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example 1a — Linear regression with continuous endogenous covariate

Description Remarks and examples Also see

Description

In this example, we show how to estimate and interpret the results of an extended regression model
with a continuous outcome and continuous endogenous covariate.

Remarks and examples stata.com

The fictional State University is studying the relationship between the high school grade point
average (GPA) of the students it admits and their final college GPA. They suspect that unobserved ability
affects both high school GPA and college GPA. Thus, high school GPA is an endogenous covariate.

Using data on the 2,500 students in the cohort expected to graduate in 2010, the researchers at
State U model college GPA (gpa) as a function of high school GPA (hsgpa). In both cases, GPA is
measured in 0.01 increments, and we ignore complications due to the boundary points. We also ignore
that, unfortunately, State U has a high dropout rate and college GPA is missing for these students,
leaving the researchers with a sample of about 1,500 students.

The State U researchers expect that the effect of high school competitiveness on college GPA
is negligible once high school GPA is controlled for. So they include a ranking of the high school
(hscomp) as an instrumental covariate for high school GPA. They include parental income measured
in $10,000s, which they believe may also influence student performance, in the main model and in
the model for high school GPA.


http://stata.com
http://stata.com
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. use http://www.stata-press.com/data/r15/class10
(Class of 2010 profile)

. eregress gpa income, endogenous(hsgpa = income i.hscomp)

Iteration O: log likelihood = -638.58598
Iteration 1: log likelihood = -638.58194
Iteration 2: log likelihood = -638.58194

Extended linear regression Number of obs = 1,528
Wald chi2(2) = 1167.79
Log likelihood = -638.58194 Prob > chi2 = 0.0000
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
gpa
income .0575145  .0055174 10.42  0.000 .0467007 .0683284
hsgpa 1.235868 .133686 9.24  0.000 .9738484 1.497888
_cons -1.217141 .3828614 -3.18 0.001 -1.967535  -.4667464
hsgpa
income .0356403  .0019553 18.23  0.000 .0318079 .0394726
hscomp
moderate -.1310549  .0136503 -9.60 0.000 -.1578091  -.1043008
high -.2331173  .0232712 -10.02  0.000 -.278728  -.1875067
_cons 2.951233  .0164548 179.35 0.000 2.918982 2.983483
var (e.gpa) .1436991 .0083339 .1282592 .1609977
var (e.hsgpa) .0591597  .0021403 .05511 .063507
corr(e.hsgpa,
e.gpa) .2642138  .0832669 3.17  0.002 .0948986 .4186724

The estimate of the correlation between the errors from the main and auxiliary equations is 0.26.
The z statistic may be used for a Wald test of the null hypothesis that there is no endogeneity. The
researchers reject this hypothesis. Because the estimate is positive, they conclude that unobservable
factors that increase high school GPA tend to also increase college GPA.

Having satisfied themselves that it is appropriate to account for endogeneity of high school GPA,
they examine the coefficient estimates. The estimates for the main equation are interpreted just like
those from regress; see [R] regress. For example, the researchers expect the difference in college
GPA is about 1.24 points for students with a difference of 1 point in high school GPA.

As we discussed in [ERM] intro 8, the coefficients on hsgpa and income in this regression pretty
much say everything there is to say about how college GPA changes when either high school GPA or
parents’ income changes. This is true because our model is linear and we have no interactions. We
could make this the end of our story. But it is not the end if we want to ask questions about expected
levels of college GPA.

If we want to ask questions about the eventual level of college GPA, we must be specific about
how we arrived at our values for hsgpa. Let’s look at a single observation; we will pretend it is for
Billy.


http://www.stata.com/manuals/rregress.pdf#rregress
http://www.stata.com/manuals/ermintro8.pdf#ermintro8
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. gen str name = "Billy" in 537
(2,499 missing values generated)

. list income if name=="Billy"

income

537. 2

What if we don’t have records from Billy’s high school and all we know about Billy is his parents’

income? We could form counterfactuals

about Billy. We could fix Billy’s high school GPA at 2.00,

and we could fix his high school GPA at 3.00. These are values we are choosing, not the value that

Billy arrived at through his own actions
GPA under these two counterfactuals.

. We’ll let margins give us the expected values for college

. margins if name=="Billy", at(hsgpa=(2 3)) predict(fix(hsgpa))
Warning: prediction constant over observations.

Predictive margins Number of obs = 1
Model VCE : 0IM
Expression : mean of gpa, predict(fix(hsgpa))
1._at : hsgpa = 2
2._at : hsgpa = 3
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
_at
1 1.369625 .1251674 10.94 0.000 1.124301 1.614948
2 2.605493 .0190405 136.84 0.000 2.568174 2.642811

When we set Billy’s high school GPA

to 2.00 and consider his parents’ income of $20,000, Billy’s

expected college GPA is 1.37. More correctly, this is the expected GPA for anyone whose parents’
income is $20,000 and whose high school GPA is fixed at 2.00. Keeping his parents’ income constant
and fixing his high school GPA at 3.00, we see that Billy’s expected college GPA rises to 2.61.

But in reality, we know more about Billy.

. list gpa hsgpa income hscomp

if name=="Billy"

gpa hsgpa  income

hscomp

537. 1.03 2 2

high

And with this, we can ask a slightly different question. What is Billy’s expected GPA given all
that we know about him, including the competitiveness of his high school and the unobserved thing
or things that drive the correlation between high school and college GPAs? What if we further ask
how that expectation would change if we granted Billy one additional unit of high school GPA, taking
him from 2.00 to 3.00. These are the same two counterfactuals for the value of high school GPA, but
a different assumption about how Billy arrived at a 2.00. To obtain these counterfactuals, we run the

same margins command, changing the

fix () option to base().
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. generate hsgpaT = hsgpa // Observed ("True") H.S. GPA

. margins if name=="Billy", at(hsgpa=(2 3)) predict(base(hsgpa=hsgpaT))
Warning: prediction constant over observationms.

Predictive margins Number of obs = 1
Model VCE : 0IM
Expression : mean of gpa, predict(base(hsgpa=hsgpaT))
1._at : hsgpa = 2
2._at : hsgpa = 3
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
_at
1 1.044564 .1242365 8.41 0.000 .8010648 1.288063
2 2.280432 .0207685 109.80 0.000 2.239726 2.321138

The numbers are not the same. The expected GPA of 1.04 is closer to Billy’s true value of 1.03
than was the estimate using only income. That need not be the case for any individual, but given
that we used more information, we would expect it to be true if we averaged over others with the
same characteristics.

As discussed in [ERM] intro 8, we needed to save Billy’s true value of hsgpa because margins
manipulates the data to obtain its results. We did not need to do this with the £ix () option because
predictions using £ix () do not care what Billy’s true value of hsgpa is or how he arrived at that value.
Predictions using base(), on the other hand, use Billy’s true value of hsgpa and all information
from the model about how Billy arrived at that GPA. The base () option instructs margins to use true
hsgpaT when it formed both of its counterfactuals. Thus, both counterfactuals include information
about his high school’s competitiveness and information about the unobserved factor or factors creating
the correlation between GPAs. The same values for this information are used when margins creates
each counterfactual. We could say that, compared with the counterfactuals computed under £ix (),
these counterfactuals include more of what makes Billy, Billy. They are still the expected value for
anyone with the same covariates, but they incorporate the fact that the GPA of 2.0 was arrived at
through Billy’s own actions and include the competitiveness of his high school.

In the parlance of treatment effects, our first set of estimates could be called the potential outcomes
given the fixed treatment levels: 2.00 and 3.00. If that doesn’t help your understanding, then skip this
paragraph. The second set of values would be the counterfactuals required to estimate the treatment
effect on the untreated (TEU). Why are we being so cagey with the language—*“could be” instead of
“are” and “counterfactual” instead of “potential outcome” in the second case? Experts in treatment
effects don’t like applying the term “potential outcome” when the treatment is continuous. That
implies an infinite number of potential outcomes. They are even protective of the term when used to
create the pieces needed for the TEU. Regardless, the computation is exactly what would be done to
form these potential outcomes for a binary or ordinal treatment, and the interpretation conveys the
same meaning.

Neither the £ix () nor the base() counterfactuals can be said to be better. They simply answer
different questions. When we consider exogenous changes to variables like high school GPA, the
counterfactuals from base () will often be more relevant to answering many questions. Whether a
guidance counselor or a policy maker is asking the question, both are likely to face the existing GPAs
of individual students or those in the population.

Let’s take the next step and estimate the resulting changes in expected college GPA for our two
situations. We just need to add contrast(at(r)) to each of our two margins commands.


http://www.stata.com/manuals/ermintro8.pdf#ermintro8
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. margins if name=="Billy", at(hsgpa=(2 3)) predict(fix(hsgpa))
> contrast(at(r) effects nowald)
Warning: prediction constant over observations.

Contrasts of predictive margins

Model VCE : 0IM
Expression : mean of gpa, predict(fix(hsgpa))
1._at : hsgpa = 2
2._at : hsgpa = 3
Delta-method
Contrast  Std. Err. z P>|z| [95% Conf. Intervall
_at
(2 vs 1) 1.235868 .133686 9.24 0.000 .9738484 1.497888

. margins if name=="Billy", at(hsgpa=(2 3)) predict(base(hsgpa=hsgpaT))
> contrast(at(r) effects nowald)
Warning: prediction constant over observations.

Contrasts of predictive margins

Model VCE : 0IM
Expression : mean of gpa, predict(base(hsgpa=hsgpaT))
1._at : hsgpa = 2
2._at : hsgpa = 3
Delta-method
Contrast  Std. Err. z P>|z| [95% Conf. Intervall
_at
(2 vs 1) 1.235868 .133686 9.24 0.000 .9738484 1.497888

As we have said repeatedly, the estimates of the effects are the same. It does not matter how
Billy arrived at his 2.00. What’s more, the standard errors are the same, and they are the same as the
standard error of the regression coefficient from our eregress output. In this case, the additional
information that was so important in getting the right GPA estimates is subtracted out when we compute
the differences. That is a direct result of the model being linear and having additive errors. Stretching
the parlance of treatment effects again, we could call our first contrast an estimate of the treatment
effect and the second a treatment effect on the untreated. For linear models without interactions, these
are always the same value.

Would we see anything different if we averaged the effects over the sample to get estimates of
the effects in the population? Just remove Billy from the commands.
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. margins, at(hsgpa=(2 3)) predict(fix(hsgpa)) contrast(at(r) effects nowald)

Contrasts of predictive margins

Model VCE : 0IM
Expression : mean of gpa, predict(fix(hsgpa))
1._at : hsgpa = 2
2._at : hsgpa = 3
Delta-method
Contrast  Std. Err. z P>|z| [95% Conf. Intervall
_at
(2 vs 1) 1.235868 .133686 9.24 0.000 .9738484 1.497888

. margins, at(hsgpa=(2 3)) predict(base(hsgpa=hsgpaT)) contrast(at(r) effects nowald)
(output omitted )

Not surprisingly, the estimated effect is still 1.24—the same value we have gotten every time,
the same value as the coefficient on hsgpa. Perhaps more surprisingly, the standard error of the
population-average estimate is also the same as the standard error of the coefficient. We don’t gain or
lose any information when we take an average over an estimate that is constant for all the observations.

We leave it to you to run the last command and see that £ix() and base() produce the same
results.

In linear models without interactions, we have just seen that the effects are the same for many
questions, but the levels are often different. In nonlinear models, these differences in the levels will
lead to differences in the effects.

The models in the remaining two examples in this series, [ERM] example 1b and [ERM] example 1c,
have exactly the same interpretation we gave to the model in this entry. Adding interval censoring
and endogenous sample selection do not affect either the relevant questions or how they are answered.

Also see
[ERM] eregress — Extended linear regression
[ERM] eregress postestimation — Postestimation tools for eregress
[ERM] intro 3 — Endogenous covariates features

[ERM] intro 8 — Conceptual introduction via worked example
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