point on the left is a counterfactual where we assume those same people did not graduate from college but where we continue to condition on the fact that their endogenous choice was to attend and complete college.

Seeing that, we have to ask, what are the profiles of the effect of college? To find those, we just add an r. to college on our previous margins command. Now you know why we specified college the way we did.

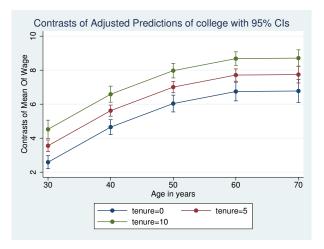
```
. margins r.college, predict(base(college=1)) vce(unconditional)
> at(age=(30(10)70) tenure=(0 5 10) peduc=2)
```

```
(output omitted)
```

```
(output omitted)
```

Again, the output is long, so we graph the results.

. marginsplot



College affects wages the least when people are young and have no tenure. The largest effects are seen for those older than 50 and even more so when they also have long tenure. Each point represents the expected increase in wages due to graduating from college among those who chose to attend college and graduated. So each is an average treatment effect on the treated (ATET). Unlike overall average ATETs, these are conditioned on being at a specific age and having a specific tenure. Each point is bracketed by a pointwise 95% confidence interval. The confidence intervals reveal that we have pretty tight estimates for each of the ATETs. Note that the previous graph also displayed 95% confidence intervals. They were just so narrow that they are difficult to see.

Some might quibble with the "A" we just used in ATET because we have specified values for every covariate. Even so, taking the expectation over the errors in the model is a form of averaging. If you prefer call them the expected TETs (treatment effects on the treated).

We have focused on treatment effects on the treated, those who graduated from college. We could have just as easily asked about treatment effects on the untreated, those who did not graduate from college. What would we expect wages to do if they did graduate from college? Maybe we could reduce the cost of admission or otherwise affect their decision or institute mandatory college attendance. It is a minor change to what we have already typed. In each case, just change

```
predict(base(college=1))
```

to

predict(base(college=0))

If you do that, you will be conditioning on a decision not to attend college or a failure to complete college. If you make this change and reproduce the first graph, you will find that even after one graduates from college, wages are expected to be a little lower for this group. Recall that the unobserved factors that affected choosing to attend college were positively correlated with wages. If you run the contrasts to obtain the ATEU (average treatment effects on the untreated), you will find that those effects are identical to the ATETs! That is because our model is linear and because we are not averaging over the observations. The effect of the unobserved factors is different for college graduates and nongraduates. However, that effect is subtracted out when the counterfactuals are differenced to estimate the effect of college.

We gave parents' education short shrift in our analysis, locking it at the single value representing undergraduate degree. You can easily explore how differing levels of parents' education affect the results. Try typing

You will find that parents' education does affect expected wages through the correlation between our two equations.

As is often the case with models having complications, estimation is just the first step.

See Treatment under Methods and formulas in [ERM] eregress and Estimating treatment effects with margins in [R] margins, contrast for additional information about calculating the ATET.

Also see

[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 8 — Conceptual introduction via worked example

Title

example 3a — Probit regression with continuous endogenous covariate

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model with a binary outcome and continuous endogenous covariate.

Remarks and examples

In [ERM] **example 1a** through [ERM] **example 1c**, we showed how researchers at the fictional State University might approach an investigation of the relationship between the high school grade point average (GPA) of the students the university admits and their final college GPA. Suppose instead that they would like to know how the probability of college graduation is related to high school grade point average (GPA). They again suspect that high school GPA is endogenous in a model of the probability of college graduation.

Their model for graduation includes parental income in \$10,000s and whether the student had a roommate who also went to State U. The State U researchers expect that the effect of high school competitiveness on the probability of graduating from college is negligible once the other covariates are controlled for. So they use the ranking of the high school (hscomp) as the instrumental variable for high school GPA. They also include parental income in the auxiliary model for high school GPA.

We want to make inferences about how our covariates affect graduation rates in the population, not just in our sample. We add vce(robust) so that subsequent calls to estat teffects and margins will be able to consider our sample as a draw from the population.

. use http://www.stata-press.com/data/r15/class10 (Class of 2010 profile)									
<pre>. eprobit graduate income i.roommate, endogenous(hsgpa = income i.hscomp) > vce(robust)</pre>									
Iteration 0: Iteration 1: Iteration 2:	Iteration 1: log pseudolikelihood = -1418.4414								
Extended probi	t regression			Number	of obs =	2,500			
Log pseudolike	elihood = -14:	18.4414		Wald ch Prob >		326.79 0.0000			
	Q f	Robust							
	Coef.	Std. Err.	Z	P> z	[95% Coni.	Interval]			
graduate income	.1597677	.0158826	10.06	0.000	.1286384	.1908969			
roommate									
yes	.2636312 1.01877	.0563563 .4324788	4.68 2.36	0.000 0.018	.1531748 .1711273	.3740876 1.866413			
hsgpa _cons	-3.647166	1.204728	-3.03	0.018	-6.008389	-1.285943			
hsgpa income	.047859	.0016461	29.07	0.000	.0446327	.0510853			
hscomp	.041000	.0010401	20.01	0.000	.0110021	.0010000			
moderate	135734	.0114717	-11.83	0.000	158218	1132499			
high	225314	.0195055	-11.55	0.000	2635441	1870838			
_cons	2.794711	.0127943	218.43	0.000	2.769634	2.819787			
var(e.hsgpa)	.0685893	.0019597			.064854	.0725398			
corr(e.hsgpa, e.graduate)	.3687006	.0919048	4.01	0.000	.1765785	.5337596			

The estimate of the correlation between the errors of our two equations is 0.37 and is significantly different from zero, so we have endogeneity. Because the correlation is positive, we conclude that the unobservable factors that increase high school GPA also increase the probability of graduation.

The results for the main equation are interpreted as you would those from probit. We can obtain directions but not effect sizes from the coefficients in the main equation. For example, we see that family income and high school GPA are positively associated with the probability that a student graduates.

Let's ask something more interesting. What if we could increase each student's high school GPA by one point, moving a 2.0 to a 3.0, a 2.5 to a 3.5, and so on? We obviously cannot increase anyone's GPA by one point if he or she is already above a 3.0; so we restrict our population of interest to students with a GPA at or below 3.0. margins will give us the population-average expected graduation rate given each student's current GPA if we specify at(hsgpa=generate(hsgpa)). It will also give us the population-average expected graduation rate with an additional point in each student's GPA if we specify at(hsgpa=generate(hsgpa+1)). We want to hold each student's unobservable characteristics to be those that are implied by their current data, so we also create a variable holding the true values of hsgpa and specify predict(base(hsgpa=hsgpaT)).

. generate hsg	gpaT = hsgpa		// T1	rue value	of GPA for m	argins
<pre>. margins, at > predict(base</pre>						1)
Predictive man	rgins			Number Subpop.	of obs = no. obs =	2,500 1,430
Expression	: Pr(graduate	==yes), pred:	ict(base	(hsgpa=hs	gpaT))	
1at	: hsgpa	= hsgpa				
2at	: hsgpa	= hsgpa-	+1			
	τ	Unconditional	1			
	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
_at						
1	.4315243	.0214675	20.10	0.000	.3894487	.4735998
2	.7737483	.0953191	8.12	0.000	.5869264	.9605702

For students with a high school GPA at or below 3.0, the expected graduation rate is 43%. If those same students are given an additional point in their GPA, the graduation rate rises to 77%.

By adding contrast(at(r)) to our margins command, we can difference those two counterfactuals and estimate the average effect of giving an additional point of GPA. We also added effects to add test statistics and nowald to clean up the output.

<pre>. margins, at(> subpop(if hs > contrast(at)</pre>	sgpa <= 3) pr	edict(base(hsg	gpa=hsgp	baT))	(hsgpa+1))	
Contrasts of p	predictive mag	rgins				
Expression :	Pr(graduate	==yes), predio	ct(base)	(hsgpa=h	sgpaT))	
1at :	hsgpa	= hsgpa				
2at :	hsgpa	= hsgpa+2	1			
		Unconditional Std. Err.	z	P> z	[95% Conf.	Interval]
_at (2 vs 1)	. 342224	.113214	3.02	0.003	.1203287	.5641194

Giving students an additional point in their GPA increased graduation rates by just over 34%, with a 95% confidence interval from 12% to 56%.

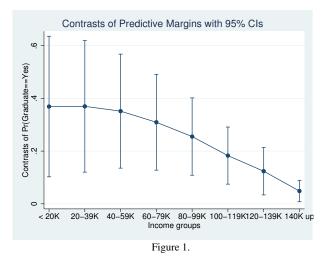
Does this effect differ across any of our other covariates? Our dataset has a grouping variable for family income incomegrp, so let's estimate the effect within each income grouping. We just add over(incomegrp) to our prior margins command.

. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1)) > subpop(if hsgpa <= 3) predict(base(hsgpa=hsgpaT))</pre> > contrast(at(r) nowald effects) noatlegend vce(unconditional) over(incomegrp) Contrasts of predictive margins Expression : Pr(graduate==yes), predict(base(hsgpa=hsgpaT)) over : incomegrp Unconditional Contrast Std. Err. P>|z| [95% Conf. Interval] z _at@ incomegrp (2 vs 1) < 20K .3690987 .1359989 2.71 0.007 .1025457 .6356516 (2 vs 1) 20-39K .3698609 .1273853 2.90 0.004 .1201903 .6195316 (2 vs 1) 40-59K .3516159 .1103376 3.19 0.001 .1353581 .5678737 (2 vs 1) 60-79K .3094611 .0927492 3.34 0.001 .1276761 .4912461 (2 vs 1) 80-99K .255203 .0748521 3.41 0.001 .1084956 .4019105 (2 vs 1) 100-119K .1829494 .0552683 3.31 0.001 .0746256 .2912732 (2 vs 1) 120-139K .1238028 .0459416 2.69 0.007 .0337588 .2138467 (2 vs 1) 140K up .0485429 .0207233 2.34 0.019 .0079259 .0891598

The effect is largest for the low-income groups and declines as income goes up. It becomes almost negligible for students from households whose income is above \$140,000.

We can see this relationship more clearly if we graph the results.

. marginsplot



Our point estimates of the effect on the probability of graduating are near 0.4 for the lowest-income groups and fall below 0.2 for incomes over \$100,000.

So we can examine subpopulation averages and effects and make inferences about their values.

We can also examine averages and effects at specified values of the covariates in our model. Let's consider students who do not have roommates and evaluate them at 5 levels of high school GPA (2.0, 2.5, 3.0, 3.5, and 4.0) and at two levels of income (\$30,000 and \$110,000).

. margins,	at(roommate=0 hsgpa=(2 2.5 3 3.5 4)	income=(3 11))	noatlegend	
Predictive	margins	Number of obs	= 2	2,500
Model VCE	: Robust			
Expression	: Pr(graduate==yes), predict()			

	Margin	Delta-metho Std. Err.	d z	P> z	[95% Conf.	Interval]
at						
1	.0068488	.0076828	0.89	0.373	0082092	.0219068
2	.1215437	.0353464	3.44	0.001	.052266	.1908213
3	.5517785	.0320675	17.21	0.000	.4889272	.6146297
4	.9232607	.043002	21.47	0.000	.8389784	1.007543
5	.9967789	.0051452	193.73	0.000	.9866944	1.006863
6	.0470211	.0496759	0.95	0.344	0503419	.144384
7	.3531365	.1042001	3.39	0.001	.1489081	.5573649
8	.8213242	.023535	34.90	0.000	.7751964	.867452
9	.9867056	.0071801	137.42	0.000	.9726328	1.000778
10	.9997797	.0003587	2787.22	0.000	.9990767	1.000483

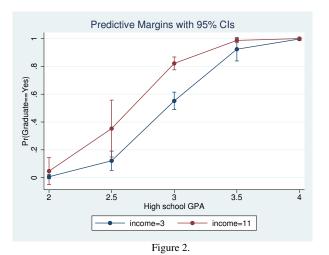
Looking at all combinations of GPA and income, we see that graduation probabilities range from 0.0068 to 0.9998 for these values of the covariates.

We have suppressed the long legend that explains the _at levels in the table, so let's explain the lines. All results are for students without roommates. Lines 1-5 are for students with family incomes of \$30,000 with the first line representing a GPA of 2, the second a GPA of 2.5, and so on. Lines 6-10

represent the same levels of GPA for students with a family income of \$110,000. Because our model has only three covariates in the main equation and because we have specified values for each of the covariates, these can be considered fully conditional estimates. Even so, they are averages in the sense that they are expected values. Each probability represents what we would expect if hundreds of students were sampled who had the same values of the covariates as those on the corresponding line.

The patterns in these results are easier to see on a graph.

. marginsplot



Students with a GPA of 2.0 have nearly no chance of graduating, regardless of income. For those with a GPA between 2.5 and 3.0, the graduation rates differ sharply depending on income level. At GPAs of 3.5 and above, graduation rates are so high that there is again little difference due to income. These results aren't surprising; it's easier to struggle through school when you do not also have to worry over money issues.

What if we could grant the lower-income students a higher income? We would want to hold their unobservables at their initial level while moving them to the higher income. Perhaps they are adopted. Perhaps we are using this increase in income as a proxy for providing financial aid to lower-income students. Regardless, we use predict(base(income=3)) to hold their unobservable characteristics to their initial level as we move income from \$30,000 to \$110,000.

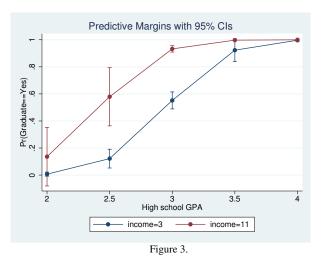
```
. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=(3 11))
```

> noatlegend predict(base(income=3))

```
(output omitted)
```

We dispense with showing you the output and go straight to the graph. You can run the margins command if you wish.

. marginsplot



The separation between graduation probabilities for incomes of \$30,000 and \$110,000 is even larger for those who obtain their high school GPA while in a family with \$30,000 income and are then moved to \$110,000.

Let's explore that a bit more, not because made-up data are interesting but because we have yet more tools to show you. margins will compute contrasts (differences) between our at() groupings but is an all-or-none proposition. It is either all levels or all differences. We want to see the differences in the lines we have been drawing while keeping our levels of GPA. We are going to estimate and graph the differences between the lines on the graph we just drew and also on the graph we drew before that. So we are going to compare the effects for those born with higher incomes and the effects with those granted higher incomes at entry to college. The latter is a proper effect due to an exogenous change. The former is just a comparison of two groups. We type

. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=3)

```
> predict(target(income=3)) predict(target(income=11) base(income=11))
```

```
> predict(target(income=11)) contrast(predict(r) nowald effects) noatlegend
```

```
(output omitted)
```

Let's focus first on the syntax. The predict(target())s are new; see [ERM] eprobit predict for a detailed explanation. Briefly, target() specifies a counterfactual value directly. So predict(target(income=3)) specifies an income of \$30,000. Because that is the same value margins is specifying, that is more of a factual than a counterfactual. Well, it is a factual for low-income students and is shown as the blue line in figure 2 and figure 3.

predict(target(income=11) base(income=11)) specifies that both the counterfactual income and the base() income from which the student's unobservable characteristics are obtained are \$110,000. So it too is a factual. It is a factual for high-income students and is shown as the red line in figure 2. predict(target(income=11)) specifies that our counterfactual income is 11, but because margins is setting the income to 3, the unobservable characteristics will be for a student whose parents earn \$30,000. This is the red line in figure 3.

The results are

```
. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=3)
```

```
> predict(target(income=3)) predict(target(income=11) base(income=11))
```

```
> predict(target(income=11)) contrast(predict(r) nowald effects) noatlegend
```

```
Contrasts of predictive margins
Model VCE : Robust
1._predict : Pr(graduate==yes), predict(target(income=3))
2._predict : Pr(graduate==yes), predict(target(income=11) base(income=11))
3._predict : Pr(graduate==yes), predict(target(income=11))
```

	Delta-method								
	Contrast	Std. Err.	z	P> z	[95% Conf.	Interval]			
_predict@_at									
(2 vs 1) 1	.0401723	.0421568	0.95	0.341	0424536	.1227981			
(2 vs 1) 2	.2315929	.0725988	3.19	0.001	.0893018	.3738839			
(2 vs 1) 3	.2695457	.0440405	6.12	0.000	.1832279	.3558636			
(2 vs 1) 4	.0634449	.036527	1.74	0.082	0081467	.1350365			
(2 vs 1) 5	.0030008	.0047942	0.63	0.531	0063957	.0123973			
(3 vs 1) 1	.1292645	.1030033	1.25	0.209	0726182	.3311473			
(3 vs 1) 2	.4575187	.078341	5.84	0.000	.3039732	.6110642			
(3 vs 1) 3	.3809832	.0367368	10.37	0.000	.3089803	.4529861			
(3 vs 1) 4	.0741338	.0414526	1.79	0.074	0071118	.1553795			
(3 vs 1) 5	.0031996	.0051059	0.63	0.531	0068078	.0132071			

And their graph is

. marginsplot

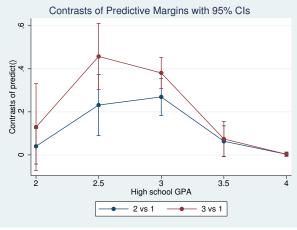


Figure 4.

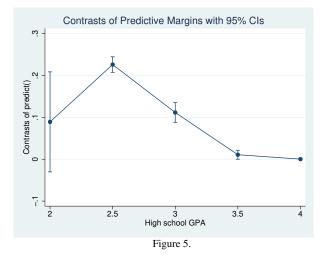
The blue points and line represent the difference between a student from a family earning \$30,000 and a student from a family earning \$110,000. The red points and line represents the difference between the same student who started in a family earning \$30,000 but was granted \$110,000 family earnings on entry into college. The higher income means much more to those who achieved their GPA while in a lower-income family. This is particularly true for those with GPAs between 2.5 and 3.0.

Recall that our estimation results indicated a positive correlation between unobservable factors that increase a student's GPA and those that increase the probability that the student graduates. The

margins results above are driven by lower-income students having higher levels of these unobservable factors for any given level of high school GPA. In fact, the only thing that makes the two lines different is that the students who started with incomes of \$30,000 have different unobservable characteristics from those who started with incomes of \$110,000. All other covariates are the same. How important are those unobserved factors? We assess that directly by comparing our two counterfactuals that set income at \$110,000.

We delete the line predict(target(income=3)) so that we are comparing the two counterfactuals against each other, rather than each against the counterfactual of \$30,000 family income.

- . margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=3)
- > predict(target(income=11) base(income=11)) predict(target(income=11))
- > contrast(predict(r) nowald effects) noatlegend
 (output omitted)
- . marginsplot



These results directly measure the contribution of the student's unobservable characteristics to graduation rates. At a GPA of 2.0, a student from a family earning \$30,000 and then being moved to a family income of \$110,000 would be 10 percentage points more likely to graduate than a student from a family who always earned \$110,000.

That effect rises to over 20 percentage points if the student's GPA is 2.5.

So we can also analyze fully conditional counterfactuals and make complex inferences.

Also see

- [ERM] eprobit Extended probit regression
- [ERM] eprobit postestimation Postestimation tools for eprobit
- [ERM] intro 3 Endogenous covariates features
- [ERM] intro 8 Conceptual introduction via worked example

Title

example 3b — Probit regression with endogenous covariate and treatment

Description Remarks and examples Also see

Description

We model a binary outcome that depends on a continuous endogenous covariate and has an endogenous treatment by using eprobit with the endogenous() and entreat() options.

Remarks and examples

Continuing from [ERM] example 3a, State U administrators have implemented a voluntary program to increase retention freshman year. Whether a student chose to participate is stored in the indicator variable program. They are concerned that unobservable factors that influence a student's decision to participate in the college retention program also influence the probability of graduation. For example, students who have higher self-motivation may be more likely to join and also more likely to graduate without the program. Thus, they are concerned that participation in the program may be an endogenously chosen treatment.

The researchers believe the program was easier to access for students who lived on campus freshman year. They also think students who had scholarships may have been more motivated to attend the program. However, they do not believe either of these variables independently affects the probability of graduation after controlling for other covariates in the model. They use an indicator for on-campus residence during the freshman year (campus), having a scholarship of any kind (scholar), and parents' income in the treatment assignment model.

. eprobit graduate income i.roommate, endogenous(hsgpa = income i.hscomp) > entreat(program = i.campus i.scholar income) vce(robust) Iteration 0: log pseudolikelihood = -2793.4696 Iteration 1: log pseudolikelihood = -2792.9298 log pseudolikelihood = -2792.9017 Iteration 2: Iteration 3: log pseudolikelihood = -2792.9016 Extended probit regression 2,500 404.26 Log pseudolikelihood = -2792.9016 Prob > chi2 0.0000

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
graduate program#						
c.income						
0	.1760785	.0201833	8.72	0.000	.13652	.2156371
1	.1925761	.021294	9.04	0.000	.1508405	.2343116
roommate#						
program						
yes#0	.3110885	.0814304	3.82	0.000	.1514878	.4706892
yes#1	.2475942	.0756877	3.27	0.001	.0992491	.3959394
program#						
c.hsgpa						
0	1.160053	.4590276	2.53	0.011	.2603759	2.059731
1	.9379774	.4450455	2.11	0.035	.0657043	1.81025
program						
0	-4.350156	1.312558	-3.31	0.001	-6.922721	-1.77759
1	-3.393398	1.242536	-2.73	0.006	-5.828725	9580717
program						
campus						
yes	.7433155	.0735249	10.11	0.000	.5992092	.8874217
scholar	0070454	0505400	15 00			
yes	.8970451 0799274	.0585469 .0088987	15.32 -8.98	0.000 0.000	.7822952 0973686	1.011795 0624862
income _cons	3810042	.0860131	-0.90	0.000	5495867	2124217
		.0000131				.2124217
hsgpa	.0478626	.0016461	29.08	0.000	.0446363	.0510889
income	.0478626	.0016461	29.08	0.000	.0440303	.0510889
hscomp	4050440	0445040	44 74		4575500	1101001
moderate	1350116 2269435	.0115013 .019326	-11.74 -11.74	0.000	1575538 2648218	1124694 1890652
high	2269435	.019326	-11.74	0.000	2648218	1890652
_cons	2.79442	.0128088	218.16	0.000	2.769315	2.819525
var(e.hsgpa)	.0685874	.0019597			.064852	.0725379
corr(e.pro~m,						
e.graduate)	.3791651	.1035775	3.66	0.000	.1605878	.5622919
corr(e.hsgpa,						
e.graduate)	.4001679	.089854	4.45	0.000	.2109447	.5604834
corr(e.hsgpa, e.program)	0201748	.02637	-0.77	0.444	0717594	.0315174
				V.111		

The main equation output is slightly different from that in [ERM] example 3a. Because program was specified as a treatment, it was automatically interacted with each of the other covariates in the graduate equation.

The correlation between the errors from the graduation equation and those from the program participation equation is estimated to be 0.38 and is significantly different from zero. The researchers conclude that unobservable factors that increase the chance of participating in the program also increase the chance of graduating.

Now, we use estat teffects to estimate the ATE of program participation on college graduation. We specified vce(robust) when we fit the model, so estat teffects reports standard errors and tests for the population ATE.

. estat teffed	cts						
Predictive margins				Number of	obs	=	2,500
		 Jnconditional					
	Margin	Std. Err.	z	P> z	[95%	Conf.	Interval]
ATE							
program (1 vs 0)	.1017846	.0488905	2.08	0.037	.00	5961	.1976081

We estimate that the ATE is 0.10. In other words, the average probability of graduating increases by 0.10 when all students participate in the program versus when no students participate in the program.

We might be interested if those students who self-selected into the program increased their graduation probability by more that 0.10. We estimate the average treatment effect on the treated (ATET).

. estat teffed	cts, atet						
Predictive man	rgins			Number	of obs	=	2,500
				Subpop. no. obs =			1,352
	Nargin	Unconditional Std. Err.	z	P> z	[95% Co	nf.	Interval]
ATET program (1 vs 0)	.1015967	.0493961	2.06	0.040	.004782	1	. 1984113

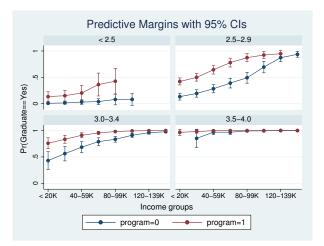
In this case, the students who chose the program did no better on average than choosing by flipping a coin. Both the ATE and ATET are 0.10.

Those are the overall averages. Do graduation rates for participants and nonparticipants differ by high school GPA and parents' income? Our dataset has grouping variables, so we can let margins estimate graduation rates subpopulations defined by all three covariates.

. margins, over(program incomegrp hsgpagrp) vce(unconditional)

The output is copious. You can type the command and see it if you like. The patterns are easier to see on a marginsplot.

. marginsplot, plot(program) xlabels(0 4 8 12)



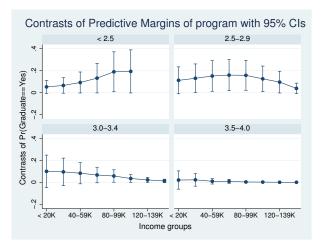
The red line shows expected graduation rates for those who participated in the program. The blue line shows rates for nonparticipants. Clearly, the differences between the groups in the program and those out of the program differ dramatically across GPA and family income. For GPAs at or above 3.5, the graduation rates are so high that there was no room for differences. For most other groups, the graduation rates are estimated to be substantially higher among those who participated. The only exceptions are extremely low-income students with GPAs below 2.5 and extremely high-income students with GPAs at or above 3.5.

We were careful not to call the comparisons above effects or attribute them directly to the program. They are indeed expected rates for the groups, but the students self-selected into program participation groups. If we want to compare graduation rates assuming all students don't participate and then assuming all students do participate, we need to instruct margins to fix() the values for program participation and also add the r. to program.

```
. margins r.program, over(incomegrp hsgpagrp) vce(unconditional)
> predict(fix(program)) contrast(nowald)
 (output omitted)
```

The output is again long, so we leave you to see it for yourself. The graphs reveal the patterns across groups.

. marginsplot, by(hsgpagrp) xlabels(0 4 8 12)



These differences are close to what we would have seen had we differenced the red and blue lines of the first graph. In this graph, each point is an estimate of the average treatment effect for a subpopulation defined by a range of GPAs and a range of family income. We note that the confidence intervals, as represented by the capped lines, are fairly wide.

Also see

- [ERM] eprobit Extended probit regression
- [ERM] eprobit postestimation Postestimation tools for eprobit
- [ERM] estat teffects Average treatment effects for extended regression models
- [ERM] intro 3 Endogenous covariates features
- [ERM] intro 5 Treatment assignment features
- [ERM] intro 8 Conceptual introduction via worked example

Title

example 4a — Probit regression with endogenous sample selection

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model with a binary outcome and endogenous sample selection.

Remarks and examples

We are interested in whether regular exercise and body mass index (BMI) influence the chance of having a subsequent heart attack. In our fictional study, we collected data on 625 men who had a heart attack when they were between the ages of 50 and 55. Some men withdrew from the study before it completed, and we believe their reasons for leaving are related to unobserved factors that also affect their chances of having a second heart attack. We did, however, observe all cases where a second heart attack was fatal.

To account for the endogenous sample selection, we specify an auxiliary model for selection using a covariate that belongs in the auxiliary model and is excluded from the main equation. We expect that the direct effect of whether a man had regular checkups before the study is negligible after we condition on other covariates.

The outcome of interest is whether the man had another heart attack within five years of his first heart attack (attack). We believe that the man's current age is also an important exogenous covariate along with BMI. We model the indicator for whether the man was observed for the full five years of the study (full) as a function of an indicator for having regular checkups along with the covariates from the main equation.

```
. use http://www.stata-press.com/data/r15/heartsm
(Heart attacks)
. eprobit attack age bmi i.exercise, select(full = age bmi i.checkup) vce(robust)
Iteration 0:
                log pseudolikelihood = -409.23137
Iteration 1:
                log pseudolikelihood = -408.78569
Iteration 2:
                log pseudolikelihood = -408.78452
Iteration 3:
                log pseudolikelihood = -408.78452
Extended probit regression
                                                   Number of obs
                                                                      =
                                                                                625
                                                                      =
                                                                                458
                                                         Selected
                                                         Nonselected =
                                                                                167
                                                   Wald chi2(3)
                                                                      =
                                                                            142.85
Log pseudolikelihood = -408.78452
                                                   Prob > chi2
                                                                            0.0000
                                                                      =
                               Robust
                     Coef.
                             Std. Err.
                                                   P>|z|
                                                              [95% Conf. Interval]
                                             z
attack
                  .2237091
                              .0351334
                                           6.37
                                                   0.000
                                                              .1548489
                                                                          .2925693
         age
         bmi
                  .1760896
                              .0298853
                                           5.89
                                                   0.000
                                                              .1175155
                                                                          .2346636
    exercise
                 -1.438937
                              .1515198
                                          -9.50
                                                   0.000
                                                            -1.735911
        yes
                                                                         -1.141964
       _cons
                 -15.78445
                              2.105945
                                          -7.50
                                                   0.000
                                                            -19.91202
                                                                         -11.65687
full
         age
                 -.1599347
                               .032953
                                          -4.85
                                                   0.000
                                                            -.2245214
                                                                          -.095348
                              .0208896
                                          -5.49
                                                   0.000
                                                            -.1556011
                                                                         -.0737152
         bmi
                 -.1146582
     checkup
                  2.306638
                              .1660248
                                          13.89
                                                   0.000
                                                             1.981236
                                                                          2.632041
        yes
```

We estimate that the correlation between the errors from the outcome equation and the errors from the selection equation is -0.45. This is significantly different from zero, so selection into the study is endogenous. Because the correlation is negative, we conclude that unobserved factors that increase the chance of staying in the study tend to occur with unobserved factors that decrease the chance of having a subsequent heart attack.

6.00

-2.77

0.000

0.006

7.857284

-.71301

15.47247

-.0852183

_cons

corr(e.full, e.attack) 11.66488

-.4537026

1.942686

.1636665

The results for the main outcome equation (attack) and auxiliary selection equation (full) are interpreted just as you would those from heckprobit. Which is to also say that the results for the main equation can be interpreted as you would those from a probit regression using probit on uncensored data. The goal of including a selection model is to estimate the parameters of the main equation as though there were no selection.

Age and BMI have increased the chances of having another heart attack, while regular exercise decreases the chances. However, the magnitude of the effect on the probability of another heart attack cannot be determined from the coefficient estimates themselves. We can use margins to examine the effect of different covariates on the probability of having a second heart attack. But first we want to investigate a possible further complication in our data: regular exercise may be an endogenous treatment. We explore this in [ERM] example 4b.

Also see

- [ERM] eprobit Extended probit regression
- [ERM] eprobit postestimation Postestimation tools for eprobit
- [ERM] intro 4 Endogenous sample-selection features
- [ERM] intro 8 Conceptual introduction via worked example

Title

example 4b — Probit regression with endogenous treatment and sample selection

Description Remarks and examples Also see

Description

Continuing from [ERM] **example 4a**, we show you how to estimate and interpret the results of a model for a binary outcome when the model includes an endogenous treatment and the data are subject to endogenous sample selection.

Remarks and examples

In [ERM] **example 4a**, we ignored the possibility that regular exercise was an endogenous treatment. However, we suspect that unobserved factors that influence the choice to exercise may be correlated with the unobserved factors that affect the chance of having another heart attack.

We would like to know the average expected change in probability of having a subsequent heart attack for those who exercise. That is, we are interested in estimating the average treatment effect on the treated (ATET). We continue to include BMI and age in our outcome model, and to account for endogenous sample selection, we specify the same auxiliary model for selection we did in [ERM] example 4a. We add a third equation to account for endogenous treatment assignment. Whether a man ever joined a gym is an instrumental variable predicting exercise that we do not expect to otherwise affect attack, so we include it in our model for regular exercise.

. eprobit attac > entreat(exerc	cise = bmi i.			i.chec	ckup)	
(iteration log om Extended probit					f of obs = Selected = Nonselected =	625 458 167
Log pseudolike	lihood = -711	1.90507		Wald o Prob >	chi2(6) = chi2 =	111.78 0.0000
	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
attack						
exercise#						
c.age	.2156634	.0550909	3.91	0.000	.1076872	.3236397
no yes	.2150054	.0423742	5.23	0.000	.1385891	.3046928
yes	.221041	.0120112	0.20	0.000	.1000001	.0040020
exercise# c.bmi						
no	.1925833	.04278	4.50	0.000	.108736	.2764306
yes	.2134441	.038381	5.56	0.000	.1382186	.2886696
exercise						
no	-16.07086	3.282712	-4.90	0.000	-22.50486	-9.636863
yes	-17.84655	2.61864	-6.82	0.000	-22.97899	-12.71411
full						
age	1650386	.0321825	-5.13	0.000	228115	1019621
bmi	1143184	.0206726	-5.53	0.000	154836	0738008
checkup						
yes	2.315167	.1639928	14.12	0.000	1.993747	2.636587
_cons	11.92957	1.898426	6.28	0.000	8.208727	15.65042
exercise						
bmi	1815549	.0211349	-8.59	0.000	2229786	1401313
gym						
yes	1.517225	.1248316	12.15	0.000	1.27256	1.761891
_cons	3.941703	.5728064	6.88	0.000	2.819023	5.064383
<pre>corr(e.full,</pre>	5000450	4504045	0.07	o oo <i>:</i>	7707000	4500400
e.attack)	5338178	.1584217	-3.37	0.001	7737932	1598432
corr(e.exe~e, e.attack)	435728	.1467897	-2.97	0.003	676196	1113554
corr(e.exe~e,						

The correlation between the errors that affect having a subsequent heart attack and the errors that affect staying in the study is estimated to be -0.53 and is significant. So we do have endogenous selection and conclude that unobservable factors that increase the chance of staying in the study also tend to decrease the chance of having a subsequent heart attack.

Increases in age and BMI increase the chance of having another heart attack. This is true both for those who exercise, coefficients marked yes, and for those who do not, coefficients marked no.

We use estat teffects to estimate the ATET of regular exercise on having a subsequent heart attack. We specified vce(robust) when we fit the model so that estat teffects will report unconditional standard errors for the population ATET rather than the sample ATET.

. estat teffe	cts, atet					
Predictive man	rgins			Number	of obs	= 625
				Subpop. no. obs =		
	Nargin	Jnconditional Std. Err.	z	P> z	[95% Con	f. Interval]
ATET exercise (yes vs no)	2993399	.0840334	-3.56	0.000	4640424	1346374

The estimated ATET is -0.30. Thus, for those who exercise regularly, the average probability of having a subsequent heart attack is 0.30 lower than it would be if they did not exercise regularly.

Also see

[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 4 — Endogenous sample-selection features

[ERM] intro 5 — Treatment assignment features

[ERM] intro 8 — Conceptual introduction via worked example

Title

example 5 — Probit regression with endogenous ordinal treatment

Description Remarks and examples Also see

Description

We model a binary outcome that depends on an endogenous ordinal treatment by using eprobit with the entreat() option.

Remarks and examples

We are interested in estimating the average treatment effects (ATEs) of different levels of exercise intensity on the chance of having a subsequent heart attack. In our fictional study, we collected data on 625 men who had a heart attack when they were between the ages of 50 and 55. The outcome of interest is whether the man had another heart attack within five years of his first heart attack (attack). We believe that body mass index (BMI) and age are important covariates.

The exintensity variable records the intensity of exercise using the scale of 0 (no exercise), 1 (moderate), and 2 (heavy). We suspect that unobserved factors that influence the choice to exercise at a certain intensity level also affect the chance of having another heart attack, so we specify exintensity as an endogenous treatment. Whether an individual ever joined a gym is included as an instrumental covariate in the treatment model that we specify in entreat().

. use http://w (Heart attacks		ss.com/data/	r15/heart	tsm		
. eprobit atta	,	entreat(exin	tensitv =	= bmi i.e	vm) vce(robi	ıst)
(iteration log on	0				.j / /	,
e e	<i>,</i>			N		605
Extended probi	t regression			Number Wald ch		= 625 = 152.33
Log pseudolike	elihood = -72	28.6686		Prob >		= 0.0000
		Robust				
	Coef.	Std. Err.	Z	P> z	[95% Cont	f. Interval]
attack exintensity#						
c.age none	.2118759	.0514612	4.12	0.000	.1110138	.312738
moderate	.2338466	.0425341	4.12 5.50	0.000	.1504813	.3172119
	.2346887	.0425341	2.91	0.000	.0768818	.3924957
heavy	.2340007	.0005152	2.91	0.004	.0700010	.3924957
exintensity# c.bmi						
none	.1948171	.0386314	5.04	0.000	.119101	.2705332
moderate	.2062276	.0405785	5.08	0.000	.1266952	.2857599
heavy	.2155222	.0765592	2.82	0.005	.0654689	.3655755
exintensity						
none	-15.90911	3.043587	-5.23	0.000	-21.87444	-9.943793
moderate	-18.2922	2.499325	-7.32	0.000	-23.19079	-13.39362
heavy	-18.61821	5.395246	-3.45	0.001	-29.1927	-8.043721
exintensity						
bmi	1720462	.0204172	-8.43	0.000	2120632	1320292
gym						
yes	1.518834	.1192361	12.74	0.000	1.285136	1.752532
/exintensity						
cut1	-3.677846	.5537938			-4.763262	-2.59243
cut2	-2.386538	.5372719			-3.439572	-1.333505
corr(e.exi~y,						
e.attack)	4722803	.1091789	-4.33	0.000	6575129	2332112

The estimated correlation between the errors in the main outcome and auxiliary treatment equations is -0.47. This is significantly different from zero, so we confirm that the choice of exercise intensity level is endogenous. Because it is negative, we conclude that unobservable factors that increase the intensity of exercising tend to decrease the chance of having a subsequent heart attack. The cutpoints for the ordered probit model for the endogenous treatment are shown just beneath the treatment model.

The coefficients for exintensity in the main equation indicate that both moderate and heavy exercise have a negative effect because they are smaller, more negative, than the coefficient for no exercise. BMI has a positive effect on the chance of having another heart attack, regardless of exercise level. In fact, the values of the three coefficients for bmi are so close that we might not need separate parameters for the three levels of exercise. The same could be said of the three coefficients on age.

The coefficients for the intercepts of heavy and moderate exercise are close in magnitude. To test whether these two coefficients are equal, we can use test.

We cannot reject that the coefficients are equal.

We also have separate coefficients on age and bmi for heavy and moderate exercise. To jointly test the equality of each coefficient associated with heavy exercise with the corresponding coefficient associated with moderate exercise, we type

```
. test (1.exintensity == 2.exintensity)
> (1.exintensity#c.bmi == 2.exintensity#c.bmi)
> (1.exintensity#c.age == 2.exintensity#c.age)
(1) [attack]1.exintensity - [attack]2.exintensity = 0
(2) [attack]1.exintensity#c.bmi - [attack]2.exintensity#c.bmi = 0
(3) [attack]1.exintensity#c.age - [attack]2.exintensity#c.age = 0
chi2(3) = 0.04
Prob > chi2 = 0.9983
```

We do not have any evidence that heavy and moderate exercise have a different effect on the probability of a second heart attack.

That was some pretty tricky coefficient referencing in our test command. We suggest you type

. eprobit, coeflegend

.

to see how to reference coefficients in test, nlcom, and other postestimation commands.

What if every man in the population did not exercise? What if they all exercised moderately? What if they all exercised heavily? estat teffects can estimate the average probability of a second heart attack over the five years for each of those counterfactuals.

. estat teffe	cts, pomean					
Predictive man	rgins			Number (of obs	= 625
	Margin	Unconditiona Std. Err.	l z	P> z	[95% Cor	nf. Interval]
POmean exintensity none moderate	.7918941 .5419335	.0329342 .0326336	24.04 16.61	0.000	. 7273443 . 4779728	.6058942
heavy	.5336232	.0767752	6.95	0.000	.3831466	6 .6840998

When no one in the population exercises, we estimate that 79% will have subsequent heart attacks. We are pretty confident in that number: the 95% confidence interval begins at 73% and ends at 86%. It does not matter much whether every man exercises moderately or heavily. Either intensity drops the expected rate of subsequent heart attacks to about 54%. These are the average potential-outcome means (POMs) under the three exercise-intensity regimes.

The difference between these POMs gives us estimates of the average treatment effects (ATEs) in the population. estat teffects will estimate those too.

. estat teffe				Normhan	of the	= 625
Predictive man	rgins			Number	OI ODS	= 625
	۲ Margin	Jnconditional Std. Err.	z	P> z	[95% Con	f. Interval]
ATE exintensity (moderate vs none)	2499606	.0507776	-4.92	0.000	349483	1504383
(heavy vs none)	2582709	.0965797	-2.67	0.007	4475637	0689781

We estimate that the ATE for heavy intensity compared with no exercise is -0.26. So the average probability of a subsequent heart attack is 26 percentage points lower when all men in the population exercise with heavy intensity versus when none of them exercise at all. The estimated ATE for moderate intensity versus none is -0.25. We again see no substantive difference between moderate and heavy exercise.

We used vce(robust) at estimation so that estat teffects would report standard errors that account for sampling variability in our covariates and are therefore valid for inference about the POMs, ATEs, and ATETs in the population from which our sample was drawn.

We have established that men who choose to exercise have unobserved attributes that tend to decrease their chance of another heart attack beyond the direct effect of exercising and beyond the effect of the other covariates. We can include the effect of these attributes for men who exercise by estimating the average treatment effect on the treated (ATET).

. estat teffe (subpopulation	,	n-control tre	eatment]	level ass	umed)	
Predictive margins				Number Subpop.	of obs = no. obs =	625 201
	(Margin	Jnconditional Std. Err.	-	P> z	[95% Conf.	Interval]
ATET exintensity (moderate vs none) (heavy vs	2992132	.0592607	-5.05	0.000	4153619	1830644
none)	309572	.1077129	-2.87	0.004	5206854	0984586

The ATETs are both about 0.30, making them about 5 percentage points higher than the ATES. We cannot, however, directly attribute that difference to the unobserved attributes. The ATETs are also averaged over subsamples and are therefore affected by any differences in the distribution of age or bmi in treated subsamples. The effect of those distributions could be either positive or negative.

With some care, we can extract just the effect of the unobserved attributes. It is a little tricky, both conceptually and syntactically. So continue reading only if you are truly interested.

Let's consider only the moderate exercisers. When we type

. margins r(0 1).exintensity, subpop(if exintensity == 1)

margins will produce the average difference for exintensity levels 0 and 1 (none and moderate). subpop(if exintensity == 1) restricts the average to men who exercised moderately. If we were to add

```
. margins r(0 1).exintensity, subpop(if exintensity == 1) ///
predict(base(exintensity=1))
```

margins would use the unobserved attributes associated with moderate exercise for both of the counterfactuals it requires to compute the contrast. Which is to say, it would use the true value of exercise intensity in the subpopulation we are averaging over. If you were to guess that this difference will be the ATET, you would be correct. For each man who chose moderate exercise, the ATET computation compares the man's expected probability of another attack using all the information on the man with that same man's expected probability if he instead did not choose to exercise. When we say "same man", we mean that he retains his original unobserved attributes when evaluating the counterfactual that he does not exercise. The ATET is then the average of that comparison over all those who exercise moderately.

If we pretend that same man did not exercise, then we could obtain the unobserved attributes for someone just like him who does not exercise. We tell margins to do that for each man by adding

```
. margins r(0 1).exintensity, subpop(if exintensity == 1) ///
predict(base(exintensity=1)) predict(base(exintensity=0))
```

That last predict() says to base both counterfactuals on each man's observed covariates but assume their decision had been not to exercise. Thus, each man obtains the unobserved attributes of a man with his characteristics who chose not to exercise. When we take the contrast of those two counterfactuals, we have the effect on the probability of an attack for someone who chose not to exercise. We can average those effects too. Adding the obligatory vce() option to get population standard errors, we have

```
. margins r(0 1).exintensity, subpop(if exintensity == 1)
> predict(base(exintensity=1)) predict(base(exintensity=0))
> contrast(effects nowald) vce(unconditional)
Contrasts of predictive margins
```

```
1._predict : Pr(attack==yes), predict(base(exintensity=1))
2._predict : Pr(attack==yes), predict(base(exintensity=0))
```

	Contrast	Unconditional Std. Err.	z	P> z	[95% Conf.	Interval]
exintensity@ _predict (moderate vs none)						
1 (moderate vs none)	2992132	.0592607	-5.05	0.000	4153619	1830644
2	2352377	.0477143	-4.93	0.000	3287561	1417193

As we surmised, the first line is the ATET for moderate exercise and exactly matches the line from estat teffects. The second line is the average effect of treatment if the men who exercise moderately are instead given the unobserved attributes of men with exactly their observed characteristics

but who choose not to exercise. The difference in the effects is about 0.06. That makes the average effects of the unobserved attributes on those who exercise moderately about 25% greater than the effect would be for the same men had they had the attributes of nonexercisers: 0.06/0.24 = 0.25.

We can use margins to test whether the ATE for heavy exercise and the ATE for moderate exercise are equal. We specify two predict() options. On the first, we request treatment effects (te) for heavy exercisers (tlevel(heavy)). On the second, we request the treatment effects for moderate exercisers (tlevel(moderate)). We add contrast(predict(r)) to request the difference between the predictions (their contrast). Finally, we use vce(unconditional) to request standard errors that account for sampling variability in the covariates and thus allow us to make inferences about the population.

```
. margins, predict(te tlevel(heavy)) predict(te tlevel(moderate))
> contrast(predict(r)) vce(unconditional)
Contrasts of predictive margins
             : treatment effect Pr(attack==yes), exintensity: heavy vs. none,
1._predict
               predict(te tlevel(heavy))
2._predict
             : treatment effect Pr(attack==yes), exintensity: moderate vs.
               none, predict(te tlevel(moderate))
                       df
                                  chi2
                                           P>chi2
    _predict
                         1
                                  0.01
                                           0.9085
                           Unconditional
                             Std. Err.
                                            [95% Conf. Interval]
                 Contrast
    _predict
   (2 vs 1)
                  .0083103
                             .0722814
                                          -.1333587
                                                        .1499793
```

We cannot reject that the ATE for heavy exercise is equal to the ATE for moderate exercise. This result agrees with what we saw when we tested the coefficients for heavy and moderate exercise.

As we have seen repeatedly in the examples in the manual, most of the interesting questions are answered by estat teffects and margins and not by the parameter estimates themselves. This is particularly true of models estimated using eprobit and eoprobit.

Also see

[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 5 — Treatment assignment features

[ERM] intro 8 — Conceptual introduction via worked example

Title

example 6a — Ordered probit regression with endogenous treatment

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model with an ordinal outcome and endogenous treatment.

Remarks and examples

We are studying the effect of having health insurance on women's health status, which we measure with a health score from 1 (poor) to 5 (excellent). We want to estimate the average treatment effect (ATE) of insurance on the probability of having each of the five statuses. We suspect that our model needs to account for the health insurance being an endogenous treatment.

In our fictional study, we collect data on a sample of 6,000 women between the ages of 25 and 30. In addition to the insurance indicator, we include an indicator for whether the woman exercises regularly and the number of years of schooling she completed (grade) as exogenous covariates. For our treatment model, we use grade and an indicator for whether the woman is currently working or attending school (workschool), which is excluded from the outcome model.

<pre>. eoprobit heal > vce(robust)</pre>	lth i.exercis	se grade, en	treat(in	sured = gi	rade i.works	school)
(iteration log om	itted)					
Extended order	<i>.</i>	gression		Number o		-,
Log pseudolike	lihood = -910	05.4376		Wald ch: Prob > d	= 516.93 = 0.0000	
	Coef.	Robust Std. Err.	Z	P> z	[95% Cont	. Interval]
health exercise# insured						
yes#no yes#yes	.5296149 .5190249	.0619049 .033872	8.56 15.32	0.000 0.000	.4082835 .4526371	.6509463 .5854127
insured# c.grade						
no yes	.1079014 .1296456	.0250326 .0107428	4.31 12.07	0.000 0.000	.0588383 .10859	.1569645 .1507012
insured	.3060024	.0100506	30.45	0.000	.2863036	.3257012
grade workschool	.3000024	.0100300	30.45	0.000	.2003030	.3237012
yes _cons	.5387767 -3.592452	.0446794 .1348431	12.06 -26.64	0.000	.4512067 -3.85674	.6263466 -3.328165
/health insured# c.cut1						
no yes insured# c.cut2	.6282326 7255086	.2393499 .2470598			.1591154 -1.209737	1.09735 2412803
no yes insured# c.cut3	1.594089 .4404531	.2300159 .1986825			1.143266 .0510426	2.044912 .8298636
no yes insured#	2.526424 1.332514	.2241048 .1845713			2.087186 .9707608	2.965661 1.694267
c.cut4 no yes	3.41748 2.292828	.2356708 .1760594			2.955574 1.947758	3.879386 2.637899
corr(e.ins~d, e.health)	.3414241	.0940374	3.63	0.000	. 1460223	.5111858

The estimated correlation between the errors from the health status equation and the errors from the health insurance equation is 0.34. This is significantly different from zero, so the treatment choice of being insured is endogenous. Because it is positive, we conclude that unobserved factors that increase the chance of having health insurance tend to also increase the chance of being in a high health status. We see estimates of both the coefficients and the cutpoints for two equations, one for insured women (yes) and one for uninsured (no). For both insured and uninsured, exercise and education have positive effects on health status.

We could use estat teffects to estimate the ATE of insurance on the probabilities of each health category.

. estat teffects

Feel free to run that command and see the results. We estimate and interpret other estimates of these ATEs in [ERM] example 6b after adjusting for endogenous sample selection that is introduced in that example. The ATE estimates there are slightly different, but they estimate the same thing. Given a sufficiently large sample, the two sets of estimates would converge to the same values.

Also see

[ERM] eoprobit — Extended ordered probit regression

[ERM] eoprobit postestimation — Postestimation tools for eoprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 5 — Treatment assignment features

[ERM] intro 8 — Conceptual introduction via worked example

example 6b — Ordered probit regression with endogenous treatment and sample selection

Description Remarks and examples Also see

Description

Continuing from [ERM] **example 6a**, we show you how to estimate and interpret the results of a model for an ordinal outcome when the model includes an endogenous treatment and the data are subject to endogenous sample selection.

Remarks and examples

Suppose that we collected our data at doctors' offices and thus observe health score information only from women who visited their doctor in the study time frame (drvisit = 1). We suspect that unobserved factors that affect whether a woman visited the doctor are related to those that affect whether she has insurance and to those that affect her health status. Thus, we have an endogenously selected sample and an endogenously chosen treatment.

For our selection model, we use the endogenous treatment indicator for insurance status and regular checkups before the study (regcheck), which is excluded from the outcome model. Our command is otherwise exactly the same as specified in [ERM] example 6a.

<pre>. eoprobit hea > select(seled</pre>		0 1			grade i.wor	kschool)
(iteration log or	nitted)					
Extended order		of obs = elected = onselected =	4,693			
Log pseudolike	elihood = -980		Wald chi Prob > c		001100	
	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
health exercise# insured yes#no yes#yes	.4169984 .5399986	.0851131 .037546	4.90 14.38	0.000	.2501798 .4664098	.583817 .6135874
insured# c.grade no yes	.1317866 .1343324	.0342405 .0129342	3.85 10.39	0.000	.0646765 .1089818	.1988967 .159683

select						
insured						
yes	1.01669	.092325	11.01	0.000	.8357364	1.197644
·						
regcheck						
yes	.5374105	.0397297	13.53	0.000	.4595417	.6152793
_cons	1690644	.0743716	-2.27	0.023	3148301	0232987
insured						
grade	.3057852	.0100116	30.54	0.000	.2861628	.3254076
Ũ						
workschool						
yes	.5314797	.0452607	11.74	0.000	.4427703	.6201891
_cons	-3.584315	.1348183	-26.59	0.000	-3.848554	-3.320077
/health						
insured#						
c.cut1						
no	.7262958	.3313472			.0768673	1.375724
yes	5450451	.3181876			-1.168681	.0785912
insured#						
c.cut2						
no	1.719809	.3129056			1.106526	2.333093
yes	.5683456	.2464686			.085276	1.051415
insured#						
c.cut3						
no	2.620793	.3056038			2.021821	3.219766
yes	1.442022	.2227768			1.005387	1.878656
insured#		12221100			1.000000	11010000
c.cut4						
no	3.48945	.3158536			2.870389	4.108512
yes	2.391497	.2090187			1.981828	2.801166
yes	2.031437	.2030107			1.301020	2.001100
corr(e.sel~t,						
e.health)	. 496699	.0990366	5.02	0.000	.2795869	.665485
corr(e.ins~d,	. 100000	.0000000	0.02	5.000	.2100000	.000400
e.health)	.4032487	.121518	3.32	0.001	.1421331	.6118937
corr(e.ins~d,	.1052107	.121010	0.02	0.001	.1721001	.0110337
e.select)	.2661948	.0555596	4.79	0.000	.1543216	.3713287
e.serect)	.2001948	.0555596	4.19	0.000	.1040210	.3/1328/

At both levels of the treatment, exercise and education still have positive effects on health status.

The correlation between the errors from the selection equation and the errors from the main equation is 0.497. This is significantly different from zero, so we confirm our suspicion of endogeneity. Because it is positive, we conclude that unobservable factors that increase the chance of being in the study also tend to increase the chance of being in a higher health status category.

What are the expected average probabilities of being in each health status if every woman had insurance? If every woman did not have insurance? We can answer those questions using estat teffects.

. estat teff	ects, pomean			
Predictive m	argins	Number of obs	=	6,000
POmean_Pr1 POmean_Pr2 POmean_Pr3 POmean_Pr4 POmean_Pr5	<pre>: Pr(health=1=poor) : Pr(health=2=not good) : Pr(health=3=fair) : Pr(health=4=good) : Pr(health=5=excellent)</pre>			

	Margin	Unconditional Std. Err.	z	P> z	[95% Conf.	Interval]
POmean_Pr1 insured						
no	.1028382	.0327177	3.14	0.002	.0387126	.1669637
yes	.0058955	.0033611	1.75	0.079	0006921	.0124831
POmean_Pr2 insured						
no	.2621517	.0479497	5.47	0.000	.1681719	.3561314
yes	.0618234	.0116191	5.32	0.000	.0390504	.0845965
POmean_Pr3 insured						
no	.3216819	.0259933	12.38	0.000	.270736	.3726278
yes	.1759926	.0100741	17.47	0.000	.1562478	.1957374
POmean_Pr4 insured						
no	.2144017	.0402798	5.32	0.000	.1354547	.2933488
yes	.3237595	.009282	34.88	0.000	.3055672	.3419519
POmean_Pr5 insured						
no	.0989265	.0521147	1.90	0.058	0032163	.2010694
yes	.4325289	.0165829	26.08	0.000	.400027	.4650309

These are the estimates of the average potential-outcome means for the population. We can consider the values in this table to be either the average proportion of women in the status category (what is reported) or the average probabilities for all women being in a status category (if we multiply by 100). The first pair of rows shows the probabilities of being in the first health status, poor. If all women are uninsured, the probability of having a poor health status is 0.10. If all women are insured, that probability falls to 0.01. At the other end of the spectrum, only 9.9% of women are expected to have excellent health if no women are insured. That number rises to 43.3% if all women are insured.

If we sum all the proportions labeled no, that sum is 1.0. The same is true of the yeses. The sum of the proportions must be 1.0 because each woman can be in only one health status.

In any health status, if we subtract the potential-outcome mean when assuming all women are uninsured from the mean when assuming all women to be insured, we estimate the average treatment effect (ATE). This is the ATE that being insured has on the probability of being in the health status category. Let's do that.

. estat teffe	cts					
Predictive man	rgins			Number	of obs	= 6,000
ATE_Pr1: Pr(health=1=poor)ATE_Pr2: Pr(health=2=not good)ATE_Pr3: Pr(health=3=fair)ATE_Pr4: Pr(health=4=good)ATE_Pr5: Pr(health=5=excellent)						
	Margin	Unconditiona Std. Err.	l z	P> z	[95% Con	f. Interval]
ATE_Pr1 insured (yes vs no)	0969427	.0333853	-2.90	0.004	1623767	0315086
ATE_Pr2 insured (yes vs no)	2003283	.0552089	-3.63	0.000	3085358	0921207
ATE_Pr3 insured (yes vs no)	1456893	.0322109	-4.52	0.000	2088216	082557
ATE_Pr4 insured (yes vs no)	.1093578	.0437353	2.50	0.012	.0236382	.1950774
ATE_Pr5 insured (yes vs no)	. 3336024	.0637745	5.23	0.000	.2086066	.4585982

Looking at the last line, we see that the average proportion of being in excellent health in the population of women aged 25 to 30 is 0.33 greater when all women have health insurance versus when no women have health insurance.

Because we specified vce(robust) at estimation, all of our estimates from estat teffects reported standard errors for the population ATE rather than standard errors that are conditional on the sample ATE.

Also see

[ERM] eoprobit — Extended ordered probit regression

[ERM] eoprobit postestimation — Postestimation tools for eoprobit

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 4 — Endogenous sample-selection features

[ERM] intro 5 — Treatment assignment features

[ERM] intro 8 — Conceptual introduction via worked example

Title

```
predict advanced — predict's advanced features
```

Description Syntax Remarks and examples Methods and formulas Also see

Description

predict's features are documented in

[ERM] eregress predict

[ERM] eintreg predict

[ERM] eprobit predict

[ERM] eoprobit predict

[ERM] predict treatment

Here, we document predict's advanced features.

Syntax

predict [type] newvar [if] [in] [, treatstatistic howcalculated treatmodifier
oprobitmodifier advanced]

In some cases, more than one new variable needs to be specified:

```
predict [type] { stub* | newvarlist } [if] [in] [, treatstatistic howcalculated
treatmodifier oprobitmodifier advanced ]
```

With the exception of *advanced*, you have seen this syntax in the other predict manual entries. We will not cover old ground.

advanced	Description
equation(<i>depvar</i>)	calculate results for specified dependent variable
nooffset	ignore option offset() specified when model was fit in making calculation
pr(a, b)	calculate $Pr(a < \mathbf{x}_i \boldsymbol{\beta} + e_i.depvar < b)$; <i>a</i> and <i>b</i> are numbers or variable names
e(a, b)	calculate $E(y_i a < y_i < b)$, where $y_i = \mathbf{x}_i \boldsymbol{\beta} + e_i.depvar$; a and b are numbers or variable names
scores	calculate equation-level score variables

Also note that even though option mean was not included in *treatstatistic* for eprobit and eoprobit, it is allowed with them. mean returns the probability of a positive outcome after eprobit and returns the expected value of the outcome after eoprobit.

Remarks and examples

The most important of the advanced features is the equation() option. Previously, we documented that predict calculates results for the main equation only. That was not true. The equation() option can be used to target the other equations. The equation() option is important because it can apply so many of predict's features to them.

ERMs provide three types of equations. The endogenous() option names two of them and leaves the other unnamed:

endogenous(..., none specified ...)
endogenous(..., probit ...)
endogenous(..., oprobit ...)

none specified should have been called linear. Meanwhile, entreat() adds probit or oprobit equations, select() adds probit equations, and tobitselect() adds linear equations. Thus, there are three types of equations in total: linear, probit, and oprobit.

equation() can be used to provide the following predict features with the other equations in the model:

Option	Description	
Linear equations		
mean	linear prediction	
xb	linear prediction excluding complications	
ystar()	censored prediction	
e()	constrained expected value	
pr()	probability in range	
Probit equations		
xb	linear prediction excluding complications	
pr	probability of positive outcome	
mean	synonym for pr	
Ordered probit equations		
xb	linear prediction excluding complications	
pr	probability of each outcome	
mean	expected value of outcome	

Note 1: Option outlevel(#) is used with pr in oprobit equations to restrict the calculation to the specified outcome.

Note 2: When equation(*depvar*) is the main equation, you can use any of predict's options.

Note 3: For the main equation, options e() and pr() can be used with *howcalculated* options fix(), base(), and target().

Options not allowed with equation() are disallowed. The disallowed options include predict's treatment options as well as fix(), base(), and target().

Methods and formulas

See Methods and formulas of [ERM] eprobit postestimation.

Also see

- [ERM] eintreg postestimation Postestimation tools for eintreg
- [ERM] eintreg predict predict after eintreg
- [ERM] eoprobit postestimation Postestimation tools for eoprobit
- [ERM] eoprobit predict predict after eoprobit
- [ERM] eprobit postestimation Postestimation tools for eprobit
- [ERM] eprobit predict predict after eprobit
- [ERM] eregress postestimation Postestimation tools for eregress
- [ERM] eregress predict predict after eregress

Title

predict treatment — predict for treatment statistics

DescriptionSyntaxOptionsRemarks and examplesMethods and formulasAlso see

Description

predict has options to predict potential-outcome means, treatment effects, and treatment effects on the treated after models fit using the entreat() or extreat() option. The predict options are described below.

For standard use of predict, see

[ERM] eregress predict[ERM] eintreg predict[ERM] eprobit predict[ERM] eoprobit predict

For advanced use of predict, see

[ERM] predict advanced

Also see [ERM] estat teffects for reports of average treatment statistics.

Syntax

You previously fit a model by using the entreat() or extreat() option,

eregress	У	x1,	<pre>entreat(treated =)</pre>
eintreg	yl yu	x1,	<pre>entreat(treated =)</pre>
eprobit	У	x1,	<pre>entreat(treated =)</pre>
eoprobit	У	x1,	<pre>entreat(treated =)</pre>
eregress	У	x1,	<pre>extreat(treated)</pre>
eintreg	yl yu	x1,	<pre>extreat(treated)</pre>
eprobit	У	x1,	<pre>extreat(treated)</pre>
eoprobit	У	x1,	<pre>extreat(treated)</pre>

In these cases, predict has extra features. predict's extra syntax for these features is

predict [type] newvar [if] [in], treatstatistic [treatmodifier oprobitmodifier]

In some cases, more than one new variable needs to be specified:

treatstatistic	Description	
pomean	potential-outcome mean (POM)	
te	treatment effect (TE)	
tet	treatment effect on the treated (TET)	
treatmodifier	Description	
<u>tl</u> evel(#)	treatment level for which <i>treatstatistic</i> is calculated	
# may be specified as a valu the values recorded.	ue recorded in variable treated, such as 1, 2, or such as 1, 5,, depending on	
# may also be specified as #	<pre>#1, #2,, meaning the first, second, values recorded in treated.</pre>	
oprobitmodifier	Description	
<u>outl</u> evel(#)	ordered outcome for which treatstatistic is calculated	

When used after models fit with eoprobit, *treatstatistic* is calculated for the specified outcome, or for the first outcome if you do not specify otherwise.

outlevel(#) specifies the outcome for which statistics are to be calculated. # is specified in the same way as with tlevel(), but the meaning is different. In the case of outlevel(), you are specifying the outcome, not the treatment level.

Options

The options for the statistic to be calculated—pomean, te, and tet—are mutually exclusive. You calculate one treatment statistic per predict command.

pomean calculates the POMs for each treatment level. The POMs are the expected value of y that would have been observed if everyone was assigned to each of the treatment levels.

If there were two treatment levels (a control and a treatment), you would type

. predict pom1 pom2, pomean

If there were three levels, you would type

. predict pom1 pom2 pom3, pomean

pomean can alternatively be used with tlevel() to produce individual POMs:

. predict pom1, pomean tlevel(#1)

. predict pom2, pomean tlevel(#2)

If you have fit the model using eoprobit, the POMs calculated for the examples above would be for y's first outcome. You can change that. See *Predicting treatment effects after eoprobit* in *Remarks and examples* below.

te calculates the TEs for each treatment level. The TEs are the differences in the POMs. For instance, if there were two treatment levels—a control and a treatment—there would be one treatment effect and it would be pom2-pom1. If there were three levels, there would be two treatment effects, pom2-pom1 and pom3-pom1.

If there were two treatment levels-a control and a treatment-you would type

. predict te2, te

If there were three levels, you would type

. predict te2 te3, te

te can alternatively be used with tlevel() to produce individual TEs:

```
. predict te2, te tlevel(#2)
. predict te3, te tlevel(#3)
```

If you have fit the model using eoprobit, the TEs calculated for the examples above would be for y's first outcome. You can change that. See *Predicting treatment effects after eoprobit* in *Remarks and examples* below.

tet calculates the TETs. The TETs are the differences in the POMs conditioned on treatment level.

If there were two treatment levels—a control and a treatment—you would type

```
. predict tet2, tet
```

If there were three levels, you would type

. predict tet2 tet3, tet

tet can alternatively be used with tlevel() to produce individual TETs:

. predict tet2, tet tlevel(#2)
. predict tet3, tet tlevel(#3)

If you have fit the model using eoprobit, the TETs calculated for the examples above would be for y's first outcome. You can change that. See *Predicting treatment effects after eoprobit* in *Remarks and examples* below.

tlevel(#) is optionally used with pomean, te, or tet. Its use is illustrated above.

outlevel(#) is optionally used with pomean, te, or tet with models fit by eoprobit. See Predicting treatment effects after eoprobit in Remarks and examples below.

Remarks and examples

Remarks are presented under the following headings:

Predicting treatment effects after eregress and eintreg Predicting treatment effects after eprobit Predicting treatment effects after eoprobit

Predicting treatment effects after eregress and eintreg

eregress and eintreg concern models with a continuous outcome variable. In eregress models, y_i is observed. In eintreg models, y_i is not observed directly, but it is known that $yl_i \leq y_i \leq yu_i$.

Thus, the treatment statistics are expressed in the units of y. If y is blood pressure, the units are presumably mmHG. POMs are in mmHG. TES and TETs are differences in blood pressure expressed in mmHG.

Predicting treatment effects after eprobit

eprobit concerns models with binary outcomes, and predictions are in terms of the probability of a positive outcome. Thus, POMs are probabilities. TEs and TETs are differences in probabilities.

Predicting treatment effects after eoprobit

eprobit concerns models with ordinal outcome variables, and predictions are in terms of the probabilities—the probability of each outcome.

Treatment statistics are calculated on the basis of probabilities of outcomes. Thus, POMs are probabilities. TEs and TETs are differences in probabilities.

We want probabilities and differences in probabilities, but you need to specify which probability. The probability for the first outcome? The second?

If you do not specify which and simply type

. predict pom1 pom2 pom3, pomean

then the POMs are calculated for the first outcome, what eoprobit calls outlevel(#1). If you wanted to obtain the POMs for outlevel(#2), you would type

. predict pom1 pom2 pom3, pomean outlevel(#2)

If you wanted them for outlevel(#3), you would type

. predict pom1 pom2 pom3, pomean outlevel(#3)

The same logic applies to calculating TE and TET with the te and tet options. outlevel(#1) is used unless you specify otherwise.

Methods and formulas

See Methods and formulas in [ERM] eintreg, [ERM] eoprobit, [ERM] eprobit, and [ERM] eregress.

Also see

[ERM] eintreg postestimation — Postestimation tools for eintreg

[ERM] eintreg predict — predict after eintreg

[ERM] eoprobit postestimation — Postestimation tools for eoprobit

[ERM] eoprobit predict — predict after eoprobit

[ERM] eprobit postestimation — Postestimation tools for eprobit

[ERM] eprobit predict — predict after eprobit

[ERM] eregress postestimation — Postestimation tools for eregress

[ERM] eregress predict — predict after eregress

Title

triangularize — How to triangularize a system of equations

Description Remarks and examples Also see

Description

ERMs allow endogenous covariates, but they must form a triangular system, also known as a recursive system. Said differently, ERMs do not allow simultaneous causation. This was explained for simple cases in [ERM] **intro 3**. How to triangularize complicated systems is described below.

Remarks and examples

The day will come when you try to fit a model and the ERM command responds with the following error:

```
. eregress y w1 w2 w3 x1 x2,
> endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
> endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain)
> endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain)
> endogenous(z1 = z5 x1 x2 x4, nomain)
endogenous variables do not form a triangular system
The problem may be fixable. See triangularizing the system.
r(459);
```

The error can even occur in simple models:

```
. eregress y w1 x2 x3, endogenous(w1 = y z1 x2, nomain)
endogenous variables do not form a triangular system
The problem may be fixable. See triangularizing the system.
r(459);
```

The error message says the problem may be fixable. We explain below how to find the problem, how to determine whether it is fixable, and how to fix it when it is.

Remarks are presented under the following headings:

What is a triangular system? Triangularizing nontriangular systems You can only triangularize linear equations Options entreat(), select(), and tobitselect() also add endogenous variables Workarounds involving the main equation Why the above is a workaround and not a fix

What is a triangular system?

ERMs require that the endogenous covariates in the model being fit form a triangular system. The endogenous covariates are the dependent variable in the main equation plus the dependent variables in the endogenous() options, and in the entreat(), select(), and tobitselect() options, but we will cover those options later.

The endogenous variables are y, w1, w2, w3, and z1 in the model

```
. eregress y w1 w2 w3 x1 x2 x5, ///
endogenous(w1 = z1 z2 x1 x2 x5, nomain) ///
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) ///
endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain) ///
endogenous(z1 = z5 x1 x2 x4, nomain)
```

The system that needs to be triangular is y, w1, w2, w3, and z1. That system is

Endogenous variable	which depends on the endogenous variable(s)
У	w1 w2 w3
w1	z1
w2	w1 z1
wЗ	w1
z1	(none)

A system is triangular when the dependencies can be ordered such that each endogenous variable is already defined before it is used as an explanatory variable. The system, in order, is

Endogenous variable	which depends on the endogenous variable(s)
z1	(none)
w1	z1
wЗ	w1
w2	w1 z1
У	w1 w2 w3

The system is in order and triangular because

- 1. Endogenous variable z1 depends on no other endogenous variables.
- 2. Endogenous variable w1 depends on z1, and z1's definition has already been listed.
- 3. Endogenous variable w3 depends on w1, and w1's definition has already been listed.
- 4. Endogenous variable w2 depends on w1 and z1, and their definitions have already been listed.
- 5. Endogenous variable y depends on w1, w2, and w3, and their definitions have already been listed.

When the system is triangular, ERMs can fit the model.

Triangularizing nontriangular systems

Consider the model

```
. eregress y w1 w2 w3 x1 x2 x5,
> endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)
> endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain)
> endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain)
> endogenous(z1 = z5 x1 x2 x4, nomain)
endogenous variables do not form a triangular system
The problem may be fixable. See triangularizing the system.
r(459);
```

The ERM command has already told us that the system defined by this model is not triangular. Thus, if we try to order the definitions as we did above, we will not be successful. Where we run into difficulties, however, will tell us where the problem is.

The endogenous variables in this model are y, w1, w2, w3, and z1. Their definitions in the order in which they appear in the command are

Endogenous variable	which depends on the endogenous variable(s)
У	w1 w2 w3
w1	w2 z1
w2	w1 z1
wЗ	w1
z1	(none)

The definitions in as near to the correct order as we can get them are

Endogenous variable	which depends on the endogenous variable(s)
z1	(none)
w1	$z1 w2 \leftarrow problem here$
w2	w1 z1
w3	w1
У	w1 w2 w3

The problem appears in the second line where w1 is defined in terms of z1 and w2: w2 has not yet been defined. Obviously, we need to put its definition above that for w1. However, if we move the definition of w2 above that of w1, we still have a problem: w2 depends on z1 and w1, and now w1 has not yet been defined!

You might notice that there are three endogenous variables involved in the problem—w1, w2, and w3—but just focus on the first pair of definitions that cause the problem. It does not matter which two of the three they are. In our case, they are

endogenous(**W1** = W2 z1 z2 x1 x2 x5, nomain) endogenous(**W2** = W1 z1 z3 x1 x2 x5, nomain)

As we said in [ERM] **intro 3**, there is a workaround for the problem when both equations are linear, as they are in this case. The workaround is

When the simultaneous-causation problem occurs in linear equations defined by endogenous() options, remove the endogenous variable from one equation and substitute for it all the variables from the removed variable's equation except, of course, the variable you just removed.

The workaround in this case either

- 1. Removes w2 from the first equation and substitutes "z1 z3 x1 x2 x5" for it.
- 2. Removes w1 from the second equation and substitutes "z1 z2 x1 x2 x5" for it.

It does not matter which we do.

To remind you, we are fixing the first equation:

endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)

When we remove w2 and substitute "z1 z3 x1 x2 x5", we obtain

z1 z3 x1 x2 x5 z1 z2 x1 x2 x5

Now, we need to remove the duplicates. Removing them, we have

z1 z2 x1 x2 x5

Thus, the first equation becomes

endogenous(w1 = z3 z1 z2 x1 x2 x5, nomain)

z3

We can now try fitting the model again:

```
. eregress y w1 w2 w3 x1 x2 x5, ///
endogenous(w1 = z3 z1 z2 x1 x2 x5, nomain) ///
endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) ///
endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain) ///
endogenous(z1 = z5 x1 x2 x4, nomain)
```

When we try to fit the model, it will be successful or it will repeat the same error we saw earlier:

```
endogenous variables do not form a triangular system
  The problem may be fixable. See triangularizing the system.
r(459);
```

In this case, the model will be successfully fit. If you do get the error, repeat the process. Remove the problems one at a time.

You can only triangularize linear equations

The rule is

When the simultaneous-causation problem occurs in *linear* equations defined by endogenous() options, remove the endogenous variable from one equation and substitute for it all the variables from the removed variable's equation except, of course, the variable you just removed.

Triangularization involves a pair of equations that must both be linear. In the example above, both were linear:

endogenous(**W1** = W2 z1 z2 x1 x2 x5, nomain) endogenous(**W2** = W1 z1 z3 x1 x2 x5, nomain)

They would not have both been linear if either had been fit by probit or oprobit. If one or both of the equations had been

endogenous(**w1** = w2 z1 z2 x1 x2 x5, nomain probit) endogenous(**w2** = w1 z1 z3 x1 x2 x5)

or

endogenous(**w1** = w2 z1 z2 x1 x2 x5, nomain) endogenous(**w2** = w1 z1 z3 x1 x2 x5, nomain oprobit)

there would have been no solving the simultaneous-causation problem.

This linearity requirement applies only to the two equations directly involved. Other equations can be nonlinear and there will be no issue. The workaround we outlined would have worked just as well had the model been

. eregress y w1 w2 w3 x1 x2 x5, 111 111 endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain)endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) 111 endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain probit) 111 endogenous(z1 = z5 x1 x2 x4, nomain probit) or even 111 . eprobit y w1 w2 w3 x1 x2 x5, endogenous(w1 = w2 z1 z2 x1 x2 x5, nomain) 111 111 endogenous(w2 = w1 z1 z3 x1 x2 x5, nomain) 111 endogenous(w3 = w1 z4 z5 x1 x2 x5, nomain probit) endogenous(z1 = z5 x1 x2 x4, nomain probit)

Options entreat(), select(), and tobitselect() also add endogenous variables

The example above contained repeated uses of the endogenous() option. When you make the list of endogenous variables, you must also include the dependent variables *treated* and *selected* from the options

```
entreat(treated= ...)
select(selected= ...)
tobitselect(selected= ...)
```

The above options make *treated* and *selected* endogenous. Unlike with the endogenous() option, however, the variables are not automatically added to the main equation even if you do not specify nomain.

These three options are nonlinear. If the simultaneous-causation problem involves equations created by these options, then there is no workaround for the simultaneous-causation problem.

Workarounds involving the main equation

The example of the simultaneous-causation problem involved two equations defined by endogenous() options. The problem could also occur when one of the equations is the main equation. In [ERM] intro 3, we discussed problems involving the main equation as if they were different from simultaneous causation, but they are not. It is the same problem that has the same workaround, but with an important difference.

In workarounds involving equations defined by endogenous() equations, the workaround may be applied to either equation.

In workarounds involving the main equation and an endogenous() equation, the workaround must be applied to the endogenous() equation.

When the simultaneous-causation problem involves the main equation fit by eregress and an endogenous() linear equation, remove the dependent variable from the endogenous() equation and substitute for it all the variables from the main equation except, of course, the variable you just removed.

Also notice that this rule applies only to main equations fit by eregress. What about eintreg, eprobit, and eoprobit?

The simultaneous-causation problem does not arise in models fit by eintreg. There is no way you could include eintreg's dependent variables as explanatory variables in another equation.

The simultaneous-causation problem can arise in models fit by eprobit and eoprobit, but those are nonlinear equations, and that means you cannot apply the workaround. The workaround requires that both equations be linear.

The main equation must be linear if it is one of the two equations involved in the simultaneouscausation problem. Otherwise, the main equation is not required to be linear.

Why the above is a workaround and not a fix

It is a detail, but you may have noticed that we provided a workaround and not a fix. The purpose of ERMs is to obtain valid estimates of the coefficients of the main equation—its structural parameters—in light of lots of complications. It so happens that ERMs produce estimates of structural parameters for all the other equations if the system is truly triangular. That is not important, but it is true.

When you triangularize a nontriangular system, ERMs no longer produce estimates of the structural parameters for the equations that you modify. They produce estimates of the reduced-form equation, and that is sufficient. Valid estimates of the reduced-form equation ensures that estimates of the coefficients in the main equation are estimates of its structural parameters.

Thus, what we provided is a workaround, not a fix. If you use the workaround, do not interpret any equations modified as estimates of their structural parameters.

Also see

[ERM] intro 3 — Endogenous covariates features

Glossary

average structural function. The average structural function (ASF) is used to calculate predicted values of ERMs.

The ASF averages out the heterogeneity caused by the endogeneity from a conditional mean or a conditional probability in a model with endogenous covariates. Applying the ASF to a conditional mean produces an average structural mean (ASM). Applying the ASF to a conditional probability produces an average structural probability (ASP). Contrasts of ASMs or ASPs produced by a covariate change define a causal structural effect. Blundell and Powell (2003, 2004) and Wooldridge (2005, 2014) are seminal papers that define and extend the ASF. See Wooldridge (2010, 22–24) for a textbook introduction.

- average structural mean. The average structural mean (ASM) is the result of applying the average structural function to a conditional mean.
- average structural probability. The average structural probability (ASP) is the result of applying the average structural function to a conditional probability.
- average treatment effect. See treatment effects.
- average treatment effect on the treated. See treatment effects.
- average treatment effect on the untreated. See treatment effects.
- **binary variable**. A binary variable is any variable that records two values, the two values representing false and true, such as whether a person is sick. We usually speak of the two values as being 0 and 1 with 1 meaning true, but Stata requires merely that 0 means false and nonzero and nonmissing mean true. Also see *continuous variable*, *categorical variable*, and *interval variable*.
- **categorical variable**. A categorical variable is a variable that records the category number for, say, lives in the United States, lives in Europe, and lives in Asia. Categorical variables play no special role in this manual, but ordered categorical variables do. The example given is unordered. The categories United States, Europe, and Asia have no natural ordering. We listed the United States first only because the author of this manual happens to live in the United States.

The way we use the term, categorical variables usually record two or more categories, and the term binary variable is used for categorical variables having two categories.

We usually speak of categorical variables as if they take on the values 1, 2, Stata does not require that. However, the values do need to be integers.

censoring, censored, left-censored, right-censored, interval-censored. Censoring involves not observing something but knowing when and where you do not observe it.

For instance, sometimes patients/subjects/units being studied—observations in your dataset—have values equal to missing. Such observations are said to be censored when there is a reason they are missing. A variable is missing because a potential worker chooses not to work, because a potential patient chooses not to be a patient, because a potential subject was not prescribed the treatment, etc. Such censored outcomes cause difficulty when there is an unobserved component to the reason they are censored that is correlated with the outcome being studied. ERM option select() addresses these issues.

Another type of censoring—interval-censoring—involves not observing a value precisely but knowing its range. You do not observe blood pressure, but you know it is in the range 120 to 140. Or you know it is less than 120 or greater than 160. ERM command eintreg fits models in which the dependent variable is interval-censored.

Left-censoring is open-ended interval-censoring in which measurements below a certain value are unobserved. Blood pressure is less than 120.

Right-censoring is open-ended interval-censoring in which measurements above a certain value are unobserved. Blood pressure is above 160.

- **conditional mean**. The conditional mean of a variable is the expected value based on a function of other variables. If y is a linear function of x_1 and $x_2 y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + noise$ —then the conditional mean of y for $x_1 = 2$ and $x_2 = 4$ is $\beta_0 + 2\beta_1 + 4\beta_2$.
- **confounding variable, confounder.** A confounding variable is an omitted explanatory variable in a model that is correlated with variables included in the model. The fitted coefficients on the observed variables will include the effect of the variables, as intended, plus the effect of being correlated with the omitted variable.

Confounders are often omitted from the model because they are unobserved. See [ERM] intro 3.

- **continuous variable**. A continuous variable is a variable taking on any value on the number line. In this manual, however, we use the term to mean the variable is not a binary variable, not a categorical variable, and not an interval variable.
- **counterfactual**. The result that would be expected from a thought experiment that assumes things counter to what are currently true. What would be the average income if everyone had one more year of schooling? What would be the effect of an experimental medical treatment if the treatment were made widely available? Stata's margins command produces statistical answers to these kinds of thought experiments and reports standard errors as well.
- **counterfactual predictions**. Counterfactual predictions are used when you have endogenous covariates in your main equation and you wish to estimate either counterfactuals or the effect on the outcome of changing the values of covariates. They are obtained using predict options base() and fix().
- **covariate**. A covariate is a variable appearing on the right-hand side (RHS) of a model. Covariates can be exogenous or endogenous, but when the term is used without qualification, it usually means exogenous covariate. Covariates are also known as explanatory variables. Also see *endogenous covariate* and *exogenous covariate*.
- **dependent variable**. A dependent variable is a variable appearing on the left-hand side of an equation in a model. It is the variable to be explained. Every equation of a model has a dependent variable. The term "the dependent variable" is often used in this manual to refer to the dependent variable of the main equation. Also see [ERM] **intro 3**.
- endogenous covariate. An endogenous covariate is a covariate appearing in a model 1) that is correlated with omitted variables that also affect the outcome; 2) that is measured with error; 3) that is affected by the dependent variable; or 4) that is correlated with the model's error. See [ERM] intro 3.
- endogenous sample selection. Endogenous sample selection refers to situations in which the subset of the data used to fit a model has been selected in a way correlated with the model's outcome.

Mechanically, the subset used is the subset containing nonmissing values of variables used by the model. A variable is unobserved—contains missing values—because a potential worker chooses not to work, because a potential patient chooses not to be a patient, because a potential subject was not prescribed the treatment, etc. Such censored outcomes cause difficulty when there is an unobserved component to the reason they are censored that is correlated with the outcome being studied.

ERM option select() can address these issues when the dataset contains observations for which the dependent variable was missing.

endogenous and exogenous treatment assignment. See treatment assignment.

- error. Error is the random component (residual) appearing at the end of the equations in a model. These errors account for the unobserved information explaining the outcome variable. Errors in this manual are written as *e.depvarname*, such as $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e.y$.
- exogenous covariate. An exogenous covariate is a covariate that is uncorrelated with the error term in the model. See [ERM] intro 3.
- explanatory variable. Explanatory variable is another word for covariate.
- **extended regression models**. Extended regression models (ERMs) are generalized structural equation models that allow identity and probit links and Gaussian, binomial, and ordinal families for the main outcome. They extend interval regression, ordered probit, probit, and linear regression models by accommodating endogenous covariates, nonrandom and endogenous treatment assignment, and endogenous sample selection.
- individual-level treatment effect. An individual-level treatment effect is the difference in the individuals outcome that would occur when given one treatment instead of another. It is the difference between two potential outcomes for the individual. The blood pressure after taking a pill minus the blood pressure were the pill not taken is the individual-level treatment effect of the pill on blood pressure.

informative missingness. See missingness.

instrument. Instrument is an informal word for instrumental variable.

- instrumental variable. An instrumental variable is a variable that affects an endogenous covariate but does not affect the dependent variable. See [ERM] intro 3.
- interval measurement. Interval measurement is a synonym for interval-censoring. See censoring.
- interval variable. An interval variable is actually a pair of variables that record the lower and upper bounds for a variable whose precise values are unobserved. ylb and yub might record such values for a variable y. Then it is known that, for each observation i, $ylb_i \leq y \leq yub_i$. ERM estimation command eintreg fits such models. Also see *censoring*.

interval-censoring. See censoring.

- left-hand-side (LHS) variable. A left-hand-side variable is another word for dependent variable.
- **lost due to follow up**. Lost due to follow up refers to patients who are actively participating in a clinical trial but have been lost later. The statistical fear is that they are lost for reasons correlated with how well the experimental treatment was working for them.
- **main equation**. The main equation in an ERM is the first equation specified, the equation appearing directly after the eregress, eintreg, eprobit, or eoprobit command. The purpose of ERMs is to produce valid estimates of the coefficients in the main equation, meaning the structural coefficients, in the presence of complications such as endogeneity, selection, or treatment assignment.
- measurement error, measured with error. A variable measured with error has recorded value equal to $x + \epsilon$, where x is the true value. The error is presumably uncorrelated with all other errors in the model. In that case, fitted coefficients will be biased toward zero. See [ERM] intro 3.
- missing at random (MAR). See missingness.
- missing completely at random (MCAR). See missingness.
- missing not at random (MNAR). See missingness.

missingness. Missingness refers to how missing observations in data occur. The categories are 1) missing not at random (MNAR), 2) missing at random (MAR), and 3) missing completely at random (MCAR).

In what follows we will refer to missing observations to mean not only observations entirely missing from a dataset but also the omitted observations because of missing values when fitting models.

MNAR observations refer to cases in which the missingness depends on the outcome under study. The solution in this case is to model that dependency. When observations are missing because of missing values, ERM option select() can be used to model the missingness.

MAR observation refer to cases in which the missingness does not depend on the outcome under study but does depend on other variables correlated with the outcome. The solution for some of the problems raised is to include those other variables as covariates in your model. Importantly, you do not need to model the reason for missingness.

MCAR observations are just that and obviously not a problem other than to cause loss of efficiency.

The MNAR and MAR cases are known jointly as informative missingness.

- **multivalued treatment**. A multivalued treatment is a treatment with more than two arms. See *treatment arms*.
- **observational data**. Observational data are data collected over which the researcher had no control. The opposite of observational data is experimental data. Use of observational data often introduces statistical issues that experimental data would not. For instance, in a treatment study based on observational data, researchers had no control over treatment assignment; thus the treatment assignment needs to be modeled.
- **omitted variables**. Omitted variables is an informal term for covariates that should appear in the model but do not. They do not because they are unmeasured, because of ignorance or other reasons. Problems arise when the variables that are not omitted are correlated with the omitted variables.
- **ordered categorical variable**. An ordered categorical variable is a categorical variable in which the categories can be ordered, such as healthy, sick, and very sick. Actually recorded in the variable are integers such as 1, 2, and 3. The integers need not be sequential, but they must reflect the ordering. Also see *binary variable* and *continuous variable*.
- outcome variable. See dependent variable.
- **potential outcome**. Potential outcome is a term used in the treatment-effects literature. It is the outcome an individual would have had if given a specific treatment. Individual in this case means conditional on the individual's covariates, which are in the main equation in models fit by ERMs. It is the outcome that would have been observed for that individual. For instance, each patient in a study has one potential blood pressure after taking a pill and another had he or she not taken it. Also see *treatment effects*.
- **potential-outcome means**. Potential-outcome means (POMs) is a term used in the treatment-effects literature. They are the means (averages) of potential outcomes. The average treatment effect (see *treatment effects*) is the difference between the potential-outcome mean for treated and untreated over the population.
- **recursive (structural) model.** ERMs fit recursive models. A model is not recursive when one endogenous variable depends (includes its equation) on another endogenous variable that depends on the first. Said in symbols, when A depends on B, which depends on A. A model is also not recursive when A depends on B depends on C, which depends on A, and so on. See [ERM] triangularize.

reverse causation and simultaneous causation. We use the term reverse causation in this manual when the dependent variable in the main equation of an ERM affects a covariate as well as when the covariate affects the dependent variable. Stressed persons may be physically unhealthy because they are stressed and further stressed because they are unhealthy. When a covariate suffers from reverse causation, the solution is to make it endogenous and find instruments for it.

Our use of the term reverse causation is typical of how it is used elsewhere. Reverse causation is a reason to make a variable endogenous. Reverse causation is discussed in [ERM] intro 3.

The term simultaneous causation is sometimes used as a synonym for reverse causation elsewhere, but we draw a distinction. We use the term when two already endogenous variables affect each other. Simultaneous causation is discussed in [ERM] **triangularize**.

- right-hand-side (RHS) variable. A right-hand-side variable is another word for covariate.
- sample selection. Sample selection is another term for endogenous sample selection.
- selection. Selection is another term for endogenous sample selection.
- selection on unobservables. Selection on unobservables is another term for endogenous sample selection.

simultaneous causation. See recursive (structural) model.

simultaneous system. A simultaneous system is a multiple-equation model in which dependent variables can affect each other freely. The equation for y1 could include y2, and the equation for y2 include y1. ERMs cannot fit simultaneous systems. Because the focus of ERMs is on one equation in particular—the main equation—you can substitute the covariates for y1 into the y2 equation to form the reduced-form result and still obtain estimates of the structural parameters of the y1 equation. In this manual, we discuss this issue using the terms reverse causation and recursive (structural) model. In the manual, it is discussed in [ERM] triangularize.

TE. See treatment effect.

- **tobit estimator**. Tobit is an estimation technique for dealing with dependent variables that are censored. The classic tobit model dealt with left-censoring, in which the outcome variable was recorded as zero if it would have been zero or below. The estimator has since been generalized to dealing with models in which observations can be left-censored, right-censored, or interval-censored. See *censoring*.
- treatment. A treatment is a drug, government program, or anything else administered to a patient, job seeker, etc., in hopes of improving an outcome.
- **treatment arms**. Sometimes, experiments are run on more than one treatment simultaneously. Each different treatment is called an arm of the treatment. The controls (those not treated) are also an arm of the treatment.
- **treatment assignment**. Treatment assignment is the process by which subjects are assigned to a treatment arm. That process can be endogenous or exogenous, meaning that the random component (error) in the assignment is correlated or is not correlated with the outcomes of the treatments. It is often endogenous because doctors assign subjects or subjects choose based in part on unobserved factors correlated with the treatment's outcome.
- **treatment effects**. A treatment effect (TE) is the effect of a treatment in terms of a measured outcome such as blood pressure, ability to walk, likelihood of finding employment, etc. The statistical problem is to measure the effect of a treatment in the presence of complications such as censoring, treatment assignment, and so on.

ERMs fit treatment-effect models when one of the options entreat() or extreat() is specified for endogenous or exogenous treatment assignment. Meanwhile, the outcome model is specified in the main equation.

The TE is, for each person, the difference in the predicted outcomes based on the covariates in the main equation given that treatment is locked at treated or untreated.

The treatment effect on the treated (TET) is, for each person who was treated, the difference in the predicted outcomes based on the covariates in the main equation and the fact that they were assigned to or choose to be treated.

The treatment effect on the untreated (TEU) is, for each person who was not treated, the difference in predicted outcomes based on the covariates in the main equation and the fact that they were assigned to or choose not to be treated.

The average treatment effect (ATE) is an estimate of the average effect in a population after accounting for statistical issues.

The average effect on the treated (ATET) is an estimate of the average effect that would have been observed for those who were in fact treated in the data.

The average effect on the untreated (ATEU) is an estimate of the average effect that would have been observed for those who were in fact not treated in the data.

triangular system. See recursive (structural) model.

References

Blundell, R. W., and J. L. Powell. 2003. Endogeity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, ed. M. Dewatripont, L. P. Hansen, and S. J. Turnovsky, vol. 2, 312–357. Cambridge: Cambridge University Press.

----. 2004. Endogeneity in semiparametric binary response models. Review of Economic Studies 71: 655-679.

Wooldridge, J. M. 2005. Unobserved heterogeneity and estimation of average partial effects. In *Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg*, ed. D. W. K. Andrews and J. H. Stock, 27–55. New York: Cambridge University Press.

-----. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

-----. 2014. Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables. *Journal of Econometrics* 182: 226–234.

Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.