1 Summary

Stata/MP¹ is the version of Stata that is programmed to take full advantage of multicore and multiprocessor computers. It is exactly like Stata/SE in all ways except that it distributes many of Stata's most computationally demanding tasks across all the cores in your computer and thereby runs faster—much faster.

In a perfect world, software would run 2 times faster on 2 cores, 3 times faster on 3 cores, and so on. Stata/MP achieves about 75% efficiency. It runs 1.7 times faster on 2 cores, 2.4 times faster on 4 cores, and 3.2 times faster on 8 cores (see figure 1). Half the commands run faster than that. The other half run slower than the median speedup, and some of those commands are not speed up at all,

either because they are inherently sequential (most time-series commands) or because they have not been parallelized (graphics, mixed).

In terms of evaluating average performance improvement, commands that take longer to run—such as estimation commands—are of greater importance. When estimation commands are taken as a group, Stata/MP achieves an even greater efficiency of approximately 85%. Taken at the median, estimation commands run 1.9 times faster on 2 cores, 3.1 times faster on 4 cores, and 4.1 times faster on 8 cores. Stata/MP supports up to 64 cores.

This paper provides a detailed report on the performance of Stata/MP. Command-bycommand performance assessments are provided in section 8.

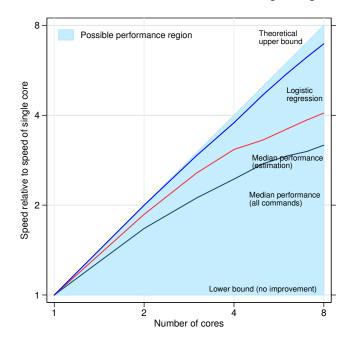


Figure 1. **Performance of Stata/MP.** Speed on multiple cores relative to speed on a single core.

^{1.} Support for this effort was partially provided by the U.S. National Institutes of Health, National Institute on Aging grants 1R43AG019542-01A1, 2R44AG019542-02, and 5R44AG019542-03. We also thank Cornell Institute for Social and Economic Research (CISER) at Cornell University for graciously providing access to several highly parallel SMP platforms. CISER staff, in particular John Abowd, Kim Burlingame, Janet Heslop, and Lars Vilhuber, were exceptionally helpful in scheduling time and helping with configuration. The views expressed here do not necessarily reflect those of any of the parties thanked above.

Stata/MP	Performance	Report
----------	-------------	--------

Table of contents (2)

2 Table of contents

1	Summary	1
2	Table of contents	2
3	Introduction	3
4	Parallel computing hardware	4
5	Constructing Stata/MP	5
6	Measuring Stata/MP's performance	5
7	Performance summary	7
8	Stata/MP performance, command by command	14
9	Performance variability across computing platforms	40
10	Hyperthreading—single- and multiple-processor platforms	40
\mathbf{A}	Performance assessment graphs for desktop computers	43
В	Performance assessment graphs for high-end servers	178
\mathbf{C}	Command names and descriptions	238
D	Problem sizes	26 0
\mathbf{E}	Commands not assessed	283
\mathbf{F}	Mata	28 4
\mathbf{C}	CLLAMM	28

3 Introduction

Stata/MP was designed to take advantage of computers with multiple cores and multiple processors by partitioning the work among the multiple cores. From the outset, Stata/MP was required to be 100% compatible with all other flavors of Stata, including Stata/SE and Stata/IC. Stata/MP was also required to run all scripts, user-written programs, and analyses that run under existing Stata without any change or special action on the user's part.

Stata/MP runs on multicore and multiprocessor computers, including computers running MS Windows (2000, XP, 7, 8, and later), Intel-based Mac OS computers, Linux computers, and 64-bit computers running Oracle Solaris.

With multiple cores, one might expect to achieve the theoretical upper bound of doubling the speed by doubling the number of cores—2 cores run twice as fast as 1, 4 run twice as fast as 2, and so on. However, there are three reasons why such perfect scalability cannot be expected: 1) some calculations have parts that cannot be partitioned into parallel processes; 2) even when there are parts that can be partitioned, determining how to partition them takes computer time; and 3) multicore/multiprocessor systems only duplicate processors and cores, not all the other system resources.

Stata/MP achieved 75% efficiency overall and 85% efficiency among estimation commands.

Speed is more important for problems that are quantified as *large* in terms of the size of the dataset or some other aspect of the problem, such as the number of covariates. On large problems, Stata/MP with 2 cores runs half of Stata's commands at least 1.7 times faster than on a single core. With 4 cores, the same commands run at least 2.4 times faster than on a single core.

Figure 1, shown in the summary above, displays the theoretically possible performance as a shaded region. All Stata commands fall somewhere in the shaded region. Performance is measured as speed relative to speed on a single core: 1 indicates the speed on a single core; 2 means twice as fast as a single core; 4 means four times as fast as a single core; and so on. We could say the same thing in a different way: 2 means that a given problem runs in half the time required on a single core; 4 means that it runs in one-quarter the time; and so on.

The line in figure 1 for logistic regression reveals a speedup that is near the theoretical maximum. At the other end of the spectrum, some Stata commands experience no speedup at all. This is because their calculations are inherently sequential or because no effort was made to partition the work into parallel processes.

In typical use, Stata's estimation commands consume the bulk of the time required to perform analyses, so speeding them up was a priority for Stata programmers. Figure 1 also shows the median performance of Stata's estimation commands. The median estimation command runs 1.9 times faster on 2 cores and 3.1 times faster on 4 cores. Again, half the estimation commands speed up more than the median and half speed up less. Twenty-five percent of estimation commands speed up 2 times with 2 cores (the theoretical limit) and more than 3.7 times with 4 cores (this is not shown on the graph).

Figure 1 emphasizes dual-core, quad-core, and 8-core computers because those are the most common multicore platforms available. Stata/MP will work with up to 64 cores, however, and performance improvements continue to increase with more cores. For example, 25% of estimation commands run

at least 6 times faster on 8-core computers, 10 times faster on 16-core computers, 15 times faster on 32-core computers, and 19 times faster on 64-core computers.

For assessments of performance gains of individual Stata commands, see section 8. See appendices A and B for results reported in graphical form.

4 Parallel computing hardware

Chip makers are increasing the number of cores on a computer processor, and computer makers are increasing the number of processors in a computer. Prior to 2005, chip makers essentially doubled the speed of computer processors every 18 months, a fact known informally as Moore's law (Moore 1965). The speed improvements were achieved by making components smaller—hence reducing electrical resistance—and by placing more transistors on a processor. Chip makers, however, are reaching the physical limits of what can be achieved through reduced size and increased complexity using existing technology. Although alternatives for further speeding up processors are on the horizon, these alternatives involve dramatic changes in technology and fabrication.

The other alternative to make computers run faster is simply to give you more processors or cores.

Modern computers run faster by having multiple processors in one box or multiple processors on one chip. When multiple processors are on one chip, the chip makers call such processors cores, and the chip they reside on is called a multicore processor. Each core is itself a processor that is bundled together with other cores onto a single chip.

Regardless, when they reside together in one box, all the processors and cores share the main memory, disk drives, and other devices on the computer. Most modern computers use multicore processors. Modern servers typically use multiple processors, each having multiple cores. Whether the cores are on one processor chip or on multiple processor chips does not much matter.

Following the lead of the chip makers, we are going to count cores and talk about cores on a computer. We are also going to use the term multicore to include both a single-processor computer whose processor has multiple cores and a multiprocessor computer whose processors also may have multiple cores.

Multicore designs work exceptionally well when running different programs simultaneously, especially when programs run independently. Hence, a 4-core computer can do almost as much work as four separate computers, and none of the programs needs to be modified to recognize that it is running in a multicore environment.

Single programs can take advantage of multicore environments, too, but the programs must be modified to do so. This modification is accomplished by allowing different parts of the program to run simultaneously in what are called separate execution threads. For example, a word processor might allow you to print and edit a document simultaneously. This type of threading is relatively easy to implement and is even allowed on single-core computers to make programs more convenient.

This type of threading adds convenience but does not address the issue of speeding the computations in a statistical package. To speed computations, a statistical package must be able to perform simultaneous computations on the same task. This ability is referred to as symmetric multiprocessing (SMP). Stata/MP is a modified version of Stata that uses SMP to speed up its computations.

Another type of parallel processing involves using multiple computers over a network. This type is known as cluster computing or distributed computing. Cluster computing requires problems that admit large-grain parallelization. Although cluster computing can be of interest in the computation of statistical results, Stata/MP does not address such parallel architectures.

For a thorough discussion of parallel processing, see Culler, Singh, and Gupta (1999) and Grama et al. (2003).

5 Constructing Stata/MP

For Stata to take advantage of multicore systems, sections of its code had to be rewritten to distribute their work across cores. Stata's internal design includes key algorithms that are used in many contexts. Once those key algorithms were rewritten, the benefits then spread themselves across Stata. Statistical computations lend themselves especially well to parallelization because observations are usually independent, and independent pieces can be calculated separately. One way parallelization happens is that many statistical computations can be partitioned over observations.

Parallelizing key algorithms resulted in a little more than half the observed performance gains. The remaining gains were achieved by modifying individual routines for important Stata commands and including custom code to parallelize them.

In all, approximately 250 sections of Stata's internal code were parallelized using the Open/MP API for developing SMP applications (see Dagum and Menon [1998]).

6 Measuring Stata/MP's performance

There is a theoretical limit to how much the performance of a program or command can be improved with multiple cores (or processors). With 2 cores, that limit is twice as fast (or half the run time); with 4 cores, the limit is 4 times as fast (or one-quarter the run time); and so on. This limit is called linear or perfect scaling.

Furthermore, not all algorithms or sections of code can be made to run in parallel. Some computations, or parts thereof, are inherently single threaded, for example, a formula that depends on prior values of itself, such as the autoregressive process:

$$y_t = \phi + \rho y_{t-1}$$

Statistical calculations are often more parallelizable than you might imagine. For instance, many inherently sequential computations can be parallelized when performed on longitudinal (panel) data because the dependencies that made the problem inherently sequential are broken at panel boundaries. Rather than partitioning on observations, Stata/MP partitions on panels. Whereas most time-series

commands run only a little faster in the SMP environment, most panel-data commands run substantially faster.

Some sections of code are simply not worth the effort of parallelization because they take so little time to run or because parallelization would be technically difficult. Either way, the effort is just not worth the benefit.

Taken together, those sections of code are the nonparallelized region. Some authors refer to the parallelizable regions and the parallelized regions—the first referring to what could be parallelized and the second to what was actually parallelized—and even focus on the ratio between the two. We will focus on run times and their associated relative speeds, however, and draw no distinction between parallelizable and parallelized.

How much of a calculation has been parallelized is measurable, and measuring it is useful because it allows us to make extrapolations on how problems will run when the number of cores varies.

Figure 2 presents a stylized view of the component run times associated with a command that has been parallelized. Block A represents the time spent in parallelized regions of code; Block B, the unparallelized regions of code; and Block C, the additional overhead required for parallelization.

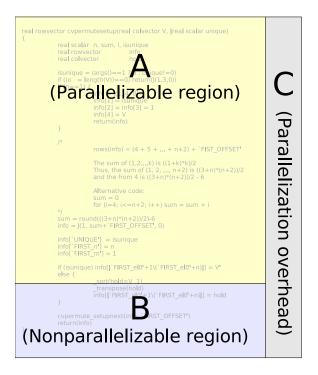


Figure 2. Parallelization components.

Let each letter represent an amount of time consumed in running a particular command on a particular dataset. Then A+B is the run time of the command when using a single core. If we parallelize the command, however, there is an additional time, C, associated with the overhead of partitioning the problem and coalescing the results from the cores.

If we know the percentage of time spent in A, then we have completely described the SMP performance of a command. Ignoring C, that is just 100A/(A+B).

We want to be more conservative, however, and account for the time required to parallelize the command. Considering C to be only the parts of the overhead that cannot be parallelized, we will refer to 100A/(A+B+C) as the percentage parallelized:

$$\text{percentage parallelized} = \frac{100A}{A+B+C}$$

The percentage parallelized is a useful measure of how much performance will improve as cores (or processors) are added. All gains to parallelization occur because region A can be made to run on multiple cores at the same time. If we partition the region perfectly and each core runs uninterrupted, then when we double the number of cores, we halve the time used to perform A. As we add more cores, time spent in A continues to decrease. With 2 cores, it is A/2; with 4 cores, it is A/4; and with c cores, it is A/c. If we increase the number of cores without bound, A/c goes to zero. In contrast, B+C is a constant time for running the command; it cannot be reduced by adding more cores. As we add cores, the run time asymptotes to B+C.

We are ignoring another minor contribution to run time. Sometimes, overhead is associated with each core rather than, or in addition to, an overall parallelization overhead. Because of the methods used to build Stata/MP, this overhead is extremely small. In fact, it affects only four commands, and its effect on them is small.

The concept of percentage parallelizable helps clarify why some commands will have less-than-perfect scaling and allows results to be extrapolated to any number of cores. We also present performance results as simple relative speeds that can be read directly from tables or graphs to find the relative speed for multiple cores or processors compared with the speed for a single core or processor.

7 Performance summary

The performance of Stata/MP has been measured on 529 Stata commands. Excluding I/O commands, these 529 commands are most of the commands that take any appreciable time to run. Commands such as display (which writes output to the Results window) or local (which sets the value of a program macro) are not considered because they consume a negligible part of the time required to perform any analysis. Commands that run a target command repeatedly are not explicitly assessed, and some other commands are not timed for a variety of reasons; see appendix E. If you are searching this document for a specific command, know that we have tried to list every Stata command somewhere in the paper.

For each of the 529 commands, timings were recorded on a multicore computer where Stata/MP used 1, 2, ..., 40 cores to execute the same command. The computer contained four processors, each having 10 cores, for a total of 40 cores. All these timings were from the same installation of Stata/MP on the same computer. To reduce the impact of interruptions by the operating system, the timings were repeated three times and the shortest time was recorded.

Timings have also been performed on other dual-core, quad-core, 8-core, and 16-core computers.

Although speeds relative to a single core do vary among tested platforms, they are generally comparable, and the results presented are indicative of what can be expected across a spectrum of platforms. The results of the timings are presented in section 8, Stata/MP performance, command by command, and appendix A, Performance assessment graphs for desktop computers.

Appendix A, Performance assessment graphs for desktop computers, shows graphs for each of the 529 commands. Figure 3 shows the graph of Stata's logistic regression command, logistic:

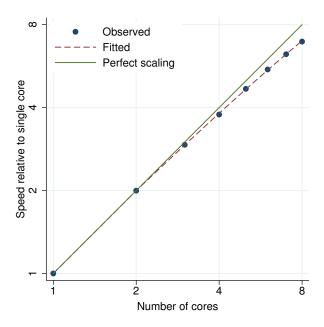


Figure 3. logistic performance plot.

The y axis shows speed relative to the speed on a single core. For logistic, the relative speeds are 2 (2 cores), 3.8 (4 cores), and 6.9 (8 cores). Also shown is a 45° reference line representing perfect scalability or, if you prefer, 100% parallelized: 2 times (2 cores), 4 times (4 cores), and 8 times (8 cores). logistic is 98% parallelized, but even so, you can see that its relative speeds are a bit below what is theoretically possible.

Stata's linear regression command, regress, very nearly achieves theoretical limits (see figure 4); its relative speeds increase in almost direct proportion to the number of cores.



Figure 4. regress performance plot.

Figure 5 shows the graph for arima:

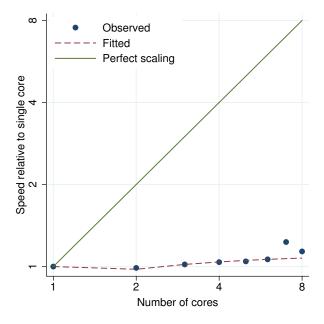


Figure 5. arima performance plot.

arima, a time-series command, hardly benefits from parallelization. Relative speeds are 1 (2 cores), 1 (4 cores), and 1.1 (8 cores).

Figure 6 shows the graph for Stata's command for Poisson regression with endogenous treatment effects, etpoisson:

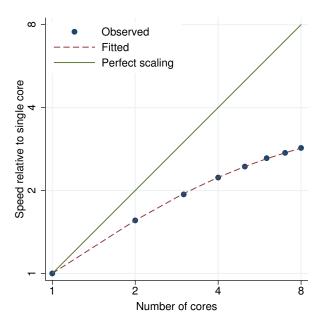


Figure 6. etpoisson performance plot.

Relative speeds are 1.6 (2 cores), 2.2 (4 cores), and 2.9 (8 cores). What is interesting about this graph is that the line flattens out as the number of cores increases. This is what happens when a command is not 100% parallelized: the relative run time approaches a horizontal asymptote that is related to the percent parallelized, which here is about 50%. Specifically, the asymptote is at $1/\{1 - (\text{percentage parallelized})/100\}$, which for etpoisson is about 2.

Finally, all 529 performance profiles can be combined into one figure, such as figure 7. The shaded area shows the region containing all possible performances. The diagonal top of the region represents perfect scaling (the maximum speed theoretically possible), while the horizontal lower boundary of the region represents no speed improvement.

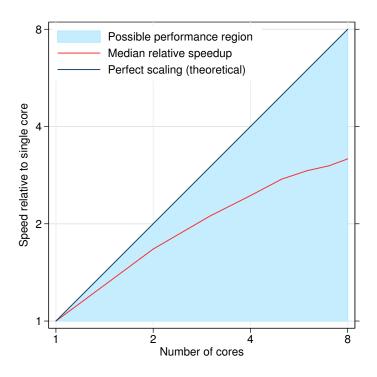


Figure 7. **Performance of Stata/MP.** Speed on multiple cores relative to speed on a single core.

Also included are the median results over all 529 commands; 264 commands have better performance gains (their curves lie above the median relative speedup line), and 264 exhibit lesser performance gains (their curves lie below the line).

Median performance for most Stata users will be better than median performance across commands as we calculated it. To be able to measure performance, we had to choose large problems even when, for a particular command, large problems are rarely run. For instance, few users would run analyses that spend as much time running t tests as did those analyses we had to run to record reliable results. Stata's command for t tests runs quickly on single or multiple cores. Meanwhile, Stata/MP development efforts focused on improving run times of commands that require substantial run times. Ergo, the median improvements are understated.

Figure 8 better illustrates the distribution of results by showing not just the median but also the quartiles. The most interesting thing about figure 8 is the first quartile (light-blue swath at the top). It shows that 25% of commands exhibit nearly perfect scaling. The worst commands among this group run about 2 times faster on 2 cores, 3.7 times faster on 4 cores, and 6.4 times faster on 8 cores.

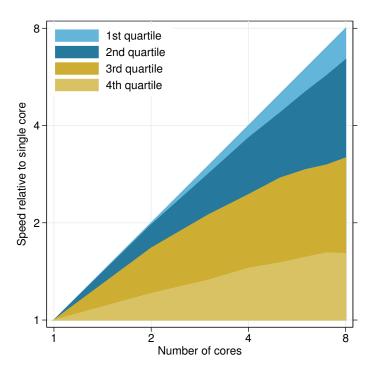
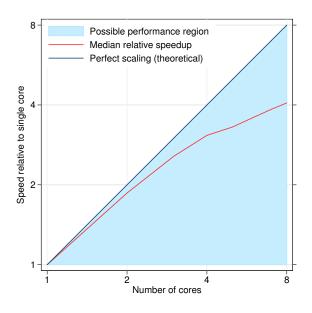


Figure 8. Quartiles of Stata/MP performance. Speed on multiple cores relative to speed on a single core.

Figures 7 and 8 present results for all commands, whereas the time required by most analyses is dominated by execution of estimation commands. Estimation commands tend to be the most computationally intensive, particularly those that require iterative solutions.

Figure 9 summarizes the observed performance and median performance for the 284 estimation commands. These include all the estimation commands in Stata, and some commands are included more than once to include critical options, such as vce(robust) and vce(cluster) for robust standard errors and correlation within groups. The options themselves are not important; what is important is that these options and a few others like them substantively affect how the calculation proceeds and thus affect speed.

Compared with figure 7, figure 9 shows that the median performance for estimation commands is better than the overall median. The median relative speed for estimation commands is 1.9 times faster on 2 cores, 3.1 times faster on 4 cores, and 4.1 times faster on 8 cores. Half of all estimation commands perform even better. Figure 10 reveals that only 25% of all estimation commands run less than 1.5 times faster on 2 cores, less than 2.1 times faster on 4 cores, and less than 2.6 times faster on 8 cores.



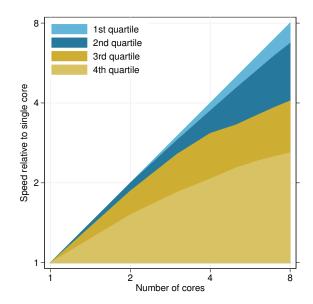
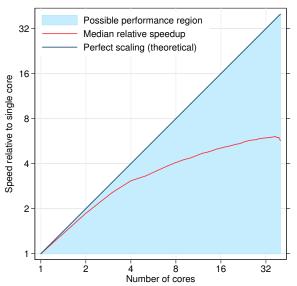
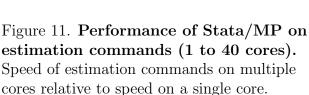


Figure 9. Performance of Stata/MP on estimation commands. Speed on multiple cores relative to speed on a single core.

Figure 10. Quartiles of Stata/MP performance on estimation commands. Speed on multiple cores relative to speed on a single core.

We have emphasized results on 2, 4, and 8 cores because those are the most common desktop architectures currently available. Stata/MP supports up to 64 cores, and performance continues to improve as cores are added. Figure 11 shows the performance boundary and median for all 284 estimation commands on 1-40-core computers, and figure 12 shows their performance quartiles.





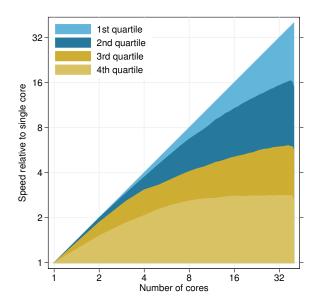


Figure 12. Quartiles of Stata/MP performance on estimation commands (1 to 40 cores). Speed of estimation commands on multiple cores relative to speed on a single core.

Stata/MP performance, command by command 8

The performance summaries from the prior section provide an overall sense of the performance of Stata/MP but will not reflect the experience of most users. Few users perform all the commands in Stata, and no users perform them with equal frequency. Most users will be interested in a subset of commands and often in only a few commands that they use regularly on large problems.

Table 1, toward the end of this section, provides relative speeds on individual commands, comparing the speed on 2, 4, 8, and 16 cores with the speed on a single core. The table also reports the degree to which each command is parallelized.

All commands were run on moderately-large-to-very-large problems. The goal was to measure performance on problems that required substantial time to solve and that were large enough to measure performance gains on 8, 16, 32, or even 64 cores. For commands that are parallelized, such problems have a larger parallelizable region (A) relative to the unparallelizable region (B) and are thus more amenable to parallelization, particularly when run on many cores. Longer timings also ameliorate variations in timings, such as interruptions caused by operating system processes or the memory status of the system when the command begins. Run-to-run variations are much greater for smaller problems that have shorter run times.

Timings were typically performed on commands that took 1–2 minutes to run on a single-core computer running at 2.2–3.4 GHz. For some commands, this meant that the problems used extremely large numbers of observations or covariates, because some commands are inherently fast. For others, the problems were smaller because the commands are inherently slow, because of, for example, iterative or even simulated solutions. For details on the sizes of the problems, see appendix D.

Stata/MP was designed mostly to improve performance on large problems, such as those reported in appendix D. Even so, the performance on small-to-moderate problems improves surprisingly well. Using the same commands as those in appendix D, but with problems 100 to 10,000 times smaller and run times of 0.4 seconds to just over 4 seconds on a machine running at 2.2–3.4 GHz, substantial speedups were still observed. Among commands that were at least 50% parallelized, more than half exhibited greater than 90% of the speedup exhibited on the larger problems. These are typical results. Run times for smaller problems vary more from computer to computer because small problems are more sensitive to the architecture of the computer, processor, and operating system.

All values were obtained from the minimum of three runs on a 40-core computer.

Stata/MP performance was tested on many computers under MS Windows, Mac, Linux, and Oracle Solaris operating systems. Although performance varies somewhat across platforms, the results from the table below can reasonably be applied to any platform.

Most users should simply look at the column reporting results for the number of cores in which they are interested. This column estimates the speed on that number of cores relative to the speed on a single core. Given a computer with a known number of cores, this column of results is the most direct measure of performance improvement.

Relative speed is easy to understand. When relative speed is 2, you could run a given problem twice in the same amount of time that you could run it once on a single-core computer. When relative speed is 4, you could run a given problem four times, and so on. Equivalently, when relative speed is 2, you could run a given problem in half the time that you could run it on a single-core computer. When relative speed is 4, you could run a given problem in one-fourth the time, and so on.

Table 1 also presents the percentage parallelized discussed in section 6. Given a set of percentage run times (relative to the run times on a single core) for at least 3 different numbers of cores, we can estimate the percentage parallelized and parallelization overhead parameters. The form of the model is particularly simple:

percentage run time =
$$\alpha + \widehat{PP}\frac{1}{c} + \widehat{O}\frac{\delta_1}{c}$$
 (1)

where c is the number of cores, δ_1 is an indicator for c > 1, and α is an intercept.

Our parameters of interest are directly estimated:

percentage parallelized =
$$\widehat{PP}$$
 (2)

and

$$parallelization overhead = \widehat{O}$$
 (3)

Equation (1) is estimated by median regression (qreg) using Stata. Median regression is used in preference to ordinary least squares (OLS) because occasionally a timing will be far too large because of interruptions from the operating system. Such effects are ignored in median regression.

The estimated value for parallelization overhead is particularly sensitive to the computing platform, and so we do not report it here. Note from equation (1) that \hat{O} captures any unexpected difference in the speed when using one core. Because different computer, processor, cache, and operating system architectures respond differently in moving from 1 to 2 cores, \hat{O} captures not only the theoretical parallelization overhead, but also anything that causes the time from the first core to differ from the time from the second.

Percentage parallelized is the most concrete measure of how a command responds to more cores. For most commands, the run time in this percentage of the code falls by half for each doubling of the number of cores.

The estimated percentage parallelized is also the most comparable measure across computing platforms; it is very consistent from one platform to another. Most of the differences across computing platforms are captured in \hat{O} . Because the relative speeds are compared with the run time on a single core, they necessarily include the parallelization overhead and are thus not quite as comparable across machines.

Each line in the table represents a command run on a particular problem. The command column shows the Stata command name and relevant options. For those unfamiliar with Stata syntax, appendix C provides short descriptions of what each command does. To learn more about any command, including worked examples, all of the Stata manuals can be access from http://www.stata.com/features/documentation/.

Appendix A contains performance graphs for each command using 1–8 cores. Appendix B contains graphs using 1–40 cores. The graphs plot the observed relative speed, the modeled performance using equation (1), and the perfect scalability reference line. If you are reading the PDF version of this document, you can click on the command name in table 1 to go to the page with the associated graph.

Table 1. Stata/MP performance, command by command

	Spe	ed relative t	o a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
alpha	1.7	2.9	4.3	5.5	87
ameans	1.7	2.7	3.5	4.4	82
anova (one-way)	2.0	3.9	7.1	12.3	98
anova (two-way)	2.6	5.0	8.8	14.1	97
arch	0.9	1.2	1.3	1.3	25
areg	2.5	4.4	6.5	8.5	92
areg, vce(cluster)	1.9	3.5	5.5	7.7	92
areg, vce(robust)	2.1	3.7	5.9	7.9	93
arfima	1.0	1.0	1.0	1.0	0
arima	1.0	1.0	1.1	1.1	14
asclogit	1.8	2.9	4.3	5.7	88
asmprobit	1.3	1.4	1.5	1.5	34
asroprobit	1.2	1.5	1.6	1.6	37
bayesmh logit	1.7	2.4	3.2	3.2	69
bayesmh mvn	1.3	1.5	1.4	1.2	0
bayesmh mylogit	1.4	1.8	2.3	2.5	66
bayesmh nl	1.3	2.0	2.7	3.1	72
bayesmh normal	1.7	2.8	4.0	4.6	81
bayesmh normal gibbs	1.1	1.2	1.2	1.2	14
bayesmh normal re	1.3	1.5	1.6	1.7	40
betareg, link(logit)	2.0	3.7	6.7	11.3	97
betareg, link(probit)	2.0	3.7	6.7	11.4	97
binreg	2.0	3.6	6.3	9.8	96
biplot	1.0	1.0	1.0	1.0	0
biprobit	1.9	3.7	6.7	12.2	98

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative	to a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
biprobit (seemingly unrelated)	2.0	3.9	7.3	12.5	98
bitest	1.7	2.7	3.7	4.6	84
blogit	1.9	3.6	6.4	10.9	97
boxcox	2.0	3.7	6.6	10.8	97
bprobit	1.9	3.6	6.4	10.4	97
brier	1.1	1.3	1.4	1.5	34
bsample	1.1	1.3	1.4	1.5	34
bstat	1.7	3.0	4.1	5.1	85
by: generate	2.4	4.8	9.6	19.1	100
by: generate (small groups)	6.3	11.2	15.4	18.4	97
by: replace	2.6	5.3	10.5	21.1	100
by: replace (small groups)	6.0	11.0	22.1	23.5	97
ca	1.5	1.9	2.3	2.6	66
candisc	2.2	4.2	7.4	12.3	97
canon	1.6	2.7	4.2	6.1	91
cc	1.2	1.2	1.3	1.3	41
by: cc	1.0	1.0	1.0	1.0	2
centile	1.0	1.0	1.0	1.0	3
churdle linear	1.8	3.4	5.5	7.8	93
ci means	1.5	2.3	2.6	2.8	68
ci means, poisson	1.3	1.9	2.5	3.0	72
ci proportions	1.7	2.6	3.4	4.1	79
clogit (k1 to k2 matching)	1.9	3.5	6.0	9.5	96
clogit (1 to k matching)	1.5	2.0	2.4	2.7	68
cloglog	1.9	3.5	6.5	11.1	97

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative t	o a single c	ore^a			
		Number of cores					
Command	2	4	8	16	${\it parallelized}^b$		
cluster averagelinkage	1.9	3.8	7.3	13.6	99		
cluster centroidlinkage	1.9	3.7	7.2	13.7	99		
cluster completelinkage	1.9	3.7	7.1	13.1	99		
cluster generate	1.2	1.4	1.4	1.4	26		
cluster kmeans	2.1	4.2	8.2	15.4	99		
cluster kmedians	2.1	4.2	8.1	15.2	99		
cluster medianlinkage	2.0	3.8	7.5	13.6	99		
cluster singlelinkage	1.0	1.0	1.0	1.0	0		
cluster wardslinkage	1.9	3.7	7.0	12.7	99		
cluster waveragelinkage	1.9	3.7	7.1	12.8	99		
cnsreg	2.0	4.0	7.9	15.3	100		
codebook	2.8	5.1	7.5	10.6	94		
collapse	1.5	2.1	2.5	2.9	70		
compare	1.8	2.9	4.1	5.1	86		
compress	1.0	1.0	1.0	1.0	0		
contract	1.4	1.5	1.5	1.5	33		
corr2data	1.9	3.4	5.5	6.7	92		
correlate	2.0	4.1	8.2	16.2	100		
corrgram	1.2	1.6	1.4	1.5	33		
count	2.1	4.2	8.5	16.9	100		
cpoisson	1.5	2.1	2.6	2.9	70		
CS	1.2	1.3	1.3	1.3	26		
by: cs	1.0	1.0	1.0	1.0	0		
ctset	2.0	4.1	8.1	16.2	100		
cttost	1.0	1.0	1.0	1.0	5		

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
cumul	1.0	1.0	1.0	1.0	2
cusum	1.1	1.2	1.3	1.3	23
datasignature	1.0	1.0	1.0	1.0	0
decode	1.0	1.0	1.0	1.0	2
destring	1.0	0.9	1.1	1.7	52
dfactor	1.5	1.9	2.3	2.3	56
dfgls	1.1	1.2	1.3	1.3	27
dfuller	2.8	3.8	4.5	5.0	81
discrim knn	1.7	2.5	3.2	3.8	77
discrim lda	2.1	3.6	5.7	8.2	93
discrim logistic	1.9	3.7	6.9	12.3	98
discrim qda	1.7	2.4	3.1	3.7	77
dotplot	1.1	1.2	1.2	1.3	24
drawnorm	1.9	3.6	6.1	9.4	95
drop if exp	1.0	1.0	1.0	1.0	0
drop in range	1.0	1.0	1.0	1.0	0
dstdize	1.0	1.0	1.0	1.0	0
dvech	1.0	1.0	1.0	1.0	0
egen group()	1.9	3.0	4.2	5.2	85
by: egen mean	1.1	1.3	2.5	2.5	62
eivreg	2.0	3.9	7.6	14.5	99
encode	1.5	2.2	3.0	3.5	78
esize twosample	1.6	2.1	2.4	2.7	66
esize unpaired	1.6	2.3	3.0	3.5	77
eteffects (exponential), ate	1.9	3.4	5.3	7.3	91

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative	to a single c	ore^a	
		Percentage			
Command	2	4	8	16	$\operatorname{parallelized}^b$
eteffects (linear), ate	2.0	3.5	5.8	8.6	94
eteffects (linear), pomeans	2.0	3.5	5.8	8.6	94
eteffects (probit), ate	2.0	3.5	5.7	8.4	94
etpoisson	1.6	2.2	2.9	2.4	50
etregress, poutcomes	1.9	3.2	4.8	6.5	89
etregress, twostep	1.9	3.7	7.0	12.1	98
exlogistic	1.0	1.0	1.0	1.0	1
expand #	0.9	0.9	0.9	0.9	0
expand varname	1.0	1.0	1.0	1.0	0
expandel #	1.7	2.6	3.3	3.8	78
expandel varname	1.6	2.5	3.1	3.5	76
expoisson	1.0	1.0	1.0	1.0	2
factor	1.9	3.5	6.0	9.4	95
fcast compute	1.0	1.0	1.0	1.0	1
fillin	1.6	2.5	3.3	3.9	80
fracreg probit	2.1	4.1	7.8	14.2	99
frontier	2.0	4.0	7.6	13.8	99
fvrevar (factors)	1.7	3.7	6.5	10.4	95
fvrevar (interaction)	2.0	2.2	6.4	9.9	95
generate (small expressions)	3.4	6.6	12.2	20.8	99
generate	2.0	4.0	8.0	15.9	100
glm, family(gamma)	1.9	3.9	6.6	10.6	96
glm, family(gaussian)	2.0	3.8	6.8	11.2	97
glm, family(igaussian)	2.0	3.9	6.9	11.6	97
glm, family(nbinomial)	2.0	4.0	7.4	12.6	98

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
glm, family(poisson)	2.0	3.9	7.2	12.2	98
glogit	2.1	4.2	8.1	15.0	99
gmm	1.5	2.1	2.6	2.5	59
gmm (with derivatives)	2.1	3.7	5.9	8.4	93
gprobit	2.1	4.0	7.8	14.0	99
graph bar	1.3	1.9	2.9	3.0	67
graph box	1.1	1.1	1.1	1.2	14
graph pie	1.2	1.3	1.4	1.4	31
grmeanby	1.2	1.4	1.4	2.8	69
gsem, oprobit (CFA, 2-level)	1.7	2.7	3.7	3.8	74
gsem, oprobit (CFA)	1.7	2.4	2.8	2.8	62
gsort	1.1	1.3	1.4	1.4	32
hausman	1.2	1.3	1.3	1.3	23
heckman	2.0	3.8	6.9	11.2	97
heckman, twostep	1.9	3.7	6.7	11.4	97
heckoprobit	2.0	3.7	6.9	11.8	98
heckprob	2.0	3.7	6.9	11.4	97
hetprob	1.6	3.6	6.0	9.3	95
histogram	1.4	1.7	1.9	2.0	53
hotelling	2.0	4.2	8.2	15.5	99
icc, mixed	1.3	1.9	2.4	2.8	69
icc (one-way)	1.3	2.0	2.6	3.1	73
icc (two-way)	1.2	1.8	2.3	2.7	68
intreg	2.1	4.1	7.7	13.9	99
ir	1.3	1.5	1.6	1.8	48

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
by: ir	1.0	1.0	1.0	1.0	0
irf create	1.3	1.6	1.9	2.1	57
irt 1pl	1.6	2.3	2.9	3.2	72
irt 2pl	1.6	2.3	2.9	3.2	72
irt 3pl	1.6	2.4	3.0	3.4	73
irt grm	1.5	2.1	2.6	2.8	65
irt nrm	1.5	2.1	2.5	2.7	64
irt pcm	1.5	2.0	2.4	2.6	62
irt rsm	1.5	2.0	2.4	2.6	62
istdize	1.0	1.0	1.0	1.0	2
ivpoisson cfunction	2.2	4.0	6.2	8.8	93
ivpoisson gmm, additive	2.4	4.7	7.5	10.3	94
ivpoisson gmm, multiplicative	1.8	2.9	4.8	5.6	91
ivprobit	1.9	3.5	5.6	8.3	94
ivprobit, vce(cluster)	1.9	3.4	5.5	7.9	93
ivprobit, vce(robust)	1.9	3.4	5.6	8.3	94
ivregress 2sls	2.0	4.0	7.2	12.0	98
ivregress gmm	1.9	3.4	5.2	7.2	92
ivregress liml	1.9	3.7	6.6	10.5	96
ivtobit	2.2	4.3	6.9	9.9	94
kap	1.0	1.0	1.1	1.3	26
kappa	1.9	3.5	5.9	9.1	94
kdensity	2.0	3.4	4.0	4.3	79
keep if exp	1.0	1.0	1.0	1.0	1
keep in range	1.0	1.0	1.0	1.0	0

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	Speed relative to a single $core^a$					
		Percentage					
Command	2	4	8	16	${\it parallelized}^b$		
keep varlist	1.0	1.0	1.0	1.0	1		
ksmirnov	1.9	2.1	2.3	2.7	65		
ksmirnov, by()	2.0	2.1	2.2	2.4	60		
ktau	1.0	1.0	1.0	1.0	3		
kwallis	1.7	1.8	1.9	1.9	47		
ladder	1.7	3.0	4.0	5.1	85		
levelsof	1.2	1.2	1.3	1.3	22		
loadingplot	1.0	1.1	1.1	1.1	10		
logistic	2.0	3.8	6.9	12.0	98		
logit	2.0	3.8	7.0	11.9	98		
loneway	1.2	1.4	1.5	1.5	33		
lowess	2.0	3.5	7.0	13.9	100		
lpoly	1.7	2.7	3.7	4.6	83		
ltable	0.8	0.8	0.9	0.9	0		
manova (one-way)	1.8	2.8	3.8	4.8	84		
manova (two-way)	1.6	2.6	3.8	5.1	88		
margins	1.9	3.3	6.5	11.4	98		
margins, dydx() exp()	1.6	2.6	3.9	5.1	86		
margins, dydx()	1.7	2.7	4.1	5.5	88		
margins, exp()	1.6	2.7	3.9	5.1	86		
markout	2.1	4.2	8.4	16.8	100		
marksample	2.1	4.2	8.4	16.7	100		
marksample if exp	2.0	4.0	8.1	16.2	100		
matrix accum	2.0	4.0	7.9	15.9	100		
matrix eigenvalues	1.0	1.0	1.0	1.0	0		

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\bf parallelized}^b$
matrix score	2.0	4.1	8.1	16.2	100
matrix svd	1.0	1.0	1.0	1.0	0
matrix symeigen	1.0	1.0	1.0	1.0	0
matrix syminv	1.2	1.8	2.9	4.3	89
mca	1.0	1.1	1.1	1.1	9
mcc	1.1	1.2	1.2	1.2	21
mds	2.1	2.4	2.6	2.6	64
mdslong	2.1	2.4	2.6	2.7	65
mean	2.0	3.9	7.2	12.3	98
mecloglog	1.6	2.4	3.2	3.6	74
median	1.7	2.8	3.7	4.4	82
melogit	1.7	2.6	3.4	3.9	78
menbreg, dispersion(constant)	1.4	1.6	1.8	1.9	48
menbreg, dispersion(mean)	1.5	1.8	2.2	2.4	63
meologit	1.7	2.6	3.4	4.0	78
meoprobit	1.7	2.8	4.0	4.9	84
mepoisson	1.6	2.3	2.8	3.1	69
meprobit	1.7	2.8	3.9	4.7	83
meqrlogit	1.0	1.0	1.0	1.0	0
meqrpoisson	1.0	1.0	1.0	1.0	0
mestreg, distribution(exp)	1.6	2.4	3.1	3.5	74
mestreg, distribution(weibull)	1.7	2.7	3.7	4.3	81
mgarch	1.0	1.0	1.0	0.9	0
mhodds	1.2	1.4	1.6	1.7	42
mhodds (adjusted)	1.9	2.9	3.6	4.1	79

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
by: mhodds	1.0	1.0	1.1	1.1	6
mhodds (trend)	1.4	1.8	2.0	2.1	54
mi estimate: logit (flong)	1.5	2.0	2.4	2.7	67
mi estimate: logit (flongsep)	2.0	3.5	5.5	7.6	92
mi estimate: logit (mlong)	1.7	2.6	3.4	4.2	81
mi estimate: logit (wide)	1.9	3.3	5.4	7.9	93
mi estimate: mlogit	1.9	3.6	6.2	10.0	96
mi estimate: ologit	1.9	3.4	5.7	8.8	95
mi estimate: regress (flong)	1.2	1.4	1.5	1.6	38
mi estimate: regress (flongsep)	1.8	2.8	3.8	4.6	83
mi estimate: regress (mlong)	1.4	1.8	2.1	2.3	60
mi estimate: regress (wide)	1.7	2.8	4.0	5.1	85
mi impute chained (flong)	1.3	1.4	1.6	1.9	45
mi impute chained (flongsep)	1.2	1.6	1.9	2.1	58
mi impute chained (mlong)	1.3	1.6	2.0	2.2	56
mi impute chained (wide)	1.5	1.9	2.0	2.4	62
mi impute logit (flong)	1.2	1.3	1.4	1.4	30
mi impute logit (flongsep)	1.5	2.0	2.3	2.5	63
mi impute logit (mlong)	1.3	1.5	1.7	1.8	46
mi impute logit (wide)	1.8	2.8	3.8	4.7	84
mi impute mlogit	1.6	2.3	2.8	3.2	73
mi impute mono pmm	1.5	2.3	2.8	2.8	66
mi impute mono regress	1.6	2.3	3.0	3.5	76
mi impute mvn	1.3	1.4	1.5	1.5	33
mi impute ologit	1.4	1.8	2.1	2.2	58

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative	to a single c	ore^a	
		Number	of cores		Percentage $parallelized^b$
Command	2	4	8	16	
mi impute pmm	1.5	2.2	2.9	3.3	72
mi impute regress	1.4	1.7	1.8	1.9	50
misstable nested	1.3	1.8	2.2	2.5	65
misstable patterns	1.3	1.6	1.9	2.1	57
misstable summarize	1.0	1.0	1.0	1.0	0
misstable tree	1.4	1.9	2.3	2.6	66
mixed	1.0	1.0	1.0	1.0	0
mixed_crossed	1.0	1.0	1.0	1.0	2
mkspline	2.0	3.0	3.9	4.6	82
mleval	2.1	4.2	8.4	16.6	100
mleval, nocons	2.1	4.2	8.3	16.5	100
mlmatbysum	2.0	3.7	6.9	12.5	98
mlmatsum	2.0	4.0	8.0	15.7	100
mlogit	2.0	3.9	7.7	14.8	99
mlsum	1.8	3.2	5.3	7.8	93
mlvecsum	2.0	3.9	7.6	14.3	99
mprobit	1.1	1.1	1.1	1.1	6
mswitch ar	1.2	1.3	1.4	1.4	28
mswitch dr	0.9	0.9	0.9	0.9	0
mvdecode	5.0	10.6	21.1	41.9	100
mvencode	2.0	4.1	8.2	16.2	100
mvreg	1.8	3.5	6.1	10.3	97
mvtest correlations	1.8	2.8	3.9	4.9	85
mvtest covariances	1.7	2.8	4.1	5.2	86
mvtest means, heterogeneous	1.7	2.3	2.6	2.9	69

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Number	of cores		Percentage ${\it parallelized}^b$
Command	2	4	8	16	
mvtest means, homogeneous	1.8	2.7	3.5	4.0	79
mvtest means, lr	1.6	2.2	2.6	2.9	69
mytest normality	1.0	1.0	1.0	1.0	0
nbreg	2.0	3.7	6.4	10.1	96
newey	1.2	1.3	1.4	1.5	34
nl	1.8	3.3	5.0	7.8	92
nlogit	1.8	2.3	2.7	3.0	70
nlsur	1.4	1.7	1.9	2.1	54
nptrend	1.9	2.1	2.3	2.3	59
ologit	2.0	3.8	7.2	13.3	99
oneway	1.0	1.0	1.0	1.0	0
oprobit	2.0	3.7	7.0	12.7	98
orthog	1.9	4.8	7.8	11.5	95
pca	1.5	2.3	2.7	3.0	69
pcorr	2.1	4.1	8.1	15.6	100
pctile	1.8	3.2	4.6	5.6	87
pergram	1.0	1.0	1.0	1.0	0
pkcollapse	0.9	0.9	1.0	1.0	2
pkexamine	1.1	1.3	1.3	1.4	29
pksumm	0.9	0.9	1.0	1.0	0
poisson	2.0	3.9	7.4	13.2	98
pperron	1.1	1.2	1.2	1.8	50
prais	1.1	1.2	1.2	1.2	21
predict, cooksd	2.0	4.0	8.0	16.0	100
predict, covratio	2.0	4.0	7.9	15.6	100

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative t	o a single c	ore^a	Percentage parallelized b
		Number	of cores		
Command	2	4	8	16	
predict, dfbeta	2.0	4.0	7.8	14.7	99
predict, dfits	2.0	4.0	8.0	15.7	100
predict, e	2.0	3.7	6.7	11.1	97
predict, leverage	2.0	4.0	8.0	15.7	100
predict, pr	1.9	3.7	6.6	10.7	97
predict, residuals	2.0	4.1	8.1	16.1	100
predict, rstandard	2.0	4.0	8.1	16.1	100
predict, rstudent	2.0	4.0	8.0	16.0	100
predict, stdf	2.0	4.0	8.1	16.2	100
predict, stdp	2.0	4.0	8.0	16.1	100
predict, stdr	2.0	4.0	8.0	16.0	100
predict, welsch	2.0	4.0	8.0	15.9	100
predict, ystar	1.9	3.5	5.9	8.9	95
predictnl	1.9	3.5	5.7	8.5	94
probit	2.2	4.1	7.4	12.5	97
procrustes	2.0	3.9	5.5	7.4	90
proportion	1.3	1.5	2.8	3.0	72
prtest1	1.8	2.9	4.4	5.9	89
prtest2	1.7	2.6	3.8	4.9	85
prtest, by()	1.1	1.2	1.3	1.3	24
pwcorr	1.9	2.8	6.1	9.8	96
qreg	2.2	3.7	5.5	7.3	90
ranksum	1.8	2.6	3.2	3.7	76
ratio	1.5	2.0	2.4	2.6	66
ratio (exp1) (exp2)	1.6	2.1	2.6	2.9	70

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative	to a single c	ore^a	
		Number	of cores		Percentage parallelized ^{b}
Command	2	4	8	16	
recode	1.4	1.8	2.1	2.3	59
reg3	1.9	3.4	5.6	8.1	93
regress	2.1	4.1	8.1	15.9	100
regress, vce(cluster)	1.9	3.1	4.6	6.2	89
regress, vce(robust)	2.0	3.9	7.4	13.4	99
replace	2.0	4.0	8.0	16.0	100
replace (small expressions)	4.4	9.1	18.0	35.3	100
reshape long	1.1	1.3	2.7	2.8	70
reshape wide	1.1	1.2	1.2	1.2	18
robvar	1.2	1.2	1.3	2.2	59
rocfit	1.8	2.4	3.1	3.5	75
roctab	1.0	1.4	1.6	1.7	46
rotate	1.0	1.0	1.0	1.0	2
rotatemat	1.0	1.0	1.0	1.0	2
rreg	2.0	3.8	7.0	11.7	97
runtest	1.9	3.1	4.4	5.2	85
scobit	2.0	3.7	6.9	12.0	98
scoreplot	1.6	2.4	2.9	3.3	73
screeplot	1.1	1.2	1.3	1.3	24
sdtest1	1.4	1.7	1.9	2.2	58
sdtest2	1.3	1.7	1.9	2.1	56
sdtest, by()	1.4	1.7	2.0	2.1	57
sem, method(adf) (CFA)	2.0	4.0	7.8	15.1	100
sem, method(ml) (CFA)	1.6	2.1	2.6	2.8	69
sem, method(mlmv) (CFA)	0.8	0.8	0.8	0.8	0

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative t	o a single c	ore^a	
		Number	of cores		Percentage parallelized ^{b}
Command	2	4	8	16	
sem (SEM latent)	1.7	2.3	2.9	3.4	75
sem (SEM observed)	1.5	2.3	2.8	3.2	73
separate	1.3	1.5	1.6	1.6	40
sfrancia	1.7	2.0	2.7	3.9	77
signrank	2.0	2.6	3.1	3.6	75
signtest	1.8	4.0	7.6	13.9	99
sktest	1.8	3.4	4.6	5.5	86
slogit	1.2	1.6	1.8	2.0	53
sort	0.9	1.6	2.3	2.9	76
spearman	2.6	3.2	3.9	4.8	81
sspace	1.7	2.3	3.0	3.2	68
stack	1.2	1.5	1.8	2.1	55
stci	1.0	1.1	1.9	2.0	54
stcox	1.0	1.0	1.0	1.0	8
stcrreg	1.0	1.0	1.0	1.0	2
stgen	1.8	2.1	3.5	4.1	80
stir	1.5	2.0	2.3	2.5	62
stmc	2.1	2.5	2.8	3.0	67
by: stmc	2.2	2.4	2.8	2.9	66
stmh	1.3	1.7	1.9	2.0	53
by: stmh	1.2	1.5	1.7	1.9	47
stptime	1.1	1.3	1.4	1.4	29
strate	1.2	1.3	1.5	1.6	39
streg, distribution(exponential)	1.9	3.7	6.6	11.0	97
streg, dist(exp) vce(cluster)	2.0	3.9	7.3	13.1	98

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Number	of cores		Percentage $ parallelized^b $
Command	2	4	8	16	
streg, dist(exp) frailty()	2.0	3.8	6.8	11.2	97
streg, dist(exp) frailty() shared()	1.9	3.6	5.9	9.2	95
streg, $dist(exp)$ vce(robust)	2.0	3.9	7.5	13.7	99
streg, distribution(gamma)	2.6	5.3	9.0	13.6	96
streg, distribution(lnormal)	2.0	4.0	6.8	10.4	96
streg, distribution(weibull)	2.0	3.9	7.2	13.0	98
streg, dist(weibull) frailty()	2.3	5.1	8.9	13.2	97
streg, dist(weib) frailty() shared()	2.1	4.0	6.7	10.1	96
sts generate	1.1	1.1	1.1	1.2	12
sts graph	1.1	1.2	1.2	1.2	17
sts list	1.2	1.2	1.2	1.3	19
sts test	1.2	1.2	1.2	1.2	15
stset	1.5	2.0	2.3	2.5	63
stsplit	1.1	1.2	1.2	1.3	20
stsum	1.2	1.1	1.2	1.6	43
stteffects ipw (weibull)	2.0	3.7	6.1	8.7	94
stteffects ipwra (weibull)	1.8	2.9	4.1	5.2	86
stteffects ra (weibull)	1.7	2.6	3.6	4.4	82
stteffects wra (weibull)	1.8	2.7	3.8	4.7	83
stvary	1.1	1.6	2.1	2.5	67
suest	2.0	3.7	6.9	12.0	98
summarize	2.0	4.6	9.1	18.1	100
sunflower	1.5	2.0	4.2	6.6	90
sureg	1.9	3.4	5.7	8.5	94
svar	1.4	1.5	1.6	1.6	41

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	Percentage
		Number	of cores		
Command	2	4	8	16	${\it parallelized}^b$
svmat	1.0	1.0	1.0	1.1	4
svy brr: logit	1.5	2.0	2.4	2.8	68
svy brr: poisson	1.7	2.3	3.0	3.5	76
svy brr: regress	1.9	3.5	5.9	8.9	94
svy jackknife: logit	1.8	2.7	3.7	4.4	82
svy jackknife: poisson	1.5	2.2	3.0	3.7	78
svy jackknife: regress	2.0	3.3	5.2	7.1	91
svy linearized: logit	1.9	3.5	5.8	9.0	95
svy linearized: poisson	2.0	3.6	6.0	9.1	95
svy linearized: regress	1.9	3.2	4.8	6.6	90
swilk	1.9	2.1	2.8	2.9	68
symmetry	1.1	1.2	1.2	1.3	23
table (one-way)	0.9	1.2	1.4	1.6	43
table (two-way)	1.1	1.4	1.7	1.8	51
tabodds	1.0	1.1	1.1	1.1	9
tabodds (adjusted)	0.9	1.0	1.1	1.1	13
tabstat	1.4	1.8	1.9	2.0	52
tabstat, by()	1.2	1.3	3.2	3.3	73
tabulate (one-way)	1.0	1.0	1.0	1.0	0
tabulate (two-way)	1.0	1.0	1.0	1.0	0
teffects aipw (linear)	1.9	3.6	6.1	9.4	95
teffects aipw (probit)	1.9	3.4	5.7	8.6	94
teffects ipw (logit)	2.1	4.1	7.2	11.6	97
teffects ipwra (linear)	1.9	3.5	6.0	9.0	95
teffects ipwra (probit)	1.9	3.4	5.6	8.2	94

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative	to a single c	ore^a	
		Number	of cores		$\begin{array}{c} \text{Percentage} \\ \text{parallelized}^b \end{array}$
Command	2	4	8	16	
teffects nnmatch	2.0	4.0	7.8	15.2	100
teffects psmatch, logit	1.0	1.0	1.1	1.1	6
teffects ra (linear)	2.0	3.7	6.6	10.7	96
teffects ra (probit)	2.0	3.6	6.2	9.6	95
tetrachoric	1.2	1.4	1.4	1.5	37
tnbreg	1.6	2.9	3.9	4.6	83
tobit	2.1	4.1	8.1	15.7	99
tostring	1.0	1.0	1.0	1.1	11
total	2.0	3.9	7.2	12.5	98
tpoisson	1.9	3.6	6.2	9.3	95
truncreg	2.1	3.8	6.4	9.9	96
tsfilter bk	1.1	1.2	1.3	1.3	25
tsfilter bw	1.0	1.0	1.0	1.0	4
tsfilter cf	1.1	1.2	1.3	1.3	25
tsfilter hp	1.0	1.0	1.0	1.0	4
tsrevar	2.6	5.3	10.3	17.5	97
tsset	0.9	1.5	1.9	2.2	62
tssmooth exp	1.2	1.6	1.7	1.9	49
tssmooth ma	1.2	1.3	1.3	1.4	29
ttest1	1.3	1.7	2.0	2.2	58
ttest2	1.7	2.4	2.9	3.3	74
ttest, by()	1.4	1.7	2.0	2.1	57
twoway fpfit	1.5	2.5	4.8	6.1	89
twoway lfitci	1.2	1.5	1.6	1.7	46
twoway mband	2.1	3.2	3.8	4.2	79

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spe	ed relative t	o a single c	ore^a	
		Number	of cores		Percentage
Command	2	4	8	16	${\bf parallelized}^b$
twoway mspline	2.1	2.9	3.8	4.2	79
ucm, model(rwdrift)	1.1	1.2	1.2	1.2	15
var	1.3	3.1	3.6	4.0	76
vargranger	1.0	1.0	1.0	1.0	0
varlmar	1.4	1.8	2.0	2.4	61
varnorm	1.5	2.2	2.8	2.8	69
varsoc	1.4	1.8	2.1	2.2	59
varstable	1.0	3.0	3.0	3.0	66
vec	1.2	1.4	1.5	1.6	40
veclmar	1.1	1.3	1.5	1.6	39
vecnorm	1.3	1.6	1.9	3.1	72
vecrank	1.0	1.4	1.4	1.5	35
vecstable	1.0	1.0	1.0	1.0	1
vwls	2.0	4.0	7.4	13.0	98
wntestb	1.0	1.0	1.0	1.0	1
wntestq	1.1	1.1	1.2	1.2	14
xcorr	1.1	1.1	1.2	1.2	14
xtabond	1.1	1.4	1.6	1.6	41
xtabond, twostep	1.2	1.5	1.8	1.8	46
xtcloglog, re	2.1	4.0	6.9	10.8	96
xtdata, be	1.7	1.8	2.0	2.0	52
xtdata, fe	2.5	3.0	3.3	3.6	73
xtdata, re	2.7	3.1	3.3	3.5	73
xtdpd	1.3	1.7	1.7	2.1	54
xtdpdsys	1.3	1.5	1.7	1.7	40

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	ed relative t	o a single c	ore^a	
		Number	of cores		Percentage parallelized ^{b}
Command	2	4	8	16	
xtfrontier	2.5	4.3	6.7	9.3	93
xtgee, family(gaussian) corr(ar2)	1.5	1.7	1.8	1.9	49
xtgee, fam(gauss) corr(unstruct)	1.5	1.7	1.8	1.9	48
xtcloglog, pa	1.7	2.5	3.2	3.7	77
xtlogit, pa	1.5	1.7	1.9	2.1	55
xtnbreg, pa	1.6	2.2	2.6	2.9	69
xtpoisson, pa	1.5	1.9	2.2	2.4	61
xtprobit, pa	1.4	1.6	1.8	1.9	51
xtreg, pa	1.4	1.6	1.7	1.8	47
xtgls	1.6	2.1	2.6	2.9	69
xthtaylor	1.5	2.6	3.6	4.4	82
xtile	1.0	1.0	1.0	1.0	0
xtintreg	2.0	3.9	7.1	12.0	98
xtivreg, be	2.3	3.3	4.0	4.3	80
xtivreg, fd	2.1	3.1	3.6	3.8	76
xtivreg, fe	2.1	3.2	3.7	4.0	77
xtivreg, re	2.4	3.4	4.1	4.6	81
xtlogit, fe	1.6	2.4	3.0	3.3	74
xtlogit, re	2.1	3.6	5.8	7.7	91
xtnbreg, fe	2.8	4.7	6.9	8.4	92
xtnbreg, re	2.7	4.3	6.4	8.3	92
xtologit	1.7	2.5	3.4	4.0	80
xtoprobit	1.8	2.8	4.1	5.1	85
xtpcse	1.4	1.8	2.0	2.0	52
xtpcse, corr(ar1)	1.4	1.7	1.8	1.8	50

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

	Spec	Percentage			
Command					
	2	4	8	16	${\it parallelized}^b$
$\overline{\text{xtpcse, corr(psar1)}}$	1.3	1.6	1.7	2.4	62
xtpoisson, fe	2.6	4.4	6.9	9.1	93
xtpoisson, re	2.6	5.1	8.9	13.8	97
xtprobit, re	2.1	3.8	6.4	9.8	95
xtrc	1.7	2.4	3.1	3.3	73
xtreg, be	1.9	2.7	3.0	3.3	73
xtreg, fe	1.9	3.5	5.7	8.4	94
xtreg, fe vce(robust)	1.9	3.4	5.8	8.9	95
xtreg, mle	1.4	1.8	3.3	3.3	74
xtreg, re	2.3	3.2	3.8	4.5	79
xtregar, fe	2.0	4.3	4.8	5.1	82
xtregar, re	1.9	2.7	3.2	3.2	73
xtset	1.2	1.7	1.9	2.3	62
xtstreg, distribution(exponential)	1.8	2.6	3.3	3.9	78
xtstreg, distribution(weibull)	1.8	2.8	3.8	4.5	82
xtsum	2.3	3.2	3.8	4.1	79
xttab	1.1	1.2	1.3	1.5	33
xttobit	2.0	3.7	6.1	8.8	94
xtunitroot breitung	1.1	1.4	1.8	1.7	49
xtunitroot fisher	1.0	1.1	1.1	1.1	9
xtunitroot hadri	1.1	1.2	1.3	1.3	23
xtunitroot ht	1.3	1.7	1.9	2.1	53
xtunitroot ips	1.0	1.0	1.0	1.0	0
xtunitroot llc	1.0	1.0	1.1	1.0	3
zinb	2.0	4.0	7.1	11.4	97

All values are expressed as the speed relative to the speed of a single core.

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Table 1. Stata/MP performance, command by command

Command	Spe	Speed relative to a single $core^a$				
		Percentage				
	2	4	8	16	${\it parallelized}^b$	
zip	2.0	4.0	7.5	13.0	98	
_predict, xb	2.0	4.1	8.1	16.0	100	
_rmcoll	1.8	3.6	7.3	13.9	100	
_robust	2.0	3.9	7.6	14.5	99	

All values are expressed as the speed relative to the speed of a single core.

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

Nine of the lines in table 1 represent estimation commands run on survey data. Each of these commands begins with svy. These are only a few of the estimation commands that support estimation on survey data, but we can make some generalizations about how the three primary methods of estimation with survey data will perform with other estimation commands. With the linearization method, prefix svy linearized, estimation commands will be parallelized just as well and sometimes better than they were parallelized on non-survey data. This is true because the linearization computation is itself almost 100% parallelized. When using the balanced repeated replications (BRR) method, svy brr, or the jackknife method, svy jackknife, almost all estimation commands are slightly less parallelized. The BRR and jackknife VCE computations are not themselves parallelized, but the overall estimation time is dominated by standard estimation.

More than a full page of table 1 is dedicated to performance when using multiple imputation (MI). These commands begin with the mi prefix. All the results in the table are from problems with five imputations. The number of imputations does not affect parallelization performance much. As with all commands, problems with more observations and covariates are better parallelized; see appendix D for the sizes of problems used to assess performance.

There are two particularly computationally intensive aspects to using MI data—creating the MI datasets (imputation) and estimation. The table reports the results for all the primary methods of imputation; these lines are prefixed with mi impute. It also reports the results for four representative estimators—linear regression (regress), logistic regression (logit), multinomial logistic regression (mlogit), and ordered logistic regression (ologit).

Performance on MI data is affected by the style in which the MI data are stored. Stata allows four styles for storing MI data: wide (wide), marginal long (mlong), full long (flong), and full long and separate (flongsep). Each style has advantages with regard to storage required and ease of use in some analyses.

With regard to imputation performance under Stata/MP, imputation is fastest and most parallelized when using style flongsep. flongsep is the native style in which imputations are performed. Table 1 reports performance across all MI storage styles for only the logit imputer; the relative performance of the styles is similar for other imputers.

Estimation is fastest and most parallelized when using storage style wide, although style flongsep is also well parallelized. Style wide is fastest because the overhead for managing wide data mostly involves simply changing the names of variables. The table reports estimation results in all four MI storage styles for only regress and logit. The relative performance is similar for other estimators.

As with estimation using survey data, MI can be applied to many more estimation commands than those listed in the table. Only some of the MI computations are themselves parallelized, so most commands are less parallelized when used with MI data, regardless of the style in which the data are stored. Computationally intensive estimation commands that involve iterative solutions, such as logistic regression, are less affected than are commands with closed-form solutions, such as linear regression.

For maximum performance using Stata/MP, set the MI storage style to flongsep when performing imputations and to wide when performing estimations. The short time you invest to convert between styles will be more than repaid in faster imputation and estimation. If you have insufficient memory to store an MI dataset in style wide, then continue to use flongsep during estimation.

When using many imputations on moderate-to-small problems, the overhead of the MI computations can dominate the time required. Such problems are less parallelized than reported in the table. Conversely, very large problems with few imputations are parallelized even more than reported in the table.

9 Performance variability across computing platforms

As discussed in sections 3 and 4, multicore/multiprocessor performance will vary across computing platforms for many reasons. Those reasons include differences in how operating systems partition tasks, how processors pipeline and partition instructions, how memory is accessed, and how onboard processor cache is handled.

Stata/MP performance has been tested on dozens of different platforms, including different processors (both Intel and AMD), different cache architectures, different operating systems (including Microsoft Windows, Mac OS X for Intel, Linux, and Oracle Solaris), and different architectures for accessing memory. Despite the possibility for varying performance, the results from all these tests support the results presented in section 8 and appendixes A and B.

It is not helpful to break these results down by platform. There were no conclusive patterns among operating systems, CPUs, or other platform characteristics.

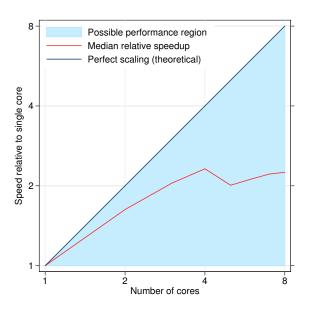
Hyperthreading—single- and multiple-processor platforms 10

Hyperthreading is an Intel technology for allowing each core of a processor to masquerade as two cores. The operating system and other applications see each physical core as two virtual cores and treat each just as they would any physical core. Intel achieves performance improvements primarily because main computer memory is slow compared with the processor and its onboard cache memory. When the execution thread of one process must wait for something from main memory, the thread for another process can execute. The effect is clearly not the same as having two cores, but for many applications, performance can be improved by treating a computer with a hyperthreaded processor as having twice as many cores as it actually has.

Stata/MP runs on hyperthreaded processors.

Most Stata commands are computationally intense and Stata/MP has been optimized to access main memory efficiently. For these reasons, we would not expect hyperthreading to substantially improve the performance of most commands. Our timings indicate that this is true for most Stata commands, but a few performance gains were surpisingly good.

Figure 13 presents the now familiar boundary region and median performance of Stata/MP running on a quad-core computer with hyperthreading – making for 8 virtual cores. Through the first 4 cores, performance is almost identical to what we saw in Figure 7 for a non-hyperthreaded processor. That is to say, so long as we do not exceed the number of physical cores on a system, hyperthreaded computers behave just like non-hyperthreaded computers.



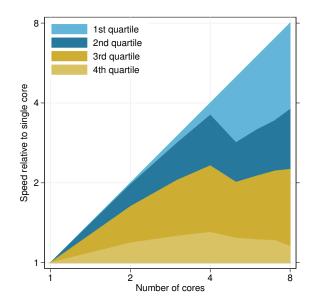


Figure 13. Performance of Stata/MP on hyperthreaded CPUs. Speed on multiple cores relative to speed on a single core.

Figure 14. Quartiles of Stata/MP Performance on hyperthreaded CPUs. Speed on multiple cores relative speed on a single core.

Above 4 cores, median performance drops for 5 cores, one of them virtual, but improves to approaching the performance of 4 physical cores. The most interesting point beyond 4 cores is 8 cores – all of the virtual cores on the computer. The median relative speed with 8 cores is 2.2, which is slightly less than the median speed of 2.3 for the 4 physical cores.

Figure 14 presents the quartiles of command performance. The diagonal top of the light-blue region indicates that at least one command has perfect parallelization over all 8 virtual cores. Moreover, for the 25% of commands that perform best with hyperthreading their relative speed is at least 3.8 with all 8 virtual cores as compared to 3.6 with 4 physical cores — a 5% improvement. At the other end of the spectrum, for the 25% take the least advantage of hypertheading, the performance on 8 virtual cores is worse than that of 4 physical cores.

By way of caution, Stata/MP has not been evaluated on a wide range of single-processor hyper-threaded computers, and these results should therefore be considered provisional.

On multiprocessor computers where each CPU is hyperthreaded, the current recommendation is to set Stata/MP to use the number of real CPUs, not the number of virtual processors. Under such architectures, each CPU appears to Stata/MP and the operating system as two processors, and Stata/MP would by default try to use all the (virtual) processors. On these computers, users should type

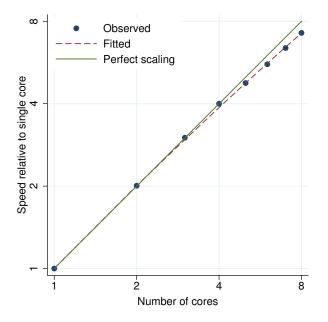
. set processors

where # is the number of CPUs on the computer. Here we use "CPU" to mean a physical core on the computer and not a virtual core created by hyperthreading. So, we could equivalently say, where # is the number of physical cores on the computer.

This can be done either interactively or placed in Stata's profile.do startup script.

Current experience indicates that setting the number of processors to be used above the number of real CPUs on the computer leads to contention for the floating-point unit (FPU), which can make commands run slower when trying to use virtual processors.

Figures 15 and 16 show the results of two commands run on an 4-processor computer, each hyperthreaded, giving the appearance of 8 virtual processors.



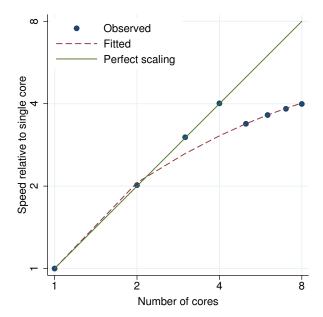


Figure 15. predict, leverage performance plot on computers with hyperthreaded CPUs.

Figure 16. regress performance plot on computers with hyperthreaded CPUs.

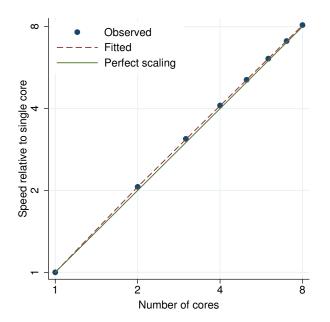
The predict, leverage command, however, is an exception to this recommendation. This command remains nearly perfectly parallelized through all 8 processors (half of which are virtual).

Most commands do not exhibit results like this, and regress is an example. Beyond the number of real CPUs, performance actually degrades. This occurs because each CPU has only one FPU, and regress, along with most Stata commands, requires many floating-point computations. The computations are dominated by access to the FPU, and the virtual processors must contend for access to this single FPU.

Performance assessment graphs for desktop computers Α

The performance of Stata/MP as reported in columns 2, 3, and 4 of table 1 is presented graphically below, along with the modeled performance from equation 1 and a line representing perfectly scalable performance.

Figures 17 and 18 show two typical graphs. As with table 1, performance is measured as the speed of executing the command on multiple cores relative to the speed on a single core.



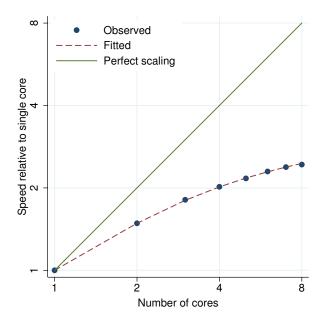


Figure 17. regress performance plot.

Figure 18. clogit (1 to k matching) performance plot.

For a perfectly scalable command, the speed doubles each time the number of cores is doubled. This type of scalability is linear when the number of cores and the relative speed are graphed on a logarithmic scale, which is the scale used in these graphs. Perfect scaling is shown on each graph as a green line that diagonally bisects the graph.

Linear regression, shown in figure 17, is nearly perfectly scalable. Both the observed values and the modeled performance are nearly on the perfect-scalability reference line. The speed is doubled each time the number of cores doubles.

As shown in figure 18, conditional logistic regression clearly performs better as the number of cores increases, but not as much better as linear regression. From table 1, we can see that clogit (1 to k matching) is 68% parallelized as compared with 100% for regress. From figure 18, we see that clogit run with 2 cores on a large dataset is 1.5 times faster than when run with one core; with 4 cores, this relative speed climbs to 2; and with 8 cores, it climbs further to 2.4.

Figure 8, from section 7, summarizes the information from all the graphs in this section by placing the observed performance for each command into one of the performance quartiles on the graph.

In a few of the graphs that follow, the observed performance exceeds the theoretical limit of perfect scaling—some of the relative speeds are above the diagonal perfect-scaling line. An example of this can be seen when the replace command is evaluating small expressions, as shown in figure 19.

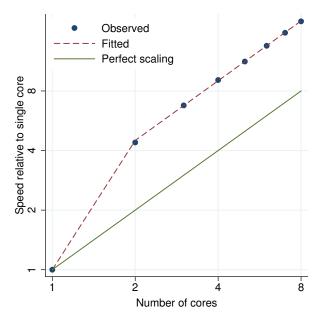


Figure 19. replace performance plot.

This phenomenon is nothing more than a cache effect. Cache is very high speed memory that processors use to store data and code that they use often or expect to use often. Cores run much faster when the data they need can be found in cache rather than in standard memory. The replace command above was able to find far more of the data it needed in cache when running on 2 or more cores than it could find when running on a single core. The model that we used to determine percentage parallelized ignored that cache effect and correctly determined that the replace command was just under 100% parallelized, not greater than 100%.

Observant readers will have noted that the **regress** command in figure 17 exhibited some mild cache effects. Its observed performance is slightly above perfect scaling.

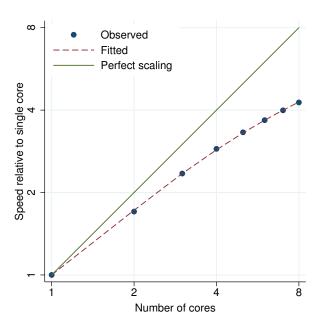


Figure 20. alpha performance plot.

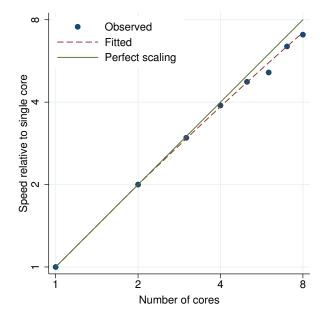


Figure 22. anova (one-way) performance plot.

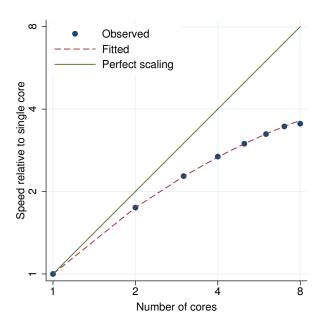


Figure 21. ameans performance plot.

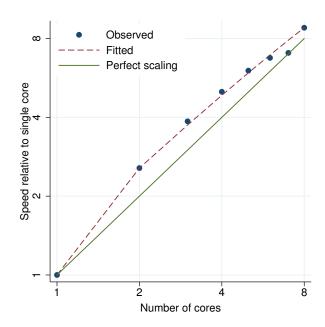


Figure 23. anova (two-way) performance plot.

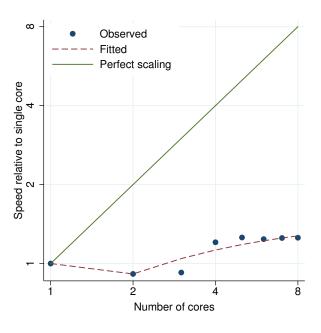


Figure 24. arch performance plot.

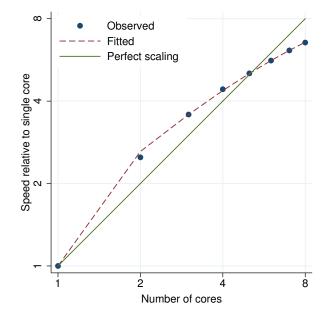


Figure 25. areg performance plot.

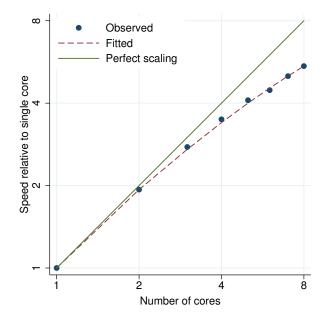


Figure 26. areg, vce(cluster) performance plot.

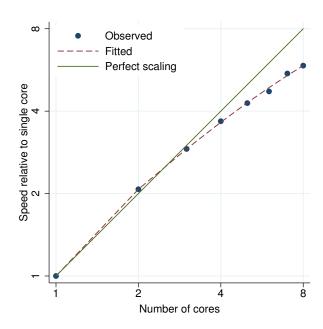


Figure 27. areg, vce(robust) performance plot.

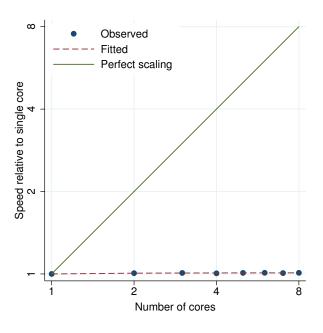


Figure 28. arfima performance plot.

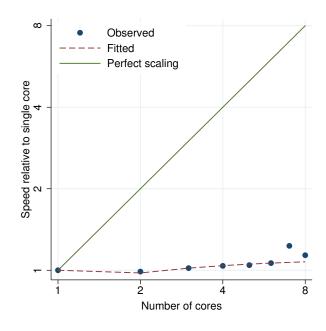


Figure 29. arima performance plot.

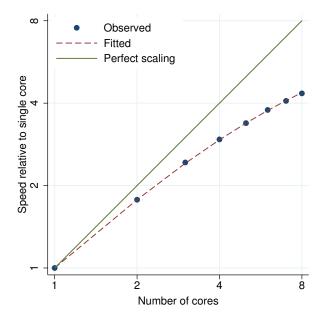


Figure 30. asclogit performance plot.

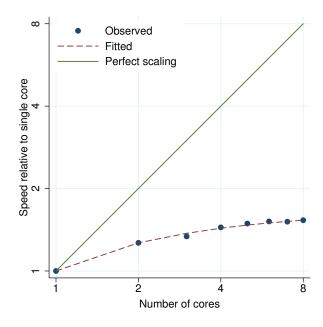


Figure 31. asmprobit performance plot.

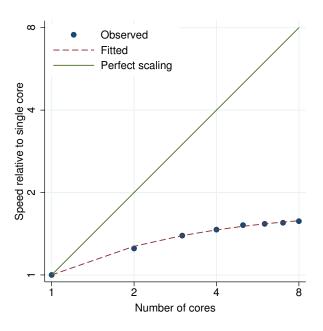


Figure 32. asroprobit performance plot.

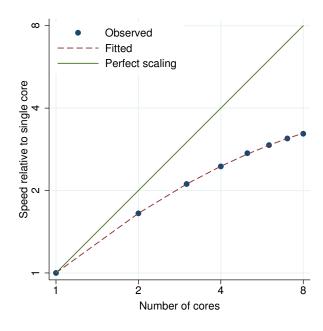


Figure 33. bayesmh logit performance plot.

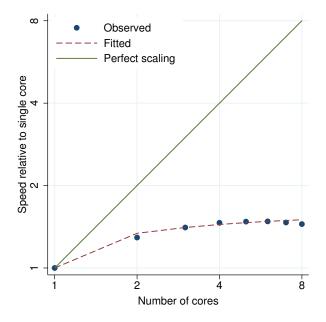


Figure 34. bayesmh mvn performance plot.

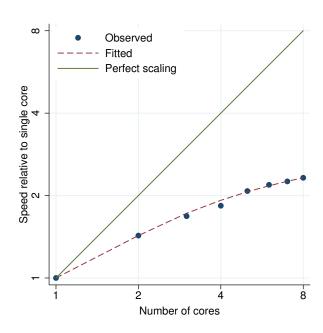


Figure 35. bayesmh mylogit performance plot.

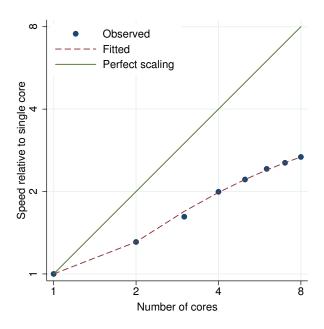


Figure 36. bayesmh nl performance plot.

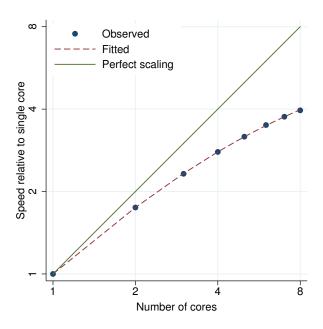


Figure 37. bayesmh normal performance plot.

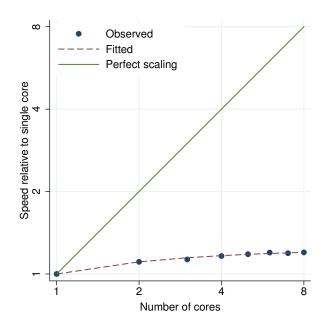


Figure 38. bayesmh normal gibbs performance plot.

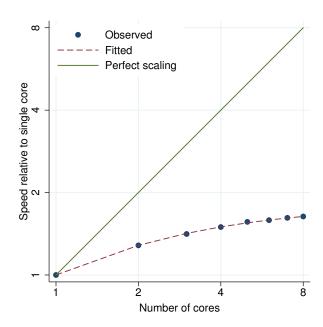


Figure 39. bayesmh normal re performance plot.

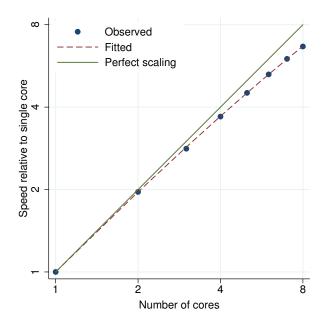


Figure 40. betareg, link(logit) performance plot.

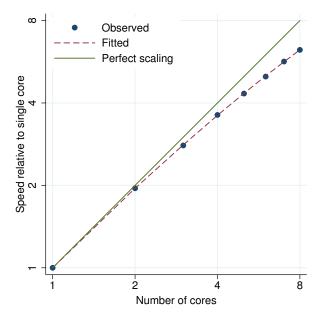
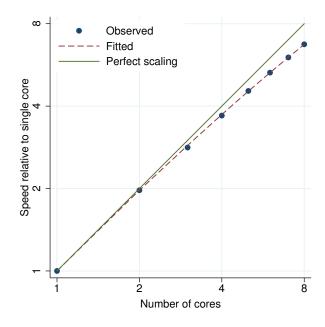


Figure 42. binreg performance plot.



 $Figure \ 41. \ \mathtt{betareg, link(probit)}$ performance plot.

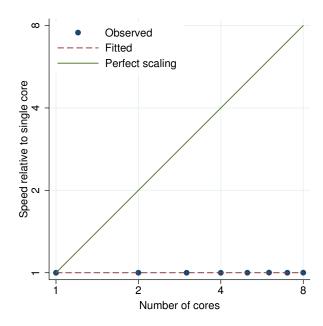


Figure 43. biplot performance plot.

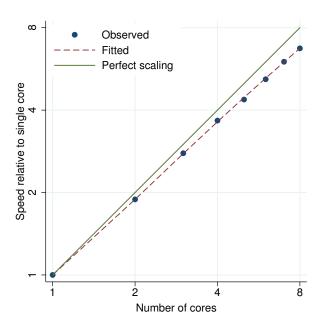


Figure 44. biprobit performance plot.

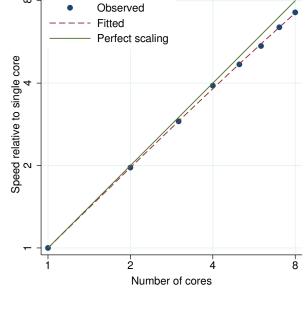


Figure 45. biprobit (seemingly unrelated) performance plot.

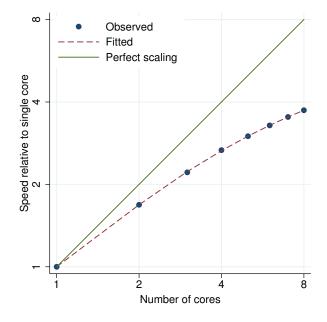


Figure 46. bitest performance plot.

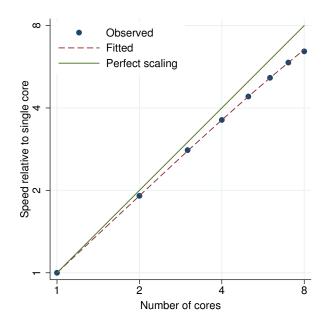


Figure 47. blogit performance plot.

Observed

Perfect scaling

Fitted

∞

Speed relative to single core 2

8

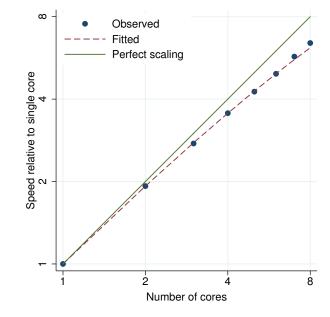
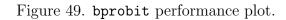


Figure 48. boxcox performance plot.

Number of cores



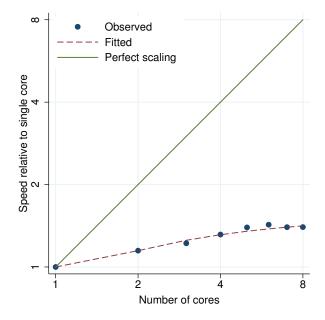


Figure 50. brier performance plot.

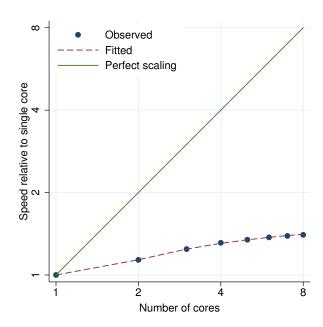


Figure 51. bsample performance plot.

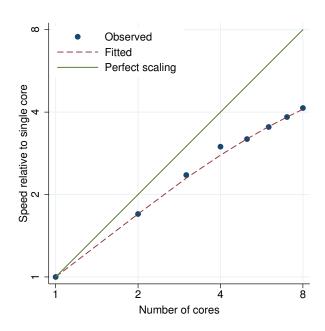


Figure 52. bstat performance plot.

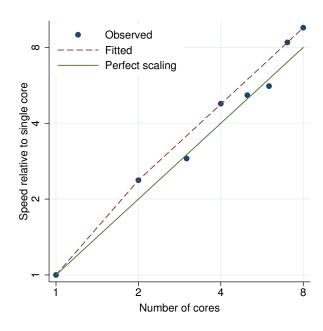


Figure 53. by: generate performance plot.

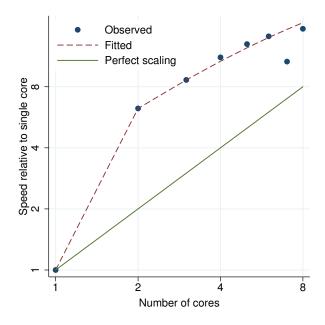


Figure 54. by: generate (small groups) performance plot.

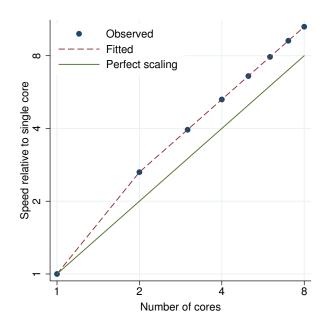


Figure 55. by: replace performance plot.

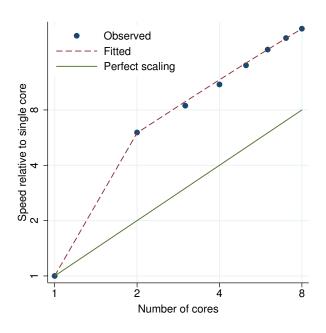


Figure 56. by: replace (small groups) performance plot.

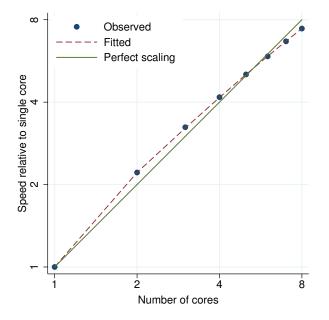


Figure 58. candisc performance plot.

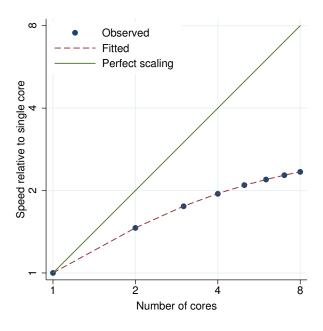
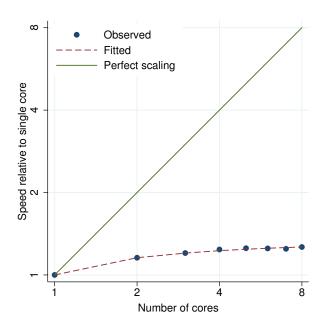


Figure 57. ca performance plot.



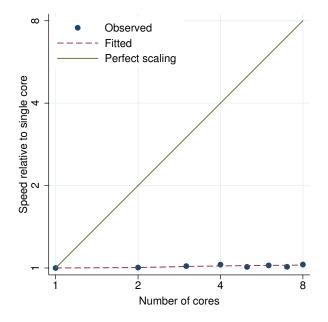
Figure 59. canon performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 Number of cores

Figure 60. cc performance plot.

Figure 61. by: cc performance plot.



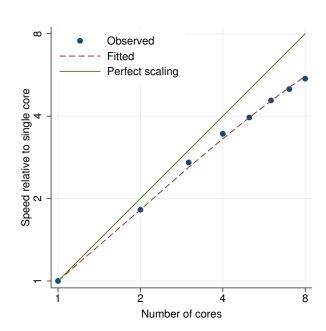


Figure 62. centile performance plot.

Figure 63. churdle linear performance plot.

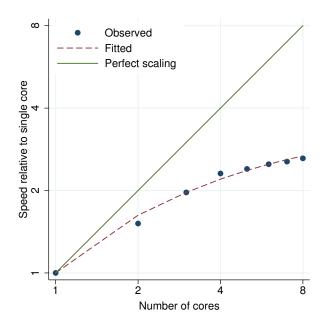


Figure 64. ci means performance plot.

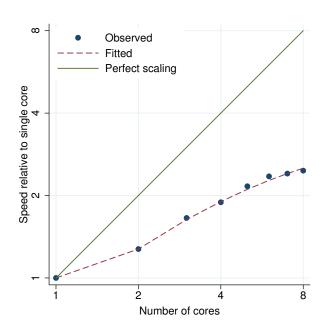


Figure 65. ci means, poisson performance plot.

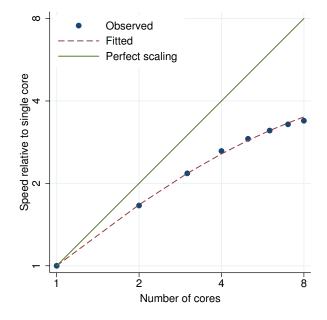


Figure 66. ci proportions performance plot.

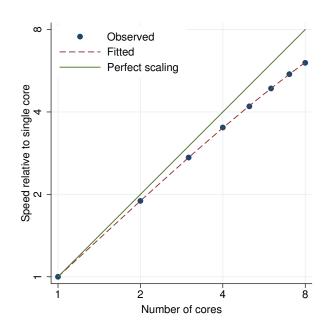


Figure 67. clogit (k1 to k2 matching) performance plot.

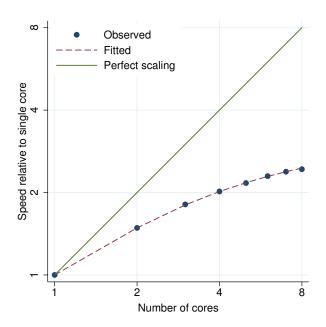


Figure 68. clogit (1 to k matching) performance plot.

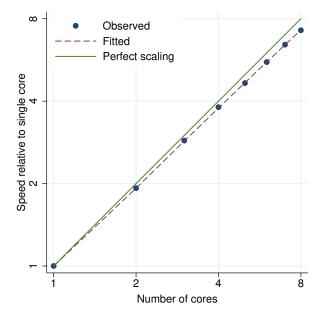


Figure 70. cluster averagelinkage performance plot.

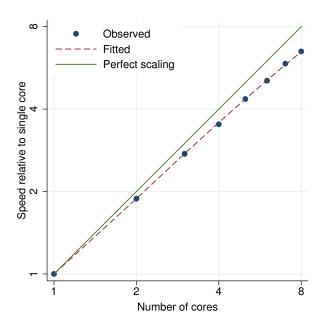


Figure 69. cloglog performance plot.

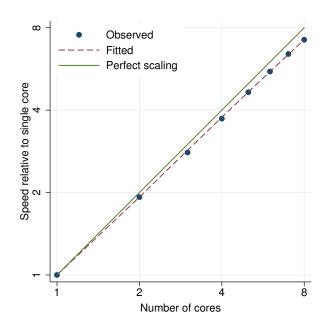


Figure 71. cluster centroidlinkage performance plot.

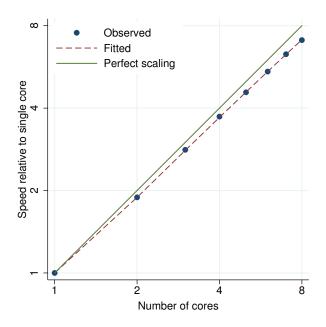


Figure 72. cluster completelinkage performance plot.

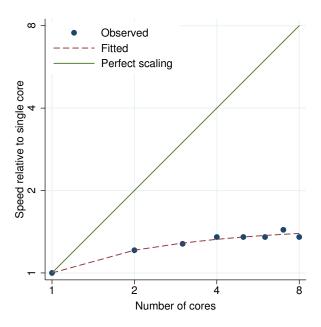


Figure 73. cluster generate performance plot.

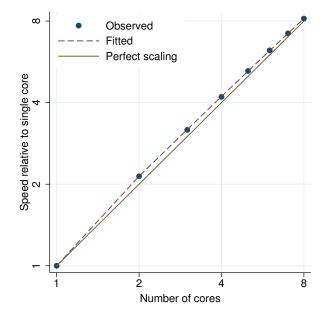


Figure 74. cluster kmeans performance plot.

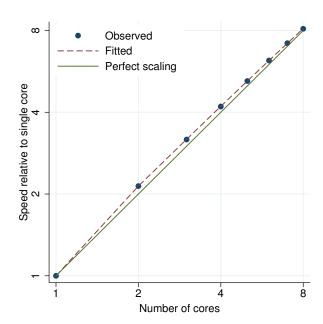


Figure 75. cluster kmedians performance plot.

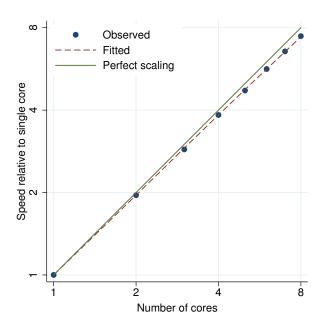


Figure 76. cluster medianlinkage performance plot.

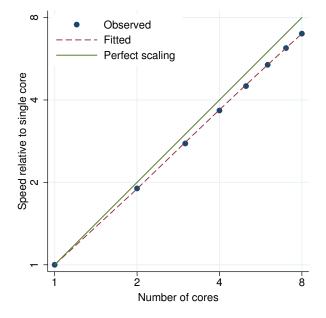


Figure 78. cluster wardslinkage performance plot.

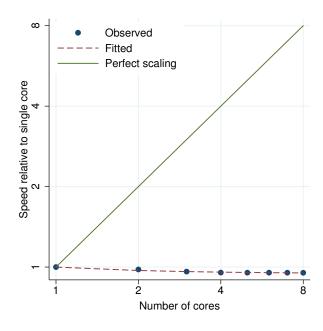


Figure 77. cluster singlelinkage performance plot.

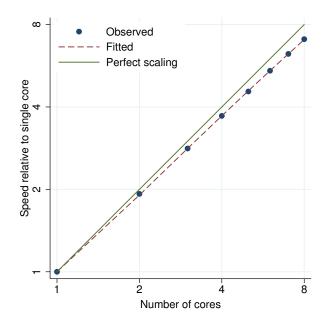


Figure 79. cluster waveragelinkage performance plot.

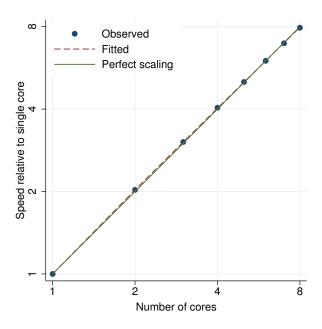
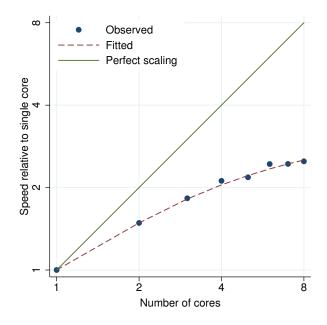


Figure 80. cnsreg performance plot.

Figure 81. codebook performance plot.



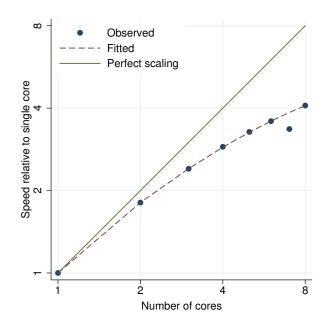


Figure 82. collapse performance plot.

Figure 83. compare performance plot.

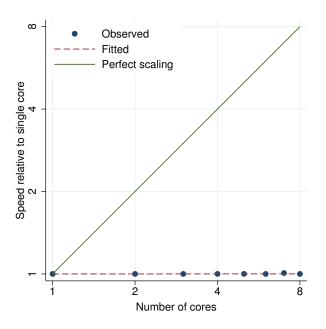


Figure 84. compress performance plot.

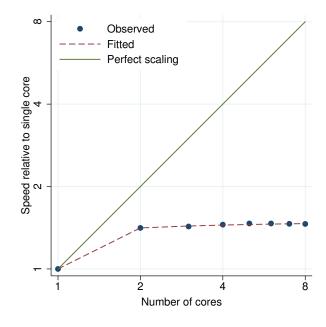


Figure 85. contract performance plot.

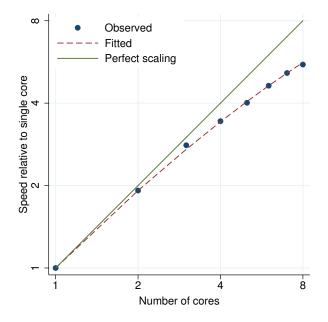


Figure 86. corr2data performance plot.

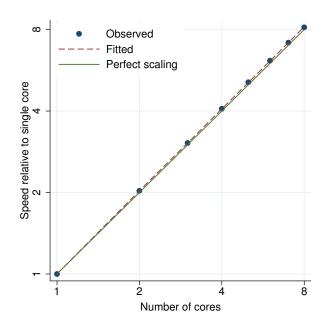


Figure 87. correlate performance plot.

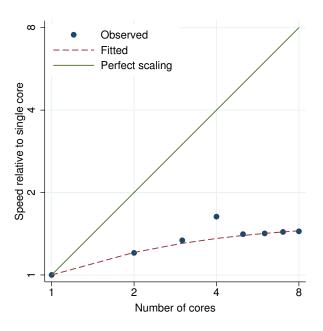


Figure 88. corrgram performance plot.

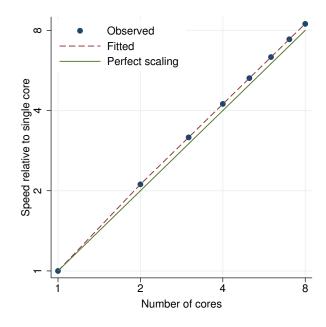


Figure 89. count performance plot.

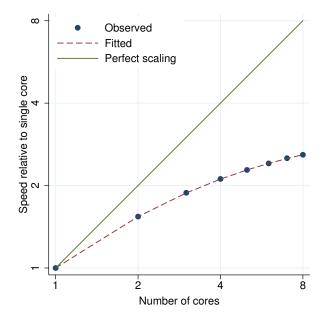


Figure 90. cpoisson performance plot.

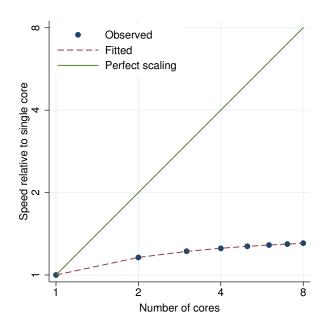


Figure 91. cs performance plot.

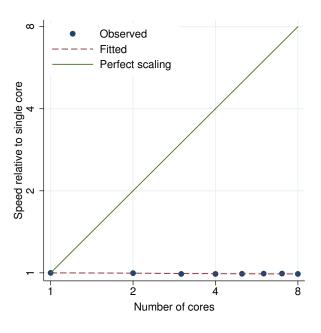


Figure 92. by: cs performance plot.

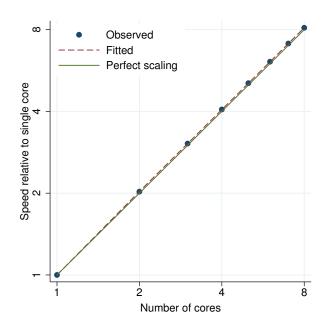


Figure 93. ctset performance plot.

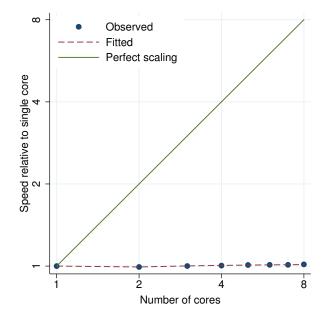


Figure 94. cttost performance plot.

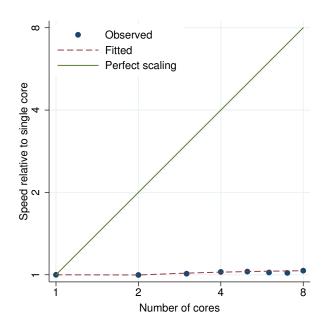
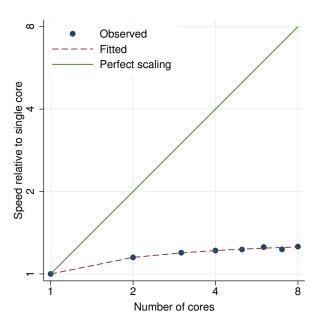


Figure 95. cumul performance plot.

ω



Speed relative to single core

Number of cores

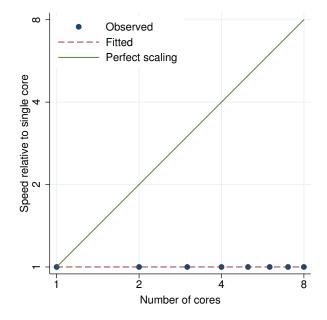
Observed

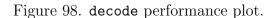
Perfect scaling

Fitted

Figure 96. cusum performance plot.

Figure 97. datasignature performance plot.





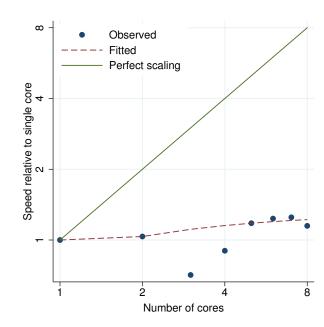
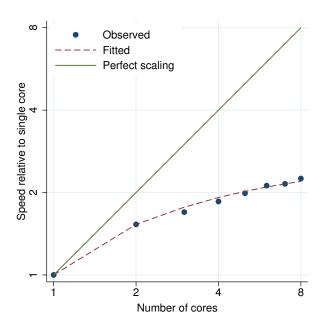


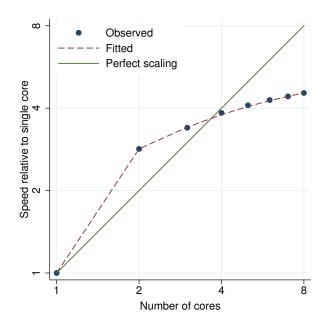
Figure 99. destring performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 8 Number of cores

Figure 100. dfactor performance plot.

Figure 101. dfgls performance plot.



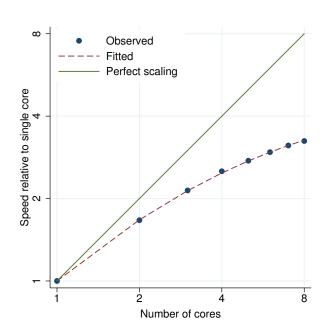


Figure 102. dfuller performance plot.

Figure 103. discrim knn performance plot.

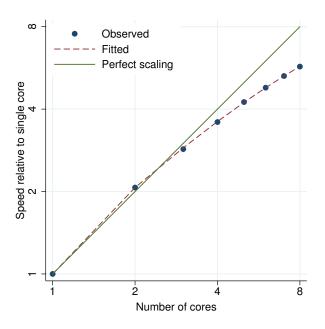


Figure 104. discrim lda performance plot.

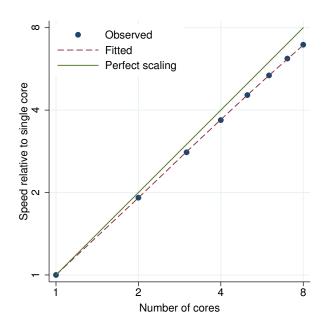


Figure 105. discrim logistic performance plot.

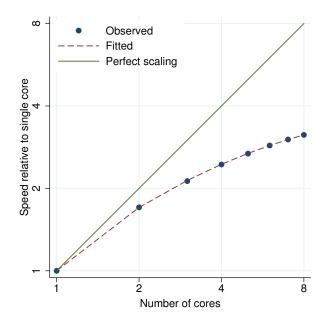


Figure 106. discrim qda performance plot.

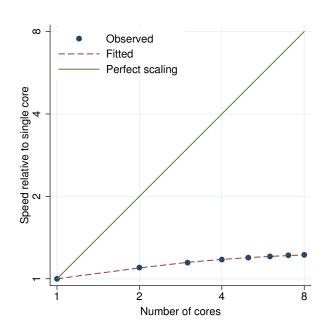
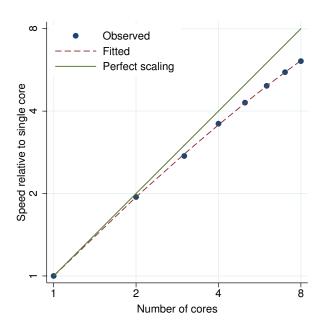


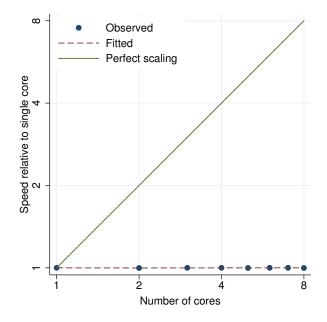
Figure 107. dotplot performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 Number of cores

Figure 108. drawnorm performance plot.

Figure 109. drop if exp performance plot.



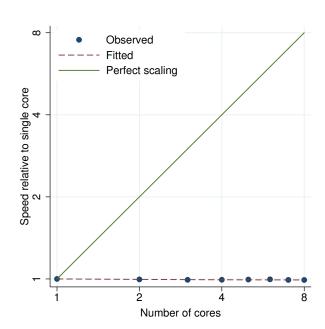
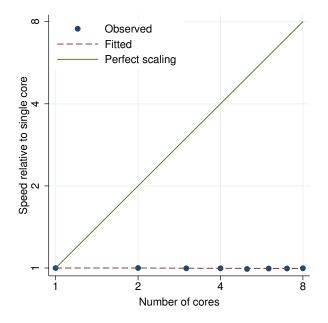


Figure 110. drop in range performance plot.

Figure 111. dstdize performance plot.

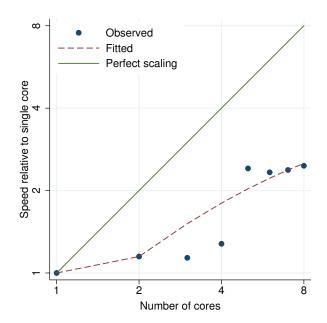


Observed
---- Fitted
Perfect scaling

Number of cores

Figure 112. dvech performance plot.

Figure 113. egen group() performance plot.



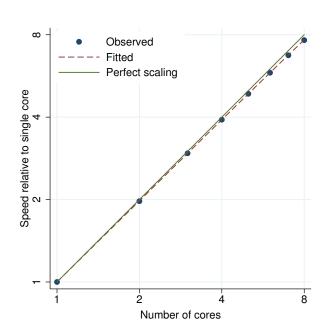


Figure 114. by: egen mean performance plot.

Figure 115. eivreg performance plot.

ω

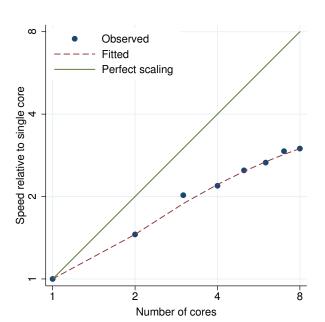


Figure 116. encode performance plot.

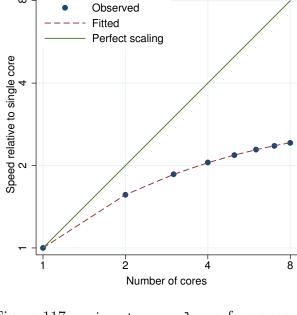


Figure 117. esize twosample performance plot.

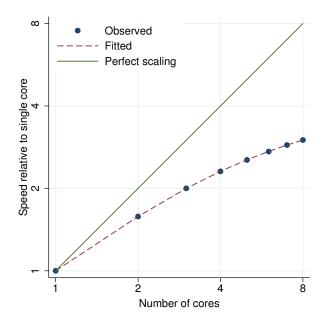


Figure 118. esize unpaired performance plot.

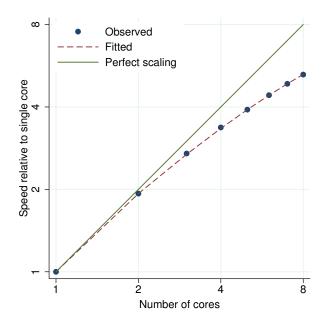


Figure 119. eteffects (exponential), ate performance plot.

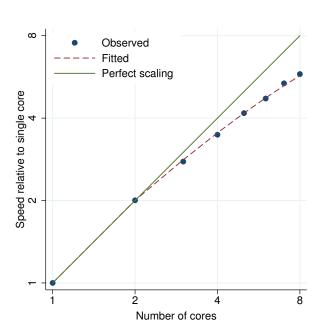


Figure 120. eteffects (linear), ate performance plot.

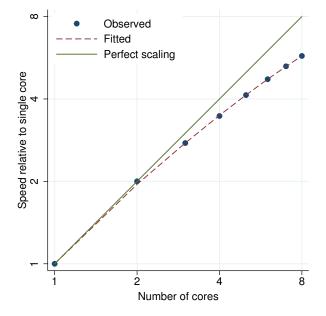


Figure 122. eteffects (probit), ate performance plot.

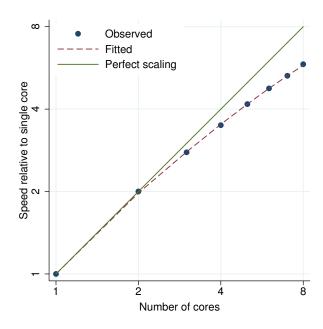


Figure 121. eteffects (linear), pomeans performance plot.

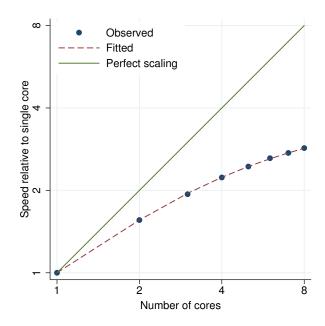


Figure 123. etpoisson performance plot.

Observed

ω

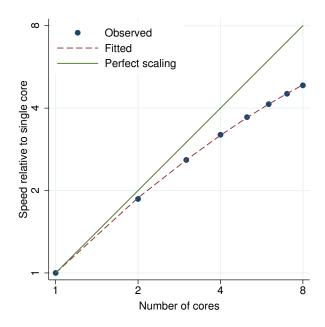
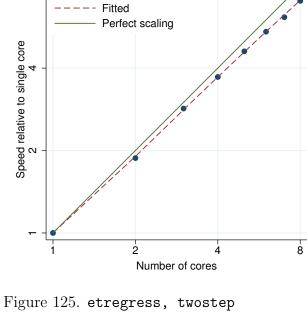


Figure 124. etregress, poutcomes performance plot.



performance plot.

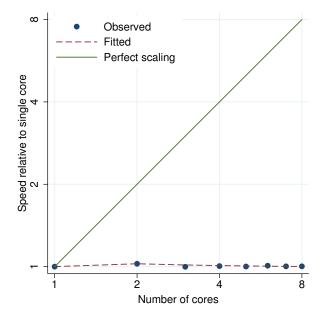


Figure 126. exlogistic performance plot.

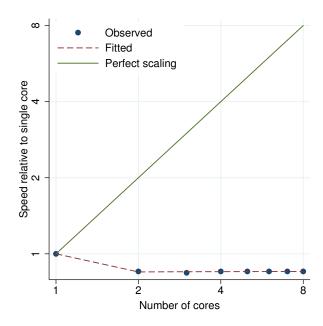


Figure 127. expand # performance plot.

ω

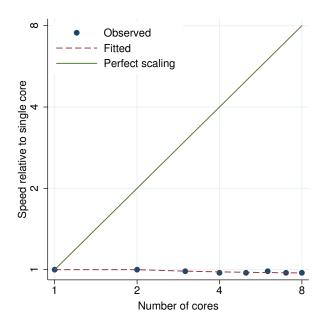


Figure 128. expand *varname* performance plot.

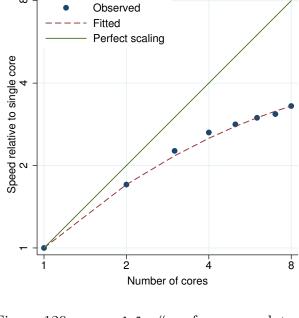


Figure 129. expandcl # performance plot.

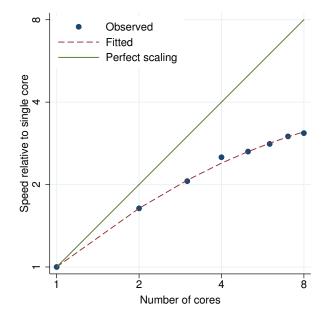


Figure 130. expandcl *varname* performance plot.

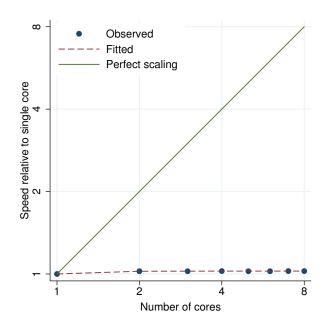


Figure 131. expoisson performance plot.

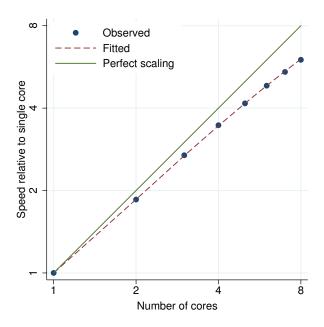


Figure 132. factor performance plot.

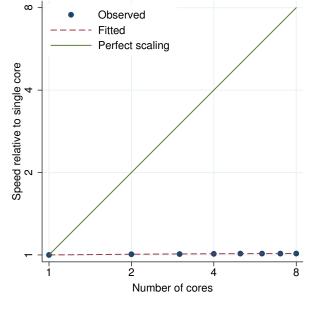


Figure 133. fcast compute performance plot.

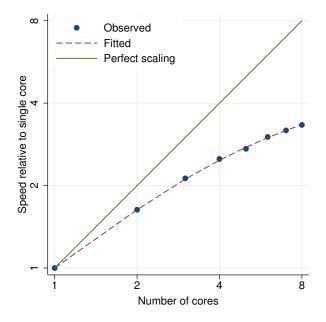


Figure 134. fillin performance plot.

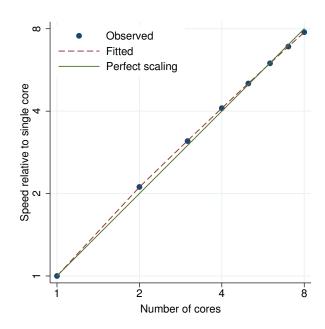


Figure 135. fracreg probit performance plot.

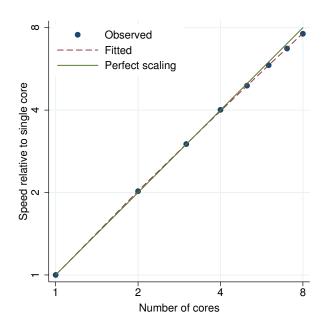


Figure 136. frontier performance plot.

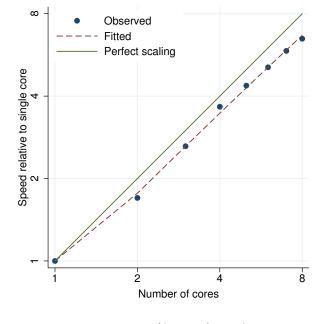


Figure 137. fvrevar (factors) performance plot.

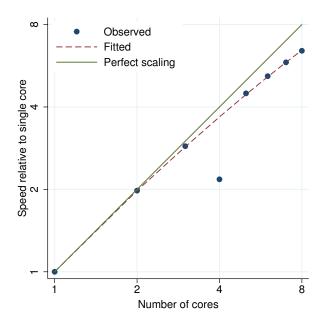


Figure 138. fvrevar (interaction) performance plot.

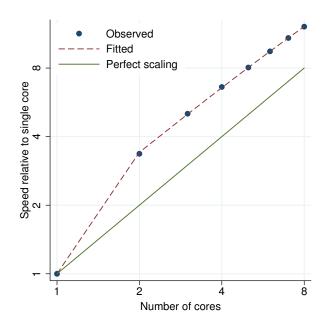


Figure 139. generate (small expressions) performance plot.

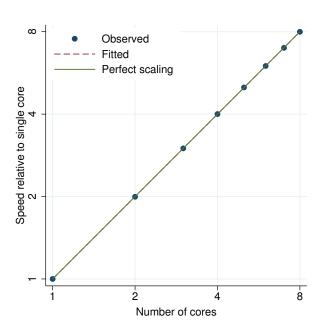


Figure 140. generate performance plot.

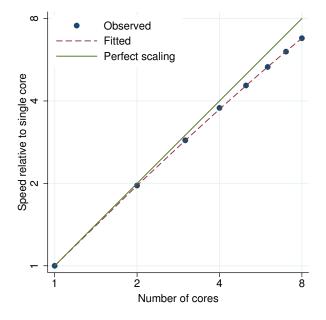


Figure 142. glm, family(gaussian) performance plot.

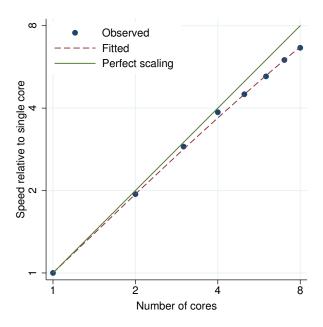


Figure 141. glm, family(gamma) performance plot.

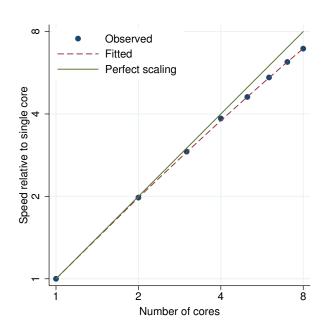


Figure 143. glm, family(igaussian) performance plot.

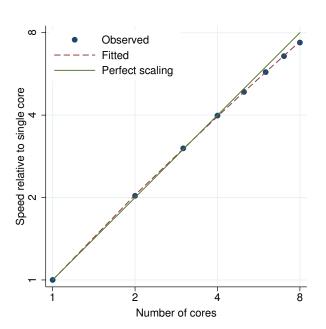


Figure 144. glm, family(nbinomial) performance plot.

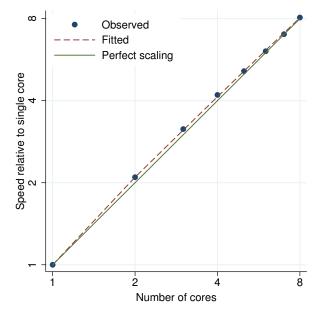


Figure 146. glogit performance plot.

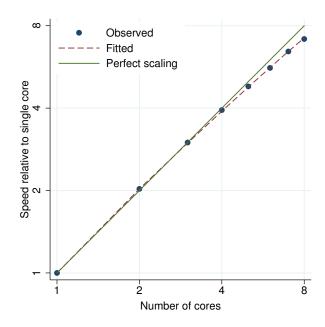


Figure 145. glm, family(poisson) performance plot.

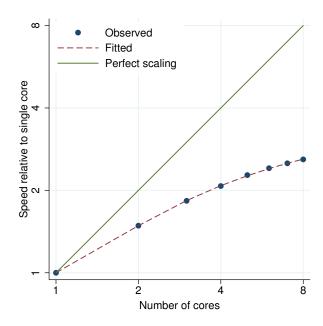


Figure 147. gmm performance plot.

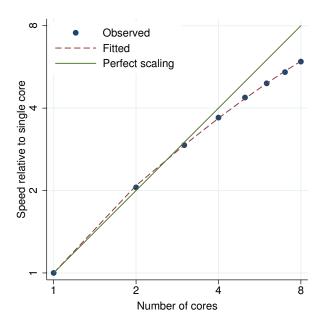


Figure 148. gmm (with derivatives) performance plot.

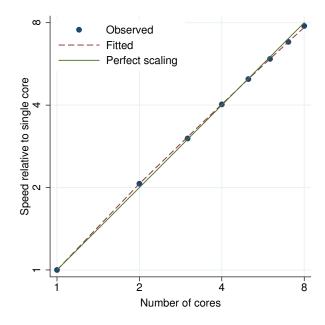


Figure 149. gprobit performance plot.

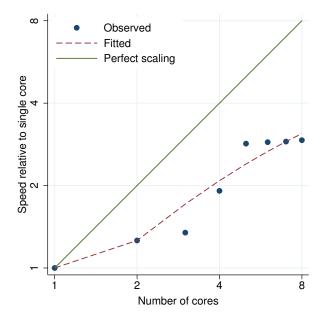


Figure 150. graph bar performance plot.

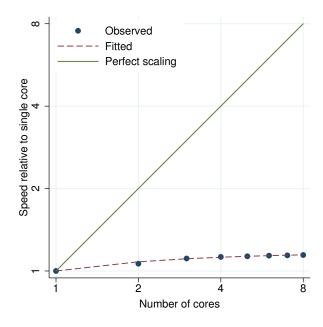


Figure 151. graph box performance plot.

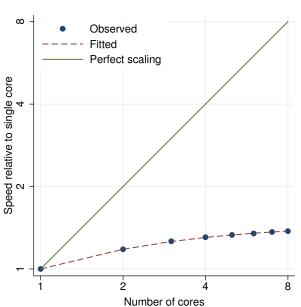


Figure 152. graph pie performance plot.

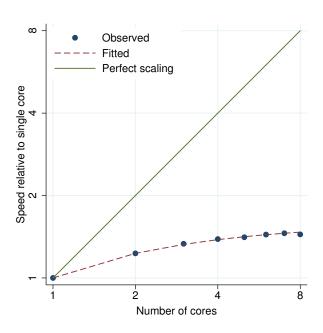


Figure 153. grmeanby performance plot.

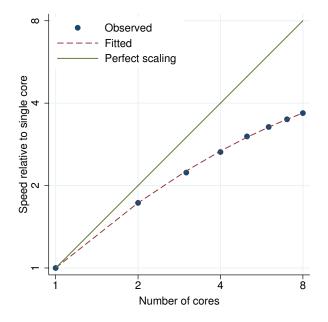


Figure 154. gsem, oprobit (CFA, 2-level) performance plot.

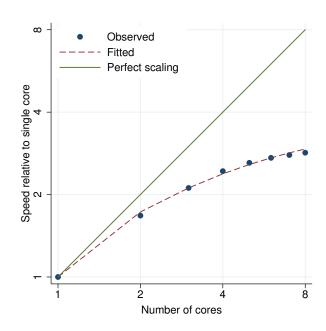


Figure 155. gsem, oprobit (CFA) performance plot.

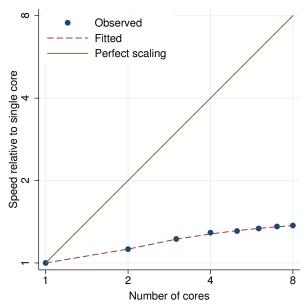


Figure 156. gsort performance plot.

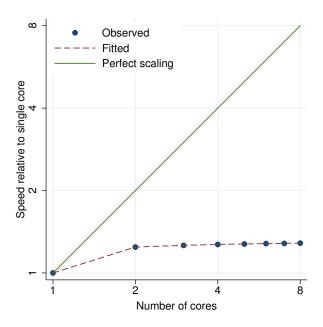


Figure 157. hausman performance plot.

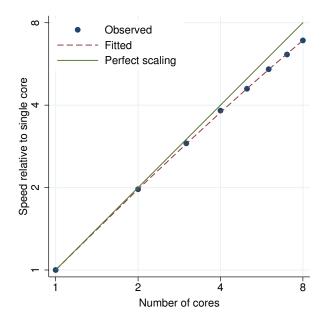


Figure 158. heckman performance plot.

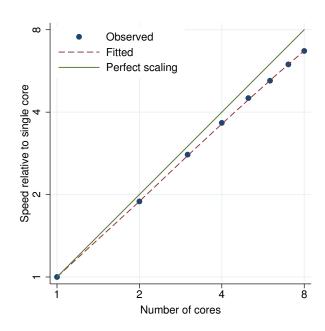
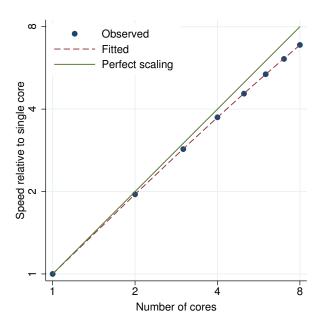


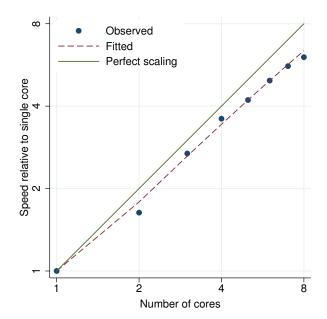
Figure 159. heckman, twostep performance plot.



Observed Fitted Perfect scaling Speed relative to single core 2 2 8 Number of cores

Figure 160. heckoprobit performance plot.

Figure 161. heckprob performance plot.



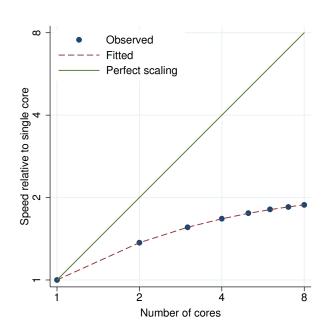


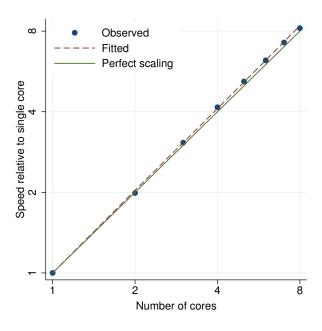
Figure 162. hetprob performance plot.

Figure 163. histogram performance plot.

Observed

Perfect scaling

Fitted



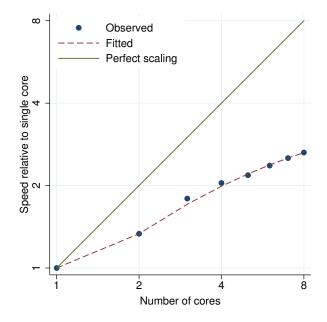
Speed relative to single core

Figure 164. hotelling performance plot.

Figure 165. icc, mixed performance plot.

Number of cores

8



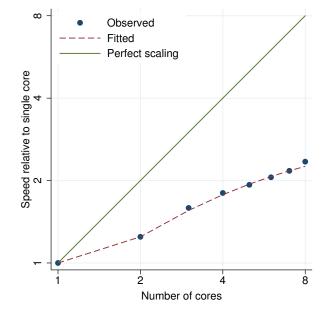
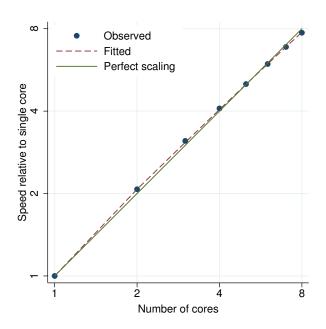


Figure 166. icc (one-way) performance plot.

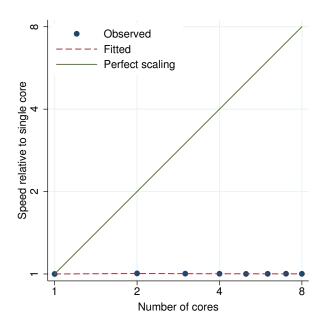
Figure 167. icc (two-way) performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 8 Number of cores

Figure 168. intreg performance plot.

Figure 169. ir performance plot.



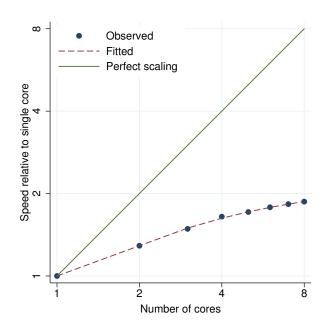


Figure 170. by: ir performance plot.

Figure 171. irf create performance plot.

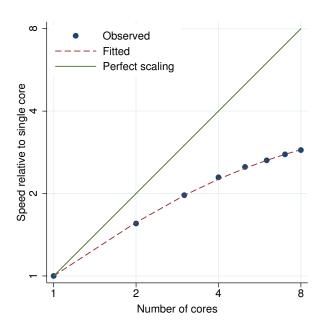


Figure 172. irt 1pl performance plot.

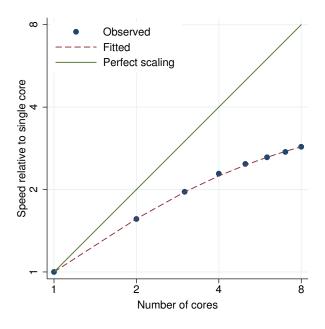


Figure 173. irt 2pl performance plot.

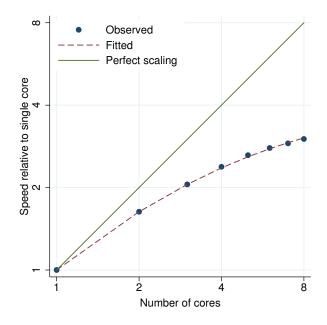


Figure 174. irt 3pl performance plot.

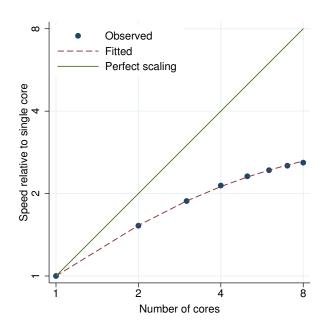
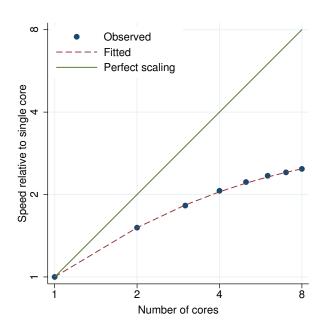


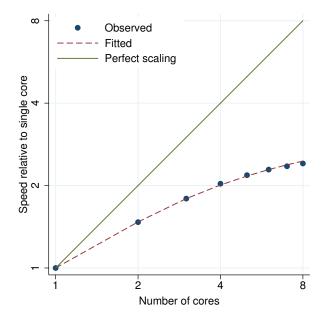
Figure 175. irt grm performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 2 8 Number of cores

Figure 176. irt nrm performance plot.

Figure 177. irt pcm performance plot.



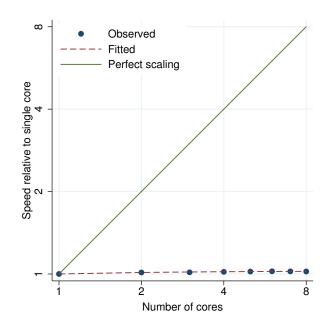


Figure 178. irt rsm performance plot.

Figure 179. istdize performance plot.

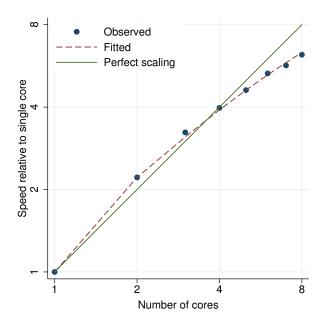


Figure 180. ivpoisson cfunction performance plot.

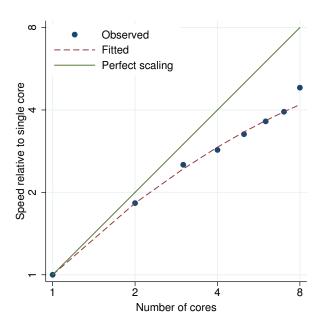


Figure 182. ivpoisson gmm, multiplicative performance plot.

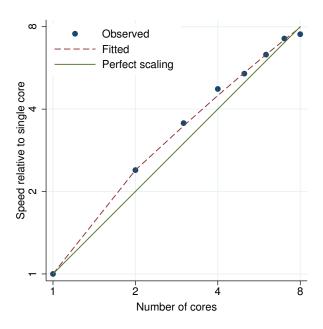


Figure 181. ivpoisson gmm, additive performance plot.

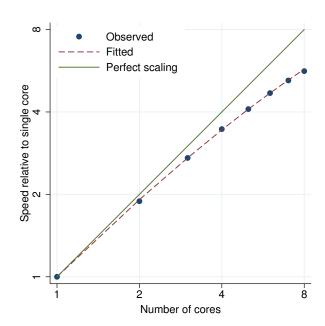


Figure 183. ivprobit performance plot.

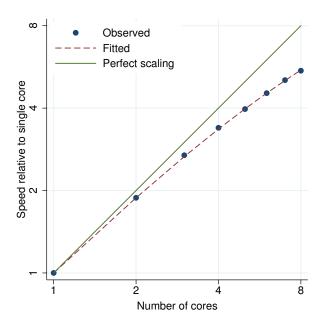


Figure 184. ivprobit, vce(cluster) performance plot.

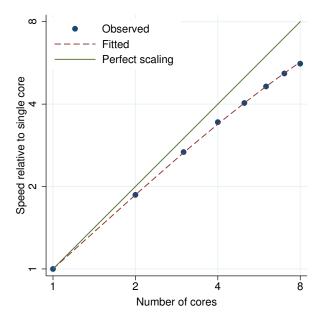


Figure 185. ivprobit, vce(robust) performance plot.

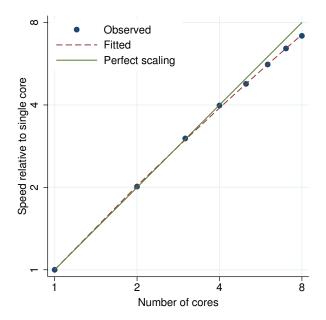


Figure 186. ivregress 2sls performance plot.

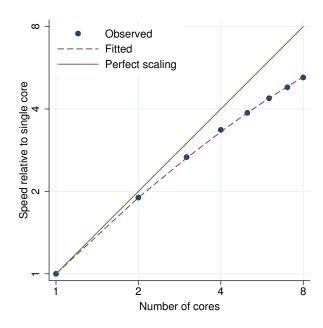


Figure 187. ivregress gmm performance plot.

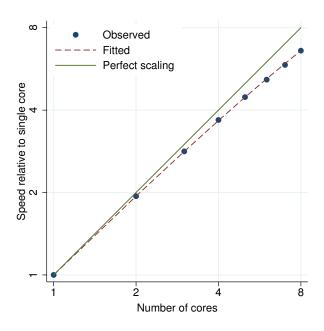


Figure 188. ivregress liml performance plot.

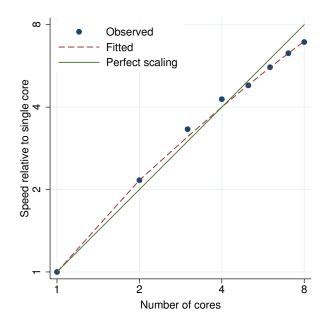


Figure 189. ivtobit performance plot.

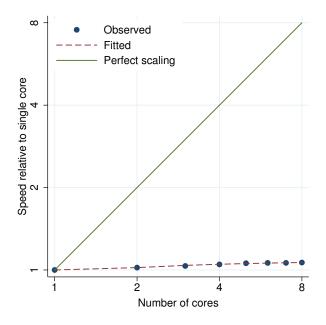


Figure 190. kap performance plot.

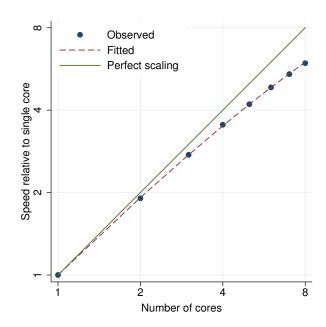
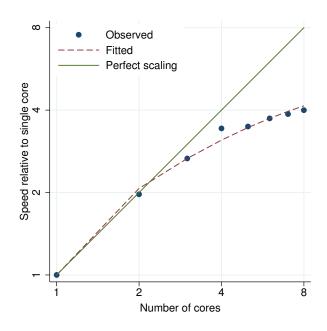


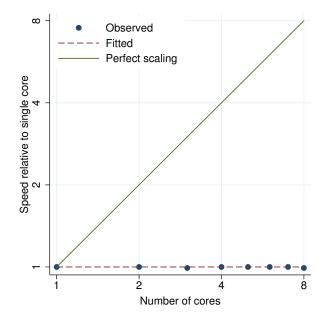
Figure 191. kappa performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 Number of cores

Figure 192. kdensity performance plot.

Figure 193. keep if exp performance plot.



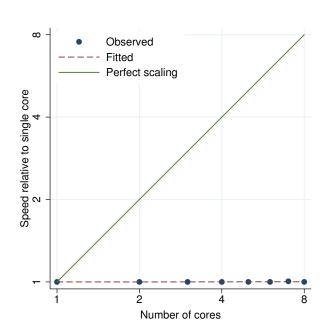


Figure 194. keep in range performance plot.

Figure 195. keep varlist performance plot.

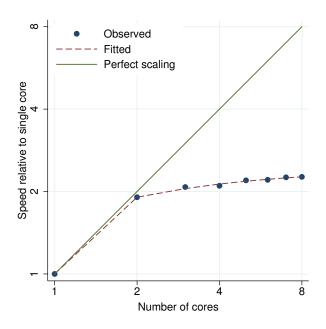


Figure 196. ksmirnov performance plot.

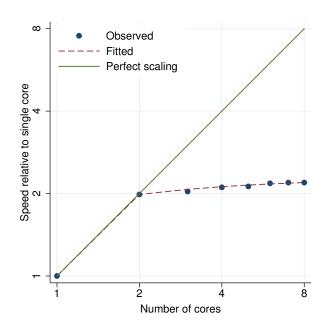


Figure 197. ksmirnov, by() performance plot.

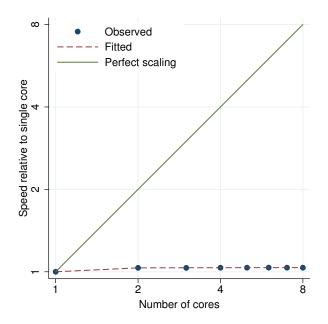


Figure 198. ktau performance plot.

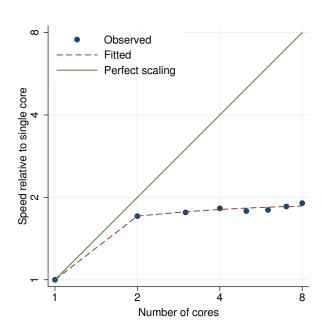


Figure 199. ${\tt kwallis}$ performance plot.

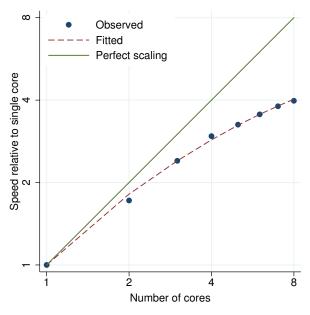


Figure 200. ladder performance plot.

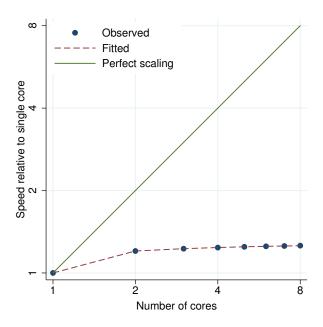


Figure 201. levelsof performance plot.

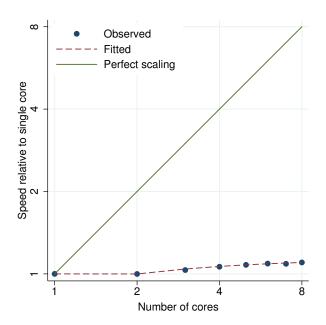


Figure 202. loadingplot performance plot.

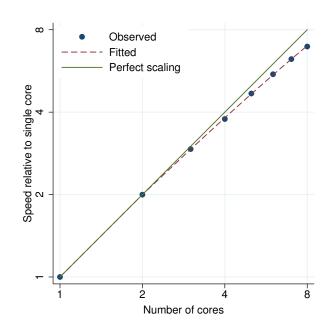


Figure 203. logistic performance plot.

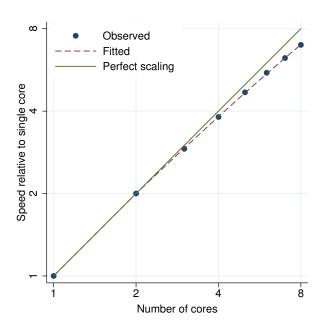


Figure 204. logit performance plot.

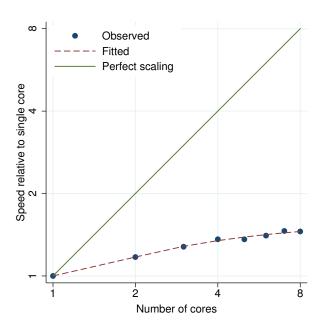


Figure 205. loneway performance plot.

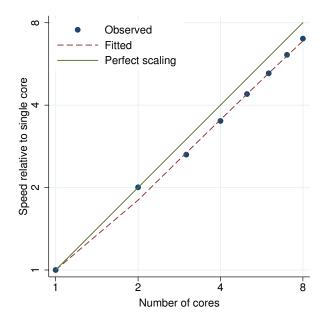


Figure 206. lowess performance plot.

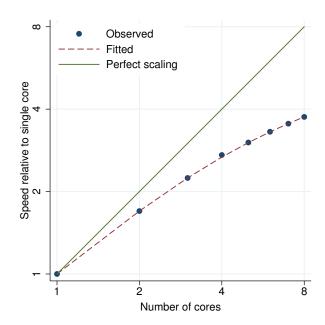


Figure 207. 1poly performance plot.

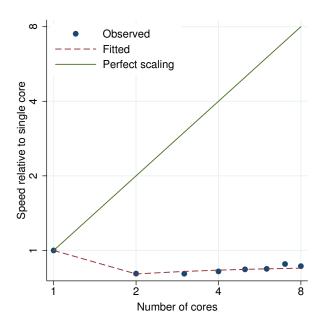


Figure 208. ltable performance plot.

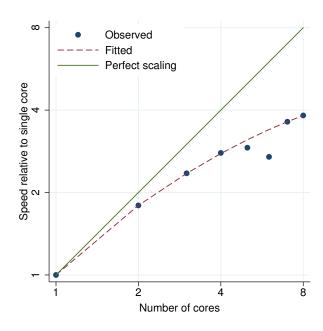


Figure 209. manova (one-way) performance plot.

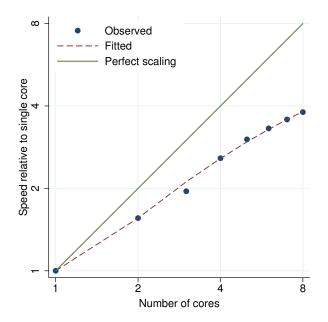


Figure 210. manova (two-way) performance plot.

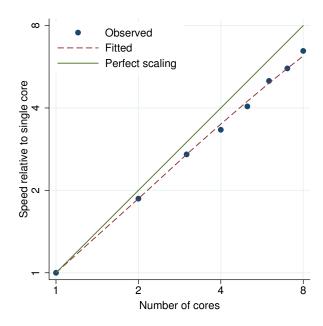


Figure 211. margins performance plot.

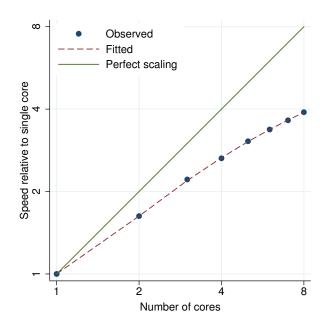


Figure 212. margins, dydx() exp() performance plot.

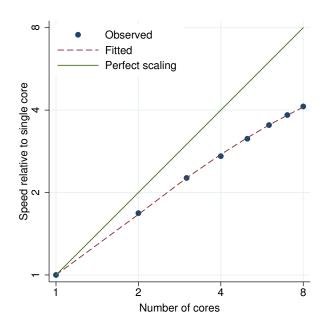


Figure 213. margins, dydx() performance plot.

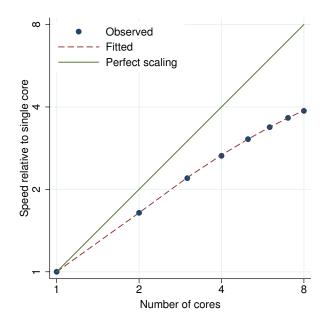


Figure 214. margins, exp() performance plot.

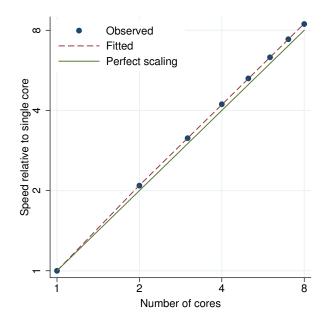


Figure 215. $\mathtt{markout}$ performance plot.

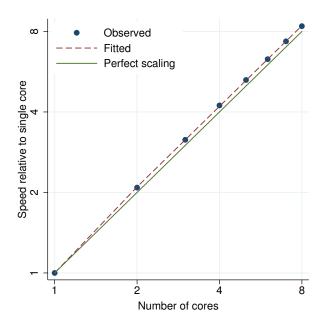


Figure 216. marksample performance plot.

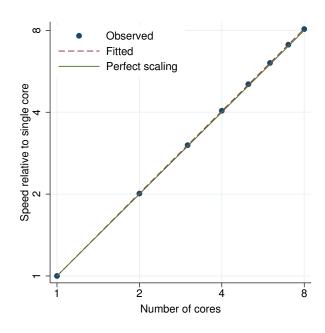


Figure 217. marksample if exp performance plot.

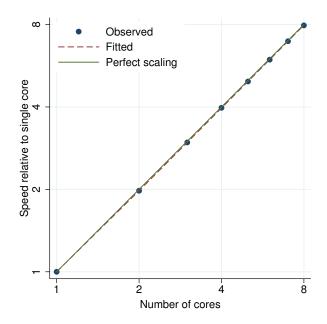
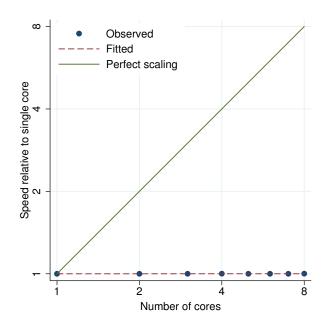


Figure 218. matrix accum performance plot.



 $\label{eq:Figure 219.matrix eigenvalues} Figure \ 219. \ \mathtt{matrix eigenvalues}$ performance plot.

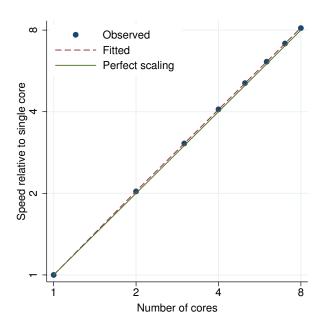


Figure 220. matrix score performance plot.

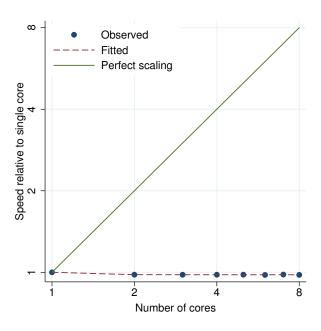


Figure 221. matrix svd performance plot.

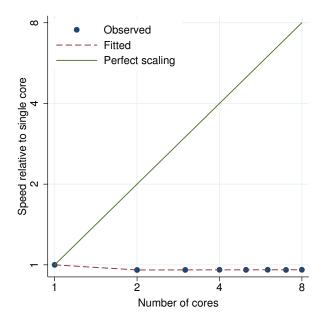


Figure 222. matrix symeigen performance plot.

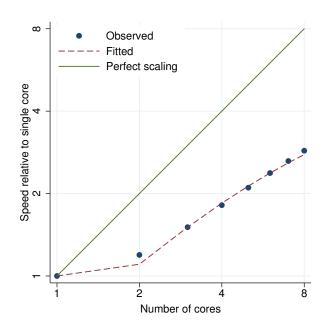


Figure 223. matrix syminv performance plot.

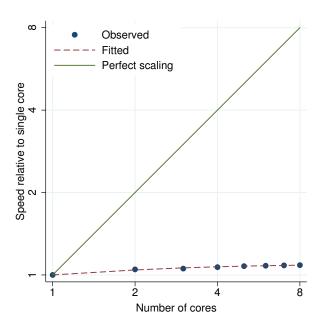


Figure 224. mca performance plot.

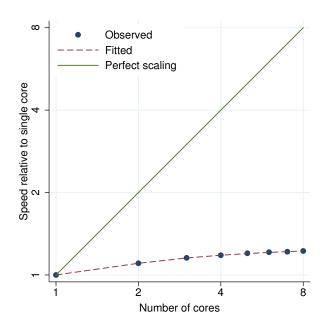


Figure 225. mcc performance plot.

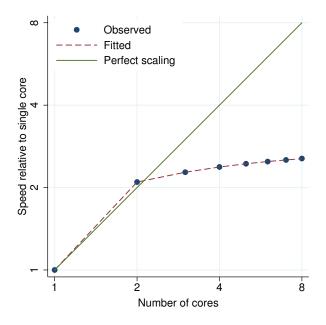


Figure 226. mds performance plot.

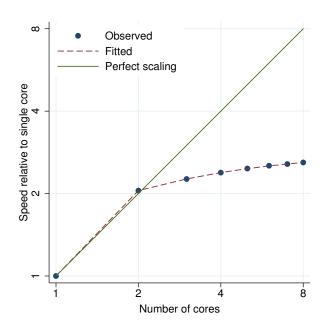
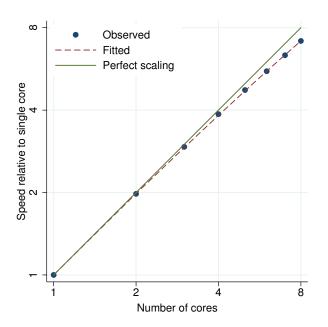


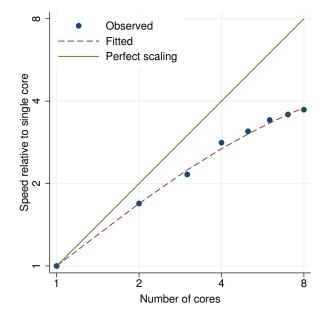
Figure 227. mdslong performance plot.



Observed Fitted Perfect scaling Speed relative to single core 2 2 8 Number of cores

Figure 228. mean performance plot.

Figure 229. mecloglog performance plot.



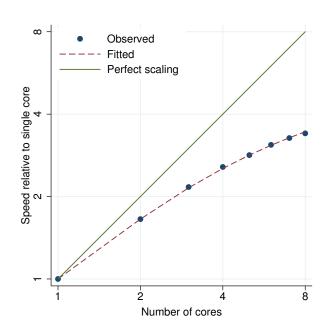


Figure 230. median performance plot.

Figure 231. melogit performance plot.

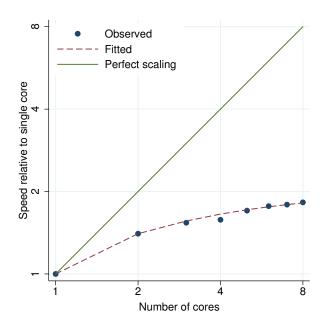


Figure 232. menbreg, dispersion(constant) performance plot.

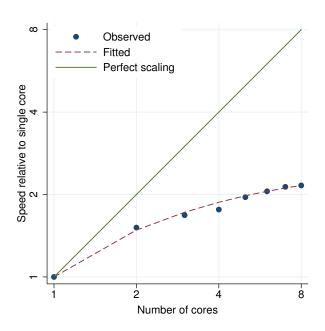


Figure 233. menbreg, dispersion(mean) performance plot.

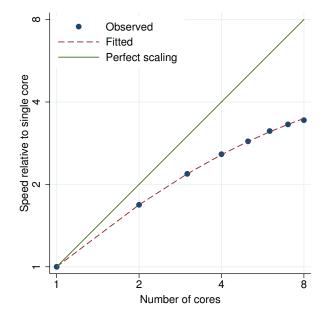


Figure 234. meologit performance plot.

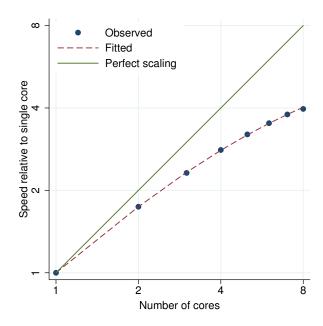


Figure 235. meoprobit performance plot.

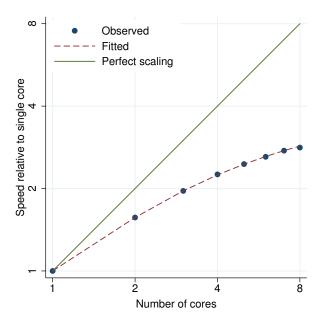


Figure 236. mepoisson performance plot.

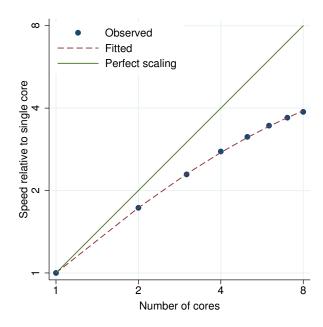


Figure 237. meprobit performance plot.

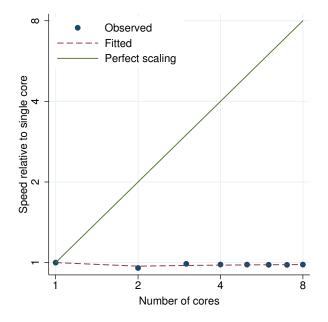


Figure 238. meqrlogit performance plot.

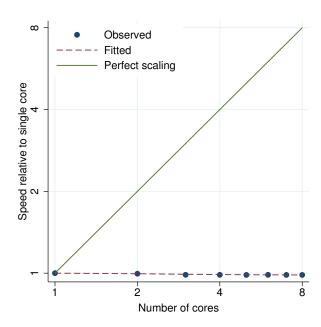


Figure 239. meqrpoisson performance plot.

ω

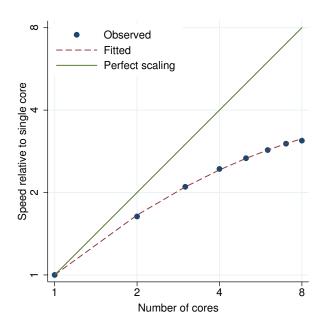


Figure 240. mestreg, distribution(exp) performance plot.

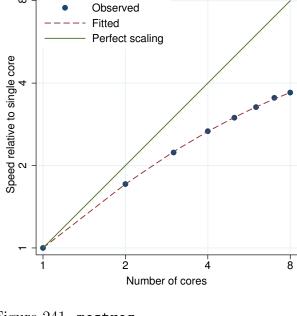


Figure 241. mestreg, distribution(weibull) performance plot.

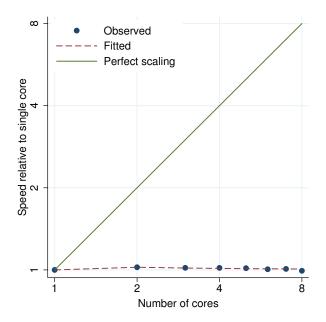


Figure 242. mgarch performance plot.

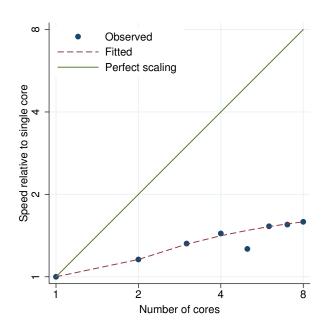


Figure 243. mhodds performance plot.

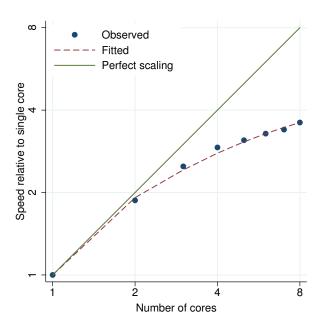


Figure 244. mhodds (adjusted) performance plot.

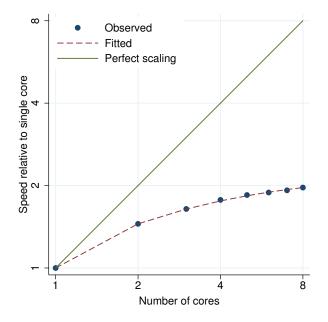


Figure 246. mhodds (trend) performance plot.

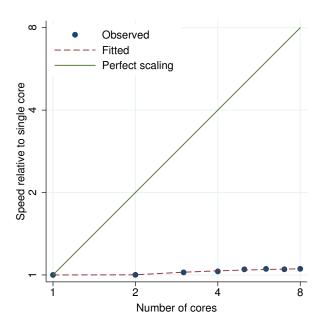


Figure 245. by: mhodds performance plot.

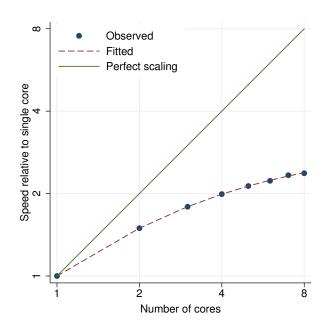


Figure 247. mi estimate: logit (flong) performance plot.

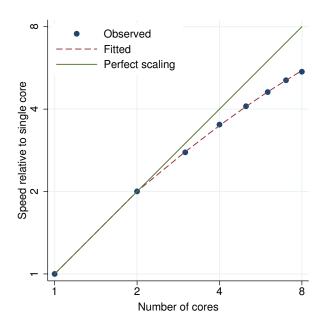


Figure 248. mi estimate: logit (flongsep) performance plot.

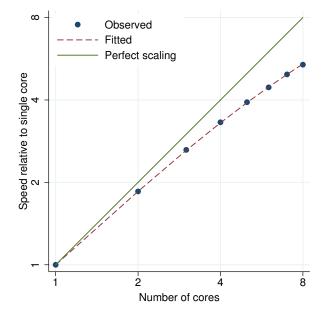


Figure 250. mi estimate: logit (wide) performance plot.



Figure 249. mi estimate: logit (mlong) performance plot.

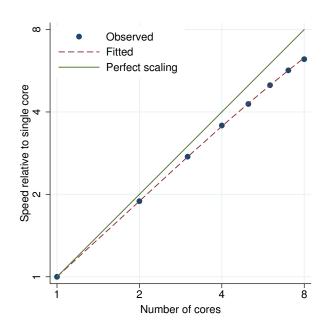


Figure 251. mi estimate: mlogit performance plot.

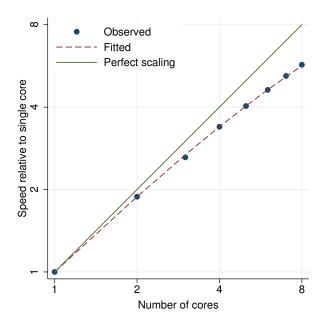


Figure 252. mi estimate: ologit performance plot.

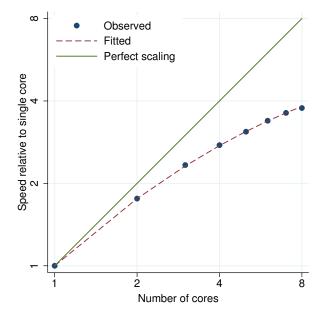


Figure 254. mi estimate: regress (flongsep) performance plot.

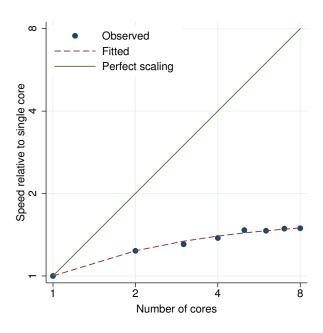


Figure 253. mi estimate: regress (flong) performance plot.

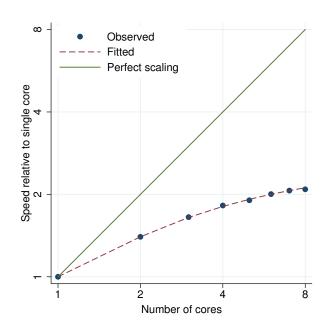


Figure 255. mi estimate: regress (mlong) performance plot.

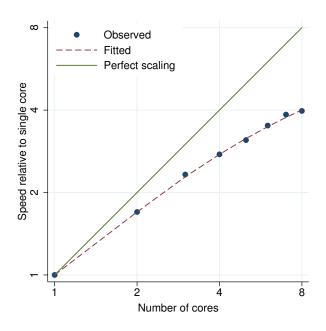


Figure 256. mi estimate: regress (wide) performance plot.

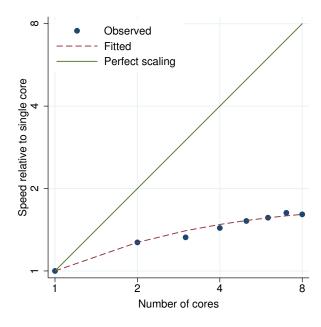


Figure 257. mi impute chained (flong) performance plot.

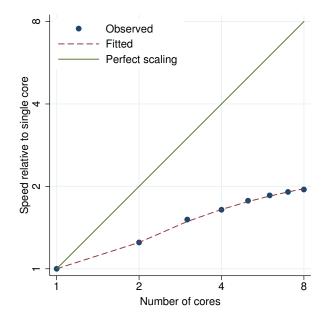


Figure $258.\ \mathrm{mi}\ \mathrm{impute}\ \mathrm{chained}\ \mathrm{(flongsep)}$ performance plot.

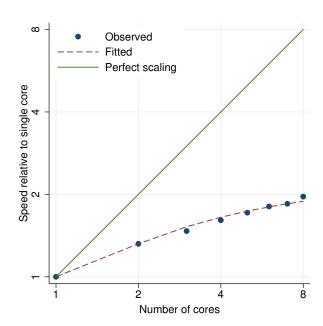


Figure 259. mi impute chained (mlong) performance plot.

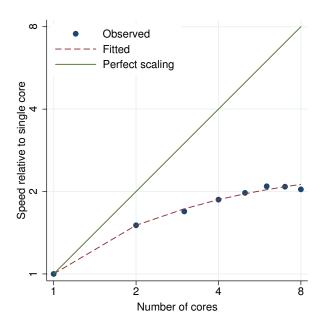


Figure 260. mi impute chained (wide) performance plot.

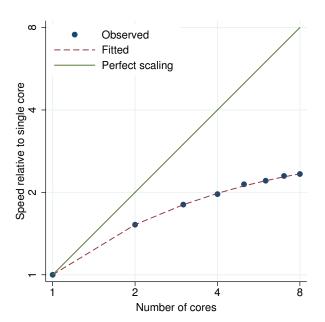


Figure 262. mi impute logit (flongsep) performance plot.

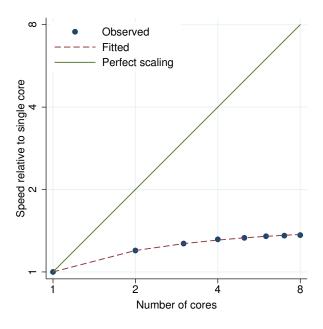


Figure 261. mi impute logit (flong) performance plot.

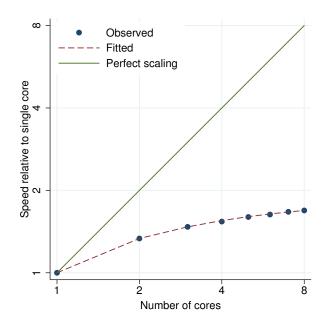


Figure 263. mi impute logit (mlong) performance plot.

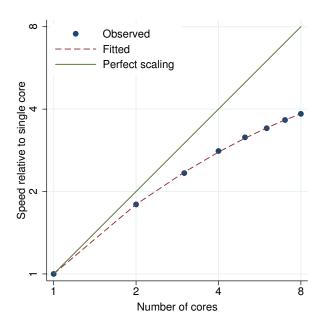


Figure 264. mi impute logit (wide) performance plot.

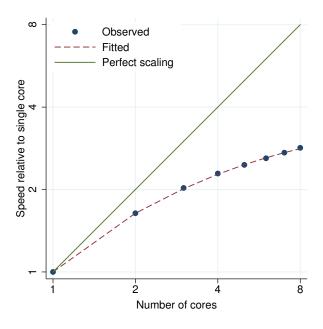


Figure 265. mi impute mlogit performance plot.

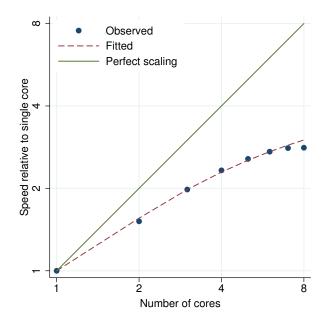


Figure 266. mi impute mono pmm performance plot.

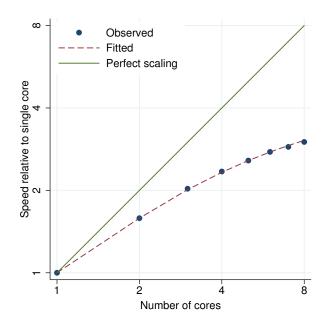


Figure 267. mi impute mono regress performance plot.

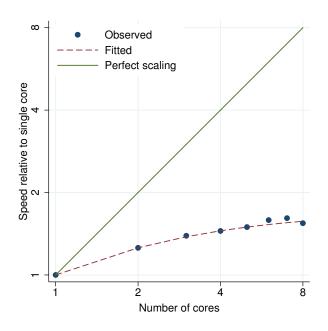


Figure 268. mi impute mvn performance plot.

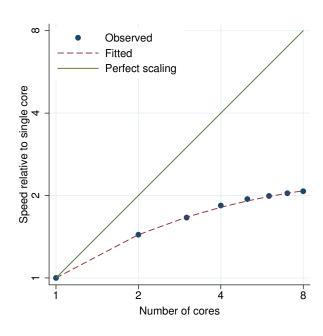


Figure 269. mi impute ologit performance plot.

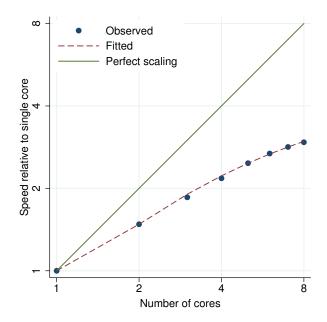


Figure 270. \min impute pmm performance plot.

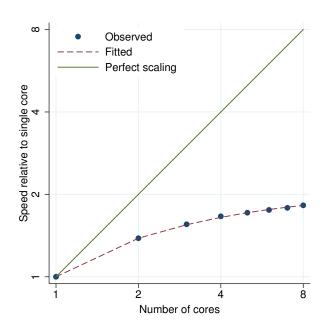


Figure 271. mi impute regress performance plot.

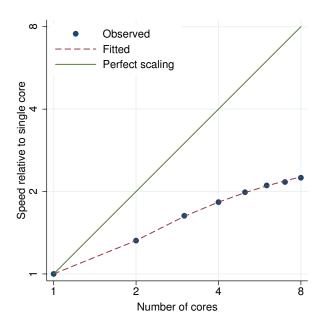


Figure 272. misstable nested performance plot.

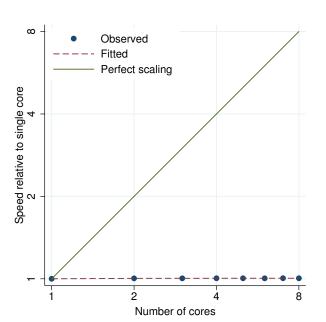


Figure 274. misstable summarize performance plot.

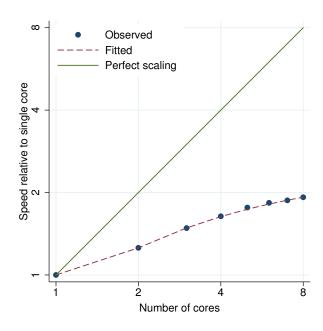


Figure 273. misstable patterns performance plot.

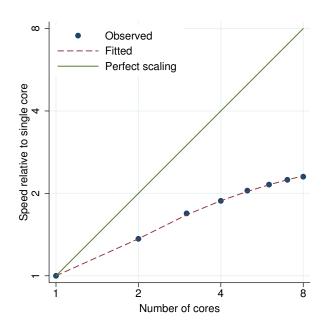


Figure 275. misstable tree performance plot.

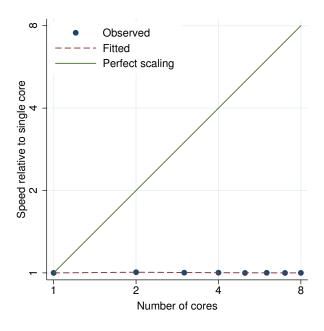


Figure 276. mixed performance plot.

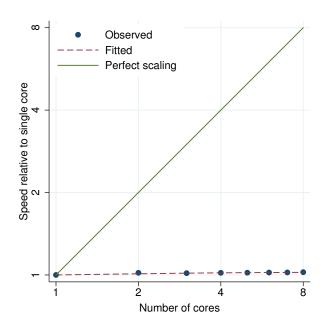


Figure 277. mixed_crossed performance plot.

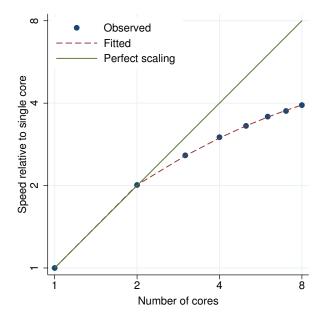


Figure 278. mkspline performance plot.

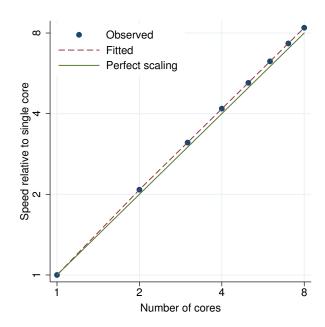


Figure 279. mleval performance plot.

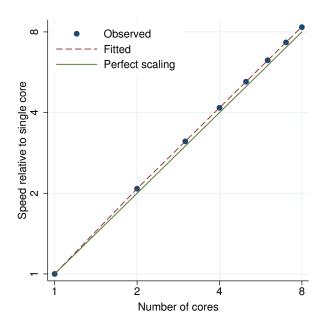


Figure 280. mleval, nocons performance plot.



Figure 281. mlmatbysum performance plot.

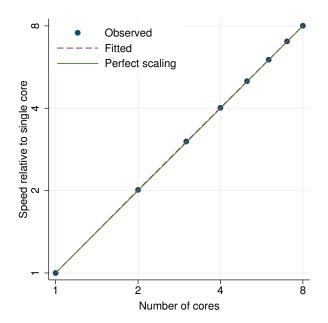


Figure 282. mlmatsum performance plot.

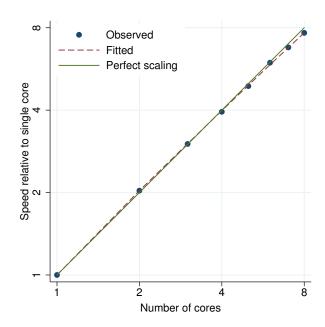
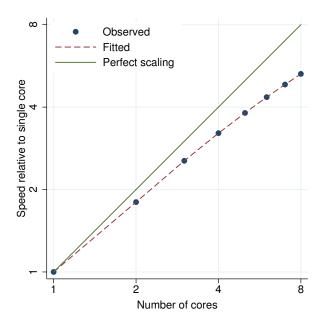


Figure 283. mlogit performance plot.

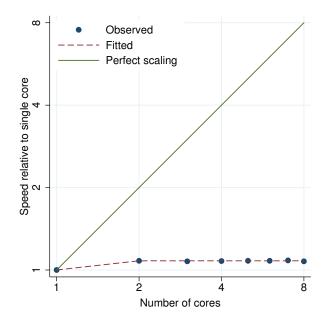


Observed
Perfect scaling

Number of cores

Figure 284. mlsum performance plot.

Figure 285. mlvecsum performance plot.



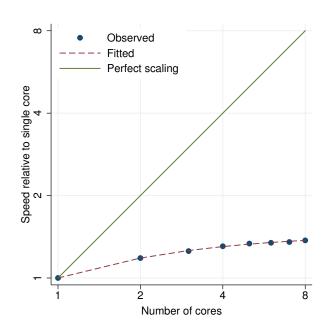


Figure 286. mprobit performance plot.

Figure 287. mswitch ar performance plot.

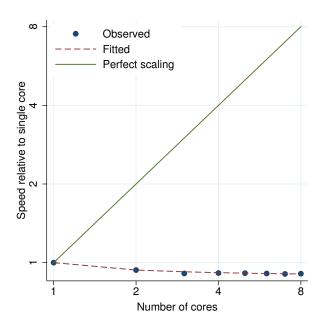


Figure 288. mswitch dr performance plot.

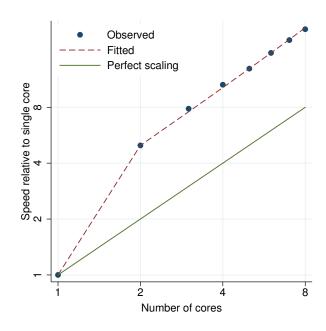


Figure 289. ${\tt mvdecode}$ performance plot.

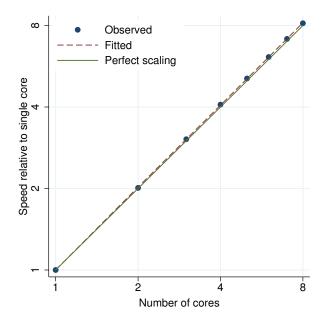


Figure 290. mvencode performance plot.

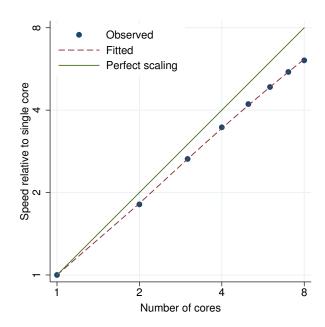


Figure 291. mvreg performance plot.

ω

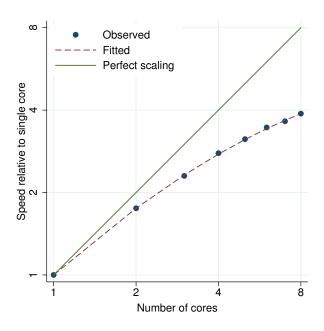


Figure 292. mvtest correlations performance plot.

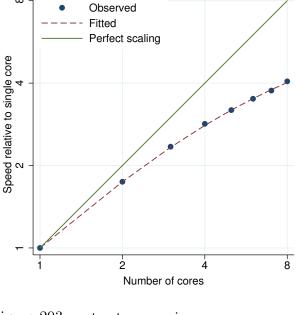


Figure 293. mvtest covariances performance plot.

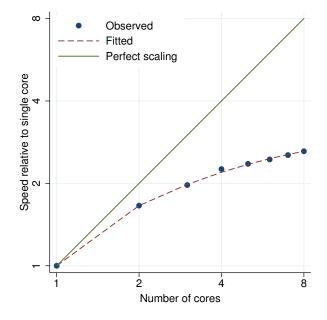


Figure 294. mvtest means, heterogeneous performance plot.

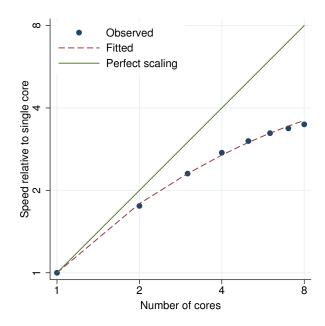


Figure 295. mvtest means, homogeneous performance plot.

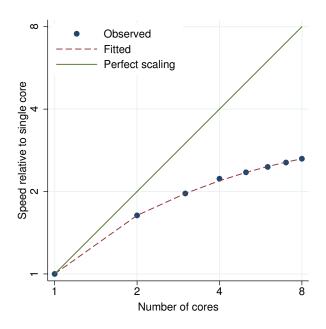


Figure 296. mvtest means, lr performance plot.

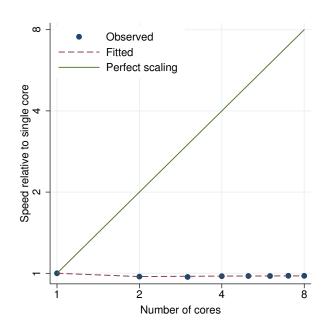


Figure 297. mvtest normality performance plot.

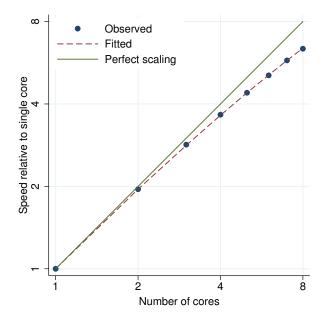


Figure 298. nbreg performance plot.

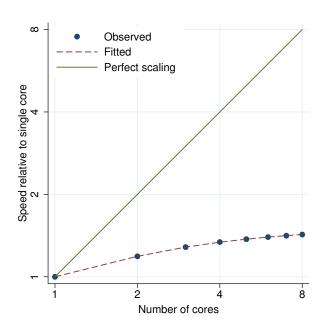
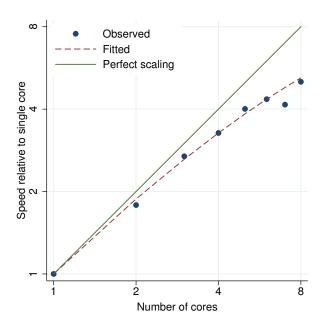


Figure 299. newey performance plot.



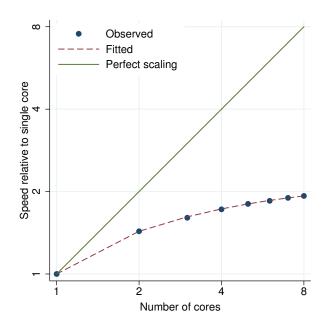
Observed
Fitted
Perfect scaling

Perfect scaling

Number of cores

Figure 300. nl performance plot.

Figure 301. nlogit performance plot.



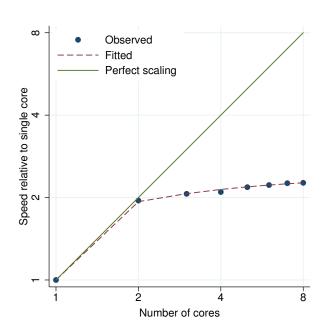


Figure 302. nlsur performance plot.

Figure 303. nptrend performance plot.

Observed

Perfect scaling

Fitted

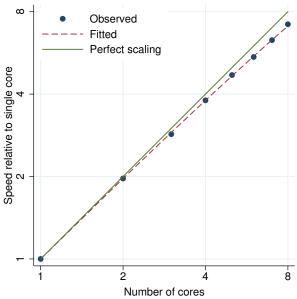


Figure 304. ologit performance plot.

Speed relative to single core 2

Figure 305. oneway performance plot.

Number of cores

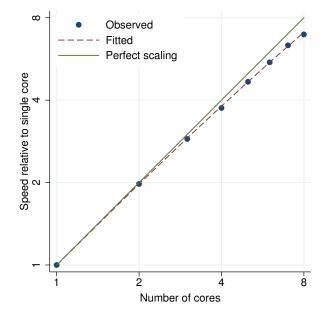


Figure 306. oprobit performance plot.

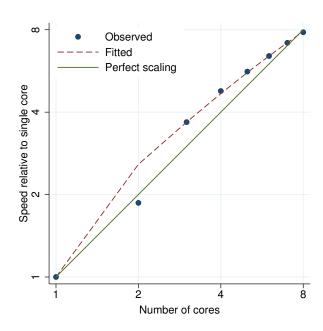


Figure 307. orthog performance plot.

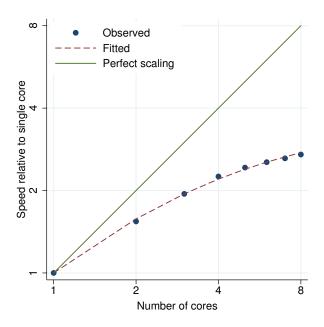


Figure 308. pca performance plot.

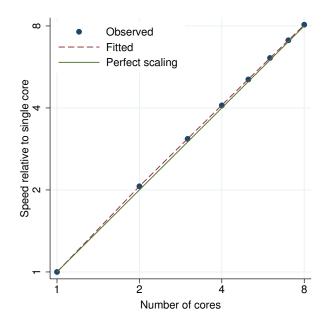


Figure 309. pcorr performance plot.

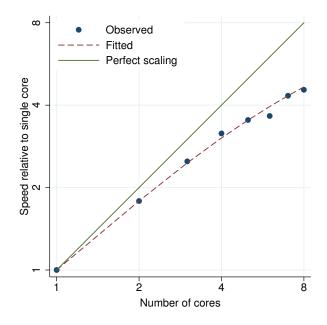


Figure 310. pctile performance plot.

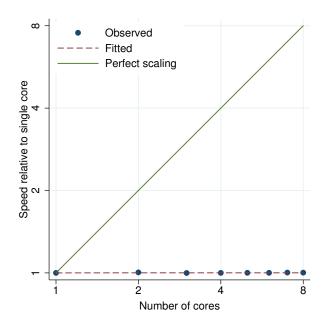


Figure 311. pergram performance plot.

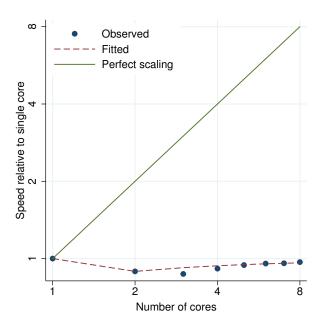


Figure 312. pkcollapse performance plot.

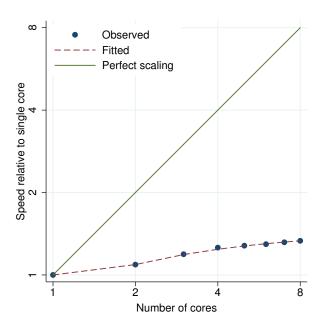


Figure 313. pkexamine performance plot.

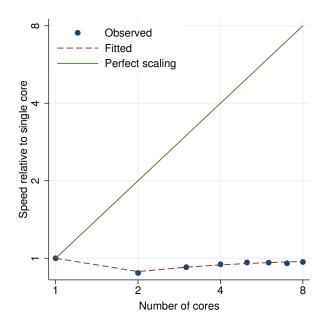


Figure 314. pksumm performance plot.

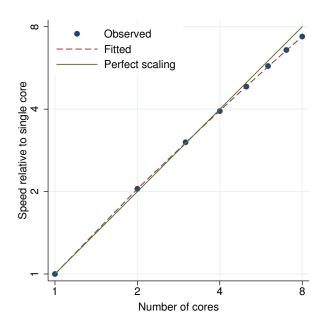


Figure 315. poisson performance plot.

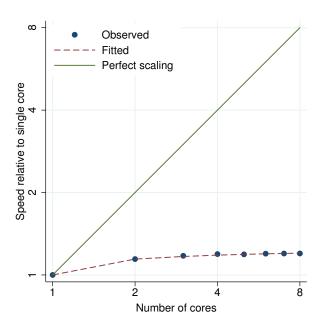


Figure 316. pperron performance plot.

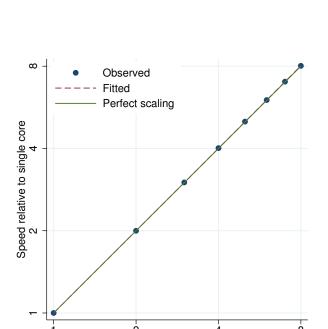


Figure 318. predict, cooksd performance plot.

Number of cores

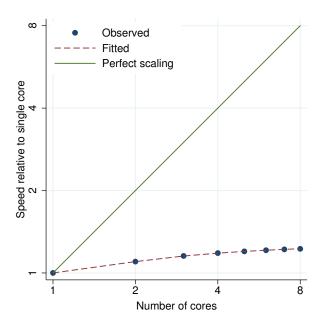


Figure 317. prais performance plot.

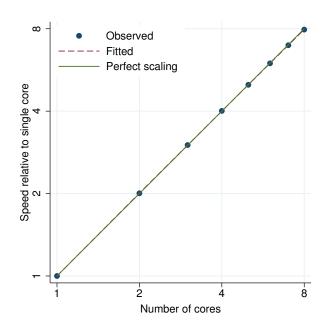


Figure 319. predict, covratio performance plot.

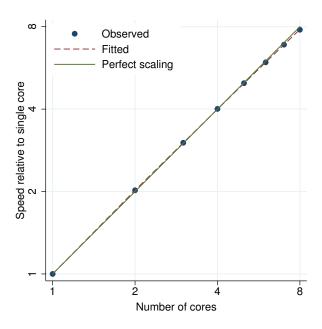


Figure 320. predict, dfbeta performance plot.

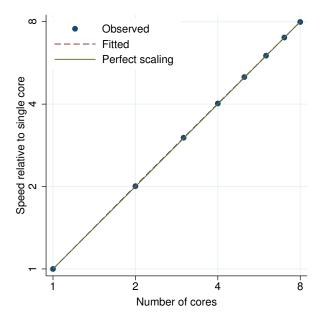


Figure 321. predict, dfits performance plot.

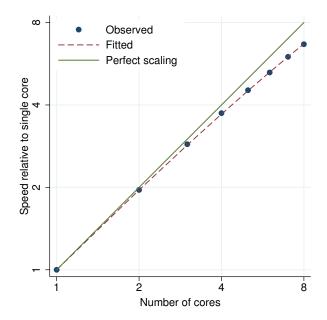


Figure 322. predict, e performance plot.

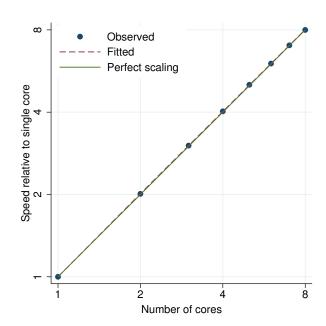


Figure 323. predict, leverage performance plot.

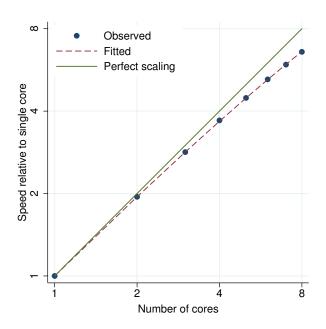


Figure 324. predict, pr performance plot.

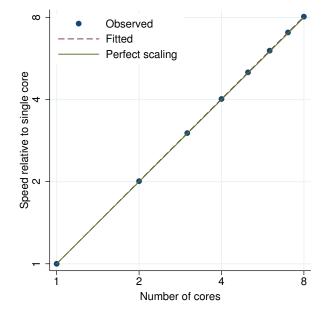


Figure 326. predict, rstandard performance plot.

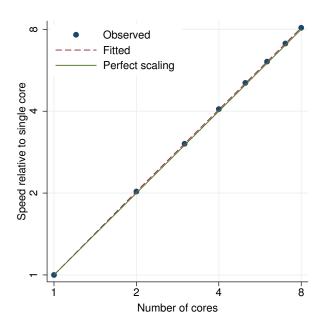


Figure 325. predict, residuals performance plot.

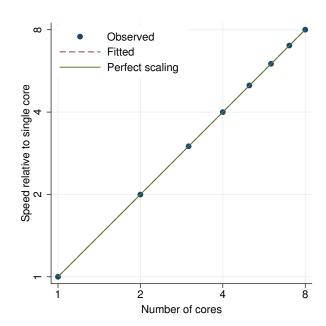


Figure 327. predict, rstudent performance plot.

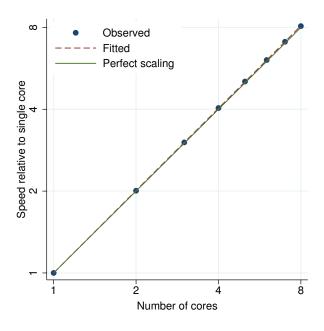


Figure 328. predict, stdf performance plot.

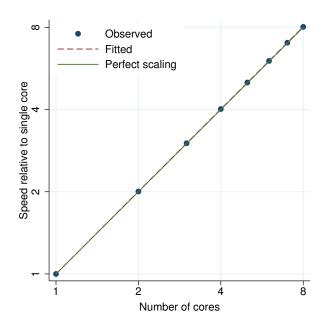


Figure 329. predict, stdp performance plot.

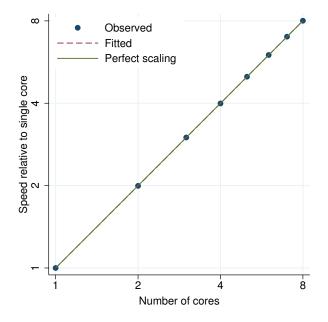


Figure 330. predict, stdr performance plot.

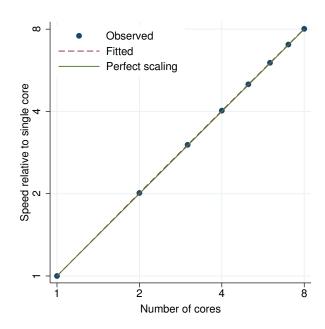


Figure 331. predict, welsch performance plot.

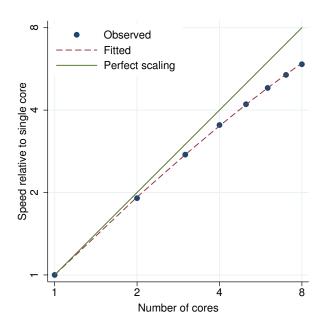


Figure 332. predict, ystar performance plot.

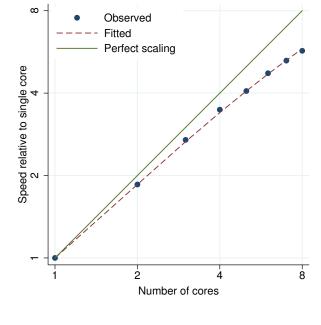


Figure 333. ${\tt predictnl}$ performance plot.

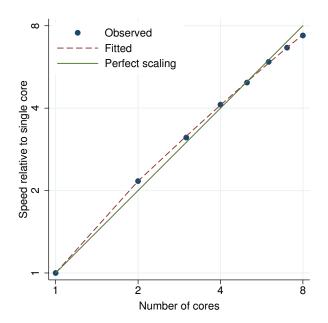


Figure 334. probit performance plot.

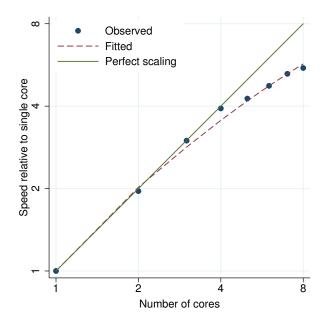


Figure 335. procrustes performance plot.

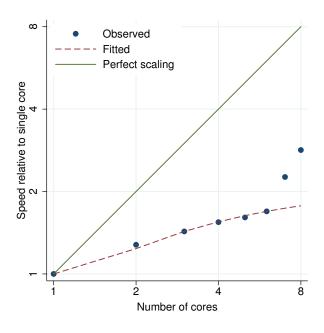


Figure 336. proportion performance plot.

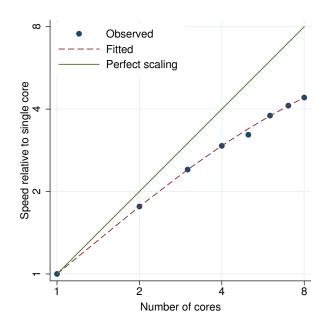


Figure 337. prtest1 performance plot.

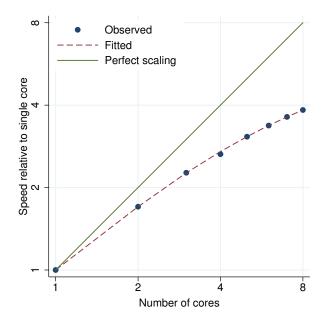


Figure 338. prtest2 performance plot.

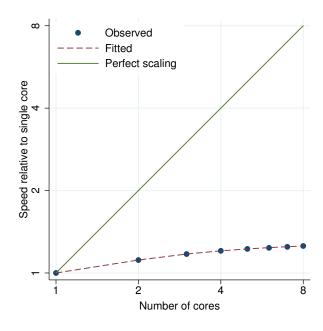
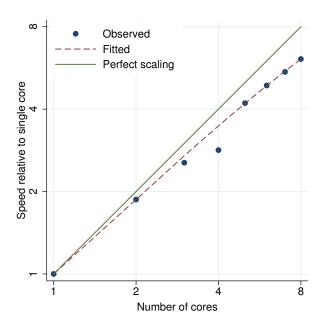


Figure 339. prtest, by() performance plot.

ω

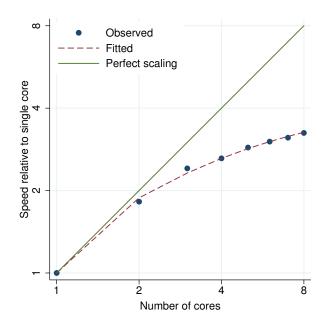


Observed
----- Fitted
Perfect scaling

Number of cores

Figure 340. pwcorr performance plot.

Figure 341. qreg performance plot.



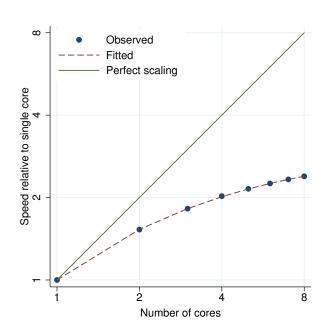


Figure 342. ranksum performance plot.

Figure 343. ratio performance plot.

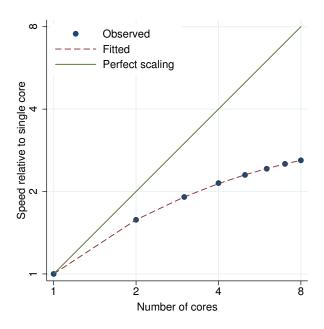


Figure 344. ratio (exp1) (exp2) performance plot.

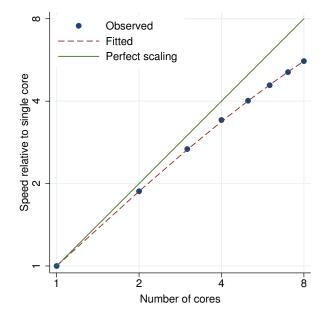


Figure 346. reg3 performance plot.

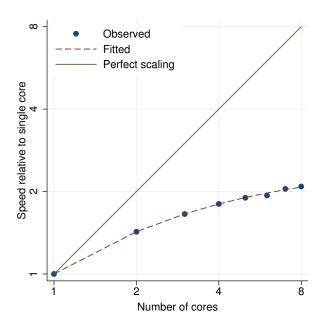


Figure 345. ${\tt recode}$ performance plot.

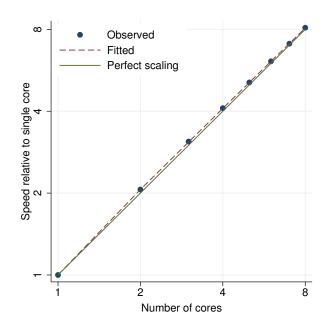


Figure 347. regress performance plot.

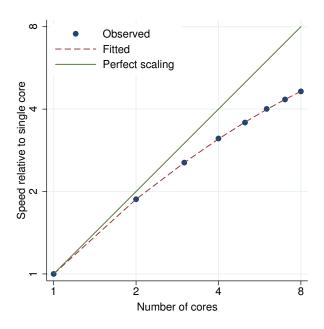


Figure 348. regress, vce(cluster) performance plot.

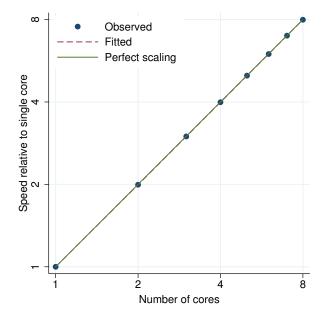


Figure 350. replace performance plot.

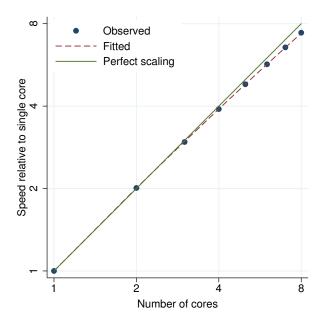


Figure 349. regress, vce(robust) performance plot.

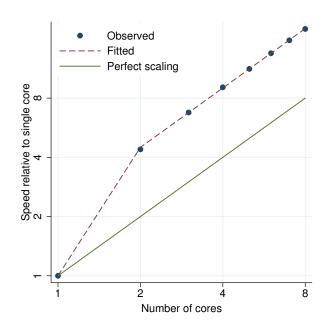
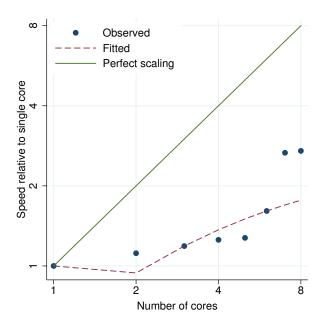


Figure 351. replace (small expressions) performance plot.

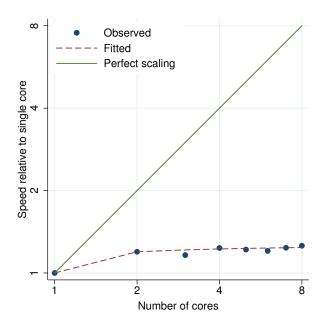


Observed
----- Fitted
Perfect scaling

2
4
Number of cores

Figure 352. reshape long performance plot.

Figure 353. reshape wide performance plot.



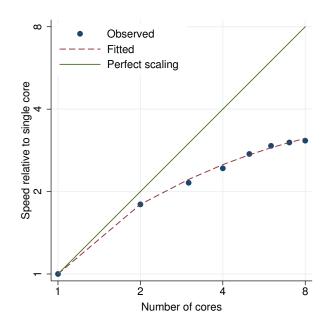


Figure 354. robvar performance plot.

Figure 355. rocfit performance plot.

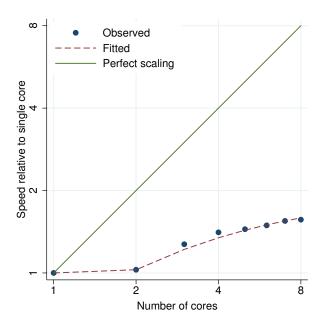


Figure 356. roctab performance plot.

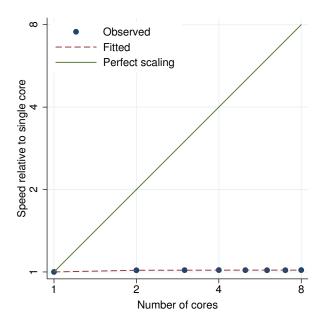


Figure 357. rotate performance plot.

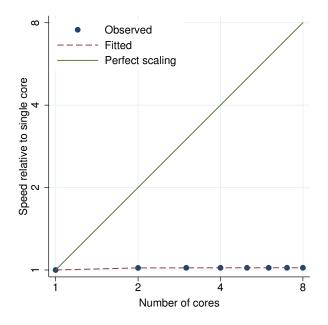


Figure 358. rotatemat performance plot.

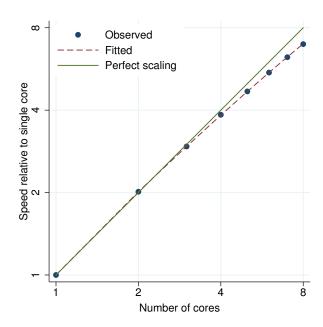
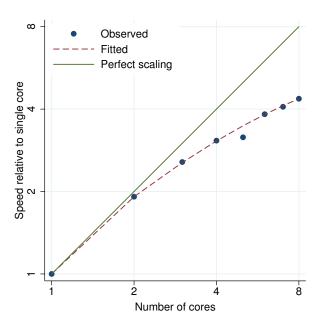


Figure 359. rreg performance plot.



Observed

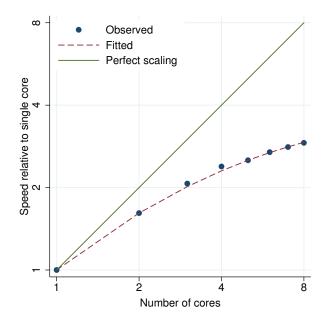
Fitted
Perfect scaling

A

Number of cores

Figure 360. runtest performance plot.

Figure 361. scobit performance plot.



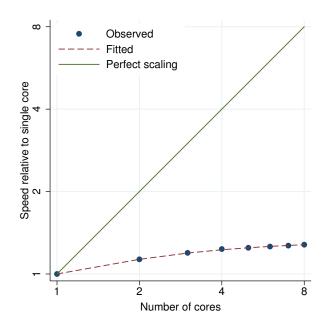


Figure 362. scoreplot performance plot.

Figure 363. screeplot performance plot.



Figure 364. sdtest1 performance plot.

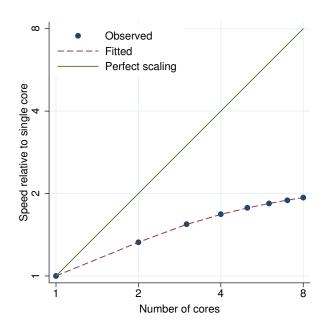


Figure 365. sdtest2 performance plot.

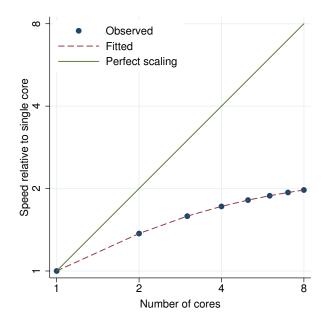


Figure 366. sdtest, by() performance plot.

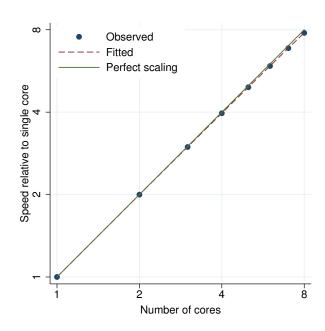


Figure 367. sem, method(adf) (CFA) performance plot.

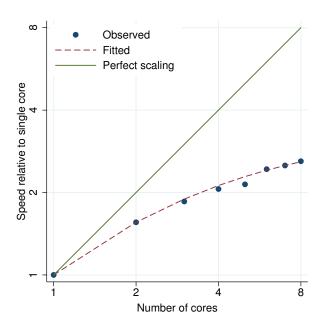


Figure 368. sem, method(ml) (CFA) performance plot.

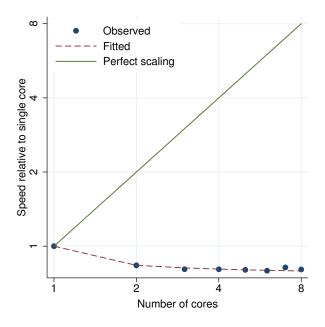


Figure 369. sem, method(mlmv) (CFA) performance plot.

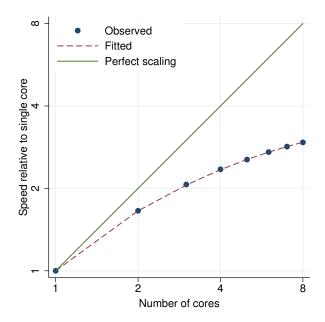


Figure 370. sem (SEM latent) performance plot.

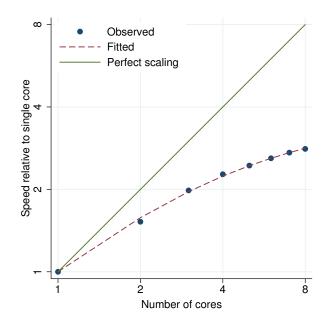


Figure 371. sem (SEM observed) performance plot.

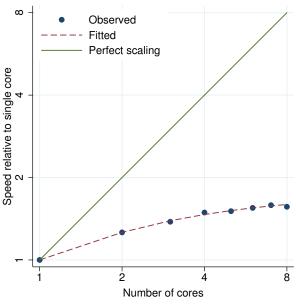


Figure 372. separate performance plot.

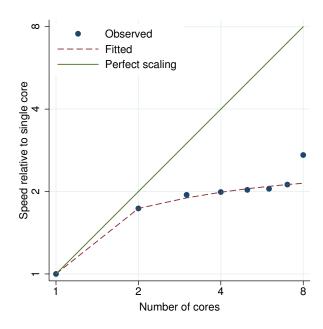


Figure 373. sfrancia performance plot.

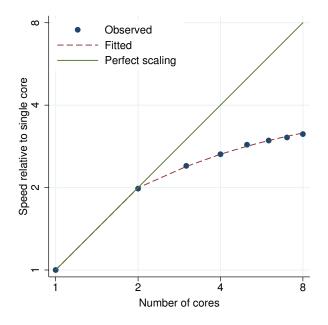


Figure 374. signrank performance plot.

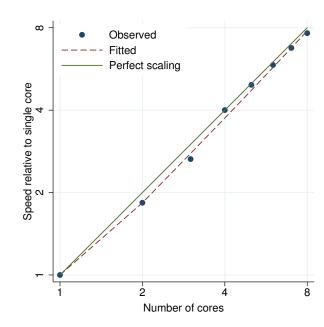


Figure 375. signtest performance plot.

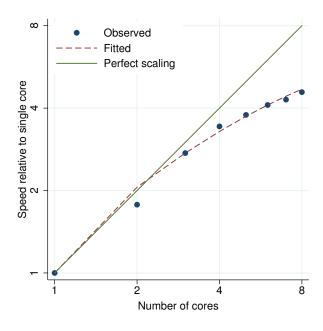


Figure 376. sktest performance plot.

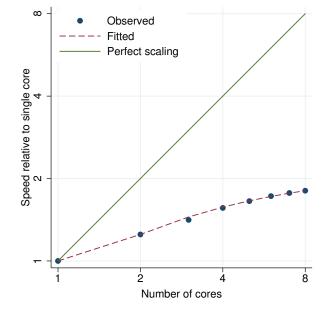


Figure 377. slogit performance plot.

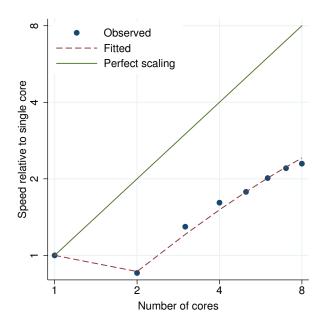


Figure 378. sort performance plot.

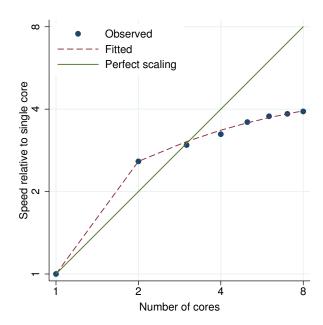


Figure 379. spearman performance plot.

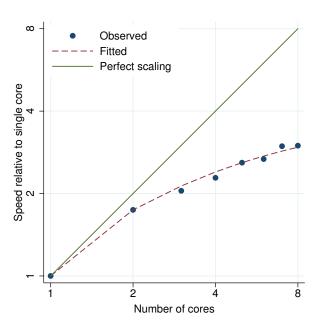


Figure 380. sspace performance plot.

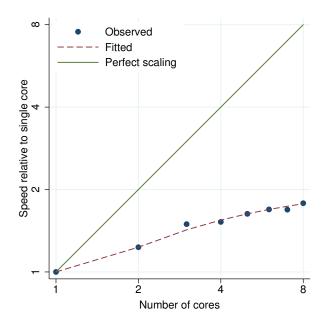


Figure 381. stack performance plot.

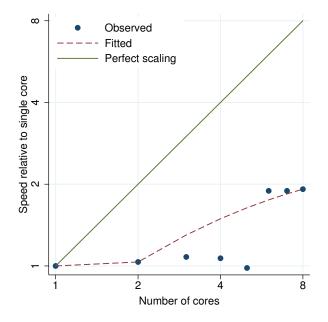


Figure 382. stci performance plot.

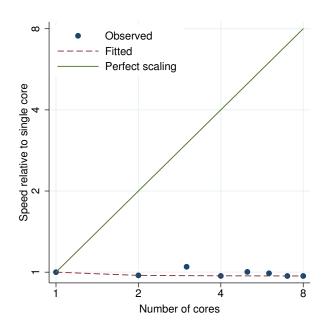
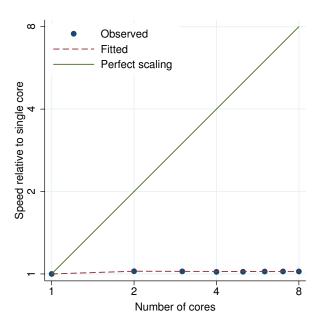


Figure 383. stcox performance plot.



Observed

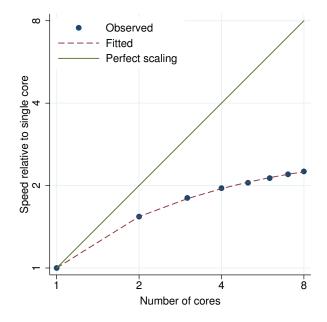
Fitted

Perfect scaling

A Number of cores

Figure 384. stcrreg performance plot.

Figure 385. stgen performance plot.



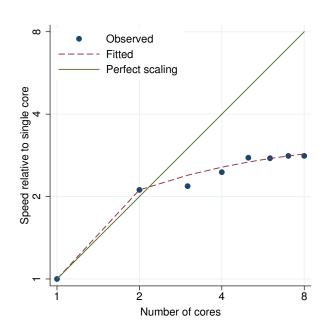


Figure 386. stir performance plot.

Figure 387. stmc performance plot.

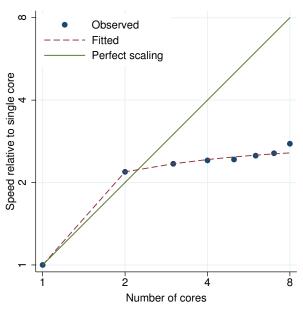


Figure 388. by: stmc performance plot.

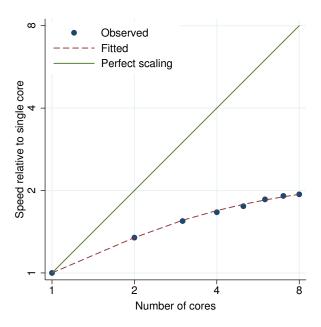


Figure 389. stmh performance plot.

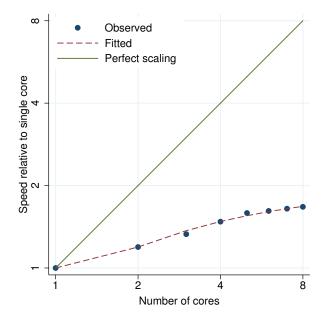


Figure 390. by: stmh performance plot.

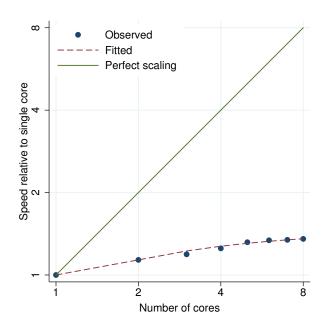


Figure 391. stptime performance plot.

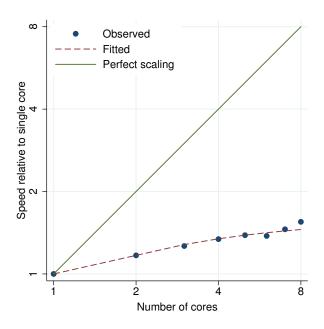


Figure 392. strate performance plot.

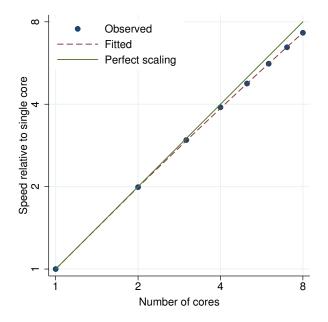


Figure 394. streg, dist(exp) vce(cluster) performance plot.

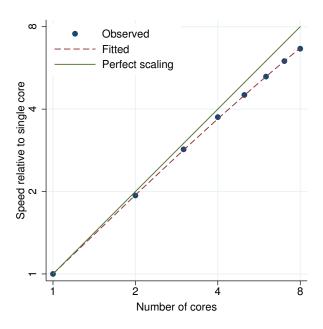


Figure 393. streg, distribution(exponential) performance plot.

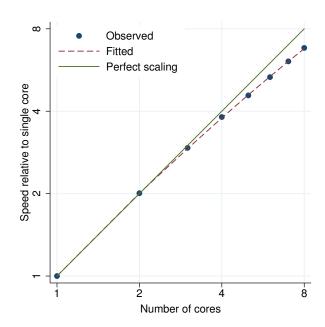


Figure 395. streg, dist(exp) frailty() performance plot.

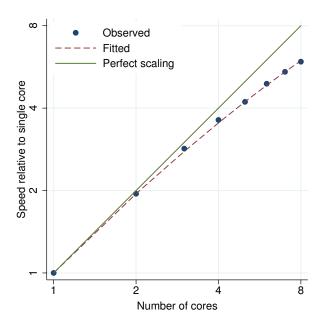


Figure 396. streg, dist(exp) frailty() shared() performance plot.

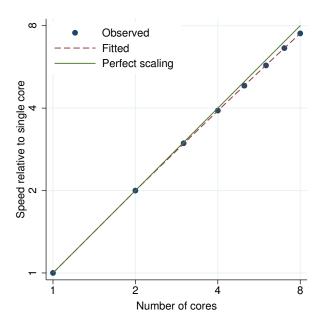


Figure 397. streg, dist(exp) vce(robust) performance plot.

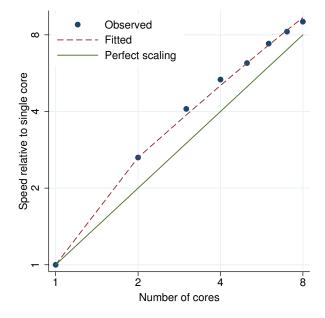


Figure 398. streg, distribution(gamma) performance plot.

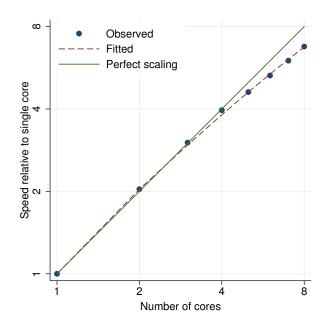


Figure 399. streg, distribution(lnormal) performance plot.

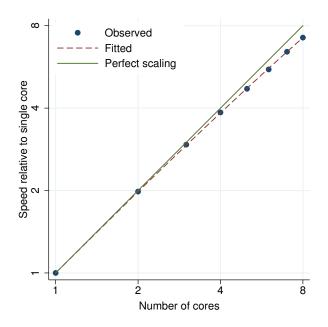


Figure 400. streg, distribution(weibull) performance plot.

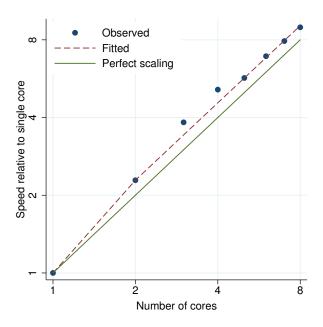


Figure 401. streg, dist(weibull) frailty() performance plot.

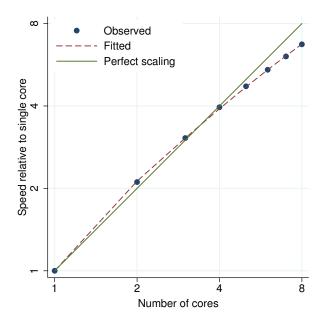


Figure 402. streg, dist(weib) frailty() shared() performance plot.

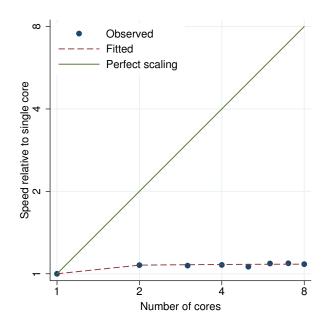
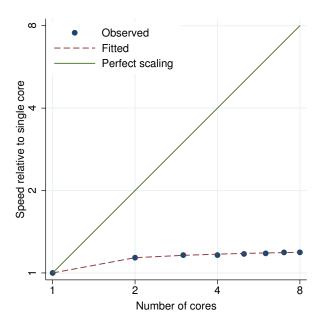


Figure 403. sts generate performance plot.

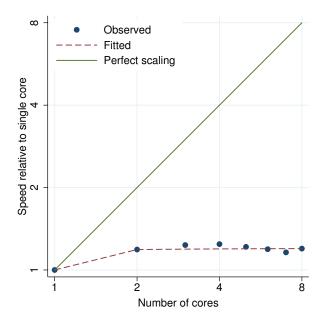


Observed
Fitted
Perfect scaling

Number of cores

Figure 404. sts graph performance plot.

Figure 405. sts list performance plot.



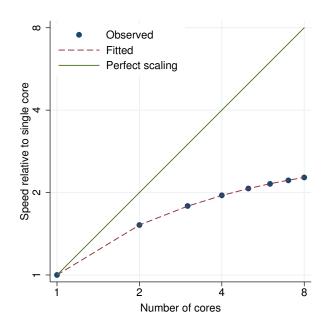


Figure 406. sts test performance plot.

Figure 407. stset performance plot.

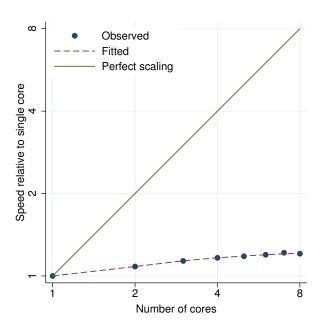


Figure 408. stsplit performance plot.

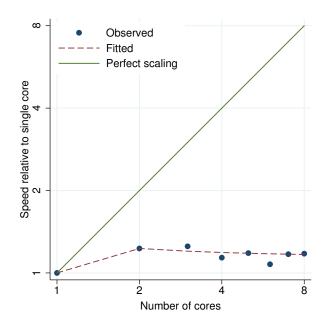


Figure 409. stsum performance plot.

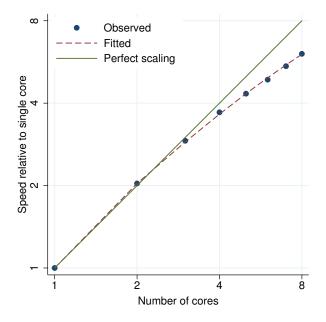


Figure 410. stteffects ipw (weibull) performance plot.

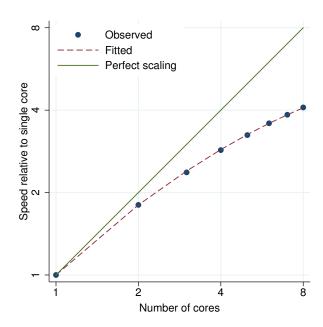


Figure 411. stteffects ipwra (weibull) performance plot.

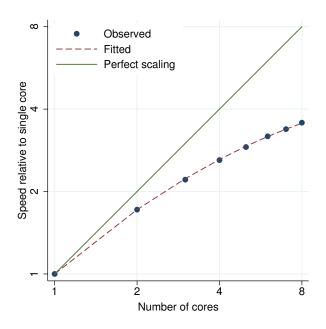


Figure 412. stteffects ra (weibull) performance plot.

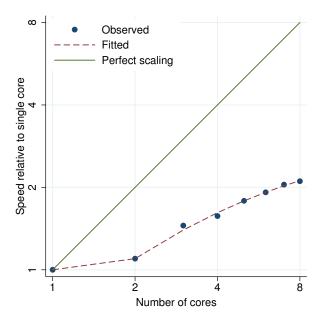


Figure 414. stvary performance plot.

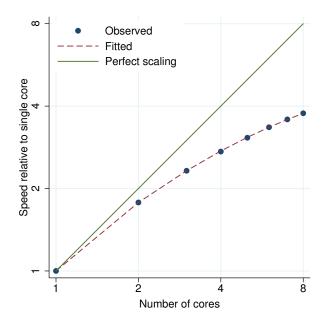


Figure 413. stteffects wra (weibull) performance plot.

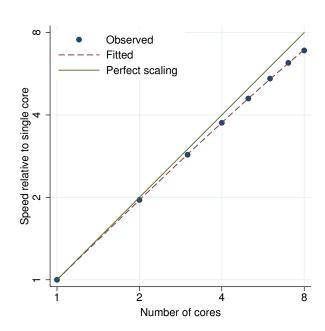
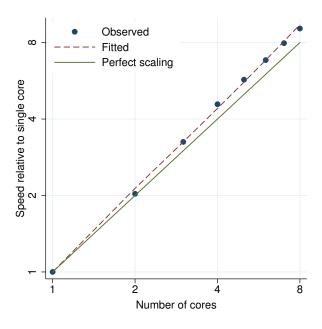


Figure 415. suest performance plot.

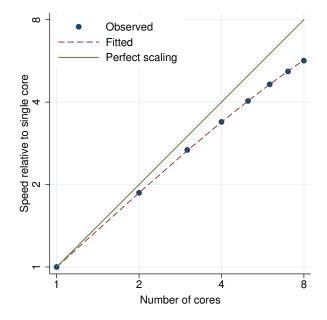


each relative to single and some state of the state of th

Figure 416. summarize performance plot.

Figure 417. sunflower performance plot.

ω



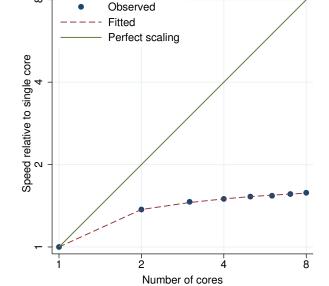


Figure 418. sureg performance plot.

Figure 419. svar performance plot.

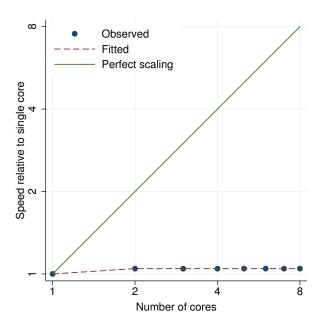


Figure 420. symat performance plot.

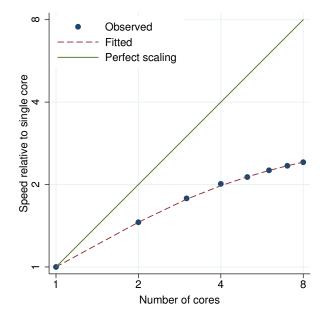


Figure 421. svy brr: logit performance plot.

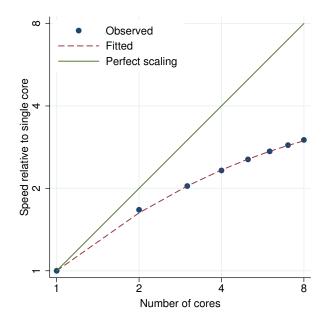


Figure 422. svy brr: poisson performance plot.

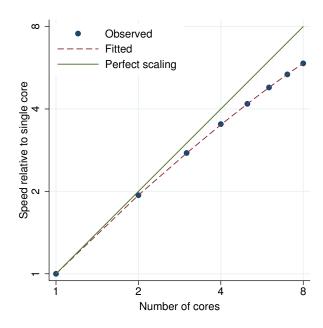


Figure 423. svy brr: regress performance plot.

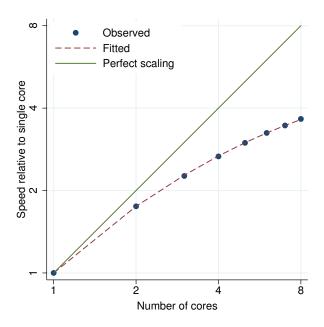


Figure 424. svy jackknife: logit performance plot.

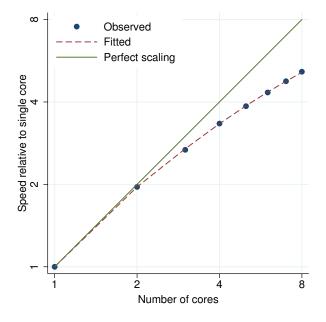


Figure 426. svy jackknife: regress performance plot.

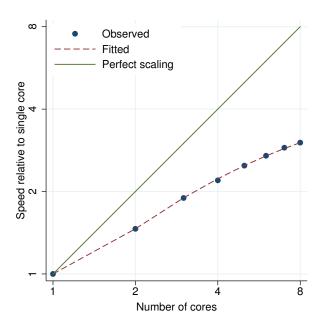


Figure 425. svy jackknife: poisson performance plot.

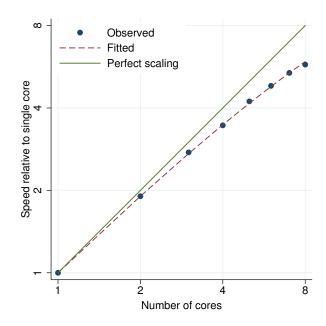


Figure 427. svy linearized: logit performance plot.

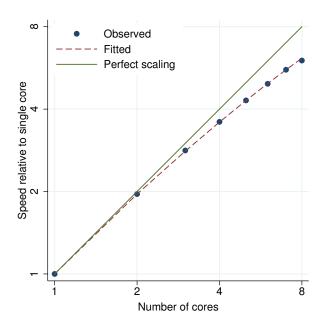


Figure 428. svy linearized: poisson performance plot.

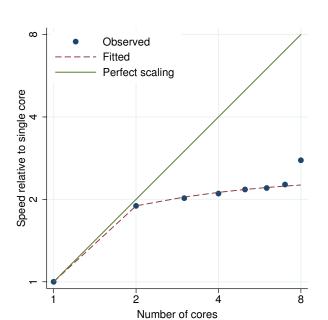


Figure 430. swilk performance plot.

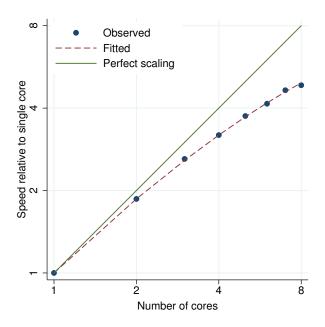


Figure 429. svy linearized: regress performance plot.

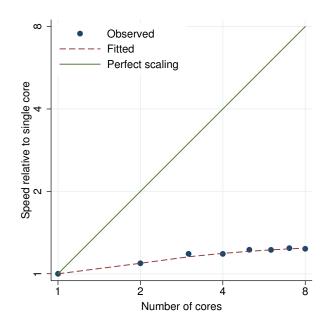


Figure 431. symmetry performance plot.

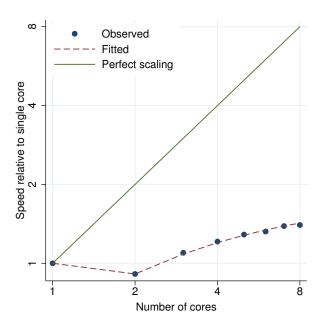


Figure 432. table (one-way) performance plot.

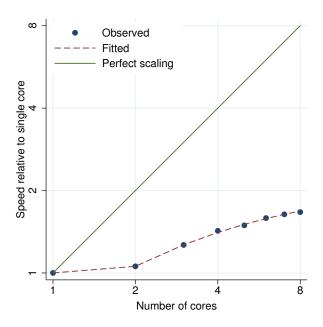


Figure 433. table (two-way) performance plot.

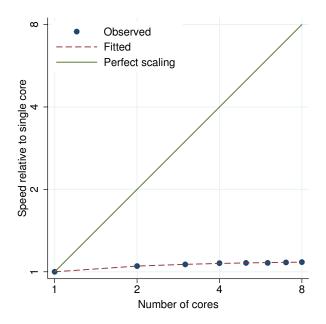


Figure 434. tabodds performance plot.

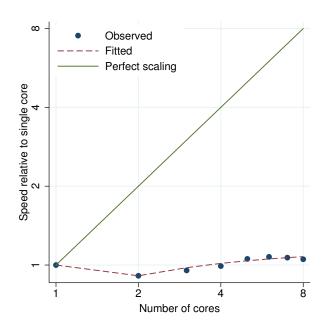


Figure 435. tabodds (adjusted) performance plot.

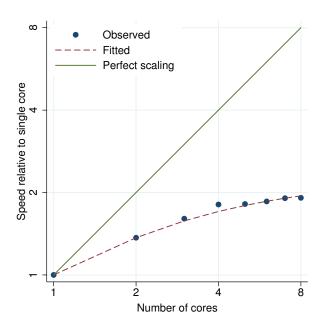


Figure 436. tabstat performance plot.

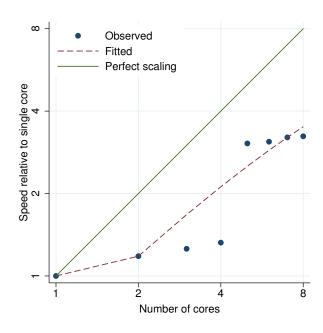


Figure 437. tabstat, by() performance plot.

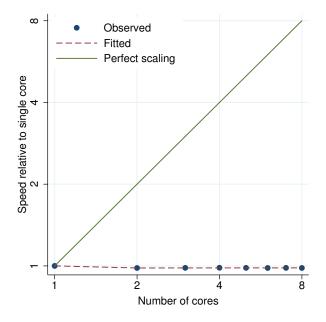


Figure 438. tabulate (one-way) performance plot.

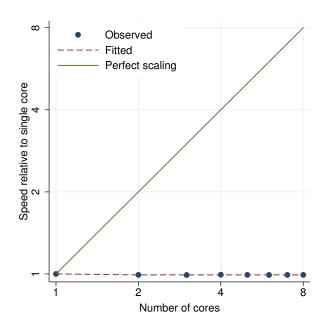


Figure 439. tabulate (two-way) performance plot.

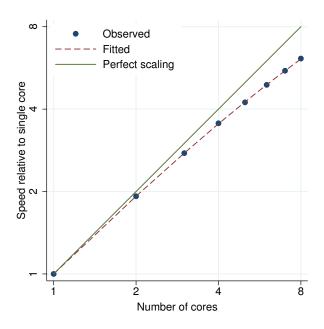


Figure 440. teffects aipw (linear) performance plot.

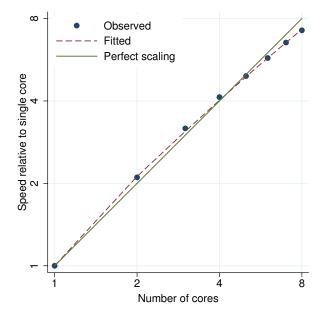


Figure 442. teffects ipw (logit) performance plot.

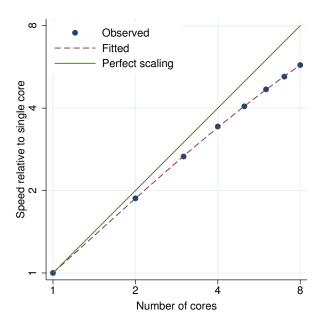


Figure 441. teffects aipw (probit) performance plot.

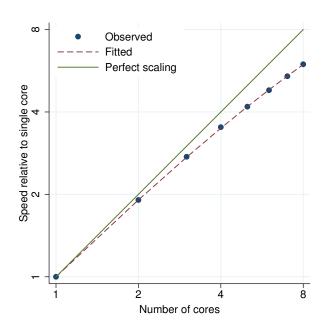


Figure 443. teffects ipwra (linear) performance plot.

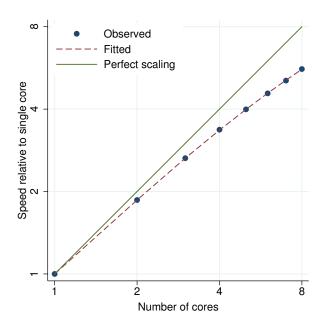


Figure 444. teffects ipwra (probit) performance plot.

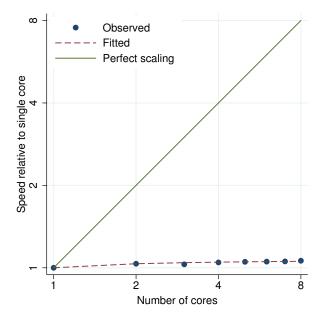


Figure 446. teffects psmatch, logit performance plot.

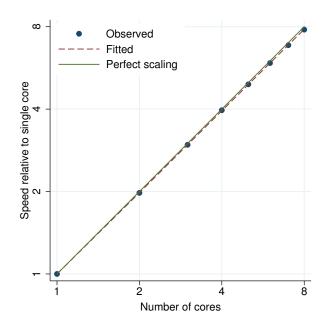


Figure 445. teffects nnmatch performance plot.

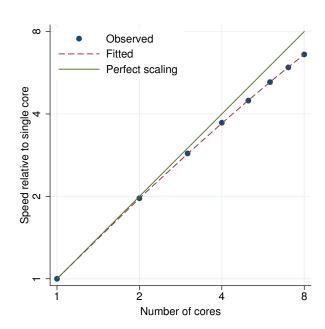


Figure 447. teffects ra (linear) performance plot.

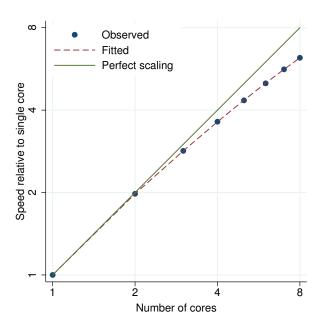


Figure 448. teffects ra (probit) performance plot.

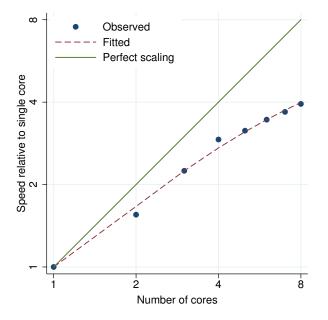


Figure 450. tnbreg performance plot.

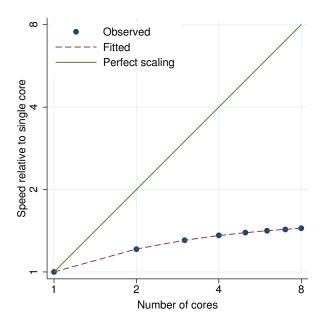


Figure 449. $tetrachoric\ performance\ plot.$

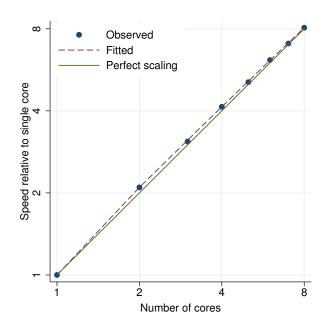


Figure 451. tobit performance plot.

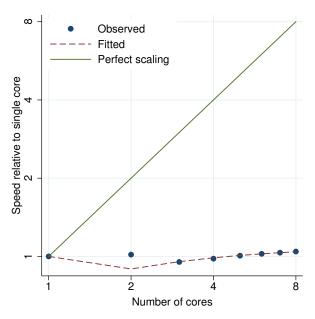


Figure 452. tostring performance plot.

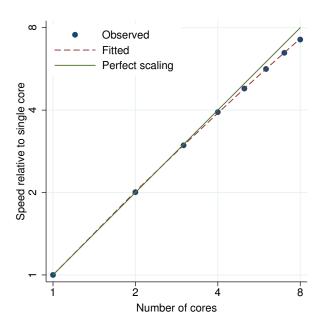


Figure 453. total performance plot.

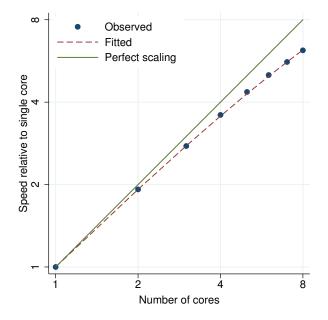


Figure 454. tpoisson performance plot.

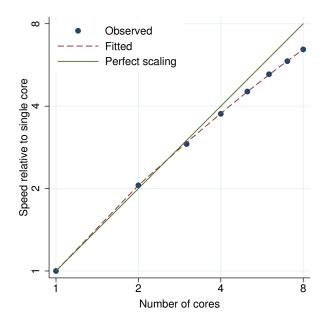


Figure 455. truncreg performance plot.

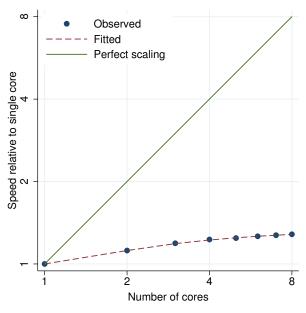


Figure 456. tsfilter bk performance plot.

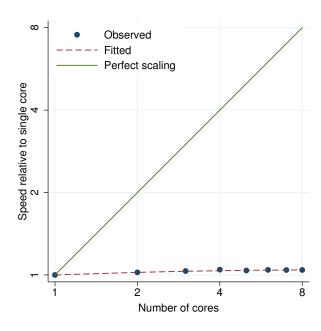


Figure 457. tsfilter bw performance plot.

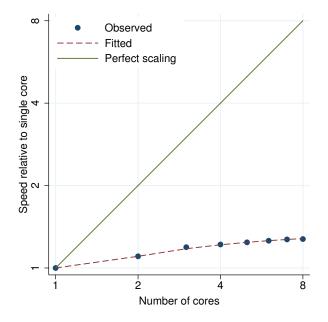


Figure 458. tsfilter cf performance plot.

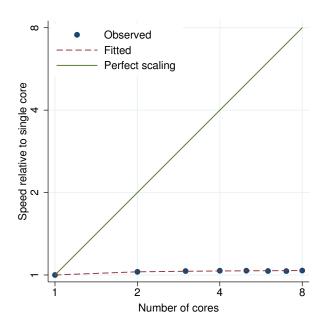
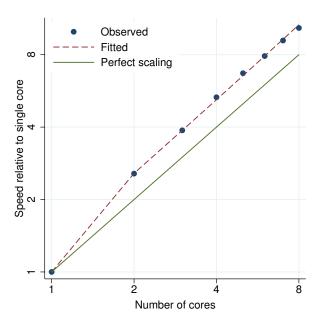


Figure 459. tsfilter hp performance plot.



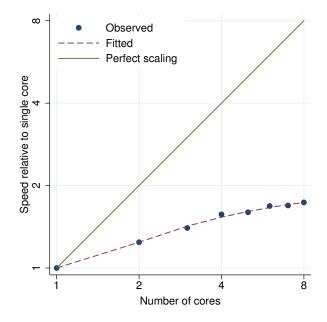
Observed
----- Fitted
----- Perfect scaling

Perfect scaling

Number of cores

Figure 460. tsrevar performance plot.

Figure 461. ${\tt tsset}$ performance plot.



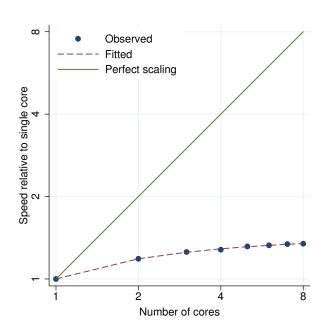
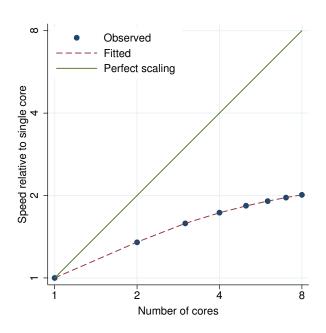


Figure 462. tssmooth exp performance plot.

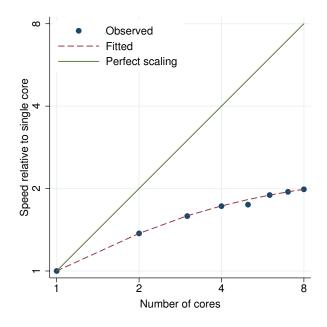
Figure 463. tssmooth ma performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 2 8 Number of cores

Figure 464. ttest1 performance plot.

Figure 465. ttest2 performance plot.



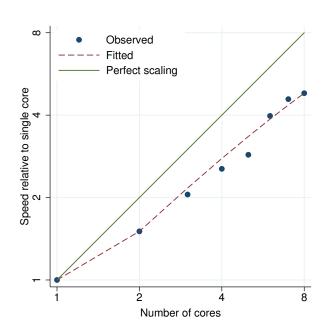


Figure 466. ttest, by() performance plot.

Figure 467. twoway fpfit performance plot.

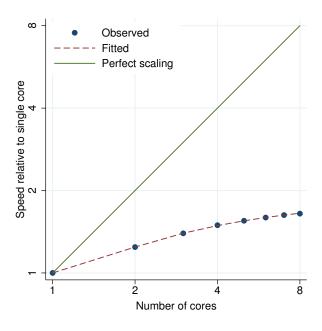


Figure 468. twoway lfitci performance plot.

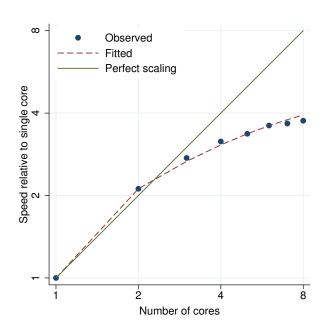


Figure 469. twoway mband performance plot.

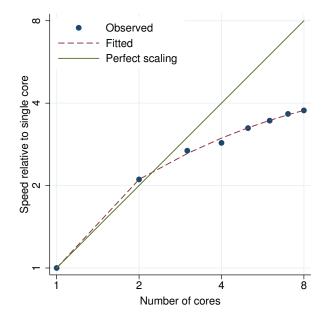


Figure 470. twoway mspline performance plot.

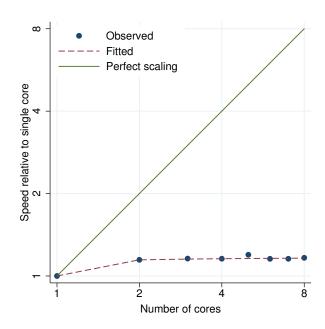
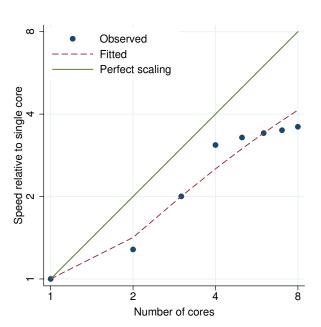


Figure 471. ucm, model(rwdrift) performance plot.



Observed

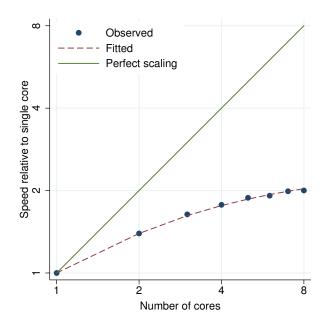
Perfect scaling

Observed

Number of cores

Figure 472. var performance plot.

Figure 473. vargranger performance plot.



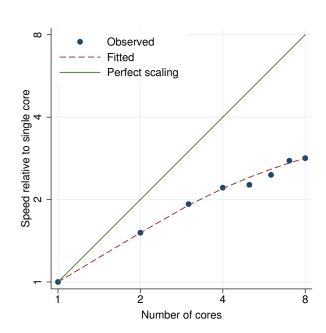
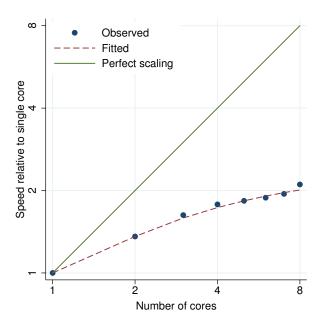


Figure 474. varlmar performance plot.

Figure 475. varnorm performance plot.

ω

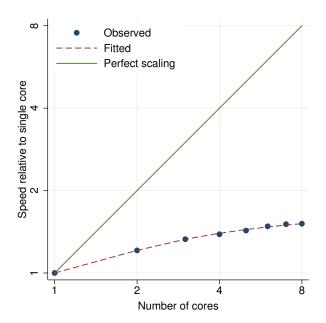


Observed
----- Fitted
Perfect scaling

2
Number of cores

Figure 476. varsoc performance plot.

Figure 477. varstable performance plot.



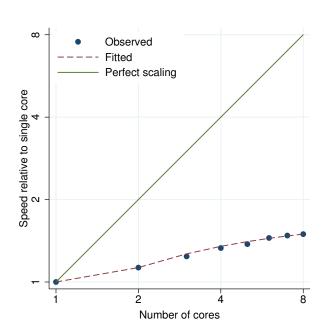
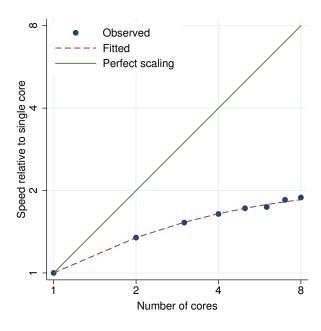


Figure 478. vec performance plot.

Figure 479. veclmar performance plot.



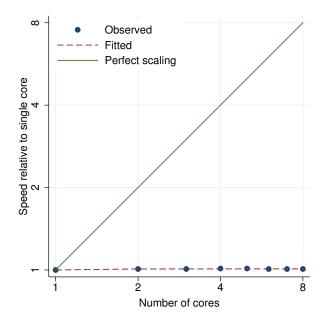
Observed
----- Fitted
Perfect scaling

Possible 2

Number of cores

Figure 480. vecnorm performance plot.

Figure 481. vecrank performance plot.



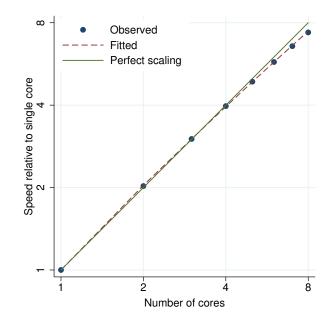


Figure 482. vecstable performance plot.

Figure 483. vwls performance plot.

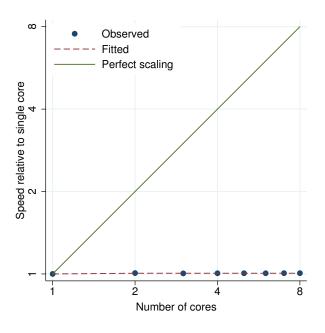


Figure 484. wntestb performance plot.

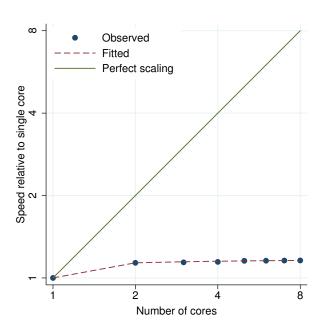


Figure 485. wntestq performance plot.

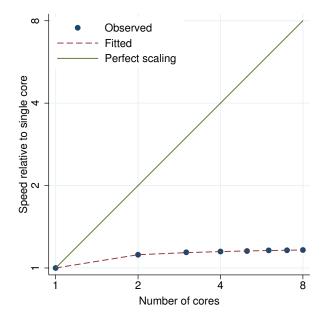


Figure 486. xcorr performance plot.

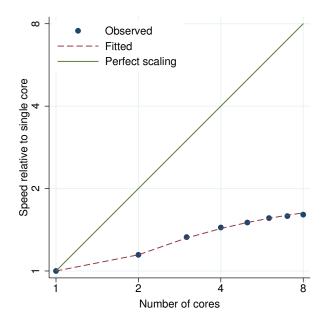


Figure 487. xtabond performance plot.

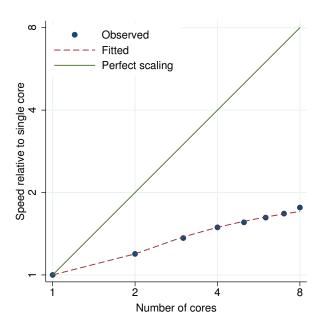


Figure 488. xtabond, twostep performance plot.

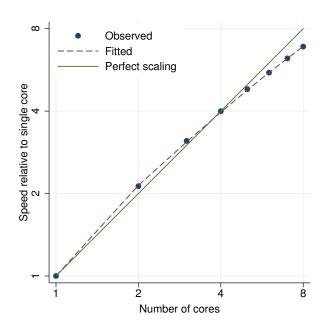


Figure 489. ${\tt xtcloglog},\ {\tt re}\ {\tt performance}\ {\tt plot}.$

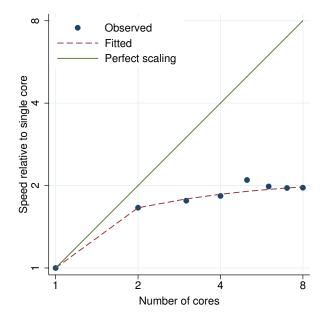


Figure 490. xtdata, be performance plot.

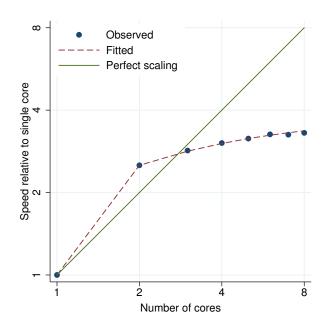


Figure 491. xtdata, fe performance plot.

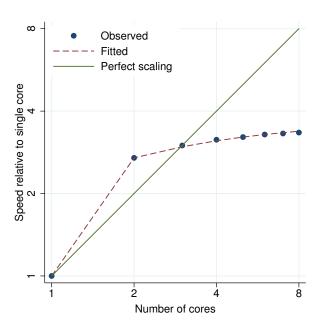


Figure 492. xtdata, re performance plot.

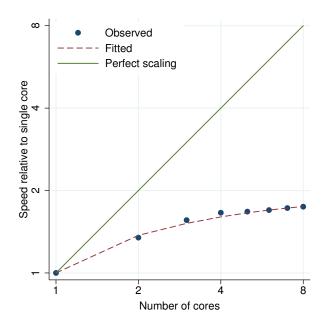


Figure 493. xtdpd performance plot.

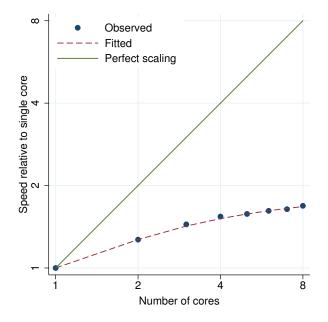


Figure 494. xtdpdsys performance plot.

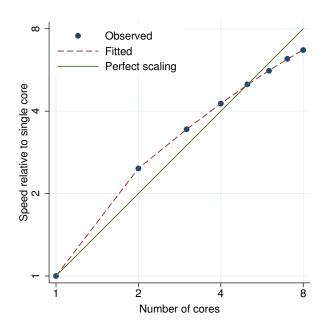


Figure 495. xtfrontier performance plot.

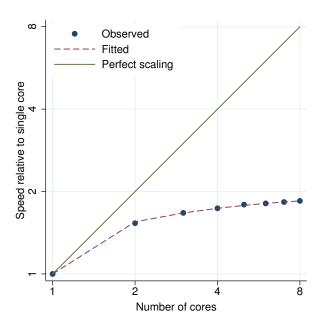


Figure 496. xtgee, family(gaussian) corr(ar2) performance plot.

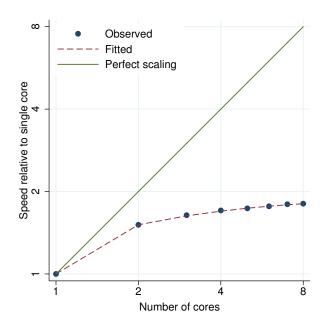


Figure 497. xtgee, fam(gauss) corr(unstruct) performance plot.

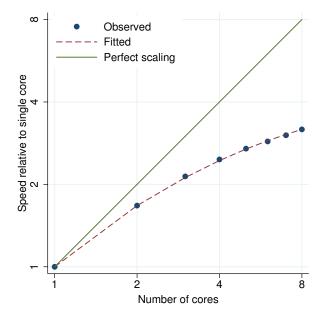


Figure 498. xtcloglog, pa performance plot.

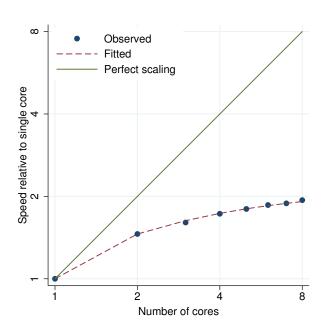
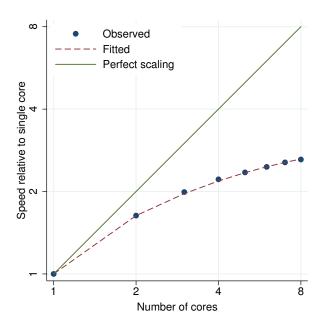


Figure 499. xtlogit, pa performance plot.



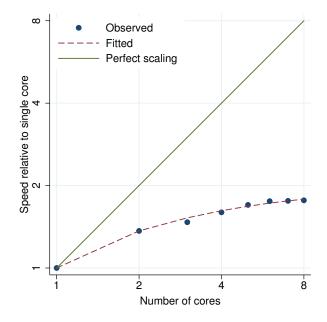
Observed
----- Fitted
Perfect scaling

Possible 2

Number of cores

Figure 500. xtnbreg, pa performance plot.

Figure 501. xtpoisson, pa performance plot.



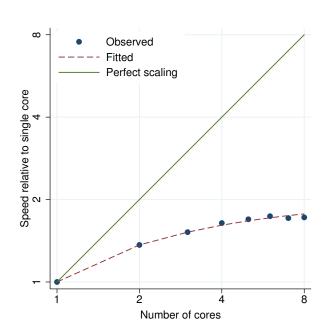
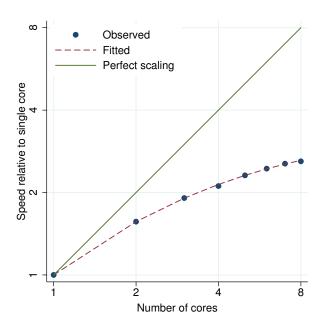


Figure 502. xtprobit, pa performance plot.

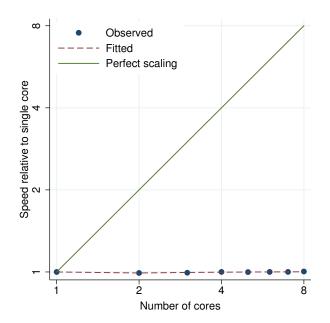
Figure 503. xtreg, pa performance plot.



ω Observed Fitted Perfect scaling Speed relative to single core 2 2 8 Number of cores

Figure 504. xtgls performance plot.

Figure 505. xthtaylor performance plot.



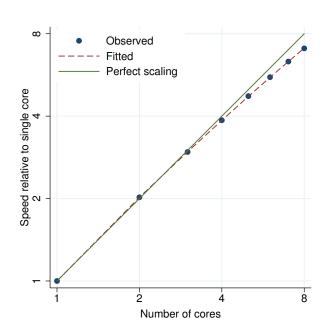
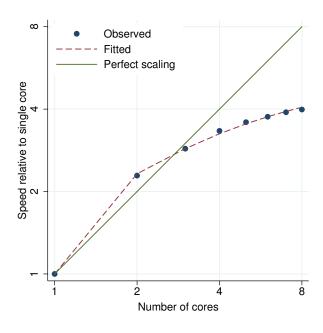


Figure 506. xtile performance plot.

Figure 507. xtintreg performance plot.

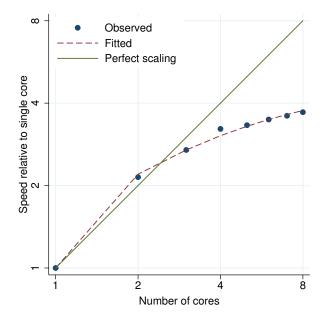


Observed
----- Fitted
Perfect scaling

A Number of cores

Figure 508. xtivreg, be performance plot.

Figure 509. xtivreg, fd performance plot.



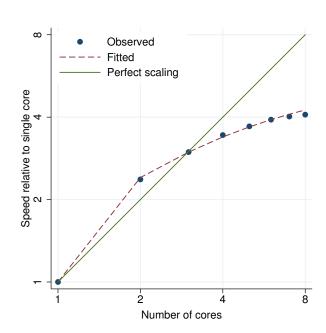


Figure 510. xtivreg, fe performance plot.

Figure 511. xtivreg, re performance plot.

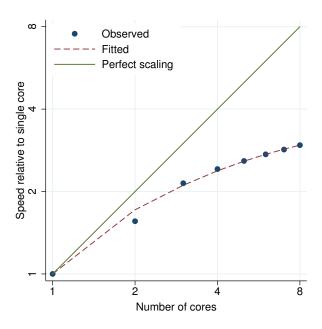


Figure 512. xtlogit, fe performance plot.

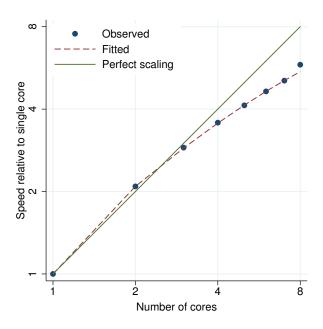


Figure 513. xtlogit, re performance plot.

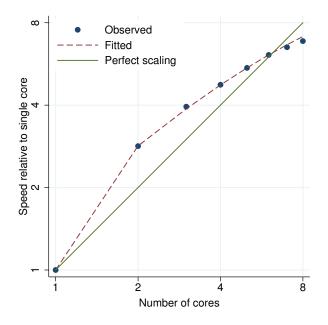


Figure 514. xtnbreg, fe performance plot.

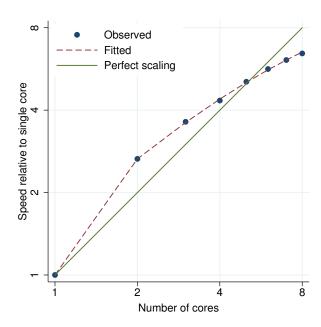


Figure 515. xtnbreg, re performance plot.

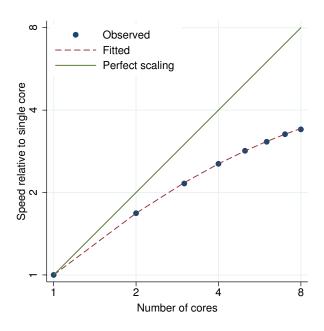


Figure 516. xtologit performance plot.

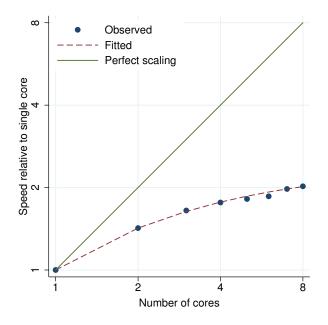


Figure 518. xtpcse performance plot.

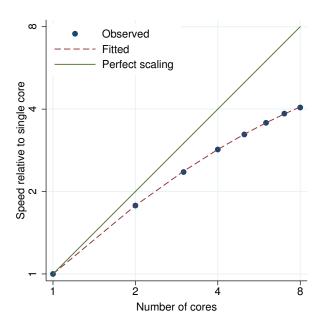


Figure 517. xtoprobit performance plot.

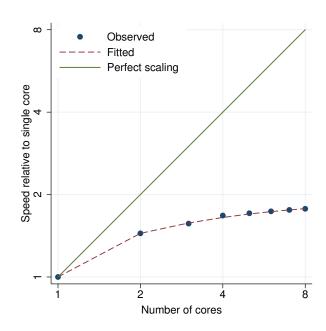


Figure 519. xtpcse, corr(ar1) performance plot.

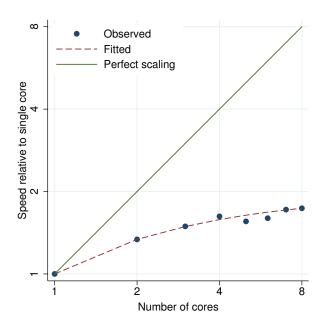


Figure 520. xtpcse, corr(psar1) performance plot.

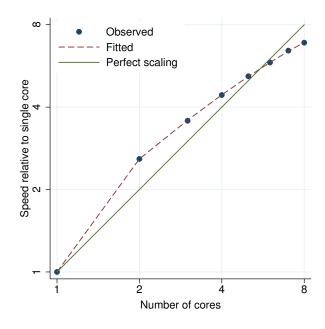


Figure 521. ${\tt xtpoisson},\ {\tt fe}\ {\tt performance}\ {\tt plot}.$

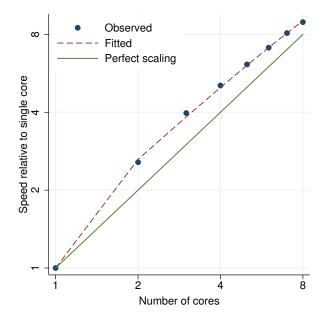


Figure 522. xtpoisson, re performance plot.

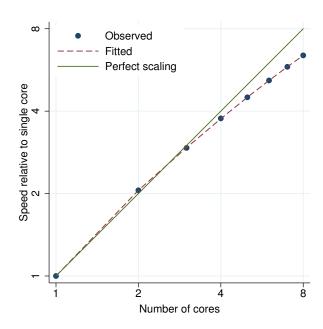


Figure 523. xtprobit, re performance plot.

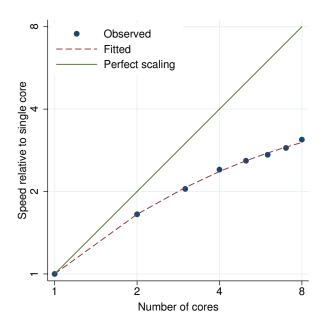


Figure 524. xtrc performance plot.

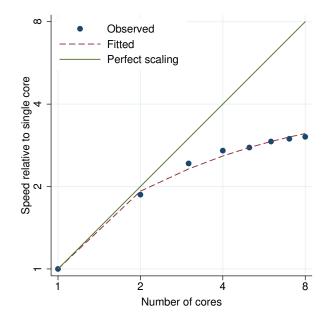


Figure 525. xtreg, be performance plot.

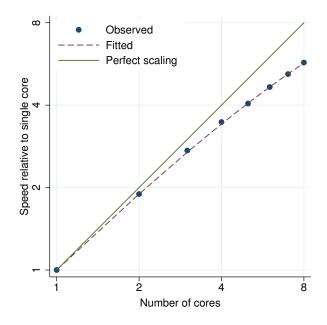


Figure 526. xtreg, fe performance plot.

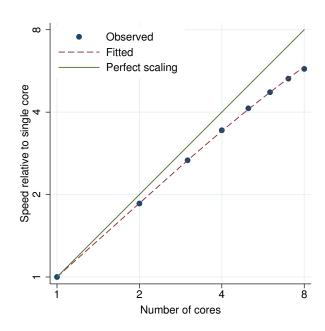


Figure 527. xtreg, fe vce(robust) performance plot.

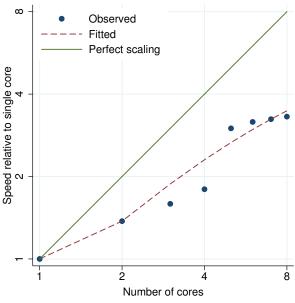


Figure 528. xtreg, mle performance plot.

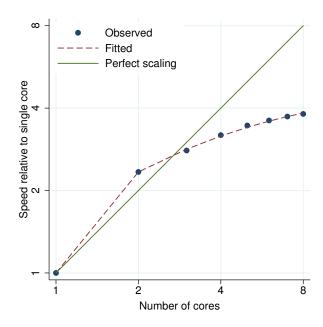


Figure 529. xtreg, re performance plot.

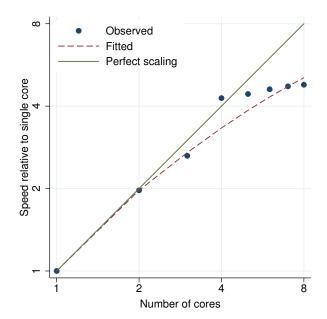


Figure 530. xtregar, fe performance plot.

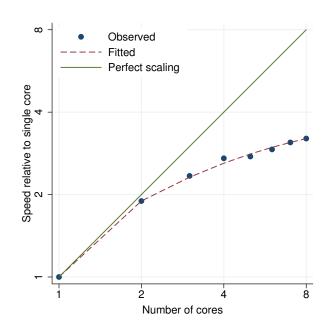


Figure 531. xtregar, re performance plot.

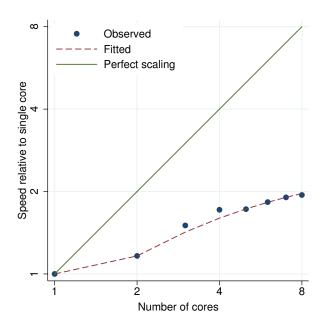


Figure 532. xtset performance plot.

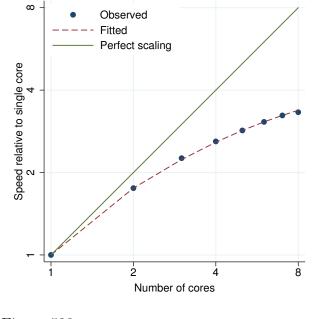


Figure 533. xtstreg, distribution(exponential) performance plot.

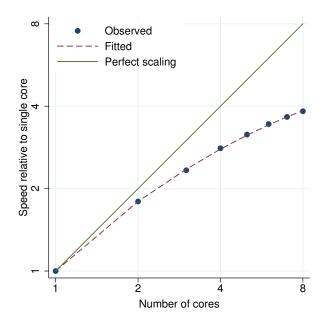


Figure 534. xtstreg, distribution(weibull) performance plot.

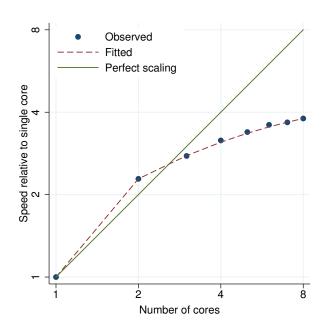


Figure 535. xtsum performance plot.

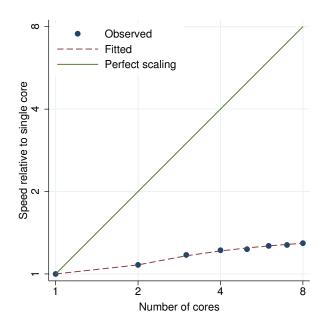


Figure 536. xttab performance plot.

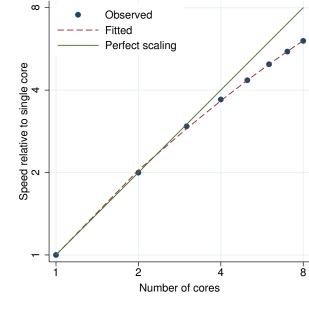


Figure 537. xttobit performance plot.

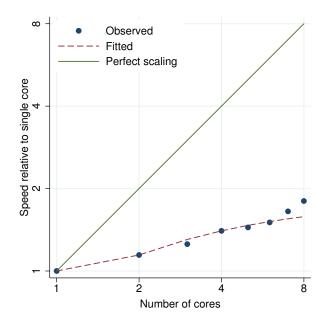


Figure 538. xtunitroot breitung performance plot.

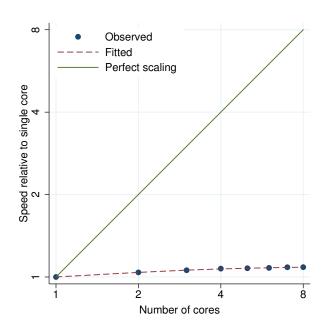


Figure 539. xtunitroot fisher performance plot.

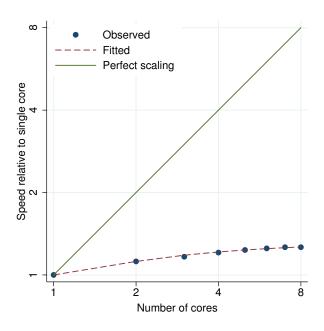


Figure 540. xtunitroot hadri performance plot.

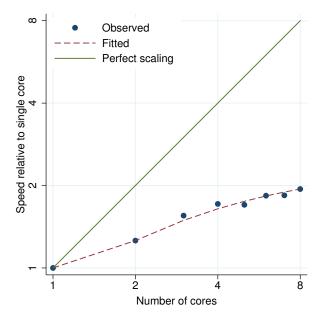


Figure 541. xtunitroot ht performance plot.

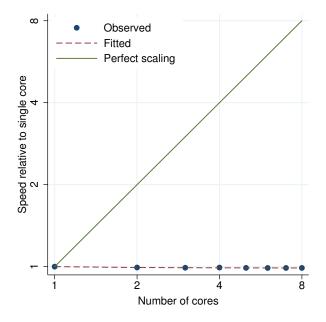


Figure 542. xtunitroot ips performance plot.

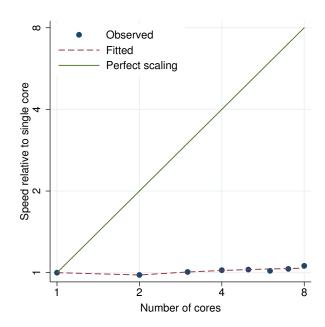


Figure 543. xtunitroot 11c performance plot.

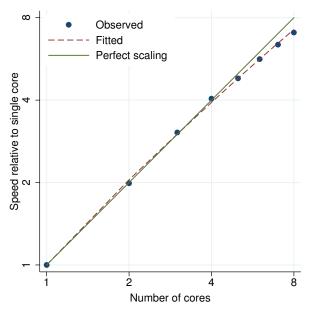


Figure 544. zinb performance plot.

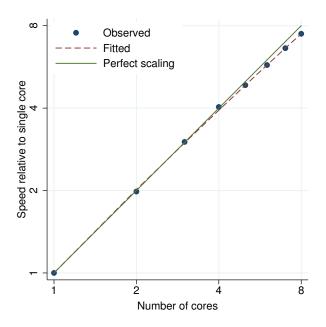


Figure 545. zip performance plot.

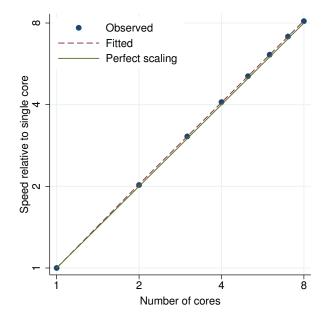


Figure 546. _predict, xb performance plot.

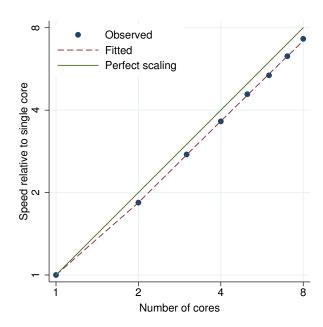


Figure 547. _rmcoll performance plot.

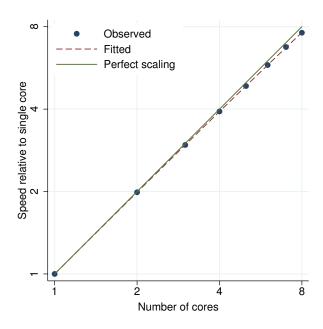


Figure 548. _robust performance plot.

B Performance assessment graphs for high-end servers

Performance graphs of all 529 commands running on high-end servers are presented below.

These graphs are similar to the graphs from appendix A except that here the speeds are evaluated up to 40 cores.

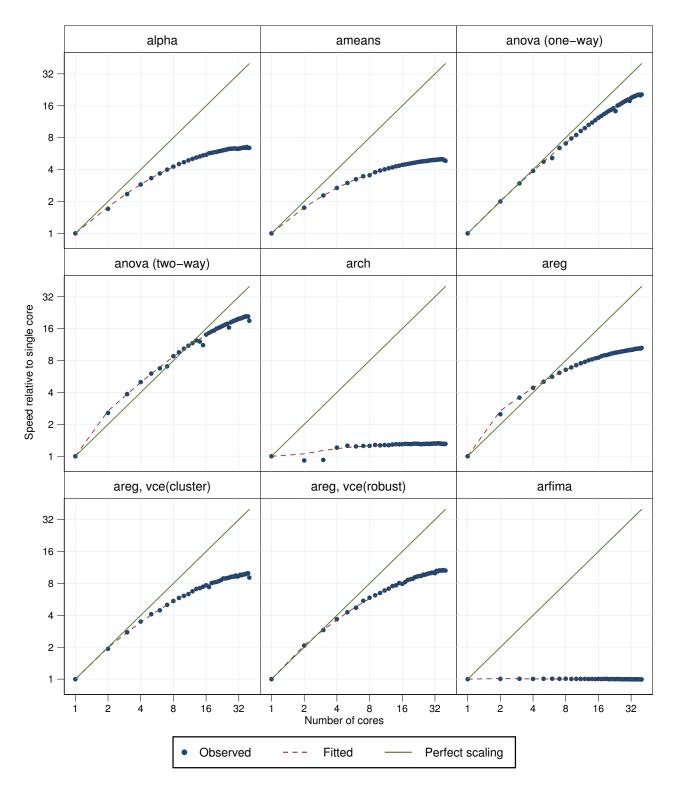


Figure 549. Parallelization performance plots.

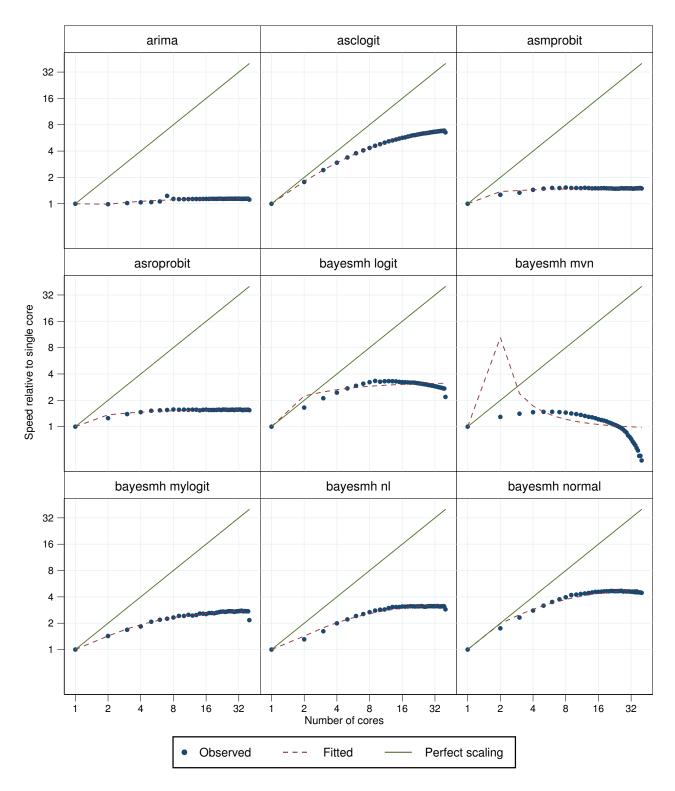


Figure 550. Parallelization performance plots.

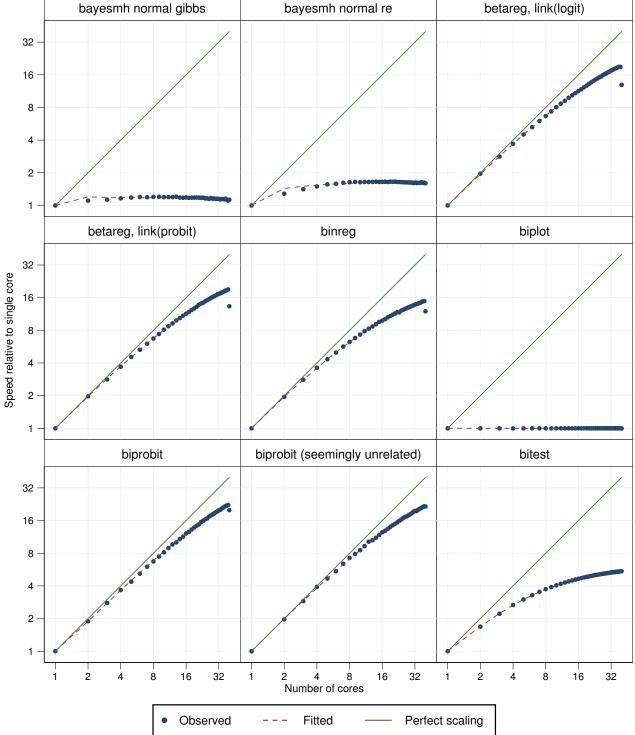


Figure 551. Parallelization performance plots.

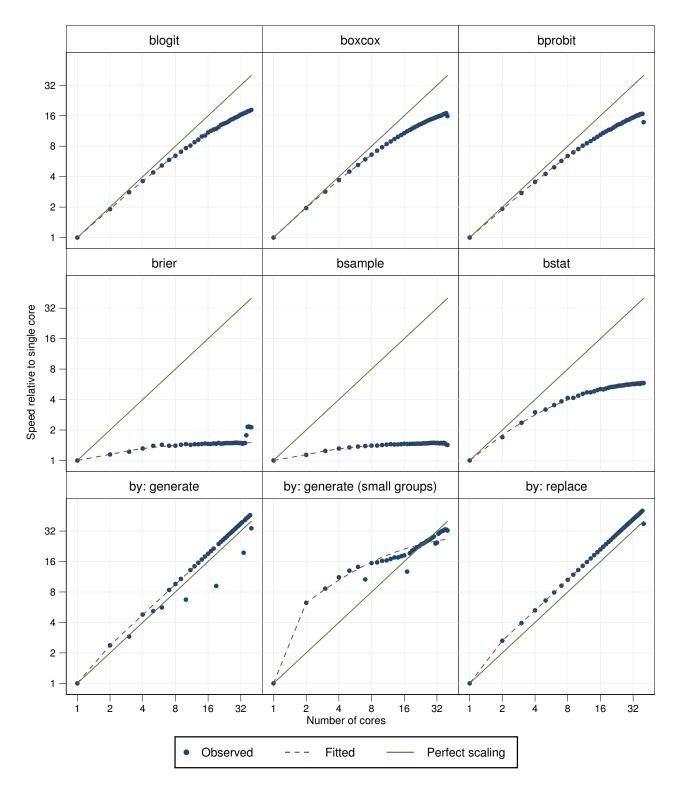


Figure 552. Parallelization performance plots.

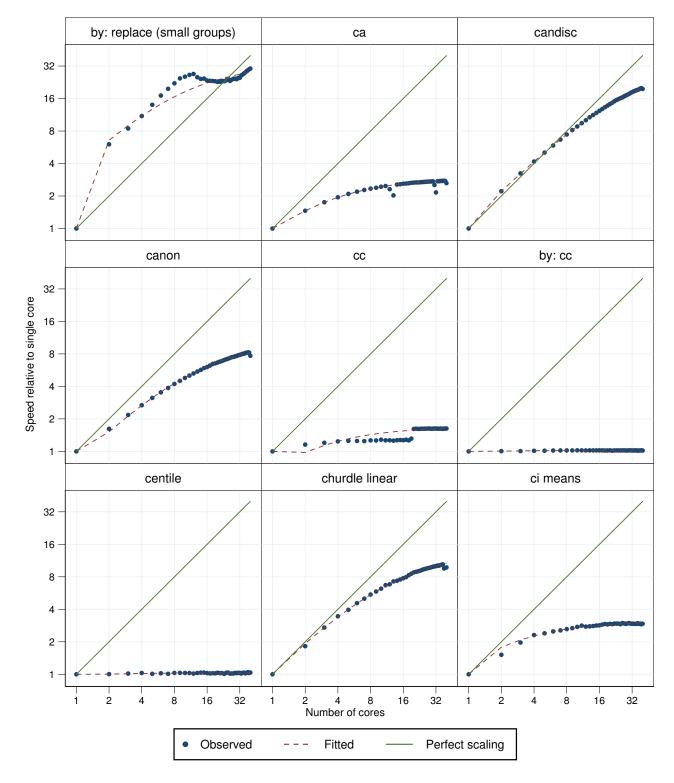


Figure 553. Parallelization performance plots.

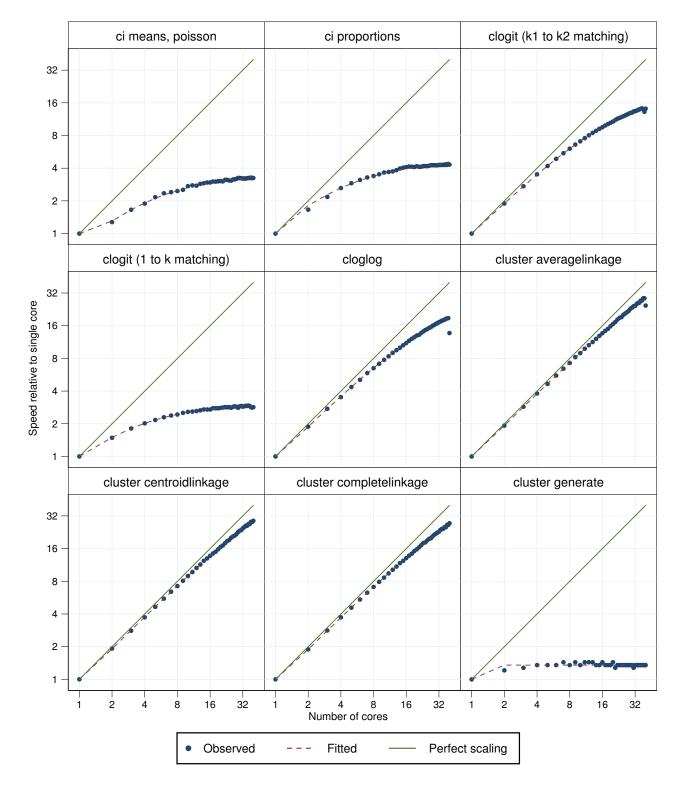


Figure 554. Parallelization performance plots.

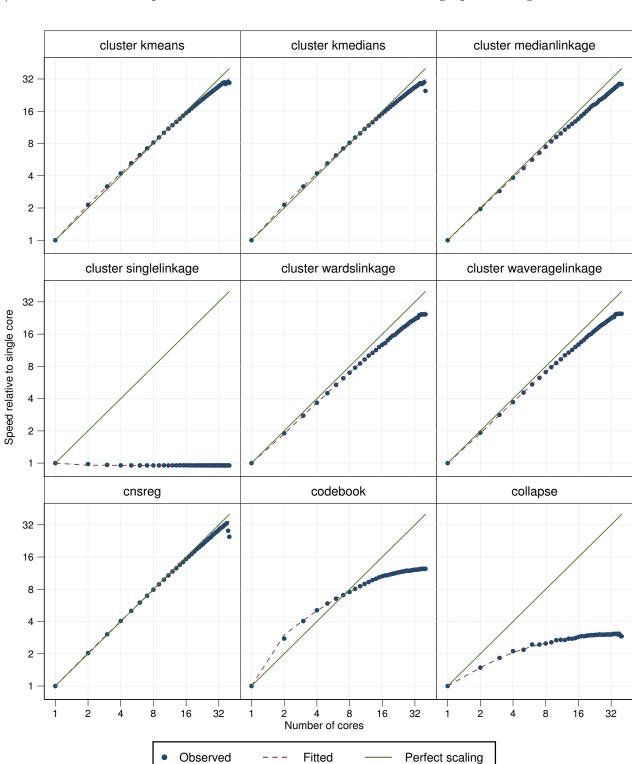


Figure 555. Parallelization performance plots.

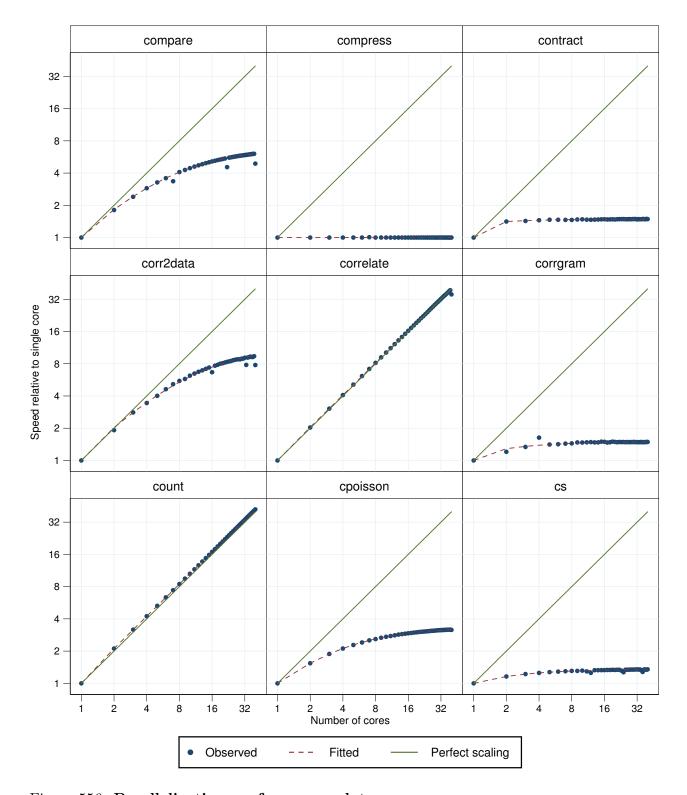


Figure 556. Parallelization performance plots.

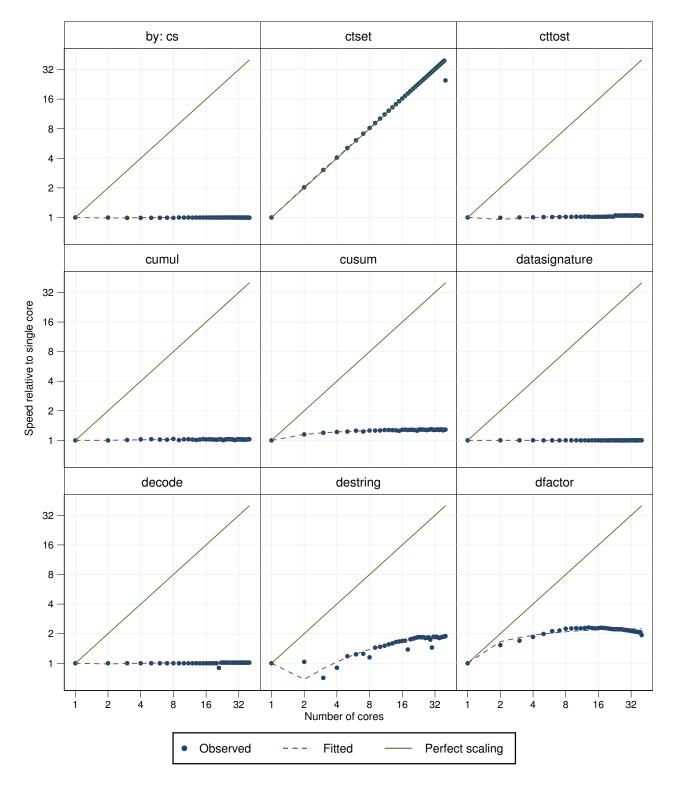


Figure 557. Parallelization performance plots.

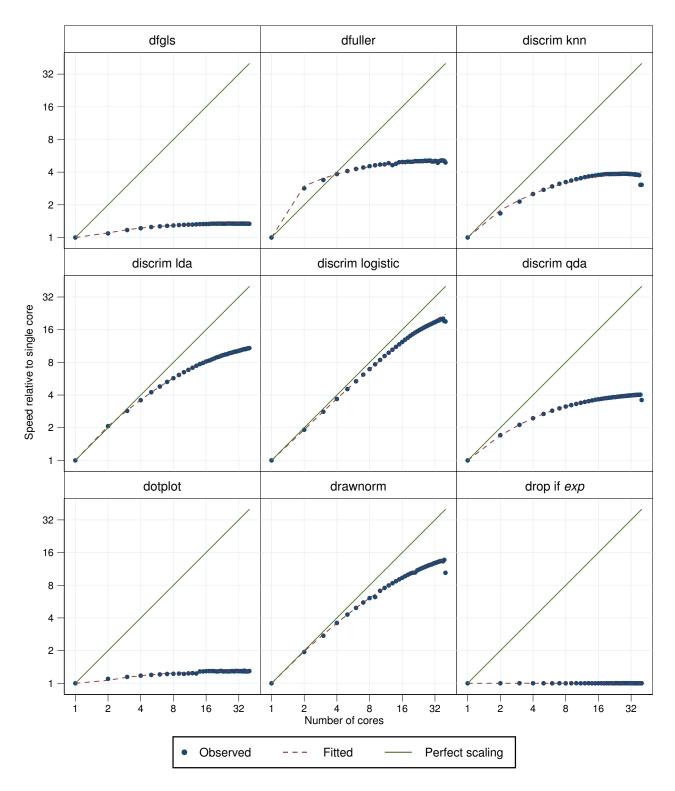


Figure 558. Parallelization performance plots.

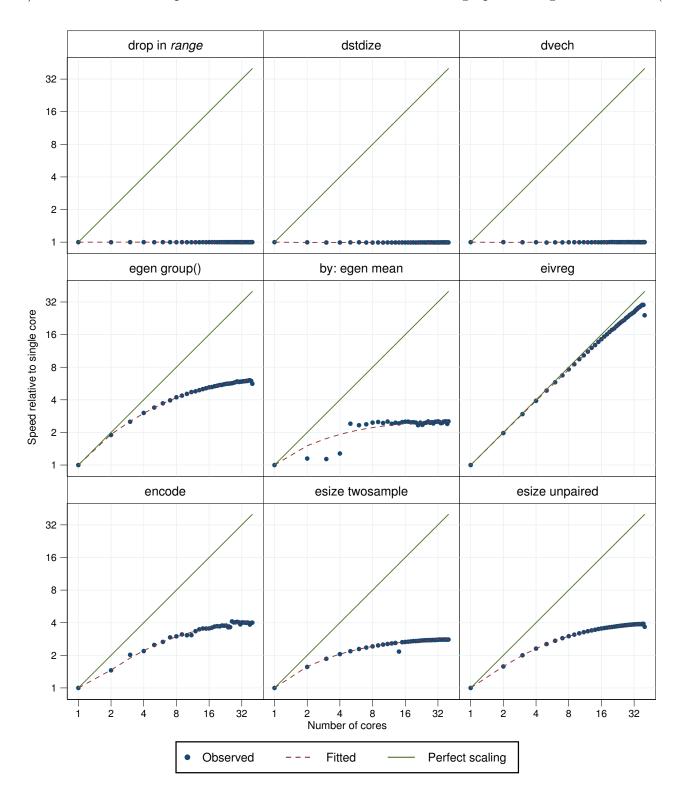


Figure 559. Parallelization performance plots.

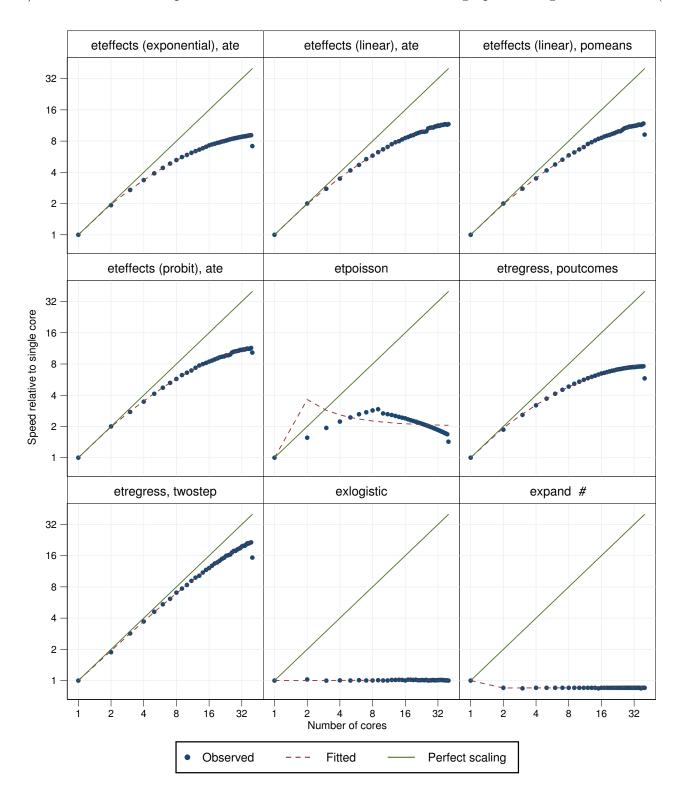


Figure 560. Parallelization performance plots.

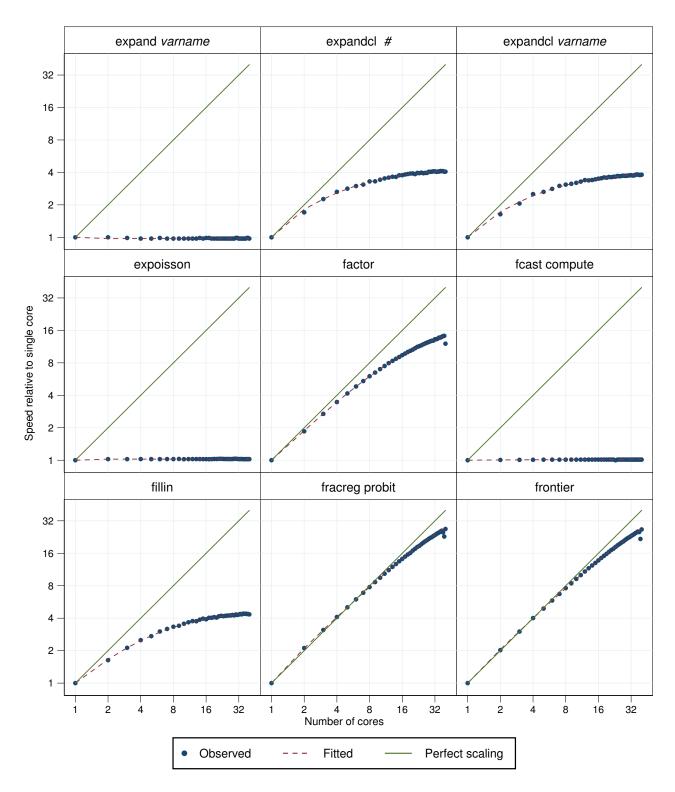


Figure 561. Parallelization performance plots.

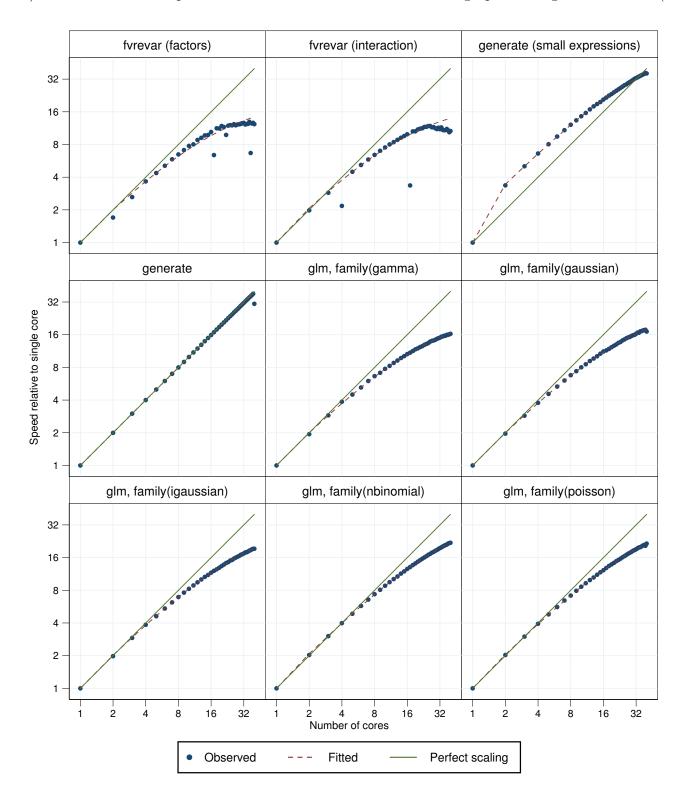


Figure 562. Parallelization performance plots.

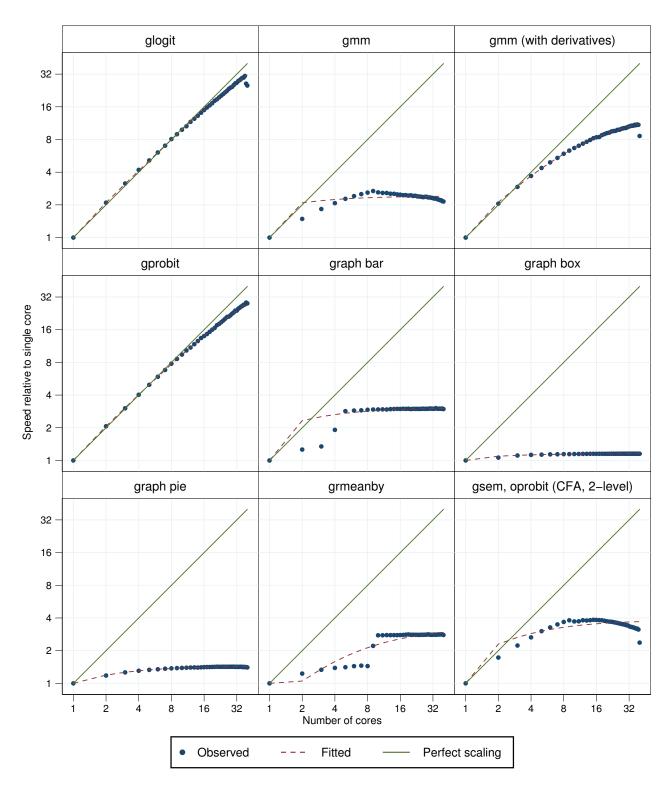


Figure 563. Parallelization performance plots.

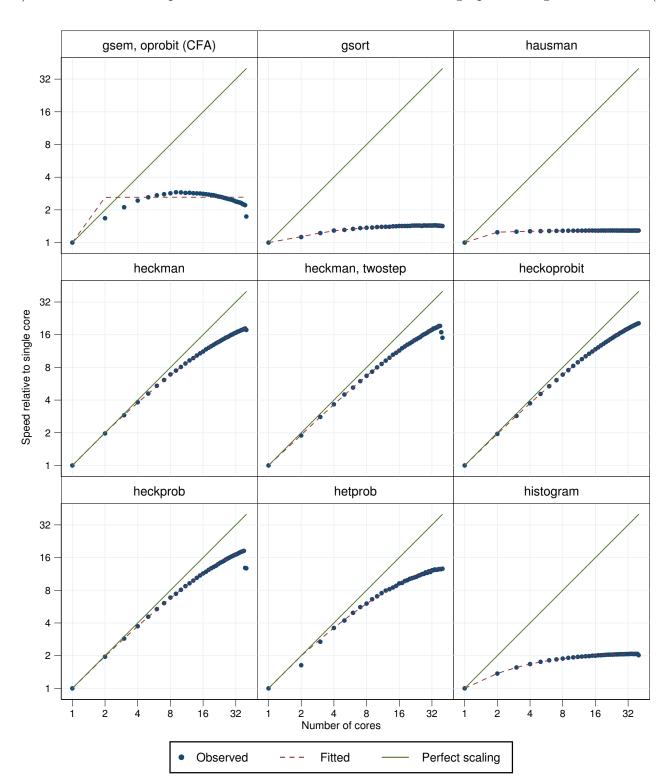
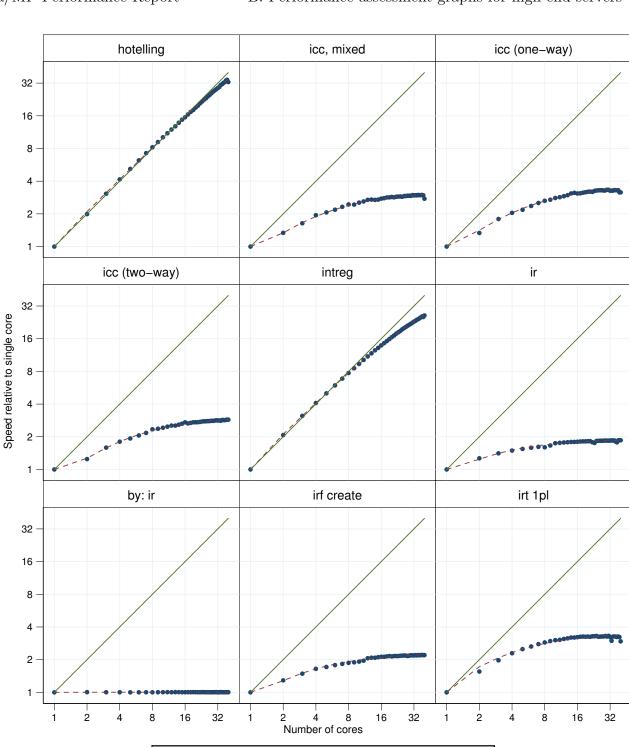


Figure 564. Parallelization performance plots.



Fitted

Perfect scaling

Figure 565. Parallelization performance plots.

Observed

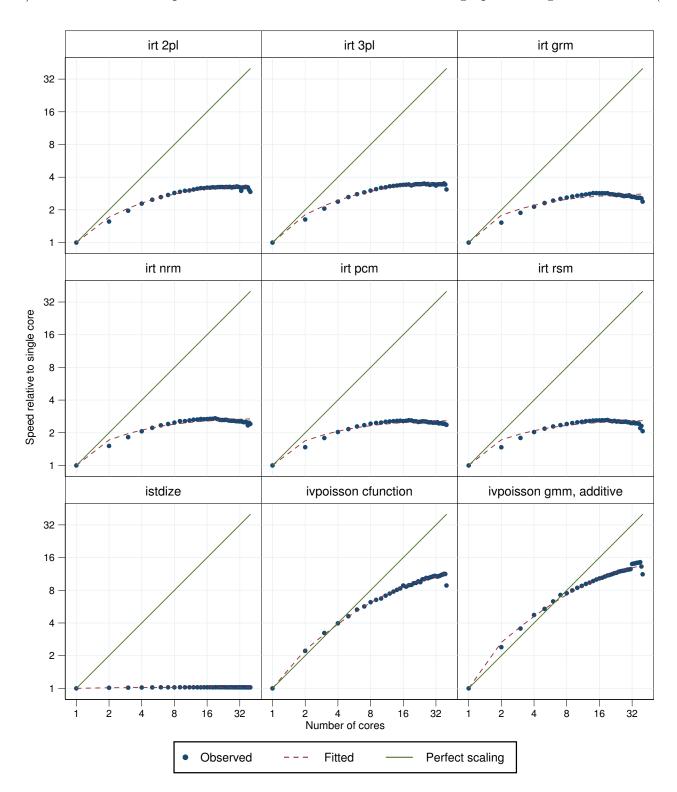


Figure 566. Parallelization performance plots.

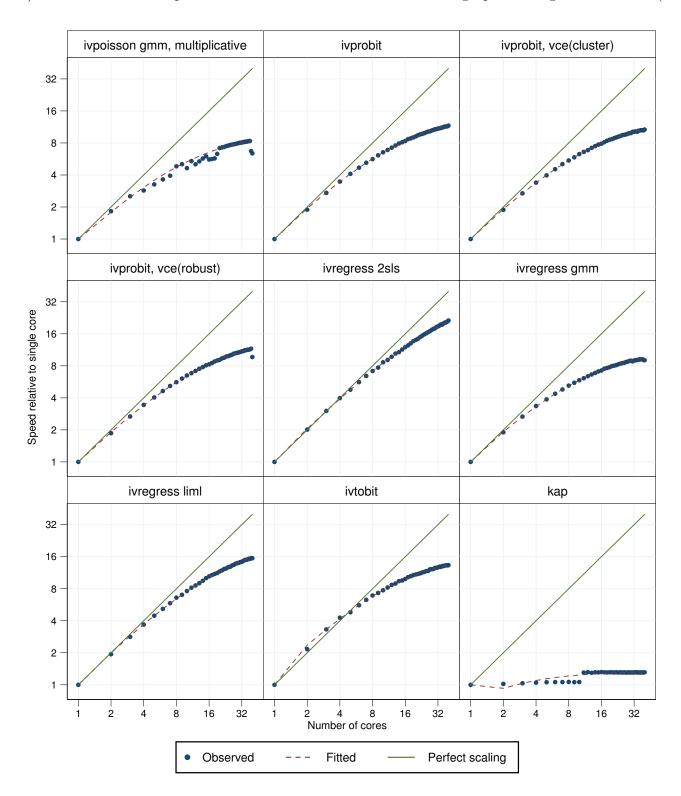


Figure 567. Parallelization performance plots.



Figure 568. Parallelization performance plots.

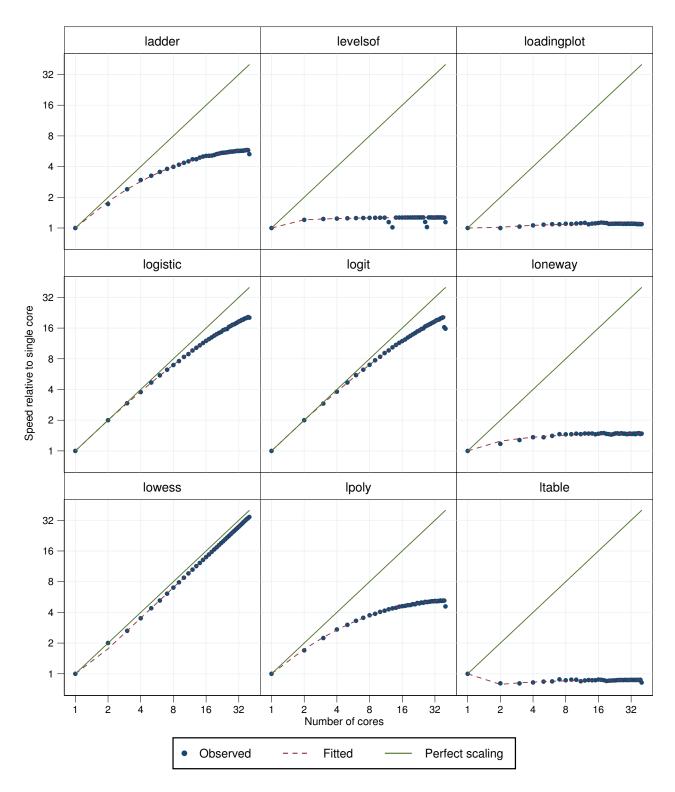


Figure 569. Parallelization performance plots.

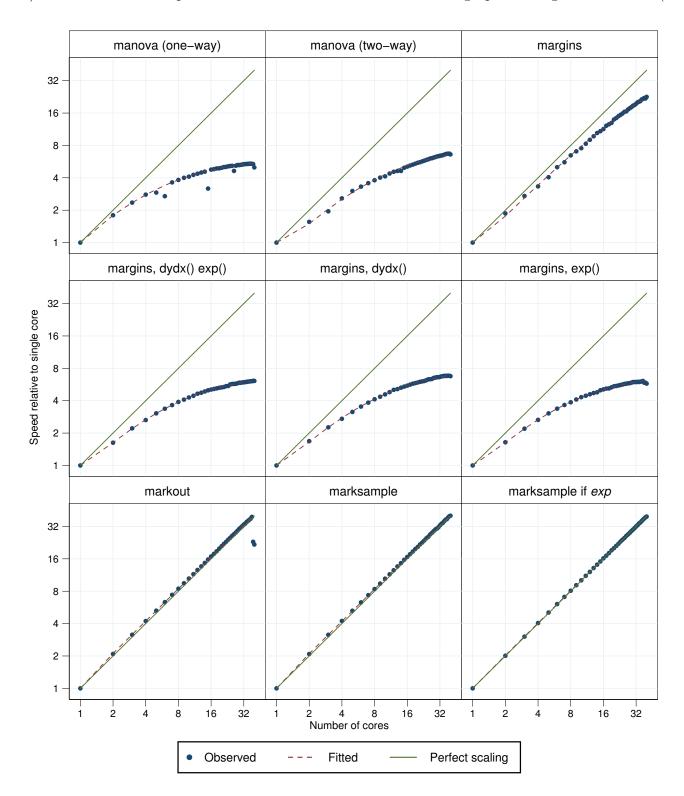


Figure 570. Parallelization performance plots.

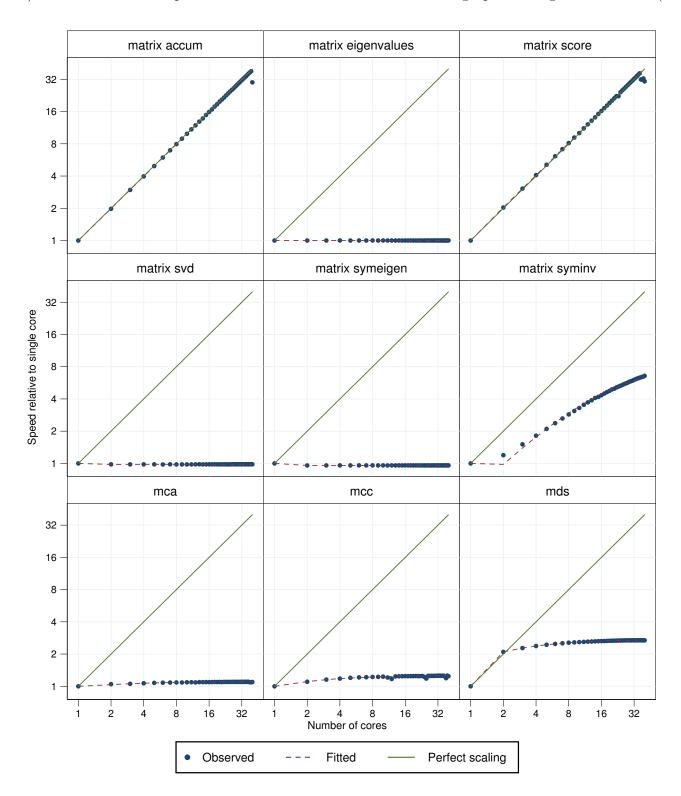


Figure 571. Parallelization performance plots.

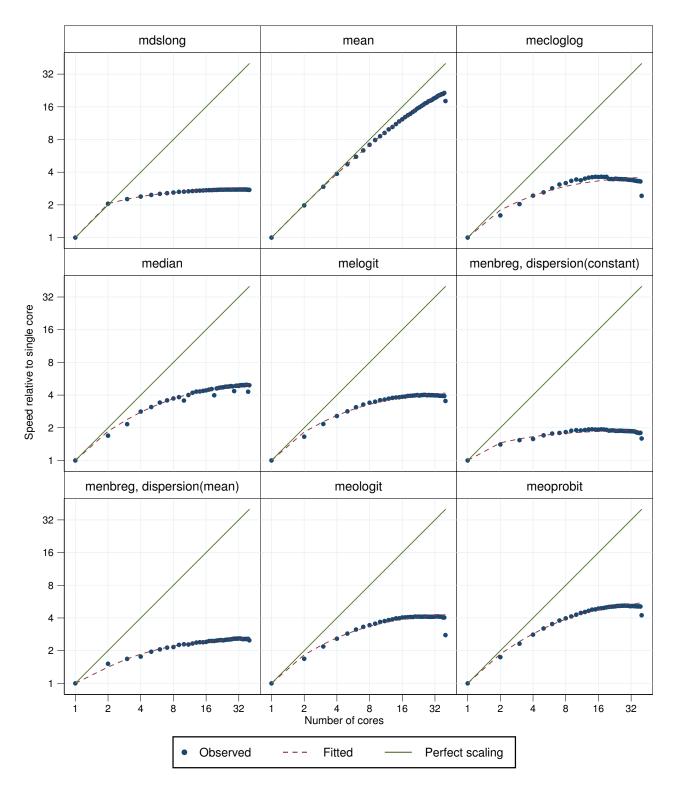


Figure 572. Parallelization performance plots.

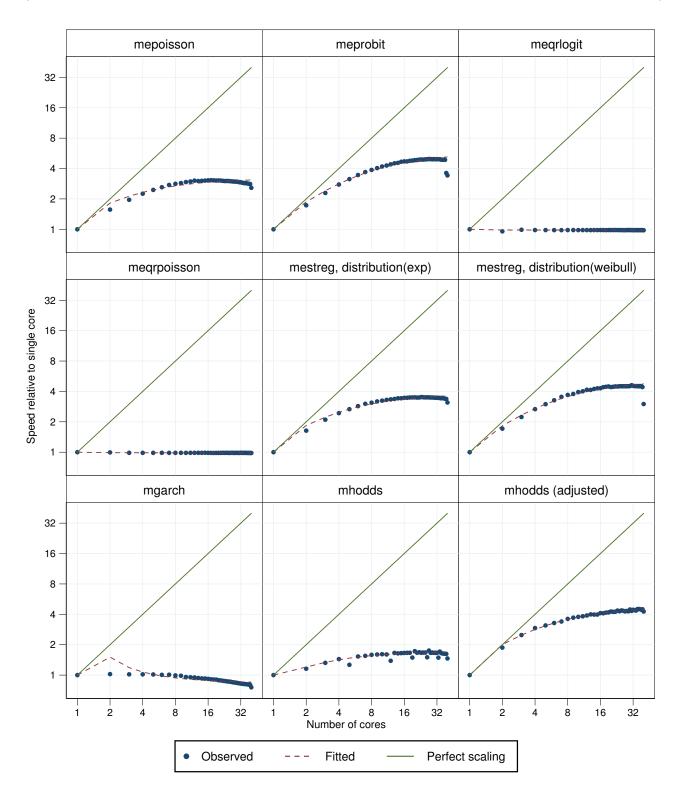


Figure 573. Parallelization performance plots.

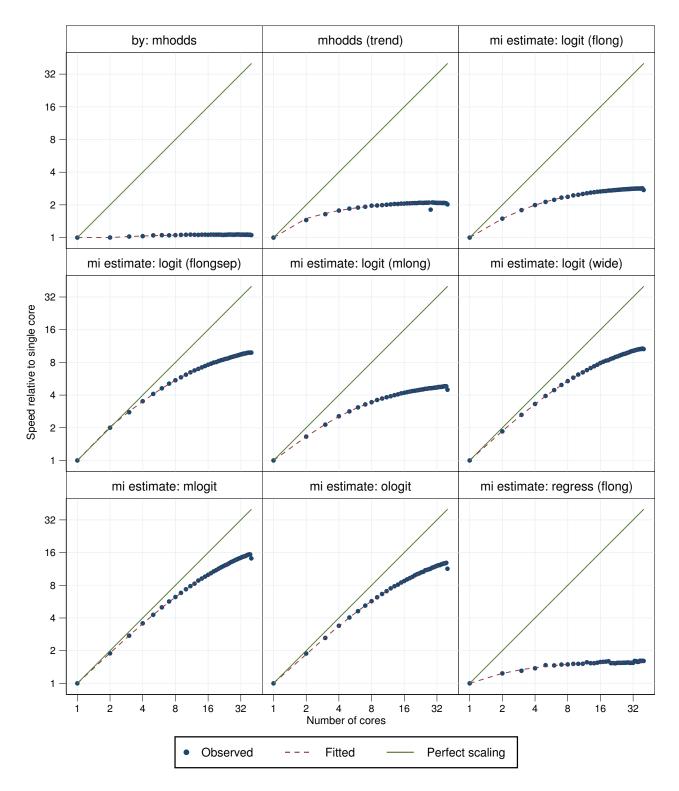


Figure 574. Parallelization performance plots.

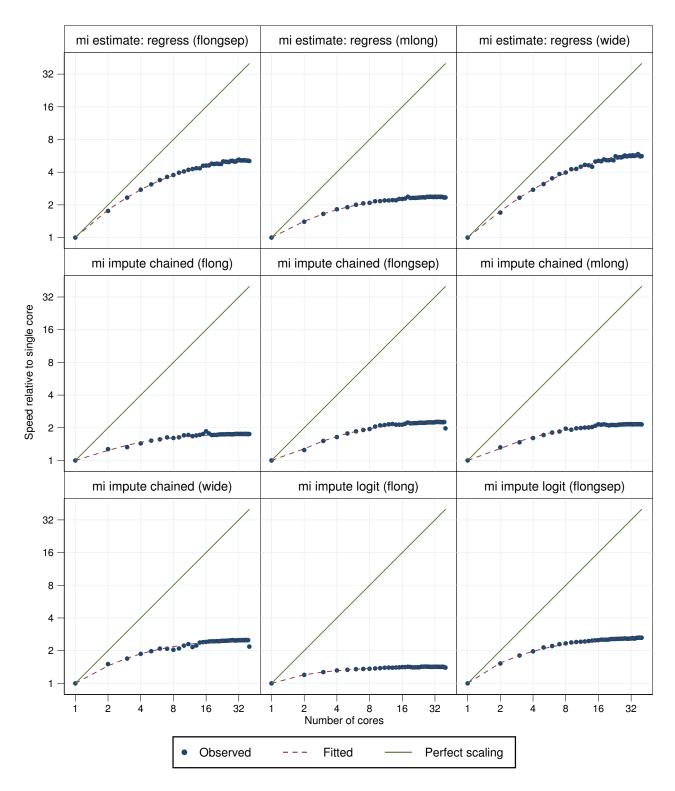


Figure 575. Parallelization performance plots.

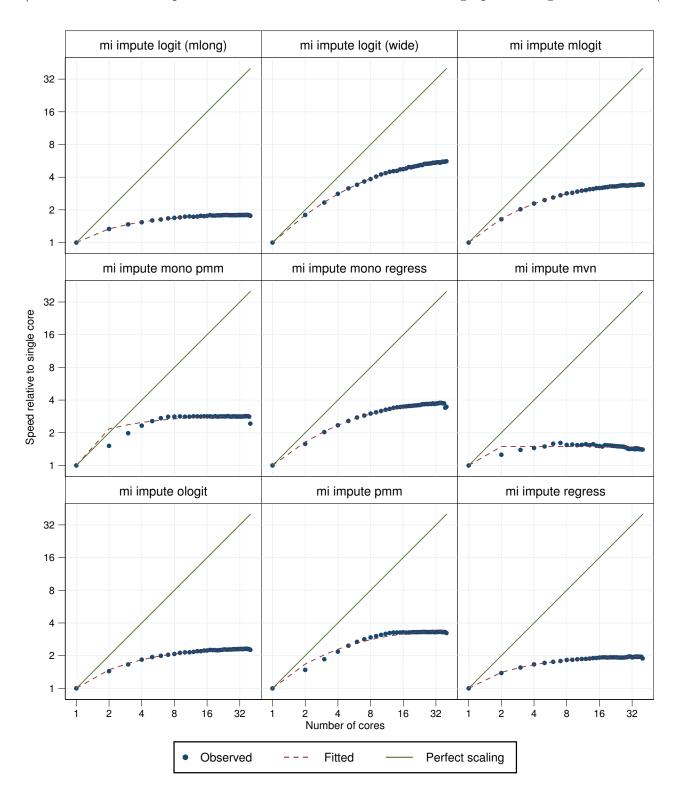


Figure 576. Parallelization performance plots.

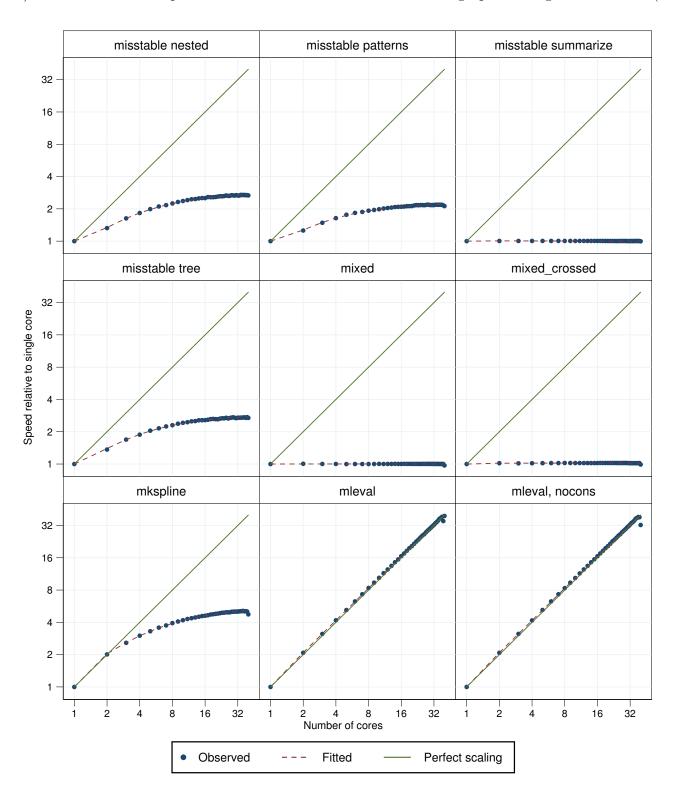


Figure 577. Parallelization performance plots.

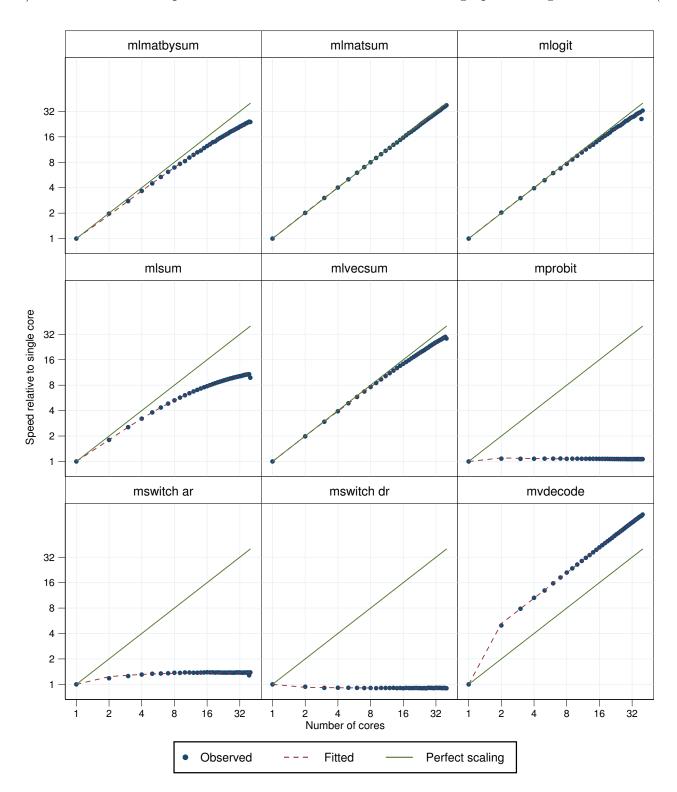


Figure 578. Parallelization performance plots.

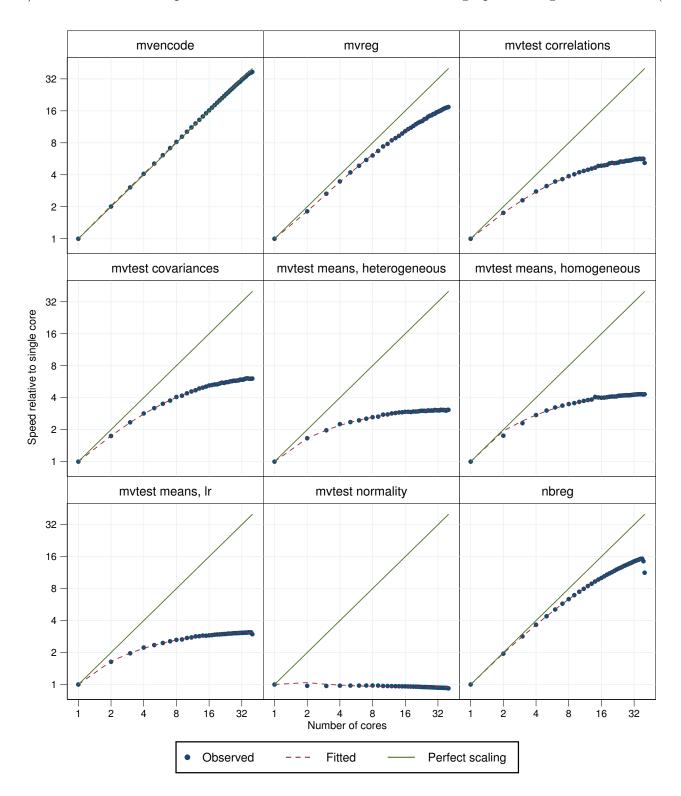


Figure 579. Parallelization performance plots.

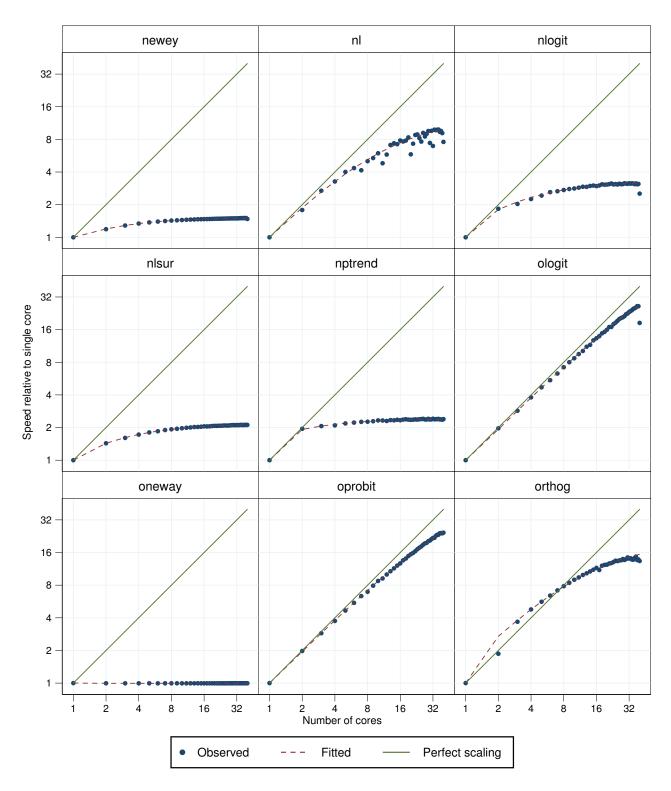


Figure 580. Parallelization performance plots.

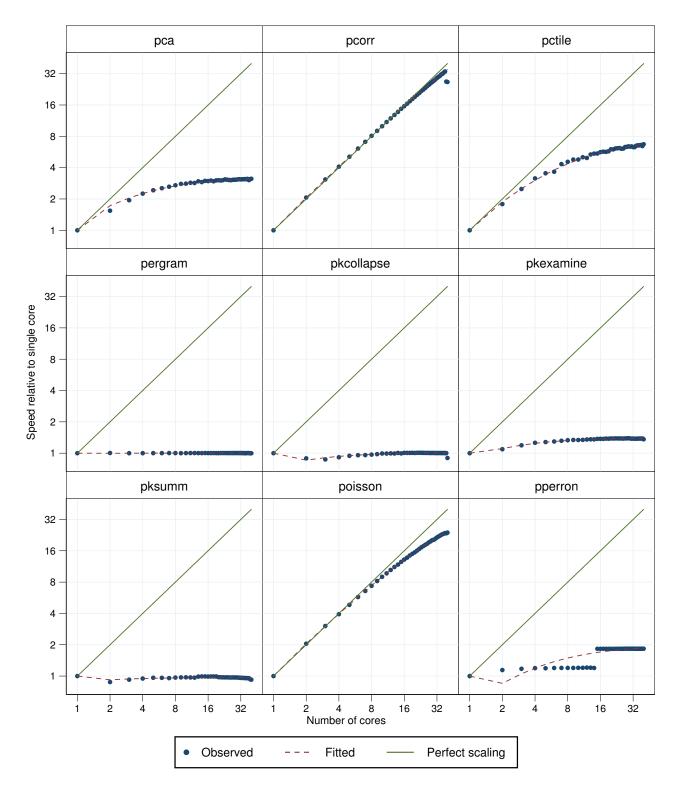


Figure 581. Parallelization performance plots.

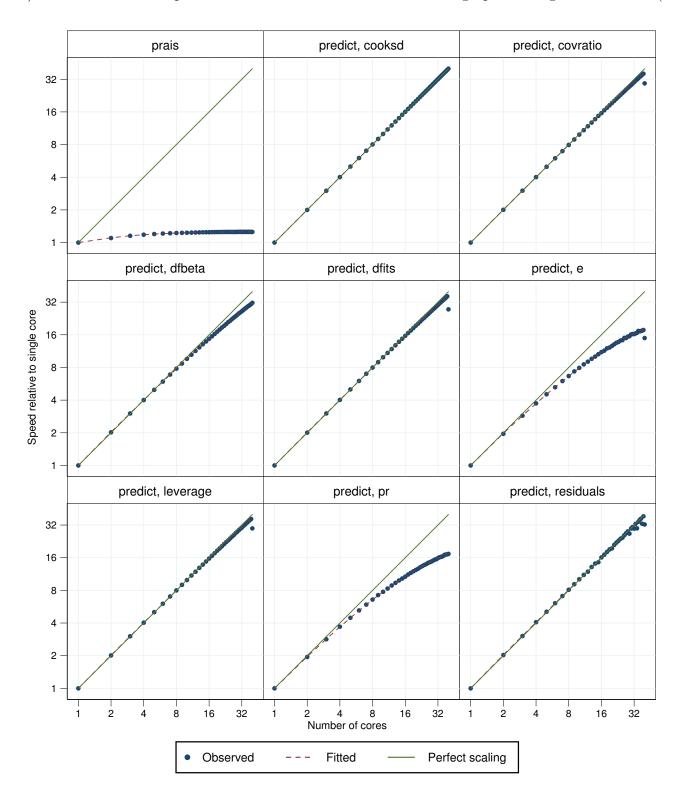


Figure 582. Parallelization performance plots.

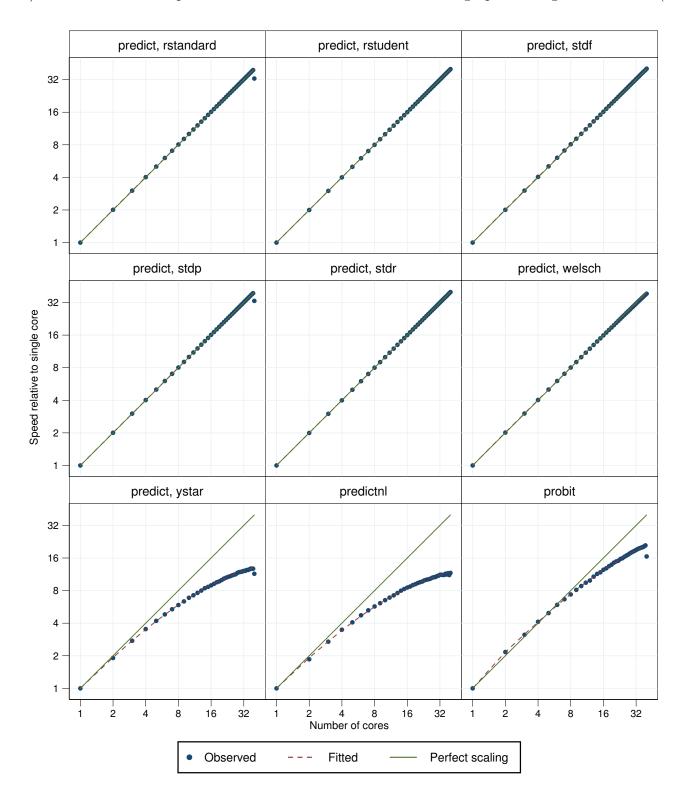


Figure 583. Parallelization performance plots.

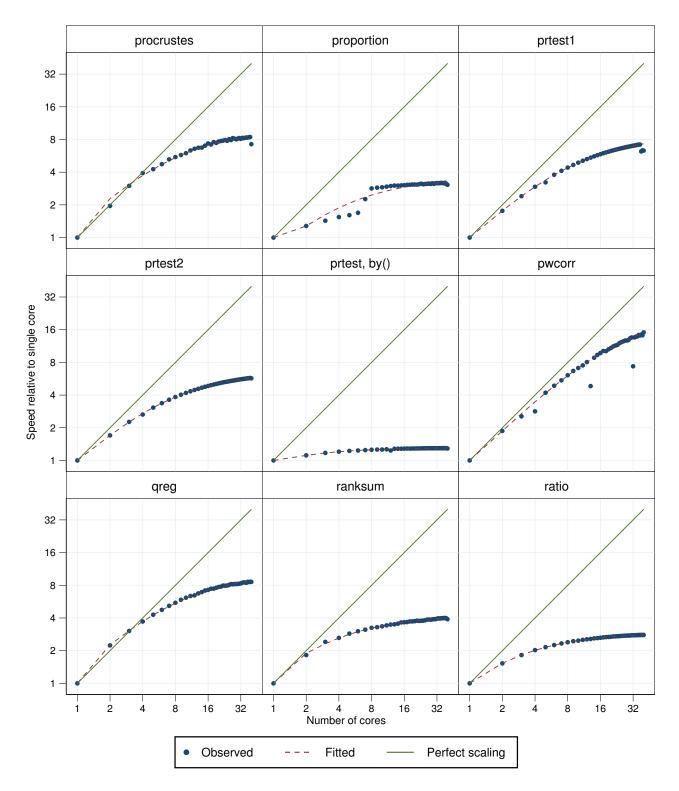


Figure 584. Parallelization performance plots.

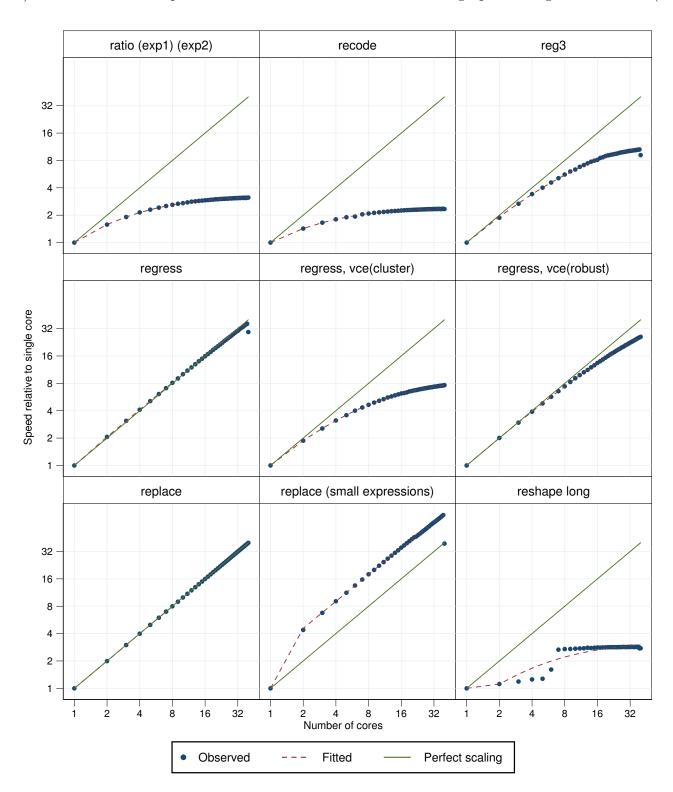


Figure 585. Parallelization performance plots.

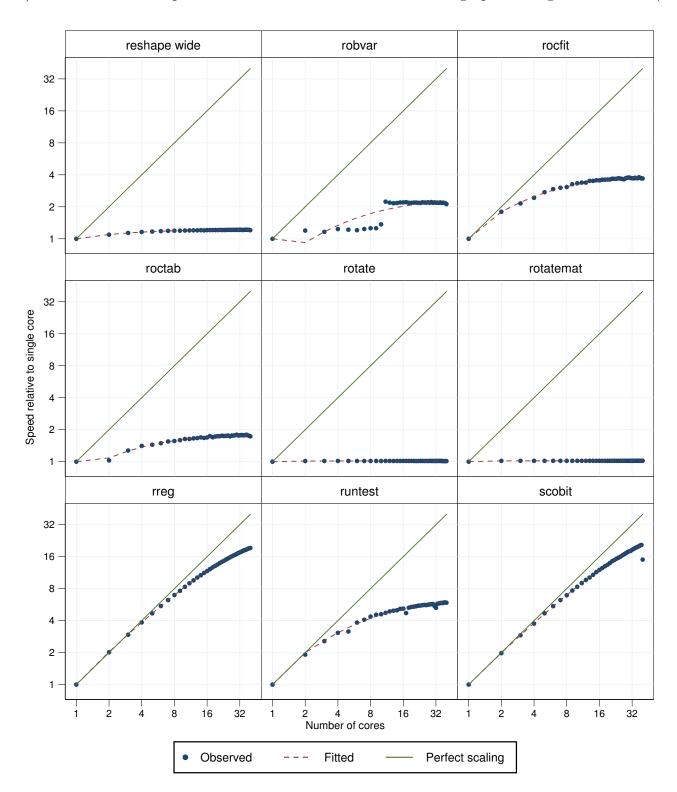


Figure 586. Parallelization performance plots.

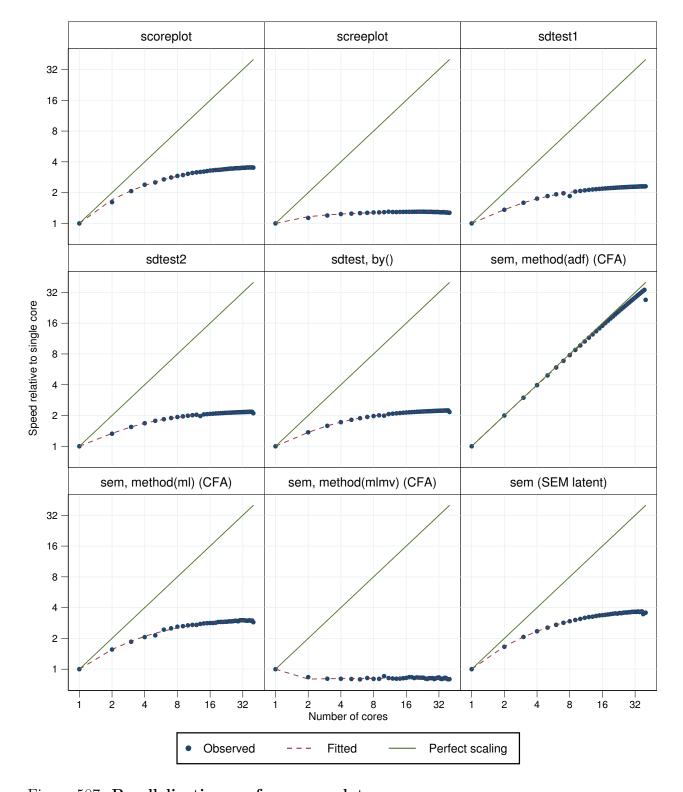


Figure 587. Parallelization performance plots.

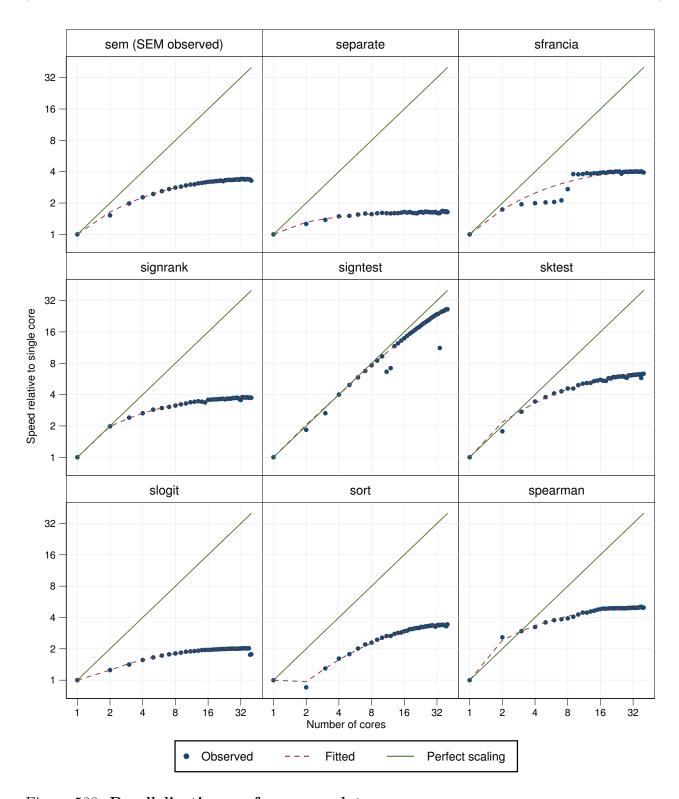


Figure 588. Parallelization performance plots.

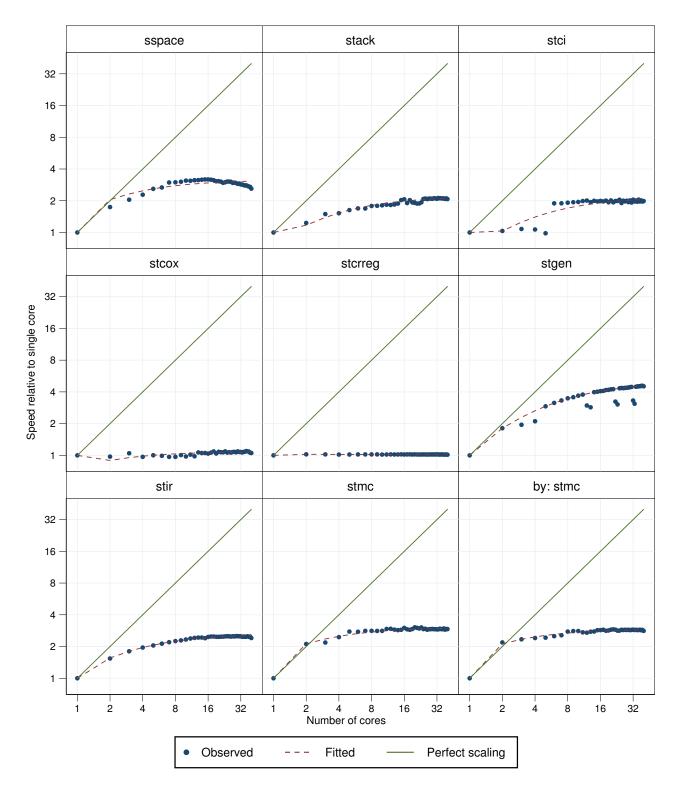


Figure 589. Parallelization performance plots.

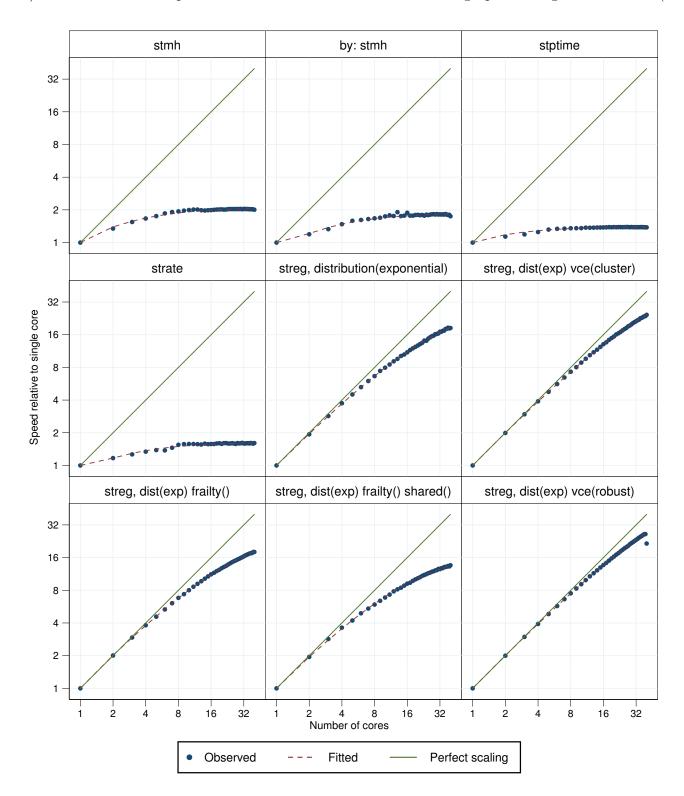
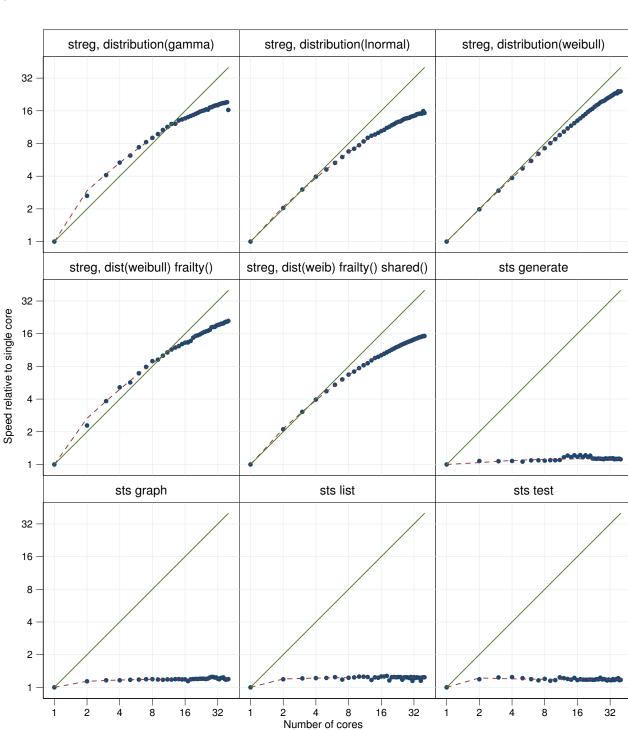


Figure 590. Parallelization performance plots.



Fitted

Perfect scaling

Figure 591. Parallelization performance plots.

Observed

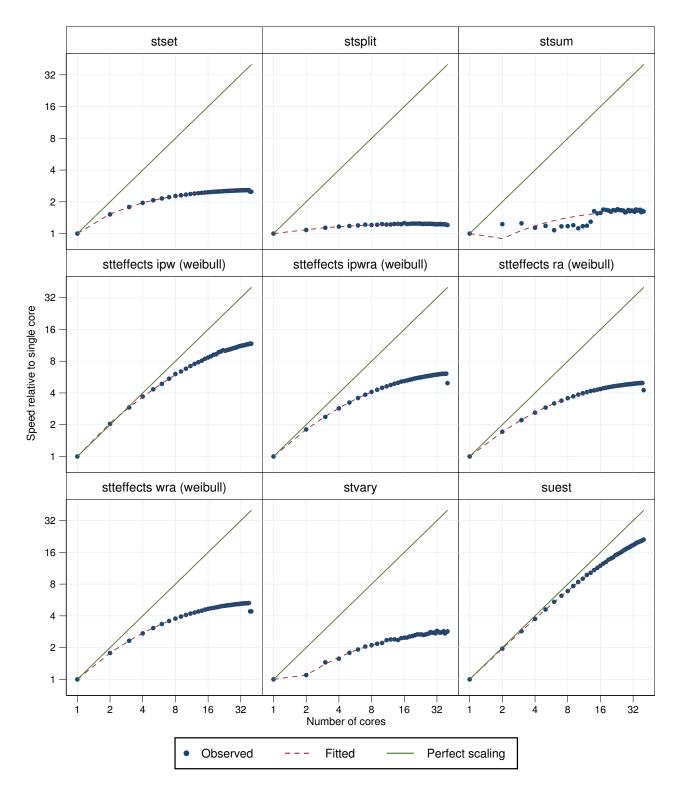


Figure 592. Parallelization performance plots.

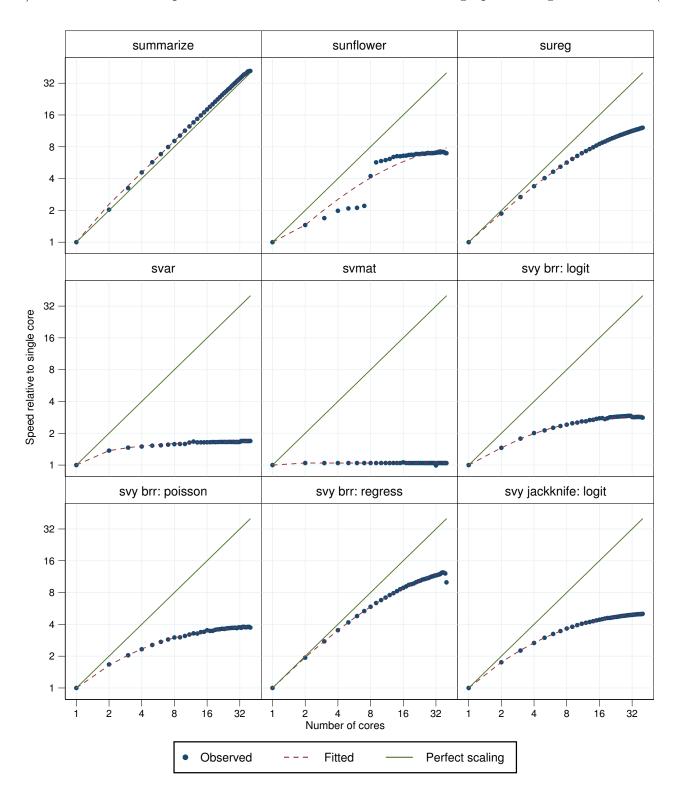


Figure 593. Parallelization performance plots.

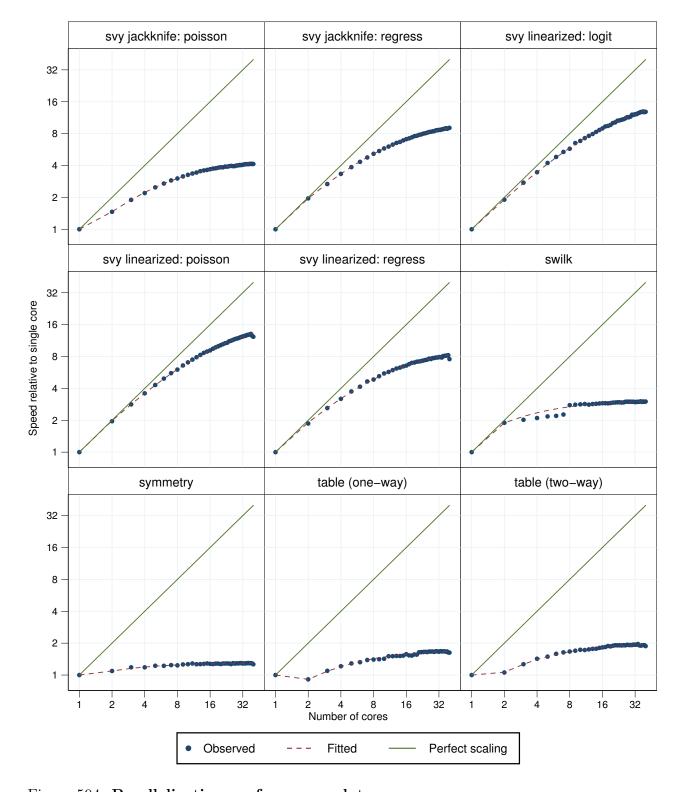


Figure 594. Parallelization performance plots.

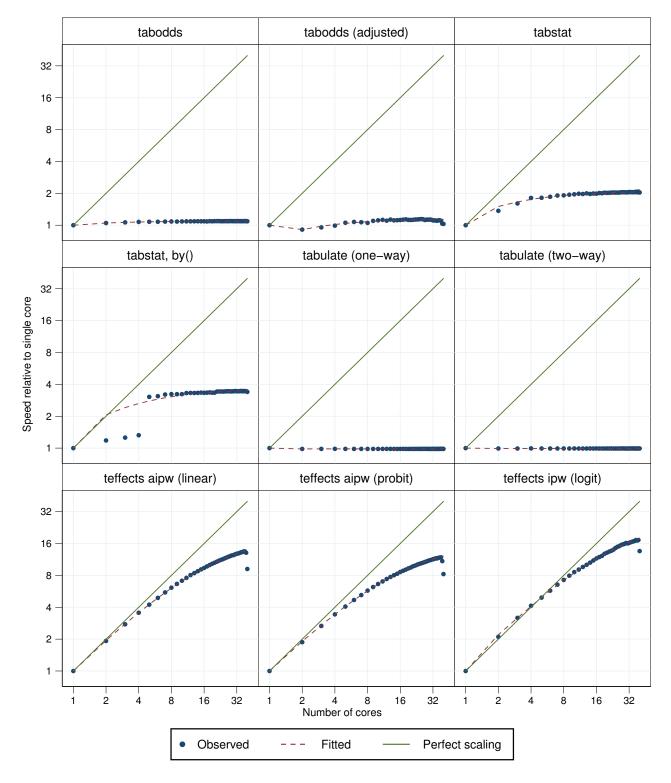


Figure 595. Parallelization performance plots.

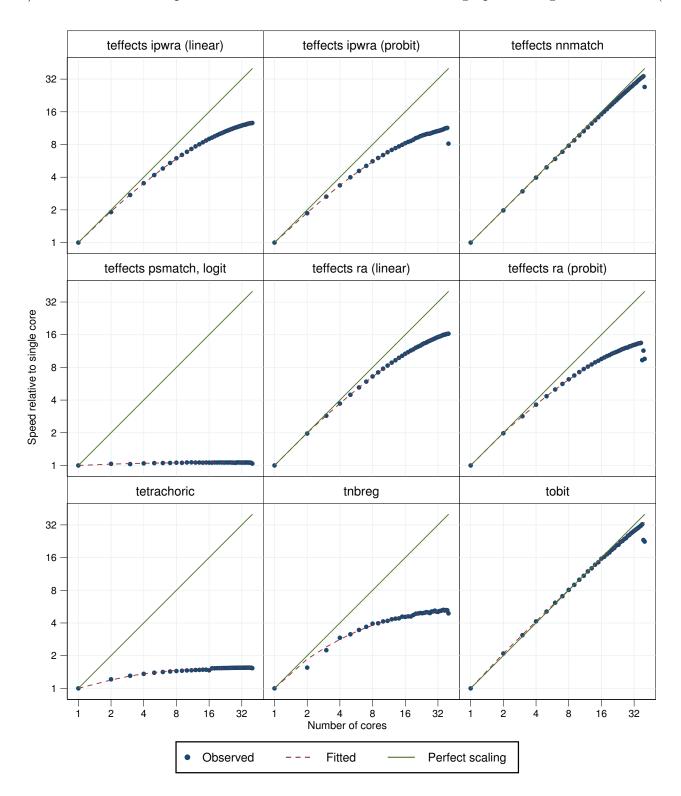


Figure 596. Parallelization performance plots.

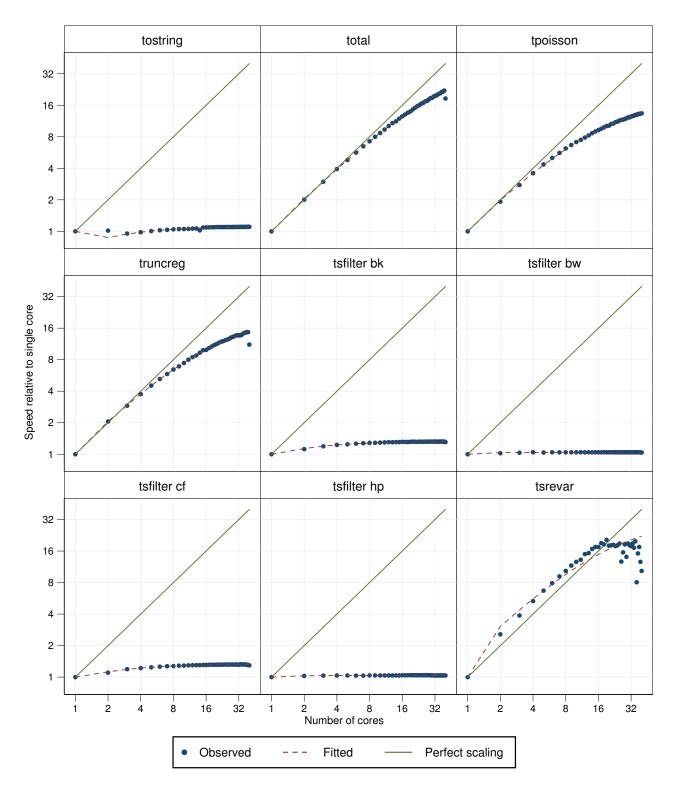


Figure 597. Parallelization performance plots.

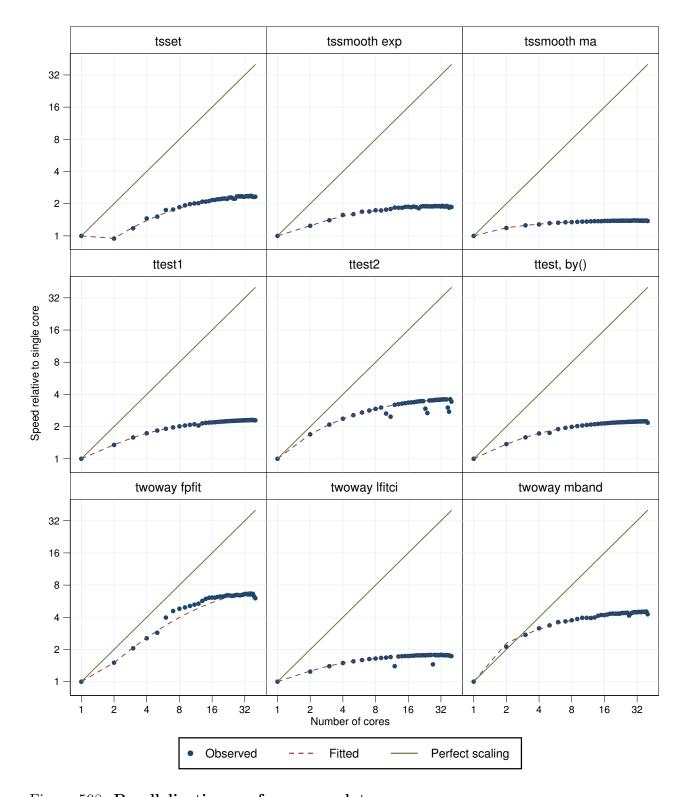


Figure 598. Parallelization performance plots.

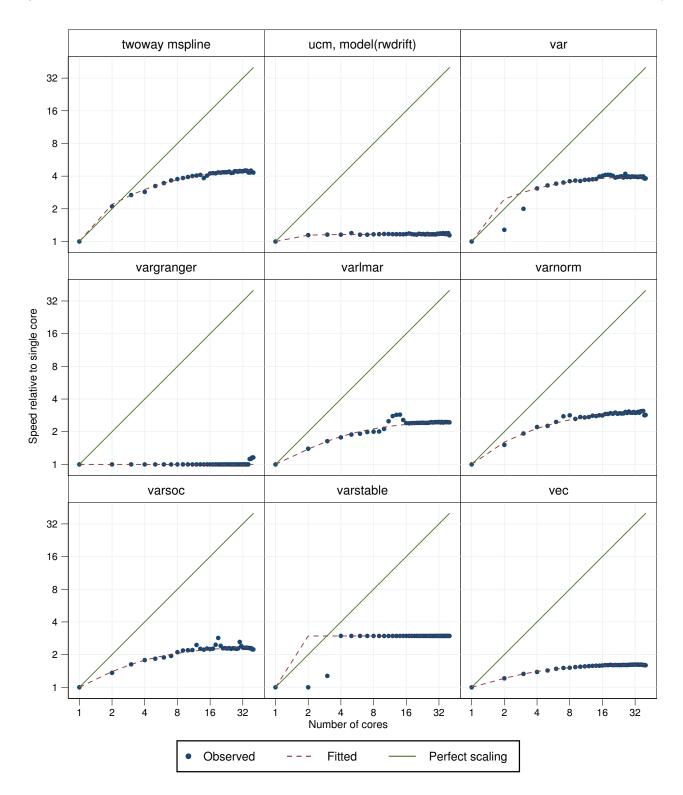


Figure 599. Parallelization performance plots.

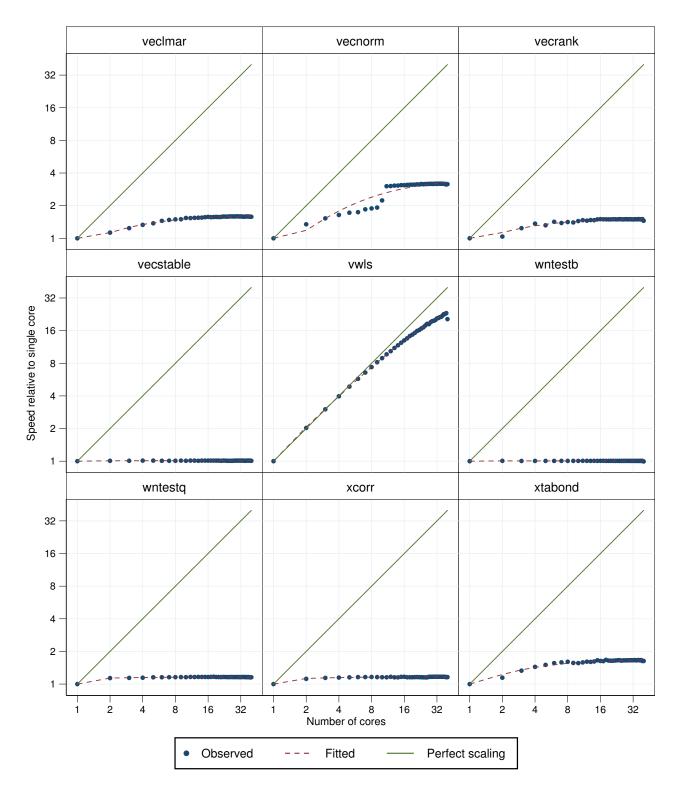


Figure 600. Parallelization performance plots.

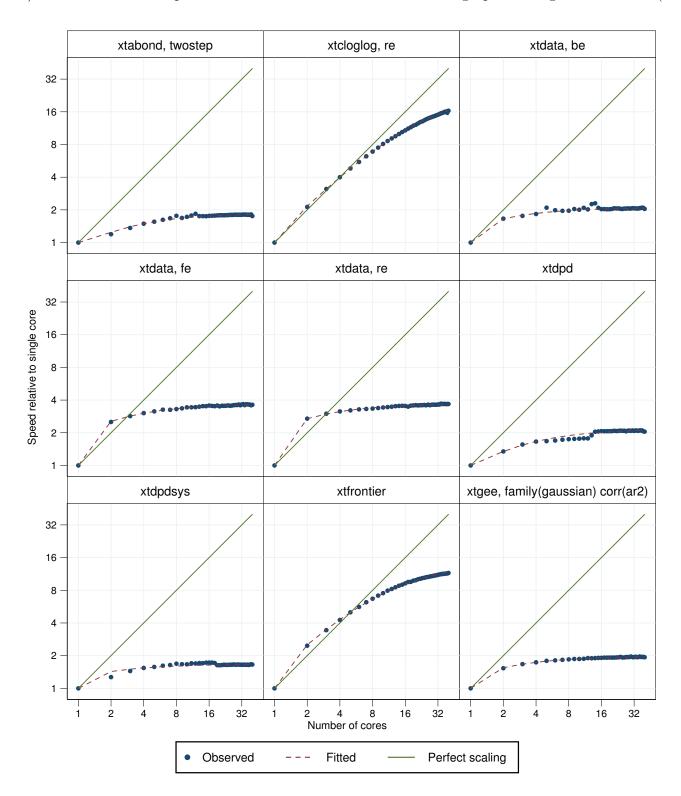


Figure 601. Parallelization performance plots.

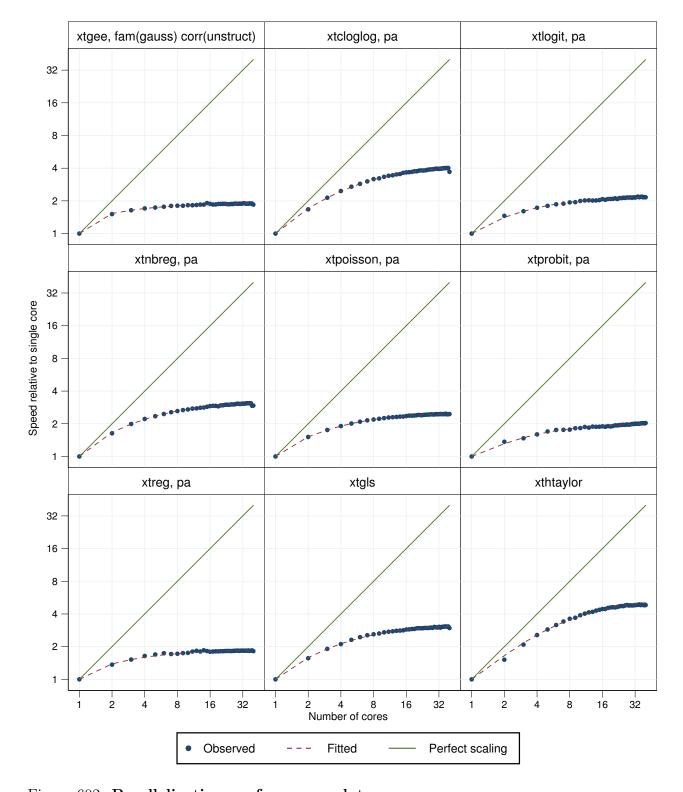


Figure 602. Parallelization performance plots.

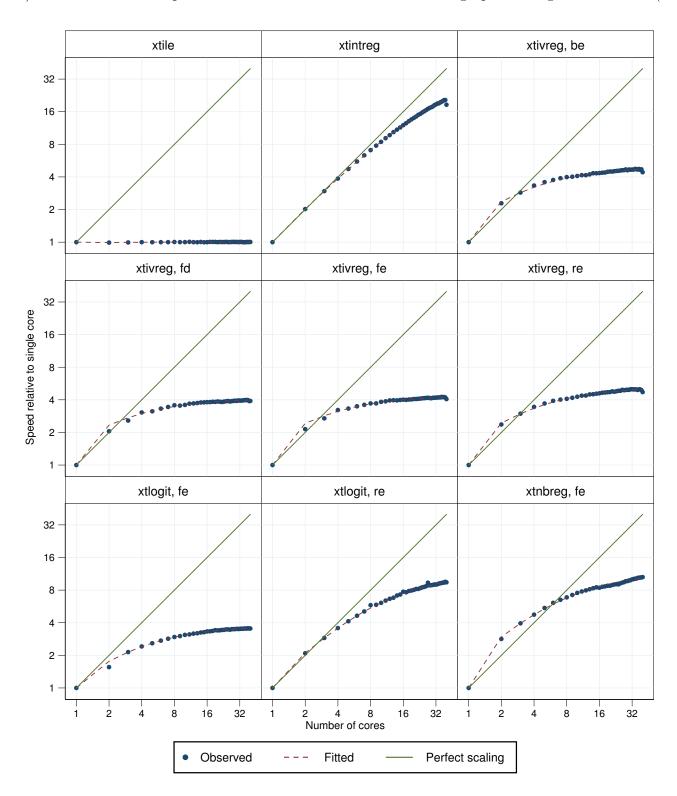


Figure 603. Parallelization performance plots.

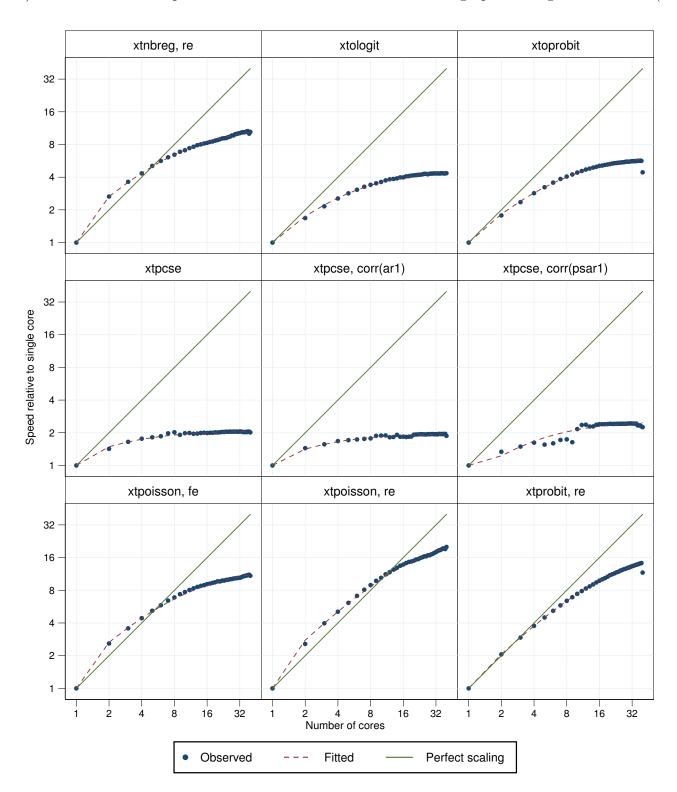


Figure 604. Parallelization performance plots.

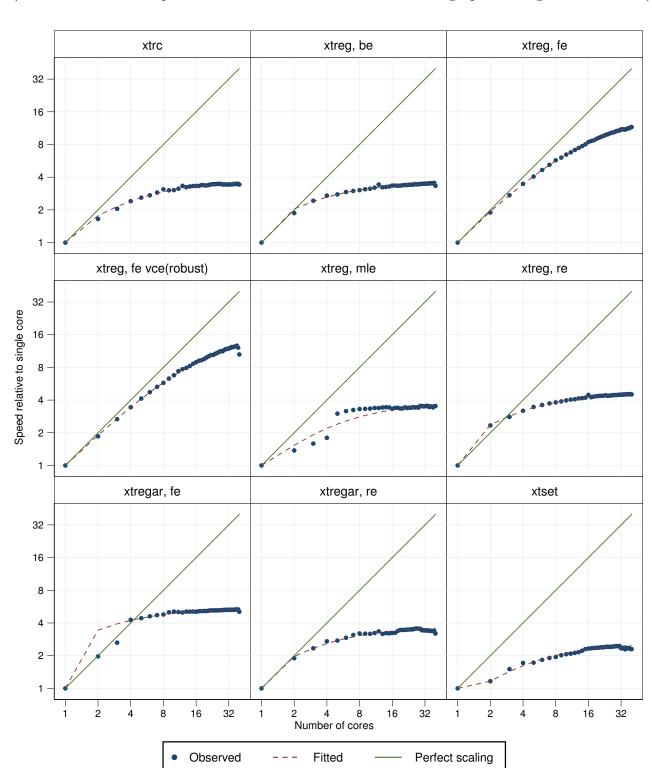


Figure 605. Parallelization performance plots.

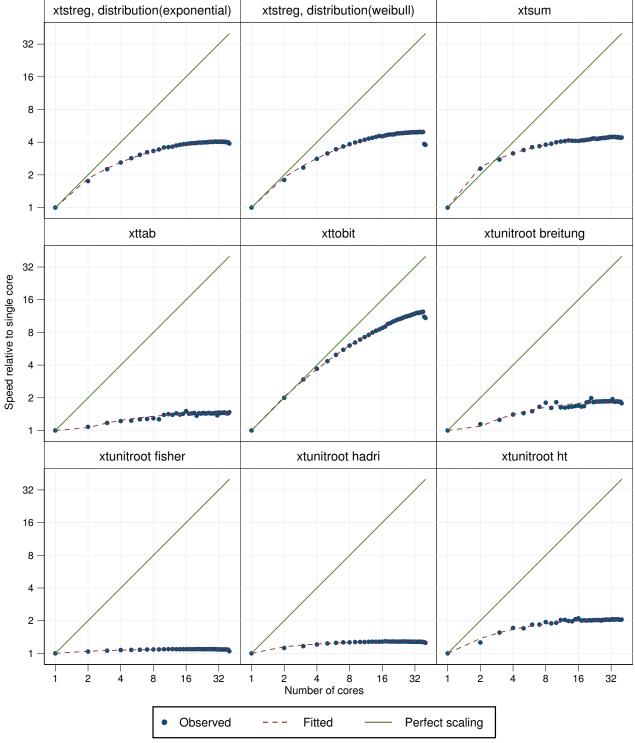


Figure 606. Parallelization performance plots.

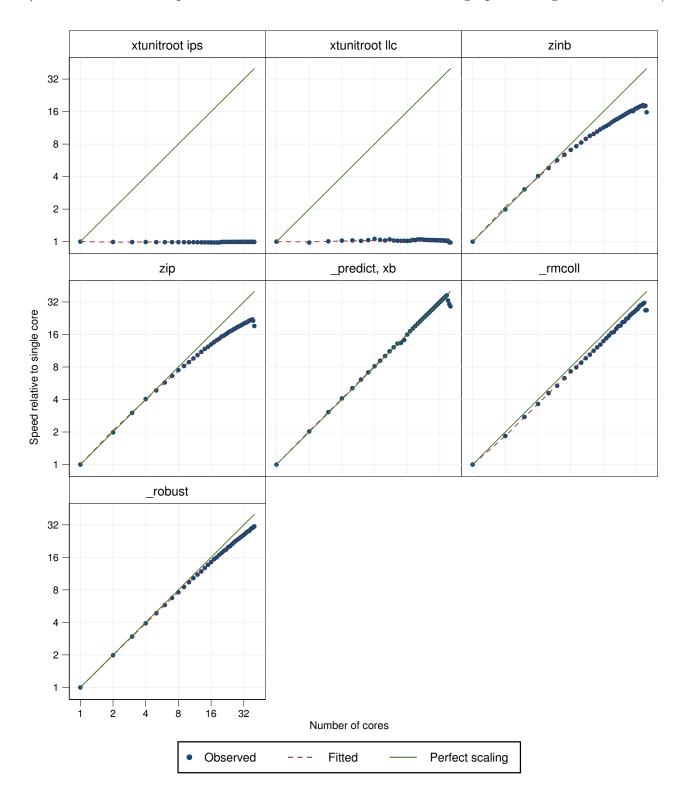


Figure 607. Parallelization performance plots.

C Command names and descriptions

Table 2. Command descriptions

Command	Description
alpha	Cronbach's alpha
ameans	Arithmetic, geometric, and harmonic means
anova (one-way)	Analysis of variance and covariance—one-way
anova (two-way)	Analysis of variance and covariance—two-way
arch	$\label{eq:Autoregressive} Autoregressive \ conditional \ heterosked asticity \ (ARCH) \ family \ of \ estimators$
areg	Linear regression with a large dummy-variable set
areg, vce(cluster)	Linear regression with a large dummy-variable set, cluster—robust standard errors $$
areg, vce(robust)	Linear regression with a large dummy-variable set, robust (Huber/White) standard errors
arfima	Autoregressive fractionally integrated moving-average models
arima	ARIMA, ARMAX, and other dynamic regression models
asclogit	Alternative-specific conditional logit (McFadden's choice) model
asmprobit	Maximum simulated-likelihood alternative-specific multinomial probit models
asroprobit	Alternative-specific rank-ordered probit regression
bayesmh logit	Bayesian logistic regression using Metropolis-Hastings algorithm
bayesmh mvn	Bayesian multivariate normal regression using Metropolis-Hastings algorithm
bayesmh mylogit	Bayesian logistic regression using Metropolis-Hastings algorithm (custom evaluator)
bayesmh nl	Bayesian nonlinear regression using Metropolis-Hastings algorithm
bayesmh normal	Bayesian linear regression using Metropolis-Hastings algorithm
bayesmh normal gibbs	Bayesian linear regression using Gibbs sampling
bayesmh normal re	Bayesian linear regression with random effects using Metropolis-Hasting algorithm
<pre>betareg, link(logit)</pre>	Beta regression, logit link
<pre>betareg, link(probit)</pre>	Beta regression, probit link
binreg	Generalized linear models: extensions to the binomial family
biplot	Biplots
biprobit	Bivariate probit regression

Table 2. Command descriptions

Command	Description
biprobit (seemingly unrelated)	Seemingly unrelated probit regression
bitest	Binomial probability test
blogit	Logistic regression for grouped data
boxcox	Box–Cox regression models
bprobit	Probit regression for grouped data
brier	Brier score decomposition
bsample	Sampling with replacement
bstat	Compute and report bootstrap statistics
by: generate	Create new variables over longitudinal/panel data
by: generate (small groups)Create new variables over longitudinal/panel data, small panels
by: replace	Replace variable values over longitudinal/panel data
by: replace (small groups)	Replace variable values over longitudinal/panel data, small panels
ca	Simple correspondence analysis
candisc	Canonical linear discriminant analysis
canon	Canonical correlations
СС	Case-control odds ratio
by: cc	Case-control odds ratio over groups
centile	Report centile and confidence interval
churdle linear	Cragg hurdle regression
ci means	Confidence intervals for means, normal distribution
ci means, poisson	Confidence intervals for means, Poisson distribution
ci proportions	Confidence intervals for proportions
clogit (k1 to k2 matching)	Conditional (fixed-effects) logistic regression, k1 to k2 matching
clogit (1 to k matching)	Conditional (fixed-effects) logistic regression, 1 to k matching
cloglog	Complementary log-log regression

Table 2. Command descriptions

Command	Description
cluster averagelinkage	Hierarchical cluster analysis—average linkage
cluster centroidlinkage	Hierarchical cluster analysis—centroid linkage
cluster completelinkage	Hierarchical cluster analysis—complete linkage
cluster generate	Generate summary and grouping variables from a cluster analysis
cluster kmeans	Kmeans cluster analysis
cluster kmedians	Kmedians cluster analysis
cluster medianlinkage	Hierarchical cluster analysis—median linkage
cluster singlelinkage	Hierarchical cluster analysis—single linkage
cluster wardslinkage	Hierarchical cluster analysis—Ward's linkage
cluster waveragelinkage	Hierarchical cluster analysis—Ward's average linkage
cnsreg	Constrained linear regression
codebook	Describe data contents
collapse	Make dataset of summary datasets
compare	Compare two variables
compress	Compress data in memory
contract	Make dataset of frequencies and percentages
corr2data	Create dataset with specified correlation structure
correlate	Correlations (covariances) of variables or estimators
corrgram	Tabulate and graph autocorrelations
count	Count observations satisfying specified condition
cpoisson	Censored Poisson regression
CS	Cohort study risk-ratio
by: cs	Cohort study risk-ratio over groups
ctset	Declare data to be count-time data
cttost	Convert count-time data to survival-time data

Table 2. Command descriptions

Command	Description
cumul	Cumulative distribution
cusum	Cusum plots and tests for binary variables
datasignature	Determine whether data have changed
decode	Decode labeled numeric into string
destring	Convert string variables to numeric variables
dfactor	Dynamic-factor models
dfgls	DF-GLS unit-root test
dfuller	Augmented Dickey–Fuller unit-root test
discrim knn	Discriminant analysis—kth-nearest-neighbor
discrim lda	Discriminant analysis—linear
discrim logistic	Discriminant analysis—logistic
discrim qda	Discriminant analysis—quadratic
dotplot	Comparative scatterplots
drawnorm	Draw sample from multivariate normal distribution
${ t drop \ if} \ {\it exp}$	Eliminate observations using if expression
drop in range	Eliminate observations using in range
dstdize	Direct and indirect standardization
dvech	Diagonal vech multivariate GARCH models
egen group()	Extensions to generate—create grouping variable
by: egen mean	Extensions to generate—create means over groups
eivreg	Errors-in-variables regression
encode	Encode string into numeric
esize twosample	Effect size for two independent samples using groups
esize unpaired	Effect size for two independent samples using variables
<pre>eteffects (exponential), ate</pre>	Endogenous treatment-effects estimation, exponential-mean model, average treatment effect in population

Table 2. Command descriptions

	Table 2. Command descriptions
Command	Description
eteffects (linear), ate	Endogenous treatment-effects estimation, linear model, average treatment effect in population
eteffects (linear), pomeans	Endogenous treatment-effects estimation, linear model, potential-outcommeans
eteffects (probit), ate	Endogenous treatment-effects estimation, probit model, average treatment effect in population
etpoisson	Poisson regression with endogenous treatment effects
etregress, poutcomes	Linear regression with endogenous treatment effects, ML estimation with potential outcomes
etregress, twostep	Linear regression with endogenous treatment effects, two-step estimation
exlogistic	Exact logistic regression
expand $\#$	Duplicate observations
${\tt expand}$ $varname$	Duplicate observations using a variable
expandcl $\#$	Duplicate clustered observations
expandcl varname	Duplicate clustered observations using a variable
expoisson	Exact Poisson regression
factor	Factor analysis
fcast compute	Dynamic forecasts after VAR or VEC estimation
fillin	Rectangularize dataset
fracreg probit	Fractional probit regression
frontier	Stochastic frontier models
<pre>fvrevar (factors)</pre>	Create indicators for factor variables
<pre>fvrevar (interaction)</pre>	Create indicators for factor variables—interactions
generate (small expressions	s) Create or change contents of variable—small expressions
generate	Create or change contents of variable
<pre>glm, family(gamma)</pre>	Generalized linear models—gamma distribution
<pre>glm, family(gaussian)</pre>	Generalized linear models—Gaussian distribution
<pre>glm, family(igaussian)</pre>	Generalized linear models—inverse Gaussian distribution
<pre>glm, family(nbinomial)</pre>	Generalized linear models—negative binomial distribution

Table 2. Command descriptions

Command	Description
glm, family(poisson)	Generalized linear models—Poisson distribution
glogit	Weighted least-squares logistic regression for grouped data
gmm	Generalized method of moments estimation
gmm (with derivatives)	Generalized method of moments estimation with derivatives
gprobit	Weighted least-squares probit regression for grouped data
graph bar	Bar charts
graph box	Box plots
graph pie	Pie charts
grmeanby	Graph means and medians by categorical variables
gsem, oprobit (CFA, 2-level)	Ordered probit multilevel confirmatory factor analysis
gsem, oprobit (CFA)	Ordered probit confirmatory factor analysis
gsort	Ascending and descending sort
hausman	Hausman specification test
heckman	Heckman selection model—maximum likelihood estimator
heckman, twostep	Heckman selection model—two-step estimator
heckoprobit	Ordered probit model with sample selection
heckprob	Probit model with selection
hetprob	Heteroskedastic probit model
histogram	Histograms for continuous and categorical variables
hotelling	Hotelling's T -squared generalized means test
icc, mixed	Intraclass correlations for two-way mixed-effects model
icc (one-way)	Intraclass correlations for one-way random-effects model
icc (two-way)	Intraclass correlations for two-way random-effects model
intreg	Interval regression
ir	Incidence-rate ratio

Table 2. Command descriptions

Command	Description
by: ir	Incidence-rate ratio over groups
irf create	Create IRFs and FEVDs after VAR and VEC estimation
irt 1pl	Item response theory one-parameter logistic model
irt 2pl	Item response theory two-parameter logistic model
irt 3pl	Item response theory three-parameter logistic model
irt grm	Item response theory graded response model
irt nrm	Item response theory nominal response model
irt pcm	Item response theory partial credit model
irt rsm	Item response theory rating scale model
istdize	Indirect standardization
ivpoisson cfunction	Poisson regression with endogenous regressors, control-function estimator
ivpoisson gmm, additive	Poisson regression with endogenous regressors, GMM with additive regression are account.
<pre>ivpoisson gmm, multiplicative</pre>	sion errors Poisson regression with endogenous regressors, GMM multiplicative regression errors
ivprobit	Probit model with endogenous regressors
<pre>ivprobit, vce(cluster)</pre>	Probit model with endogenous regressors, cluster–robust standard errors
<pre>ivprobit, vce(robust)</pre>	Probit model with endogenous regressors, robust (Huber/White) standard errors
ivregress 2sls	Instrumental-variables regression—two-stage least squares
ivregress gmm	Instrumental-variables regression—GMM
ivregress liml	Instrumental-variables regression—LIML
ivtobit	Tobit model with endogenous regressors
kap	Interrater agreement
kappa	Interrater agreement
kdensity	Univariate kernel density estimation
keep if exp	Retain observations using if expression
keep in range	Retain observations using in range

Table 2. Command descriptions

Command	Description
keep varlist	Retain variables
ksmirnov	Kolmogorov–Smirnov equality-of-distributions test
ksmirnov, by()	Kolmogorov–Smirnov equality-of-distributions test over groups
ktau	Kendall's rank correlation coefficients
kwallis	Kruskal–Wallis equality-of-populations rank test
ladder	Ladder of powers
levelsof	Levels of variable
loadingplot	Score and loading plots after factor and pca
logistic	Logistic regression, reporting odds ratios
logit	Logistic regression, reporting coefficients
loneway	Large one-way ANOVA, random effects, and reliability
lowess	Lowess smoothing
lpoly	Kernel-weighted local polynomial smoothing
ltable	Life tables for survival data
manova (one-way)	Multivariate analysis of variance and covariance, one-way
manova (two-way)	Multivariate analysis of variance and covariance, two-way
margins	Marginal means and predictive margins
<pre>margins, dydx() exp()</pre>	Marginal effects of an expression
<pre>margins, dydx()</pre>	Marginal effects
<pre>margins, exp()</pre>	Predictive margins of an expression
markout	Mark observations for exclusion
marksample	Mark observations for inclusion
${\tt marksample\ if\ } \it exp$	Mark observations for inclusion, with if expression
matrix accum	Form cross-product matrices of variables over observations
matrix eigenvalues	Eigenvalues of a matrix

Table 2. Command descriptions

Command	Description
matrix score	Inner product of matrix with variables over observations
matrix svd	Singular value decomposition
matrix symeigen	Eigenvalues of a symmetric matrix
matrix syminv	Inversion of a symmetric matrix
mca	Multiple and joint correspondence analysis
mcc	Matched case—control studies
mds	Multidimensional scaling for two-way data
mdslong	Multidimensional scaling of proximity data in long format
mean	Estimate means
mecloglog	Multilevel mixed-effects complimentary log-log regression
median	Equality tests on unmatched data
melogit	Multilevel mixed-effects logistic regression
<pre>menbreg, dispersion(constant)</pre>	Multilevel mixed-effects negative binomial regression, constant dispersion
-) Multilevel mixed-effects negative binomial regression, mean dispersion
meologit	Multilevel mixed-effects ordered logistic regression
meoprobit	Multilevel mixed-effects ordered probit regression
mepoisson	Multilevel mixed-effects Poisson regression
meprobit	Multilevel mixed-effects probit regression
meqrlogit	Multilevel mixed-effects logistic regression (QR decomposition)
meqrpoisson	Multilevel mixed-effects Poisson regression (QR decomposition)
<pre>mestreg, distribution(exp)</pre>	Multilevel mixed-effects survival models, exponential distribution
<pre>mestreg, distribution(weibull)</pre>	Multilevel mixed-effects survival models, Weibull distribution
mgarch	Multivariate generalized autoregressive conditional-heteroskedasticity (MGARCH) models
mhodds	Ratio of odds of failure for two categories
mhodds (adjusted)	Ratio of odds of failure for two categories adjusting for levels

Table 2. Command descriptions

	Table 2. Command descriptions
Command	Description
by: mhodds	Ratio of odds of failure for two categories over groups
mhodds (trend)	Ratio of odds of failure testing for trend
mi estimate: logit (flong)	Logistic regression with multiply imputed data—flong style data
<pre>mi estimate: logit (flongsep)</pre>	Logistic regression with multiply imputed data—flongsep style data
mi estimate: logit (mlong)	Logistic regression with multiply imputed data—mlong style data
mi estimate: logit (wide) Logistic regression with multiply imputed data—wide style data
mi estimate: mlogit	Multinomial logistic regression with multiply imputed data
mi estimate: ologit	Ordered logistic regression with multiply imputed data
mi estimate: regress (flong)	Linear regression with multiply imputed data—flong style data
mi estimate: regress (flongsep)	Linear regression with multiply imputed data—flongsep style data
mi estimate: regress (mlong)	Linear regression with multiply imputed data—mlong style data
mi estimate: regress (wide)	Linear regression with multiply imputed data—wide style data
mi impute chained (flong) Impute missing values using chained equations—flong style data
mi impute chained (flongsep)	Impute missing values using chained equations—flongsep style data
mi impute chained (mlong) Impute missing values using chained equations—mlong style data
mi impute chained (wide)	Impute missing values using chained equations—wide style data
mi impute logit (flong)	Impute missing values using logistic regression—flong style data
mi impute logit (flongsep)	Impute missing values using logistic regression—flongsep style data
mi impute logit (mlong)	Impute missing values using logistic regression—mlong style data
mi impute logit (wide)	Impute missing values using logistic regression—wide style data
mi impute mlogit	Impute missing values using multinomial logistic regression
mi impute mono pmm	Impute missing values using monotone predictive mean matching
mi impute mono regress	Impute missing values using monotone linear regression
mi impute mvn	Impute missing values using multivariate normal
mi impute ologit	Impute missing values using ordinal logistic regression

Table 2. Command descriptions

	r
Command	Description
mi impute pmm	Impute missing values using predictive mean matching
mi impute regress	
misstable nested	Analyze missing values—list the nesting rules
misstable patterns	Analyze missing values—report patterns
misstable summarize	Analyze missing values—report counts
misstable tree	Analyze missing values—present tree view
mixed	Multilevel mixed-effects linear regression
mixed_crossed	Multilevel mixed-effects linear regression—crossed effects
mkspline	Linear spline construction
mleval	Helper command for user-programmed MLEs: Evaluate likelihood of coefficient vector
mleval, nocons	Helper command for user-programmed MLEs: Evaluate likelihood of coefficient vector without constant
mlmatbysum	Helper command for user-programmed MLEs: Compute Hessians of panel-data estimators
mlmatsum	Helper command for user-programmed MLEs: Compute Hessians of coefficient vector
mlogit	Multinomial (polytomous) logistic regression
mlsum	Helper command for user-programmed MLEs: Sum likelihood of coefficient vector
mlvecsum	Helper command for user-programmed MLEs: Compute gradients of coefficient vector
mprobit	Multinomial probit regression
mswitch ar	Markov-switching regression models, autoregression
mswitch dr	Markov-switching regression models, dynamic regression
mvdecode	Recode numeric values to missing
mvencode	Recode missing values to numeric
mvreg	Multivariate regression
mvtest correlations	Multivariate test—correlations
mvtest covariances	Multivariate test—covariances
mvtest means, heterogeneous	Multivariate test—means, heterogenous covariances

Table 2. Command descriptions

Command	Description
mvtest means, homogeneou	s Multivariate test—means, homogeneous covariances
mvtest means, lr	Multivariate test—means, likelihood-ratio test
mvtest normality	Multivariate test—normality
nbreg	Negative binomial regression
newey	Regression with Newey–West standard errors
nl	Nonlinear least-squares estimation
nlogit	Nested logit regression
nlsur	Estimation of nonlinear systems of equations
nptrend	Test for trend across ordered groups
ologit	Ordered logistic regression
oneway	One-way analysis of variance
oprobit	Ordered probit regression
orthog	Orthogonalize variables and compute orthogonal polynomials
pca	Principal component analysis
pcorr	Partial correlation coefficients
pctile	Create variable containing percentiles
pergram	Periodogram
pkcollapse	Generate pharmacokinetic measurement dataset
pkexamine	Calculate pharmacokinetic measures
pksumm	Summarize pharmacokinetic data
poisson	Poisson regression
pperron	Phillips-Perron unit-root test
prais	Prais–Winsten and Cochrane–Orcutt regression
predict, cooksd	Obtain Cook's distance predictions after estimation
predict, covratio	Obtain COVRATIO predictions after estimation

Table 2. Command descriptions

Command	Description
predict, dfbeta	Obtain DFBETAs for a variable after estimation
predict, dfits	Obtain DFITS predictions after estimation
predict, e	Obtain predictions given upper and lower truncation after estimation
predict, leverage	Obtain leverage of observations after estimation
predict, pr	Obtain probability-in-range predictions after estimation
predict, residuals	Obtain residuals after estimation
predict, rstandard	Obtain standardized residuals after estimation
predict, rstudent	Obtain Studentized residuals after estimation
predict, stdf	Obtain standard errors of predictions after estimation
predict, stdp	Obtain standard errors of forecasts after estimation
predict, stdr	Obtain standard errors of residuals after estimation
predict, welsch	Obtain Welsch distances after estimation
predict, ystar	Obtain truncated predictions in a range after estimation
predictnl	Obtain nonlinear predictions, standard errors, etc., after estimation
probit	Probit regression
procrustes	Procrustes transformation
proportion	Estimate proportions
prtest1	One-sample tests of proportions
prtest2	Two-sample tests of proportions
<pre>prtest, by()</pre>	Tests of proportions computed over groups
pwcorr	Pairwise correlation coefficients
qreg	Quantile (including median) regression
ranksum	Equality tests on unmatched data
ratio	Estimate ratio with SE and CI
ratio (exp1) (exp2)	Estimate two ratios with SE and CI

Table 2. Command descriptions

Command	Description
recode	Recode categorical variables
reg3	Three-stage estimation for systems of simultaneous equations
regress	Linear regression
regress, vce(cluster)	Linear regression, cluster–robust standard errors
regress, vce(robust)	Linear regression, robust (Huber/White) standard errors
replace	Create or change contents of variable
replace (small expressions)	Create or change contents of variable, simple expression
reshape long	Convert data from wide to long
reshape wide	Convert data from long to wide
robvar	Robust tests for equality of variance
rocfit	Fit ROC models
roctab	Receiver operating characteristic (ROC) analysis
rotate	Orthogonal and oblique rotations after factor and pca
rotatemat	Orthogonal and oblique rotations of a Stata matrix
rreg	Robust regression
runtest	Test for random order
scobit	Skewed logistic regression
scoreplot	Score and loading plots after factor and pca
screeplot	Scree plot of eigenvalues
sdtest1	Variance-comparison test against constant
sdtest2	Variance-comparison test between variables
sdtest, by()	Variance-comparison test over groups
sem, method(adf) (CFA)	Confirmatory factor analysis, ADF estimation
sem, method(ml) (CFA)	Confirmatory factor analysis, ML estimation
sem, method(mlmv) (CFA)	Confirmatory factor analysis, ML estimation with missing values

Table 2. Command descriptions

Command	Description
sem (SEM latent)	Structural equations model with latent variables, ML estimation
sem (SEM observed)	Structural equations model on observed variables, ML estimation
separate	Create separate variables
sfrancia	Shapiro–Francia test for normality
signrank	Equality tests on matched data
signtest	Equality tests on matched data
sktest	Skewness and kurtosis test for normality
slogit	Stereotype logistic regression
sort	Sort data
spearman	Spearman's rank correlation coefficients
sspace	State-space models
stack	Stack data
stci	Confidence intervals for means and percentiles of survival time
stcox	Fit Cox proportional hazards model
stcrreg	Competing-risks regression
stgen	Generate variables reflecting entire histories
stir	Report incidence-rate comparison
stmc	Calculate rate ratios with the Mantel-Cox method
by: stmc	Calculate rate ratios with the Mantel–Cox method over groups
stmh	Calculate rate ratios with the Mantel-Haenszel method
by: stmh	Calculate rate ratios with the Mantel–Haenszel method over groups
stptime	Calculate person-time, incidence rates, and SMR
strate	Tabulate failure rates and rate ratios
streg,	Fit parametric survival models, exponential distribution
distribution(exponer	
<pre>streg, dist(exp) vce(cluster)</pre>	Fit parametric survival models, exponential distribution with cluster- robust standard errors

Table 2. Command descriptions

	Table 2. Command descriptions
Command	Description
streg, dist(exp) frailty()	Fit parametric survival models, exponential distribution with individual frailty
<pre>streg, dist(exp) frailty() shared()</pre>	Fit parametric survival models, exponential distribution with shared frailty
<pre>streg, dist(exp) vce(robust)</pre>	Fit parametric survival models, exponential distribution with robust standard errors
<pre>streg, distribution(gamma)</pre>	Fit parametric survival models, gamma distribution
<pre>streg, distribution(lnormal)</pre>	Fit parametric survival models, log-normal distribution
<pre>streg, distribution(weibull)</pre>	Fit parametric survival models, Weibull distribution
<pre>streg, dist(weibull) frailty()</pre>	Fit parametric survival models, Weibull distribution with individual frailty
<pre>streg, dist(weib) frailty() shared()</pre>	Fit parametric survival models, Weibull distribution with shared frailty
sts generate	Create new variables containing survival, hazard, and related functions
sts graph	Compute and graph survival, hazard, and related functions
sts list	Compute and list survival and related functions
sts test	Test the equality of the survival function across groups
stset	Declare data to be survival-time data
stsplit	Split time-span records
stsum	Summarize survival-time data
stteffects ipw (weibull)	Treatment-effects estimation for survival data, inverse-probability weighting, Weibull distribution
<pre>stteffects ipwra (weibull)</pre>	Treatment-effects estimation for survival data, inverse-probability weighted regression adjustment, Weibull distribution
stteffects ra (weibull)	Treatment-effects estimation for survival data, regression adjustment, Weibull distribution
stteffects wra (weibull)	Treatment-effects estimation for survival data, weighted regression adjustment, Weibull distribution
stvary	Report variables that vary over time
suest	Seemingly unrelated estimation
summarize	Summary statistics
sunflower	Density-distribution sunflower plots
sureg	Zellner's seemingly unrelated regression
svar	Structural vector autoregression models

Table 2. Command descriptions

	Table 2. Command descriptions					
Command	Description					
svmat	Convert variables to matrix and vice versa					
svy brr: logit	Logistic regression using survey data—balanced repeated replications					
svy brr: poisson	Poisson regression using survey data—balanced repeated replications					
svy brr: regress	Linear regression using survey data—balanced repeated replications					
svy jackknife: logit	Logistic regression using survey data—jackknife					
svy jackknife: poisson	Poisson regression using survey data—jackknife					
svy jackknife: regress	Linear regression using survey data—jackknife					
svy linearized: logit	Logistic/logit regression using survey data—linearization					
svy linearized: poisson	Poisson regression using count survey data—linearization					
svy linearized: regress	Linear regression using survey data—linearization					
swilk	Shapiro-Wilk test for normality					
symmetry	Symmetry and marginal homogeneity tests					
table (one-way)	Table of summary statistics, one-way					
table (two-way)	Table of summary statistics, two-way					
tabodds	Tabulate odds of failure by category					
tabodds (adjusted)	Tabulate odds of failure by category adjusting for levels					
tabstat	Display table of summary statistics					
tabstat, by()	Display table of summary statistics over groups					
tabulate (one-way)	Tables of frequencies, one-way					
tabulate (two-way)	Tables of frequencies, two-way					
teffects aipw (linear)	Treatment-effects estimation for linear regression, augmented inverse- probability weighting					
teffects aipw (probit)	Treatment-effects estimation for probit regression, augmented inverse-probability weighting					
teffects ipw (logit)	Treatment-effects estimation for linear regression, inverse-probability weighting					
teffects ipwra (linear)	Treatment-effects estimation for linear regression, inverse-probability weight regression adjustment					
teffects ipwra (probit)	Treatment-effects estimation for probit regression, augmented inverse- probability weighted regression adjustment					

Table 2. Command descriptions

Command	Description
teffects nnmatch	Treatment-effects estimation, nearest-neighbor matching
teffects psmatch, logit	Treatment-effects estimation, propensity-score matching
teffects ra (linear)	Treatment-effects estimation for linear regression, regression adjustment
teffects ra (probit)	Treatment-effects estimation for probit regression, regression adjustment
tetrachoric	Tetrachoric correlations for binary variables
tnbreg	Truncated negative binomial regression
tobit	Tobit regression
tostring	Convert numeric variables to string variables
total	Estimate totals
tpoisson	Truncated Poisson regression
truncreg	Truncated regression
tsfilter bk	Time-series filter, Baxter-King
tsfilter bw	Time-series filter, Butterworth
tsfilter cf	Time-series filter, Christiano-Fitzgerald
tsfilter hp	Time-series filter, Hodrick-Prescott
tsrevar	Create time-series operated temporary variables
tsset	Declare a dataset to be time-series data
tssmooth exp	Exponential smoothing of univariate time-series data
tssmooth ma	Moving average smoothing of univariate time-series data
ttest1	Mean comparison test against constant null hypothesis
ttest2	Mean comparison test against between variables
ttest, by()	Mean comparison test against over groups
twoway fpfit	Compute and graph fractional-polynomial fit
twoway lfitci	Compute and graph linear fit with confidence intervals
twoway mband	Compute and graph median bands

Table 2. Command descriptions

Command	Description
twoway mspline	Compute and graph spline smooth
<pre>ucm, model(rwdrift)</pre>	Unobserved-components model, random walk with drift
var	Vector autoregression models
vargranger	Perform pairwise Granger causality tests after var or svar
varlmar	Obtain LM statistics for residual autocorrelation after var or svar
varnorm	Test for normally distributed disturbances after var or svar
varsoc	Obtain lag-order selection statistics for VARs and VECMs
varstable	Check the stability condition of VAR or SVAR estimates
vec	Vector error-correction models
veclmar	Obtain LM statistics for residual autocorrelation after vec
vecnorm	Test for normally distributed disturbances after vec
vecrank	Estimate the cointegrating rank using Johansen's framework
vecstable	Check the stability condition of VECM estimates
vwls	Variance-weighted least squares
wntestb	Bartlett's periodogram-based test for white noise
wntestq	Portmanteau (Q) test for white noise
xcorr	Cross-correlogram for bivariate time series
xtabond	Arellano–Bond linear, dynamic panel-data estimation
xtabond, twostep	Arellano–Bond linear, dynamic panel-data estimation, two-step estimation
xtcloglog, re	Random-effects cloglog models
xtdata, be	Compute between transform of panel data
xtdata, fe	Compute within (fixed-effects) transform of panel data
xtdata, re	Compute random-effects transform of panel data
xtdpd	Linear dynamic panel-data estimation
xtdpdsys	Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation

Table 2. Command descriptions

	Table 2. Command descriptions							
Command	Description							
xtfrontier	Stochastic frontier models for panel data							
<pre>xtgee, family(gaussian) corr(ar2)</pre>	GEE estimation of Gaussian panel-data model with 2-period autocorrelation							
<pre>xtgee, fam(gauss) corr(unstruct)</pre>	GEE estimation of Gaussian panel-data model with unstructured correlation							
xtcloglog, pa	Population-averaged cloglog models							
xtlogit, pa	Population-averaged logit models							
xtnbreg, pa	Population-averaged negative binomial models							
xtpoisson, pa	Population-averaged Poisson models							
xtprobit, pa	Population-averaged probit models							
xtreg, pa	Population-averaged linear models							
xtgls	Fit panel-data models using GLS							
xthtaylor	Hausman–Taylor estimator for error-components models							
xtile	Panel-data line plots							
xtintreg	Random-effects interval data regression models							
xtivreg, be	Instrumental variables and two-stage least squares for panel-data models—between effects							
xtivreg, fd	Instrumental variables and two-stage least squares for panel-data models—first differences							
xtivreg, fe	Instrumental variables and two-stage least squares for panel-data models—fixed effects							
xtivreg, re	Instrumental variables and two-stage least squares for panel-data models—random effects							
xtlogit, fe	Fixed-effects logit models							
xtlogit, re	Random-effects logit models							
xtnbreg, fe	Fixed-effects negative binomial models							
xtnbreg, re	Random-effects negative binomial models							
xtologit	Random-effects ordered logistic models							
xtoprobit	Random-effects ordered probit models							
xtpcse	OLS or Prais–Winsten models with panel-corrected standard errors							
<pre>xtpcse, corr(ar1)</pre>	Prais–Winsten models with panel-corrected standard errors							

Table 2. Command descriptions

Command	Description					
xtpcse, corr(psar1)	Prais-Winsten models with panel-corrected standard errors—panel-specific autocorrelation					
xtpoisson, fe	Fixed-effects Poisson models					
xtpoisson, re	Random-effects Poisson models					
xtprobit, re	Random-effects probit models					
xtrc	Random-coefficients regression					
xtreg, be	Between-effects linear models					
xtreg, fe	Fixed-effects linear models					
<pre>xtreg, fe vce(robust)</pre>	Fixed-effects linear models, cluster–robust standard errors					
xtreg, mle	Random-effects linear models, ML estimation					
xtreg, re	Random-effects linear models					
xtregar, fe	Fixed-effects linear models with an $AR(1)$ disturbance					
xtregar, re	Random-effects linear models with an $AR(1)$ disturbance					
xtset	Declare data to be panel data					
<pre>xtstreg, distribution(exponent</pre>	Random-effects survival models, exponential distribution al)					
<pre>xtstreg, distribution(weibull)</pre>	Random-effects survival models, Weibull distribution					
xtsum	Summarize panel data					
xttab	Tabulate panel data					
xttobit	Random-effects tobit models					
xtunitroot breitung	Panel-data unit-root test—Breitung					
xtunitroot fisher	Panel-data unit-root test—Fisher					
xtunitroot hadri	Panel-data unit-root test—Hadri Lagrange multiplier					
xtunitroot ht	Panel-data unit-root test—Harris-Tzavalis					
xtunitroot ips	Panel-data unit-root test—Im-Pesaran-Shin					
xtunitroot llc	Panel-data unit-root test—Levin–Lin–Chu					
zinb	Zero-inflated negative binomial regression					

Table 2. Command descriptions

Command	Description
zip	Zero-inflated Poisson regression
_predict, xb	Obtain predictions, residuals, etc., after estimation programming command—option ${\tt xb}$
_rmcoll	Remove collinear variables
robust	Robust variance estimates

D Problem sizes

The following table (table 3) shows the sizes of the problems used to measure the performance gains reported in table 1. As discussed in section 9, these are intentionally large problems requiring considerable time to run. If a command was so fast that a sufficiently large problem would have required too much memory to be run on a variety of computers, then a smaller problem was run several times (several iterations) for an accurate read of the timing required to run the command.

The second through fourth columns of table 3 record the number of observations for the problem, either as a simple number of observations N or as a number of panels m and a number of time periods t within a panel. Columns 3 and 4 provide more information on problem size for longitudinal panel-data problems, and the number of observations, N, is just the product of m and t. Some such problems are not really panel data but merely grouped data; in these cases, the time periods should just be considered the number of observations within group. Almost all the panel-data problems were created with balanced panels (an equal number of observations within panel). Rarely would unbalanced panels affect the performance gains of Stata/MP.

The column labeled k records the number of covariates in the problem or, for matrix commands, the row and column dimensions of the matrix.

The column labeled $n_{\rm eq}$ records the number of equations for problems that involve multiple equations.

The column labeled n_{iter} records the number of times the command was run on the problem to generate a single timing.

Table 3. Problem sizes

	Ob	servations				
Command	$\overline{}$	\overline{m}	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
alpha	2250000			20		1
ameans	3000000			5		1
anova (one-way)	80000000			200		1
anova (two-way)	10000000			10		1
arch	80000			1		1
areg	6000000			20	30000	1
areg, vce(cluster)	2000000			20	20000	1
<pre>areg, vce(robust)</pre>	2000000			20	20000	1
arfima	1000			1		1
arima	80000			1		1
asclogit	3300			100	10	1
asmprobit		200	3	2	2	1
asroprobit	300			2	3	1
bayesmh logit	10000			50		1
bayesmh mvn	3000			30	3	1
bayesmh mylogit	10000			10		1
bayesmh nl	10000			10		1
bayesmh normal	10000			100		1
bayesmh normal gibbs	10000			10		1
bayesmh normal re		10	100	100		1
<pre>betareg, link(logit)</pre>	100000			200		1
<pre>betareg, link(probit)</pre>	100000			200		1
binreg	200000			200		1
biplot	4000			2		1
biprobit	160000			40	40	1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

		Observations				
Command	$\overline{}$	m	t	k	$n_{\rm eq}$	$n_{ m iter}$
biprobit (seemingly unrelated)	160000			40	40	1
bitest	10000000			1	2	10
blogit	200000			200	50	1
boxcox	100000			200		1
bprobit	200000			200	50	1
brier	150000					1
bsample	100000			100		20
bstat	1000000			10		1
by: generate		1000000	100			6
by: generate (small groups)		9000000	10			2
by: replace		1000000	100			6
by: replace (small groups)		9000000	10			2
ca	10000000				5	1
candisc		5	40000	150		1
canon	4000000				30	1
сс	500000					1
by: cc	100000				20	1
centile	1000000			2		1
churdle linear	200000			50	50	1
ci means	1000000			50		1
ci means, poisson	100000			50		8
ci proportions	1000000			50		1
clogit (k1 to k2 matching)		20000	10	30		1
clogit (1 to k matching)		50000	10	50		1
cloglog	200000			100		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Obse	ervations				
Command	\overline{N}	m	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
cluster averagelinkage	4000			200		1
cluster centroidlinkage	4000			200		1
cluster completelinkage	4000			200		1
cluster generate	2000			200		1
cluster kmeans	50000			30		1
cluster kmedians	50000			30		1
cluster medianlinkage	5000			200		1
cluster singlelinkage	5000			5		1
cluster wardslinkage	3000			200		1
cluster waveragelinkage	3000			200		1
cnsreg	1400000			200		1
codebook	150000			25		1
collapse	300000			50	100	1
compare	6000000			2		2
compress	500000			50	50	1
contract	1000000			20	100	1
corr2data	200000			50		1
correlate	3000000			200		1
corrgram	80000			1		1
count	20000000					20
cpoisson	100000			100		1
cs	10000000					1
by: cs	60000				100	1
ctset	40000000					15
cttost	50000					1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

		Observations				
Command	$\overline{}$	\overline{m}	t	k	$n_{ m eq}$	$n_{ m iter}$
cumul	1000000			2		1
cusum	1500000			1		1
datasignature	500000			300		1
decode		10000	1000			1
destring		4000	2000			1
dfactor	2000			3		1
dfgls	20000			1		1
dfuller	5000000			1		3
discrim knn		5	1000	20		1
discrim lda		50	2000	10		1
discrim logistic		50	400	10		1
discrim qda		50	2000	10		1
dotplot	100000			10		1
drawnorm	100000			150		1
${ t drop \ ext{if} \ } exp$	10000000			4		1
${ t drop \ in \ } \mathit{range}$	10000000			4		1
dstdize		10	150	200		1
dvech	500			2		1
egen group()		1	800000	500		1
by: egen mean		400	10000	2		1
eivreg	1400000			200		1
encode		50	220000			1
esize twosample	10000000					1
esize unpaired	30000000					1
eteffects (exponential), ate	20000			20		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Ob	oservations				
Command	$\overline{}$	m	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
eteffects (linear), ate	10000			100		1
eteffects (linear), pomeans	10000			100		1
eteffects (probit), ate	10000			100		1
etpoisson	10000			10	10	1
etregress, poutcomes	10000			30	30	1
etregress, twostep	800000			50	50	1
exlogistic	100			3		1
expand $\#$	10000			800		1
expand $varname$	100000			100	5	1
expandcl $\#$		12000	10	100		1
expandcl $varname$		30000	10	80	5	1
expoisson	50			20		1
factor	10000000			50		1
fcast compute	10000			2	5	1
fillin		80	1			1
fracreg probit	200000			200		1
frontier	400000			200		1
<pre>fvrevar (factors)</pre>	1000000			4	80	1
<pre>fvrevar (interaction)</pre>	5000000			2	8	1
<pre>generate (small expressions)</pre>	60000			4000		1
generate	5000000					1
<pre>glm, family(gamma)</pre>	700000			100		1
<pre>glm, family(gaussian)</pre>	700000			200		1
<pre>glm, family(igaussian)</pre>	500000			200		1
<pre>glm, family(nbinomial)</pre>	300000			200		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Ob	servations				
Command	\overline{N}	\overline{m}	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
glm, family(poisson)	300000			200		1
glogit	2000000			100	50	1
gmm	1000			10		1
gmm (with derivatives)	100000			10		1
gprobit	3000000			100	50	1
graph bar	500000			10	3	1
graph box	200000			2	10	1
graph pie	2500000			10	10	1
grmeanby	300000			4	10	1
gsem, oprobit (CFA, 2-level)		1000	10	4	1	1
gsem, oprobit (CFA)	5000			4	1	1
gsort	1000000			5		1
hausman	200					1
heckman	500000			100	50	1
heckman, twostep	1000000			100	50	1
heckoprobit	100000			10	50	1
heckprob	200000			50	50	1
hetprob	300000			10	10	1
histogram	4000000			1		1
hotelling	4000000			100		1
icc, mixed	1000000			100		1
icc (one-way)	3000000			300		1
icc (two-way)	1000000			100		1
intreg	200000			200		1
ir	10000000					1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Obs	servations				
Command	$\overline{}$	\overline{m}	\overline{t}	k	$n_{ m eq}$	$n_{ m iter}$
by: ir	10000				200	1
irf create	1000000			2	3	1
irt 1pl	40000			20		1
irt 2pl	40000			20		1
irt 3pl	40000			10		1
irt grm	20000			10		1
irt nrm	20000			10		1
irt pcm	20000			10		1
irt rsm	20000			10		1
istdize		50	100	10000		1
ivpoisson cfunction	60000			5	5	1
ivpoisson gmm, additive	80000			5	5	1
<pre>ivpoisson gmm, multiplicative</pre>	160000			5	5	1
ivprobit	150000			30	20	1
<pre>ivprobit, vce(cluster)</pre>	150000			30	20	1
<pre>ivprobit, vce(robust)</pre>	220000			30	20	1
ivregress 2sls	800000			50	20	1
ivregress gmm	1500000			20	20	1
ivregress liml	2000000			20	20	1
ivtobit	150000			50	20	1
kap	500000			2	10	4
kappa	2000000			10	20	1
kdensity	10000000					1
keep if exp	10000			4000		1
$\verb keep in range $	20000			4000		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Obse	ervations				
Command	$\overline{}$	m	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
keep varlist	50000			4000		1
ksmirnov	2000000					1
ksmirnov, by()	1000000					1
ktau	5000			5		1
kwallis	1500000			10		1
ladder	2000000					1
levelsof	20000000				20	1
loadingplot	2000000			60		1
logistic	300000			200		1
logit	300000			200		1
loneway	2000000			500		1
lowess	90000			1		1
lpoly	1000000					1
ltable	50000			1		40
manova (one-way)	20000000			50	3	1
manova (two-way)	2000000			20	3	1
margins	250000			40	10	1
<pre>margins, dydx() exp()</pre>	30000			40	10	1
margins, dydx()	20000			40	10	1
<pre>margins, exp()</pre>	40000			40	10	1
markout	500000			500		1
marksample	1200000			200		1
${\tt marksample\ if\ } exp$	2300000			100		1
matrix accum	3000000			200		1
matrix eigenvalues	500			500		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	Ob					
Command	$\overline{}$	\overline{m}	t	k	$n_{\rm eq}$	$n_{ m iter}$
matrix score	6000000			1000		1
matrix svd	300			300		1
matrix symeigen	600			600		1
matrix syminv	2000			2000		1
mca	1000000			3	5	1
mcc	10000000					1
mds	800			400		1
mdslong		600	1			1
mean	1000000			200		1
mecloglog		2000	10	2	1	1
median	8000000			5		1
melogit		4000	10	10	1	1
<pre>menbreg, dispersion(constant)</pre>		2000	5	2	1	1
menbreg, dispersion(mean)		4000	10	2	1	1
meologit		4000	10	5	1	1
meoprobit		4000	10	2	1	1
mepoisson		4000	10	2	1	1
meprobit		4000	10	10	1	1
meqrlogit		50	10	5	1	1
meqrpoisson		100	5	2	1	1
<pre>mestreg, distribution(exp)</pre>		4000	10	10	1	1
mestreg, distribution(weibull)		4000	10	10	1	1
mgarch	1000			3	2	1
mhodds	3000000					1
mhodds (adjusted)	400000			400		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Obs	ervations				
Command	$\overline{}$	\overline{m}	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
by: mhodds	50000				100	1
mhodds (trend)	1000000				100	1
mi estimate: logit (flong)	100000			180	20	1
<pre>mi estimate: logit (flongsep)</pre>	100000			180	20	1
mi estimate: logit (mlong)	100000			180	20	1
mi estimate: logit (wide)	70000			180	20	1
mi estimate: mlogit	100000			100	10	1
mi estimate: ologit	120000			190	10	1
mi estimate: regress (flong)	100000			300	20	1
<pre>mi estimate: regress (flongsep)</pre>	100000			300	20	1
mi estimate: regress (mlong)	100000			300	20	1
<pre>mi estimate: regress (wide)</pre>	60000			300	20	1
mi impute chained (flong)	20000			20	20	1
mi impute chained (flongsep)	20000			20	20	1
mi impute chained (mlong)	20000			20	20	1
mi impute chained (wide)	20000			20	20	1
mi impute logit (flong)	100000			100	1	1
<pre>mi impute logit (flongsep)</pre>	100000			100	1	1
mi impute logit (mlong)	100000			100	1	1
mi impute logit (wide)	200000			100	1	1
mi impute mlogit	100000			100	1	1
mi impute mono pmm	10000			50	3	1
mi impute mono regress	40000			200	10	1
mi impute mvn	1000			10	10	1
mi impute ologit	40000			100	1	1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	O	bservation	ıs			
Command	$\overline{}$	\overline{m}	t	k	$n_{ m eq}$	$n_{ m iter}$
mi impute pmm	20000			200	1	1
mi impute regress	40000			100	1	1
misstable nested	2000000			20		1
misstable patterns	2000000			20		1
misstable summarize	5000			10		1
misstable tree	1000000			20		1
mixed		500	10	5	5	1
mixed_crossed		10	1000			1
mkspline	12000000			1		1
mleval	30000000			200		1
mleval, nocons	30000000			200		1
mlmatbysum	20000000			200	160000	1
mlmatsum	20000000			200		1
mlogit	500000			100	3	1
mlsum	4.0e + 08			1		1
mlvecsum	20000000			400		1
mprobit	800			10	3	1
mswitch ar		100	100	20	5	1
mswitch dr		100	100	20	5	1
mvdecode	500000			20	1000	1
mvencode	6000000			20	1000	1
mvreg	2000000			100	3	1
mvtest correlations		2	600000	100		1
mvtest covariances		2	600000	100		1
mvtest means, heterogeneous		2	400000	100		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

		Observation	S			
Command	\overline{N}	m	t	k	$n_{\rm eq}$	$n_{ m iter}$
mvtest means, homogeneous		2	150000	100		1
mvtest means, 1r		2	500000	100		1
mvtest normality	1000			20		1
nbreg	60000			200		1
newey	500000			5		1
nl	1500000					1
nlogit		1200	2	2	3	1
nlsur	100000			2		1
nptrend	300000			10		1
ologit	700000			100	3	1
oneway	3000000			200		1
oprobit	200000			200	3	1
orthog	1000000			10		1
pca	600000			100		1
pcorr	1300000			200		1
pctile	16000000			1		1
pergram	10000			1		1
pkcollapse		100	50			1
pkexamine		1	1000000			1
pksumm		200	10			1
poisson	200000			200		1
pperron	300000			1		1
prais	1000000			5		1
predict, cooksd	600000			300		1
predict, covratio	600000			300		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	Obse	ervations				
Command	$\overline{}$	\overline{m}	t	k	$n_{\rm eq}$	$n_{ m iter}$
predict, dfbeta	400000			200		1
predict, dfits	600000			200		1
predict, e	3000000			1000		1
predict, leverage	1200000			200		1
predict, pr	2500000			1000		1
predict, residuals	6000000			1000		1
predict, rstandard	400000			400		1
predict, rstudent	400000			400		1
predict, stdf	1600000			200		1
predict, stdp	400000			400		1
predict, stdr	400000			400		1
predict, welsch	300000			300		1
predict, ystar	3000000			1000		1
predictnl	60000			200		1
probit	500000			200		1
procrustes	200000			50	50	1
proportion	300000			10	5	1
prtest1	20000000			1	2	3
prtest2	20000000			2	2	2
<pre>prtest, by()</pre>	10000000			2	2	1
pwcorr	30000000			3		1
qreg	100000			20		1
ranksum	4000000			2		1
ratio	8000000					1
ratio (exp1) (exp2)	9000000					1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	Ol	oservations				
Command	$\overline{}$	m	t	k	$n_{ m eq}$	$n_{ m iter}$
recode	1500000			5	5	1
reg3	90000			100	3	1
regress	3000000			180		1
regress, vce(cluster)	1500000			180		1
regress, vce(robust)	300000			180		1
replace	15000000					1
replace (small expressions)	150000			4000		1
reshape long		50000	20			1
reshape wide		50000	15	5		1
robvar	200000			2		1
rocfit	100000			1	5	1
roctab	600000			1	20	1
rotate	10000			80		1
rotatemat	80			80		1
rreg	100000			200		1
runtest	6000000			1		1
scobit	120000			200		1
scoreplot	400000			20		1
screeplot	10000000			20		1
sdtest1	24000000					3
sdtest2	12000000			2		3
sdtest, by()	9000000					2
sem, method(adf) (CFA)	150000			5	3	1
sem, method(ml) (CFA)	2500000			10	3	1
sem, method(mlmv) (CFA)	100000			4	3	1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	Obse	ervations				
Command	$\overline{}$	\overline{m}	\overline{t}	k	$n_{\rm eq}$	$n_{ m iter}$
sem (SEM latent)	10000000			4	3	1
sem (SEM observed)	5000000			20	3	1
separate	1000000			100	4	1
sfrancia	1000000			2		1
signrank	2500000			2		1
signtest	1.0e + 08			2		1
sktest	6000000			2		1
slogit	20000			10	5	1
sort	9000000			10		1
spearman	400000			3		1
sspace	5000			20		1
stack	500000			100		1
stci	200000			1		1
stcox	250000			10		1
stcrreg	2000			5		1
stgen	30000000			2		1
stir	4500000			1	2	1
stmc	900000					1
by: stmc	600000				50	1
stmh	1500000					1
by: stmh	1500000				10	1
stptime	9000000			1	60000	1
strate	1000000			1	5	1
streg,	600000			100		1
distribution(exponen						
<pre>streg, dist(exp) vce(cluster)</pre>	200000			200	1000	1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Obs	ervations			
Command	$\overline{}$	m	t k	$n_{ m eq}$	$n_{ m iter}$
streg, dist(exp) frailty()	60000		200		1
<pre>streg, dist(exp) frailty() shared()</pre>	200000		100	1000	1
<pre>streg, dist(exp) vce(robust)</pre>	200000		200		1
<pre>streg, distribution(gamma)</pre>	100000		2		1
<pre>streg, distribution(lnormal)</pre>	200000		100		1
<pre>streg, distribution(weibull)</pre>	200000		200		1
<pre>streg, dist(weibull) frailty()</pre>	200000		50		1
<pre>streg, dist(weib) frailty() shared()</pre>	100000		100	1000	1
sts generate	1000000		1		1
sts graph	1000000		1		1
sts list	3000000		1		1
sts test	1000000		1	2	1
stset	3000000				1
stsplit	2000000			50	1
stsum	200000		1		1
stteffects ipw (weibull)	50000		50		1
<pre>stteffects ipwra (weibull)</pre>	20000		20		1
stteffects ra (weibull)	10000		50		1
stteffects wra (weibull)	10000		50		1
stvary	3000000		5		1
suest	400000		200		1
summarize	4500000		200		1
sunflower	1000000		2		1
sureg	300000		100	2	1
svar	40000		2	10	1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	Ob	servations				
Command	$\overline{}$	\overline{m}	t	k	$n_{\rm eq}$	$n_{ m iter}$
svmat	3000			3000		1
svy brr: logit		128	200	20		1
svy brr: poisson		16	4000	20		1
svy brr: regress		16	6000	200		1
svy jackknife: logit		5	400	20	20	1
svy jackknife: poisson		5	300	20	20	1
svy jackknife: regress		3	3000	10	20	1
svy linearized: logit	200000			200		1
svy linearized: poisson	200000			200		1
svy linearized: regress	400000			200		1
swilk	150000			20		1
symmetry	800000			2	50	1
table (one-way)	4000000			20		1
table (two-way)	3000000			20		1
tabodds	300000				20	1
tabodds (adjusted)	50000			10	20	1
tabstat	2000000			50		1
tabstat, by()	2000000			20		1
tabulate (one-way)	6000000			20		1
tabulate (two-way)	10000000			20		1
teffects aipw (linear)	10000			50		1
teffects aipw (probit)	10000			50		1
teffects ipw (logit)	20000			100		1
teffects ipwra (linear)	10000			50		1
teffects ipwra (probit)	10000			50		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	O	bservations		k	$n_{ m eq}$	$n_{ m iter}$
Command	\overline{N}	m	t			
teffects nnmatch	20000			100		1
teffects psmatch, logit	10000			50		1
teffects ra (linear)	10000			100		1
teffects ra (probit)	10000			100		1
tetrachoric	1200000			4	2	1
tnbreg	300000			10		1
tobit	300000			200		1
tostring		10000	200			1
total	600000			200		1
tpoisson	1000000			50		1
truncreg	150000			200		1
tsfilter bk	1000000			1		1
tsfilter bw	1500			1		1
tsfilter cf	1000000			1		1
tsfilter hp	1500			1		1
tsrevar	1100000			20		1
tsset	4000000					1
tssmooth exp	1000000			1		1
tssmooth ma	1000000			1		1
ttest1	15000000			1		5
ttest2	35000000			2		1
ttest, by()	20000000					1
twoway fpfit	400000			1		1
twoway lfitci	6000000			1		1
twoway mband	3000000			1		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

	C	bservations				
Command	$\overline{}$	m	t	k	$n_{ m eq}$	$n_{ m iter}$
twoway mspline	4000000			1		1
<pre>ucm, model(rwdrift)</pre>	5000			3		1
var	250000			2	5	1
vargranger	4000000			2	5	5
varlmar	80000			2	5	1
varnorm	300000			2	5	1
varsoc	200000			2	5	1
varstable	4000000			2	10	5
vec	30000			2	10	1
veclmar	50000			2	5	1
vecnorm	150000			2	5	1
vecrank	200000			2	5	1
vecstable	1000000			2	10	1
vwls	1000000			200		1
wntestb	10000			1		1
wntestq	400000			1		1
xcorr	400000			1		1
xtabond		100000	10	2		1
xtabond, twostep		100000	10	2		1
xtcloglog, re		20000	5	5		1
xtdata, be		15000	5	200		1
xtdata, fe		500000	5	5		1
xtdata, re		300000	5	5		1
xtdpd		40000	5	5		1
xtdpdsys		60000	5	5		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; n_{eq} , number of equations; and n_{iter} , number of iterations.

Table 3. Problem sizes

		Observations				
Command	\overline{N}	\overline{m}	t	k	$n_{ m eq}$	$n_{ m iter}$
xtfrontier		4000	10	50		1
<pre>xtgee, family(gaussian) corr(ar2)</pre>		50000	5	10		1
<pre>xtgee, fam(gauss) corr(unstruct)</pre>		60000	5	10		1
xtcloglog, pa		100000	5	5		1
xtlogit, pa		100000	5	5		1
xtnbreg, pa		80000	5	5		1
xtpoisson, pa		30000	10	5		1
xtprobit, pa		60000	10	5		1
xtreg, pa		100000	5	10		1
xtgls		5	200000	5		1
xthtaylor		100000	10	4	4	1
xtile	100000					1
xtintreg		15000	5	5		1
xtivreg, be		120000	5	5	5	1
xtivreg, fd		80000	5	5	5	1
xtivreg, fe		80000	5	5	5	1
xtivreg, re		150000	5	5	5	1
xtlogit, fe		20000	10	50		1
xtlogit, re		40000	5	5		1
xtnbreg, fe		70000	5	10		1
xtnbreg, re		40000	5	10		1
xtologit		8000	10	10	0	1
xtoprobit		8000	10	10	0	1
xtpcse		3	80000	50		1
<pre>xtpcse, corr(ar1)</pre>		4	50000	10		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

		Observations				
Command	\overline{N}	m	t	k	$n_{ m eq}$	$n_{ m iter}$
xtpcse, corr(psar1)		4	60000	5		1
xtpoisson, fe		20000	5	50		1
xtpoisson, re		30000	5	50		1
xtprobit, re		20000	5	5		1
xtrc		100	10000	5		1
xtreg, be		15000	5	200		1
xtreg, fe		200000	5	100		1
<pre>xtreg, fe vce(robust)</pre>		50000	10	100		1
xtreg, mle		80000	10	5		1
xtreg, re		20000	3	200		1
xtregar, fe		100000	5	2		1
xtregar, re		90000	5	2		1
xtset		500	5000			1
<pre>xtstreg, distribution(exponential)</pre>		8000	10	10	0	1
<pre>xtstreg, distribution(weibull)</pre>		8000	10	10	0	1
xtsum		100000	10	10		1
xttab	1500000			2	50	1
xttobit		50000	5	5		1
xtunitroot breitung		200	3000			1
xtunitroot fisher		50	1000			1
xtunitroot hadri		50	1000			1
xtunitroot ht		300	2000			1
xtunitroot ips		1000	20			1
xtunitroot llc		100	500			1
zinb	150000			50	50	1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

Table 3. Problem sizes

	Obs	Observations				
Command	$\overline{}$	m	t	k	$n_{ m eq}$	$n_{ m iter}$
zip	250000			50	50	1
_predict, xb	5000000			1000		1
_rmcoll	6000000			100		1
robust	3000000			200		1

N, number of observations; m, number of panels; t, number of time periods within each panel; k, number of regressors; $n_{\rm eq}$, number of equations; and $n_{\rm iter}$, number of iterations.

E Commands not assessed

Some commands were not explicitly assessed and thus do not appear in table 1 or in the performance graphs in appendix A. These commands fall into several categories, as detailed below.

Replication-based prefix commands, such as bootstrap, fracpoly, jackknife, mfp, permute, rolling, simulate, statsby, and stepwise, were not explicitly assessed. These commands run another target command repeatedly; to the extent the target command's performance is improved for a particular problem size, a similar improvement will be obtained when it is run repeatedly by the prefix command.

Commands that do not process data or otherwise involve lengthy computations and are therefore inherently fast are not parallelized and so their performance was not assessed. These commands include camat, clear, clonevar, confirm, describe, estat, estimates, factormat, fvexpand, fvunab, lincom, nlcom, pcamat, roccomp, rocgold, sampsi, search, stpower, svydes, test, testnl, unabbrev, and varabbrev.

Commands that involve file I/O or Internet access are not parallelized and so were not assessed. These include adoupdate, append, cf, fdadescribe, fdasave, fdause, filefilter, hsearch, icd9, icd10, infile, insheet, merge, odbc, outfile, outsheet, rmdir, save, search, snapshot, use, xmlsave, xmluse, zipfile, and unzipfile.

Only a subset of prediction options were assessed. If all predictions were included, they would unduly dominate the timings. Most other predictions have performances similar to the predictions presented in table 1 and in appendix A. Two prediction-like commands whose results are not obtained from predict but whose timings are similar to predict are fracpred and dfbeta.

Some commands are partially parallelized, but their degree of parallelization is extremely variable with respect to the size and characteristics of the data. These commands were not assessed and include bcskew0, lnskew0, fracplot, fracgen, mkmat, stbase, and stjoin.

ac and pac are two time-series commands that are not parallelized and so their performance was not assessed.

graph twoway is not parallelized although a few of its plottypes that involve data management or estimation are parallelized, such as histogram, lowess, lfit, and qfit. Most statistical graphs in Stata are based on graph twoway. Graphs that involve data management or estimation were assessed and appear in table 1 and appendix A. Graphs that do not involve data management or estimation are not parallelized and so their performance was not assessed. These include acprplot, avplot, avplots, cabiplot, caprojection, cchart, cluster tree, cprplot, graph twoway, lvr2plot, mdsshepard, pchart, procoverlay, qbys, qchi, qnorm, qqplot, quantile, rchart, rocplot, rvfplot, rvpplot, shewhart, spikeplt, stcoxkm, stcurve, stphplot, and symplot.

A number of commands perform similarly to related commands that were assessed, but these commands were not themselves assessed. bsqreg, iqreg, and sqreg perform similarly to qreg. gladder and gladder perform similarly to ladder. gnbreg is similar to nbreg. xttrans is similar to xttab.

F Mata

Mata is Stata's optimized matrix programming language. It is fully integrated with every aspect of Stata. Some parts of Mata are parallelized and some parts are not. As with Stata, you do not need to change anything to obtain the parallelization speedups; they are automatic.

Those parts of Mata that are parallelized are fully parallelized, meaning that on large enough problems, their speedups will be close to the best theoretical speedups discussed in section 6.

The following Mata functions are parallelized: Cofc(), Cofd(), F(), Fden(), Ftail(), acos(), arg(), asin(), atan(), atan2(), betaden(), binomial(), binomialtail(), binormal(), ceil(), chi2(), chi2den(), chi2tail(), cofC(), cofd(), comb(), cos(), cross(), crossdev(), day(), dgammapda(), dgammapdada(), dgammapdadx(), dgammapdx(), dgammapdxdx(), digamma(), dofC(), dofc(), dofh(), dofm(), dofq(), dofw(), dofy(), dow(), doy(), dunnettprob(), exp(), exponential(), exponentialden(), exponentialtail(), factorial(), floatround(), floor(), gammaden(), gammap(), gammaptail(), halfyear(), hh(), hhC(), hofd(), hours(), ibeta(), ibetatail(), invF(), invFtail(), invbinomial(), invbinomialtail(), invchi2(), invchi2tail(), invdunnettprob(), invexponential(), invexponentialtail(), invgammap(), invgammaptail(), invibeta(), invibetatail(), invlogistic(), invlogistictail(), invnF(), invnFtail(), invnchi2(), invnibeta(), invnormal(), invnt(), invnttail(), invt(), invttail(), invtukeyprob(), invweibull(), invweibullph(), invweibullphtail(), invweibulltail(), ln(), lnfactorial(), lngamma(), lnigammaden(), lnnormal(), lnnormalden(), logistic(), logisticden(), logistictail(), mdy(), minutes(), mm(), mmC(), mod(), mofd(), month(), msofhours(), msofminutes(), msofseconds(), nF(), nFden(), nFtail(), nbetaden(), nchi2(), nibeta(), normal(), normalden(), npnF(), npnchi2(), npnt(), nt(), ntden(), nttail(), gofd(), quadcross(), quadcrossdev(), quarter(), round(), seconds(), sin(), sqrt(), ss(), st_data(), t(), tan(), tden(), trigamma(), trunc(), ttail(), tukeyprob(), week(), weibull(), weibullden(), weibullph(), weibullphden(), weibullphtail(), weibulltail(), wofd(), year(), yh(), ym(), yq(), and yw().

In addition, matrix multiplication in Mata is fully parallelized, as are Mata's colon operators for performing elementwise computations. All other parts of Mata are either not parallelized or are functions of a mixture of the two.

G GLLAMM

Table 4 below shows results for a few models fit using gllamm. This is but a small subset of the models that gllamm can fit. Each command is described briefly in table 5.

The user-written command gllamm (generalized linear latent and mixed models) adds to Stata the ability to fit multilevel, mixed, or hierarchical regression models that have continuous, count, binary, or ordinal dependent variables. In addition, the model may have latent (unobserved) variables, endogenous covariates, and random coefficients or intercepts at any level. Among the many models that gllamm can fit, some important special cases include generalized linear mixed models, multilevel regression models, factor models, item response models, structural equation models, latent-class models, generalized linear models with covariate measurement error, endogenous switching and sample selection models, and Rasch models (including multidimensional marginally sufficient Rasch models).

gllamm's authors, Sophia Rabe-Hesketh with contributions from Anders Skrondal and Andrew Pickles, maintain a web site—http://www.gllamm.org/—with complete documentation (140 pages), tutorials, worked examples, wrapper commands to ease estimation of special models, dates of upcoming courses on gllamm, and references (often with links) to more than 150 papers published on using gllamm to fit models.

gllamm uses full maximum likelihood to estimate the parameters of models and uses Gauss-Hermite quadrature or adaptive quadrature to evaluate the integrals of the likelihood. This common computation engine is one reason gllamm is so flexible and can fit so many models. It is, however, exceedingly computationally intensive, with the effect that gllamm can require substantial time to fit models. gllamm users are interested in seeing it run faster.

gllamm uses many Stata commands that have been parallelized, and some of gllamm's algorithms, sections of which have been parallelized, are written in C. Even so, gllamm incorporates many algorithms, and these algorithms are triggered differently when fitting different models. It is difficult to say anything definitive about performance gains for gllamm when run under Stata/MP. Many gllamm models are highly parallelized, some not parallelized at all, and others lie somewhere in between.

Table 4. Stata/MP performance, command by command

	Spec				
		Percentage			
Command	2	4	8	16	${\it parallelized}^b$
Finite mixture model	2.3	3.5	4.5	5.6	86
Item response model	1.4	2.1	2.7	3.1	74
Latent class model	1.3	1.9	2.5	2.9	71
Measurement error model	1.8	2.7	3.8	5.1	86
Rank-outcome latent class	1.8	2.6	3.2	3.8	77
MIMIC model	1.2	1.8	2.5	2.9	72
Random-effects logistic	1.4	2.0	2.7	3.2	73
RE regression	1.5	2.2	3.0	3.7	79
Two-level RE logistic	1.2	1.8	2.3	2.7	70
Random-coefficients Poisson	0.9	0.9	0.9	0.9	0
RE logistic with constant	1.6	2.3	3.2	4.1	82

All values are expressed as the speed relative to the speed of a single core.

Table 5. Command descriptions

Command	Description
Finite mixture model	Gaussian finite mixture model with two point masses
Item response model	Two-parameter logistic item response model
Latent class model	Gaussian latent class model with two levels in the latent class
Measurement error model	Logistic regression with measurement error in a covariate
Rank-outcome latent class	Latent class model for rank outcomes
MIMIC model	Multiple-indicator, multiple-cause (MIMIC) latent variables structural equation model—ordered logistic
Random-effects logistic	Random-effects (random-intercepts) logistic regresion—same as xtlogit, re
RE regression	Continuous (Gaussian distribution) model with random intercepts—same as xtreg, re
Two-level RE logistic	Logistic regression with two levels of random intercepts
Random-coefficients Poisson	Poisson count-data model with random intercepts and a random coefficient
RE logistic with constant	Random-effects (random-intercepts) logistic regresion, fewer observations

a. Bigger is better; 2 is perfect for 2 cores, 4 is perfect for 4 cores, 8 is perfect for 8 cores, and 16 is perfect for 16 cores.

b. Bigger is better; 100 is perfect.

The graphs below show the observed performances from table 4 in graphical form. Those graphs are followed by graphs showing performance through 40 cores.

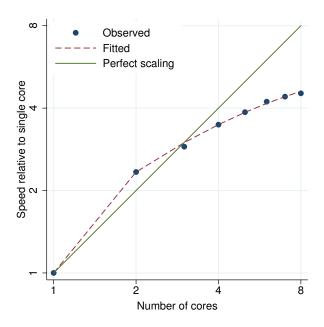


Figure 608. Finite mixture model performance plot.

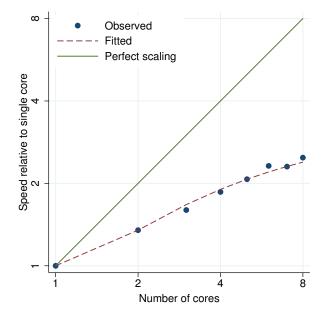


Figure 610. Latent class model performance plot.

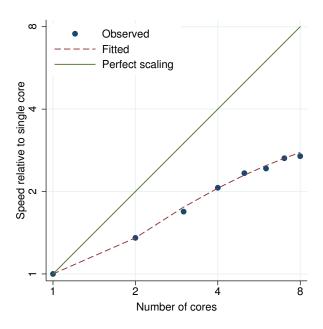


Figure 609. Item response model performance plot.

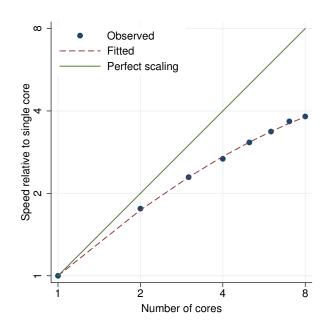


Figure 611. Measurement error model performance plot.

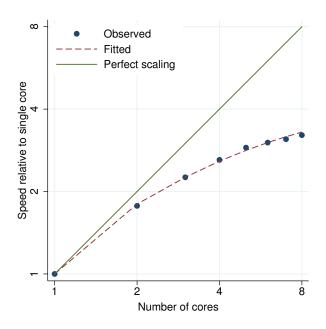


Figure 612. Rank-outcome latent class performance plot.

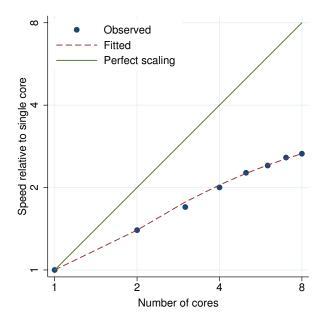


Figure 614. Random-effects logistic performance plot.

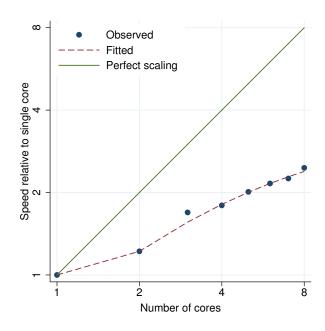


Figure 613. MIMIC model performance plot.

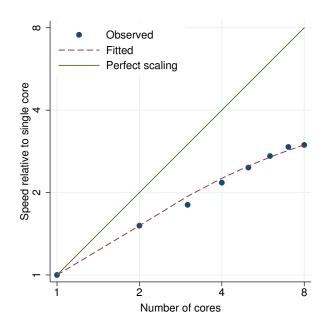


Figure 615. RE regression performance plot.

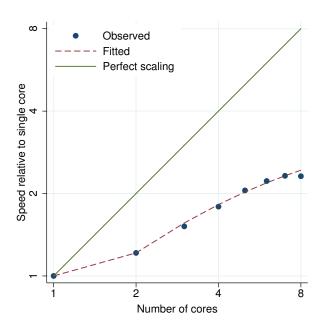


Figure 616. Two-level RE logistic performance plot.

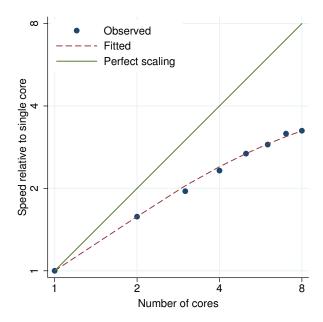


Figure 618. RE logistic with constant performance plot.

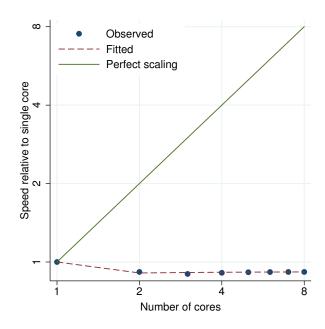


Figure 617. Random-coefficients Poisson performance plot.

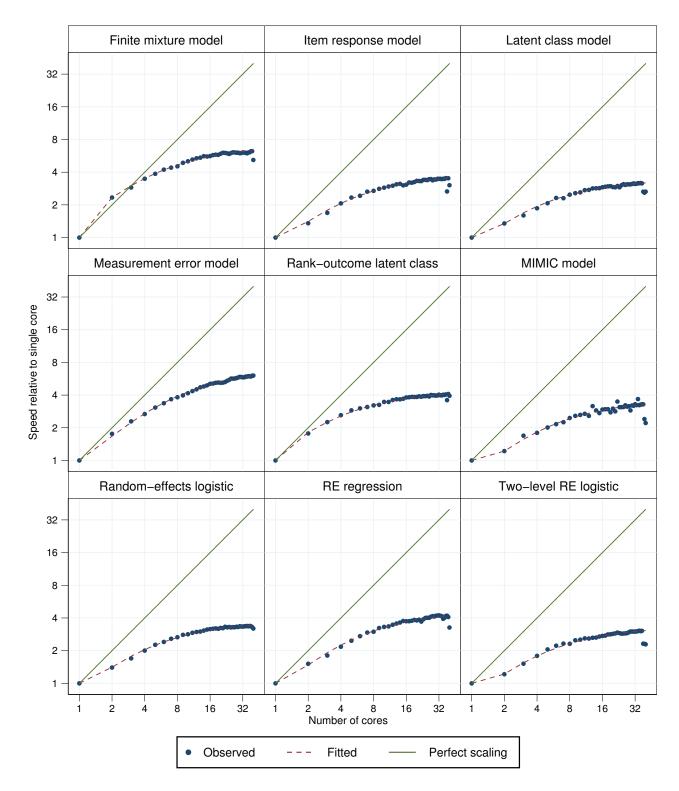


Figure 619. Parallelization performance plots.

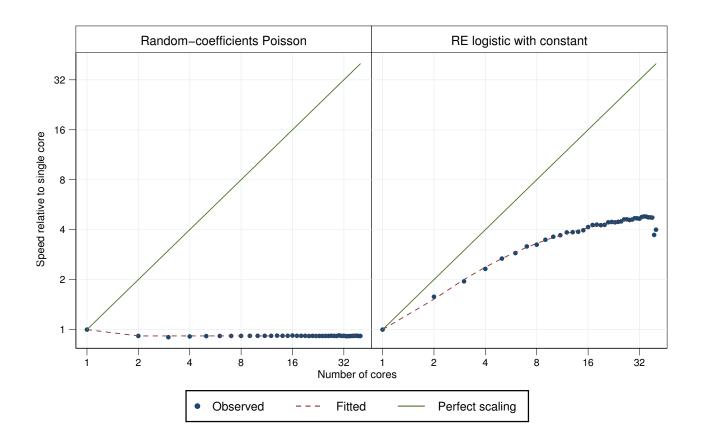


Figure 620. Parallelization performance plots.

References

- Culler, D. E., J. P. Singh, and A. Gupta. 1999. Parallel Computer Architecture: A Hardware/Software Approach. San Francisco: Morgan Kaufmann.
- Dagum, L., and R. Menon. 1998. OpenMP: An industry-standard API for shared memory programming. *IEEE Computational Science & Engineering* 5: 46–55.
- Grama, A., A. Gupta, G. Karypis, and V. Kumar. 2003. Introduction to Parallel Computing. 2nd ed. Boston: Addison-Wesley.
- Moore, G. E. 1965. Cramming more components onto integrated circuits. *Electronics* 38: 114–117.