
Title stata.com

example 2c — Linear regression with endogenous treatment

Description Remarks and examples Also see

Description
Continuing from [ERM] example 2b, we now consider the case where the treatment is endogenous.

Remarks and examples stata.com

In [ERM] example 2b, we assumed that graduating from college was an exogenous treatment.
However, unobserved factors such as ability may affect whether individuals graduate from college and
also affect their wage. Thus, it may be more appropriate for us to treat having a college degree as
an endogenous treatment. We found endogeneity in [ERM] example 2a, which analyzes the treatment
instead as a binary endogenous covariate. You may want to compare the result of this example with
the results from [ERM] example 2b.

Because college graduation is now assumed to be endogenous, we must specify a model for
college. We model graduation as a function of the level of parental education (peduc), which we
further assume does not have a direct effect on wage. The endogenous treatment equation is specified
in option entreat().
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2 example 2c — Linear regression with endogenous treatment

. eregress wage c.age##c.age tenure, entreat(college = i.peduc) vce(robust)

Iteration 0: log pseudolikelihood = -17382.446
Iteration 1: log pseudolikelihood = -17381.922
Iteration 2: log pseudolikelihood = -17381.92

Extended linear regression Number of obs = 6,000
Wald chi2(8) = 348743.60

Log pseudolikelihood = -17381.92 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage
college#

c.age
no .2338084 .0176633 13.24 0.000 .199189 .2684279

yes .6777385 .0219827 30.83 0.000 .6346531 .7208239

college#
c.age#c.age

no -.0018611 .00019 -9.79 0.000 -.0022335 -.0014887
yes -.0052533 .0002372 -22.14 0.000 -.0057183 -.0047883

college#
c.tenure

no .3948863 .0207452 19.04 0.000 .3542263 .4355462
yes .5883544 .0257213 22.87 0.000 .5379415 .6387673

college
no 10.86301 .3675208 29.56 0.000 10.14268 11.58333

yes 3.184255 .4612019 6.90 0.000 2.280316 4.088194

college
peduc

college .849575 .0356419 23.84 0.000 .7797181 .9194318
graduate 1.347272 .0491996 27.38 0.000 1.250843 1.443701

doctorate 1.541025 .1174797 13.12 0.000 1.310769 1.771281

_cons -.973061 .0292791 -33.23 0.000 -1.030447 -.9156749

var(e.wage) 7.629807 .2245651 7.202122 8.082889

corr(e.col~e,
e.wage) .623109 .0267317 23.31 0.000 .5679046 .6727326

As in [ERM] example 2b, most of the coefficients are difficult to directly interpret. The estimated
correlation between the errors from the main and auxiliary equations is 0.62. The z statistic may
be used for a Wald test of the null hypothesis that there is no endogenous treatment. We reject
this hypothesis and conclude that having a college degree is an endogenous treatment. Because the
estimate is positive, we conclude that unobserved factors that increase the chance of having a college
degree also tend to increase wage.
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We can use estat teffects to estimate the average effect of a college degree on wage. We use
the atet option to estimate the ATET.

. estat teffects, atet

Predictive margins Number of obs = 6,000
Subpop. no. obs = 2,234

Unconditional
Margin Std. Err. z P>|z| [95% Conf. Interval]

ATET
college

(yes vs no) 5.144136 .1656339 31.06 0.000 4.819499 5.468772

We estimate that the average wage for those who graduated from college is $5.14 higher than
it would have been had those same individuals not graduated from college. This is $2.49 less than
the result from our model in [ERM] example 2b that did not account for the endogeneity of college
graduation. We said “same individuals” to emphasize that $5.14 is a treatment effect on those who
chose to attend college and graduated. More formally, it is our estimate of what the average increase
in wage is in the whole population for everyone who chose to attend college and graduated.

Is this effect constant for everyone? Let’s approach that question by first profiling expected wages
for some representative values of age and tenure. We can ask margins to do that by typing

. margins college, predict(base(college=1)) vce(unconditional)
> at(age=(30(10)70) tenure=(0 5 10) peduc=2)

(output omitted )

We used the at() option to request values of age from 30 to 70 in units of 10 years and, for each of
those ages, tenures of 0, 5, and 10. We also requested college = 0 and college = 1, but we did that
by typing college right after the margins command. We could have instead typed college=(0 1)
in our at() option, but this is better. You will see that in a minute. We still want estimates for those
who chose to go to college and graduated, so we specify predict(base(college=1)). That means
we are further conditioning on the unobservable factors that increased the probability of graduating
from college.
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If you run the margins command, you will see that it takes a few seconds and that it produces a
lot of output. Let’s graph the results,

. marginsplot, by(college)
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The first thing we notice is that these results are far too regular, and we should review our data
collection process. That aside, the age–earnings profiles on the left, where we have taken the degrees
away from our college graduates, are distinctly different from those on the right, where they get to
retain their degrees. We see that tenure does have an effect, and if we look closely, it has a larger
effect on college graduates: the profiles are further apart on the right. What do the points on this
graph represent? Each point in the panel on the right is the expected wage for someone who graduated
from college, whose parents graduated from college, and who has the age and tenure shown on the
graph. Each point on the left is a counterfactual where we assume those same people did not graduate
from college but where we continue to condition on the fact that their endogenous choice was to
attend and complete college.

Seeing that, we have to ask, what are the profiles of the effect of college? To find those, we
just add an r. to college on our previous margins command. Now you know why we specified
college the way we did.

. margins r.college, predict(base(college=1)) vce(unconditional)
> at(age=(30(10)70) tenure=(0 5 10) peduc=2)

(output omitted )
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Again, the output is long, so we graph the results.

. marginsplot
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College affects wages the least when people are young and have no tenure. The largest effects are
seen for those older than 50 and even more so when they also have long tenure. Each point represents
the expected increase in wages due to graduating from college among those who chose to attend
college and graduated. So each is an average treatment effect on the treated (ATET). Unlike overall
average ATETs, these are conditioned on being at a specific age and having a specific tenure. Each
point is bracketed by a pointwise 95% confidence interval. The confidence intervals reveal that we
have pretty tight estimates for each of the ATETs. Note that the previous graph also displayed 95%
confidence intervals. They were just so narrow that they are difficult to see.

Some might quibble with the “A” we just used in ATET because we have specified values for every
covariate. Even so, taking the expectation over the errors in the model is a form of averaging. If you
prefer call them the expected TETs (treatment effects on the treated).

We have focused on treatment effects on the treated, those who graduated from college. We could
have just as easily asked about treatment effects on the untreated, those who did not graduate from
college. What would we expect wages to do if they did graduate from college? Maybe we could reduce
the cost of admission or otherwise affect their decision or institute mandatory college attendance. It
is a minor change to what we have already typed. In each case, just change

predict(base(college=1))

to

predict(base(college=0))

If you do that, you will be conditioning on a decision not to attend college or a failure to
complete college. If you make this change and reproduce the first graph, you will find that even after
one graduates from college, wages are expected to be a little lower for this group. Recall that the
unobserved factors that affected choosing to attend college were positively correlated with wages. If
you run the contrasts to obtain the ATEU (average treatment effects on the untreated), you will find that
those effects are identical to the ATETs! That is because our model is linear and because we are not
averaging over the observations. The effect of the unobserved factors is different for college graduates
and nongraduates. However, that effect is subtracted out when the counterfactuals are differenced to
estimate the effect of college.
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We gave parents’ education short shrift in our analysis, locking it at the single value representing
undergraduate degree. You can easily explore how differing levels of parents’ education affect the
results. Try typing

margins college, predict(base(college=1)) vce(unconditional) ///
at(age=36 tenure=10 peduc=(1 2 3 4))

You will find that parents’ education does affect expected wages through the correlation between
our two equations.

As is often the case with models having complications, estimation is just the first step.

See Treatment under Methods and formulas in [ERM] eregress and Estimating treatment effects
with margins in [R] margins, contrast for additional information about calculating the ATET.

Also see
[ERM] eregress — Extended linear regression

[ERM] eregress postestimation — Postestimation tools for eregress

[ERM] estat teffects — Average treatment effects for extended regression models

[ERM] intro 8 — Conceptual introduction via worked example
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