
Title stata.com

power usermethod — Add your own methods to the power command

Description Syntax Remarks and examples Also see

Description
The power command allows you to add your own methods to power and produce tables and

graphs of results automatically.

Syntax
Compute sample size

power usermethod . . .
[
, power(numlist) poweropts useropts

]
Compute power

power usermethod . . . , nspec
[

poweropts useropts
]

Compute effect size

power usermethod . . . , nspec power(numlist)
[

poweropts useropts
]

usermethod is the name of the method you would like to add to the power command. When naming
your power methods, you should follow the same convention as for naming the programs you add
to Stata—do not pick “nice” names that may later be used by Stata’s official methods.

useropts are the options supported by your method usermethod.

nspec contains n(numlist) for a one-sample test or any of the sample-size options of poweropts such
as n1(numlist) and n2(numlist) for a two-sample test.

Remarks and examples stata.com

Adding your own methods to power is easy. Suppose you want to add a method called mymethod
to power. Simply

1. write an r-class program called power cmd mymethod that computes power, sample size, or
effect size and follows power’s convention for naming common options and storing results;
and

2. place the program where Stata can find it.

You are done. You can now use mymethod within power like any other official power method.

1

http://stata.com
http://www.stata.com/manuals/psspower.pdf#psspower
http://www.stata.com/manuals/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://www.stata.com/manuals/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://www.stata.com/manuals/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://stata.com
http://www.stata.com/manuals/pprogram.pdf#pprogram

2 power usermethod — Add your own methods to the power command

Remarks are presented under the following headings:

A quick example
Steps for adding a new method to the power command
Convention for naming options and storing results
Allowing multiple values in method-specific options
Customizing default tables

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Customizing default graphs
Other settings
Handling parsing more efficiently
More examples: Adding two-sample methods
Initializer’s s() return settings

A quick example

Before we discuss the technical details in the following sections, let’s try an example. Let’s write
a program to compute power for a one-sample z test given sample size, standardized difference, and
significance level. For simplicity, we assume a two-sided test. We will call our new method myztest.

We create an ado-file called power cmd myztest.ado that contains the following Stata program:

// evaluator
program power_cmd_myztest, rclass

version 15.0
/* parse options */

syntax , n(integer) /// sample size
STDDiff(real) /// standardized difference
Alpha(string) /// significance level

/* compute power */
tempname power
scalar ‘power’ = normal(‘stddiff’*sqrt(‘n’) - invnormal(1-‘alpha’/2))
/* return results */
return scalar power = ‘power’
return scalar N = ‘n’
return scalar alpha = ‘alpha’
return scalar stddiff = ‘stddiff’
end

Our ado-program consists of three sections: the syntax command for parsing options, the power
computation, and stored or returned results. The three sections work as follows:

The power cmd myztest program has two of power’s common options, n() for sample
size and alpha() for significance level, and it has its own option, stddiff(), to specify
a standardized difference.

After the options are parsed, the power is computed and stored in a temporary scalar ‘power’.

Finally, the resulting power and other results are stored in return scalars. Following power’s
convention for naming commonly returned results, the computed power is stored in r(power),
the sample size in r(N), and the significance level in r(alpha). The program additionally
stores the standardized difference in r(stddiff).

http://www.stata.com/manuals/psyntax.pdf#psyntax
http://www.stata.com/manuals/pmacro.pdf#pmacro

power usermethod — Add your own methods to the power command 3

We can now use myztest within power as we would any other existing method of power:

. power myztest, alpha(0.05) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.05 .1211 10

We can compute results for multiple sample sizes by specifying multiple values in the n() option.
Note that our power cmd myztest program accepts only one value at a time in n(). When a numlist
is specified in the power command’s n() option, power automatically handles that numlist for us.

. power myztest, alpha(0.05) n(10 20) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.05 .1211 10

.05 .1999 20

We can also compute results for multiple sample sizes and significance levels without any additional
effort on our part:

. power myztest, alpha(0.01 0.05) n(10 20) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.01 .03711 10

.01 .07245 20

.05 .1211 10

.05 .1999 20

http://www.stata.com/manuals/u11.pdf#u11.1.8numlist

4 power usermethod — Add your own methods to the power command

We can even produce a graph by merely specifying the graph option:

. power myztest, alpha(0.01 0.05) n(10(10)100) stddiff(0.25) graph

0

.2

.4

.6

.8

P
o

w
e

r
(1

−
β
)

0 20 40 60 80 100
Sample size (N)

.01 .05

Significance level (α)

Two−sided test

Estimated power

The above is just a simple example. Your program can be as complicated as you would like: you
can even use simulations to compute your results. You can also customize your tables and graphs
with a little extra effort.

Steps for adding a new method to the power command

Suppose you want to add your own method, usermethod, to the power command. Here is an
outline of the steps to follow:

1. Create the evaluator, an r-class program called power cmd usermethod and defined by the
ado-file power cmd usermethod.ado, that performs power and sample-size computations
and follows power’s convention for naming options and storing results.

2. Optionally, create an initializer, an s-class program called power cmd usermethod init
and defined by the ado-file power cmd usermethod init.ado, that specifies information
about table columns, options that may allow a numlist, and so on.

3. Optionally, create a parser, a program called power cmd usermethod parse and defined
by the ado-file power cmd usermethod parse.ado, that checks the syntax of user-specific
options, useropts.

4. Place all of your programs where Stata can find them.

You can now use your usermethod with power:

. power usermethod . . .

You may also use programs within power that are not defined by an ado-file (that is, they were
defined in a do-file or by hand).

http://www.stata.com/manuals/pprogram.pdf#pprogram
http://www.stata.com/manuals/pprogram.pdf#pprogram
http://www.stata.com/manuals/u11.pdf#u11.1.8numlist

power usermethod — Add your own methods to the power command 5

Convention for naming options and storing results

For the power command to automatically recognize its common options, you must ensure that you
follow power’s naming convention for these options in your program. For example, power specifies
the significance level in the alpha() option with minimum abbreviation of a(). You need to ensure
that you use the same option with the same abbreviation in your evaluator to specify the significance
level. The same applies to all of power’s common options described in [PSS] power.

You can specify additional method-specific options, but power will not know about them unless
you make it aware of them; see Allowing multiple values in method-specific options for details.

To produce tables and graphs of results, you must ensure that your evaluator follows power’s
convention for storing results. power’s commonly stored results are described in Stored results of
[PSS] power. For example, the value for power should be stored in the scalar r(power), the value
for a total sample size in the scalar r(N), the value for a significance level in r(alpha), and so on.

You can also store additional method-specific results, but power will not know about them unless
you make it aware of them; see Customizing default tables for details.

Allowing multiple values in method-specific options

By default, the power command accepts multiple values only within its common options. If you
want to allow multiple values in the method-specific options useropts, you need to let power know
about them. This is done via the initializer.

To allow the specification of multiple values, or a numlist, in method-specific options, you need to
list the names of the options with proper abbreviations in an s-class macro s(pss numopts) within
the power cmd usermethod init program.

Recall our earlier example in which we added the myztest method, calculating the power of a
two-sided one-sample z test, to power. We computed powers for multiple values of significance level
and sample size. What if we would also like to specify multiple values of standardized differences
in the stddiff() option of myztest? If we do this now, we will receive an error message,

. power myztest, alpha(0.05) n(10) stddiff(0.25 0.5)
option stddiff() invalid
r(198);

because the stddiff() option is not allowed to include numlist by the evaluator and is not
one of power’s common options. To make power recognize this option as one allowing numlist,
we need to specify this in the initializer. Following the guidelines, we create an ado-file called
power cmd myztest init.ado and specify the name of the stddiff() option (with the corre-
sponding abbreviation) in the s-class macro s(pss numopts) within the power cmd myztest init
program.

// initializer
program power_cmd_myztest_init, sclass

version 15.0
sreturn clear
sreturn local pss_numopts "STDDiff"

end

http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://www.stata.com/manuals/psspower.pdf#psspower
http://www.stata.com/manuals/psspower.pdf#psspowerStoredresults
http://www.stata.com/manuals/psspower.pdf#psspower
http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://www.stata.com/manuals/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)

6 power usermethod — Add your own methods to the power command

We now can specify multiple standardized differences:

. power myztest, alpha(0.05) n(10) stddiff(0.25 0.5)

Estimated power
Two-sided test

alpha power N

.05 .1211 10

.05 .3524 10

Customizing default tables

The power command with user-defined methods always displays results in a table. By default, it
displays columns alpha, power or beta (whichever is specified), and N, which contain the significance
level, the power, and the sample size, respectively. See Setting supported columns and Modifying the
default table columns for details on how to customize the default table columns.

The default column labels are the column names, and the default formats are %7.4g for alpha
and power and %7.0gc for N. These and other settings controlling the look of the default table can
be changed as described in Modifying the look of the default table.

You can always use the table() option to customize your table. However, if you want to modify
how the table looks by default, you need to follow the steps described in the following sections:

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Setting supported columns

The power command automatically supports a number of columns, such as alpha, beta, power,
N, etc. The supported columns are the columns that can be accessed within power’s options table()
and graph().

Most of the time, you will have additional columns, usercolnames, which you will want power to
support. To make power recognize the columns as supported columns, you must list the names of the
additional columns, usercolnames, in an s-class macro s(pss colnames) in the initializer. Columns
usercolnames will then be added to power’s list of supported columns. Columns usercolnames will
also be displayed in the default table unless s(pss tabcolnames) or s(pss alltabcolnames)
is set.

If you want to reset power’s list of supported columns, that is, to specify all the supported columns
manually, you should use the s(pss allcolnames) macro. The supported columns will then include
only the ones you listed in the macro. If you specify s(pss allcolnames), you must remember
to include power’s main columns N, power, and alpha in your list. Otherwise, you may not be
able to use some of power’s functionality, such as default graphs. If s(pss colnames) is specified
together with s(pss allcolnames), the former will be ignored. The specified supported columns
will be automatically displayed in the default table unless s(pss alltabcolnames) is set.

The values corresponding to the specified columns must be stored by the evaluator in r() scalars
with the same names as the column names. For example, the value for column alpha is stored in
r(alpha), the value for column power is stored in r(power), and the value for column N is stored
in r(N).

power usermethod — Add your own methods to the power command 7

Any column not listed in s(pss colnames) or s(pss allcolnames) will not be available
within the power command. For example, any reference to such a column within power’s options
table() and graph() will result in an error.

Modifying the default table columns

By default, power displays the specified supported columns. If you want to display only a sub-
set of those columns, you can use either s(pss tabcolnames) or s(pss alltabcolnames)
to specify the columns to be displayed. You specify additional columns to be displayed in
s(pss tabcolnames) and a complete list of the displayed columns in s(pss alltabcolnames).
If you specify s(pss tabcolnames), the displayed columns will include alpha, power, or beta
(whichever is specified with the command), N, and the additional columns you specified. If you specify
s(pss alltabcolnames), only the columns listed in this macro will be displayed. One situation
when you may want to do this is if you want to change the order in which the columns are displayed
by default. If you specify both macros, s(pss tabcolnames) will be ignored. You can specify only
the names of supported columns in these macros.

Modifying the look of the default table

The default table column labels are the column names. You can change this by specifying your
own column labels in the s(pss collabels) macro. The labels must be properly quoted if they
contain spaces or quotes. The labels must be specified for all columns listed in s(pss colnames)
or s(pss allcolnames).

The default column formats are %7.0gc for sample sizes and %7.4g for all other columns. You can
change this by specifying your own column formats in the s(pss colformats) macro. The formats
must be quoted and specified for all columns listed in s(pss colnames) or s(pss allcolnames).

The default column widths are the widths of the default formats plus one. You can specify your
own column widths in the s(pss colwidths) macro. The widths must be specified for all columns
listed in s(pss colnames) or s(pss allcolnames).

Example continued

Continuing our myztest example, we want to add a column containing the specified standardized
differences to the list of supported columns. The specified standardized difference is stored in
r(stddiff) in the myztest evaluator, so the name of our column is stddiff. We specify it in
s(pss colnames) in our initializer as follows:

// initializer
program power_cmd_myztest_init, sclass

version 15.0
sreturn clear
sreturn local pss_numopts "STDDiff"
sreturn local pss_colnames "stddiff" // <-- new line

end

8 power usermethod — Add your own methods to the power command

We rerun our command now and see that the stddiff column is added to the default table:

. power myztest, alpha(0.05) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N stddiff

.05 .1211 10 .25

We can also change the default column label of the stddiff column to “Std. Difference”. Note that
we can do this within power’s option table(), but if we want this label to show up automatically
in the default table, we should specify it in the initializer. We specify the column label in the
s(pss collabels) macro.

// initializer
program power_cmd_myztest_init, sclass

version 15.0
sreturn clear
sreturn local pss_numopts "STDDiff"
sreturn local pss_colnames "stddiff"
sreturn local pss_collabels ‘""Std. Difference""’ // <-- new line

end

The column containing standardized differences now has the new label

. power myztest, alpha(0.05) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N Std. Difference

.05 .1211 10 .25

Customizing default graphs

By default, power plots the estimated power on the y axis and the specified sample size on the x axis
or the estimated sample size on the y axis and the specified power on the x axis. If s(pss target)
is specified, the estimated sample size is plotted against the specified target parameter. For effect-size
computation, the target parameter must be specified in s(pss target), and it is plotted on the x
axis against the specified sample size. See [PSS] power, graph for details about other default settings.

You can overwrite the default column labels displayed on the graph by specifying the
s(pss colgrlabels) macro. The specification of the graph labels is the same as the specification
of table column labels.

You can also overwrite the default symbols that are used to label the results on the graph by
specifying the new symbols in the macro s(pss colgrsymbols). The symbols must be specified
for all columns listed in s(pss colnames) or s(pss allcolnames).

http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options
http://www.stata.com/manuals/psspowergraph.pdf#psspower,graph
http://www.stata.com/manuals/g-4text.pdf#g-4text

power usermethod — Add your own methods to the power command 9

Other settings

When you add your own method to power, the effect-size parameter is not defined. You can define
it yourself by specifying the name of the column containing the values of the effect-size parameter in
the s(pss delta) macro. The effect-size parameter can then be accessed using the column name
delta and will be displayed in the default table as delta unless the s(pss notabdelta) macro
is set to notabdelta.

The target parameter is not set by power for newly added methods. You can set it yourself by
specifying the name of the column containing the values of the target parameter in the s(pss target)
macro. You must set this macro if you want to obtain default graphs for effect-size determination.
The target parameter can then be accessed using the column name target.

If the target parameter is set in the s(pss target) macro, you can also specify its label in
s(pss targetlabel). This label will be used in the title for the effect-size determination and as
the axis label for the graph column target.

If your method supports command arguments, the arguments specified directly following the method
name, you can specify their corresponding column names in the s(pss argnames) macro. You can
then refer to these arguments as arg1, arg2, and so on, when producing tables or graphs.

power usermethod uses the following generic titles: “Estimated sample size” for sample-size
determination, “Estimated power” for power determination, and “Estimated target parameter” for
effect-size determination. You can extend these titles to be more specific to your method by adding
text in the s(pss titletest) macro. For example, if s(pss titletest) contains “for my test”,
the resulting titles will be “Estimated sample size for my test”, “Estimated power for my test”, and
“Estimated target parameter for my test”. Also see s(pss targetlabel) for how to include a label
for the target parameter in the title.

power usermethod uses the following generic subtitles: “Two-sided test” for a two-sided test or
“One-sided test” for a one-sided test when the onesided option is specified. You can change the
default subtitle by specifying the s(pss subtitle) macro.

Optionally, power usermethod can display a hypothesis statement if macros s(pss hyp lhs)
and s(pss hyp rhs) are specified. s(pss hyp lhs) must contain the parameter of inter-
est, and s(pss hyp rhs) will typically contain the null or comparison value. For example, if
s(pss hyp lhs) contains beta1 and s(pss hyp rhs) contains 0, power usermethod will display

Ho: beta1 = 0 versus Ha: beta1 != 0

for a two-sided test and

Ho: beta1 = 0, one-sided alternative

for a one-sided test. The same hypotheses will appear on the graph, unless s(pss grhyp lhs) and
s(pss grhyp rhs) are specified. These macros are useful if you want to include parameters as sym-
bols on the graph. In our example, we could have defined s(pss grhyp lhs) as {&beta}{sub:1}
and s(pss grhyp rhs) as 0 to include “beta1” as the corresponding symbol on the graph; see
[G-4] text.

Handling parsing more efficiently

The power command checks its common options, but you are responsible for checking your method-
specific options, useropts, or their interaction with power’s common options. You can certainly do
this in your evaluator. However, the checks will then be performed each time your evaluator is called.
You can instead perform all of your checks once within the parser.

http://www.stata.com/manuals/pssglossary.pdf#pssGlossarydef_target
http://www.stata.com/manuals/g-4text.pdf#g-4text
http://www.stata.com/manuals/psspower.pdf#psspowerSyntaxpower_options

10 power usermethod — Add your own methods to the power command

Your parser may be an s-class command and may set any of the s() results typically specified
in the initializer. This may be useful, for example, for building the columns displayed in the default
table dynamically, depending on which options were specified. If all desired s() results are set in
the parser, you do not need an initializer.

More examples: Adding two-sample methods

All of our examples so far showed how to add a one-sample method to the power command. Here
we demonstrate how to add a two-sample method. (The support for multiple-sample methods is not
yet available.)

The steps for adding your own two-sample methods are the same as those for adding one-
sample methods, except you may need to set the s(pss samples) macro to contain twosample
in the initializer. If any of the two-sample options n1(), n2(), and nratio() are specified, power
automatically recognizes the method as a two-sample method. If these options are not used and you need
the method to be recognized as a two-sample method, you must set s(pss samples) to twosample.
If you do not want power to respect the two-sample options, you should set s(pss samples) to
onesample.

For illustration, let’s add a method comparing two independent proportions using a large-sample chi-
squared test. (Note that this method is available in the official power twoproportions command.)
For simplicity, we will compute the power of a two-sided test. We will call our new method
powertwoprop.

We write our evaluator and save it as power cmd powertwoprop.ado.

// evaluator
program power_cmd_powertwoprop, rclass

version 15.0
//parse command arguments and options
syntax anything(id="proportions"), ///

[Alpha(real 0.05) /// significance level
n(string) /// total sample size
n1(string) n2(string) /// group sample sizes
NRATio(real 1) /// N2/N1

]
//parse specification of proportions
gettoken p1 rest : anything
gettoken p2 rest : rest
if (‘"‘p2’"’=="") {

di as err "Experimental-group proportion must be specified"
exit 198

}
if (‘"‘rest’"’!="") {

di as err "Only two proportions may be specified"
exit 198

}
//sample size must be specified to compute power
if (‘"‘n’‘n1’‘n2’"’=="") {

di as err "One of {bf:n()}, {bf:n1()}, or {bf:n2()} " ///
"is required to compute power"

exit 198
}

http://www.stata.com/manuals/psspowertwoproportions.pdf#psspowertwoproportions

power usermethod — Add your own methods to the power command 11

//handle some sample-size specifications
if (‘"‘n’"’=="") {

tempname n
if (‘"‘n2’"’=="") {

tempname n2
scalar ‘n2’ = ceil(‘nratio’*‘n1’)

}
else if (‘"‘n1’"’=="") {

tempname n1
scalar ‘n1’ = ceil(‘n2’/‘nratio’)

}
scalar ‘n’ = ‘n1’+‘n2’
local nratio = ‘n2’/‘n1’

}
else {

tempname n1 n2
scalar ‘n1’ = ceil(‘n’/(1+‘nratio’))
scalar ‘n2’ = ‘n’-‘n1’

}
//compute power
tempname diff pbar sigma_D sigma_p crv power
scalar ‘diff’ = ‘p2’ - ‘p1’
scalar ‘pbar’ = (‘n1’*‘p1’+‘n2’*‘p2’)/‘n’
scalar ‘sigma_D’ = sqrt(‘p1’*(1-‘p1’)/‘n1’+‘p2’*(1-‘p2’)/‘n2’)
scalar ‘sigma_p’ = sqrt(‘pbar’*(1-‘pbar’)*(1/‘n1’+1/‘n2’))
scalar ‘crv’ = invnormal(1-‘alpha’/2)*‘sigma_p’
scalar ‘power’ = normal((‘diff’-‘crv’)/‘sigma_D’) ///

+ normal((-‘diff’-‘crv’)/‘sigma_D’)
//return results
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar N = ‘n’
return scalar N1 = ‘n1’
return scalar N2 = ‘n2’
return scalar nratio = ‘nratio’
return scalar p1 = ‘p1’
return scalar p2 = ‘p2’

end

We can now use powertwoprop with the power command. We specify the two proportions
following the command name and group sample sizes in the n1() and n2() options.

. power powertwoprop 0.1 0.3, n1(40) n2(60)

Estimated power
Two-sided test

alpha power N

.05 .6743 100

As with one-sample methods, we can use an initializer (saved in
power cmd powertwoprop init.ado) to include additional columns in our default table.

// initializer
program power_cmd_powertwoprop_init, sclass

version 15.0
sreturn clear
sreturn local pss_colnames "N1 N2 nratio p1 p2"

end

12 power usermethod — Add your own methods to the power command

. power powertwoprop 0.1 0.3, n1(40) n2(60)

Estimated power
Two-sided test

alpha power N N1 N2 nratio p1 p2

.05 .6743 100 40 60 1.5 .1 .3

Initializer’s s() return settings

The following s() results may be set by the initializer or parser:

Macros
s(pss samples) onesample for a one-sample test or twosample for a two-sample test
s(pss colnames) columns to be added to the default supported columns
s(pss allcolnames) all supported columns
s(pss tabcolnames) columns to be added to the default table
s(pss alltabcolnames) all columns to be displayed in the default table
s(pss collabels) labels for the specified columns
s(pss colformats) formats for the specified columns
s(pss colwidths) widths for the specified columns
s(pss colgrlabels) labels to be used to label columns on the graph
s(pss colgrsymbols) symbols to be used to label columns on the graph
s(pss delta) column name containing the effect-size parameter
s(pss target) column name containing the target parameter
s(pss targetlabel) label for the target parameter
s(pss argnames) column names containing command arguments
s(pss titletest) method-specific title
s(pss subtitle) subtitle
s(pss hyp lhs) left-hand-side parameter or value for the hypothesis
s(pss hyp rhs) right-hand-side parameter or value for the hypothesis
s(pss grhyp lhs) left-hand-side or value parameter for the hypothesis on the graph
s(pss grhyp rhs) right-hand-side parameter or value for the hypothesis on the graph

Also see
[PSS] power — Power and sample-size analysis for hypothesis tests

[PSS] intro — Introduction to power and sample-size analysis

[PSS] Glossary

http://www.stata.com/manuals/psspower.pdf#psspower
http://www.stata.com/manuals/pssintro.pdf#pssintro
http://www.stata.com/manuals/pssglossary.pdf#pssGlossary

