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example 3a — Probit regression with continuous endogenous covariate

Description Remarks and examples Also see

Description
In this example, we show how to estimate and interpret the results of an extended regression model

with a binary outcome and continuous endogenous covariate.

Remarks and examples stata.com

In [ERM] example 1a through [ERM] example 1c, we showed how researchers at the fictional
State University might approach an investigation of the relationship between the high school grade
point average (GPA) of the students the university admits and their final college GPA. Suppose instead
that they would like to know how the probability of college graduation is related to high school
grade point average (GPA). They again suspect that high school GPA is endogenous in a model of the
probability of college graduation.

Their model for graduation includes parental income in $10,000s and whether the student had a
roommate who also went to State U. The State U researchers expect that the effect of high school
competitiveness on the probability of graduating from college is negligible once the other covariates
are controlled for. So they use the ranking of the high school (hscomp) as the instrumental variable
for high school GPA. They also include parental income in the auxiliary model for high school GPA.

We want to make inferences about how our covariates affect graduation rates in the population, not
just in our sample. We add vce(robust) so that subsequent calls to estat teffects and margins
will be able to consider our sample as a draw from the population.
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. use http://www.stata-press.com/data/r15/class10
(Class of 2010 profile)

. eprobit graduate income i.roommate, endogenous(hsgpa = income i.hscomp)
> vce(robust)

Iteration 0: log pseudolikelihood = -1418.5008
Iteration 1: log pseudolikelihood = -1418.4414
Iteration 2: log pseudolikelihood = -1418.4414

Extended probit regression Number of obs = 2,500
Wald chi2(3) = 326.79

Log pseudolikelihood = -1418.4414 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

graduate
income .1597677 .0158826 10.06 0.000 .1286384 .1908969

roommate
yes .2636312 .0563563 4.68 0.000 .1531748 .3740876

hsgpa 1.01877 .4324788 2.36 0.018 .1711273 1.866413
_cons -3.647166 1.204728 -3.03 0.002 -6.008389 -1.285943

hsgpa
income .047859 .0016461 29.07 0.000 .0446327 .0510853

hscomp
moderate -.135734 .0114717 -11.83 0.000 -.158218 -.1132499

high -.225314 .0195055 -11.55 0.000 -.2635441 -.1870838

_cons 2.794711 .0127943 218.43 0.000 2.769634 2.819787

var(e.hsgpa) .0685893 .0019597 .064854 .0725398

corr(e.hsgpa,
e.graduate) .3687006 .0919048 4.01 0.000 .1765785 .5337596

The estimate of the correlation between the errors of our two equations is 0.37 and is significantly
different from zero, so we have endogeneity. Because the correlation is positive, we conclude that
the unobservable factors that increase high school GPA also increase the probability of graduation.

The results for the main equation are interpreted as you would those from probit. We can obtain
directions but not effect sizes from the coefficients in the main equation. For example, we see that
family income and high school GPA are positively associated with the probability that a student
graduates.

Let’s ask something more interesting. What if we could increase each student’s high school GPA
by one point, moving a 2.0 to a 3.0, a 2.5 to a 3.5, and so on? We obviously cannot increase anyone’s
GPA by one point if he or she is already above a 3.0; so we restrict our population of interest to
students with a GPA at or below 3.0. margins will give us the population-average expected graduation
rate given each student’s current GPA if we specify at(hsgpa=generate(hsgpa)). It will also
give us the population-average expected graduation rate with an additional point in each student’s
GPA if we specify at(hsgpa=generate(hsgpa+1)). We want to hold each student’s unobservable
characteristics to be those that are implied by their current data, so we also create a variable holding
the true values of hsgpa and specify predict(base(hsgpa=hsgpaT)).

http://www.stata.com/manuals/rprobit.pdf#rprobit
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. generate hsgpaT = hsgpa // True value of GPA for margins

. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1))
> predict(base(hsgpa=hsgpaT)) subpop(if hsgpa <= 3) vce(unconditional)

Predictive margins Number of obs = 2,500
Subpop. no. obs = 1,430

Expression : Pr(graduate==yes), predict(base(hsgpa=hsgpaT))

1._at : hsgpa = hsgpa

2._at : hsgpa = hsgpa+1

Unconditional
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .4315243 .0214675 20.10 0.000 .3894487 .4735998
2 .7737483 .0953191 8.12 0.000 .5869264 .9605702

For students with a high school GPA at or below 3.0, the expected graduation rate is 43%. If those
same students are given an additional point in their GPA, the graduation rate rises to 77%.

By adding contrast(at(r)) to our margins command, we can difference those two counter-
factuals and estimate the average effect of giving an additional point of GPA. We also added effects
to add test statistics and nowald to clean up the output.

. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1))
> subpop(if hsgpa <= 3) predict(base(hsgpa=hsgpaT))
> contrast(at(r) nowald effects) vce(unconditional)

Contrasts of predictive margins

Expression : Pr(graduate==yes), predict(base(hsgpa=hsgpaT))

1._at : hsgpa = hsgpa

2._at : hsgpa = hsgpa+1

Unconditional
Contrast Std. Err. z P>|z| [95% Conf. Interval]

_at
(2 vs 1) .342224 .113214 3.02 0.003 .1203287 .5641194

Giving students an additional point in their GPA increased graduation rates by just over 34%, with
a 95% confidence interval from 12% to 56%.

Does this effect differ across any of our other covariates? Our dataset has a grouping variable for
family income incomegrp, so let’s estimate the effect within each income grouping. We just add
over(incomegrp) to our prior margins command.
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. margins, at(hsgpa=generate(hsgpa)) at(hsgpa=generate(hsgpa+1))
> subpop(if hsgpa <= 3) predict(base(hsgpa=hsgpaT))
> contrast(at(r) nowald effects) noatlegend vce(unconditional) over(incomegrp)

Contrasts of predictive margins

Expression : Pr(graduate==yes), predict(base(hsgpa=hsgpaT))
over : incomegrp

Unconditional
Contrast Std. Err. z P>|z| [95% Conf. Interval]

_at@
incomegrp
(2 vs 1)

< 20K .3690987 .1359989 2.71 0.007 .1025457 .6356516
(2 vs 1)

20-39K .3698609 .1273853 2.90 0.004 .1201903 .6195316
(2 vs 1)

40-59K .3516159 .1103376 3.19 0.001 .1353581 .5678737
(2 vs 1)

60-79K .3094611 .0927492 3.34 0.001 .1276761 .4912461
(2 vs 1)

80-99K .255203 .0748521 3.41 0.001 .1084956 .4019105
(2 vs 1)
100-119K .1829494 .0552683 3.31 0.001 .0746256 .2912732
(2 vs 1)
120-139K .1238028 .0459416 2.69 0.007 .0337588 .2138467
(2 vs 1)
140K up .0485429 .0207233 2.34 0.019 .0079259 .0891598

The effect is largest for the low-income groups and declines as income goes up. It becomes almost
negligible for students from households whose income is above $140,000.
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We can see this relationship more clearly if we graph the results.

. marginsplot
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Contrasts of Predictive Margins with 95% CIs

Figure 1.

Our point estimates of the effect on the probability of graduating are near 0.4 for the lowest-income
groups and fall below 0.2 for incomes over $100,000.

So we can examine subpopulation averages and effects and make inferences about their values.

We can also examine averages and effects at specified values of the covariates in our model. Let’s
consider students who do not have roommates and evaluate them at 5 levels of high school GPA (2.0,
2.5, 3.0, 3.5, and 4.0) and at two levels of income ($30,000 and $110,000).

. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=(3 11)) noatlegend

Predictive margins Number of obs = 2,500
Model VCE : Robust

Expression : Pr(graduate==yes), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .0068488 .0076828 0.89 0.373 -.0082092 .0219068
2 .1215437 .0353464 3.44 0.001 .052266 .1908213
3 .5517785 .0320675 17.21 0.000 .4889272 .6146297
4 .9232607 .043002 21.47 0.000 .8389784 1.007543
5 .9967789 .0051452 193.73 0.000 .9866944 1.006863
6 .0470211 .0496759 0.95 0.344 -.0503419 .144384
7 .3531365 .1042001 3.39 0.001 .1489081 .5573649
8 .8213242 .023535 34.90 0.000 .7751964 .867452
9 .9867056 .0071801 137.42 0.000 .9726328 1.000778

10 .9997797 .0003587 2787.22 0.000 .9990767 1.000483

Looking at all combinations of GPA and income, we see that graduation probabilities range from
0.0068 to 0.9998 for these values of the covariates.

We have suppressed the long legend that explains the at levels in the table, so let’s explain the
lines. All results are for students without roommates. Lines 1–5 are for students with family incomes
of $30,000 with the first line representing a GPA of 2, the second a GPA of 2.5, and so on. Lines 6–10
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represent the same levels of GPA for students with a family income of $110,000. Because our model
has only three covariates in the main equation and because we have specified values for each of
the covariates, these can be considered fully conditional estimates. Even so, they are averages in the
sense that they are expected values. Each probability represents what we would expect if hundreds of
students were sampled who had the same values of the covariates as those on the corresponding line.

The patterns in these results are easier to see on a graph.

. marginsplot

0
.2

.4
.6

.8
1

P
r(

G
ra

d
u

a
te

=
=

Y
e

s
)

2 2.5 3 3.5 4
High school GPA

income=3 income=11

Predictive Margins with 95% CIs

Figure 2.

Students with a GPA of 2.0 have nearly no chance of graduating, regardless of income. For those
with a GPA between 2.5 and 3.0, the graduation rates differ sharply depending on income level. At
GPAs of 3.5 and above, graduation rates are so high that there is again little difference due to income.
These results aren’t surprising; it’s easier to struggle through school when you do not also have to
worry over money issues.

What if we could grant the lower-income students a higher income? We would want to hold their
unobservables at their initial level while moving them to the higher income. Perhaps they are adopted.
Perhaps we are using this increase in income as a proxy for providing financial aid to lower-income
students. Regardless, we use predict(base(income=3)) to hold their unobservable characteristics
to their initial level as we move income from $30,000 to $110,000.

. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=(3 11))
> noatlegend predict(base(income=3))

(output omitted )

We dispense with showing you the output and go straight to the graph. You can run the margins
command if you wish.
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Figure 3.

The separation between graduation probabilities for incomes of $30,000 and $110,000 is even
larger for those who obtain their high school GPA while in a family with $30,000 income and are
then moved to $110,000.

Let’s explore that a bit more, not because made-up data are interesting but because we have yet
more tools to show you. margins will compute contrasts (differences) between our at() groupings
but is an all-or-none proposition. It is either all levels or all differences. We want to see the differences
in the lines we have been drawing while keeping our levels of GPA. We are going to estimate and
graph the differences between the lines on the graph we just drew and also on the graph we drew
before that. So we are going to compare the effects for those born with higher incomes and the
effects with those granted higher incomes at entry to college. The latter is a proper effect due to an
exogenous change. The former is just a comparison of two groups. We type

. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=3)
> predict(target(income=3)) predict(target(income=11) base(income=11))
> predict(target(income=11)) contrast(predict(r) nowald effects) noatlegend

(output omitted )

Let’s focus first on the syntax. The predict(target())s are new; see [ERM] eprobit predict
for a detailed explanation. Briefly, target() specifies a counterfactual value directly. So pre-
dict(target(income=3)) specifies an income of $30,000. Because that is the same value margins
is specifying, that is more of a factual than a counterfactual. Well, it is a factual for low-income
students and is shown as the blue line in figure 2 and figure 3.

predict(target(income=11) base(income=11)) specifies that both the counterfactual income
and the base() income from which the student’s unobservable characteristics are obtained are $110,000.
So it too is a factual. It is a factual for high-income students and is shown as the red line in figure 2.
predict(target(income=11)) specifies that our counterfactual income is 11, but because margins
is setting the income to 3, the unobservable characteristics will be for a student whose parents earn
$30,000. This is the red line in figure 3.

http://www.stata.com/manuals/ermeprobitpredict.pdf#ermeprobitpredict
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The results are

. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=3)
> predict(target(income=3)) predict(target(income=11) base(income=11))
> predict(target(income=11)) contrast(predict(r) nowald effects) noatlegend

Contrasts of predictive margins
Model VCE : Robust

1._predict : Pr(graduate==yes), predict(target(income=3))
2._predict : Pr(graduate==yes), predict(target(income=11) base(income=11))
3._predict : Pr(graduate==yes), predict(target(income=11))

Delta-method
Contrast Std. Err. z P>|z| [95% Conf. Interval]

_predict@_at
(2 vs 1) 1 .0401723 .0421568 0.95 0.341 -.0424536 .1227981
(2 vs 1) 2 .2315929 .0725988 3.19 0.001 .0893018 .3738839
(2 vs 1) 3 .2695457 .0440405 6.12 0.000 .1832279 .3558636
(2 vs 1) 4 .0634449 .036527 1.74 0.082 -.0081467 .1350365
(2 vs 1) 5 .0030008 .0047942 0.63 0.531 -.0063957 .0123973
(3 vs 1) 1 .1292645 .1030033 1.25 0.209 -.0726182 .3311473
(3 vs 1) 2 .4575187 .078341 5.84 0.000 .3039732 .6110642
(3 vs 1) 3 .3809832 .0367368 10.37 0.000 .3089803 .4529861
(3 vs 1) 4 .0741338 .0414526 1.79 0.074 -.0071118 .1553795
(3 vs 1) 5 .0031996 .0051059 0.63 0.531 -.0068078 .0132071

And their graph is
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Figure 4.

The blue points and line represent the difference between a student from a family earning $30,000
and a student from a family earning $110,000. The red points and line represents the difference
between the same student who started in a family earning $30,000 but was granted $110,000 family
earnings on entry into college. The higher income means much more to those who achieved their GPA
while in a lower-income family. This is particularly true for those with GPAs between 2.5 and 3.0.

Recall that our estimation results indicated a positive correlation between unobservable factors
that increase a student’s GPA and those that increase the probability that the student graduates. The
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margins results above are driven by lower-income students having higher levels of these unobservable
factors for any given level of high school GPA. In fact, the only thing that makes the two lines different
is that the students who started with incomes of $30,000 have different unobservable characteristics
from those who started with incomes of $110,000. All other covariates are the same. How important
are those unobserved factors? We assess that directly by comparing our two counterfactuals that set
income at $110,000.

We delete the line predict(target(income=3)) so that we are comparing the two counterfactuals
against each other, rather than each against the counterfactual of $30,000 family income.

. margins, at(roommate=0 hsgpa=(2 2.5 3 3.5 4) income=3)
> predict(target(income=11) base(income=11)) predict(target(income=11))
> contrast(predict(r) nowald effects) noatlegend

(output omitted )
. marginsplot
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Figure 5.

These results directly measure the contribution of the student’s unobservable characteristics to
graduation rates. At a GPA of 2.0, a student from a family earning $30,000 and then being moved to
a family income of $110,000 would be 10 percentage points more likely to graduate than a student
from a family who always earned $110,000 .

That effect rises to over 20 percentage points if the student’s GPA is 2.5.

So we can also analyze fully conditional counterfactuals and make complex inferences.

Also see
[ERM] eprobit — Extended probit regression

[ERM] eprobit postestimation — Postestimation tools for eprobit

[ERM] intro 3 — Endogenous covariates features

[ERM] intro 8 — Conceptual introduction via worked example

http://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
http://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimation
http://www.stata.com/manuals/ermintro3.pdf#ermintro3
http://www.stata.com/manuals/ermintro8.pdf#ermintro8

