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Description

menl fits nonlinear mixed-effects models in which some or all fixed and random effects enter
nonlinearly. These models are also known as multilevel nonlinear models or hierarchical nonlinear
models. The overall error distribution of the nonlinear mixed-effects model is assumed to be Gaussian.
Different covariance structures are provided to model random effects and to model heteroskedasticity
and correlations within lowest-level groups.

Quick start
Nonlinear mixed-effects regression of y on x1 and x2 with random intercepts B0 by id

menl y = {a}*(1-exp(-({b0}+{b1}*x1+{b2}*x2+{B0[id]})))

As above, but using the more efficient specification of the linear combination
menl y = {a}*(1-exp(-{xb: x1 x2 B0[id]}))

As above, but using define() to specify the linear combination
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id])

As above, but perform restricted maximum-likelihood estimation instead of the default maximum-
likelihood estimation

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) reml

Specify your own initial values for fixed effects, but use the default expectation-maximization (EM)
method to obtain initial values for random-effects parameters

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) ///
initial({a} 1 {xb:x1} 1 {xb:x2} 0.5 {xb: cons} 2, fixed)

Include random intercepts A0 by id to allow parameter a to vary between levels of id and specify
the xb suboption to indicate that a: contains a linear combination rather than a scalar parameter

menl y = {a:}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) ///
define(a: A0[id], xb)

Include a random slope on continuous variable x2 in the linear combination, and allow correlation
between random slopes B1 and intercepts B0

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id] c.x2#B1[id]) ///
covariance(B0 B1, unstructured)

Specify a heteroskedastic within-subject error variance that varies as a power of x2
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id] c.x2#B1[id]) ///

covariance(B0 B1, unstructured) resvariance(power x2)
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2 menl — Nonlinear mixed-effects regression

Display random-effects and within-group error parameters as standard deviations and correlations
menl, stddeviations

Three-level nonlinear regression of y on variable time and factor variable f with random intercepts
S0 by lev3 and W0 by lev2 nested within lev3, using an AR(1) correlation structure for the
residuals

menl y = {phi1:}+{phi2:}*exp(-{phi3}*time), ///
define(phi1: i.f S0[lev3]) define(phi2: i.f W0[lev3>lev2]) ///
rescorrelation(ar 1, t(time))

Three-level nonlinear regression of y on x1 with random intercepts W0 and slopes W1 on continuous
x1 by lev3 and with random intercepts S0 and slopes S1 on x1 by lev2 nested within lev3,
using unstructured covariance for W0 and W1 and exchangeable covariance for S0 and S1

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1:x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) ///
covariance(S0 S1, exchangeable)

As above, but assume that residuals are independent but have different variances for males and females
menl y = {phi1:}+{b1}*cos({b2}*x1), ///

define(phi1:x1 W0[lev3] S0[lev3>lev2] ///
c.x1#(W1[lev3] S1[lev3>lev2])) ///

covariance(W0 W1, unstructured) ///
covariance(S0 S1, exchangeable) ///
rescovariance(identity, by(female))

Menu
Statistics > Multilevel mixed-effects models > Nonlinear regression
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Syntax
menl depvar = <menlexpr>

[
if
] [

in
] [

, options
]

<menlexpr> defines a nonlinear regression function as a substitutable expression that contains
model parameters and random effects specified in braces {}, as in exp({b}+{U[id]}); see
Random-effects substitutable expressions for details.

options Description

Model

mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood
define(name:<resubexpr>) define a function of model parameters; this option may be repeated
covariance(covspec) variance–covariance structure of the random effects; this

option may be repeated
initial(initial values) initial values for parameters

Residuals

rescovariance(rescovspec) covariance structure for within-group errors
resvariance(resvarspec) heteroskedastic variance structure for within-group errors
rescorrelation(rescorrspec) correlation structure for within-group errors

Reporting

level(#) set confidence level; default is level(95)

variance show random-effects and within-group error parameter
estimates as variances and covariances; the default

stddeviations show random-effects and within-group error parameter
estimates as standard deviations and correlations

noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
nolegend suppress table expression legend
noheader suppress output header
nogroup suppress table summarizing groups
nostderr do not estimate standard errors of random-effects parameters
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(25)

emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)

emlog show EM iteration log

Maximization

menlmaxopts control the maximization process

coeflegend display legend instead of statistics

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals/me.pdf#memenlOptionsinitial_values
http://www.stata.com/manuals/me.pdf#memenlOptionsdisplay_options
http://www.stata.com/manuals/me.pdf#memenlOptionsmenlmaxopts
http://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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The syntax of covspec is

rename1 rename2
[
. . .
]
, vartype

vartype Description

independent one unique variance parameter per random effect; all covariances
are 0; the default

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects; all covariances are 0
unstructured all variances and covariances to be distinctly estimated

The syntax of rescovspec is

rescov
[
, rescovopts

]
rescov Description

identity uncorrelated within-group errors with one common variance;
the default

independent uncorrelated within-group errors with distinct variances
ar
[

#
]

within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma
[

#
]

within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

ctar1 within-group errors with continuous-time AR(1) structure

The syntax of resvarspec is

resvarfunc
[
, resvaropts

]
resvarfunc Description

identity equal within-group error variances; the default
linear varname within-group error variance varies linearly with varname
power varname | yhat variance function is a power of varname or of predicted mean
exponential varname | yhat variance function is exponential of varname or of predicted mean

The syntax of rescorrspec is

rescorr
[
, rescorropts

]
rescorr Description

identity uncorrelated within-group errors; the default
ar
[

#
]

within-group errors with AR(#) structure; ar 1 is implied by ar

ma
[

#
]

within-group errors with MA(#) structure; ma 1 is implied by ma

ctar1 within-group errors with continuous-time AR(1) structure

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesrename
http://www.stata.com/manuals/me.pdf#memenlOptionsrescovopts
http://www.stata.com/manuals/me.pdf#memenlOptionsresvaropts
http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/me.pdf#memenlOptionsrescorropts
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Options

� � �
Model �

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as
residual maximum likelihood.

define(name:<resubexpr>) defines a function of model parameters, <resubexpr>, and labels it as
name. This option can be repeated to define multiple functions. The define() option is useful for
expressions that appear multiple times in the main nonlinear specification menlexpr: you define the
expression once and then simply refer to it by using {name:} in the nonlinear specification. This
option can also be used for notational convenience. See Random-effects substitutable expressions
for how to specify <resubexpr>.

covariance(rename1 rename2
[
. . .
]
, vartype) specifies the structure of the covariance matrix

for the random effects. rename1, rename2, and so on, are the names of the random effects
to be correlated (see Random effects), and vartype is one of the following: independent,
exchangeable, identity, or unstructured. Instead of renames, you can specify restub* to
refer to random effects that share the same restub in their names.

independent allows for a distinct variance for each random effect and assumes that all covariances
are 0; the default.

exchangeable specifies one common variance for all random effects and one common pairwise
covariance.

identity is short for “multiple of the identity”; that is, all variances are equal, and all covariances
are 0.

unstructured allows for all variances and covariances to be distinct. If p random effects are
specified, the unstructured covariance matrix will have p(p+ 1)/2 unique parameters.

initial(initial values) specifies the initial values for model parameters. You can specify a 1× k
matrix, where k is the total number of parameters in the model, or you can specify a parameter
name, its initial value, another parameter name, its initial value, and so on. For example, to
initialize {alpha} to 1.23 and {delta} to 4.57, you would type

. menl . . . , initial(alpha 1.23 delta 4.57) . . .

To initialize multiple parameters that have the same group name, for example, {y:x1} and {y:x2},
with the same initial value, you can simply type

. menl . . . , initial({y:} 1) . . .

For the full specification, see Specifying initial values.

� � �
Residuals �

menl provides two ways to model the within-group error covariance structure, sometimes also referred
to as residual covariance structure in the literature. You can model the covariance directly by using
the rescovariance() option or indirectly by using the resvariance() and rescorrelation()
options.

rescovariance(rescov
[
, rescovopts

]
) specifies the within-group errors covariance structure or

covariance structure of the residuals within the lowest-level group of the nonlinear mixed-effects
model. For example, if you are modeling random effects for classes nested within schools, then

http://www.stata.com/manuals/me.pdf#memenlSyntaxmenlexpr
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesrename
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesRandomeffects
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesSpecifyinginitialvalues
http://www.stata.com/manuals/me.pdf#memenlOptionsrescovopts
http://www.stata.com/manuals/meglossary.pdf#meGlossarywithin-grouperrors
http://www.stata.com/manuals/meglossary.pdf#meGlossarylowestlevelgroup
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rescovariance() refers to the residual variance–covariance structure of the observations within
classes, the lowest-level groups.

rescov is one of the following: identity, independent, ar
[

#
]
, ma

[
#
]
, or ctar1. Below, we

describe each rescov with its specific options rescovopts:

identity
[
, by(byvar)

]
, the default, specifies that all within-group errors be independent

and identically distributed (i.i.d.) with one common error variance σ2
ε . When combined with

by(byvar), independence is still assumed, but you estimate a distinct variance for each
category of byvar.

independent, index(varname) specifies that within-group errors are independent with distinct
variances for each value (index) of varname. index(varname) is required.

ar
[

#
]
, t(timevar)

[
by(byvar)

]
assumes that within-group errors have an AR(#) structure.

If # is omitted, ar 1 is assumed. t(timevar) is required.

ma
[

#
]
, t(timevar)

[
by(byvar)

]
assumes that within-group errors have an MA(#) structure.

If # is omitted, ma 1 is assumed. t(timevar) is required.

ctar1, t(timevar)
[
by(byvar)

]
assumes that within-group errors have a continuous-time

AR(1) structure. This is a generalization of the AR covariance structure that allows for
unequally spaced and noninteger time values. t(timevar) is required.

rescovopts are index(varname), t(timevar), and by(byvar).

index(varname) is used within the rescovariance() option with rescov independent.
varname is a nonnegative-integer–valued variable that identifies the observations within the
lowest-level groups (for example, obsid). The groups may be unbalanced in that different
groups may have different index() values, but you may not have repeated index() values
within any particular group.

t(timevar) is used within the rescovariance() option to specify a time variable for the ar,
ma, and ctar1 structures.

With rescov ar and ma, timevar is an integer-valued time variable used to order the observations
within the lowest-level groups and to determine the lags between successive observations.
Any nonconsecutive time values will be treated as gaps. For the ar or ma structure, # + 1
parameters are estimated: # AR or # MA coefficients and one overall error variance σ2

ε .

With rescov ctar1, timevar is a real-valued time variable. The correlation between two error
terms is the parameter ρ, raised to a power equal to the absolute value of the difference
between the t() values for those errors. For the ctar1 structure, two parameters are
estimated: the correlation parameter ρ and one overall error variance σ2

ε .

by(byvar) is for use within the rescovariance() option and specifies that a set of distinct
within-group error covariance parameters be estimated for each category of byvar. In other
words, you can use by() to model heteroskedasticity. byvar must be nonnegative-integer
valued and constant within the lowest-level groups.

resvariance(resvarfunc
[
, resvaropts

]
) specifies a heteroskedastic variance structure of the

within-group errors. It can be used with the rescorrelation() option to specify flexible
within-group error covariance structures. The heteroskedastic variance structure is modeled as
Var (εij) = σ2g2 (δ, υij), where σ is an unknown scale parameter, g(·) is a function that models
heteroskedasticity (also known as variance function in the literature), δ is a vector of unknown
parameters of the variance function, and υij’s are the values of a fixed covariate xij or of the
predicted mean µ̂ij .

http://www.stata.com/manuals/me.pdf#memenlOptionsrescovopts
http://www.stata.com/manuals/me.pdf#memenlOptionsresvaropts
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resvarfunc, omitting the arguments, is one of the following: identity, linear, power, or
exponential, and resvaropts are options specific to each variance function.

identity, the default, specifies a homoskedastic variance structure for the within-group errors;
g (δ, υij) = 1, so that Var (εij) = σ2 = σ2

ε .

linear varname specifies that the within-group error variance vary linearly with varname; that
is, g (δ, υij) =

√varnameij , so that Var (εij) = σ2varnameij . varname must be positive.

power varname| yhat
[
, strata(stratavar) noconstant

]
specifies that the within-group

error variance, or more precisely the variance function, be expressed in terms of a power of
either varname or the predicted mean yhat, plus a constant term; g (δ, υij) = |vij |δ1 + δ2.
If noconstant is specified, the constant term δ2 is suppressed. In general, three param-
eters are estimated: a scale parameter σ, the power δ1, and the constant term δ2. When
strata(stratavar) is specified, the power and constant parameters (but not the scale) are
distinctly estimated for each stratum. A total number of 2L + 1 parameters are estimated
(L power parameters, L constant parameters, and scale σ), where L is the number of strata
defined by variable stratavar.

exponential varname| yhat
[
, strata(stratavar)

]
specifies that the within-group error

variance vary exponentially with varname or with the predicted mean yhat; g (γ, υij) =
exp(γvij). Two parameters are estimated: a scale parameter σ and an exponential parameter
γ. When strata(stratavar) is specified, the exponential parameter γ (but not scale σ) is
distinctly estimated for each stratum. A total number of L+ 1 parameters are estimated (L
exponential parameters and scale σ), where L is the number of strata defined by variable
stratavar.

resvaropts are strata(stratavar) and noconstant.

strata(stratavar) is used within the resvariance() option with resvarfunc power and
exponential. strata() specifies that the parameters of the variance function g(·) be
distinctly estimated for each stratum. The scale parameter σ remains constant across strata. In
contrast, rescovariance()’s by(byvar) suboption specifies that all covariance parameters,
including σ (whenever applicable), be estimated distinctly for each category of byvar.
stratavar must be nonnegative-integer valued and constant within the lowest-level groups.

noconstant is used within the resvariance() option with resvarfunc power. noconstant
specifies that the constant parameter be suppressed in the expression of the variance function
g(·).

rescorrelation(rescorr
[
, rescorropts

]
) specifies a correlation structure of the within-group

errors. It can be used with the resvariance() option to specify flexible within-group error
covariance structures.

rescorr is one of the following: identity, ar
[

#
]
, ma

[
#
]
, or ctar1.

identity, the default, specifies that all within-group error correlations be zeros.

ar
[

#
]
, t(timevar)

[
by(byvar)

]
assumes that within-group errors have an AR(#) correlation

structure. If # is omitted, ar 1 is assumed. The t(timevar) option is required.

ma
[

#
]
, t(timevar)

[
by(byvar)

]
assumes that within-group errors have an MA(#) correlation

structure. If # is omitted, ma 1 is assumed. The t(timevar) option is required.

ctar1, t(timevar)
[
by(byvar)

]
assumes that within-group errors have a continuous-time

AR(1) correlation structure. The t(timevar) option is required.

http://www.stata.com/manuals/me.pdf#memenlOptionsresvaropts
http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://www.stata.com/manuals/me.pdf#memenlOptionsrescorropts
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rescorropts are t(timevar) and by(byvar).

t(timevar) is used within the rescorrelation() option to specify a time variable for the
ar, ma, and ctar1 structures.

With rescorr ar and ma, timevar is an integer-valued time variable used to order the
observations within the lowest-level groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps. For the ar or ma
structure, # AR or MA coefficients are estimated.

With rescorr ctar1, timevar is a real-valued time variable. For the continuous AR(1)
correlation model, the correlation between two errors is the parameter ρ, raised to a power
equal to the absolute value of the difference between the t() values for those errors.

by(byvar) is used within the rescorrelation() option and specifies that a set of distinct
within-group error correlation parameters be estimated for each category of byvar. byvar
must be nonnegative-integer valued and constant within the lowest-level groups.

� � �
Reporting �

level(#); see [R] estimation options.

variance, the default, displays the random-effects and within-group error parameter estimates as
variances and covariances.

stddeviations displays the random-effects and within-group error parameter estimates as standard
deviations and correlations.

noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed as
log-standard deviations and hyperbolic arctangents of correlations. Within-group error parameter
estimates are also displayed in their original estimation metric.

nolegend suppresses the expression legend that appears before the fixed-effects estimation table when
functions of parameters or named substitutable expressions are specified in the main equation or
in the define() options.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents menl from calculating standard errors for the estimated random-effects parameters,
although standard errors are still provided for the fixed-effects parameters. Specifying this option
will speed up computation times.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
EM options �

These options control the EM iterations that occur before estimation switches to the Lindstrom–Bates
method. EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(25).

http://www.stata.com/manuals/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals/d.pdf#dformat
http://www.stata.com/manuals/restimationoptions.pdf#restimationoptions
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emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to the Lindstrom–Bates
method.

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed by default.

� � �
Maximization �

menlmaxopts: iterate(#), tolerance(#), ltolerance(#), pnlsopts(), lmeopts(),
[
no
]
log.

The convergence is declared when either tolerance() or ltolerance() is satisfied; see Stopping
rules for details.

iterate(#) specifies the maximum number of iterations for the Lindstrom–Bates alternating
algorithm. One iteration of the alternating algorithm involves #pnls penalized least-squares
(PNLS) iterations as specified in pnlsopts()’s iterate() suboption and #lme linear mixed-
effects (LME) iterations as specified in lmeopts()’s iterate() suboption. The default is the
current value of set maxiter, which is iterate(16000) by default.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in the
parameter vector from one alternating algorithm iteration to the next is less than or equal to
tolerance(), the parameter convergence is satisfied. The default is tolerance(1e-6).

ltolerance(#) specifies the tolerance for the linearization log likelihood in the Lindstrom–
Bates alternating algorithm. The linearization log likelihood is the log likelihood from the LME
optimization step in the last iteration. When the relative change in the linearization log likelihood
from one alternating algorithm iteration to the next is less than or equal to ltolerance(), the
log-likelihood convergence is satisfied. The default is ltolerance(1e-7).

pnlsopts(pnlsopts) controls the PNLS optimization step of the Lindstrom–Bates alternating algo-
rithm. pnlsopts include any of the following: iterate(#), ltolerance(#), tolerance(#),
nrtolerance(#), and maximize options. The convergence of this step within each alternating
iteration is declared when nrtolerance() and one of tolerance() or ltolerance() are
satisfied.

iterate(#) specifies the maximum number of iterations for the PNLS optimization step within
the alternating algorithm. The default is iterate(5).

ltolerance(#) specifies the tolerance for the objective function in the PNLS optimization
step. When the relative change in the objective function from one PNLS iteration to the next
is less than or equal to ltolerance(), the objective-function convergence is satisfied. The
default is ltolerance(1e-7).

tolerance(#) specifies the tolerance for the vector of fixed-effects parameters. When the
relative change in the coefficient vector from one PNLS iteration to the next is less than
or equal to tolerance(), the parameter convergence criterion is satisfied. The default is
tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the PNLS optimization step.
Convergence is declared when g(−H−1)g′ is less than nrtolerance(#), where g is the
gradient row vector and H is the approximated Hessian matrix from the current iteration.
The default is nrtolerance(1e-5).

maximize options are
[
no
]
log, trace, showtolerance, nonrtolerance; see [R] maximize.

http://www.stata.com/manuals/me.pdf#memenlMethodsandformulasstopping_rules
http://www.stata.com/manuals/me.pdf#memenlMethodsandformulasstopping_rules
http://www.stata.com/manuals/me.pdf#memenlOptionsmaximize_options_pnls
http://www.stata.com/manuals/rmaximize.pdf#rmaximize
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lmeopts(lmeopts) controls the LME optimization step of the Lindstrom–Bates alternating algo-
rithm. lmeopts include any of the following: iterate(#), ltolerance(#), tolerance(#),
nrtolerance(#), and maximize options. The convergence of this step within each alternating
iteration is declared when nrtolerance() and one of tolerance() or ltolerance() are
satisfied.

iterate(#) specifies the maximum number of iterations for the LME optimization step within
the alternating algorithm. The default is iterate(5).

ltolerance(#) specifies the tolerance for the log likelihood in the LME optimization step.
When the relative change in the log likelihood from one LME iteration to the next is less
than or equal to ltolerance(), the log-likelihood convergence is satisfied. The default is
ltolerance(1e-7).

tolerance(#) specifies the tolerance for the random-effects and within-group error covariance
parameters. When the relative change in the vector of parameters from one LME iteration
to the next is less than or equal to tolerance(), the convergence criterion for covariance
parameters is satisfied. The default is tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the LME optimization step.
Convergence is declared when g(−H−1)g′ is less than nrtolerance(#), where g is the
gradient row vector and H is the approximated Hessian matrix from the current iteration.
The default is nrtolerance(1e-5).

maximize options are
[
no
]
log, trace, gradient, showstep, hessian, showtolerance,

nonrtolerance; see [R] maximize.[
no
]
log; see [R] maximize.

The following option is available with menl but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Random-effects substitutable expressions

Substitutable expressions
Linear combinations
Linear forms versus linear combinations
Random effects
Multilevel specifications
Summary

Specifying initial values
Two-level models
Testing variance components
Random-effects covariance structures
Heteroskedastic within-group errors
Restricted maximum likelihood
Three-level models
Obtaining initial values

Linearization approach to finding initial values
Graphical approach to finding initial values
Smart regressions approach to finding initial values
Examples of specifying initial values

http://www.stata.com/manuals/me.pdf#memenlOptionsmaximize_options_lme
http://www.stata.com/manuals/rmaximize.pdf#rmaximize
http://www.stata.com/manuals/rmaximize.pdf#rmaximize
http://www.stata.com/manuals/restimationoptions.pdf#restimationoptions
http://stata.com
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Introduction

Nonlinear mixed-effects (NLME) models are models containing both fixed effects and random effects
where some of, or all, the fixed and random effects enter the model nonlinearly. They can be viewed
as a generalization of linear mixed-effects (LME) models (see [ME] mixed), in which the conditional
mean of the outcome given the random effects is a nonlinear function of the coefficients and random
effects. Alternatively, they can be considered as an extension of nonlinear regression models for
independent data (see [R] nl), in which coefficients may incorporate random effects, allowing them
to vary across different levels of hierarchy and thus inducing correlation within observations at the
same level.

Why use NLME models? Can’t we use higher-order polynomial LME models or generalized linear
mixed-effects (GLME) models instead?

In principle, any smooth nonlinear function can be approximated by a higher-order polynomial.
One may argue that we can use an LME (see [ME] mixed) polynomial model and increase the order
of the polynomial until we get an accurate approximation of the desired nonlinear model. There are
three problems with this approach. First, parameters in NLME models often have natural physical
interpretations such as half-life and limiting growth. This is not the case in LME polynomial models.
For example, what is the physical interpretation of the coefficient of time4? Second, NLME models
typically use fewer parameters than the corresponding LME polynomial model, which provides a
more parsimonious summarization of the data. Third, NLME models usually provide better predictions
outside the range of the observed data than predictions based on LME higher-order polynomial models.

GLME models (see [ME] meglm) are also nonlinear, but in the restricted sense that the conditional
mean response given random effects is a nonlinear function of the linear predictor that contains
both fixed and random effects, and only indirectly nonlinear in fixed and random effects themselves.
That is, the nonlinear function must be an invertible function of the linear predictor. However, many
estimation methods for GLME and NLME models are similar because random effects enter both models
nonlinearly.

Population pharmacokinetics, bioassays, and studies of biological and agricultural growth processes
are just a few areas that use NLME models to analyze multilevel data such as longitudinal or repeated-
measures data. Comprehensive treatments of both methodology and history of NLME models may
be found in Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), Demidenko (2013), and
Pinheiro and Bates (2000). Davidian and Giltinan (2003) provide an excellent summary.

Consider a sample of M subjects from a population of interest, where nj measurements,
y1j , . . . , ynjj , are observed on subject j at times t1j , . . . , tnjj . By “subject”, we mean any dis-
tinct experimental unit, individual, panel, or cluster with two or more correlated observations. The
basic nonlinear two-level model can be written as follows (in our terminology, a one-level NLME is
just a nonlinear regression model for independent data),

yij = µ
(
x′ij , β, uj

)
+ εij i = 1, . . . , nj ; j = 1, . . . ,M (1)

where µ(·) is a real-valued function that depends on a p × 1 vector of fixed effects β, a q × 1
vector of random effects uj , which are distributed as multivariate normal with mean 0 and variance–
covariance matrix Σ, and a covariate vector xij that contains both within-subject covariates xwij and

between-subject covariates xbj . The nj × 1 vector of errors εj =
(
ε1j , . . . , εnjj

)′
is assumed to be

multivariate normal with mean 0 and variance–covariance matrix σ2Λj , where depending on Λj , σ2

is either a within-group error variance σ2
ε or a squared scale parameter σ2.

http://www.stata.com/manuals/memixed.pdf#memixed
http://www.stata.com/manuals/rnl.pdf#rnl
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Parameters of NLME models often have scientifically meaningful interpretations, and research
questions are formed based on them. To allow parameters to reflect phenomena of interest, (1) can
be equivalently formulated as a two-stage hierarchical model as follows:

Stage 1: Individual-level model yij = m
(
xwij , φj

)
+ εij i = 1, . . . , nj

Stage 2: Group-level model φj = d
(
xbj , β, uj

)
j = 1, . . . ,M

(2)

In stage 1, we model the response by using a function m(·), which describes within-subject
behavior. This function depends on subject-specific parameters φj’s, which have a natural physical
interpretation, and a vector of within-subject covariates xwij . In stage 2, we use a known vector-valued
function d(·) to model between-subject behavior, that is, to model φj’s and to explain how they
vary across subjects. The d(·) function incorporates random effects and, optionally, a vector of
between-subject covariates xbj . The general idea is to specify a common functional form for each
subject in stage 1 and then allow some parameters to vary randomly across subjects in stage 2.

To further illustrate (1) and (2), we consider the soybean plants data (Davidian and Giltinan 1995),
in which we model the average leaf weight per soybean plant, yij , in plot j at tij days after planting.
Let’s first use (1):

yij = µ
(
x′ij , β, uj

)
+ εij

=
β1 + u1j

1 + exp [−{tij − (β2 + u2j)} / (β3 + u3j)]
+ εij

Here β = (β1, β2, β3)
′, uj = (u1j , u2j , u3j)

′, and xij is simply tij .

Equivalently, we can use (2) to define our model,

Stage 1: yij = m
(
xwij , φj

)
+ εij

=
φ1j

1 + exp {− (tij − φ2j) /φ3j}
+ εij

Stage 2: φ1j = β1 + u1j

φ2j = β2 + u2j

φ3j = β3 + u3j

where xwij = tij , φj = (φ1j , φ2j , φ3j)
′
= d

(
xbj , β, uj

)
= β + uj . A key advantage of (2) is the

interpretability. φj’s are parameters that characterize features of the trajectory. For example, φ1j can
be interpreted as the asymptotic average leaf weight per soybean plant in plot j when tij →∞ and
φ2j as the time at which half of φ1j is reached; that is, if we set tij = φ2j , then E(yij) = φ1j/2.
menl provides both representations.

The random effects uj are not directly estimated (although they may be predicted) but instead
are characterized by the elements of Σ, known as variance components, which are estimated together
with the parameters of the within-group error variance–covariance matrix σ2Λj . Correlation among
repeated measures is induced either indirectly through the subject-specific random effects uj or directly
through specification of the within-subject covariance matrix σ2Λj . Several covariance structures are
available for Σ, similar to those allowed in mixed. In contrast to mixed, menl provides more flexible
modeling of the within-subject variance and correlation structures.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqnlmedef
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menl uses the following decomposition of the Λj matrix,

Λj = SjCjSj (3)

where Sj is diagonal with positive elements such that Var (εij) = σ2[Sj ]
2
ii and Cj is a correlation

matrix such that corr (εij , εkj) = [Cj ]ik; [A]ij denotes the ijth element of matrix A. Decomposition
(3) of Λj allows us to separately model the variance structure (heteroskedasticity) and the correlation
structure by using disjoint sets of parameters for Cj and Sj . This is different from how mixed handles
within-subject correlation, where heteroskedasticity and correlation are determined by the type of the
chosen residual covariance structure. For convenience, menl accommodates the behavior of the mixed
command for specifying residual covariance structures via the rescovariance() option. The more
flexible modeling of the residual structures according to (3) is available via the resvariance() and
rescorrelation() options.

For LME models, because the random effects uj’s are unobserved, inference about β and the
covariance parameters are based on the marginal likelihood obtained after integrating out the random
effects. Unlike LME models, no closed-form solution is available because the random effects enter the
model nonlinearly, making the integration analytically intractable in all but the simplest situations.
There are two principal methods proposed in the literature for fitting NLME models. One is to
use an adaptive Gauss–Hermite (AGH) quadrature to approximate the integral that appears in the
expression of the marginal likelihood. The other one is to use the linearization method of Lindstrom
and Bates (1990), also known as a conditional first-order linearization method, which is based on
a first-order Taylor-series approximation of the mean function and essentially linearizes the mean
function with respect to fixed and random effects. With the AGH method, the level of accuracy increases
as the number of quadrature points increases but at the expense of increasing computational burden.
The linearization method is computationally efficient because it avoids the intractable integration, but
the approximation cannot be made arbitrarily accurate. Despite its potential limiting accuracy, the
linearization method has proven the most popular in practice (Fitzmaurice et al. 2009, sec. 5.4.8). The
linearization method of Lindstrom and Bates (1990), with extensions from Pinheiro and Bates (1995),
is the method of estimation in menl.

The linearization method uses a first-order Taylor-series expansion of the specified nonlinear mean
function to approximate it with a linear function of fixed and random effects. Thus an NLME model
is approximated by an LME model, in which the fixed-effects and random-effects design matrices
involve derivatives of the nonlinear mean function with respect to fixed effects (coefficients) and
random effects, respectively. As such, inference after the linearization method uses the computational
machinery of the LME models. For example, estimates of random effects are computed as best linear
unbiased predictors (BLUPs) of random effects from the approximating LME model. The accuracy of
the inferential results will depend on the accuracy of the linearization method in approximating the
original NLME model. In general, asymptotic inference for the NLME models based on the linearization
method is only “approximately asymptotic”, making it less accurate than the corresponding asymptotic
inference for true LME models. In practice, however, the linearization method was found to perform
well in many situations (for example, Pinheiro and Bates [1995]; Wolfinger and Lin [1997]; Plan
et al. [2012]; and Harring and Liu [2016]).

Both ML and REML estimation are supported by menl. The ML estimates are based on the usual
application of likelihood theory, given the distributional assumptions of the model. In small samples,
ML estimation generally leads to small-sample bias in the estimated variance components. The REML
method (Thompson 1962) reduces this bias by forming a set of linear contrasts of the response that
do not depend on the fixed effects β but instead depend only on the variance components to be
estimated. The likelihood is then formed based on the distribution of the linear contrasts, and standard
ML methods are applied.

The next section describes how to specify nonlinear expressions containing random effects in menl.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqwithcov
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Random-effects substitutable expressions

You define the nonlinear model to be fit by menl by using a random-effects substitutable ex-
pression, a substitutable expression that contains random effects. For example, exp({b}+{U[id]}),
{b1}/({b2}+{b3}*x+{U[id]}), and ({b1}+{U1[id]})/(1+{b2}*x+{c.x#U2[id]}) are a few
examples of such expressions. We describe them in more detail below.

Substitutable expressions

Let’s first consider substitutable expressions without random effects. Substitutable expressions are
just like any other mathematical expressions involving scalars and variables, such as those you would
use with Stata’s generate command, except that the parameters to be estimated are bound in braces.
See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

Although menl requires that you include random effects in your model, for teaching purposes, we
will start with simpler substitutable expressions that do not contain random effects. Suppose that we
wish to fit the model

yij = α
(
1− e−(β0+β1x1ij+β2x2ij)

)
+ εij

where α, β0, β1, and β2 are the parameters to be estimated and εij is an error term. We could simply
type

. menl y = {a}*(1 - exp(-({b0}+{b1}*x1+{b2}*x2)))

Because a, b0, b1, and b2 are enclosed in braces, menl knows that they are parameters in the model.

You can group several parameters together by assigning a group name (or equation name) to them.
Parameters with the same group name, lc in the example below, will be grouped together in the
output table:

. menl y = {a}*(1 - exp(-({lc:b0}+{lc:b1}*x1+{lc:b2}*x2)))

That is, parameters b0, b1, and b2 will appear together in the output table in the equation labeled
lc. Parameters without equation names will appear at the bottom of the output table.

Sometimes, it may be convenient to define subexpressions within the main expression. This can
be done inside the expression itself or by using the define() option. For example,

. menl y = {a}*(1 - exp(-{xb:})), define(xb: {lc:b0}+{lc:b1}*x1+{lc:b2}*x2)

defines the linear predictor of the exponent in the define() option with label xb and then refers
to it inside the exponent as {xb:}. You can define as many subexpressions as you like by using
the define() option repeatedly. Defining subexpressions is also useful for later predictions; see, for
instance, example 13.

The above is equivalent to

. menl y = {a}*(1 - exp(-{xb: {lc:b0}+{lc:b1}*x1+{lc:b2}*x2}))

Parameters {a}, {lc:b0}, {lc:b1}, and {lc:b2} are what we call “free parameters”, meaning
that they are not defined by a linear form, which we describe in the next section. Free parameters
are displayed with a forward slash in front of their names or their group names.

The general syntax for a free parameter is

{
[

eqname:
]

name}

http://www.stata.com/manuals/u13.pdf#u13.2Operators
http://www.stata.com/manuals/u13.pdf#u13.3Functions
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Linear combinations

Nonlinear functions will often contain linear combinations of variables. Recall our nonlinear
function from Substitutable expressions:

yij = α
(
1− e−(β0+β1x1ij+β2x2ij)

)
+ εij

Instead of explicitly specifying the linear combination that appears in the exponent, as we did in
the previous section, we can use menl’s shorthand notation

. menl y = {a}*(1 - exp(-({lc: x1 x2})))

By specifying {lc:x1 x2}, you are telling menl that you are declaring a linear combination named lc
that is a function of two variables, x1 and x2. menl will create three parameters, named {lc: cons},
{lc:x1}, and {lc:x2}.

Although both specifications produce the same results, the shorthand specification is more convenient.

The general syntax for defining a linear combination is

{ eqname: varspec
[
, xb noconstant

]
}

where varspec includes a list of variables (varlist), a list of random-effects terms, or both.

The xb option is used to distinguish between the linear combination that contains one variable
and a free parameter that has the same name as the variable and the same group name as the linear
combination. For example, {lc: x1, xb} is equivalent to {lc: cons} + {lc:x1}*x1, whereas
{lc:x1} refers to either a free parameter x1 with a group name lc or the coefficient of the x1 variable,
if {lc:} has been previously defined in the expression as a linear combination that involves variable
x1; see examples below. Thus the xb option indicates that the specification is a linear combination
rather than a single parameter to be estimated.

When you define a linear combination, a constant term is included by default (a mathematician
would argue that “affine combination” is the correct terminology!). The noconstant option suppresses
the constant.

Having defined a linear combination such as {lc:x1 x2}, you can refer to its individual coefficients
by using {lc:x1} and {lc:x2} or, more generally, {eqname:varname}. For example, suppose that
we want to fit the following model, where the coefficient of x1, β1, appears in two places in the
expression:

yij =
1

(1 + β1x1ij + β2x2ij + β3x3ij)
exp {− (α0 + α1zij) / (1 + β1x4ij)}+ εij

We use {lc1: x1 x2 x3, noconstant} to specify the first linear combination, which appears in
the denominator outside the exponentiated expression, and then use {lc1:x1} to refer to β1 in the
denominator inside the exponentiated expression. We also use the xb option, when we specify the
second linear combination that contains only one covariate z. Below is the full specification:

. menl y = 1/(1+{lc1: x1 x2 x3, noconstant})*exp(-{lc2: z, xb}/(1+{lc1:x1}*x4))

You may also refer to a “subset” of a previously defined linear combination. For example, let’s
modify our previous expression by substituting β1x4ij in the denominator in the exponent with the
subset β1x1ij + β3x3ij of the first linear combination:

yij =
1

(1 + β1x1ij + β2x2ij + β3x3ij)
exp {− (α0 + α1zij) / (1 + β1x1ij + β3x3ij)}+ εij

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplessubexpr
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The coefficients for variables x1 and x3 are the same in the denominators inside and outside the
exponent. We fit this model by typing

. menl y = 1/(1+{lc1: x1 x2 x3, nocons})* ///
exp(-{lc2: z, xb}/(1+{lc1: x1 x3, nocons}))

We used the same equation name, lc1, to constrain the coefficients to be the same between the two
linear-combination specifications. If we used a different equation name, say, lc3, in the last linear
combination, we would have specified β4x1ij + β5x3ij instead of β1x1ij + β3x3ij and estimated
two extra parameters, β4 named {lc3:x1} and β5 named {lc3:x3}.

To refer to the entire linear combination that was already defined, you can simply refer to its name.
For example, if both denominators included the same linear combination, β1x1ij + β2x2ij + β3x3ij ,
the corresponding menl specification would be

. menl y = 1/(1+{lc1: x1 x2 x3, nocons})*exp(-{lc2: z, xb}/(1+{lc1:}))

Just like subexpressions, linear combinations can be defined in the define() option. For example,
the above is equivalent to

. menl y = 1/(1+{lc1:})*exp(-{lc2:}/(1+{lc1:})), define(lc1: x1 x2 x3, nocons) ///
define(lc2: z, xb)

Linear forms versus linear combinations

As we mentioned in Linear combinations, the linear-combination specification is syntactically
convenient. It can also be more computationally efficient when a linear combination is a linear form.

A linear combination is what we call a linear form as long as you do not refer to its coefficients
or any subset of the linear combination anywhere in the expression. Linear forms are beneficial for
some nonlinear commands such as nl because they make derivative computation faster and more
accurate. Although menl does not fully utilize the linear-form specification in its computations, it is
still important to learn to distinguish between linear forms and linear combinations.

For example, in Linear combinations, the first linear combination {lc:}, the linear combination
{lc2:}, and the linear combination {lc1:} in the last example are all linear forms. The linear
combination {lc1:} in the examples where we referred to {lc1:x1} and {lc1:x1 x3} is not a
linear form.

In contrast to free parameters, parameters of a linear form are displayed without forward slashes
in the output. Rather, they are displayed as parameters within an equation whose name is the linear
combination name. Parameters of linear combinations that are not linear forms are considered free
parameters.

Random effects

So far, we have restricted our discussion to substitutable expressions that do not contain random
effects. Examples of random effects specified within the menl syntax are {U1[id]}, {U2[id1>id2]},
{c.x1#U3[id]}, and {2.f1#U4[id]}. These represent a random intercept at the id level, a random
intercept at the id2-within-id1 level, a random slope for the continuous variable x1, and a random
slope associated with the second level of the factor variable f1, respectively.

The general syntax for specifying random effects, respec, is provided below.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesLinearcombinations
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respec Description

{rename[levelspec]} Random intercepts rename at hierarchy levelspec
{c.varname#rename[levelspec]} Random coefficients rename for continuous variable varname
{#.fvvarname#rename[levelspec]} Random coefficients rename for the #th level of

factor variable fvvarname

rename is a random-effects name. It is a Stata name that starts with a capital letter. levelspec defines
the level of hierarchy and is described below.

levelspec Description

levelvar variable identifying the group structure for the random effect at that level
lv2 > lv1 two-level nesting: levels of variable lv1 are nested within lv2
lv3 > lv2 > lv1 three-level nesting: levels of variable lv1 are nested within lv2,

which is nested within lv3
. . . > lv3 > lv2 > lv1 higher-level nesting

You can equivalently specify levels in the opposite order, from the lowest level to the highest; for example, lv1 < lv2
< lv3, but they will be displayed in the canonical order, from the highest level to the lowest.

Random effects can be specified within a linear-combination specification such as {lc u: x1 x2
U1[id1] U2[id2>id1]}. In this case, the curly braces around each random effect are not needed.

Let us illustrate several random-effects specifications with menl. In this section, we concentrate
on two-level nonlinear models; see Multilevel specifications for higher-level models.

Suppose that we want to fit the following model:

yij =
αzij + u0j

1 + exp {− (β0 + β1x1ij)}
+ εij

Compared with models we considered in previous sections, this model includes random effects or,
specifically, random intercepts u0j . Suppose that these random intercepts correspond to the levels of
the id variable. Then, we can include them in our model by using {U0[id]}, where U0 will be their
name.

. menl y = ({a}*z+{U0[id]})/(1+exp(-({b0}+{b1}*x1)))

A more efficient specification is to use the linear-combination notation:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1, xb}))

The curly braces around U0[id] are removed when it is specified within a linear-combination
specification.

If you need to refer to the random-effects term again in the expression, you can simply use its name.
For example, suppose that our model includes the same random intercepts in both the numerator and
the denominator.

yij =
αzij + u0j

1 + exp {− (β0 + β1x1ij + u0j)}
+ εij

We include random intercepts u0j’s in the second linear combination by simply referring to their
name, U0:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1 U0}))

http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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If instead of u0j’s, we had a different set of random intercepts, v0j’s, in the denominator, we
would need to specify a new set of random intercepts, say, V0[id], with menl:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1 V0[id]}))

The shorthand notation for referring to random effects only by name, that is, without the brackets
and the levelspec, is also useful when specifying the covariance() option, especially for multilevel
random effects with long-level specifications; see Multilevel specifications.

Let’s now see how to include random slopes. Consider the following extension of the first, simpler
model in this subsection:

yij =
αzij + u0j + u1jzij

1 + exp {− (β0 + β1x1ij)}
+ εij

Here u1j is a random slope for a continuous variable z and is specified as {c.z#U1[id]} directly
or without curly braces within a linear-combination specification.

. menl y = {lc1: z U0[id] c.z#U1[id], nocons}/(1+exp(-{lc2: x1, xb}))

We can also include random slopes for factor variables. To demonstrate this, let’s consider a
different nonlinear model for variety. Consider the model below, where binary variables x1ij and x2ij
correspond to the factor levels 1 and 2 of a factor variable x that takes on values 0, 1, and 2, with 0
being the base level.

yij = α0 + α1z1ij −
√
w2
ij + exp (β0 + β1x1ij + β2x2ij + u0j + u1jx1ij + u2jx2ij) + εij

There are three random-effects terms in this model: random intercepts u0j , random slopes u1j for
x1ij (level 1 of x), and random slopes u2j for x2ij (level 2 of x). In Stata, for a factor variable
x, we can use the factor-variable notation ([U] 11.4.3 Factor variables) to refer to its levels, 1.x
for level 1 and 2.x for level 2. So, to include the three random-effects terms in menl, we will use
U0[id], 1.x#U1[id], and 2.x#U2[id], respectively.

. menl y = {lc1: z1, xb} - sqrt(c.w#c.w + ///
exp({lc2: i.x U0[id] 1.x#U1[id] 2.x#U2[id]}))

In the above specification, we used the factor-variable notations i.x to include fixed effects for all
levels of x, except the base level, and c.w#c.w to include a square of w; see [U] 11.4.3 Factor
variables for details. The factor-variable specification i. or any other specification that refers to
multiple levels of a factor variable is not allowed when specifying random coefficients, because
each level will typically require a different set of random effects. For example, if we had specified
i.x#U[id] in the above example, we would have received an error.

Multilevel specifications

In Random effects, we focused on specifying substitutable expressions containing random effects
for two-level nonlinear mixed-effects models. Here we will consider higher-level models.

Suppose that we want to fit the following three-level nonlinear mixed-effects model,

yijk = β0 + u
(3)
0k + u

(2)
0jk + cos

{(
β1 + u

(3)
1k

)
x1ijk

}
+ εijk
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where first-level observations, indexed by i, are nested within second-level groups, indexed by j,
which are nested within third-level groups, indexed by k.

There are three random-effects terms in this model: random intercepts, u(3)0k , and random slopes

for x1, u(3)1k , at the third level (idk) and random intercepts u(2)0jk at the second level (idj-nested-
within-idk). We specify random intercepts and random slopes for x1 at the highest hierarchical level
just like we did in Random effects for two-level models. Specifically, we can use U0[idk] and
c.x1#U1[idk], respectively. To specify random intercepts u(2)0jk at the idj-nested-within-idk level,
we need to use one of the levelspec specifications for two nested levels. For example, we can use
UU0[idk>idj]. Below is the full specification:

. menl y = {lc1: U0[idk] UU0[idk>idj]} + cos({lc2: x1 c.x1#U1[idk], noconstant})

We can also include a random slope of the x1 variable at the idj-within-idk level in the cosine
function by specifying c.x1#UU1[idk>idj] inside the cos() function.

. menl y = {lc1: U0[idk] UU0[idk>idj]} + ///
cos({lc2: x1 c.x1#U1[idk] c.x1#UU1[idk>idj], noconstant})

We can shorten the above specification by writing c.x1#U1[idk] c.x1#UU1[idk>idj] more
compactly as c.x1#(U1[idk] UU1[idk>idj]),

. menl y = {lc1: U0[idk] UU0[idk>idj]} + ///
cos({lc2: x1 c.x1#(U1[idk] UU1[idk>idj]), noconstant})

Similarly, if we had a four-level model with, say, a random intercept at the idj-within-idk-within-
idl level, we could specify it as W[idl>idk>idj]; see levelspec for other specifications.

Summary

To summarize, here are a few rules to keep in mind when defining substitutable expressions.

1. Model parameters and random effects are bound in braces if specified directly in the
expression: {b0}, {U0[id]}, etc.

2. Model parameters can be assigned group names: {slopes:x1}, {slopes:x2}, etc.

3. Random-effects names must start with a capital letter as in {U0[id]}, {c.x#U1[id]},
{V0[id2>id1]}, {1.z#V1[id2>id1]}, etc.

4. The factor-variable specification i., as in {i.z#V1[id2>id1]}, or any other specification
that refers to multiple levels of a factor variable, as in {i(1/4).z#V1[id2>id1]}, is not
allowed when specifying random coefficients.

5. Linear combinations of variables can be included using the specification

{eqname:varlist
[
, xb noconstant

]
}

For example, {price: mpg weight i.rep78} and {lc: x1 x2, noconstant}.

6. Random effects can be specified within a linear combination, in which case they should be
included without curly braces, for example, {lc u: x1 x2 U[id]}.

7. To specify a linear combination that contains only one variable, use the xb option, for
example, {lc: x1, xb}.

8. To refer to the previously defined linear combination again in the expression, simply use its
name {eqname:}, for example, {lc:} and {lc u:}.

9. You can refer to individual parameters of the linear combination by using {eqname: cons}
and {eqname:varname}, for example, {price: cons} and {price:weight}.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesRandomeffects
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10. You can refer to a “subset” of the previously defined linear combination by using
{eqname:subset}, where subset is a subset of the variables from varlist used to define
eqname, as in {price: mpg weight}. To refer to the subset containing only one variable,
use the xb option, as in {price: weight, xb}. If a linear combination contains only one
random-effects term, the xb option is implied.

11. To refer to the previously defined random effects again in the expression or in the covari-
ance() option, simply use their names, such as {U0} and {U1}.

12. You can define subexpressions, including linear combinations, inside the main expression or
in the define() option, which can be repeated. For example,

. menl y = {numer:}/{denom:}, define(numer: z U0[id]) ///
define(denom:1+exp(-{lc: x1, xb}))

13. Specify linear forms whenever possible for faster and more accurate computation of derivatives;
see Linear forms versus linear combinations.

14. Model parameters that are not defined by linear forms are considered free parameters. They
are included in the output with a forward slash in front of their names or group names and
displayed after linear forms in the estimation table.

Specifying initial values

By default, menl uses the EM algorithm to obtain initial values, but you may often need to specify
your own. You specify your own initial values in the initial() option. For example, specifying the
initial(a 1.1 b -2) option with menl initializes parameter {a} to 1.1 and parameter {b} to −2.

When you specify your own initial values, they are used for initialization, and the EM algorithm is
not performed. When you specify initial values for only a subset of model parameters, the remaining
parameters are initialized with some predetermined values such as zeros for fixed-effects parameters
and correlations and ones for variances. You can specify the iterate(0) option to see the initial
values that will be used by menl in the optimization.

Often, you may have good initial values for fixed-effects parameters but not for random-effects
parameters. In this case, you can specify initial()’s fixed suboption to supply your own fixed-
effects parameters, but use the EM algorithm to obtain initial values for the random-effects parameters.

There are three ways in which you can use the initial(initial values) option: you can specify
a vector of values, a list of values, or values for individual parameters and groups of parameters.

Specifically, initial values is one of the following:

vectorname
[
, skip copy fixed

]
#
[

#
] [

. . .
]
, copy

paramlist
[
=
]
#
[

paramlist
[
=
]
#
[
. . .
] ] [

, fixed
]

skip specifies that any parameters found in the specified initialization vector, vectorname, that are
not also found in the model be ignored. The default action is to issue an error message.

copy specifies that the initial values be copied into the initialization vector without checking for valid
column names. copy must be specified when initial values are supplied as a list of numbers.

fixed specifies that initial estimates are being supplied for the fixed effects only and that menl should
still perform the EM algorithm to refine initial values for variance components. The specified initial
values are used for fixed-effects parameters during the EM algorithm. If you omit fixed, menl
presumes that you are specifying starting values for all parameters in e(b), and the EM algorithm
will not be performed.

http://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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Examples of paramlist are param, {param}, {param1} {param2}, {param1 param2},
{grp:param1} {grp:param2} {grp:param3}, {grp:param1 param2}, and {grp:}.

Let’s describe each specification in more detail. You can specify the name of a vector containing
the initial values, say, initial(b0). Vector b0 should be properly labeled with labels found in
column names of e(b), unless you specify the copy option. A properly labeled vector can have
fewer elements than e(b) or, if skip is specified, even more elements. A vector without labels must
be of the same dimension as e(b).

Alternatively, you can supply a list of numbers to initial(), in which case copy must be
specified. The list of numbers should be of length equal to the dimension of e(b). For example, if
e(b) has four parameters and you type initial(1.1 0 3 -2, copy), then the four coefficients in
e(b) will be initialized to 1.1, 0, 3, and −2, respectively. If instead you specify, for example, only
three initial values in your list, an error will be issued.

Finally, you can initialize parameters by referring to their names. You can specify a parameter name,
its initial value, another parameter name, its initial value, and so on, for example, initial(a 1.1 b
-2). You can also assign the same initial value to a group of parameters. For example, initial({a
b c} 1) will initialize parameters {a}, {b}, and {c} to 1 and initial({lc:x1 x2 cons} 0)
will initialize {lc:x1}, {lc:x2}, and {lc: cons} to 0. You can assign the same initial value to
all parameters with the same group name. For example, we can shorten the previous specification to
initial({lc:} 0).

Depending on the situation, it may also be beneficial to specify initial values for the NLS algorithm
used by menl to obtain starting values for the EM algorithm. These initial values can be specified in the
parameter definition such as {a=0.5}, in which case the NLS algorithm used during the initialization
will use 0.5 as the starting value for parameter a instead of the default 0. Such initialization is
particularly useful for parameters used in the denominators for which zero values may lead to an
undefined value of the mean function.

See Examples of specifying initial values and Obtaining initial values for examples.

Two-level models

The sole purpose of this section and its examples is to highlight the syntax of menl and make
you familiar with how to specify substitutable expressions in menl and with its output. Also see an
introductory example in Nonlinear models in [ME] me.

We will use the data from the Longitudinal Study of Unicorn Health in Zootopia, which contain the
brain weight (weight) of 30 newborn male unicorns and 30 newborn female unicorns. Measurements
were collected at 13 occasions every 2 months over the first 2 years after birth (time). Based on
previous studies, a model for unicorn brain shrinkage is believed to be

weightij = β1 + (β2 − β1) exp (−β3timeij) + εij i = 1, 2, . . . , 13; j = 1, 2, . . . , 60

Parameter β1 represents the average brain weight of unicorns as timeij increases to infinity.
Parameter β2 is the average brain weight at birth (at timeij = 0), and β3 is a scale parameter that
determines the rate at which the average brain weight of unicorns approaches the asymptotic weight
β1 (decay rate). This model can be fit with the nl command; see [R] nl.

We will start with a simple two-level model in which we allow the asymptote parameter β1 to
vary between unicorns by replacing β1 in the above equation with β1 + u0j ,

weightij = β1 + u0j + (β2 − β1 − u0j) exp (−β3timeij) + εij (4)

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesExamplesofspecifyinginitialvalues
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where β1, β2, and β3 are fixed-effects parameters to be estimated and u0j is a random intercept at
the unicorn, id, level that follows a normal distribution with mean 0 and variance σ2

u.

Equivalently, the model defined by (4) can be written as a two-stage model,

weightij = φ1j + (φ2j − φ1j) exp (−φ3jtimeij) + εij (5)

with the following stage 2 specification:

φ1j = β1 + u0j

φ2j = β2

φ3j = β3

(6)

Parameters φ1j , φ2j , and φ3j now describe the behavior of the jth unicorn. For example, φ1j
represents the brain weight of the jth unicorn as timeij increases to infinity.

Example 1: Simple two-level model

Let’s use menl to first fit a single-equation model defined by (4), described above.

. use http://www.stata-press.com/data/r15/unicorn
(Brain shrinkage of unicorns in the land of Zootopia)

. menl weight = {b1}+{U0[id]}+({b2}-{b1}-{U0[id]})*exp(-{b3}*time)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -56.9757597

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -56.97576

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 4.707954 .1414511 33.28 0.000 4.430715 4.985193
/b2 8.089432 .0260845 310.12 0.000 8.038307 8.140556
/b3 4.13201 .0697547 59.24 0.000 3.995293 4.268726

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(U0) 1.189809 .2180063 .8308322 1.703888

var(Residual) .0439199 .0023148 .0396095 .0486995

Notes:

1. The response variable weight is specified on the left-hand side of the equality sign, and parameters
to be estimated are enclosed in curly braces {b1}, {b2}, and {b3} on the right-hand side.

2. By typing {U0[id]}, we specified a random intercept at the level identified by the group variable
id, that is, the unicorn level (level two).

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesequnicone
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3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are
not displayed, but you can display them by using the emlog option. NLME models may often
have multiple solutions and converge to a local maximum. It is thus important to try different
initial values to investigate the existence of multiple solutions and the convergence to a global
maximum; see Obtaining initial values.

b. A set of iterations displaying the value of the linearization log likelihood from the Lindstrom–
Bates algorithm or alternating algorithm. The term “linearization” reflects the fact that the
reported log likelihood corresponds to the linear mixed-effects model obtained after linearization
of the specified nonlinear mean function with respect to fixed and random effects. See Inference
based on linearization and Stopping rules for details about the algorithm.

c. The message “Computing standard errors”. This is just to inform you that menl has finished
its iterative maximization and is now reparameterizing the variance components (see Methods
and formulas) to their natural metric and computing their standard errors. If you are interested
only in the fixed-effects estimates, you can use the nostderr option to bypass this step.

4. The output title, “Mixed-effects ML nonlinear regression”, informs us that our model was fit using
ML, the default. For REML estimates, use the reml option.

5. The header information is similar to that of the mixed command, but unlike mixed, menl in
general does not report a model χ2 statistic in the header because a test of the joint significance of
all fixed-effects parameters (except the constant term) may not be relevant in a nonlinear model.

6. The first estimation table reports the fixed effects. We estimate β1 = 4.71, β2 = 8.09, and
β3 = 4.13. Although z tests against zeros are reported automatically for all fixed-effects parameters,
as part of standard estimation output, they may not always be of interest or even appropriate for
parameters of nonlinear models. You can use the test command ([R] test) to test hypotheses of
interest or reparameterize your model so that the tests of parameters against zeros are meaningful.

7. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity. In general, this means that our model includes random effects
at the id (unicorn) level and that their variance–covariance matrix, Σ, is the identity matrix (all
random effects have the same variance). In our example, because we have only one random effect,
u0j , the random-effect covariance structure is irrelevant, and the variance of the random intercept,
σ2
u, labeled as var(U0) in the output, is estimated as 1.19 with standard error 0.22.

8. The row labeled var(Residual) displays the estimated overall error variance or variance of the
error term; that is, V̂ar (εij) = σ̂2

ε = 0.044.

Example 2: Two-level model as a two-stage model, using the define() option

The model from example 1 can also be specified as a two-stage model, as defined by (5) and
(6), by using the define() option. The define() option is particularly useful when you have a
complicated nonlinear expression, and you would like to break it down into smaller pieces. Parameters
of interest that are functions of other parameters can be defined using the define() option. This
will make it easier to predict them for each subject after estimation; see [ME] menl postestimation.

Below we specify the asymptote parameter, φ1j , by using define(). The colon (:) in {phi1:}
instructs menl that phi1 will be specified as a substitutable expression within the define() option.
Parameters {phi2} and {phi3} are simple free parameters and thus do not need to be specified in
define().
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. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3}*time),
> define(phi1: {b1}+{U0[id]})

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -56.9757597

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -56.97576

phi1: {b1}+{U0[id]}

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 4.707954 .1414511 33.28 0.000 4.430715 4.985193
/phi2 8.089432 .0260845 310.12 0.000 8.038307 8.140556
/phi3 4.13201 .0697547 59.24 0.000 3.995293 4.268726

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(U0) 1.189809 .2180058 .8308328 1.703887

var(Residual) .0439199 .0023148 .0396095 .0486995

The results are identical to those obtained in example 1, but the estimation table now has a legend
that lists the expression phi1 defined in the model. We can suppress this legend by specifying the
nolegend option.

We could have defined phi1 directly in the main expression instead of the define() option,
. menl weight = {phi1:{b1}+{U0[id]}}+({phi2}-{phi1:})*exp(-{phi3}*time)

(output omitted )

but by using the define() option, we simplified the main expression.

Example 3: Two-level model containing covariates

Reducing brain weight loss has been an active research area in Zootopia for the past two decades,
and scientists believe that consuming rainbow cupcakes right after birth may help slow down brain
shrinkage. Recall that the scale parameter φ3j determines the rate at which the brain weight of the
jth unicorn decreases to its asymptotic value φ1j . Hence, covariate cupcake, which represents the
number of rainbow cupcakes consumed right after birth, is added to the equation of φ3j . Also, we
would like to investigate whether the asymptote, φ1j , is gender specific, so we include the factor
variable female in the equation for φ1j . femalej is 1 if the jth unicorn is a female and 0 otherwise.

The stage 2 specification of the model defined by (5) becomes

φ1j = β10 + β11femalej + u0j

φ2j = β2

φ3j = β30 + β31cupcakej

(7)

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexunic
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The define() option can be repeated, so we specify a separate define() option for φ1j , φ2j ,
and φ3j . We could have left φ2j as a free parameter {phi2} in our specification, but we wanted to
closely match the stage 2 specification (7).

. menl weight = {phi1:}+({phi2:}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: {b10}+{b11}*1.female+{U0[id]})
> define(phi2: {b2})
> define(phi3: {b30}+{b31}*cupcake)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -29.0149875

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -29.014988

phi1: {b10}+{b11}*1.female+{U0[id]}
phi2: {b2}
phi3: {b30}+{b31}*cupcake

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b10 4.072752 .1627414 25.03 0.000 3.753785 4.39172
/b11 1.264407 .2299723 5.50 0.000 .8136694 1.715144
/b2 8.088102 .0255465 316.60 0.000 8.038032 8.138172

/b30 4.706926 .1325714 35.50 0.000 4.44709 4.966761
/b31 -.2007309 .0356814 -5.63 0.000 -.2706651 -.1307966

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(U0) .7840578 .1438924 .5471839 1.123473

var(Residual) .0420763 .0022176 .0379468 .0466551

In the table legend, /b10 and /b11 correspond, respectively, to the constant term and coefficient of
1.female in the equation for φ1j . /b2 is φ2j , and /b30 and /b31 correspond, respectively, to the
constant term and coefficient for cupcake in the equation for φ3j .

Based on our results, consuming rainbow cupcakes after birth indeed slows down brain shrinkage:
/b31 is roughly −0.2 with a 95% CI of [−0.271,−0.131].

Example 4: Specifying linear combinations

A more convenient way to specify the model in example 3 is to use linear-combination specifications;
see Random-effects substitutable expressions .

For example, define(phi1: {b10}+{b11}*1.female+{U0[id]}) can be replaced with de-
fine(phi1: i.female U0[id]). menl knows that we are defining φ1j as a linear combination of
i.female and U0[id] and thus will create a constant term and a coefficient for each level of factor

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesequnicux
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variable female and will use a coefficient of 1 for any random effect. Because female has only
two levels, menl will create two coefficients for 0b.female and 1.female, respectively, but will
constrain the coefficient of the base level, level 0, to be 0.

We now fit our model by using linear-combination specifications within the define() options.
We explain the use of the second and third define() specifications following estimation.

. menl weight = {phi1:}+({phi2:}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: i.female U0[id])
> define(phi2: _cons, xb)
> define(phi3: cupcake, xb)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -29.0149875

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Wald chi2(2) = 61.78
Linearization log likelihood = -29.014987 Prob > chi2 = 0.0000

phi1: i.female U0[id]
phi3: cupcake, xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
female

female 1.264407 .2299723 5.50 0.000 .8136694 1.715144
_cons 4.072752 .1627414 25.03 0.000 3.753785 4.39172

phi2
_cons 8.088102 .0255465 316.60 0.000 8.038032 8.138172

phi3
cupcake -.2007309 .0356814 -5.63 0.000 -.2706651 -.1307966

_cons 4.706926 .1325714 35.50 0.000 4.44709 4.966761

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(U0) .7840578 .1438928 .5471833 1.123475

var(Residual) .0420763 .0022176 .0379468 .0466551

By using linear-combination specifications within the define() options, we improved the readability
of the coefficient table. For example, it is now clear that cons in the equation labeled phi3
corresponds to the constant term in the equation for φ3j . This term was labeled /b30 previously.

Notes:

1. The define() option interprets its specification as a random-effects substitutable expression, so
you do not need to specify the curly braces ({}) around the specification.

2. All rules for random-effects substitutable expressions apply to the specifications within define().
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3. Following one of the rules for random-effects substitutable expressions, we used the xb option
within define()s for phi2 and phi3, because their linear combinations contained only one term:
cons for phi2 and cupcake for phi3.

4. Specification define(phi2: cons, xb) is the same as define(phi2:, xb). In other words,
cons is implied with any linear combination, unless the noconstant option is specified. We

chose to include cons directly for clarity.

5. We could have used a free parameter {phi2} instead of the linear combination {phi2: cons, xb},
but we wanted to preserve the order in which phi1, phi2, and phi3 appear in the estimation
table. See example 5, where we specify φ2j as a free parameter {phi2}.

6. In the presence of linear combinations, menl reports a joint test of significance of all coefficients
(except the constant term) across all linear combinations.

7. Linear combinations containing only a constant such as {phi2:} are not listed in the table
expression legend for brevity.

Example 5: Including random coefficients

In previous examples, we only illustrated how to specify random intercepts such as {U0[id]},
and it is bad karma to end a unicorn story without showing how to specify random coefficients or
random slopes.

Continuing with our model as defined by (5) and (7), let’s suppose that the equation for the
brain-weight scale parameter, φ3j , is as follows:

φ3j = β30 + (β31 + u1j)cupcakej

We incorporated a unicorn-specific random slope for variable cupcake. The random slope, u1j ,
for a continuous variable cupcake can be specified in menl as c.cupcake#U1[id], and by default,
menl assumes that it is independent of the random intercept, u0j . (See example 9 for specifying other
random-effects covariance structures.)
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. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: i.female U0[id])
> define(phi3: cupcake c.cupcake#U1[id])

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = 165.417513
Iteration 2: linearization log likelihood = 165.420082
Iteration 3: linearization log likelihood = 165.420112
Iteration 4: linearization log likelihood = 165.420101

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Wald chi2(2) = 46.70
Linearization log likelihood = 165.4201 Prob > chi2 = 0.0000

phi1: i.female U0[id]
phi3: cupcake c.cupcake#U1[id]

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
female

female 1.320623 .2215707 5.96 0.000 .8863522 1.754893
_cons 4.006823 .1568268 25.55 0.000 3.699448 4.314198

phi3
cupcake -.219661 .0659984 -3.33 0.001 -.3490155 -.0903066

_cons 4.771466 .1128421 42.28 0.000 4.5503 4.992633

/phi2 8.087655 .0179406 450.80 0.000 8.052492 8.122818

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(U0) .727464 .1337149 .5074024 1.042967
var(U1) .1258914 .0309569 .0777471 .2038487

var(Residual) .0208202 .0011403 .018701 .0231795

In addition to the overall error variance and the random-intercept variance, we now have a random-
slope variance, which is labeled var(U1) in the output. In this example, we also specified parameter
φ2j as a free parameter {phi2} instead of a linear combination as in example 4. As we mentioned
in Summary, free parameters are displayed after linear combinations, so phi2 is listed last in the
estimation table.

Previous studies of unicorns considered a model that also incorporated gender-specific variation
between unicorns in asymptotic weight φ1j ,

φ1j = β10 + u0j + (β11 + u2j)femalej

but found no statistical evidence of such variation.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexuniclc
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesSummary
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If we wanted to verify this for our data, we could have fit the following model:

. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3:}*time), ///
define(phi1: i.female U0[id] 1.female#U2[id]) ///
define(phi3: cupcake c.cupcake#U1[id])

Compared with our previous specification, we included a new term in the define() option for
phi1—a random slope for level 1 of the factor variable female, 1.female#U2[id]. To include
random slopes for a factor variable, we must specify random effects for each level, except the base
level, of the factor variable. The specification i.fvvarname for referring to all levels of a factor
variable is not allowed in the context of random effects, because a different set of random effects
must be defined for each level. For example, if we specified i.female#U2[id] in our example, we
would have received an error.

To summarize:

1. Use {name} to define free parameters such as {b1}.

2. Use, for example, {U0[id]} to define random intercepts at the id level, {c.varname#U1[id]} to
define random slopes for continuous variable varname at the id level, and {#.fvvarname#U1[id]}
for each level #, except the base level, of variable fvvarname to include random slopes for factor
variable fvvarname. The specification {i.fvvarname#U1[id]} is not allowed.

3. Use linear-combination specifications whenever possible. Do not use {} around random effects
when they are specified within a linear combination.

4. Use multiple define() options to specify parameters of interest that are functions of other
parameters, and use linear-combination specifications within define() whenever possible.

5. Use the xb option within a linear combination or within define() whenever you specify one variable
such as define(phi1: cupcake, xb), one random effect such as {phi2: U0[id], xb}, or a
constant-only linear combination such as {phi2: cons, xb} or {phi2: , xb}. When you specify
the xb option, the above specifications are interpreted by menl, respectively, as a linear combination
{phi1: cons}+{phi1:cupcake}*cupcake, a linear combination {phi: cons}+{U0[id]}, and
a constant term {phi2: cons}.

6. Unicorns do exist in our world, they are just gray, fat, and called rhinos.

Testing variance components

Consider data on the intensity of 23 large earthquakes in western North America between 1940 and
1980 analyzed originally by Joyner and Boore (1981) and then also by Davidian and Giltinan (1995,
sec. 11.4). The objective of the study was to model the maximum horizontal acceleration (in g units),
accel, taken at the ith measuring station for the jth earthquake, as a function of the magnitude of
the quake on the Richter scale, richter, and the distance (in km) of the measuring station from
the quake epicenter, distance. We are also interested in the possible effect of the soil type soil,
soil versus rock, at a given measuring station on acceleration. The results of this study are useful to
understand the nature of the damage caused by a particular earthquake and to determine the location
for sensitive installations such as nuclear facilities.

Let’s consider one of the models studied by Davidian and Giltinan (1995) for these data,

log10(accelij) = φ1j − log10
√
distance2ij + exp (φ2j)− φ3ij

√
distance2ij + exp (φ2j) + εij

(8)



30 menl — Nonlinear mixed-effects regression

where
φ1j = β0 + β1richterj + u1j

φ2j = β2

φ3i = β3 + u3j

(9)

and

uj =

[
u1j
u3j

]
∼ N(0,Σ), diagonal Σ =

[
σ2
u1

0
0 σ2

u3

]
, and εij ∼ N(0, σ2

ε ) (10)

Example 6: Fitting an NLME model for the earthquake data

Let’s fit the model defined by (8), (9), and (10) by using menl.

. use http://www.stata-press.com/data/r15/earthquake
(Earthquake intensity (Joyner and Boore, 1981))

. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter U1[quake]) define(phi3: U3[quake], xb)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = 2.4115811
Iteration 2: linearization log likelihood = 2.40751409
Iteration 3: linearization log likelihood = 2.40734699
Iteration 4: linearization log likelihood = 2.40734238
Iteration 5: linearization log likelihood = 2.40734121
Iteration 6: linearization log likelihood = 2.40734113

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000

phi1: richter U1[quake]
phi3: U3[quake], xb

laccel Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
richter .2310021 .0450804 5.12 0.000 .1426461 .319358

_cons -.8836537 .2826255 -3.13 0.002 -1.437589 -.329718

phi3
_cons .004575 .0014192 3.22 0.001 .0017935 .0073566

/phi2 4.063075 .4023386 10.10 0.000 3.274506 4.851644

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquake
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeuu
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeuudist
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

quake: Independent
var(U1) .0056676 .0073404 .0004477 .071752
var(U3) .000013 8.42e-06 3.66e-06 .0000463

var(Residual) .0461647 .0054421 .0366409 .0581639

We also store our estimates for later use:

. estimates store E1

By default, menl assumes that the random effects u1j and u3j are independent, so there is no need to
specify the covariance() option in this case. In other words, omitting the covariance() option
is equivalent to specifying covariance(U1 U3, independent).

Example 7: Likelihood-ratio test for variance components

Davidian and Giltinan (1995) did not include any random effects in the model for the φ2j parameters.
Let’s check whether the random effects are needed in the equations for φ1j and φ3j parameters in
(9).

One simple way to assess whether a random effect associated with a certain φj can be omitted,
is to examine its coefficient of variation (CV), the ratio of the standard deviation to the mean. Let’s
compute the CV for φ3j . For convenience, let’s redisplay the results from example 6 as standard
deviations for variance components.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeuu
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexquake
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. menl, stddeviations

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000

phi1: richter U1[quake]
phi3: U3[quake], xb

laccel Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
richter .2310021 .0450804 5.12 0.000 .1426461 .319358

_cons -.8836537 .2826255 -3.13 0.002 -1.437589 -.329718

phi3
_cons .004575 .0014192 3.22 0.001 .0017935 .0073566

/phi2 4.063075 .4023386 10.10 0.000 3.274506 4.851644

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

quake: Independent
sd(U1) .0752832 .0487517 .0211582 .2678656
sd(U3) .0036085 .0011673 .0019142 .0068026

sd(Residual) .2148596 .0126644 .1914181 .241172

The stddeviations option specifies that menl display random-effects and error standard deviations
instead of variances. It will also display correlations instead of covariances whenever they are in the
model. Because random-effects variances for these data are very small, we will use this option in all
subsequent examples to display results in the standard deviation metric.

The interquake random variation in theφ3j values about their mean is CV = sd(U3)/{phi3: cons}
= 0.0036/0.0046 ≈ 78%, and it appears reasonable to keep it in the model. You can perform a
formal likelihood-ratio (LR) test of H0: σ

2
u3

= 0 to verify this, as we show below for the test of
H0: σ

2
u1

= 0.

Let’s check whether we need random intercept u1j to model φ1j . Computing CV in this case to
get an initial assessment is not simple because the mean of φ1j depends on the jth quake through
variable richter. Given the same main equation (8), we will use the LR test to compare the restricted
model, with u1j excluded, which is defined by (11) and (12) below, with the full model defined by
(9) and (10).

The stage 2 specification of the restricted model is

φ1j = β0 + β1richterj

φ2j = β2

φ3ij = β3 + u3j

(11)

where
u3j ∼ N(0, σ2

u3
) and εij ∼ N(0, σ2

ε ) (12)

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquake
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeu
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeudist
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeuu
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeuudist
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We now fit the restricted model:

. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter, xb) define(phi3: U3[quake], xb)
> stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = 2.12628622
Iteration 2: linearization log likelihood = 2.126043
Iteration 3: linearization log likelihood = 2.12603276
Iteration 4: linearization log likelihood = 2.12603003
Iteration 5: linearization log likelihood = 2.1260297

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 32.22
Linearization log likelihood = 2.1260297 Prob > chi2 = 0.0000

phi1: richter, xb
phi3: U3[quake], xb

laccel Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
richter .2208878 .0389144 5.68 0.000 .1446169 .2971586

_cons -.7863293 .2503442 -3.14 0.002 -1.276995 -.2956637

phi3
_cons .0054348 .0015661 3.47 0.001 .0023653 .0085044

/phi2 4.228431 .3702251 11.42 0.000 3.502803 4.954059

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

quake: Identity
sd(U3) .0042144 .0011309 .0024907 .0071309

sd(Residual) .2170084 .0122821 .1942231 .2424668

. estimates store E2

Next, we use lrtest to perform an LR test of the hypothesis:

H0: σ
2
u1

= 0 versus H1: σ
2
u1
6= 0
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. lrtest E1 E2, stats

Likelihood-ratio test LR chi2(1) = 0.56
(Assumption: E2 nested in E1) Prob > chi2 = 0.4532

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Akaike’s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

E2 182 . 2.12603 6 7.747941 26.97198
E1 182 . 2.407341 7 9.185318 31.61336

Note: N=Obs used in calculating BIC; see [R] BIC note.

Because testing of H0: σ
2
u1

= 0 is on the boundary of the parameter space, lrtest reports a note
that the provided LR test is conservative; that is, the actual p-value is smaller than the one reported.
For a test of H0 : σ

2
u1

= 0 in a two-level model, the true asymptotic distribution is not χ2(1)
but a mixture of χ2(0) and χ2(1) with equal weights, 0.5χ2(0) + 0.5χ2(1); thus the p-value is
actually 0.4532/2 = 0.2266 (see Rabe-Hesketh and Skrondal 2012, sec 8.8). We do not have sufficient
evidence to reject the null hypothesis, so we can omit random effect u1j from the full model. AIC
and BIC also favor a simpler, reduced model.

Example 8: Including within-subject covariates

One of the questions of interest in the earthquake study was the potential effect of the soil type on
acceleration. Variable soil is a within-subject covariate because the values soilij may vary within
a subject (earthquake). We include variable soil in the equation for φ3ij in (11),

φ1j = β0 + β1richterj

φ2j = β2

φ3ij = β3 + β4soilij + u3j

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqquakeu
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and fit the corresponding model:
. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter, xb) define(phi3: i.soil U3[quake]) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = 3.56347788
Iteration 2: linearization log likelihood = 3.56324717
Iteration 3: linearization log likelihood = 3.56323391
Iteration 4: linearization log likelihood = 3.56323036
Iteration 5: linearization log likelihood = 3.56322978

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(2) = 34.20
Linearization log likelihood = 3.5632298 Prob > chi2 = 0.0000

phi1: richter, xb
phi3: i.soil U3[quake]

laccel Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
richter .2275944 .0395549 5.75 0.000 .1500683 .3051206

_cons -.8079826 .2548833 -3.17 0.002 -1.307545 -.3084205

phi3
soil

soil -.0011041 .0006441 -1.71 0.087 -.0023665 .0001583
_cons .0067347 .0017416 3.87 0.000 .0033213 .0101481

/phi2 4.3212 .3653809 11.83 0.000 3.605067 5.037334

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

quake: Identity
sd(U3) .0043088 .0011285 .0025788 .0071992

sd(Residual) .2147101 .0121424 .1921829 .2398779

The estimated coefficient for the soil type is −0.0011 with a 95% CI of [−0.0024, 0.0002]. The
knowledge of the soil type at a particular site does not appear to add explanatory power to our model.

Random-effects covariance structures
menl supports various covariance structures to model the random-effects covariance matrix. They

are specified using the covariance() option. The covariance() option may be repeated. This
is necessary to accommodate multilevel NLME models, where you may need to specify different
covariance matrices for the random effects at different levels. Repeating this option may also be
useful if you want to specify a block-diagonal covariance structure. See example 19 for details.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexwafer
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Example 9: Two-level model with correlated random effects

Davidian and Giltinan (1995, sec. 1.1.3 and 11.2) discuss a study of soybean plants that started
in 1988 and spanned over three growing seasons, year. The central objective of the study was to
compare the growth patterns of two genotypes of soybean plants, variety: a commercial variety of
soybean, denoted by F, and an experimental variety, denoted by P. In each season, eight plots were
planted using F variety and eight using P variety. To assess growth, researchers sampled each plot
8 to 10 times (8 ≤ nj ≤ 10 ) at approximately weekly intervals, time. At each sampling time, six
plants were taken from each plot at random. Leaves from the plants were weighed, and the resulting
total weight was divided by six to yield a measure of the average leaf weight per plant (in g) for the
plot for that week, weight. Plots are identified by the plot variable.

Let’s plot the data first.

. use http://www.stata-press.com/data/r15/soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))

. twoway connected weight time if year==2, connect(L) by(variety)
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The graph shows the average leaf weights per plant over time for the eight plots with plants of each
genotype in the 1989 growing season. Longitudinal growth measures for each plot are connected with
solid lines. Apart from some intraplot variation, the growth profile of each plot follows roughly an
S shape, according to which growth begins slowly, then shows a linear trend during the middle of
the growing season, and then “levels off” at the end. Such pattern is typical for many growth studies.

The main goal of the study was to compare growth patterns over the growing season for the two
soybean genotypes. Because the three growing seasons differed markedly in terms of precipitation—
1988 was unusually dry, 1989 was wet, and 1990 was normal—contrasting these growth patterns
across years was also of interest. The results of this study are useful, for example, for harvesting
purposes.

A popular model for individual profiles that resemble an S shape is the logistic growth model:

weightij =
φ1j

1 + exp {− (timeij − φ2j) /φ3j}
+ εij (13)

φ1j is the asymptotic average leaf weight per soybean plant in plot j as timeij → ∞. φ2j is the
time at which half of φ1j is reached; that is, if timeij = φ2j , then E(weightij) = 0.5φ1j . φ1j
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and φ2j will henceforth be referred to as “the limiting growth” and “half-life”, respectively. φ3j is a
scale parameter, and it represents the number of days it takes for average leaf weight to grow from
50% (half-life) to about 73% of its limiting growth. That is, if we set timeij = t0.73 = φ2j + φ3j ,
the right-hand side of (13), ignoring the error term, reduces to φ1j/{1 + exp(−1)} = 0.73φ1j , and
then φ3j = t0.73 − φ2j .

We will start with a simple stage 2 specification that does not contain any covariates. Also, because
the number of soybean plots, 48, is large compared with the number of random effects, 3, we consider
a general positive-definite, unstructured, random-effects covariance matrix:

φj =

φ1jφ2j
φ3j

 =

β1β2
β3

+

u1ju2j
u3j

 (14)

uj =

u1ju2j
u3j

 ∼ N (0,Σ) , Σ =

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 , εij ∼ N(0, σ2
ε )

To specify this covariance structure in menl, we specify unstructured in the covariance()
option. The covariance() option also requires that we list the names of random effects to be
correlated.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -739.901421
Iteration 2: linearization log likelihood = -739.84929

(iteration log omitted )
Iteration 39: linearization log likelihood = -739.834521
Iteration 40: linearization log likelihood = -739.834448

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -739.83445

phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 19.25314 .8031811 23.97 0.000 17.67893 20.82734

phi2
_cons 55.01999 .7272491 75.65 0.000 53.59461 56.44537

phi3
_cons 8.403468 .3152551 26.66 0.000 7.78558 9.021357

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqsoy
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

plot: Unstructured
var(U1) 27.05081 6.776516 16.55561 44.19929
var(U2) 17.61605 5.317899 9.748766 31.83227
var(U3) 1.972036 .9849825 .7409021 5.248904

cov(U1,U2) 15.73304 5.413365 5.123042 26.34304
cov(U1,U3) 5.193819 2.165586 .9493488 9.438289
cov(U2,U3) 5.649306 2.049458 1.632442 9.66617

var(Residual) 1.262237 .1111686 1.062119 1.50006

The expected limiting growth or expected maximum average weight, β1 = E (φ1j), of soybean
leaves is estimated to be around 19.25 grams. The expected half-life or the time at which the leaves
reach half of their expected maximum average weight, β2 = E (φ2j), is estimated to be around 55
days after planting. The expected time needed for the average leaf weight per plant to grow from
50% to 73% of the limiting growth, β3 = E (φ3j), is about 8.4 days.

The estimates of the six random-effects variance–covariance parameters σ11, σ22, σ33, σ12, σ13,
and σ23 are displayed in the upper part of the random-effects parameters table. There is a plot-to-plot
variation in the estimates of all three parameters of interest: β1, β2, and β3. Also, the plot-specific
effects associated with the parameters of interest are positively correlated. For example, based on the
estimate of 5.19 of cov(U1,U3), plants with larger maximum weights tend to grow faster.

We store our estimates for later use:

. estimates store S1

Example 10: Residuals-vs-fitted plot to check for heteroskedasticity

A popular tool for investigating within-cluster heteroskedasticity is the plot of residuals against
the predicted values and other candidate variance covariates. For growth models, variance is often a
function of the mean (predicted values). Below we construct the plot of residuals versus predicted
values to evaluate the assumption of homoskedastic errors in example 9.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexsoy
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. predict fitweight, yhat

. predict res, residuals

. scatter res fitweight
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The plot reveals increasing variability with the predicted average leaf weights, which indicates that
our within-cluster variance model is misspecified. In Heteroskedastic within-group errors, we will
show how to account for within-cluster heteroskedasticity by using the resvariance() option.

Heteroskedastic within-group errors

Until now, we assumed that the within-group errors—the ε’s in the considered models—are i.i.d.
Gaussian with common variance σ2

ε , labeled as var(Residual) by menl in the output.

To relax the assumptions of homoskedasticity and the independence of errors, menl provides two
alternatives. You can model the within-group error variance–covariance matrix, σ2Λj , directly by using
the rescovariance() option. If you used the mixed command and its residuals() option before,
you should be familiar with this approach. Alternatively, you can model the error variance–covariance
matrix indirectly by modeling the heteroskedasticity structure with the resvariance() option and
the correlation structure with the rescorrelation() option; see Variance-components parameters.
The latter approach offers more flexibility, particularly in modeling the heteroskedasticity structure.
For example, many NLME models exhibit within-subject heterogeneity that is a power function of the
mean. The rescovariance() option cannot model this, but resvariance(power yhat) can.

If your error structure is simple and is similar to those encountered in mixed, you can use the
rescovariance() option. Otherwise, use resvariance(), rescorrelation(), or both to model
more flexible within-group error covariance structures.

Example 11: Heteroskedastic power structure

Continuing with example 9, for these types of growth data, we find it is common for the intraplot
variance to increase systematically with the average leaf weight, as we saw in example 10 from the
residuals-versus-fitted plot. Davidian and Giltinan (1995) proposed a variance structure that models
the within-group error variance as a power function of the mean to account for the intraplot variability.
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To reduce the number of parameters to be estimated, the authors assume that the random effects are
independent.

Stage 2 specification of the model defined by (13) becomes

φj =

φ1jφ2j
φ3j

 =

β1β2
β3

+

u1ju2j
u3j

 (15)

where

uj =

u1ju2j
u3j

 ∼ N (0,Σ) , diagonal Σ =

σ2
u1

0 0
0 σ2

u2
0

0 0 σ2
u3


and

Var (εij) = σ2( ̂weightij)2δ
Parameter σ2 in the above is no longer an overall error variance σ2

ε but a common multiplier or
a (squared) scale parameter.

In menl, this type of heteroskedasticity is modeled by specifying resvariance(power yhat,
noconstant). yhat designates that the variance should be modeled as a function of predicted
values, ̂weightij . By default, variance function power includes a constant, which we suppress by
specifying the noconstant option.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -364.0225
Iteration 2: linearization log likelihood = -364.228352
Iteration 3: linearization log likelihood = -364.43168
Iteration 4: linearization log likelihood = -364.383194
Iteration 5: linearization log likelihood = -364.389644
Iteration 6: linearization log likelihood = -364.389152
Iteration 7: linearization log likelihood = -364.389201
Iteration 8: linearization log likelihood = -364.389204

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10
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Linearization log likelihood = -364.3892

phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 16.82289 .6030526 27.90 0.000 15.64093 18.00485

phi2
_cons 51.74669 .4579629 112.99 0.000 50.8491 52.64428

phi3
_cons 7.54537 .0856321 88.11 0.000 7.377534 7.713206

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

plot: Independent
var(U1) 11.32134 2.831139 6.934848 18.48241
var(U2) 2.68911 .9344037 1.36093 5.31351
var(U3) 5.44e-12 . . .

Residual variance:
Power _yhat

sigma2 .0509223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

The near-zero estimate of the variance component of u3j , var(U3), suggests that the random-effects
model is overparameterized. The within-group heteroskedasticity structure appears to explain enough
variability in our data, and we no longer need random effects specific to φ3j . This is quite common in
mixed-effects models: the random-effects covariance structure and the within-group error covariance
structure compete with each other, in the sense that fewer random effects are needed when the
within-group error covariance structure is present, and vice versa.

Let’s omit u3j from (15) but now assume an unstructured covariance matrix for u1j and u2j .
The EM algorithm used by menl to obtain initial values produces the starting values for variance
components that are, in general, close to the final estimates upon convergence. Thus it can be used as a
tool to help us detect potential convergence problems because of an overparameterized random-effects
structure at an earlier stage. For example, we can check whether an unstructured covariance matrix
is a reasonable choice for the random effects u1j and u2j for these data by displaying estimates after
a few iterations. This can be done by specifying the iterate(#) option, where # is a small number
of iterations, say, between 1 and 4. Below we specify iterate(3) to perform only three iterations
and the stddeviations option to obtain standard deviations and correlations instead of variances
and covariances for easier interpretability:
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. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb)
> covariance(U*, unstructured) resvariance(power _yhat, noconstant)
> iterate(3) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -379.663433
Iteration 2: linearization log likelihood = -362.909205
Iteration 3: linearization log likelihood = -361.923807

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -361.94127

phi1: U1[plot], xb
phi2: U2[plot], xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 16.92772 .5676773 29.82 0.000 15.81509 18.04035

phi2
_cons 51.81715 .4484055 115.56 0.000 50.93829 52.69601

/phi3 7.54089 .0869002 86.78 0.000 7.370569 7.711211

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

plot: Unstructured
sd(U1) 2.904992 .4071122 2.207271 3.823263
sd(U2) 1.282251 .255516 .8676664 1.89493

corr(U1,U2) -.99999 .0033707 -1 1

Residual variance:
Power _yhat

sigma .225488 .0095078 .2076023 .2449146
delta .955391 .0230645 .9101854 1.000597

Warning: convergence not achieved

The U* in covariance(U*, unstructured) is a shorthand notation to reference all random effects
starting with U, that is, U1 and U2 in this example. The correlation between u1j and u2j is near−1 with
a 95% CI of [−1, 1], which indicates that the random-effects model may still be overparameterized.
If you try to fit this model without the iteration(3) option, it would keep iterating without
convergence.

Therefore, we further simplify the random-effects covariance structure by assuming independence
between u1j and u2j . Stage 2 specification of the model defined by (13) is now

φj =

φ1jφ2j
φ3j

 =

β1 + u1j
β2 + u2j

β3

 (16)
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where

uj =

[
u1j
u2j

]
∼ N (0,Σ) , diagonal Σ =

[
σ2
u1

0
0 σ2

u2

]
and

Var (εij) = σ2( ̂weightij)2δ
We fit this model and store its results as S2:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -402.761818
Iteration 2: linearization log likelihood = -372.425639
Iteration 3: linearization log likelihood = -364.009461
Iteration 4: linearization log likelihood = -364.371515
Iteration 5: linearization log likelihood = -364.38263
Iteration 6: linearization log likelihood = -364.38966
Iteration 7: linearization log likelihood = -364.389167
Iteration 8: linearization log likelihood = -364.389203

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -364.3892

phi1: U1[plot], xb
phi2: U2[plot], xb

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 16.82289 .6030523 27.90 0.000 15.64093 18.00485

phi2
_cons 51.74669 .4579626 112.99 0.000 50.8491 52.64428

/phi3 7.545369 .085632 88.11 0.000 7.377534 7.713205

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

plot: Independent
var(U1) 11.32134 2.831139 6.934847 18.48241
var(U2) 2.689111 .9344037 1.36093 5.31351

Residual variance:
Power _yhat

sigma2 .0509223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

. estimates store S2

Because (16) is not nested in (14), we assess the adequacy of the heteroskedastic model by using
information criteria. We use estimates stats to display the AIC and BIC values for the three models.
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. estimates stats S1 S2

Akaike’s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

S1 412 . -739.8344 10 1499.669 1539.879
S2 412 . -364.3892 7 742.7784 770.9256

Note: N=Obs used in calculating BIC; see [R] BIC note.

The heteroskedastic model defined by (16) has smaller AIC and BIC values and thus provides a much
better representation of the data than (14).

Example 12: Heteroskedastic model with interactions

The main goal of the soybean study was to compare growth patterns of the two genotypes of
soybean over the three growing seasons, represented by calendar years 1988 through 1990. More
specifically, we would like to compare the limiting growth, the half-life, and the growth rate of
soybeans across growing seasons and genotypes.

Let Pj = I
(
varietyj = P

)
be the indicator for genotype variety P, S89,j = I

(
yearj = 1989

)
be the indicator for growing season 1989, and S90,j = I

(
yearj = 1990

)
be the indicator for growing

season 1990. Genotype variety F and growing season 1988 are baselines.

Consider an extension of the model defined by (13) and (16), where, in addition to random effects,
φ1j includes main and interaction effects of growing seasons and genotype variety, φ2j includes main
effects of growing seasons and genotype variety, and φ3j contains main effects of growing seasons
only.

φj =

φ1jφ2j
φ3j

 =

β11 + β12S89,j + β13S90,j + β14Pj + β15S89,j × Pj + β16S90,j × Pj + u1j
β21 + β22S89,j + β23S90,j + β24Pj + u2j

β31 + β32S89,j + β33S90,j


(17)

To fit the model defined by (13) and (17) by using menl, we extend menl’s specification from
example 11 by including the full-factorial interaction i.year##i.variety in the expression {phi1:},
main effects i.year and i.variety in the expression {phi2:}, and main effects i.year in the
expression {phi3:}.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.year##i.variety U1[plot])
> define(phi2: i.year i.variety U2[plot])
> define(phi3: i.year, xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -292.62615
Iteration 2: linearization log likelihood = -290.243889

(iteration log omitted )
Iteration 10: linearization log likelihood = -290.90729
Iteration 11: linearization log likelihood = -290.907297
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Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Wald chi2(10) = 413.88
Linearization log likelihood = -290.9073 Prob > chi2 = 0.0000

phi1: i.year i.variety i.year#i.variety U1[plot]
phi2: i.year i.variety U2[plot]
phi3: i.year

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
year

1989 -8.837933 1.056113 -8.37 0.000 -10.90788 -6.76799
1990 -3.666206 1.165969 -3.14 0.002 -5.951463 -1.380949

variety
P 1.648139 1.033433 1.59 0.111 -.3773533 3.673631

year#variety
1989#P 5.563008 1.167783 4.76 0.000 3.274196 7.851819
1990#P .0974816 1.178054 0.08 0.934 -2.211462 2.406425

_cons 19.42734 .9445749 20.57 0.000 17.57601 21.27867

phi2
year

1989 -2.253227 .9746496 -2.31 0.021 -4.163505 -.3429493
1990 -4.970736 .9778318 -5.08 0.000 -6.887251 -3.054221

variety
P -1.294058 .4255317 -3.04 0.002 -2.128085 -.4600314

_cons 54.81257 .758724 72.24 0.000 53.3255 56.29964

phi3
year

1989 -.9023768 .1992358 -4.53 0.000 -1.292872 -.5118818
1990 -.6805314 .2100799 -3.24 0.001 -1.092281 -.2687823

_cons 8.060677 .1459662 55.22 0.000 7.774588 8.346765

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

plot: Independent
var(U1) .8643051 .5271731 .2615089 2.856589
var(U2) .1341755 .2306995 .0046146 3.901367

Residual variance:
Power _yhat

sigma2 .0467091 .0039176 .0396286 .0550546
delta .9451193 .0227608 .9005089 .9897297

. estimates store S3
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By including more fixed effects in the model, which explain some of the variability in the average leaf
weight, we substantially reduced the estimates of variance components. Compared with example 11,
var(U1) decreased from 11.32 to 0.86, and var(U2) decreased from 2.69 to 0.13. It often happens
that specifying a better-fitting model for the fixed effects reduces the need for random effects in the
model.

We can compare model S3 or the model defined by (17) with model S2 or the one defined by
(16) by using, for example, information criteria.

. estimates stats S2 S3

Akaike’s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

S2 412 . -364.3892 7 742.7784 770.9256
S3 412 . -290.9073 17 615.8146 684.172

Note: N=Obs used in calculating BIC; see [R] BIC note.

Even though S3 has many more parameters, it fits the soybean data better than S2.

By inspecting the fixed-effects estimates from the output of model S3, we see that both the type of
year and genotype variety affect all three parameters: the expected maximum leaf weight, half-life,
and scale. For example, all three parameters achieve their highest values in the dry year, baseline
year 1988, because coefficient estimates for the other years are negative. Also, the genotype variety
P reaches its half-life roughly a day later (β24 = −1.29) than genotype variety F.

Example 13: Obtaining predictions

After estimation, we may want to obtain predicted values for the outcome or for the parameters
of interest. Continuing with example 12, we want to predict the asymptotic average leaf weight per
soybean plant in each plot, φ̂1j . The φ1j parameter is not constant but varies for each plot, growing
season, and genotype variety. We can use predict after menl to obtain predicted values for φ1j ;
see [ME] menl postestimation.

First, we create a new grouping variable for growing seasons, genotype variety, and plot types.
We also create the tolist variable to mark the first observation in each group.

. egen group = group(year variety plot)

. by group, sort: generate byte tolist=(_n==1)

Next, we use predict to compute predicted values for the expression {phi1:} and store them
in the new variable phi1. We store only unique values in phi1, one for each group; the remaining
observations are replaced with missing values.

. predict double (phi1 = {phi1:})

. qui replace phi1 = . if tolist!=1
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We now list the five smallest and the five largest values of the asymptotic average leaf weight.

. sort phi1

. list plot year variety phi1 if (_n<=5 | _n>43) & phi1<., sep(5)

plot year variety phi1

1. 1989F6 1989 F 8.8421451
2. 1989F4 1989 F 10.449521
3. 1989F5 1989 F 10.473849
4. 1989F1 1989 F 10.721364
5. 1989F7 1989 F 10.810197

44. 1988P8 1988 P 20.86739
45. 1988P2 1988 P 21.237691
46. 1988P4 1988 P 21.310511
47. 1988P3 1988 P 21.506007
48. 1988P6 1988 P 21.581873

Soybean plants with genotype variety P have substantially larger asymptotic average leaf weight in
the dry year, 1988, than soybean plants with genotype variety F in the wet year, 1989.

Example 14: Within-group error correlation structure

Pinheiro and Bates (2000, chap. 8) analyzed data from a study of the estrus cycles of mares.
Originally analyzed in Pierson and Ginther (1987), the data contain daily records of the number of
ovarian follicles larger than 10 mm over a period ranging from 3 days before ovulation to 3 days after
the subsequent ovulation. The measurement times for each mare are scaled so that the ovulations for
each mare occur at times 0 and 1 and are recorded in stime.

The considered model is

folliclesij = φ1j + φ2j sin (2πφ3jstimeij) + φ4j cos (2πφ3jstimeij) + εij

where φ1j is an intercept, φ3j is the frequency of the sine wave for the jth mare, and φ2j and φ4j
are terms determining the amplitude and phase of the sine wave for the jth mare. If aj and pj are
the amplitude and phase for mare j, then φ2j = aj cos(pj) and φ4j = aj sin(pj).

This model was fit in example 8 of [ME] mixed in the context of a linear mixed-effects model,
where the number of ovarian follicles was a periodic function of time with known frequency φ3j
equal to 1. If we want to estimate frequency, we cannot use the mixed command, because φ3j enters
the model nonlinearly.

Pinheiro and Bates (2000) suggested an AR(1) correlation structure for modeling the within-
group error correlation. This structure can be specified by using the rescorrelation() option as
rescorrelation(ar 1, t(time)), where time is an integer-valued time variable used to order the
observations within mares and to determine the lags between successive observations.

We also considered several random-effects structures and found that we need only one random
intercept to model φ1j .
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The full specification for the stage 2 model is

φj =


φ1j
φ2j
φ3j
φ4j

 =


β1 + u1j

β2
β3
β4


where

uj = u1j ∼ N
(
0, σ2

u

)
, εj ∼ N(0, σ2

εΛj)

and

σ2
εΛj = σ2

ε


1 ρ ρ2 . . . ρnj−1

ρ 1 ρ . . . ρnj−2

ρ2 ρ 1 . . . ρnj−3

...
...

...
. . .

...
ρnj−1 ρnj−2 ρnj−3 . . . 1


We fit this model by using menl as follows:

. use http://www.stata-press.com/data/r15/ovary, clear
(Ovarian follicles in mares)

. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -789.434153
Iteration 2: linearization log likelihood = -789.434391
Iteration 3: linearization log likelihood = -789.434391

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -789.43439

phi1: U1[mare], xb

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 11.98929 .9055946 13.24 0.000 10.21436 13.76422

/phi2 .2226033 .3290159 0.68 0.499 -.4222559 .8674626
/phi3 4.18747 .2746499 15.25 0.000 3.649166 4.725774
/phi4 .279653 .3223277 0.87 0.386 -.3520977 .9114036
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mare: Identity
var(U1) 4.935352 3.967836 1.020903 23.85898

Residual: AR(1),
time time

var(e) 20.14587 3.492937 14.34177 28.29888
corr .7332304 .0463231 .6287332 .8117157

By using estimates of φ2j and φ4j , we can compute the amplitude and phase for the sine wave for
mare j. The amplitude and the phase are the same for all the mares because φ2j and φ4j are constant
and not mare specific.

For example, the amplitude aj can be computed as
√
φ22j + φ24j by using the relationship

φ22j+φ
2
4j = a2j

{
sin2(pj) + cos2(pj)

}
= a2j . The phase pj can be computed as pj = atan(φ4j/φ2j)

by using the relationship φ4j/φ2j = {aj sin(pj)} / {aj cos(pj)} = tan(pj).

We can use nlcom to compute the amplitude and the phase.

. nlcom (amplitude: sqrt(_b[/phi2]^2 + _b[/phi4]^2))
> (phase: atan(_b[/phi4]/_b[/phi2]))

amplitude: sqrt(_b[/phi2]^2 + _b[/phi4]^2)
phase: atan(_b[/phi4]/_b[/phi2])

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

amplitude .3574325 .2451183 1.46 0.145 -.1229904 .8378555
phase .8985001 1.090985 0.82 0.410 -1.23979 3.03679

As we mentioned in example 1, it is important to try different initial values when fitting NLME
models to investigate potential convergence to a local maximum, especially for models containing
periodic functions, as in our example. We explore different initial values for this model in Linearization
approach to finding initial values by considering the functional form of the mean function and arrive
at a different solution with a larger log likelihood.

Restricted maximum likelihood
Like mixed, menl provides estimation by using ML or REML. The difference between the two

approaches is described in detail in Likelihood versus restricted likelihood in [ME] mixed. Briefly,
REML is preferable when you have a small number of groups because it produces unbiased, at least for
balanced data, estimates of variance components. In large samples, there is little difference between
ML and REML. One disadvantage of REML, however, is that LR tests based on REML are inappropriate
for comparing models with different fixed-effects specifications.

Example 15: Pharmacokinetics modeling

Pharmacokinetics (PKs) is the study of drug absorption, distribution, metabolism, and excretion.
It is often referred to as the study of “what the body does with a drug”. The goal of PK modeling
is to summarize the concentration-time measurements using a model that relates drug input to drug

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexunic
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesLinearizationapproachtofindinginitialvalues
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesLinearizationapproachtofindinginitialvalues
http://www.stata.com/manuals/memixed.pdf#memixed
http://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesLikelihoodversusrestrictedlikelihood
http://www.stata.com/manuals/memixed.pdf#memixed
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response, to relate the parameters of this model to patient characteristics, and to provide individual
dose-response predictions to optimize individual doses. In other words, by understanding between-
subject variation in drug disposition, we can individualize the dosage regimen for a particular patient
based on relevant physiological information identified by our PK model.

Consider a PK study of the antiasthmatic agent theophylline that was reported by Boeckmann,
Sheiner, and Beal ([1994] 2011) and analyzed by Davidian and Giltinan (1995). The drug was
administrated orally to 12 subjects, where dosage dose (mg/kg) was given on a per weight basis.
Serum concentrations (in mg/L) were obtained at 11 time points per subject over 25 hours following
administration. The graph below shows the resulting concentration-time profiles for four subjects.

. use http://www.stata-press.com/data/r15/theoph
(Theophylline kinetics (Boeckmann et al., 1994))

. twoway connected conc time if subject<=4, connect(L) by(subject)
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In PKs, the pattern of rapid rise to a peak concentration followed by an apparent exponential
decay may be described by a so-called one-compartment open model with first-order absorption and
elimination. The model corresponds roughly to viewing the body as one “blood compartment” and
is particularly useful for the PK analysis of drugs that distribute relatively rapidly throughout the
body, which makes it a reasonable model for the kinetics of theophylline after oral administration.
Further details about compartmental modeling may be found in Gibaldi and Perrier (1982). The
one-compartment open model for theophylline kinetics may be expressed as

concij =
dosejkejkaj

Clj
(
kaj − kej

) { exp
(
−kejtimeij

)
− exp

(
−kajtimeij

)}
+ εij (18)

for i = 1, . . . , 11 and j = 1, . . . , 12. Model parameters are the elimination rate constant kej , the
absorption rate constant kaj , and the clearance Clj for each subject j.

Because each of the model parameters must be positive to be meaningful, we write

Clj = exp (β0 + u0j)

kaj = exp (β1 + u1j)

kej = exp (β2)

where u0j and u1j are assumed independent and normally distributed with means zero and variance
σ2
u0

and σ2
u1

, respectively.



menl — Nonlinear mixed-effects regression 51

The model defined by (18) implies that the predicted value for the concentration at time timeij = 0
is ĉoncij = 0. Therefore, a power variance function, a natural candidate for this type of heteroskedastic
pattern, cannot be used in this example because error variance will be 0 at timeij = 0. So the
constant plus power variance function, which adds a constant to the power term, is used instead to
model the within-group error variance:

Var (εij) = σ2{(ĉoncij)δ + c}2

In menl, we use the resvariance(power yhat) option to specify the constant plus power
variance function and the following model specification:

. menl conc = (dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*
> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]})) define(ke: exp({b2}))
> resvariance(power _yhat)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -167.519533
Iteration 2: linearization log likelihood = -167.65729

(iteration log omitted )
Iteration 26: linearization log likelihood = -167.679657
Iteration 27: linearization log likelihood = -167.679641

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:
min = 11
avg = 11.0
max = 11

Linearization log likelihood = -167.67964

cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 -3.227479 .0598389 -53.94 0.000 -3.344761 -3.110197
/b1 .432931 .1980835 2.19 0.029 .0446945 .8211674
/b2 -2.453742 .0514567 -47.69 0.000 -2.554595 -2.352889

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Independent
var(U0) .0288787 .0127763 .0121337 .0687323
var(U1) .4075667 .1948713 .1596654 1.040367

Residual variance:
Power _yhat

sigma2 .0976905 .0833027 .018366 .519624
delta .3187133 .2469511 -.1653019 .8027285
_cons .7288982 .3822952 .2607507 2.03755

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqtheoph
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The number of groups, 12, is fairly small in these data, so we now refit the model by using REML
estimation.

. menl conc = (dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*
> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]})) define(ke: exp({b2}))
> resvariance(power _yhat) reml

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log restricted-likelihood = -172.31734
Iteration 2: linearization log restricted-likelihood = -172.423246

(iteration log omitted )
Iteration 23: linearization log restricted-likelihood = -172.443827
Iteration 24: linearization log restricted-likelihood = -172.443845

Computing standard errors:

Mixed-effects REML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:
min = 11
avg = 11.0
max = 11

Linear. log restricted-likelihood = -172.44384

cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 -3.227295 .0619113 -52.13 0.000 -3.348639 -3.105951
/b1 .4354519 .2072387 2.10 0.036 .0292716 .8416322
/b2 -2.453743 .0517991 -47.37 0.000 -2.555267 -2.352218

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Independent
var(U0) .0316416 .014531 .0128634 .0778326
var(U1) .4500585 .2228206 .1705476 1.187661

Residual variance:
Power _yhat

sigma2 .1015759 .086535 .0191263 .5394491
delta .3106636 .2466547 -.1727707 .7940979
_cons .7150935 .3745256 .2561837 1.996063

As expected, the estimates of the random-effects variances are slightly larger than the corresponding
ML estimates, but we arrive at similar inferential conclusions based on our REML estimates.

Example 16: Nonlinear functions of parameters

A distinctive feature of example 15 is that parameters of interest are nonlinear functions of the
estimated parameters and random effects. To interpret parameters that depend on random effects, we
can either integrate random effects out of the parameter expression or condition on them. The former
parameter estimates are often referred to as population-based estimates. The latter parameter estimates

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlextheoph
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are referred to as conditional estimates and, when conditioning on zero random effects, uj = 0, as
estimates for an “average” or typical subject. For linear functions, the population-based estimates
coincide with the conditional estimates. This is no longer true for nonlinear functions.

In PK modeling, the parameters of interest are clearance, elimination rate, and absorption rate.
These are nonlinear functions of the estimated parameters β0, β1, β2 and subject-specific random
effects. Depending on the context, we may be interested in their population-based estimates or in
their conditional estimates.

In general, obtaining population-based estimates would require numerical integration to integrate the
subject-specific random effects out of the expression. In our example, we can compute population-based
estimates directly by using the fact that exp(u0j)’s and exp(u1j)’s are lognormally distributed.

Thus the population-based clearance ClP can be computed as E (Clj) = E { exp (β0 + u0j)} =
exp
(
β0 + σ2

u0
/2
)

and the population-based absorption rate kPa as E { exp (β1 + u1j)} =

exp
(
β1 + σ2

u1
/2
)
. The elimination rate ke does not depend on subject-specific effects and can

thus be computed simply as kPe = ke = exp (β2).

Alternatively, if we want parameters to represent a typical subject, we can simply set u0j = 0
and u1j = 0 in their expressions. Thus we can compute clearance and absorption rate for a typical
subject simply as Cl = exp (β0) and ka = exp (β1). These formulas can also be viewed as
a result of exponentiating population-based log-clearance and log-absorption rate; that is, Cl =
exp [E { log(Clj)}] = exp (β0) and ka = exp

[
E
{

log(kaj )
}]

= exp (β1).

If we compare the formulas for, say, ClP and Cl, the former considers variation in clearances
across subjects, whereas the latter ignores such variation and instead reflects what the clearance would
be for a typical subject with u0j = 0.

Both approaches have merit, and here we will compute, for example, ClP = exp(β̂0 + σ̂2
u0
/2) =

exp(−3.23+0.032/2) = 0.04. That is, 0.04 liters of serum concentration are cleared of the theophylline
drug per hour per kg body weight in the considered population. In other words, for the population
of subjects that weigh 75 kg, an average of 75× 0.04 ≈ 3 liters of serum concentration are cleared
of theophylline every hour.

We can also use nlcom to compute the estimates of ClP and Cl. To use nlcom, we need to know
how parameters are labeled by menl for postestimation. We can use menl’s coeflegend option to
display parameter names. We also specify noheader to suppress the table header.

. menl, coeflegend noheader

conc Coef. Legend

/b0 -3.227295 _b[/b0]
/b1 .4354519 _b[/b1]
/b2 -2.453743 _b[/b2]

/subject
lnsd(U0) -1.726641 _b[/subject:lnsd(U0)]
lnsd(U1) -.3991888 _b[/subject:lnsd(U1)]

/Residual
lnsigma -1.143475 _b[/Residual:lnsigma]

delta .3106636 _b[/Residual:delta]
ln_cons -.335342 _b[/Residual:ln_cons]

If we examine the output carefully, we will notice that menl, coeflegend displayed results in the
estimation metric—as log-standard deviations instead of variances. Although by default menl displays
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parameters in their original metric, it stores them in the estimation metric, the metric that was used
during optimization; see Examples of specifying initial values and Methods and formulas for more
details about the estimation metric.

The parameters we need to compute ClP and Cl are coefficient b[/b0] and the variance of U0,
which can be obtained as exp(2* b[/subject:lnsd(U0)]) based on the stored estimate of the
log-standard deviation of U0. We now use nlcom to compute our nonlinear estimates.

. nlcom (Cl_P: exp(_b[/b0]+0.5*exp(2*_b[/subject:lnsd(U0)]))) (Cl: exp(_b[/b0]))

Cl_P: exp(_b[/b0]+0.5*exp(2*_b[/subject:lnsd(U0)]))
Cl: exp(_b[/b0])

conc Coef. Std. Err. z P>|z| [95% Conf. Interval]

Cl_P .0402972 .002512 16.04 0.000 .0353738 .0452205
Cl .0396646 .0024557 16.15 0.000 .0348516 .0444777

Working with parameters in the estimation metric can be tedious, especially when nonlinear
expressions contain multiple variance components. In that case, you may consider using estat sd
after menl to obtain results in the standard deviation metric or, if you also specify the variance
option, in the variance metric; see [ME] menl postestimation. If you specify the post option with
estat sd, the results will also be stored in the standard deviation or variance metrics, which you
can use for further postestimation analysis.

. estat sd, post variance coeflegend

conc Coef. Legend

/b0 -3.227295 _b[/b0]
/b1 .4354519 _b[/b1]
/b2 -2.453743 _b[/b2]

Random-effects Parameters Estimate Legend

subject: Independent
var(U0) .0316416 _b[/subject:var(U0)]
var(U1) .4500585 _b[/subject:var(U1)]

Residual variance:
Power _yhat

sigma2 .1015759 _b[/Residual:sigma2]
delta .3106636 _b[/Residual:delta]
_cons .7150935 _b[/Residual:_cons]

In addition to results being displayed in the variance metric, because of the post option, they are
stored in that metric. We also specified the coeflegend option with estat sd to see how parameters
are labeled so that we could refer to them in other postestimation commands such as nlcom.

Now, we can simply refer to the variance of U0 as b[/subject:var(U0)] in our nlcom
command.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesExamplesofspecifyinginitialvalues
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. nlcom (Cl_P: exp(_b[/b0]+0.5*_b[/subject:var(U0)]))

Cl_P: exp(_b[/b0]+0.5*_b[/subject:var(U0)])

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Cl_P .0402972 .002512 16.04 0.000 .0353738 .0452205

estat sd’s post option should be used with caution because it clears all estimation results except
the parameter estimates in e(b) and their VCE in e(V). Thus the only postestimation features that
will work after estat sd, post are those that need only e(b) and e(V), such as lincom and
nlcom. Other postestimation features will not be available, and you will need to refit your model to
run them. To avoid refitting your model, you may consider storing your estimation results in memory
(see [R] estimates store) or saving them on disk (see [R] estimates save) before using estat sd,
post. We no longer needed the estimation results from menl, so we did not mind clearing them.

Three-level models
Representation of (1) can be extended to, for example, two-nested levels of clustering, to form the

following three-level model, with observations composing the first level,

yjk = µ
(
Xjk,β,u

(3)
k ,u

(2)
jk

)
+ εjk

where the first-level observations i = 1, . . . , njk are nested within the second-level groups j =
1, . . . ,Mk, which are nested within the third-level groups k = 1, . . . ,M . Group j nested within
group k consists of njk observations, so yjk, Xjk, and εjk each have row dimension njk.

Also, assume that

u
(3)
k ∼ N(0,Σ3) u

(2)
jk ∼ N(0,Σ2) εjk ∼ N(0, σ2Λjk)

and that u
(3)
k , u

(2)
jk , and εjk are independent.

Example 17: Three-level model
Hand and Crowder (1996, 118–120) analyzed a study where the blood glucose levels glucose of

7 volunteers, subject, who took alcohol at time 0 were measured 14 times, time, over a period of
5 hours after alcohol consumption. The same experiment was repeated at a later date with the same
subjects but with a dietary additive, guar, used for all subjects. Variable guar is a binary variable
that identifies whether a subject received a dietary additive. It also identifies each experiment, with
0 corresponding to the experiment without guar and 1 corresponding to the experiment with guar.
Thus we will use the guar variable both as the level indicator and, later, as a fixed-effects variable.

http://www.stata.com/manuals/restimatesstore.pdf#restimatesstore
http://www.stata.com/manuals/restimatessave.pdf#restimatessave
http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqnlmedef
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Here is a plot of the whole dataset.

. use http://www.stata-press.com/data/r15/glucose
(Glucose levels following alcohol ingestion (Hand and Crowder, 1996))

. twoway connected glucose time if guar==0 ||
> connected glucose time if guar==1 ||, by(subject, rows(2))
> legend(order(1 "without guar" 2 "with guar"))
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Our preliminary assessment based on the above graph is that, except for subject 6, the effect of
the dietary additive guar on the temporal trajectory of the blood glucose levels does not seem to be
important. The effect of guar will be formally tested in example 18.

Hand and Crowder (1996) proposed the following empirical model relating the expected glucose
level to time,

glucoseijk = φ1jk + φ2jktime
3 exp (−φ3jktime) + εijk (19)

where k = 1, . . . , 7, j = 1, 2, and i = 1, . . . , 14. The blood glucose level is φ1 at time = 0 and as
time→∞. This is intentional, so that φ1 can be interpreted as both the blood glucose level before
ingesting alcohol and the blood glucose level after the effect of alcohol ingestion has washed out.

Pinheiro and Bates (2000, exercise 3, 412) analyzed this dataset in the context of a three-level
NLME model. They initially proposed the following stage 2 specification,

φ1jk = β1 + u
(3)
1k + u

(2)
1j,k

φ2jk = β2 + u
(3)
2k + u

(2)
2j,k

φ3jk = β3

(20)

u
(3)
k =

[
u
(3)
1k

u
(3)
2k

]
∼ N (0,Σ3) u

(2)
j,k =

[
u
(2)
1j,k

u
(2)
2j,k

]
∼ N (0,Σ2) εijk ∼ N

(
0, σ2

ε

)
where Σ2 and Σ3 are general symmetric covariance matrices. u(2)1j,k and u(2)2j,k are random intercepts
at the guar-within-subject level and can be specified in menl as UU1[subject>guar] and
UU2[subject>guar].

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexglucCTAR
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The full model defined by (19) and (20) contains many parameters. We will follow our own advice
from example 11 and specify the iterate() option to check how reasonable our model is for the
data we have.

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time),
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar])
> covariance(U1 U2, unstructured) covariance(UU*, unstructured)
> stddeviations iterate(3)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -189.447112
Iteration 2: linearization log likelihood = -189.441164
Iteration 3: linearization log likelihood = -189.441123

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

No. of Observations per Group
Path Groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Linearization log likelihood = -189.44112

phi1: U1[subject] UU1[subject>guar]
phi2: U2[subject] UU2[subject>guar]

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 3.661565 .1160345 31.56 0.000 3.434142 3.888989

phi2
_cons .4283298 .0530028 8.08 0.000 .3244462 .5322134

/phi3 .5896813 .013861 42.54 0.000 .5625144 .6168483

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Unstructured
sd(U1) .2624559 .0926845 .1313592 .5243873
sd(U2) .0598426 .0724586 .0055765 .6421878

corr(U1,U2) -.1489676 .9201413 -.9636339 .9346912

subject>guar: Unstructured
sd(UU1) .0919531 .0764232 .0180353 .468823
sd(UU2) .1227072 .0412876 .0634547 .2372882

corr(UU1,UU2) .99999 .0047062 -1 1

sd(Residual) .5712261 .0305339 .514409 .6343187

Warning: convergence not achieved

The estimated correlation corr(UU1,UU2) is near one with the confidence interval spanning the entire
range for the correlation parameter, which indicates that the random-effects structure is overparame-
terized. The confidence interval for corr(U1,U2) contains zero, which suggests that this term does
not contribute much to explaining between-subject variability. If we try to fit this model without the
iterate() option, it will continue iterating without convergence.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqgluc
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We simplify our model by assuming independence between random effects; that is, we assume
that random-effects covariance matrices Σ2 and Σ3 are diagonal.

Recall that covariance(, independent) is assumed by default, so we do not need to explicitly
specify the covariance() option:

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time),
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar]) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -190.355295
Iteration 2: linearization log likelihood = -190.36034
Iteration 3: linearization log likelihood = -190.363301
Iteration 4: linearization log likelihood = -190.364176
Iteration 5: linearization log likelihood = -190.363753
Iteration 6: linearization log likelihood = -190.363967
Iteration 7: linearization log likelihood = -190.363859
Iteration 8: linearization log likelihood = -190.363914
Iteration 9: linearization log likelihood = -190.363886

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

No. of Observations per Group
Path Groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Linearization log likelihood = -190.36389

phi1: U1[subject] UU1[subject>guar]
phi2: U2[subject] UU2[subject>guar]

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 3.658712 .1168642 31.31 0.000 3.429662 3.887762

phi2
_cons .4239173 .0526333 8.05 0.000 .320758 .5270766

/phi3 .5876636 .0137214 42.83 0.000 .5607701 .6145571

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Independent
sd(U1) .2685609 .092104 .137126 .5259757
sd(U2) .0422075 .1078501 .0002821 6.315554

subject>guar: Independent
sd(UU1) .0666034 .1527526 .0007435 5.96621
sd(UU2) .1362263 .0433548 .0730065 .2541912

sd(Residual) .5732488 .0309928 .5156118 .6373288

The random-effects structure may still be overparameterized, given small estimates for sd(U2) and
sd(UU1). If we were to perform an LR test of the corresponding variance components being zero,
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we would have no statistical evidence to reject this null hypothesis; see example 7 for an instance of
performing an LR test.

Example 18: Three-level model with continuous-time AR(1) error structure

The main objective of the study from example 17 was to determine whether the use of the dietary
additive guar significantly affected time profiles of the blood glucose levels of subjects.

We continue with the model without random effects U2[subject] and UU1[subject>guar] and
include covariate guar for all φjk’s. Hand and Crowder (1996) also suggested to use a continuous-
time AR(1) correlation structure for the guar-within-subject errors, which is specified in menl as
rescorrelation(ctar1, t(time)):

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3:}*time),
> define(phi1: i.guar U1[subject]) define(phi2: i.guar UU2[subject>guar])
> define(phi3: i.guar, xb) rescorrelation(ctar1, t(time)) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -180.623038
Iteration 2: linearization log likelihood = -181.270273

(iteration log omitted )
Iteration 24: linearization log likelihood = -181.187002
Iteration 25: linearization log likelihood = -181.186986

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

No. of Observations per Group
Path Groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Wald chi2(3) = 0.66
Linearization log likelihood = -181.18699 Prob > chi2 = 0.8814

phi1: i.guar U1[subject]
phi2: i.guar UU2[subject>guar]
phi3: i.guar

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
guar

with guar -.0814355 .1532735 -0.53 0.595 -.381846 .218975
_cons 3.685365 .1433368 25.71 0.000 3.40443 3.9663

phi2
guar

with guar .0109469 .0883807 0.12 0.901 -.162276 .1841698
_cons .344372 .0606914 5.67 0.000 .2254191 .4633248

phi3
guar

with guar .0103743 .0330196 0.31 0.753 -.054343 .0750916
_cons .5514012 .022009 25.05 0.000 .5082642 .5945381

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexquakeLR
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexgluc
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Identity
sd(U1) .2453634 .1013232 .1092206 .5512071

subject>guar: Identity
sd(UU2) .1011852 .0276419 .0592358 .1728421

Residual: CTAR1,
time time

sd(e) .6208598 .0412948 .5449771 .7073086
corr .6547722 .0564848 .5440641 .7654804

The dietary additive guar does not seem to affect the blood-glucose-level profiles over time. This
actually conforms with the plot of the data from example 17, where, except for subject 6, the profiles
with and without guar are similar.

Example 19: Three-level model with block-diagonal covariance matrix

Pinheiro and Bates (2000) report the data from the experiment conducted by Microelectronics
Division of Lucent Technologies to study the variability in the manufacturing of analog MOS circuits.
The intensities of the current (in mA) were collected on n-channel devices at five ascending
voltages: 0.8, 1.2, 1.6, 2.0, and 2.4 V. Measurements were made on 8 sites of each of 10 wafers.
The main objective of the study was to build an empirical model to simulate the behavior of similar
circuits.

The intensity of the current at the ith level of voltage in the jth site within the kth wafer is
expressed as

currentijk = φ1jk + φ2jk cos (φ3jkvoltagei + π/4) + εijk

where

φ1jk = β0 + u
(3)
0k + u

(2)
0j,k +

(
β1 + u

(3)
1k + u

(2)
1j,k

)
voltagei +

(
β2 + u

(3)
2k + u

(2)
2j,k

)
voltage2i

φ2jk = β3 + u
(3)
3k + u

(2)
3j,k

φ3jk = β4 + u
(3)
4k

u
(3)
k =


u
(3)
0k

u
(3)
1k

u
(3)
2k

u
(3)
3k

u
(3)
4k

 ∼ N (0,Σ3) u
(2)
j,k =


u
(2)
0j,k

u
(2)
1j,k

u
(2)
2j,k

u
(2)
3j,k

 ∼ N (0,Σ2) εijk ∼ N
(
0, σ2

ε

)

Parameters β0, β1, and β2 characterize the quadratic component of the model, and amplitude β3
and frequency β4 characterize the periodic component represented by the cosine wave.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesmenlexgluc
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For illustration, consider the following random-effects covariance structures:

Σ3 =


σ
(3)
11

σ
(3)
22

σ
(3)
33

σ
(3)
44

σ
(3)
55

 Σ2 =


σ
(2)
11 σ

(2)
12 0 0

σ
(2)
12 σ

(2)
22 0 0

0 0 σ
(2)
33 σ

(2)
34

0 0 σ
(2)
34 σ

(2)
44



If we were to fit this model by using menl, we would type

. use http://www.stata-press.com/data/r15/wafer
(Modeling of analog MOS circuits)

. menl current = {phi1:}+{phi2:}*cos({phi3:}*voltage + _pi/4),
> define(phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site])
> c.voltage#c.voltage#(W2[wafer] S2[wafer>site]))
> define(phi2: W3[wafer] S3[wafer>site]) define(phi3: W4[wafer], xb)
> covariance(S0 S1, unstructured) covariance(S2 S3, unstructured)
> covariance(W*, independent) stddeviations

In the specification above, Σ3 is specified as covariance(W*, independent), although this
specification could have been omitted because independent is menl’s default random-effects covari-
ance structure. The block-diagonal matrix Σ2 is specified by using repeated covariance() options:
covariance(S0 S1, unstructured) and covariance(S2 S3, unstructured). If we tried to
run this model, we would find out that it is overparameterized.

Because of the large number of random effects at each grouping level, to avoid numerically unstable
estimates, we will further simplify our model by assuming independence between u(2)2j,k and u(2)3j,k,

which implies that σ(2)
34 = 0:

Σ3 =


σ
(3)
11

σ
(3)
22

σ
(3)
33

σ
(3)
44

σ
(3)
55

 Σ2 =


σ
(2)
11 σ

(2)
12 0 0

σ
(2)
12 σ

(2)
22 0 0

0 0 σ
(2)
33 0

0 0 0 σ
(2)
44



We now try to fit the above simpler model. Note that given the complexity of this model, it takes
some time to execute.

. use http://www.stata-press.com/data/r15/wafer
(Modeling of analog MOS circuits)

. menl current = {phi1:}+{phi2:}*cos({phi3:}*voltage + _pi/4),
> define(phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site])
> c.voltage#c.voltage#(W2[wafer] S2[wafer>site]))
> define(phi2: W3[wafer] S3[wafer>site]) define(phi3: W4[wafer], xb)
> covariance(S0 S1, unstructured) covariance(S2 S3, independent)
> covariance(W*, independent) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = 737.063827
Iteration 2: linearization log likelihood = 754.072576
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Iteration 3: linearization log likelihood = 825.912909
Iteration 4: linearization log likelihood = 825.917104
Iteration 5: linearization log likelihood = 825.917107

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 400

No. of Observations per Group
Path Groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5

Wald chi2(2) = 8763.93
Linearization log likelihood = 825.91711 Prob > chi2 = 0.0000

phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
c.voltage#W1[wafer] c.voltage#S1[wafer>site]
c.voltage#c.voltage#W2[wafer]
c.voltage#c.voltage#S2[wafer>site]

phi2: W3[wafer] S3[wafer>site]
phi3: W4[wafer], xb

current Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
voltage 6.046937 .1022632 59.13 0.000 5.846504 6.247369

c.voltage#
c.voltage 1.158782 .0159669 72.57 0.000 1.127487 1.190076

_cons -4.658034 .0361763 -128.76 0.000 -4.728938 -4.58713

phi2
_cons .1684428 .002054 82.01 0.000 .1644171 .1724686

phi3
_cons 6.449391 .0019631 3285.32 0.000 6.445543 6.453238

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

wafer: Independent
sd(W0) .1107108 .0262518 .0695589 .1762087
sd(W1) .3041975 .0764653 .1858624 .4978744
sd(W2) .0449994 .0125441 .026057 .0777122
sd(W3) .0057862 .0016144 .0033489 .0099974
sd(W4) .0061349 .0013878 .0039377 .0095579

wafer>site: Unstructured
sd(S0) .0729495 .006297 .0615952 .0863969
sd(S1) .2930062 .0252425 .2474831 .346903

corr(S0,S1) -.8113227 .0413367 -.8782248 -.7132762

wafer>site: Independent
sd(S2) .0627587 .0053067 .0531738 .0740712
sd(S3) .0080611 .0006861 .0068227 .0095244

sd(Residual) .0008407 .0000711 .0007122 .0009922
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In this example, our primary focus was to demonstrate how to use menl to fit a block-diagonal
random-effects covariance structure. But if we were to interpret our fixed-effects estimates, the
average frequency of the cosine wave, β4 = E (φ3jk), for example, is estimated to be 6.45V −1,
with a corresponding estimated period of 2π/β̂4 ≈ 0.97V . Also, some of the estimates of standard
deviations such as sd(W2), sd(W3), and sd(W4) are very small, which suggests that this model
may still be too rich for the observed data. If we proceeded to further analyze these data, we would
consider simpler models. For example, at the very least, we would have omitted the term W3[wafer]
from this model.

Obtaining initial values

Obtaining good starting or initial values is important for the estimation of many statistical models,
but it is often crucial for the estimation of NLME models. NLME models are known to be sensitive to
the initial values and to have difficulty converging. Highly nonlinear mean specification or complicated
variance–covariance structures for random effects and errors can often lead to multiple solutions,
which requires considering different sets of initial values.

By default, menl uses the EM algorithm to obtain initial values. This default routine works well
in many cases but cannot be guaranteed to provide good initial values in all situations. Sometimes,
you may need to specify your own initial values. Trying different initial values can also be useful to
investigate the existence of multiple solutions and to verify convergence to a global maximum.

So far we have been “lucky” that all the examples worked without us having to specify initial
estimates. You may not be that lucky with your data and model. So, in this section, we provide some
guidance on how to find good initial values when the default initial values do not work well.

We present three approaches that you may choose to explore to find good initial estimates for the
fixed effects. In some cases, you may also be able to obtain initial estimates for covariance parameters;
see Linearization approach to finding initial values.

Linearization approach to finding initial values

Sometimes, we can use an LME model to obtain initial values of the NLME model by holding
some of the parameters fixed at specific values. We can then fit the resulting LME model by using
the mixed command and use the corresponding estimates as initial values for the NLME model. We
refer to this initialization method as the linearization method.

We could have used this method in example 14 and example 19, if the default EM method did not
provide reasonable initial estimates. In any case, it is good practice to specify different initial values
to investigate potential convergence of the algorithm to a local maximum.

For instance, in example 14, we fit

folliclesij = φ1j + φ2j sin (2πφ3jstimeij) + φ4j cos (2πφ3jstimeij) + εij

where

φj =


φ1j
φ2j
φ3j
φ4j

 =


β1 + u1j

β2
β3
β4



http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesLinearizationapproachtofindinginitialvalues
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This model is nonlinear because of the parameter φ3j . To obtain initial values, we can hold φ3j
(or β3) fixed at a specific value, say, β3 = 1, thus making the above model linear,

folliclesij = φ1j + φ2j sin (2πφ3jstimeij) + φ4j cos (2πφ3jstimeij) + εij

where

φj =


φ1j
φ2j
φ3j
φ4j

 =


β1 + u1j

β2
1
β4


Or, more compactly,

folliclesij = β1 + u1j + β2 sin (2πstimeij) + β4 cos (2πstimeij) + εij

Now that the model is linear, we can use the mixed command to obtain initial values for β1,
β2, and β4 to be used in menl. In the code below, variables sin1 and cos1 are sin (2πstimeij)
and cos (2πstimeij), respectively, and || mare: specifies a random intercept at the mare level
(see [ME] mixed). Also, for consistency with example 13, we assume an AR(1) within-group error
correlation structure:

. mixed follicles sin1 cos1 || mare:, residuals(ar 1, t(time)) nolog

Mixed-effects ML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 39.00
Log likelihood = -776.51731 Prob > chi2 = 0.0000

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

sin1 -2.958619 .4935054 -6.00 0.000 -3.925872 -1.991366
cos1 -.8798847 .5031764 -1.75 0.080 -1.866092 .1063228

_cons 12.18963 .9017435 13.52 0.000 10.42224 13.95701

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mare: Identity
var(_cons) 7.095503 3.764874 2.508047 20.07385

Residual: AR(1)
rho .5974664 .0547217 .4795551 .6941854

var(e) 13.08097 1.765326 10.04078 17.0417

LR test vs. linear model: chi2(2) = 242.63 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We will now use the estimates of the fixed effects shown in the output table as initial values for
menl by specifying the initial() option. We use 1 as the initial value for /phi3. There are three
ways to specify initial values in the initial() option; see Specifying initial values. Here we will
use the specification where we repeatedly list a parameter name followed by its initial value; also see
Examples of specifying initial values.

http://www.stata.com/manuals/memixed.pdf#memixed
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesSpecifyinginitialvalues
http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesExamplesofspecifyinginitialvalues
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. local xb phi1:_cons 12.2 /phi2 -3.0 /phi3 1 /phi4 -.88

. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time)) init(‘xb’)

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -775.627064
Iteration 2: linearization log likelihood = -775.624331
Iteration 3: linearization log likelihood = -775.624331

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -775.62433

phi1: U1[mare], xb

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 12.18125 .9055136 13.45 0.000 10.40647 13.95602

/phi2 -2.874435 .5389255 -5.33 0.000 -3.930709 -1.81816
/phi3 .919119 .0512361 17.94 0.000 .8186981 1.01954
/phi4 -1.67526 .6766388 -2.48 0.013 -3.001447 -.3490722

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mare: Identity
var(U1) 7.207072 3.755605 2.595361 20.01336

Residual: AR(1),
time time

var(e) 12.63377 1.646898 9.785276 16.31146
corr .5823733 .0544508 .4656902 .679153

In the above, we initialized only fixed-effects parameters and used naı̈ve initial estimates of 1 for
random-intercept and error variances and 0 for the correlation. We could have specified initial()’s
fixed suboption to use the EM algorithm to compute initial estimates for the random-effects parameters;
see Examples of specifying initial values for details.

With the linearization approach, we can also use estimates of the random-effects parameters from
the mixed command to initialize the corresponding parameters of menl. This is an advantage of
the linearization approach over the other two approaches we discuss in subsequent sections. One
complication with the initialization of random-effects parameters is that the initial values must be
supplied in the estimation metric, the metric used during estimation, instead of the parameter original
metric. For example, instead of variances, we must supply estimates of log-standard deviations, and
instead of covariances or correlations, we must supply inverse hyperbolic tangents of correlation
parameters. Luckily for us, mixed uses the same estimation metric as menl and provides the
estmetric option to display parameters in the estimation metric.

In our example, the random-effects parameters are the random-intercept variance, the within-group
error variance, and the correlation between error terms. We refit the earlier mixed command but now
with the estmetric option to obtain the estimates of the random-effects parameters in the estimation
metric.

http://www.stata.com/manuals/me.pdf#memenlRemarksandexamplesExamplesofspecifyinginitialvalues
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. mixed follicles sin1 cos1 || mare:, residuals(ar 1, t(time)) nolog estmetric

Mixed-effects ML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 39.00
Log likelihood = -776.51731 Prob > chi2 = 0.0000

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

follicles
sin1 -2.958619 .4935054 -6.00 0.000 -3.925872 -1.991366
cos1 -.8798847 .5031764 -1.75 0.080 -1.866092 .1063228

_cons 12.18963 .9017435 13.52 0.000 10.42224 13.95701

lns1_1_1
_cons .9797306 .2653 .5762499 1.665722

lnsig_e
_cons 1.285579 .0674768 19.05 0.000 1.153327 1.417832

r_atr1
_cons .6891977 .0850992 8.10 0.000 .5224063 .8559892

menl uses the same ordering of the parameters as mixed does, so we can simply list all the
estimates directly in the initial() option. When we list the values without parameter names, we
must specify initial()’s copy suboption and specify the values for all parameters. In our example,
we specify four fixed-effects coefficients and three random-effects parameters.

. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))
> initial(12.2 -3.0 1 -.88 .98 1.29 .69, copy)

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -775.624332
Iteration 2: linearization log likelihood = -775.624331

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -775.62433

phi1: U1[mare], xb

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 12.18125 .9055135 13.45 0.000 10.40647 13.95602

/phi2 -2.874434 .5389241 -5.33 0.000 -3.930706 -1.818162
/phi3 .919119 .0512356 17.94 0.000 .818699 1.019539
/phi4 -1.675261 .6766409 -2.48 0.013 -3.001452 -.3490689
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mare: Identity
var(U1) 7.207072 3.755605 2.595361 20.01336

Residual: AR(1),
time time

var(e) 12.63377 1.646898 9.785276 16.31146
corr .5823733 .0544508 .4656903 .679153

The results are different from those in example 14. The value of the linearization log likelihood in
this example, −775.62, is larger than that from example 14, −789.43. So it appears that we have
converged to a local maximum of the linearization log likelihood in example 14.

Our initial values based on mixed turned out to be better than those computed by default by menl.
This is not surprising. In general, menl’s EM algorithm should produce reasonable initial values for
many nonlinear models, but the initial values may not necessarily be optimal for all of those models.
In this example, our initial values were tailored to the ovary data and the model.

In general, sensitivity to initial values is one of the key issues in NLME models, especially for
models that involve periodic functions. Therefore, it is important to try different sets of initial values
to verify global convergence before reporting your final results. Sometimes, you may even have to
rely on your knowledge of the science behind the problem to decide which set of results is more
reasonable.

Graphical approach to finding initial values

If your model has parameters that have natural physical interpretations, you may be able to obtain
starting values from a graph of the data.

Draper and Smith (1998) presented a dataset in which the trunk circumference circumf (in mm)
of five different orange trees was measured over seven different time points, stored in age. Pinheiro
and Bates (2000) suggested the following model for these data:

circumfij =
φ1j

1 + exp
{
−
(
ageij − φ2j

)
/φ3j

} + εij (21)

In this model, φ1j is the asymptotic trunk circumference for the jth tree as ageij →∞, φ2j is
the age at which the jth tree attains half of its asymptotic trunk circumference φ1j , and φ3j is a
scale parameter; see the graph below.

The stage 2 specification of this model is

φj =

φ1jφ2j
φ3j

 =

β1 + u1j
β2
β3


where

u1j ∼ N
(
0, σ2

u1

)
, εij ∼ N

(
0, σ2

ε

)
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Because the model parameters have graphical interpretations, we can plot our data and obtain
initial values from the graph.

. use http://www.stata-press.com/data/r15/orange
(Growth of orange trees (Draper and Smith, 1998))

. twoway connected circumf age, connect(L) yline(175) xline(1582)
> yline(87.5, lpattern(dash)) xline(700, lpattern(dash))
> yline(131.25, lpattern("-...")) xline(1000, lpattern("-..."))
> xlabel(0 118 484 700 1000 1372 1582) ylabel(#5 87.5 131.25 175)
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From the above graph, the mean asymptotic trunk circumference can be estimated as 175 mm, which
is roughly the mean of the circumference values at age 1,582 (in days). The trees attain half of their
asymptotic trunk circumference, 175/2 = 87.5, at about age 700 (in days). Therefore, we use the
initial estimates β1 = 175 for the asymptotic trunk circumference and β2 = 700 for the location
of the inflection point. To obtain an initial estimate for β3, we note that when age = β2 + β3 in
(21), E(circumfij) = β1/{1 + exp(−1)} = 0.73β1, which we will approximate as 0.75β1 for
the purpose of the graph. That is, the logistic curve reaches approximately 3/4 of its asymptotic
value, 0.75 × 175 = 131.25, at age = β2 + β3. The above graph suggests that the trees attain 3/4
of their final trunk circumference at about 1,000 days (= β2 + β3), giving an initial estimate of
β3 = 1000− 700 = 300. We can now supply these values to menl in the initial() option.

Unfortunately, the graph does not provide us with the estimates for variance components. In this
case, we can use initial()’s fixed suboption to specify that the EM algorithm still be used to
initialize variance components, while the supplied values be used to initialize fixed effects. If we do
not specify fixed, menl will use naı̈ve initial estimates for variance components such as ones for
variances and zeros for covariances.

We now fit the model using our own initial estimates for fixed effects:

. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{phi2})/{phi3})),
> initial(phi1:_cons 175 /phi2 700 /phi3 300, fixed)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -131.584945
Iteration 2: linearization log likelihood = -131.584579
Iteration 3: linearization log likelihood = -131.584579

Computing standard errors:

http://www.stata.com/manuals/me.pdf#memenlRemarksandexampleseqorange
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Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

phi1: U1[tree], xb

circumf Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/phi2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/phi3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

tree: Identity
var(U1) 991.1514 639.4636 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

For comparison, we fit the same model but now using the default initial values for fixed effects:
. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{phi2})/{phi3}))

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: linearization log likelihood = -131.584579

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

phi1: U1[tree], xb

circumf Coef. Std. Err. z P>|z| [95% Conf. Interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/phi2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/phi3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

tree: Identity
var(U1) 991.1514 639.4636 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The results are identical except for the iteration log.
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Smart regressions approach to finding initial values

Consider the following NLME model,

yij = φ1j + (φ2j − φ1j) exp {− exp (φ3j) xij}+ εij

where

φj =

φ1jφ2j
φ3j

 =

 β1
β2 + u1j

β3


Here φ1j is the asymptote as xij → ∞ and φ2j is the value of yij at xij = 0. Thus initial

estimates, β(0)
1 and β(0)

2 , may be obtained by using the graphical approach as described in Graphical
approach to finding initial values. To obtain an initial estimate for β3, notice that, ignoring the error
term εij and setting u1j = 0,

log (|yij − β1|) = log (β2 − β1) + {− exp (β3)} xij

Therefore, we can regress log(|y − β(0)
1 |) on x and use the estimated slope, β̂x = − exp(β(0)

3 ), to
obtain the initial value for β(0)

3 = log(−β̂x).

Examples of specifying initial values

When you want to assign initial values for a subset of the model parameters, for example, fixed
effects or random-effects covariance parameters, you will often need to know their estimation names
or, in other words, how menl labels them in e(b). To learn the names, you can fit the model with
the iterate(0) and coeflegend options first.

. menl ... , ... iterate(0) coeflegend

The iterate(0) option specifies to bypass maximization and only report the initial values and
the likelihood evaluated at those values. The coeflegend option specifies that the legend of the
parameters and how to specify them in an expression be displayed rather than displaying the statistics
for the parameters.

Keep in mind, however, that menl does not perform estimation in the original parameter metric.
For computational stability, the estimation is performed, loosely speaking, in a metric that transforms
all parameters to be defined on a real line. For example, a log transformation is used for standard
deviations, and an inverse hyperbolic tangent transformation is used for correlations. When you specify
initial values, you must specify them for parameters in the estimation metric and not the original
metric.

coeflegend displays parameter names as they are stored in e(b), which, for menl, are the names
of estimation parameters. If you also want to see parameters in the original metric, you can specify
coeflegend on replay.

. menl ... , ... iterate(0)

. menl, coeflegend

For example, recall the NLME model for the soybean data from example 9. Suppose that we want
to supply our own initial values.
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We fit the model with iterate(0) and coeflegend:
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb)
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)
> covariance(U*, unstructured) iterate(0) coeflegend

Obtaining starting values by EM:

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -740.06177

phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coef. Legend

phi1
_cons 19.26527 _b[phi1:_cons]

phi2
_cons 55.05299 _b[phi2:_cons]

phi3
_cons 8.385531 _b[phi3:_cons]

/plot
lnsd(U1) 1.650846 _b[/plot:lnsd(U1)]
lnsd(U2) 1.436634 _b[/plot:lnsd(U2)]
lnsd(U3) .4081525 _b[/plot:lnsd(U3)]

athcorr(U2,
U1) .9055785 _b[/plot:athcorr(U2,U1)]

athcorr(U3,
U1) .8482105 _b[/plot:athcorr(U3,U1)]

athcorr(U3,
U2) 1.537798 _b[/plot:athcorr(U3,U2)]

/Residual
lnsigma .1069986 _b[/Residual:lnsigma]

Warning: convergence not achieved

Parameter names are listed within the b[] specifier.

In what follows, we will outline only the syntax of the specifications. If you actually want to run
all the examples to see the initialization in action, we suggest that you specify iterate(0) for speed.

Let’s first specify initial values for fixed effects only. The fixed-effects parameters are phi1: cons,
phi2: cons, and phi3: cons. Suppose that we want to initialize them with 19, 55, and 8.

We can type
. menl ..., ... initial(phi1:_cons 19 phi2:_cons 55 phi3:_cons 8)

Or, more compactly, we can type
. local fe phi1:_cons 19 phi2:_cons 55 phi3:_cons 8
. menl ..., ... initial(‘fe’)
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When you specify the initial() option, menl does not perform the EM algorithm to initialize
the parameters but instead uses the values you supplied. If you specify values for only a subset of
parameters, the remaining parameters will be initialized with naı̈ve initial values such as zeros for
fixed effects and correlations and ones for variances. Often, you may have good initial values for
fixed effects but not for variance components. In this situation, menl provides initial()’s fixed
suboption. This option specifies that the supplied values be used for fixed effects but that the EM
algorithm still be used to obtain initial values for variance components. If you specify only a subset
of values for fixed effects, the remaining fixed effects will still be initialized with zeros even if fixed
is specified. We recommend that you specify fixed when you intend to supply initial values only
for the fixed effects.

. local fe phi1:_cons 19 phi2:_cons 55 phi3:_cons 8

. menl ..., ... initial(‘fe’, fixed)

Now suppose that we also want to assign initial values for random-effects parameters. As we
mentioned earlier, remember that we assign initial values for standard deviations in the log metric and
for correlation in the inverse hyperbolic tangent or atanh metric. For example, if you want to assign
an initial value of 2 to σε, then you should supply log(2) to the initial() option. Similarly, if
you want to assign a value of 0.7 to the correlation of two random effects, then you should provide
atanh(0.7) to the initial() option.

Continuing with example 9, suppose that we want to specify the following initial values for the
random-effects covariance parameters:

( U1[plot] U2[plot] U3[plot]

σ1 = 5
ρ21 = 0.72 σ2 = 4
ρ31 = 0.71 ρ32 = 0.94 σ3 = 1.4

)

The names of the parameters in the estimation metric that correspond to σ1, σ2, and σ3 are
/plot:lnsd(U1), /plot:lnsd(U2), and /plot:lnsd(U3) and that correspond to ρ21, ρ31, and
ρ32 are /plot:athcorr(U2,U1), /plot:athcorr(U3,U1), and /plot:athcorr(U3,U2).

When specifying initial values for free parameters such as random-effects covariance parameters,
you can omit the forward slash (/) at the beginning of their names. Keeping in mind that initial
values for covariance parameters are supplied in the log and atanh metrics, we can type

. local re_cov plot:lnsd(U1) log(5) // log(5)

. local re_cov ‘re_cov’ plot:lnsd(U2) 1.4 // log(4)

. local re_cov ‘re_cov’ plot:lnsd(U3) 0.34 // log(1.4)

. local re_cov ‘re_cov’ plot:athcorr(U2,U1) atanh(0.72) // atanh(0.72)

. local re_cov ‘re_cov’ plot:athcorr(U3,U1) 0.89 // atanh(0.71)

. local re_cov ‘re_cov’ plot:athcorr(U3,U2) 1.7 // atanh(0.94)

. menl ... , ... initial(‘fe’ ‘re_cov’ Residual:lnsigma 0.5)

In the above, we also specified an initial value of 0.5 for the log of the error standard deviation.
For parameters /plot:lnsd(U1) and /plot:athcorr(U2,U1), instead of specifying the values,
we specified the corresponding expression. This is allowed, as long as your expression is simple and
does not contain spaces.

Instead of using parameter names, we can specify a list of values directly in the initial() option,
in which case we must also specify initial()’s copy suboption.

. menl ... , ... initial(19 55 8 1.6 1.4 0.34 0.9 0.89 1.7 0.5, copy)
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Or we can provide these values as a matrix:

. matrix initvals = (19, 55, 8, 1.6, 1.4, 0.34, 0.9, 0.89, 1.7, 0.5)

. matrix list initvals

initvals[1,10]
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1 19 55 8 1.6 1.4 .34 .9 .89 1.7 .5

. menl ... , ... initial(initvals, copy)

If we label the columns of the initvals matrix properly, we do not need to specify copy:

. local fullcolnames : colfullnames e(b)

. matrix colnames initvals = ‘fullcolnames’

. matrix list initvals

initvals[1,10]
phi1: phi2: phi3: /plot: /plot:

_cons _cons _cons lnsd(U1) lnsd(U2)
r1 19 55 8 1.6 1.4

/plot: /plot: /plot: /plot: /Residual:
athcorr(U2, athcorr(U3, athcorr(U3,

lnsd(U3) U1) U1) U2) lnsigma
r1 .34 .9 .89 1.7 .5

. menl ... , ... initial(initvals)

Using a properly labeled initial-value matrix, we can also specify initial values for a subset of
parameters. For example, we can specify initial values for fixed effects only as follows:

. matrix initvals = initvals[1,1..3]

. matrix list initvals

initvals[1,3]
phi1: phi2: phi3:

_cons _cons _cons
r1 19 55 8

. menl ... , ... initial(initvals)

Stored results
menl stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(k res) number of within-group error parameters
e(k eq) number of equations
e(k feq) number of fixed-effects equations
e(k req) number of random-effects equations
e(k reseq) number of within-group error equations
e(df m) model degrees of freedom
e(ll) linearization log (restricted) likelihood
e(chi2) χ2

e(p) significance
e(rank) rank of e(V)
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) menl
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(title) title in estimation output
e(varlist) variables used in the specified equation
e(eq depvar) user-specified equation
e(expressions) names of defined expressions, expr 1, expr 2,..., expr k
e(ex expr i) defined expression expr i, i=1,...,k

e(hierarchy) random-effects hierarchy structure, (path:covtype:REs) (...)
e(revars) names of random effects
e(rstructlab) within-group error covariance output label
e(timevar) within-group error covariance t() variable, if specified
e(indexvar) within-group error covariance index() variable, if specified
e(covbyvar) within-group error covariance by() variable, if specified
e(stratavar) within-group error variance strata() variable, if specified
e(corrbyvar) within-group error correlation by() variable, if specified
e(rescovopt) within-group error covariance option, if rescovariance() specified
e(resvaropt) within-group error variance option, if resvariance() specified
e(rescorropt) within-group error correlation option, if rescorrelation() specified
e(chi2type) Wald; type of model χ2 test
e(vce) conventional
e(method) ML or REML
e(opt) type of optimization, lbates
e(crittype) optimization criterion, linearization log likelihood
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) factor-variable constraint matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(b sd) random-effects and within-group error estimates in the standard deviation metric
e(V sd) VCE for parameters in the standard deviation metric
e(b var) random-effects and within-group error estimates in the variance metric
e(V var) VCE for parameters in the variance metric
e(cov #) random-effects covariance structure at the hierarchical level k−#+1 in a k-level

model
e(hierstats) group-size statistics for each hierarchy

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Variance-components parameters
Inference based on linearization
Initial values



menl — Nonlinear mixed-effects regression 75

Introduction

Recall (1), a two-level NLME model, from the Introduction,

yij = µ
(
x′ij , β, uj

)
+ εij i = 1, . . . , nj ; j = 1, . . . ,M

where M is the number of clusters and, for each cluster j, nj is the number of observations in that
cluster; yj = (y1j , y2j , . . . , ynjj)

′ is the nj × 1 response vector; Xj = (x1j ,x2j , . . . ,xnjj)
′ is the

nj × l matrix of covariates, including within-subject and between-subjects covariates; β is the p× 1
vector of unknown parameters; uj is the q×1 vector of random effects; and εj = (ε1j , ε2j , . . . , εnjj)

′ is
the nj×1 vector of within-group or within-cluster errors. uj’s follow a multivariate normal distribution
with mean 0 and q×q variance–covariance matrix Σ, and εj’s follow a multivariate normal distribution
with mean 0 and nj × nj variance–covariance matrix σ2Λj ; uj’s are assumed to be independent of
εj’s. Depending on the form of Λj , σ2 is either a within-group error variance σ2

ε or a squared scale
parameter σ2. For example, when errors are i.i.d., that is, when Λj is the identity matrix, σ2 = σ2

ε

is the within-group error variance. When Λj corresponds to the heteroskedastic power structure, σ2

is a multiplier or a scale parameter.

Positive-definite matrices Σ/σ2 and Λj are expressed as functions of unconstrained parameter vectors
αu and αw, respectively, to recast a constrained optimization problem into an unconstrained one.
Thus αu contains unconstrained random-effects covariance parameters and αw contains unconstrained
within-group error covariance parameters. Λj may also depend on the random effects uj and the
fixed effects β. For more details about Σ and Λj and about functional forms of parameter vectors
αu and αw given different covariance structures, see Variance-components parameters.

Based on (1), the marginal, with respect to uj’s, log likelihood for
(
β,α, σ2

)
is

L(β,α, σ2) = log


M∏
j=1

∫
f
(
yj |Xj ,uj ;β,αw, σ

2
)
f (uj ;αu) duj

 (22)

where α = (α′u,α
′
w)
′, f

(
yj |Xj ,uj ;β,αw, σ

2
)

is the conditional density of yj given Xj and uj ,
and f (uj ;αu) is the density of uj .

In general, there are no closed-form expressions for (22) or the marginal moments of an NLME
model. This is because the random effects uj enter the model nonlinearly, making the q-dimensional
integral in (22) analytically intractable in all but simpler cases. Several estimation techniques have
been proposed for estimating parameters β, α, and σ2, including numerical integration of the integral
in (22) by using an adaptive Gaussian quadrature and a linearization of the mean function in (1) by
using a Taylor-series expansion.

menl implements the linearization method of Lindstrom and Bates (1990), with extensions from
Pinheiro and Bates (1995), which is described in Inference based on linearization.

Variance-components parameters

For numerical stability, maximization of (22) is performed with respect to the unique elements of
the matrix G = Σ/σ2 expressed as logarithms of standard deviations for the diagonal elements and
hyperbolic arctangents of the correlations for off-diagonal elements. Let αu be the vector containing
these elements. For example, if we assume that the elements of the random-effects vector uj are
independent, then Σ is diagonal and αu will contain q distinct parameters—q logarithms of standard
deviations. Table 1 lists the vectors of parameters αu for all random-effects covariance structures
supported by menl in the covariance(vartype) option.
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Table 1. Variance-components parameters

vartype α′u

independent (g1, g2, . . . , gq)

exchangeable (g1, g12)

identity g1

unstructured (g1, g2, . . . , gq, g12, g13, . . . , gq−1q)

Notes: gu=log(
√

[G]uu), guv= atanh([G]uv).
unstructured has q(q+1)/2 parameters.

The within-group error covariance matrix is parameterized as follows,

Var (εj |uj) = σ2Λj (Xj ,β,uj ,αw) = σ2Sj (δ,υj)Cj(ρ)Sj (δ,υj)

where αw =
(
δ∗
′,ρ∗′

)′
and δ∗ and ρ∗ are unconstrained versions of δ and ρ defined in table 2 and

table 3, respectively. For example, for a positive δ1, δ∗1 = log (δ1). Sj = Sj (δ,υj) is an nj × nj
diagonal matrix with nonnegative diagonal elements g (δ, υ1j) , g (δ, υ2j) , . . . , g

(
δ, υnjj

)
such that

Var (εij) = σ2[Sj ]
2
ii = σ2g2 (δ, υij), where υij’s are the values of a variance covariate or the values

of a mean function µ
(
x′ij ,β,uj

)
, in which case Λj will depend on Xj , β, and uj . Cj = Cj(ρ)

is a correlation matrix such that corr (εij , εkj) = [Cj ]ik = h (|tij − tkj |,ρ), where tij is a value of
a time variable for time-dependent correlation structures such as AR and MA structures. A list of the
supported g(·) and h(·) functions is given in table 2 and table 3, respectively.

Carroll and Ruppert (1988) introduced various variance functions g (δ, υij) to model heteroskedas-
ticity, which were further studied in the context of NLME models by Davidian and Giltinan (1995).
Table 2 lists variance functions supported by the resvariance(resvarfunc . . .) option.

Table 2. Supported variance functions g(·)

resvarfunc g (δ, υij) δ′

identity 1 –
linear

√
υij –

power c+ |υij |δ (c, δ), c ≥ 0

power, noconstant |υij |δ δ

exponential exp (δυij) δ

The variance function g(·) and thus the within-group error covariance may depend on β and
uj through µ(·), when υij = µij = µ

(
x′ij ,uj ,β

)
in table 2. This is particularly appealing in

PK applications, where there is often considerable intraindividual heterogeneity that is modeled, for
example, as a power function of the mean.

The within-group error correlation structure is governed by the h(·) function. Table 3 lists correlation
structures that are supported by the rescorrelation(rescorr . . .) option and also have a closed-form
expression. In addition, the AR and MA correlation structures are defined below.
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The ar p structure assumes that the errors have an AR structure of order p. That is,

εij = φ1εi−1,j + · · ·+ φpεi−p,j + zij

where zij are i.i.d. Gaussian with mean 0 and variance σ2
z . menl reports estimates of φ1, . . . , φp and

the overall error variance σ2
ε , which can be derived from the above expression. This structure has a

closed-form expression only for p = 1, in which case φ1 = ρ is the correlation between error terms.

The ma q structure assumes that the errors are an MA process of order q. That is,

εij = Zi + θ1Zi−1 + · · ·+ θqZi−q

where Zl are i.i.d. Gaussian with mean 0 and variance σ2
Z . menl reports estimates of θ1, . . . , θq and

the overall error variance σ2
ε , which can be derived from the above expression.

Table 3. Within-group error correlation functions h(·)

rescorr h(|tij − tkj |,ρ) Expression ρ

identity h(k) I(k = 0) –
ar 1 h(k, ρ) ρk, k = 0, 1, . . . ρ, |ρ| < 1

ar p, p > 1 h(k,φ) no closed form (φ1, φ2, . . . , φp)

ctar1 h(s, ρ) ρs, s ≥ 0 ρ, |ρ| < 1

ma q h(k, θ)


∑q−|k|

j=0
θjθj+|k|∑q

j=0
θ2
j

k ≤ q

0 k > q

(θ0 = 1, θ1, . . . , θq)

You can build many flexible within-group error covariance structures by combining different
functions g(·) and h(·), that is, by combining the resvariance() and rescorrelation() options.
For example, you can combine an AR(1) correlation structure with a heteroskedastic structure that is
expressed as a power function of the mean by specifying rescorrelation(ar 1, t(timevar))
and resvariance(power yhat).

Inference based on linearization
Let’s write (1), equivalently, in matrix form as

yj = µ (Xj ,β,uj) + Λ
1
2
j (Xj ,β,uj ,αw) ej

Here µ (Xj ,β,uj) depends on β and uj through the function d(·) in (2), and ej’s ∼ N
(
0, σ2Inj

)
,

where Inj
is the identity matrix of dimension nj . In what follows, for brevity, we suppress the

dependence of µ and Λj on Xj .

Following Lindstrom and Bates (1990), we will initially assume that Λj does not depend on Xj ,
β, and uj or, equivalently, on φj but rather on j only through its dimension; that is, Λj = Λj(αw).
Therefore, heteroskedastic structures that depend on the mean are not yet allowed in this context.
Toward the end of this section, we will present a modified version of the algorithm that accounts for
the dependence of Λj on φj .
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Lindstrom and Bates discuss a natural extension of the methods for the LME models to NLME
models. For a known α (and thus known Σ and Λj) and σ2, the estimates of β and uj jointly
minimize

M∑
j=1

[
log|Σ (αu) |+ u′j {Σ (αu)}−1 uj + log

∣∣∣∣σ2Λj (αw)

∣∣∣∣
+ σ−2 {yj − µ (β,uj)}′ Λ−1j (αw) {yj − µ (β,uj)}

]
which is twice the negative log likelihood for β when uj is fixed or twice the negative log of the
posterior density of uj when β is fixed. Consequently, one strategy for estimating β and (predicting)
uj is to minimize the above objective function with respect to β and uj given suitable estimates of
α and σ2. Estimation of α and σ2 can be accomplished by using MLE with respect to the marginal
density of yj , in which uj’s are integrated out. But because no closed-form expression for this
density is available, we approximate the conditional distribution of yj given uj by a multivariate
normal distribution with an expectation that is linear in uj and β. This is illustrated in step 2 of the
algorithm below.

Lindstrom and Bates (1990) propose the following two-step estimation method or alternating
algorithm.

Step 1 (PNLS step). Given current estimates α̂ (and thus α̂u and α̂w) of α and σ̂2 of σ2,
minimize with respect to β and uj

M∑
j=1

[
log|Σ (α̂u) |+ u′j {Σ (α̂u)}−1 uj + log

∣∣∣∣σ̂2Λj (α̂w)

∣∣∣∣
+ σ̂−2 {yj − µ (β,uj)}′ Λ−1j (α̂w) {yj − µ (β,uj)}

] (23)

Define ∆ such that σ2Σ−1 = ∆′∆. Note that ∆ = ∆(αu), but for notational convenience, this
dependency is suppressed throughout the rest of this section. Equation (23) is equivalent to minimizing
the penalized least-square objective function

PNLS step:
M∑
j=1

[∣∣∣∣∣∣∣∣ {Λ′j(αw)}−1/2 {yj − µ (β,uj)}
∣∣∣∣∣∣∣∣2 + ||∆uj ||2

]

with respect to β and uj while holding the current estimates of α (and, consequently, of ∆ and of Λj)
fixed. pnlsopts(iterate(#)) iterations are performed at this step, unless the convergence criterion
(CC) is met. The CC for PNLS optimization is controlled by pnlsopts(nrtolerance(#)) and one
of pnlsopts(ltolerance(#)) or pnlsopts(tolerance(#)); see menlmaxopts for details.

Denote the resulting estimates as ûj and β̂.

Step 2 (LME step). Perform a first-order Taylor-series expansion of the model mean function
around the current estimates of β and of the conditional modes of the random effects uj , yielding

yj = µ
(
β̂, ûj

)
+ X̂j

(
β− β̂

)
+ Ẑj (uj − ûj) + Λ

1
2
j (αw) ej (24)
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where

X̂j =
∂µ (β,uj)

∂β′

∣∣∣∣
β=β̂,uj=ûj

Ẑj =
∂µ (β,uj)

∂u′j

∣∣∣∣
β=β̂,uj=ûj

Model (24) is essentially an LME model, and we use notations X̂j and Ẑj for the derivatives to
emphasize this. That is, X̂j and Ẑj represent the corresponding fixed-effects and random-effects
design matrices of an LME model.

Thus the approximate conditional distribution of yj is

yj |uj ∼ N
{
µ
(
β̂, ûj

)
+ X̂j

(
β− β̂

)
+ Ẑj(uj − ûj), σ

2Λj

}
Because the expectation is now linear in random effects uj , the approximate conditional distribution
of yj , along with distribution of uj , allows us to approximate the marginal distribution of yj as

yj ∼ N
{
µ
(
β̂, ûj

)
+ X̂j

(
β− β̂

)
− Ẑjûj , σ

2Vj(α)
}

(25)

where Vj(α) = Ẑj∆
−1 (∆−1)′ Ẑj ′ + Λj (αw).

Let ŵj = yj −µ
(
β̂, ûj

)
+ X̂jβ̂+ Ẑjûj . Estimation of α and σ2 can now be accomplished by

maximizing the log likelihood corresponding to the approximate marginal distribution in (25),

LME step:
lLB(α,β, σ

2) = −n
2

log
(
2πσ2

)
− 1

2

M∑
j=1

{
log|Vj(α)|

+ σ−2
(
ŵj − X̂jβ

)′
Vj
−1(α)

(
ŵj − X̂jβ

)} (26)

where n =
∑M
j=1 nj .

Alternatively, when the reml option is specified, we take an REML approach and maximize

lLB,R(α, σ
2) = lLB(α, β̂(α), σ

2)− 1

2

M∑
j=1

log

∣∣∣∣σ−2X̂j
′Vj
−1(α)X̂j

∣∣∣∣ (27)

The LME step (step 2) of the alternating algorithm consists of optimizing an LME log likelihood, in
which the response vector is given by ŵj and the fixed- and random-effects design matrices are given
by X̂j and Ẑj , respectively. lmeopts(iterate(#)) iterations are performed at this step, unless the
CC is met. The CC for LME optimization is controlled by lmeopts(nrtolerance(#)) and one of
lmeopts(ltolerance(#)) or lmeopts(tolerance(#)); see menlmaxopts for details.

The LME step produces estimates α̂ and σ̂2. (The estimates β̂ can also be obtained at this step,
but it is generally more computationally efficient to compute them at the PNLS step.) These estimates
will now be used in step 1, the PNLS step.
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Stopping rules. One PNLS step and one LME step correspond to one iteration of the alternating
algorithm. The log likelihood reported by menl at each iteration is the log likelihood (26) or, if the
reml option is specified, (27) from the last iteration of the LME step. menl refers to this log likelihood
as “linearization log likelihood” because it corresponds to the log likelihood of the LME model, which
was the result of the linearization of the NLME model. The algorithm stops when the linearization
likelihoods from successive iterations satisfy ltolerance(#), when the parameter estimates from
successive iterations satisfy tolerance(#), or if the model does not converge, when the maximum
number of iterations in iterate() is reached; see menlmaxopts for details about maximization
options. Because the alternating algorithm does not provide a joint Hessian matrix for all parameters,
there is no check for the tolerance of the scaled gradient; thus the convergence cannot be established
in its strict sense. The convergence is declared based on the stopping rules described above.

When Λj = Λj (β,uj ,αw) depends on uj and β, which is the case, for example, with resvari-
ance(power yhat) and resvariance(exponential yhat)), an intermediate step between the
PNLS and the LME step is performed to replace the fixed effects and random effects in Λj , or more
precisely in the variance function g(·), by their current estimates from the PNLS step. After that,

Λj

(
αw; β̂, ûj

)
= Λj(αw) depends only on αw because both uj and β are held fixed at their

current estimates throughout the LME step.

Efficient methods for computing (26) or (27) are given in chapters 2 and 5 of Pinheiro and
Bates (2000). Namely, to simplify the optimization problem, one can express the optimal values of
β and σ2 as functions of α (and thus of ∆ and αw) and work with the profiled log likelihood of α.

For the PNLS step, the objective function to be minimized is the penalized sum of squares

M∑
j=1

[
||(Λ′j)−1/2 {yj − µ (β,uj)} ||2 + ||∆uj ||2

]
By adding “pseudo”-observations to the data, the PNLS problem can be reexpressed as a standard

nonlinear least-squares problem. Thus step 1 of the alternating algorithm is sometimes called the
“pseudodata step”. Define pseudoobservations ỹj as follows:

ỹj =

[
(Λ′j)

−1/2yj
0

]
µ̃ (β,uj) =

[
(Λ′j)

−1/2µ (β,uj)
∆uj

]
Then, the PNLS step can be rewritten as

M∑
j=1

∣∣∣∣ỹj − µ̃ (β,uj)
∣∣∣∣2

Hence, for values of α and σ2 fixed at the current estimates, the estimation of β and uj in the PNLS
step can be regarded as a standard nonlinear least-squares problem. A popular iterative estimation
technique for standard nonlinear least-squares is the Gauss–Newton method (see Pinheiro and Bates
[2000, chap. 7] for more details).

After the completion of the alternating algorithm, an extra LME iteration is performed, with fixed
effects profiled-out of the likelihood, to reparameterize [α, log(σ)] to their natural metric and to
compute their standard errors with the delta method. This step is labeled Computing standard
errors: in the output of menl. If you are interested only in standard errors for fixed effects, you can
skip this step by specifying the nostderr option, in which case standard errors for the random-effects
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and within-group error covariance parameters will not be computed and will be shown as missing in
the output table. The standard errors for the fixed effects are obtained from the PNLS step, and the
standard errors for random-effects parameters are obtained from the LME step.

Inference on the parameters of the NLME model is based on the approximating LME model with
log likelihood and restricted log likelihood functions defined in (26) and (27). Therefore, all the
inferential machinery available within the context of LME models can be used. For example, under
the LME approximation, the distribution of the (restricted) MLE β̂ of the fixed effects is

β̂ ∼ N

β, σ2

 M∑
j=1

X̂j
′Vj
−1(α)X̂j

−1


and for random-effects and within-group error parameters is[
α̂

logσ̂

]
∼ N

{[
α

logσ

]
, I−1(α, σ)

}
where

I(α, σ) = −
[
∂2lLBp/∂α∂α

′ ∂2lLBp/∂ logσ∂α′

∂2lLBp
/∂α∂ logσ ∂2lLBp

/∂2 logσ

]
and lLBp

= lLBp
(α, σ) is the approximated log likelihood from the LME step with fixed effects

profiled out. Because inference is based on the LME approximation of the original NLME model,
asymptotic results are technically “approximately asymptotic” and are thus less accurate than the
asymptotic inferential results for LME models as described in [ME] mixed.

Initial values
The PNLS step requires starting values for β and uj . These are obtained from the EM algorithm;

see, for example, Bates and Pinheiro (1998) for details. You can control optimization within the EM
algorithm by specifying the emtolerance() and emiterate() options. You can also supply your
own initial values; see Examples of specifying initial values. NLME models are often sensitive to
initial values, so it is good practice to try different sets of initial values to verify that your results are
robust to them.
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