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Where we start from...

Suppose Y ∼ N(µ, 1)

µ̂ML = argmax
µ

n∑
i=1

logφ(yi |µ, 1)

µL2e = argmin
θ

[
1

2
√
π
− 2

n

n∑
i=1

φ(yi |µ, 1)

]
where φ(.) represents the Gaussian density function

Consider a sample of size 1000 from N(0, 1) with up to 300 additional
observations sampled from a contamination density, N(5, 1)
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... L2e robustness ...

Figure: Log-likelihood and L2e criteria profiles



... L2e illuminating behaviour ...
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Finite mixtures of regression models

Let f0(y |x) denote the true conditional density function of Y given X = x
and g0(y , x) = f0(y |x)fX (x) denote the corresponding (true) joint density

By assuming that f0(y |x) belongs to a parametric family
Fm = {fθm(y |x) : θm ∈ Θm ⊆ Rp} with m <∞, a finite mixture of
regression models can be defined as

fθm(yi |x i) =

m∑
j=1

πj fj(yi |x i) with θm = (π,β) (1)
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Common parametric families of probability distributions

fθm(yi |x i) =

m∑
j=1

πj fj(yi |x i) with θm = (π,β) (2)

Poisson fj(yi |xi) = fj(yi |λij) = e−λijλyi
ij /yi !

with λij = exp(xT
i βj)

NB fj(yi |xi) = fj(yi |µij , αj) =
Γ(yi +

1
αj

)

Γ(yi +1)Γ( 1
αj

)

(
1
αj

1
αj

+µij

) 1
αj
(

µij
1
αj

+µij

)yi

with µij = exp(xT
i βj) and αj ≥ 0

Gaussian fj(yi |xi) = fj(yi |µij , σ
2
j ) =

1
σj
√
2π exp

(
− (yi−µij )2

2σ2j

)
with µij = xT

i βj
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ML estimation

Likelihood-based (ML) methods still remain the most widely used
procedures to estimate finite mixtures of regression models

Their strengths are: computational simplicity and asymptotic efficiency

However, a well known drawback of ML is represented by its sensitivity to
extreme values and/or components’ contamination (see, among the
others, Aitkin and Wilson (1980), Wang et al. (1996))
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... robust alternatives ...

Several robust approaches have been proposed to estimate finite mixtures
of regression models. They exploit the intrinsic robustness of the minimum
distance estimation framework

Better performances by:

1 Hellinger Divergence (Beran, 1977)

2 Density-based Divergence (Basu et al., 1998)

The L2 estimator is a special case of the robust estimation approach
proposed by Basu et al. (1998)
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Minimum Hellinger Divergence (MHD)

A robust estimator of θm can be obtained by minimizing the integrated
Hellinger divergence

θMHD
m = argmin

θm

∫ ∫ [
f̂n(y |x)1/2 − fθm(y |x)

1/2]2 fX (x)dxdy

where f̂n(y |x) is a conditional non-parametric estimator of the true
conditional density f0(y |x)

When applicable, MHD estimation allows to achieve efficiency in correctly
specified models and robustness in presence of outliers. However:

1 Computational complexity. Extensions are not straightforward for mixtures
of regression models (see for instance Lu et al. (2003))

2 Results strongly depend on the used conditional density estimators and
related bandwidths

3 Generally more sensitive to the choice of initial values than the MDPD
approach (see Karlis and Xekalaki (1998))
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Minimum Density Power Divergence (MDPD)

A robust estimator of θm can be obtained by minimizing the density-power
divergence

θMDPD
m = argmin

θm

∫ [∫
fθm(y |x)

1+αdy
]

fX (x)dx −
(
1+ 1

α

)
n−1

n∑
i=1

fθm(yi |x i) (3)

Even if not for mixture models, Basu et al. (1998) show that, by choosing
a small value of α, MDPD estimation has strong robustness properties
with a negligible loss in terms of efficiency relative to ML

Lee and Sriram (2012) show that L2 estimator (MDPD with α = 1) is a
very useful, attractive and viable alternative to the MHD for finite
mixtures of Poisson or negative binomial regression models

Belotti, Deb rfmm: MDPD finite mixtures of regression models



Motivation & Contribution
Proposed estimators
The rfmm command

MC study
Application

Our contribution

1 We extend the L2 estimator of Lee and Sriram (2012) to the MDPD
estimation framework for finite mixtures of Poisson, NB-2 and Gaussian
regression models

2 We investigate the properties of the proposed estimators through an
extensive Monte Carlo study focusing on the Poisson distribution

3 We provide the new Stata command rfmm
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MDPD estimation of finite mixtures of Poisson and NB2 regression models

We propose to approximate
∫ [∫

fθm(y |x)1+αdy
]

fX (x)dx in equation (3)
with n−1

∑n
i=1

∑∞
y=0 f 1+α

θm
(y |xi)

We define the MDPD estimator for a finite mixture of count regression
models the minimizer of the following divergence

θ̂MDPD
m = argmin

θm

[
n−1

n∑
i=1

∞∑
y=0

f 1+α
θm

(y |xi )− (1 +
1
α

)n−1
n∑

i=1

f αθm (yi |xi )

]
(4)

Estimation is straightforward replacing
∑∞

y=0 with
∑max(y)

y=0
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MDPD estimation of finite mixtures of Gaussian regression models

As noted in Lee and Sriram (2012), there is no closed-form expression for
the integral in equation (3) in the case of Gaussian mixtures of regression
models

Consider the following 2-components mixture of Gaussian regression
models

fθm(yi |x i) = πN(yi ,µi,1, σ1) + (1− π)N(yi ,µi,2, σ2) (5)

where µi,1 = x ′i β1 and µi,2 = x ′i β2

When α = 1, we have that (see Scott (2009))

n−1
n∑

i=1

∫
fθm(y |x i)

2dy =

n∑
i=1

π2

2
√
πσ1

+
(1− π)2

2
√
πσ2

+ (6)

+ 2π(1− π)φ(0|µi,1 − µi,2, σ
2
1 + σ2

2)

Belotti, Deb rfmm: MDPD finite mixtures of regression models



Motivation & Contribution
Proposed estimators
The rfmm command

MC study
Application

MDPD estimation of finite mixtures of Gaussian regression models - 2

Unfortunately, when α < 1, we have

n−1
n∑

i=1

∫
[πN(y ,µi,1, σ1) + (1− π)N(y ,µi,2, σ2)]

(1+α) dy (7)

which has no closed-form

We propose to numerically integrate (7) using Gauss-Hermite quadrature

This strategy does not need any polynomial expansion before the
numerical integration and it is easily extendable to mixtures with more
than 2 components
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The basic rfmm syntax is the following

rfmm depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

pweight, aweight, iweight and fweight are allowed. Factor variables are not
allowed (yet)

Options:
mixtureof(distribution) specifies the parametric family for the mixture. May
be normal, poisson and negbin2. Default is poisson

components(#) specifies the number of mixture’s components. Default is 2

alpha(#) specifies the value for the tuning parameter which controls the
trade-off between robustness and efficiency. It must be 0 < α ≤ 1. Default
value is 0.5

noconstant suppresses the constant term for each component of the mixture

cluster(varname) adjust standard errors for intragroup correlation

checkcomponents draws the L2e criteria profile for the (unconditional)
response variable
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predict
[

type
]

newvar
[

if
] [

in
] [

, statistic

equation(component#)
]

where statistic includes:

mean, the default, calculates the predicted mean. To obtain within class means,
specify the equation(component#) option

prior calculates the prior component probabilities. With prior,
equation(component#) must also be specified

posterior computes the posterior component probabilities. With posterior,
equation(component#) must also be specified
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Simulation study - Correctly specified models

We consider as d.g.p. the following 2-components mixture of Poisson
regression models

fθ(Yi |Xi) = π1f (Yi |β01 + β11Xi) + (1− π1)f (Yi |β02 + β12Xi) (8)

where Xi is taken to be a uniform [0, 1], (β01, β11) and (β02, β12) represent
respectively the 1st and 2nd component’s parameters vector, and π1 is the
1st component mixing proportion

Simulations are conducted through an "almost-full" factorial design
controlling for: i) sample size (900, 3600 and 8100); ii) 1st component’s
mixing proportion π1 = 0.1, 0.3, 0.5, 0.7, 0.9; iii) a widely differing set of
components parameters’ values
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Simulation study - Parameters’ values and component’s separation

(a) β01 = 0, β11 = 0.5
β12

0.75 1.25 1.75

β02

0.25 0.5 0.9 1.4
0.75 1.4 2.1 3.0
1.25 3.0 4.1 5.5

(b) β01 = 0, β11 = 0.5
β12

1 1.5 2

β02

0.5 1.1 1.7 2.5
1 2.5 3.5 4.8
1.5 4.8 6.4 8.5

By varying the 2nd component’s parameters, we consider fourteen levels of components
separation defined as

S =
exp (β02 + β12X̄i ) − exp (β01 + β11X̄i )

exp (β01 + β11X̄i )

for which the simulated mixture’s mean ranges between 1 and 8

This set-up gives a total of 270 experiments. Each experiment is based on 100 converged
replications

MDPD estimates for different values of α (0.25, 0.5 and 1) are obtained through rfmm with
BFGS algorithm and analytical gradient/hessian using ML estimates as starting values. The
Newton-Rapson algorithm with analytical derivatives has been used instead for the ML
estimation (using Partha Deb’s fmm)
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Simulation study - Contaminated models

We assume that the data come from the following “contaminated”
mixture of Poisson regression models

fC (Yi |Xi) = (1− φ)fθ(Yi |Xi) + φc(Yi |Xi) (9)

where the probability φ associated with the contaminant c(Yi |Xi), is
chosen to cover a plausible set of contaminations
(φ = 0.025, 0.05, 0.075, 0.1)

In order to ensure a well defined notion of contamination π1 was allowed
to take only three values (π1 = 0.3, 0.5, 0.7)

We specify the contaminant to be Poisson distributed with a conditional
mean of g(Yi ; 3) = e3 ' 20
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MEAD - β02 (N = 8100)



MEAD - β12 (N = 8100)
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Empirical application - Maternity Length of Stay (LOS)

Obstetrical LOS data drawn from the 1998/1999 Western Australia
hospital morbidity database used in Lu et al. (2003) and Lee and Sriram
(2012)

The outcome variable (maternity LOS) is defined as the discrete count in
days after delivery to discharge

The majority of patients (97.5%) spent less than 20 days in hospital, with
an average LOS of 6.24 (and a median of 5)
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Figure: Hospital length of stay
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ML MDPD α = 0.25 MDPD α = 0.5 MDPD α = 0.75 MDPD α = 1
component 1

not married 0.006 0.033 0.060 0.011 0.005
emergency admitted 0.129 ** 0.131 ** 0.122 ** 0.464 *** 0.457 ***
privately paid 0.167 * 0.227 *** 0.257 *** 0.225 0.224
rural 0.108 0.129 ** 0.148 ** 0.189 0.215 *
employed -0.068 -0.057 -0.066 0.074 0.057
aboriginal -0.018 -0.068 -0.102 0.069 0.047
constant 1.610 *** 1.534 *** 1.497 *** 1.442 *** 1.442 ***

component 2
not married -0.241 -0.158 0.056 0.150 0.172
emergency admitted 0.200 0.342 ** 0.276 * -0.495 -0.519
privately paid -0.342 0.012 0.162 0.382 * 0.399 **
rural 0.086 -0.051 -0.058 -0.078 -0.130
employed -0.203 -0.020 -0.064 -0.251 * -0.239 *
aboriginal 0.218 0.325 * 0.282 -0.367 *** -0.371 ***
constant 2.971 *** 2.419 *** 2.202 *** 1.776 *** 1.766 ***
π1 0.073 0.132 0.186 0.380 0.369
π2 0.927 0.868 0.814 0.620 0.631
µ1 18.778 12.619 10.324 4.802 4.750
µ2 5.229 4.912 4.740 5.484 5.434
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Drop extreme values (> 95th or 99th percentile)
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Figure: Predicted components’ means
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