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Preface

How can it be that mathematics, being after all a product of human thought independent of experience, is so admirably adapted to the

elcome to Version 6 of Scientific WorkPlace and Scientific

\. x / Notebook. These programs have always provided easy text-
entry, natural-notation mathematics, powerful symbolic

and numeric computation, and flexible output of online, printed, and
typeset documents in a Windows environment. With Version 6, these
features are available for Linux and Mac OS/X users as well. With its
entirely new Mozilla-based architecture, Version 6 provides more flex-
ibility for your workplace. You can save or export your documents in
multiple formats according to your publication and portability needs.

About Scientific WorkPlace and Scientific Notebook

The two products Scientific WorkPlace and Scientific Notebook pro-
vide a free-form interface to a computer algebra system that is inte-
grated with a scientific word processor. The essential components of
this interface are free-form editing and natural mathematical notation.
Scientific WorkPlace and Scientific Notebook make sense out of as many
different forms as possible, rather than requiring the user to adhere to
a rigid syntax or just one way of writing an expression.

objects of reality?  Albert Einstein (1879—1955)

About Scientific WorkPlace and
Scientific Notebook

Technical Support

New in Version 6

MuPAD 5 computer algebra system
Smoother plots

Customizable toolbars

Optional sidebars

Undo multiple changes

vii
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Preface

They are designed to fit the needs of a wide range of users, from
the beginning student trying to solve a linear equation to the profes-
sional scientist who wants to produce typeset-quality documents with
embedded advanced mathematical calculations. The text editors in
Scientific WorkPlace and Scientific Notebook accept mathematical for-
mulas and equations entered in natural notation. The symbolic com-
putation system produces mathematical output inside the document
that is formatted in natural notation, can be edited, and can be used
directly as input to subsequent mathematical calculations.

The computational components of Scientific WorkPlace and Sci-
entific Notebook use 2 MuPAD engine. All versions use standard li-
braries furnished by SciFace Software. Scientific WorkPlace and Scien-
tific Notebook provide easy, direct access to all the mathematics needed
by many users. For the user familiar with MuPAD, they also allow
access to the full range of MuPAD functions and to functions pro-
grammed in MuPAD. By providing an interface with little or no learn-
ing cost, Scientific WorkPlace and Scientific Notebook make symbolic
computation as accessible as any word processor.

Scientific WorkPlace and Scientific Notebook have great potential in
educational settings. In a classroom equipped with appropriate pro-
jection equipment, the program’s ease of use and its combination of a
free-form scientific word processor and computational package make
it a natural replacement for the chalkboard. You can use it in the same
ways you would a chalkboard and you have the added advantage of
the computational system. You do not need to erase as you go along,
so previous work can be recalled. Class notes can be edited and made
available for viewing on line or printed. Scientific WorkPlace and Sci-
entific Notebook provide a ready laboratory in which students can ex-
periment with mathematics to develop new insights and to solve in-
teresting problems; they also provide a vehicle for students to produce
clear, well-written homework.

This document, Doing Mathematics with Scientific WorkPlace and
Scientific Notebook, describes the use of the underlying computer al-
gebra system for doing mathematical calculations. In particular, it ex-
plains how to use the built-in computer algebra system MuPAD to do
a wide range of mathematics without dealing directly with MuPAD
syntax.

This document is organized around standard topics in the under-
graduate mathematics curriculum. Users can find the guidance they
need without going to chapters involving mathematics beyond their

viii

Students can use Scientific Notebook as an
experimental mathematics lab and to create
clear, well-written homework and reports.
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current level. The first four chapters introduce basic procedures for
using the system and cover the content of the standard precalculus
courses. Later chapters cover analytic geometry and calculus, linear
algebra, vector analysis, differential equations, statistics, and applied
modern algebra. Exercises are provided to encourage users to practice
the ideas presented and to explore possibilities beyond those covered
in this document.

Users with an interest in doing mathematical calculations are ad-
vised to read and experiment with the first five chapters— Basic Tech-
niques for Doing Mathematics; Numbers, Functions, and Units; Alge-
bra; Trigonometry; and Function Definitions—which provide a good
foundation for doing mathematical calculations. You may also find it
helpful to read parts of the sixth chapter Plotting Curves and Surfaces
to get started creating plots. You can approach the remaining chapters
in any order.

Experienced MuPAD users will find it helpful to read about ac-
cessingother MuPAD functions and adding user-defined MuPAD func-
tions in Appendix D, “MuPAD Functions and Expressions.” You will
also want to refer to the tables in that chapter that pair MuPAD names
with Scientific WorkPlace and Scientific Notebook names for constants,
functions, and operations.

For information on the document-editing features of your system,
refer to the online Help or to the document, Creating Documents with
Scientific Word and Scientific WorkPlace.

Technical Support

If you can’t find the answer to your questions in the manuals or the
online Help, you can obtain technical support from the website at

http://www.mackichan.com/support.htm
or at the Web-based Technical Support forum at
http://www.mackichan.com/forum.htm

You can also contact the Technical Support staff by email or telephone.
We urge you to submit questions by email whenever possible in case
the technical staff needs to obtain your file to diagnose and solve the
problem.

When you contact Technical Support by email, please provide com-
plete information about the problem you're trying to solve. They must

In addition to the built-in links to MuPAD, users

familiar with MuPAD can now access MuPAD
directly by using Passthru Code to Engine.
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Preface

be able to reproduce the problem exactly from your instructions. When
you contact them by telephone, you should be sitting at your computer
with the program running.

Please be prepared to provide the following information any time
you contact Technical Support:

¢ The MacKichan Software product you have installed.

o The version and build numbers of your installation (see Help /
About).

o The serial number of your installation (see Help / System Fea-
tures).

o The type of hardware and operating system you're using, (e.g.,
Windows 7, Mac OS X Leopard, Ubuntu 10.10, openSUSE
11.3, etc.).

e What happened and what you were doing when the problem

occurred.

e The exact wording of any messages that appeared on your com-
puter screen.

To contact technical support
e Contact Technical Support by email or telephone between 8
AM and 5 PM Pacific Time:

Internet electronic mail address: support@mackichan.com
Telephone number: 360-394-6033
Toll-free telephone: 877-SCI-WORD (877-724-9673)
Fax number: 360-394-6039

You can learn more about Scientific WorkPlace and Scientific Note-
book on the MacKichan web site, which is updated regularly to pro-
vide the latest technical information about the program. The site also
houses links to other TEX and EIEX resources. There is also an un-
moderated discussion forum and an unmoderated email list so users
can share information, discuss common problems, and contribute tech-
nical tips and solutions. You can link to these valuable resources from
the home page at http://www.mackichan.com.

Darel W Hardy
Carol L. Walker



Basic Techniques
for Doing Mathematics

How many times can you subtract 7 from 83, and what is left afterwards? You can subtract it as many times as you want, and it

of the basic computational features of Scientific WorkPlace and
Scientific Notebook. You can begin computing as soon as you have
opened a file. You are encouraged to open a new document and work

I n this chapter, we give a brief explanation, with examples, of each

the examples as you proceed.

To type and evaluate an expression
1. Place theinsert point where you want the expression and choose
Insert > Math.

2. Typeamathematical expression in the document—for example,
2+ 2. (It will appear red in the document window.)

3. Choose Compute > Evaluate.

The expression 2 42 will be replaced by the evaluation 242 = 4.

Although there are substantial changes to Scientific WorkPlace and
Scientific Notebook for Version 6, the computational behavior of the
program is largely unchanged. The Compute menu will look very fa-
miliar to experienced users. There are some logical changes in the struc-
ture of other menus. Mathematics objects on eatlier Insert menus have
been gathered together under the heading Math Objects, a new item
on the Insert menu. Symbol panels are available in a sidebar as well as
on a Symbol toolbar.

leaves 76 every time.  Author Unknown

Conventions
Inserting Text and Mathematics

Basic Guidelines for Computing

Note

If Insert > Math is checked, your insert point is
already in mathematics mode and you are
ready for step 2.

General procedure

o Enter an expression in mathematics

o (Choose an appropriate command
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Chapter 1] Basic Techniques for Doing Mathematics

Conventions

Program tools are available from menus, toolbar buttons, and key-
board shortcuts. Many tools may be invoked in multiple ways to suit
your style of work—via menus, toolbar buttons, or the keyboard. In
this manual, we generally indicate only one of the possible ways of ac-
cessing a tool, usually via the menus. Appendices A and B list com-
mand shortcuts for doing or entering mathematics.

Understanding the notation and the terms used in our documen-
tation will help you understand the instructions. We assume you're fa-
miliar with the basic procedures and terminology for your operating
system. In our manuals, we use the notation and terms listed below.

General Notation
e Textlike this indicates text you should type exactly as it is shown.

e Text like #his indicates information that you must supply, such
as a filename.

e Textlike this indicates an expression that is typed in mathemat-
ics mode.

e The word choose means to designate a command for the pro-
gram to carry out. As with all standard applications, you can
choose a command with the mouse or with the keyboard. Com-
mands may be listed on a menu or shown on a button or in a di-
alog box. For example, the instruction “Choose File > Open”
means you should first choose the File menu and then from that
menu, choose the Open command. The instruction “choose
OK” means to click OK with the mouse, or to press Tab to se-
lect the OK button and then press Enter.

o The word check means to turn on an option in a dialog box.

Keyboard Conventions

We also use standard computer conventions to give keyboard in-
structions.

e The names of keys in the instructions match the names shown
on most keyboards. Ctrl (Windows) and Cmd (Mac) are syn-
onymous, as are Enter (Windows) and Return (Mac), and right
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click (Windows) and Cmd+click (Mac). Names of keys are al-
ways shown in Windows format. Mac users should substitute

Mac keys (e.g. Cmd and Return) as appropriate.

o A plus sign (+) between the names of two keys indicates that
you must press the first key and hold it down while you press the
second key. For example, Ctrl+g means that you press and hold
down the Ctrl key, press g, and then release both keys. Similarly,
the notation Ctrl+word means that you must hold down the
Ctrl key, type the word that appears after the +, then release the
Ctrl key. Note that if a letter appears capitalized, you should
type that letter as a capital.

Inserting Text and Mathematics

Scientific WorkPlace and Scientific Notebook are modal in the sense

that at all times during information entry you are cither entering text
or mathematics, and the results obtained from keystrokes and other
user interface actions will differ depending on whether you are enter-
ing text or mathematics. Thus we refer to being in either text mode or
mathematics mode. The default state is text mode; it is easy to toggle
between the two modes and it is also easy to determine what mode
you are in. Unless you actively change to mathematics, the program

displays a “T” on the Standard toolbar and

e Interprets anything you type as text, displaying it in black in the
program window.

e Displays alphabetic characters as upright, not italicized.

e Inserts a space when you press the spacebar.

When you start the program, the insert point is in text mode.

To switch from text to mathematics

e Click the “T” on the standard toolbar, or

Choose Insert > Math.
When in mathematics mode, the program

e Displays the insert point between brackets for mathematics.

Inserting Text and Mathematics

Mathematics mode

When you switch from text to mathematics,
the “T” changes to “M” on the toolbar, and the
insert point changes to red and appears
between brackets.
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Chapter 1] Basic Techniques for Doing Mathematics

e Interprets anythingyou type as mathematics, displaying it in red
in the program window.

o Italicizes alphabetic characters and displays numbers upright.

e Automatically formats mathematical expressions, inserting cor-
rect spacing around operators such as + and relations such as =.

e Advances the insert point to the next mathematical object when
you press the spacebar.

To switch from mathematics to text
o Click the “M” on the standard toolbar, or

Choose Insert > Text.

On the screen, mathematics appears in red and text in black. The
blinking vertical line on your screen is referred to as the insert point.
You may have heard it called the insert cursor, or simply the cursor.
The insert point marks the position where characters or symbols are
entered when you type or click a symbol. You can change the position
of the insert point with the arrow keys or by clicking a different screen
position with the mouse. The position of the mouse is indicated by
the mouse pointer, which assumes the shape of an I-beam over text and
an arrow over mathematics.

Basic Guidelines

You can type information in a document in either text or mathe-
matics. The mathematics that you type is recognized by the underlying
computing engine as mathematics, and the text is ignored by the com-
puting engine.

e Text is entered at the position of the insertion point when the

Toggle Text/Math button in the Standard toolbar shows T.

e Mathematics is entered at the position of the insert point when
the Toggle Text/Math button on the Standard toolbar shows a
red M.

You can toggle between mathematics and text by clicking the Tog-
gle Text/Math button or by pressing Ctrl+m or Cerl+t on the key-
board. Entering a mathematics symbol by clicking a button on a tool-
bar automatically puts the state in mathematics at the position in which
the symbol is entered. The state remains in mathematics as you type

Spacing

Mathematics is automatically spaced
differently from text as you enter it—for
example, “2 + 2" rather than “2+2"—so
you do not have to make adjustments.

Text mode

When you switch from mathematics to text,
the “M” changes to “T” and the insert point
changes to black.

Text and Mathematics

The state of the Toggle Text/Math button
reflects the state at the position of the insert
point.



“Compute60” — 2011/12/20 — 14:27 — page 5 — #15

characters or symbols to the right of existing mathematics, until you
cither toggle back into text or move the insert point into text by using
the mouse or by pressing right arrow, left arrow, or the spacebar.

Choose View > Toolbars if any toolbar you would like to use does
not automatically appear above your Document Window.

To type a fraction, radical, exponent, or subscript
1. Choose Insert > Math Objects > Fraction, Radical, Superscript,
or Subscript for input boxes:

2. Enter expressions in the input boxes:

2
§\f5x2yl

The spacebar and arrow keys move the insertion point through
mathematical expressions and the tab key toggles between input boxes.

To use symbols for addition, multiplication and division
e Use standard symbols on the keyboard.

e Choose View > Toolbars and check Symbol Toolbar. Click one
of the buttons on the Symbol Toolbar and a row of symbols will

appcar.

e Click the left or right sidebar pointer and choose Add > Sym-
bol. Click one of the buttons and a panel of symbols will appear.

You select a piece of text with the mouse by holding down the left
mouse button while moving the mouse, or from the keyboard by hold-
ing down shift and pressing right arrow or left arrow. Your selection
appears on the screen in reversed colors. This technique is sometimes
referred to as highlighting an area of the screen. This is also one of
the ways you can select mathematics. See page 12 for a discussion of
automatic and user selections for mathematics.

There are many brackets available for mathematics expressions.
Brackets entered from buttons or dialogs, or from the keyboard with
Ctrl/Cmd pressed, are expanding brackets (sometimes called fences) —
both sides are entered and the resulting brackets change size (both
height and width) depending on the contents. Expanding brackets

will not break at the end of a line so lengthy expressions enclosed in

Inserting Text and Mathematics

Expanding brackets

Expanding parentheses, brackets, and braces
grow to an appropriate size, depending on
what they enclose, such as fractions or
matrices. Their use also tends to minimize
errors associated with unbalanced
parentheses.
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expanding brackets may need to be displayed. Left and right brackets
entered from the keyboard (without Ctrl/Cmd pressed) act indepen-
dently. They also have fixed height.

To insert expanding brackets in a mathematics expression

e Choose Insert > Math Objects > Brackets and select the de-
sired brackets from the panel that appears.

Expanding parentheses and square brackets are also available on

the Math toolbar.
Displaying Mathematics

Mathematics can be centered on a separate line in a display.
y=ax+b

To create a display
1. Choose Insert > Math Objects > Display.

2. Type or paste a mathematical expression in the display.

You can begin with an existing mathematical expression and putit
into a display.
To put mathematics in a display

1. Select the mathematics with click and drag or Shift+right arrow.

2. Choose Insert > Math Objects > Display.

The default environment in a display is mathematics. You can,
however, enter text in a display by toggling to text.

Centering Plots, Graphics and Text

If you have text that you wish to center on a separate line, the nat-
ural way to do this operation is with Centered, which you can choose
from the Section/Body Tag pop-up menu.

If you have a plot or graphic that you wish to center on a separate
line, you should choose the Displayed setting in the Layout dialog, as
discussed in Chapter 6, “Plotting Curves and Surfaces.” To center a
group of plots or graphics, choose the In Line setting in the Layout
dialog and then use Centered.

6

Caution

Mix brackets with care. Although the
expanding parentheses, expanding brackets,
and non-expanding brackets from the
keyboard are generally interchangeable (when
properly matched), the use of nonexpanding
or unusual brackets can lead to
misinterpretations. For example, if (2)(3) is
entered with the outer parentheses “()”
expanding brackets and the inner parentheses
“)(” non-expanding parentheses, then
evaluating this non-matched expression gives
(2)(3) = 2, which is probably not what is
intended!

Spacing around a display

Pressing enter immediately before a display
will add extra vertical space. If you do not want
this space, place the insert point immediately
before the display and press backspace. (This
removes the “new paragraph” symbol.)
Pressing enter immediately after a display will
add extra vertical space and cause the next
line to start a new paragraph. If you do not
want this space or indention, place the insert
point at the start of the next line and press
backspace. (This removes the “new paragraph”
symbol.)
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Basic Guidelines for Computing

When you respond to the request, “place the insert point in the ex-
pression,” place the insert point within, or immediately to the right of,
the expression. The position immediately to the left of a mathematical
expression is not part of the mathematics.

Evaluating expressions

To type a mathematics expression for a computation, begin a new
line with the mathematics expression or type the expression immedi-
ately to the right of text or a text space. If you type mathematics im-
mediately to the right of other mathematics, the expressions may be
combined in ways you do not intend.

To compute the sum 3 + 8
1. Choose Insert > Math

2. Type3+8

3. Choose Compute > Evaluate

By following the same procedure, you can add, subtract, multiply,
and divide, and perform a vast variety of other mathematical compu-
tations.

Compute > Evaluate Compute > Evaluate
235+ 813 =1048 49.2+4+23.6=72.8
235 —-813 =-578 49.2-23.6=25.6
235 x 813 = 191055 49.2.23.6=1161.1

235 49.2
235/813:? %¢=2.0847
Compute > Evaluate Compute > Evaluate
2432 (x+3)+(x—y)=2x—y+3
-9=3 (x+3)—(x—y)=y+3
57=73 (x+3)% (x—y) = (x—y) (x +3)

x+3

ivi=¥ (v +3)/ (x=y) = G5

Basic Guidelines for Computing

Compute > Evaluate

This sequence of actions insert = 11 to the
right of 3 + &, resulting in the equation
34+8=11.

Rules

Except that it be mathematically correct, there
are almost no rules about the form for entering
a mathematical expression.
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One of the few exceptions to the claim of “no rules” is that vertical
notation such as
24 234

415 and a7 and 2135

used when doing mathematics by hand is not recognized. Write sums,
differences, products, and quotients of numbers in natural linear no-

tation, such as 24 4+ 15 and 235 —47 and 24.7/19.5 and 13 + 22, or
natural fractional notation, such as % and % . %

Certain constants are recognized in their usual forms—such as 7,
i, and e—as long as the context is appropriate. On the other hand,
they are recognized as arbitrary constants, variables, or indices when
appropriate to the context, helping to provide a completely natural

way for you to type and perform mathematical computations.

Interpreting Expressions

Ifyour mathematical notation is ambiguous, it may still be accepted.
However, the way it is interpreted may or may not be what you in-
tended. To be safe, remove an ambiguity by placing additional paren-
theses in the expression.

To check the interpretation of a mathematical expression
1. Leave the insert point in the expression.

2. Choose Compute > Interpret.

Compute > Interpret

1/3x+4=1x+4 1/(3x+4) = 3x1+4)

1/(3x)+4 =4 +4 1/3(x+4) =1 (x+4)

Math and Symbol Toolbars

Instructions in this manual rely almost entirely on menu items.
However, toolbars and keyboard shortcuts offer efficient alternative
methods. For descriptions of toolbars and keyboard shortcuts that
perform the Compute menu commands, see Appendix A “Menus, Tool-
bars, and Shortcuts for Doing Mathematics.” For descriptions of tool-
bar buttons and keyboard shortcuts for entering mathematics, see Ap-
pendix B “Menus, Toolbars, and Shortcuts for Entering Mathematics.”
For information about other toolbars and keyboard shortcuts, choose
Help > Search or consult the manual Creating Documents with Scien-
tific WorkPlace and Scientific Word.

—

8
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To display the Math Toolbar
e Choose View > Toolbars and check Math Toolbar.

0N AL AR E LA NNEBI S E Q=S E S
The buttons on this toolbar duplicate items on the Compute and In-
sert > Math Objects menus.

Example Here is how you can type the mathematical expression

\2/’)%113 using the mouse:

1. Click Fraction & and type 2x— 1.

2. Click the denominator input box.

3. Click Radical #7 and type x.
4. Click to the right of the square root symbol.

5. Type +3.

To display the Symbols Toolbar
e Choose View > Toolbars and check Symbols Toolbar.

From this toolbar, you can access Greek letters, many binary op-
eration and binary relation symbols, and other common and not-so-
common mathematical symbols.

afir ‘ oy

FLéw | “"'w |

:—:v| gc.| ;eev| ._[-| ma-| _‘,[v| flo

afrdelnpbrrdprvEomgpecotvpyww dp mcupes

Greek letters

To enter a lowercase Greek letter
o Click the Lowercase Greek button, then click the desired letter.

fiv ‘ D'

Eéw| “"'w |

i+v| "_:Cv| ?EEV| '—'[V| CDJV| ‘.l|-7| fle

afrdelngbrxdlprvEonpecotrvegywmdgp moxpes

To enter an uppercase Greek letter

e Click the Uppercase Greek button, then click the desired letter.

Féw

afi D'~ ‘1—Zv| “_-'\CV| #E'| '—'[V| Cﬂd'| ‘.l|—7| Flw

=]

FABGAZNZDYQTYF
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Binary Operations

To enter a binary operation

e Click the Binary Operations button and click the desired sym-
bol.
Lt|}v|fbll'v t+v|sc-|aéev|~rv|mav|}[v| e .|
PO ROBYVAGRYARL 4D

FH - U= U0

Binary Relations

To enter a binary relation
e Click the Binary Relations button and click the desired symbol.

Eéwr| “"w

e | D | 1o <Co ‘gev| e | w1+ £

2 <2« CCCCek —~ — =

Negated Relations

To enter a negated relation
e Click the Negated Relations button and click the desired sym-

bol.

=l

Eér

ape | o0 | aov| 2o 2ev "—-[v| wie | 3| B
FES2LP4FLFI2 SWE2 2552

Arrows
To enter an arrow

e Click the Arrows button and click the desired symbol.

Liv | “"s |

gc-| gy —lv ‘mav| _‘,[-| fle

=

u|av| O~ |
sz ee 2= — 1] ] = =— =
Miscellaneous Symbols

To enter a miscellaneous symbol
e Click the Miscellaneous Symbols button and click the desired

symbol

M

IR @V TL bz

i+v| "_:Cv| ?EEV| =7
-

1 EphhVIARQ

u|3v| O

00 d ... e e

10
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Delimiters

To enter a delimiter
e Click the Delimiters button and click the desired symbol

tt['}v|¢-“l'v| -
LT T ey,

Symbol Sidebar

You will see left and right sidebar tools on the left and right edges

::Cv| aéev| Hrv| wde v ‘t"v| Lév| v|

of your window.
To view the left or right sidebar
e Click the left or right sidebar tool.
To view the Symbol sidebar
e Choose Add > Symbols
gdd ¥
Syrnbols Ackions %
tﬁ|¢W|i+|5:|#E|
-—I|m:'|:.[|+:' E& |
a B y & ¢
C n 8 1 K
e e
e o e e S e,
v g X v o
J i w3
e € 3
Keyboard Shortcuts

Keyboard shortcuts are available for many common tasks. For
example, to toggle between mathematics and text, press Ctrl+m or
Cul+t. See Appendix B, Keyboard Shortcuts for Entering Mathe-
matics, for some useful keyboard shortcuts for entering symbols and
mathematical objects.

Example Here is how you can type the mathematical expression

\2/);113 using keyboard shortcuts.

Basic Guidelines for Computing

Sidebar tools

-
e

|

Tip

For additional shortcuts, choose Help and
search for Keyboard Shortcuts. More detail is
also available in the Creating Documents users’
manual.
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1. Press Cerl+/.
2. Type2x—1.
3. Press Tab.

4. Press Cerl+r.
5. Type x.

6. Press spacebar.
7. Type +3.

8. Press spacebar.

Selecting Mathematical Expressions

There are more ways than one to select 2 mathematical expression,
as explained in the following sections. When you perform a mathe-
matical operation, a mathematical expression is automatically selected
for the operation, depending on the position of the insert point and
the operation involved. These will be called automatic selections. You
can also force other selections by selecting mathematics with the mouse.
The latter will be called user selections.

Understanding Automatic Selections

When you place the insert point in a mathematical expression and
choose an operation from the Compute menu, the automatic selection
depends primarily on the operation you choose. It also depends on the
location of the mathematics, such as inline, in a matrix, or in a display.
The following two possibilities occur for mathematical objects that are
typed inline:

e Selection of an expression, that part of the mathematics con-
taining the insert point that is enclosed between a combination
of text and the class of symbols—such as =, <, or <—known
as binary relations.

e Sclection of the entire mathematical object, such as an equation
or inequality.

The following examples illustrate situations where these two types
of selections occur.

12
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Operations that Select an Expression

The majority of operations select an expression enclosed between
text and binary relations.

To select an expression enclosed between text and binary relations
e Place the insert point anywhere inside the expression or imme-
diately to the right of the expression, and choose a command
that operates on expressions.

For example, place the insert point anywhere in the left side of the
equals sign in the equation 2x 4 3x = 1 +4 except to the left of the 2,

and choose Evaluate.

Compute > Evaluate
(Insert point in left side of the equation)
2x4+3x=5x=1+4

The expression = 5x is inserted immediately after the expression
2x + 3x, because only the expression on the left side of the equation
was selected for evaluation. The left side of the equation is bounded
on the left by text and on the right by the binary operation “="

Since the result of the evaluation was equal to the original expres-
sion, the result was placed next to the expression, preceded by an equals
sign. After the operation is performed, the insert point appears at the
right end of the result so that you can select another operation to apply
to the result without moving the insert point.

Other commands, including Evaluate Numeric, Simplify, Com-
bine, Factor, and Expand, make similar selections under similar con-
ditions.

Operations that Select an Equation or Inequality

To select an equation

1. Place the insert point anywhere inside the equation or immedi-
ately to the right of the equation.

2. Choose a command that operates on equations.

Compute > Solve > Exact
2x+3x =1, Solution: %

3x+5 < 5x—3, Solution: [4,00)

13 — #23

Basic Guidelines for Computing
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In these cases, the entire mathematical object—that is, the equa-
tion or inequality—was selected. The solution is not equal to the se-
lection, so it is not presented as a part of the original equation.

The other choices on the Solve submenu and the operation Check
Equality also select an equation.

Selections Inside Displays and Matrices

Operations may behave somewhat differently when mathematics
is entered in a display or in a matrix. If you place the insert point inside
adisplay or matrix, the automatic selection is the entire array of entries,
for any operation. Some operations apply to a matrix, and others to
the entries of a matrix or contents of a display. If the operation is not
appropriate for either a matrix or its entries or for all the contents of a
display, you may receive a report of a syntax error.

Selections Inside a Display
Inside a one-line display, the automatic selection is the same math-
ematics as outside a display, and the result is generally returned inside
the display.
To select mathematics in a display
e Place the insert point inside the display, and choose a command
that operates on expressions or equations.

When you choose Evaluate with the insert point in the left side of
the displayed equation

2x+3x=3+5

you get the result
2x+3x=5x=3+5

and when you choose Evaluate with the insert point in the right side
of the displayed equation you get the result

2x+3x=3+5=28

A multiple-line display, however, behaves like a matrix (see next
section). Note that multiple line displays are useful for solving sys-
tems of equations, or equations with initial-value conditions. Apply-
ing Compute > Solve > Exact to the following display yields

6)C—y = 5
Solution: [x = %7); = _117]

14

Note
If the mathematics is not appropriate for the
operation, no action is taken.

Tip
Press Enter at the end of a display line to create
a new display line.
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Selections Inside a Matrix

You can use a matrix to arrange mathematical expressions in a rect-
angular array.

To create a matrix
1. Choose Insert > Math Objects > Matrix.

2. Set the number of rows and columns.
3. Choose OK.

4. Ifyousee nothing on your screen, choose View > Helper Lines,
or

Choose View > Input Boxes.

5. Type a number or any mathematical expression in each of the
input boxes of the matrix.

To select mathematics in a matrix

e Place the insert point anywhere inside the matrix or immedi-
ately to the right of the matrix, and choose a command that op-

erates on expressions. Tip
With Compute > Evaluate, all expressions in
Compute > Evaluate the matrix will be evaluated and the result
displayed as a matrix. Evaluate Numeric,
( xtx 5 "’; 3 ) — ( 25x 8 ) Simplify, Factor, and choices from Combine
5/2 6 7 36 behave similarly.

Compute > Evaluate Numeric
x+x 5+3\ ([ 20x 8.0
52 6> )7\ 25 360
Compute > Factor
x+x 543 2x 23
52 60 )\ 5x27! 22x3?

Understanding User Selections

You can restrict a computation to a selection you have made and
so override the automatic choice.
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To make a user selection
¢ Hold down the left mouse button while moving the mouse over
the material you want to select, then release the left mouse but-
ton.

Your selection is the expression that appears on the screen in re-
versed colors. This procedure will often be referred to as select with the
mouse.

There are two options for applying operations to a user selection—
operating on a selection displays the result of the operation but leaves
the selection intact, and replacing a selection replaces the selection with
the result of the operation. Followingare two examples illustrating the
behavior of the system when operating on a selection. The option of
replacing a selection is referred to as computing in place, and examples
are shown in the following section.

To operate on a user selection
e Use the mouse to make a selection, and apply an operation.

Compute > Evaluate
(2 + 3 selected)
24+3—x:5

In general, the result of applying an operation to a user selection is
not equal to the entire original expression, so the result is placed at the
end of the mathematics, separated by something in text (in this case,
a colon). You can use the word-processing capabilities of your system
to put the result where you want it in your document.

Replacing a user selection, an iz-place computation, is described in
the following section.

Computing in Place

You can replace part of an expression with the result of a compu-
tation on that part.

To replace a user selection
1. Use the mouse to select an expression.

2. Press and hold Ctrl while applying a command to the expres-

sion.
Old Expression Selection Compute > Expand
(x=2?Bx—1) (x—2)* x> —4x4+4(3x—1)

16

Tip

When you operate on a user selection, the
answer appears to the right of the entire
expression, following a colon.

Computing in place

This “computing in place”— that is, holding
down the Ctrl key as you choose an operation
from the Compute menu—is a key feature. It
provides a convenient way for you to
manipulate expressions into the forms you
desire.
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The expression x2 — 4x + 4 remains selected. Enclose it in paren-
theses to complete the replacement.

0ld Expression Selection Compute > Factor
(x> —4x+4) (3x—1) (> —4x+4) (x—2)°(3x—1)
With the help of the Ctrl key, you can perform any computation in

place; that is, you can replace an expression directly with the results of
that computation. This feature, combined with copy and paste, allows
you to “fill in the steps” in demonstrating a computation.

Stopping a Computation

Most computations are done more or less instantaneously, but some
may take several minutes to complete, and some may take a (much)
longer time.

To stop a computation

o Press Cerl+Break (Windows) or Cmd+period (Mac), or

Click @ .

Menus, Toolbars, and Shortcuts

See Appendix A for a summary of the Compute menu commands,
corresponding commands on the Math Toolbar, and keyboard short-
cuts for these commands. See Appendix B for a complete summary of
Insert > Math Objects menu choices, corresponding choices on the
Math and Symbols Toolbars, and keyboard shortcuts related specifi-
cally to entering mathematics. For additional shortcuts, consult Cre-
ating Documents with Scientific WorkPlace and Scientific Word, Version
6 or choose Help and search for keyboard shortcuts.

Customizing Your Program

There are many ways to customize your program to fit your spe-
cial needs and preferences. See Appendix C for information on set-
tings for computation. You can set the number of digits to be used in
computations, the number of digits to be displayed, defaults for plot
intervals, set various debugging choices, customize the appearance of
solutions, and choose different defaults for input, output, matrices,
derivatives, and other entities. There are also many possibilities for
customizing the editing features of the program. These are described
in detail in the Help and in the manual Creating Documents with Sci-
entific WorkPlace and Scientific Word.

Basic Guidelines for Computing
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Computational Engine

The computational engine provided with Scientific WorkPlace and
Scientific Notebook version 6 is MuPAD 5. To see if the computational
engine is in active mode, or to deactivate the engine, choose Tools >
Preferences > Computation, click Engine tab, and check or uncheck
Engine On. (The path for a Mac is SWPPro > Preferences > Com-
putation.)

See Appendix D “MuPAD Functions and Expressions” for a list of
built-in functions and constants, descriptions of Compute menu com-
mands in terms of the native commands of MuPAD, and descriptions
of built-in functions in terms of the MuPAD syntax.

18



Numbers, Functions, and Units

No human investigation can be called real science if it cannot be demonstrated mathematically.

umbers and functions to be used for computing should be
entered in mathematics mode and appear red (or gray) on
your screen. If that is not the case, choose Insert > Math

and retype the expression. Units to be used for computing must be
entered as a Unit Name (see Units, page 34).

To enter a mathematics expression for a computation
e Begin a new line with the mathematics expression, or

Type the expression immediately to the right of text or a text
space.

If you enter mathematics immediately to the right of other mathe-
matics, the expressions will be combined in ways you may not intend.
A safe way to begin is to press Enter and start on a new line.

Integers and Fractions

The first examples are centered around rational numbers—that is,
integers and fractions. You will find examples of many of the same
operations later in this chapter, using real numbers and then complex
numbers. Similar operations will be illustrated in later chapters with a
variety of different mathematical objects.

Integers and Fractions
Elementary Number Theory
Real Numbers

Functions and Relations
Complex Numbers

Units and Measurements

New in Version 6

Rewrite fraction as mixed number
Arithmetic with mixed numbers

Choice of letters and fonts for imaginary unit
and exponential e

Overbar for complex conjugate

More control over thresholds for scientific
notation

Leonardo da Vinci (1452-1519)
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Addition and Subtraction
To add 3, 6, and 14

1. Choose Insert > Math to put the insert point in mathematics
mode.

2. Type 3+ 6+ 14 (This expression should appear red in your doc-

ument window.)
3. Leave the insert point in the expression 3 + 6 + 14.

4. Choose Compute > Evaluate.

This sequence prompts the system to insert = 23 to the right of the
3+ 6+ 14, resulting in the equation 3+ 6+ 14 = 23.

By following the same steps, you can carry out subtraction and per-
form a vast variety of other mathematical computations. With the in-
sert point in the sum (or difference), choose Compute > Evaluate.

Shortcuts

Toolbar and keyboard shortcuts for computing
are summarized in Appendix A “Menus,
Toolbars, and Shortcuts for Doing
Mathematics” and Appendix B “Menus,
Toolbars, and Shortcuts for Entering
Mathematics.”

Compute > Evaluate

The mathematics shown in this table depicts
both what you enter (235 + 813) and the
result after choosing Compute > Evaluate

(= 1048)
Compute > Evaluate
235+813=1048  3-%=-00  96-274+2=71
To obtain the fraction template
e Place the insert point in the position where you want the frac-
tion, and choose Insert > Math Objects > Fraction.
The template will appear with the insert point in the upper input
box, ready for you to begin entering numbers or expressions.
Multiplication and Division
Use any standard linear or fractional notation for multiplication
and division, and with the insert point in the product (or quotient),
choose Compute > Evaluate.
Compute > Evaluate
16 x 37 =592 (84)(—39) = —3276 8.2/3.7=2.2162
2
. 103 213 _ 26 9 14
103+37 = 32 s2=2 = =i

~|
)
\1‘;

20
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Mixed Numbers and Long Division

A number written in the form 14% is interpreted as the mixed
number 14 + g With the factory default, most commands applied
to a mixed number return a fraction. For example, applying Evaluate
or Simplify to 14% gives the result l%l The reverse is accomplished by
Compute > Rewrite > Mixed, which converts a fraction to a mixed
number.

Compute > Evaluate

2 __5 87 __ 18229 2 3 __53
I3=3 1Byg="g- 15+2;=7
Compute > Rewrite > Mixed
5 _ 12 18229 87 53 _ 415
3=13 o =193 n =41

You can change this default so that fractions are output as mixed
numbers.

To set mixed numbers as default for rational numbers
1. Choose Tools > Preferences > Computation, Output tab.

2. Check “Output fractions as mixed numbers.”

With mixed number checked as the output default for fractions,
the system behaves as follows.

Compute > Evaluate
3 2_~4
55+15="T3

Elementary Number Theory

Prime Factorization

A prime is an integer greater than 1 whose only positive factors
are itself and 1. You can factor integers into products of powers of
primes. Place the insert point inside the number and choose Compute
> Factor.

Compute > Factor

Elementary Number Theory

Long Division

The expansion of a fraction to a mixed number
uses the familiar long-division algorithm. For
example, 18229 divided by 94 is equal to
193 with remainder 87.

New in Version 6
Do arithmetic with mixed numbers.

12345 =3 x 5x 823 —24=-23x3 210437 =132 19

241 =222 %310 5 54 o 73 5 112 x 13 x 17 x 19 x 23

21
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Greatest Common Divisor

The greatest common divisor of two integers is the largest integer
that divides both integers evenly. You can find the greatest common
divisor of a collection of integers by evaluating the function gcd ap-
plied to the list of numbers enclosed in parentheses or square brackets
and separated by commas. Leave the insert point in the expression and
choose Compute > Evaluate.

Compute > Evaluate
ged(35,15,65) =5

ged (214438459 344+ 73) =2
ged [—104,221] = 13

Least Common Multiple

You can find the least common multiple of a collection of integers
by evaluating the function lcm applied to the list of numbers enclosed
in parentheses or square brackets and separated by commas. Leave the
insert point in the expression and choose Compute > Evaluate.

Compute > Evaluate

lem (35,15,65) = 1365
lem[6,8] =24

lem (104,221) = 1768

Factorials
Factorial is the function of a nonnegative integer 7 denoted by n!
and defined for positive integers 1 as the product of all positive inte-
gers up to and including n; thatis,n! =1 x2x3 x4 x--- xn. Itis
defined for zero by 0! = 1.
You can evaluate factorials.
Compute > Evaluate
31=6 7! =5040 10! = 3628800

Binomial Coefficients
An expression of the form a + b is called a binomial. The formula
that gives the expansion of (a+b)" for any natural number n is

( +b>n i n! nfkbk
a =) ————a
= k! (n—k)!

22

Function recognition

If you enter the function gcd from the
keyboard while in mathematics mode, the gc
appears in red italics until you type the d, then
the function name gcd changes to a gray,
non-italic gcd. Alternately, choose Insert >
Math Objects > Math Name, type gcd in the
input box and choose OK.
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This is the same formula that gives the number of combinations of n
. . . ! . .
things taken k at a time. The coeflicients W that occur in this

formula are called binomial coefficients. These coeflicients are often
denoted by the symbols (}) or C,x or ,Cy. Use the symbol (}) to

compute these coefficients.

To enter a binomial coefficient (Z)
1. Choose Insert > Math Objects > Binomial.

2. Check None for Line and choose OK.

3. Type numbers in the input boxes.

Compute > Evaluate

<5> =10 <35> = 6724520
2 7

A Rewrite command will change a symbolic binomial to a factorial
expression.

Compute > Rewrite > Factorial

C)=tm (5) =m0

Real Numbers

The real numbers include the integers and fractions (rational num-
bers), as well as irrational numbers such as v/2 and 7 that cannot be
expressed as quotients of integers.

Arithmetic

You can do arithmetic with real numbers using Evaluate.

Compute > Evaluate
9.6n —2.7r =6.97 202+ Hv2=34y2 2

~Jjoo

If any of the components of a combination of numbers is written
in floating point form—that is, with a decimal—the result will be in
decimal notation. Symbolic real numbers such as v/2 and 7 will retain
symbolic form unless evaluated numerically.

Choose Compute > Rewrite > Rational to change a floating point
number to a rational number.

Real Numbers

Reminder
Numbers used in computing must be in
mathematics mode.

S~
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Compute > Rewrite > Rational
1 118
69 3927

Choose Compute > Rewrite > Float to change a rational number
or a symbolic number to a floating point number.

Compute > Rewrite > Float

1 __ 118
1=0.125 S — 472

69 - 3927 _
On=21.677 32 =3.1416

Typing float while in mathematics gives the grayed function float.
Evaluating float at a rational number gives the floating point form of
the number.

Compute > Evaluate
float (§) =0.125 float (42) =4.72
Powers and Radicals

To raise numbers to powers, use common notation for powers and

apply Evaluate.
Compute > Evaluate
34 = 81 (2.5)%5 =2.0814
374 =& 0.432 =1.8447x 10713

To insert the superscript template N ™ or subscript template N
1. Place the insert point in the position where you want the supet-
script (subscript).

2. Choose Insert > Math Objects > Superscript (Subscript).

The template will appear with the insert point in the upper (lower)
input box, ready for you to begin entering numbers or expressions.

Radical notation for roots

Evaluate and Simplify will compute real roots of positive real num-
bers written in either symbolic or floating point notation. The result of
cither of these operations is presented in symbolic or floating point no-
tation according to the form of the input. Evaluate and Simplify pro-
duce the same result from floating point numbers. Sometimes Sim-
plify is useful with symbolic numbers.

24

Input Boxes
To see input boxes on the screen, choose View
and check Input Boxes.
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Real Numbers

To insert the radical template /T
1. Place the insert point where you want the radical.

2. Choose Insert > Math Objects > Radical.

The template will appear with the insert point in the input box,
ready for you to begin entering numbers or expressions.

You can also Evaluate the built-in function simplify. Type sim-
plify in mathematics mode and it will automatically turn gray.

To enter the expression v/2
1. Choose Insert > Math Objects > Radical and type 2.

2. Press tab, type 3, and press space.

Compute > Evaluate

v/0.008 = 0.20 v/18.234 =1.7872 V24 =26
Jle=1vT6  Vi6=2 V8=-2

Compute > Simplify
VI _2y2 V16270 =3V2n2

Compute > Evaluate

simplify (5/-52) =-2¥2  simplify ({‘/ 1627r6) —3132

Rationalizing a Denominator

To rationalize the denominator of a fraction
1. Place the insert point in the fraction.

2. Choose Compute > Simplify.

Compute > Simplify
Vi = V3T V2
= (V2 8) ()
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Numerical Approximations

Numerical calculations are exact whenever appropriate. You can
force a result to be in decimal notation cither by choosing Evaluate
Numeric or by starting with numbers in decimal notation. Contrast

the responses to evaluation of the following expressions.

Compute > Evaluate
. _ 82
82+37= Zg

936/14.0 = 66.857

14.2

2.8_ 1
37712
V234 =326

(54) = 95367431640625

Compute > Evaluate Numeric
82+37~2.2162

936/14 ~ 66.857
936/14.0 ~ 66.857

142

142 ~0.16608

2 .8 o
282058333

V234~ 15.297
(54)° ~9.5367 x 101

Evaluate Numeric gives decimal approximations, or floating point

numbers.

Compute > Evaluate Numeric
9.6m—2.7t~21.677

42 (3 +1) V2~ 48.083

Rewrite > Float has a similar behavior.

Compute > Rewrite > Float
9.6m—2.7t =21.677

42(3+1)v2=48.083

Typing float while in mathematics gives the grayed function float.

Evaluating float at a rational number gives the floating point form of

the number.

Compute > Evaluate

float (9.67 —2.77) = 21.677

You can specify the number of decimal places to be displayed. See
Appendix C “Customizing the Program for Computing.”

Scientific Notation

Any nonzero real number x can be written in the form

26

x=cx10"

Digits Rendered

To set the number of digits displayed when
applying Evaluate Numeric, choose Tools >
Preferences > Computation, Output page, and
reset Digits Rendered. (For Mac users, choose
SWPPro > Preferences.)

float (42 (3 + 1) v2) = 48.083
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with I < |c| < 10 and 7 an integer. A number in this form is in scien-
tific notation. Following are some examples of scientific notation:

12 = 12x10
8274.9837 = 8.2749837 x 10°
0.000001234 = 1.234x107°

—54163.02 = —5.416302 x 10*

To write a number in scientific notation
1. Enter the number ¢ (in mathematics mode) to as many decimal
places as appropriate.

2. Click the Binary Operations button on the Symbols Toolbar
3. Click x in the symbols palette.
4. Type the number 10.

5. Choose Insert > Math Objects > Superscript and enter the in-
teger 71 in the input box.

The results of a numerical computation are sometimes returned in
scientific notation. This happens when the number of digits exceeds
the setting for Upper Threshold for scientific notation output. See
Appendix C “Customizing the Program for Computing” for details
on changing this setting.

Functions and Relations

Numbers or expressions to be used for computing should be en-
tered in mathematics mode and appear red on your screen. If that is
not the case, choose Insert > Math to change the expression to math-
ematics.

Following are some of the basic built-in functions (absolute value,
maximum and minimum, greatest and smallest integer functions), and
built-in relations (union, intersection, and difference of sets).

See Absolute Value, page 33 for information on absolute values of
complex numbers.

Absolute value

The absolute value of a number z, the distance of z from zero, is
denoted |z|.

Functions and Relations
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To put vertical bars around an expression

1. Select the expression. Caution
The vertical lines from the symbol panel of

2. Choose Insert > Math ObjCCtS > Brackets. Binary Relations will not be interpreted as
absolute-value symbols in computations.

3. Click the vertical bracket and click OK. Although they appear similar, they are not the
same symbols.

To compute an absolute value The keyboard vertical line will work to build an

1. Place the insert point in an expression between vertical bars. absolute value, but expanding brackets are less
vulnerable to misinterpretation. Type Ctrl+\

2. Choose Compute > Evaluate. for expanding absolute value bars.

Compute > Evaluate
|-7| =7 |-11.3]=11.3 43| = 43

Maximum and Minimum

The functions max and min find the largest and smallest numbers
in a list of numbers separated by commas and enclosed in brackets.
Leave the insert point in the expression and choose Evaluate.

Compute > Evaluate

max (§,-v63,73) =73 min (5, -v63,7.3) = -3v7

2

To enter function names for maximum and minimum

1. Choose Insert > Math Objects > Math Name.

2. Select from the list.

Or
1. Choose Insert > Math.

2. Type max or min.
Making the symbol toolbar visible

The binary operations join V and meet A also give maximum and
minimum. o (Choose View > Toolbars

Compute > Evaluate o (Check Symbol toolbar
27vEv-14=9 2IANEA-14=-14
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To enter vee and wedge symbols for maximum and minimum

1. Click Binary Operations on the Symbol toolbar
2. Select V or A from the panel

To find the maximum or minimum of a finite sequence, enter the
limits on the integer variable as a subscript on max or min, either in
the form of a double inequality such as 1 <7 < 10 or as membership
in an interval such ask € [1,10].

Functions and Relations

Integer Variables
The expression max (x3 —6x+ 3)
<x<2

not the maximum of the continuous
polynomial function x> — 6x + 3 on the
interval —2 <x < 2.

Compute > Evaluate Compute > Evaluate Numeric
maxj<p<io (sinn) =sin8 max<p<io (sinn) ~ 0.98936
maxj<,<io (sin1.57) = 0.99749 max_s<x<> (x> —6x+3) ~ 8.0
minge(; 1o (cosk) = cos3 mingc(; ) (cosk) ~ —0.98999
minge(s o) (cos2.6k) = —0.99418 ming(; o) (c0s2.6k) ~ —0.9941

Note that the functions max and min look only at the sequence of
values for integer variables. The notationsx € [—2,2]and =2 <x <2
both indicate that x assumes the range of values in the 5-element set
{=2,-1,0,1,2}. In the last example the maximum is picked from
among values of x> —6x+3forx=—2,—1,0,1,2.

Greatest and Smallest Integer Functions

You can find the greatest integer less than or equal to a number by
using the floor function, denoted | z] .

To put floor brackets around an expression
1. Select the expression with click and drag.

1. Choose Insert > Math Objects > Brackets.
2. Select the left floor bracket , and click OK.

To find a greatest integer value
1. Place the insert point in an expression between floor brackets.

2. Choose Compute > Evaluate.

Compute > Evaluate
15.6] =5 |£] =8
|—11.3] = —12 |[T+e|=5

To find the smallest integer greater than or equal to a number, use
the ceiling function, denoted [z].

is

29
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To put ceiling brackets around an expression
1. Select the expression with click and drag.

2. Choose Insert > Math Objects > Brackets.

3. Select the left ceiling bracket , and choose OK.

To find a smallest integer value
1. Place the insert point in a number between ceiling brackets.

2. Choose Compute > Evaluate.

Compute > Evaluate
[5.6] =6 [$1=9
[—11.3]=-11 [T+e|=6
The floor and ceiling brackets are also available from the Delim-

iters tab , although these are not expanding brackets.
Checking Equality and Inequality

You can verify equalities and inequalities with the command Check
Equality or with the function istrue. There are three possible responses:
true, false, and undecidable. The latter means that the test is inconclu-
sive and the equality may be cither true or false. The computational
engine may use probabilistic methods to check equality, and there is a
very small probability that an equation judged as true is actually false.
Some expressions cannot be compared by this method—hence the in-
conclusive response.

Checking Equalities and Inequalities using Check Equality
To check whether an equality is true or false

1. Place the insert point in the equation.

2. Choose Check Equality.

Compute > Check Equality
e = —1is TRUE = 3.14is FALSE
arcsinsinx = x is FALSE

You can also use Check Equality to check an inequality between
two numbers. Set the difference of the two numbers equal to the ab-
solute value of the difference, place the insert point in the equation,

and choose Check Equality.
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Compute > Check Equality

s—5=|3—5[isSTRUE  7¢—e™ = |n°—¢"|is FALSE

These results verify that % — % >0, or % > %; and that ¢ — e® < 0,
or ¢ < e”,
Checking Equalities and Inequalities Using istrue

Type istrue in mathematics mode to get the function name istrue,
or create it as a Math Name in the Insert > Math Objects > Math
Name dialog box. Evaluate this function at an equation or inequality
to test it.

Compute > Evaluate

istrue (3 < 3) =FALSE  istrue (242 =4) =TRUE

2
istrue (¢ < ¢™) =TRUE istrue <<ﬂ) = 2) =TRUE

Checking Equalities and Inequalities Using Logical Operators

The operators A (AND) and V (OR) can be used as logical opera-
tors. The statement & A B3 is true if and only if both ¢ and B are true.
The statement oV f3 is true if and only if at least one of & and f3 is true.
Using a tautology such as 0 = O or 1 = 1 as one of the statements, you
can test the truth or falsity of another equation or inequality.

Compute > Evaluate

(5°<6°) A(1=1)=FALSE (5°>6°) A(1=1)=TRUE
(5°>6°) V(1=1)=TRUE (5°<6°) V(1 =1)=TRUE
(1=1)v(1=0)=TRUE (" =7°)A(0=0)=FALSE

Checking Inequalities with Evaluate Numeric

In some cases, you can recognize an inequality by inspection after
applying Evaluate Numeric to each of the numbers.

Compute > Evaluate Numeric
3~ 1125 8 ~ 0.88889
¢~ 22.459 e ~ 23.141

From this we see that % > % and 7¢ < e”.

Functions and Relations
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Union, Intersection, and Difference

You can find the union of two or more finite sets with Evaluate, by
using the symbol U between the sets.

Compute > Evaluate

{1,2,3}U{a,b,c} ={1,2,3,a,b,c}
{1,2,3}U({3,5}u{7}) ={1,2,3,5,7}
{\ﬁ,ﬂ,3.9,r} U{a,b,c} = {3.9,71?,a7b,c,r7ﬁ}

You can find the intersection of two or more finite sets with Fval-
uate, using the symbol N between the sets.

Compute > Evaluate
{1,2,3}n{2,4,6} = {2} {a,b,c,d}n{d,e, f} ={d}
{1,2,3}n{a,b,c} =0 {1,23}n{}=0

If two sets have no elements in common, their intersection is the
empty set, denoted by empty brackets { } or the symbol 0. To enter the
symbol @ for the empty set, select it from the Miscellaneous Symbols

panel under .

You can find the difference of two finite sets with Evaluate, by plac-
ing between the sets a backslash \ or the setminus symbol \ from the
Binary Operations panel.

Compute > Evaluate

{1,2,3,4}\{2,4} = {1,3} {a,b,c,d}\{d,e,f} ={a,b,c}

{1,230\ {a,b,c} = {1,2,3}  {1,2,3}\{1,2,3} =0
You can evaluate combinations of union, intersection, and differ-

ence after grouping expressions appropriately with expanding paren-
theses.

Compute > Evaluate

{1,2,3,c}N({2,4,6} U{a,b,c}) = {2,c}
({1,2,3,c}n{2,4,6})U({1,2,3,c} Nn{a,b,c}) ={2,c}
({2,4,6} U{a,b,c})\{2,a,b} ={4,6,c}

Complex Numbers

The usual notation for a complex number is @ + bi where a and b
are real numbers and i satisfies iZ = —1.

32

Choice of imaginary unit

You may prefer to use the letter j instead of i.
If s0, choose Tools > Preferences >
Computation, Input tab, and select Recognize
Jj asimaginary i.
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Arithmetic

You can do arithmetic with complex numbers using Evaluate. The
result is the rectangular form a + bi of the complex number.

Compute > Evaluate
V=S =ivs =g
(

. N . 1 5 .
(1+i)(3—2i) =5+ (1+1) 3-2i) =5+ 30

Absolute Value
The absolute value of a complex number a+ biis given by |a + bi| =

vV a? + b?. You can compute the absolute value of a complex number

using Evaluate.

Compute > Evaluate
H+if=v2 7| =1
Complex Conjugate
The complex conjugate of a + bi is written (a + bi)”* or a + bi.

Compute > Evaluate
(1+i) =1—i
(5-3i)"=5+3i

I+i=1-1
5—-3i=5+3i

Real and Imaginary Parts

You can find the real and imaginary parts of a complex number
using the functions Re and Im.

Compute > Evaluate

Re(1+i)=1 Im(5-3i)=-3

See Complex Numbers and Complex Functions, page 89, for more
advanced topics concerning complex numbers.

Units and Measurements

The available units include units from the System of International
Units (SI units), an internationally agreed upon system of coherent
units that is now in use for all scientific and most technological pur-
poses in many countries. SI units are of three kinds: the base, supple-
mentary, and derived units. There are seven base units for the seven di-

Units and Measurements

Appearance of imaginary unit

You may prefer a distinguished font for the
imaginary i. If so, choose Tools > Preferences
> Computation, Entities tab, and check
Imaginaryl. If you do not want i recognized as
the imaginary unit, click the Input tab, and
uncheck Recognize plain i as imaginary.
Choose OK.

Complex Conjugate

To use overbar notation for complex conjugate,
choose Tools > Preferences > Computation,
Input tab, and check Overbar accent means
conjugate. Choose OK.

Entering functions

When you enter the functions Re and Im in
mathematics mode, they will automatically
turn gray.
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mensionally independent physical quantities: length, mass, time, elec-
tric current, thermodynamic temperature, amount of substance, and lu-
minous intensity. Units from some other commonly used systems are
also implemented. You can define other units in terms of the ones
available in the Unit Name list.

Units

Units appear on your screen as dark green characters (unless you
have changed this default to another color). Units are in mathematics
mode and are active mathematical objects.

Compute > Solve > Exact
1 mi = xkm, Solution: 1.6093
10cm = xin, Solution: 3.937

To enter a unit name
1. Place the insert point at the position where you want the unit
name.

2. Choose Insert > Math Objects > Unit Name.
3. Select a category from the Physical Quantity list.

4. Select a name from the Unit Name list and choose OK.

The unit name will appear at the position of the insert point. The
Unit Name dialog will remain on your screen for further use. To close
it, click the X in the upper right corner of the dialog.

To replace a unit
1. Select the unit name you want to replace, cither with click and
drag or by placing the insert point to the right of the unit name.

2. Choose Insert > Math Objects > Unit Name.
3. Select a category from the Physical Quantity list.
4. Select a name from the Unit Name list.

5. Choose Replace.

The new unit name will replace the previous unit name. The Unit
Name dialog will remain on your screen for further use. To close it,
click the X in the upper right corner of the dialog.
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Units are automatically recognized and can be entered from the
keyboard. See page 496 in Appendix B “Menus, Toolbars, and Short-
cuts for Entering Mathematics,” for a complete list of unit symbols and
keyboard shortcuts for each of the built-in physical quantities.

Arithmetic Operations with Units

You can carry out normal arithmetic operations with units using
Evaluate. If the units differ, the results will be returned in terms of
the basic unit in the category. Measurements will be returned in the
metric system.

Compound names are written as fractions or products, such as

ft/s, ftlbf, and acreft.

Compute > Evaluate

6ft+8ft = 14ft 4d+ 3min = 3457805

61t x 8ft = 48 ft? 10m x 5m = 50m?

Aft+ 16in = 1.6256m li)snsn - 1072.9%

lacreft = 1233.5m> 1 acre + 1 hectare = 14047. m?

Converting Units

You can convert from one unit to another. Place the insert pointin
an equation of the form 47 ft = xm or 47 % = xand choose Compute
> Solve > Exact.

Compute > Solve > Exact
7ft = xin, Solution: 84.0
458.4° = xrad, Solution: 8.0006

50— =42, Solution is: 80.467
1 acre ft = xgal, Solution: 3.2585 x 10°

471b = xkg, Solution: 21.319

7 ft = xm, Solution: 2.1336
1440
T
10acre = xhectare, Solution: 4.0469
471%; = x, Solution: 21.319

8rad = x°, Solution:

The difference between the notions of pound-mass (1b) and pound-
force (1bf) is illustrated in the following examples.

Units and Measurements
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Compute > Solve > Exact
11bf = x1b, Solution: 9. 806 68—“21
471bf = xkg, Solution: 209.07-3

Exercises
1. Find all the primes between 100 and 120.

2. Find two positive integers between 1000 and 1100 whose great-
est common divisor is 23.

3. Evaluate numerically the power (1 + %)n forn =2,4,8, 16,
32, 64, 128, and 256. What well-known number is starting to

emerge?
4. Experiment with numbers to test the potential identities
aN(bVve) = (anb)V(aNc)
aV(bhe) = (aVb)A(aVe)
5. Test the potential identity
AN(BUC)=(ANB)U(ANC)
using the sets A = {1,3,5,7,9}, B = {1,4,9,16}, and C =
{2,3,5,7,11}.

6. The weight of a block of aluminum is 403.2 1bf and the density
is 168 %f What is its volume?

7. If a toy rocket shoots vertically upward with an initial velocity
of 80m/s, at t seconds after the rocket takes off, until it returns
to the ground, it is at the height 807 — 16> m. Find the time it
takes for the rocket to return to the ground. When does it reach
its highest point?

Solutions

1. Test the odd integers between 100 and 120 by factoring:

101 =101 103 =103 105=3x5x%x7 107=107
109=109 111=3x37 113=113 115=5x23
117=3%13 119=7x17

Thus the primes in this range are 101, 103, 107, 109, and 113.
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Exercises

2. Rewrite > Mixed gives % = 43%. Note that44-23 = 1012
and 45-23 = 1035. Checking, we see that gcd(1012,1035) =
23. Find more pairs.

3. Notethar (1+1)?=2.25 (1+1)* =2.4414
(1+1)° =2.5658 (1+4) ' =2.6379
(14 4)7 =2.677 (1+ &) =2.6973
(142 F=27077  (145) =2.713

The number e = 2.7182818284590452354 is beginning to

emerge.

4. With the numbers 1, 2, and 3 we have

IN2V3) = 1 and (IN2)V(IA3)=1

2A(3VvI) = 2 and (2A3)V(2A1)=2

3A(1v2) = 2 and  (BADV(BA2)=2
Similarly,

IV(2A3) = 2 and (IV2)A(1V3)=2

2V(IA3) = 2 and 2VI)A(2V3)=2

3v(IA2) = 3 and  (3VI)A(3V2)=3

These provide experimental evidence that the following are iden-
tities:
an(bVve) = (anb)V(aic)
V(bAc) = (aVb)A(aVe)

5. Notethat{1,3,5,7,9}n({1,4,9,16} U{2,3,5,7,11})={1,3,5,7,9}
and ({1,3,5,7,9Yn{1,4,9,16})U
({1,3,5,7,9}n{2,3,5,7,11}) = {1,3,5,7,9}.

6. The volume of the block of aluminum is

403.2 Ibf

Ibf
16835

=0.06796m>

The volume in cubic feet is the solution to the equation

0.06796 m3 = xft>. The solution is x = 2.4.
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7. The rocket returns to the ground when its height is Om. Solv-
ing (80[ — 16t2) m = Om gives the two solutions = 0 and
t = 5. The rocket thus returns to the ground in 5. The rocket
reaches its highest point in half this time, that is, in % s=2.5s.

The maximum height of the rocket is 80(2.5) — 16 (2.5)2 =
100.0m.
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Algebra

[Algebra's] a merry science. When the animal that we are hunting cannot be caught, we call it X temporarily and continue to hunt

tions. Algebraic expressions are obtained by starting with
variables and constants and combining them using addition,

3 lgebraic operations are generalizations of arithmetic opera-

subtraction, multiplication, division, exponentiation, and roots. The
simplest types of algebraic expressions use only addition, subtraction,
and multiplication; these are called polynomials. The general form of
a polynomial of degree 7 in the variable x is

X"+ a1 X" aix+ag

where ag, ai, . .., a, are constants and a,, # 0.

Polynomials and Rational Expressions

You can perform the usual operations on polynomials. The general
procedure is as described below.

To work with a polynomial expression
1. Enter the expression in mathematics mode and leave the insert
point in the expression.

2. Apply one of the commands from the Compute menu.

You will find a variety of useful commands.

until itis bagged.  Jakob Einstein (1850—1912)

Polynomials and Rational
Expressions

Substitution

Solving Equations

Defining Variables and Functions
Exponents and Logarithms

Toolbars and Keyboard Shortcuts
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The commands on the Compute menu that operate on polyno-
mials include Evaluate, Simplify, Factor, Expand, Combine > Pow-
ers, and, from the Polynomials submenu, Collect, Divide, Partial Frac-
tions, Roots, Sort, and Companion Matrix. See Companion Matrix
and Rational Canonical Form on page 329 of Chapter 8 “Matrix Al-
gebra” for a discussion of the Companion Matrix command. The re-
maining commands are discussed in this chapter.

Sums, Differences, Products, and Quotients of Polynomials

To perform basic operations on polynomials

1. Type the expression in mathematics mode and leave the insert
point in the expression.

2. Choose Compute > Evaluate. Reminder
The mathematics shown here depicts both
Compute > Evaluate what you enter
2 2 _ 2
(3x +3x) =+ (8x +7) = 121x +3x+7 (3x2—|—3x) + (8x2 +7)
(357 +3x) / (82 +7) = L&
| 1 T + and the result of the command Compute >
(x+ 1) (x - 1) = [E=)e=)) Evaluate
x+y:’yf = 113> +3x+7

To expand products or quotients of polynomials
e With theinsert pointin the polynomial expression, choose Com-
pute > Expand.

Compute > Expand
(3x2+3x—1) (8x? +7) = 24x* +24x3 + 13x> +-21x — 7
-1 -1
(1) (=) = g
To enter the function expand Auto substitution
e Choose Insert > Math Objects > Math Name, type expand in  Choose Tools > Auto Substitution and make
the dialog box, check Function, and choose OK, or appropriate choices to enable auto

substitution.
In mathematics mode, type xpnd.

Compute > Evaluate
expand ((3x? +3x—1) (8x* 7)) = 24x* +24x + 13x* +-21x -7
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Polynomials and Rational Expressions

Division by Polynomials

You can convert a quotient of polynomials % with rational coef-
ficients to the form g(x) + %, where r(x) and g(x) are polynomials
and degr(x) < degg(x).
To divide polynomials Polynomials > Divide
1. Enter a quotient of polynomials. This algorithm is the familiar long-division

algorithm for polynomials.

2. Leave the insert point in the expression.

3. Choose Compute > Polynomials > Divide.

Compute > Polynomials > Divide

21 17

3043045 3, Y7 3.3 1
8x2+7 64 8x2+7 8 2
57 -3y+4 _ 5 116 16
5 — 3Vt om—s T

Summation Notation

A polynomial in general form can be written in summation nota-
tion

n
Z ax = apx + ap_ 1 XN+ -+ ajx+ag
k=0
To enter a polynomial as a summation Y3 _, a;x

1. Choose Insert > Math Objects > Operator and choose ).
2. Choose Insert > Math Objects > Subscript and type k = 0.
3. Press tab and type 5.

4. Press the spacebar and type agx®.

Compute > Evaluate
ZZ:O apxk = asx® 4+ agx® + asx® + apx* + a1x + aop

Sums and Differences of Rational Expressions

A quotient of two polynomials is called a rational expression.
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To rewrite inverse notation as a rational expression

1. Type or select the expression.

2. Choose Compute > Rewrite > Rational (This preserves a fac-

torization), or

Choose Compute > Simplify, or

Choose Compute > Rewrite > Normal Form (This expands a

factorization.)

Compute > Rewrite > Rational
-1 ~1
(8" + 7) (x +2247) = (8247) (l2x2+x+7)
Compute > Simplify
-1 -1 1
(8 +7)  (x+222+7) = (+122+47) (8:217)

Compute > Rewrite > Normal Form

—1 —1
(B82+7) (1 +2°+7) = s

To combine rational expressions over a common denominator

42

1. Enter the expressions.

2. Choose Compute > Rewrite > Normal Form, or
Choose Compute > Simplify, or

Choose Compute > Factor.

Compute > Rewrite > Normal Form

-1 4521
X +x23x _ X

-1 “3x+2 T =422 4x—2

Compute > Simplify
Xy 3x—1  __ 4x2—1
2—1 " x2-3x42 T X322 4x2

Compute > Factor
Lol (e
2342~ (—D(E-2)(x+1)

X
x2-1

42 — #52 ?

The mathematics shown here depicts both
what you enter

82 +7) " (x+2247) "

and the result of the command Compute >
Rewrite > Rational

1
(8x2+7) (2x2+x+7)
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Partial Fractions

The command Partial Fractions appears on both the Polynomials
and Calculus submenus. With this command, you can write a ratio-
nal expression as a sum of simpler fractions—essentially the reverse of
the operation demonstrated in the previous section. See page 230 in
Chapter 7 “Calculus” for an application of Partial Fractions.

The Partial Fractions command expands a rational expression into
a sum of rational expressions having denominators that are multiples
of powers of linear and irreducible quadratic factors of the denomi-
nator. In this case irreducible means the roots are neither rational nor
rational combinations of the coefficients of the polynomials.

The numerators of the partial fractions are constants or, in the case
the denominator is a power of an irreducible quadratic, linear. Thus
each partial fraction is of the form

A Ax+B
or
(ax+Db)" (ax? +bx+c)"

If more than one variable occurs in the expression, specify your
choice of variable in the dialog box that appears. The other variables
will be treated as arbitrary constants.

To write a rational expression as a sum of simpler rational expressions
1. Enter the rational expression in mathematics mode and leave
the insert point in the expression.

2. Choose Polynomials > Partial Fractions, or

Choose Calculus > Partial Fractions.

3. Specify variable if Need Polynomial Variable dialog appears.

Compute > Polynomials > Partial Fractions

3% __ 4 __9 __3 _ 4
(x=2)(x—1)%(x+1)> — =2 (x—1)>  (x+1)> xFl
X3+X2+1 _ %x+% _ %xié + %xié + 1 _
A=) (24r1) (241) T (241)7 (@241)7  FFL 86D k]

L y — x - |
(Variable: y) G20 D) )2 (erl) | Gt

<7

— #53

Polynomials and Rational Expressions

_1
X

_ 224y
y24+2y+1

(Variable: x)

Y y _ Y _
(=)D T D) (2 42+1)  (x—y) (32241

This operation does not accept decimal or floating-point numbers,
so write the coefficients as integers or quotients of integers. Use

(x—y)*
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Compute > Rewrite > Rational if you have expressions with decimal
or floating-point numbers (see Real Numbers, page 23).

Collecting and Ordering Terms

The Sort command on the Polynomials submenu collects numeric
coeflicients of terms of a polynomial expression and returns the terms
in order of decreasing degree. The Collect command on the Polyno-
mials submenu collects all coefficients of terms of a polynomial expres-
sion, but does not necessarily sort the terms by degree. Specify your
choice of polynomial variable in the dialog box that appears.

Compute > Polynomials > Sort

A3 x+5-3 452 4+43 + 1342 =2 + 3+ 622 +3x + 18

5024+ 3x12 — 161 +y> —2x12 +9 = 12x — 161> + 51> + y> + 9 (Variable: x)

562 4-3xt? — 166 +y* — 2xt> +9 = — 16t 4% (x+5) +y* +9 (Variable: 7)

Compute > Polynomials > Collect

5024 3x2 — 1615 +y* — 202 +9 = t2x — (16¢° + 5¢> — y* — 9) (Variable: x)

502 4+3x12 — 161° +y> —2x12 +9 = —166° + (x+5) 12 +y> +9 (Variable: 1)

Factoring Polynomials

The ability to factor polynomials is an important algebraic tool.
You will find that the factoring capabilities of your computer algebra
system are powerful and useful. You can factor polynomials with inte-
ger or rational roots and with other roots directly related to the coeffi-
cients of the expanded polynomial. To factor a polynomial, you must
type it without using decimal notation.

To factor a polynomial with exact coefficients
e With the insert point in the polynomial, choose Compute >
Factor.

Compute > Factor

500 4554 =103 — 102 4+ 5x+5=5(x— 1)* (x +1)°

o o in— = s (5= 42) e+ 89

Floating-point numbers

Numbers such as 1.5 are interpreted as
floating-point numbers, and Factor does not
handle polynomials with floating-point
coefficients. Replace decimal numbers with
fractions (suchas 1.5 = %) using Rewrite >
Rational, and then choose Factor.

1200° 420 (—=3+2v/3) 2 — 3 (8v3—3) x+ 3v3 = 120 (x+ 1v/3) (x— 1)
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The Factor command is effective primarily for polynomials with
integer or rational coefficients, although it also factors polynomials
whose roots are closely related to the coefficients, as demonstrated in
two of the preceding examples. Technically, the polynomial is fac-
tored over the field generated by its coefficients. If all the coefficients
are rational, then the polynomial is factored over the rationals. If you
know the form of the root, you can multiply by an appropriate expres-
sion to obtain a factorization.

Compute > Factor
5x2+x+3=5x>+x+3
iv/59 (5% +x+3) = 5iV59 (x+ 15 — 15iV59) (x+ 15 + 15iV/39)

Alternatively, while in mathematics mode, type factor, enter the
polynomial inside parentheses, and choose Evaluate. For the com-
mand expand, type xpnd in mathematics mode. If your system is
not set for automatic recognition, you can enter factor or expand as a

Math Name.

Compute > Evaluate
factor (5x7 +5x* — 10> — 10x% +5x+5) =5 (x— 1)* (x +1)°
expand (5 (x—1)* (x+ 1)3) =50 4 5x* — 1063 — 106 +5x+5

You can factor not only the difference of two squares and the sum
and difference of two cubes, but also the difference of any two equal
powers.

Compute > Factor
=y =(x—y) (x+y)
2=y =(x—y) (P +ay+y?)

=yt =(x—y) (x+y) (P +)?)

You can also factor the sum of any two equal odd powers.
Compute > Factor
P4y = (x+y) (F—xy+)?)
X4y = (x+y) (= Fy+x2y? —xy +y4)

Xy = (x+y) (x6 — Oy +aty? =3+t —xypd +y6)

Polynomials and Rational Expressions
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Greatest Common Divisor of Two Polynomials

The greatest common divisor of two or more polynomials is com-
puted in the same way as the greatest common divisor of two or more
integers. (See Greatest Common Divisor, page 22.)

To find the greatest common divisor of two or more polynomials
1. Type gcd in mathematics mode. (This changes to a gray ged as
you type the final d.)

2. Type the polynomials enclosed by parentheses and separated by
commas.

3. Choose Compute > Evaluate.

Compute > Evaluate
ged(5x% — 5x,10x — 10) = 5x — 5
ged (% 4 3x + yx + 3y, x2 —4yx — 5%, 3x 4+ 2yx —y?) =x+y
You can check these results by factoring the polynomials and com-
paring the factors.
Compute > Factor
X4+ 3x+yx+3y = (x+3) (x+y)
x? —dyx —5y? = (x — 5y) (x +)
357+ 2yx —y* = (3x—y) (x+)
The least common multiple function (see Least Common Multi-
ple, page 22) is also available for polynomials.
To find the least common multiple of two or more polynomials

1. Type lcm in mathematics mode. (It will turn gray.)

2. Type the polynomials enclosed by parentheses and separated by

commas.

3. Choose Evaluate.

Compute > Evaluate
lem(yx+ 3x — 5y — 15,xz — 53x — 5z 4 265)
=265y — 159x — 157 — 53xy + 3xz — Syz + xyz+ 795
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Apply Factor to the polynomials and to their least common mul-
tiple to reveal the relationship among these polynomials.
Compute > Factor
yx+3x—5y—15=(y+3)(x—5)
xz—53x—5z4265=(z—53) (x—5)

Substitution

265y — 159x — 15z — 53xy 4+ 3xz — Syz+xyz+ 795 = (z—53) (y +3) (x = 5)

Substitution

Use common notation for variable substitution:

[F(@)],g=F(a) and [F)Z;=F(b)~F(a)

X=a

Substituting for a Variable

To substitute a number or new expression for a variable
1. Enclose the expression in square brackets.

2. Choose Insert > Math Objects > Subscript.
3. Type an assignment for the variable in the subscript input box.

4. Choose Compute > Evaluate.

Compute > Evaluate

[¥*+2x—3] _ =d*+2a-3 [FZ+2x—3] =32
[x "‘y]x:yJrZ =2y+z [x +y}y:x7z =2x—z
[*+2x-3] =2y—2z+(y—2° -3

x=y—z

Evaluating at Endpoints

To substitute two expressions for a variable and compute the difference
1. Enclose the expression in square brackets.

2. Choose Insert > Math Objects > Subscript.
3. Type an assignment for the variable in the subscript input box.
4. Press tab to create a superscript box.

S. Type another assignment for the variable in the superscript in-
put box.

Assignments

The expression in the subscript is an
assignment for the variable on the left of the
equals sign. Notice that, in particular, x = a
and @ = x are not equivalent assignments;
andx=y+zy=x—zadz=x—y
are not equivalent assignments.
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6. Choose Compute > Evaluate.

Compute > Evaluate
Wt =b-a  [P+2-3]"2=20

X=a

[x2+2x—3]izz =—a®>—2a+b*+2b

Solving Equations

You can solve polynomial equations by choosing Compute > Poly-
nomials > Roots or by choosing Compute > Solve. We first look at
examples for finding roots of polynomials. Then we look at the more
general problems of solving equations with one or more variables.

Roots of Polynomials

If zero is obtained when a number is substituted for the variable in
a polynomial, then that number is a 700z of the polynomial. In other
words, the roots of a polynomial p (x) are the solutions to the equation
p(x) = 0. For example, 1 is a root of x*> — 1 since [xz — 1] =0. Useful Fact

=1
You can find all real and complex roots of a real or complzx polyno-  Anumber is a root of a polynomial if and

mial with rational coefficients by choosing Compute > Polynomials  onlyif x — ris a factor of that polynomial.
> Roots.

To find the roots of a polynomial
1. Type the polynomial and leave the insert point in the expres-
sion.

2. Choose Compute > Polynomials > Roots.
Compute > Polynomials > Roots

5x% 4 2x — 3, roots: —1,% x% + 1, roots: —i,i

X — 15—3ix2 —8x%+ %ix—l— %x+6i— 15—8, roots: 3,5+ 31, —%i

You can simplify complex radical expressions with Rewrite > Rect-
angular.

Compute > Rewrite > Rectangular

(53+ Bi) — 351/(336 +850i) = 2i(—1)
151/ (336 +850i) + (3 + {3i) =5+3i

You can change settings so that only real roots will be computed.
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To find (only) real roots of a polynomial
1. While in mathematics mode, type assume (x, real) and choose
Compute > Evaluate.

2. Place the insert point in the polynomial and choose Compute
> Polynomials > Roots.

Compute > Evaluate
assume (x,real) = R

Compute > Polynomials > Roots
- 15—31')62 —8x%+ %ix+ szlir6if 15—8, roots: 3
5x2 +x+3, roots: 0

The symbol @ denotes the empty set, meaning there is no real so-
lution.

To return to the default mode
1. While in mathematics mode, type unassume (x).

2. Choose Compute > Evaluate.

It follows from the Fundamental Theorem of Algebra that the num-
ber of roots (including complex roots and counting multiplicities) is
the same as the degree of the polynomial. For polynomials with ratio-
nal (real or complex) coefficients, the computer algebra system uses
the usual formulas for finding roots symbolically for polynomials of
degree 4 or less, and it finds the roots numerically for polynomials of
higher degree. This implementation was dictated by the mathemati-
cal phenomenon that there is no general formula in terms of radical
expressions for the roots of polynomials of degree 5 and higher. For
polynomials of any degree with floating point or decimal coefficients,
the computer algebra system finds the roots numerically.

Second-Degree Polynomials

You can obtain the familiar quadratic formula for roots of ax® +
bx—+c. The solution includes all cases. The logical symbol A is used for
AND, soa = 0Ab =0Ac =0 is the case that all three coefficients,
a,b, c, are zero. (Interpret thisas (@ = 0) A (b =0) A (c =0).) The
symbol C denotes the set of all complex numbers. The symbol @ de-

notes the empty set; that is, the case when there are no solutions.

Solving Equations
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Compute > Polynomials > Roots (Variable: x)

ax* 4+ bx + ¢, roots:

(b—\/ —4ac+b2) (b+\/ —4ac+b2) .
- o ,— > if a#0
{-<} if  a=0Ab#£0
C if a=0Ab=0Ac=0
0 if a=0Ab=0Ac#0

Third- and Fourth-Degree Polynomials

The roots of third- and fourth-degree polynomials can be com-
plicated, with multiple embedded radicals in the expressions. To put
those roots in simpler form, you may want numerical approximations.
You get numerical results if you enter at least one coeflicient in decimal
notation. You can also get a numerical form directly from the symbolic
one by applying Evaluate Numeric to the matrix of roots. The follow-
ing examples show both a symbolic solution and a numerical solution
(with Digits Shown in Results set to 6).

Compute > Polynomials > Roots

3/1 1
y Eﬁ_i 31z 1

% L3/1./5 l\[ 1 +3Ly5-1
X2+ 3x+ 1, roots: 23/ 4v5-1 V2 (ﬁ/lﬁ 1 2 2

1 3/1 3/L./5_ 1
PRV 3\ 3V5—3+; z\f(ﬁf —+1/3 2)

x% 4+ 3x+4 1.0, roots: —0.32219,0.16109 — 1.75444,0.16109 4 1.7544i

V5—

M\ -
N\

Substituting the exact roots for x in the polynomial X 43x+1
gives zero, as it should. Applying Evaluate has little effect, but Simplify
gives the following resul.

Compute > Simplify
[x3 +3x+ 1]

=0
V(e YA
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Using the numerical approximations to the roots, you may get a
very small, but nonzero, value. To get closer approximations to the
roots, increase the number of digits shown in the display of these roots
by making changes in the computation output settings. For details, see

Appendix C “Customizing the Program for Computing.”
Compute > Evaluate

(—0.322185)> +3(—0.322185) + 1.0 = 1.174312318 x 10~°

(—0.32218535462608559291)° + 3 (—0.32218535462608559291) + 1
= 4.870126439 x 10~

Compute > Polynomials > Roots

X433 =222 +x+ 1.0,

roots: —3.6096,—0.42898,0.51928 +0.61332{,0.51928 — 0.61332;
x* — 73 4+ 2x2 + 64x — 96, roots: —3,2,4, 4

Example The factorization
8 5 1
3 2
T Yy ) (x 1
X = gx =gt 3(x 3)(3x—2) (x+1)

identifies the three roots 3, %, —1, which are precisely the values of the
x-coordinate where the graph of y = x> — %xz — %x + 2 crosses the x-
axis. The plot depicts this polynomial expression. Chapter 6 “Plotting

Curves and Surfaces” tells how to create plots.

Example The factorization of the complex polynomial
13 29 81 18
X - ?ix2 —8x% + ?ix—i— ?x+6i— 5= (x—3) (x4 3i) (x— (5+3i))

displays the three roots 3, — %i, 5+ 3i.

Polynomials of Degree 5 and Higher

Numerical approximations are returned for roots of polynomials
of degree 5 and higher. You can change the number of digits shown
in the display of these roots by making changes in the Scientific No-
tation Output settings at Tools > Preferences > Computation, Out-
put page. For details, see Appendix C “Customizing the Program for
Computing.”

Solving Equations
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Compute > Polynomials > Roots
5x° 4 5x* — 10x° — 10x> + 5x + 5, roots: —1.0,—1.0,—1.0,1.0,1.0
B x” a8+ 0 +x* 13+ 22+ x4 1, roots: 0.76604 — 0.64279i,

—0.540.86603i,—0.93969 4 0.34202i, —0.5 — 0.866037,0.766 04 4+ 0.64279i,
0.17365+0.98481i,0.17365 — 0.984 81i, —0.93969 — 0.34202i

Since
X —1= (x8+x7+x6+x5+x4—|—x3+x2+x+1) (x—1) A
the roots of x® +x7 +x° + x° +x* + x> + x2 + x + 1 consist of ninth

roots of 1. In the complex plane, these points lie on a circle of radius +

1.

Equations with One Variable

There are four options on the Solve submenu: Exact, Integer, Nu- T
meric, and Recursion. The option Exact is gcneral in nature and is o
used in most situations. It returns symbolic solutions when it can and
numerical solutions otherwise. If any of the components of the prob-
lem use numerical notation, the response is a numerical solution. The
three options Integer, Numeric, and Recursion are used in more spe-
cialized situations. These will be discussed later—see Numerical So-

lutions, page 56, Numerical Solutions to Equations, page 215, Integer
Solutions, page 445, and Recursive Solutions, page 447.

Solutions given for polynomial equations include complex solu-
tions.

To solve an equation with one variable
1. Place the insert point in the equation.

2. Choose Compute > Solve > Exact.

Your system returns an explicit or implicit solution.

Note that in the following examples, integer or rational coefficients
yicld algebraic solutions and real (floating-point) coefhicients yield dec-
imal approximations.

Compute > Solve > Exact
5x% +3x = 1, Solution: 15v/29 — &, —15v/29 — 2

5x? 4 3x = 1.0, Solution: 0.238 52, —0.838 52

x> —3x%+x—3 =0, Solution: i, —i,3
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When there are multiple roots, only distinct roots are displayed.

Compute > Solve > Exact
(x—5)% (x+1) =0, Solution: 5, —1
You can solve equations with rational expressions, and equations

involving absolute values.

Compute > Solve > Exact
14 1

at2 a—4
3x —2| =5, Solution: {3e** + 2|x € [0, 7]}

=1, Solution: 5,10

If you want only real roots, first evaluate assume (x,real). When
you enter these words in mathematics mode, they automatically turn
upright and gray. You can also use Insert >Math Objects > Math
Name to enter assume (x,real). (See Assumptions About Variables,
page 111 for more information on the “assume” function.)

Compute > Evaluate Compute > Solve > Exact
assume (x,real) = R x = I, No solution found.

x> —3x24+x—3 =0, Solution: 3

3x— 2| =5, Solution: —1, %

In general, explicit solutions in terms of radicals for polynomial
equations of degree greater than 4 do not exist. In these cases, implicit
solutions are given in terms of roots of a polynomial. When the equa-
tion is a polynomial equation with degree 3 or 4, the explicit solution
can be very complicated—and too large to preview, print, or save. To
avoid this problem, you can set the engine to return large complicated
solutions in implicit form for smaller degree polynomials as well. See
Appendix C “Customizing the Program for Computing” for details.

With a setting of 1 for maximum degree, only rational or other
relatively simple solutions are computed for all polynomials. With a
setting of 2 or 3, this behavior occurs for polynomials of degree greater
than 2.

Compute > Solve > Exact
(Maximum Degree set to 1)

5x?+3x = 1, Solution: RootOf (32 + 2% — 1)

x* 4x = 0, Solution: {—1,0} UR0otOf (—Z+Z%+1)

Solving Equations
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Compute > Solve > Exact

(Maximum Degree set to 2 or 3)
5x2 +3x = 1, Solution: $5v/29 — &, — 5129 — 3

x*4+x =0, Solution: %-l— %i\/g, % — %i\ﬁ, —-1,0

x*+x—1 =0, Solution: RootOf (Z+Z*—1)

Compute > Solve > Exact
(Maximum Degree set to 4)

x* +x =0, Solution: % + %i\@, % — %i\/g, -1,0
x* 4 x — 1 = 0 (Solution too long to display here)

The function solve takes an equation as input. Evaluate solve at
an equation and the output is a list of solutions. To make the function
name, type solve while in mathematics mode and it will automatically
gray, or create the name with Insert > Math Objects > Math Name.

Compute > Evaluate
solve(5x2—|—3x: 1) = {[x: —% 29—%] , [x: %\/279—%]}

Checking the Answer

Substitution provides a convenient way of testing solutions.

Example Check the solutions to several of the preceding equations.
Compute > Evaluate Compute > Simplify
14 1 _ 2 _
(a2~ s = | [5°+3x], 5,1 m5 =1
[52% +3x] _( y3g50 = 1.0
[52%+3x] 5355, =10

Equations with Several Variables

If there is more than one variable, enter the Variable(s) to Solve
for in the dialog box that opens when you choose Compute > Solve
> Exact.
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Compute > Solve > Exact

Solving Equations

. 0 if y=1
~4+-=1,(FE , Solution: .
x+y (Enter x), Solution {_11_1} i y£1
!
s 1 1 _
1+1+1 1, (Enter ), Soluti ! L
— 4+ — 4+ — =1, (Enter z), Solution: .
o {_!+'—1} if 1+1#1
1 1 _1 . R Solu (1] if rm+rn=0
71+72—§,( nter R), Solution: {rlrlﬁz} i A0
Systems of Equations

You can create a system of equations either by enteringequations in
a one-column matrix or by entering equations in a multi-row display.

To create a system of equations using a matrix
1. Choose Insert > Math Objects > Matrix.

2. Set the number of rows equal to the number of equations.
3. Set the number of columns to 1, and choose OK.

4. Type the equations in the matrix, one equation to a row.

To create a system of equations using a display
1. Choose Insert > Math Objects > Display.

2. Type the equations in the display, one equation to a row, adding
rows as needed with the Enter key.

To solve a system of equations
1. Create a system of equations and leave the insert point in the
system.

2. Choose Compute > Solve > Exact.

3. If a dialog box opens asking Variable(s) to Solve for, type the

variable name(s) in the box, separated by commas.

Following are examples for systems of two equations.

Tip

From the View menu, check Helper Lines or
Input Boxes to help place equations in a matrix
or display.
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Compute > Solve > Exact

2x—y=5 .19 3

X+3y—4 , Solution: [x-7,y_ 7]

2_ 2

xx—i—iz > , Solution: [x =3,y = —2]

I /207 9 45 3 07

Xt =3y = Solution ¥=3v30l g =5 =% 301]’
6x+4y=9" [x=—-1301-3,y=3301+ %]

When the number of unknowns is larger than the number of equa-
tions, you are asked to specify variables in a dialog box.

Compute > Solve > Exact

x+3y=4
3x—4z=7
Solution: [x: %z+%,y: g* gz]

, Variable(s): x,y

2x—y=1
x+3z=4 , Variable(s): x,y,z7
w+x=-3

Solution: [x =—w—-3,y=-"22w-T7,z= %w—l— %]

Numerical Solutions

You can find numerical solutions in two ways. You can choose
Compute > Solve > Exact after entering at least one coeflicient in
floating-point form—that is, with a decimal.

Compute > Solve > Exact
x*+7x—5.2 =0, Solution: 0.67732,—7.6773

x> —3.8x—15.6 =0, Solution: 3.0, —1.54+1.7176i,—1.5—1.7176i
You can choose Compute > Solve > Numeric. This gives all so-

lutions, both real and complex, to a polynomial equation or system of
y q y!
polynomial equations.
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Compute > Solve > Numeric
x247x —5.2 = 0, Solution: {[x = 0.67732],[x = —7.6773]}
x> —3.8x—15.6 = 0, Solution: {[x=—1.5+1.7176i],[x = —1.5—1.7176i] , [x = 3.0]}

18 +3x% — 1 =0, Solution: {[x = —1.0023+0.63210i], [x = —1.0023 — 0.632 10i],
[x =1.0023 +0.632104], [x = 1.0023 — 0.632 10i], [x = —0.57394],
[x =0.57394], [x = —1.2408], [x = 1.2408i]}

¥ +y?=5
x2_y2:1

] , Solution: {[x = —1.7321,y = —1.4142],

[x=—1.7321,y= 14142, [x=1.7321,y = —1.4142], [x = 1.7321,y = 1.4142]}

The choice Compute > Solve > Numeric is particularly useful
when solving transcendental equations or systems of transcendental
equations, or when you want to specify a search interval for the solu-
tion.

To find a numerical solution within a specified range of the variable
1. Add a row to the bottom of the matrix, or

Press Enter to generate a new input box in a display.

2. Write the intervals of your choice, and use the membership sym-
bol € to indicate that the variable lies in that interval.

Compute > Solve > Numeric
¥4y =5
-y =1
x€(=2,0)

y€(0,2)

To find all numerical solutions to a system of polynomial equations

, Solution: [x = —1.7321,y = 1.4142]

1. Change at least one of the coeflicients to floating-point form.

2. Choose Compute > Solve > Exact.

Compute > Solve > Exact

{y=—1.4142,x=1.7321}
{y=-14142,x=—-1.7321}
{y=1.4142,x=1.7321}
{y=14142,x = —1.7321}

2 2
x"4+y*=5.0 o
2y = 1.0 , Solution :
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These four solutions are illustrated in the graph on the right, as the
four points of intersection of two curves. See Implicit Plots on page

132 for guidelines on making such graphs.

See Appendix C “Customizing the Program for Computing” for
details on changing the appearance of these numerical solutions by re-
setting Digits Rendered, Upper Threshold, and Lower Threshold for
Scientific Notation Output.

Inequalities

You can find exact solutions for many inequalitics.

To solve an inequality

e With the insert point in the inequality, choose Compute >
Solve > Exact.

Compute > Solve > Exact

20
16 — 7y > 10y — 4, Solution: (—oo, 17}
x* 41 > x% +x, Solution: (—1,1)U(1,0)
x? 4 2x—3 > 0, Solution: (1,00) U (—oo, —3)
|2x+ 3| < 1, Solution: {xe™ — 3|x € [0,1],y € [0,27]}

- 22x > 0, Solution: (2, %]

These solutions are intervals—open, closed, or half-open and half-
closed:

(a,b) ={x:a<x<b} [a,b] ={x:a <x<b}
(a,b)={x:a<x<b} [a,b) ={x:a<x<b}

For two sets (intervals) A and B,

AUB={x:x€Aorxec B}
ANB={x:x€Aandx € B}

'The solution to the last inequality, x*> + 2x — 3 > 0, can also be
read from the graph of the polynomial y = x* 4 2x — 3. In the plot on
the right, you see the graph passes through the x-axis at x = —3 and
x =1, and the solution includes every point to the left of —3 or to the

right of 1.
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Defining Variables and Functions

The Definitions commands enable you to define a symbol to be
a mathematical object and to define a function using an expression
or a collection of expressions. Four operations on the Define sub-
menu—New Definition, Undefine, Show Definitions, Clear Defini-
tions—are explained briefly in this section for the types of expressions
and functions that occur in precalculus.

See Chapter 5 “Function Definitions,” for greater detail on these
operations and other aspects of definitions. For examples of these op-
erations pertinent to topics such as calculus, vector calculus, and ma-
trix algebra, see the chapter covering the topic.

Assigning Values to Variables

You can assign a value to a variable using Definitions > New Def-
inition.
To assign the value 5 to z

1. Type z =5 in mathematics mode.

2. Choose Compute > Definitions > New Definition.

Thereafter, until you undefine the variable, the system recognizes
zas 5 and will evaluate the expression 3 4z as 8.

Variables normally have single-character names. (See Valid Names
for Functions and Expressions or Variables on page 100 for other pos-
sibilities.) The value assigned can, however, be any mathematical ex-
pression. For example, you could define a variable to be any of the
following:

e Number: a =245
e Polynomial: p = x> +3x% — 5x+ 1

-1

e Rational expression: b = o

. | a b
.Matrlx.z—[c d}

Defining Functions of One Variable

You follow a similar procedure to define a function. Write a func-
tion name followed by parentheses containing the variable, and set this
equal to an expression.

Defining Variables and Functions

Defined expressions

The symbol p defined here represents the
expression x> 4 3x2 — 5x+ 1. Itisnota
function, and in particular, p(2) is not the
expression evaluated atx = 2. Infact, p(2)
is interpreted simply as the product 2p =
2x% +6x% — 10x+ 2.

Defined Functions

Defining f (y) = ay® + by + ¢ defines
the same function as defining f (x) = ax?
+ bx + c. The symbol used for the function
argument in making the definition does not
matter. This point illustrates the subtle but
essential difference between expressions and
functions. In particular, the two expressions
y=x>4/xandy =t> +\/tare
different (because y gets replaced by an
expression in x under the first definition and y
gets replaced by an expression in # under the
second definition). However, the functions
f) =2+ Vxand f(1) = 1> + /1

are identical.
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To define the function f whose value at x is ax” + bx + ¢
1. In mathematics mode, type f (x) = ax* +bx+c.

2. Choose Compute > Definitions > New Definition

Thereafter, until you undefine the function, the symbol f repre-
sents the defined function and behaves like a function.
Compute > Definitions > New Definition Compute > Evaluate
f(x) =ax*+bx+c ft)=at>+bt+c
f(=6)=36a—6b+c
f(17) =289+ 17b+c

If g and hare previously defined functions, then the following equa-
tions are examples of legitimate definitions:

o f(x) =2¢(x)

o f(x)=g(x)+h(x)
o f(x) =g)h(x)

o f(x) = g(h(x))

Make a definition for g and £, and then apply Evaluate to f(7)
for each definition of f. Each time you redefine f, the new defini-
tion replaces the old one. Also, once you have defined both g(x) and
f(x) =2g(x), then changing the definition of g(x) redefines f(x).

The algebra of functions includes objects such as f + g, fog, fg,
and f~!. For the value of f + g at x, write f(x) + g(x); for the value
of the composition of two defined functions f and g, write f(g(x)) or
(f og) (x); and for the value of the product of two defined functions,
write f(x)g(x).

You can obtain the inverse for some functions f(x) by applying
Solve > Exact to the equation f(y) = x and specifying y as the Vari-
able to Solve for.

To find the inverse (if it exists) of a function y = f (x)
e Solve the equation x = f (y) (variable y)

In particular, if f(x) = Sx — 3, then f(y) = 5y — 3. Solve the
equationx = 5y — 3 forytogety = %er %

Compute > Definitions > New Definition
f(x)=5x-3
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Compute > Solve > Exact
x= f(v), (Enter y), Solution: %x + %

Thus £~ (x) = %x—i— % To check this result, define f(x) = 5x —
3 and g(x) = %x + % (The symbol £~ will not work as a func-
tion name.) Evaluating the expressions f(g(x)) and g(f(x)) gives
f(g(x)) = xand g(f(x)) = x, demonstrating that the function g is
indeed the inverse of the function f.

You can use a matrix of inputs to find a matrix of outputs of a de-
fined function.

To find the value of the expression x> +3x 4 Satx = 0, 1,2,3,4

1. Choose Insert > Math Objects > Matrix and set the number of
rows at 6 and the number of columns at 1.

2. Enter x and five input values in the matrix:

AW~ O =%

3. Define the function f (x) = x*> 4+ 3x+ 5 with Compute > Def-
initions > New Definition.

4. Choose Compute > Matrices > Map function.

S. Enter f(x) in the Function or Expression dialog box that ap-
pears.

Compute > Matrices > Map Function
(Enter f(x) for function.)

[x] (X2 +3x+5]
0 5
é , result of map 195
3 23
4] | 33 ]

— #71

Defining Variables and Functions
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Compute > Matrices > Concatenate

[x] [x2+3x+5] [x x%2+3x+5]
0 5 0 5

! 0 Concatenation: ! 0

2 15 ’ 12 15

3 23 3 23
4] | 33 ] |4 33 ]

Defining Functions of Several Variables

To define a function of several variables
1. Write an equation such as f(x,y,z) = ax+y> +2zorg(x,y) =
2x + sin3xy.

2. Choose Compute > Definitions > New Definition

Compute > Evaluate
£(1,2,3)=a+10
g(1,2) =sin6+2

Piecewise-Defined Functions

You can define functions of one variable that are described by dif-
ferent expressions on different parts of their domain. These functions
are referred to as piecewise-defined functions, case functions or multicase

functions. Most of the operations introduced in calculus are supported
for piecewise-defined functions. You can evaluate, plot, differentiate,
and integrate piecewise-defined functions.

To define a piecewise-defined function f
1. Type an expression of the form f (x) =.

2. Choose Insert > Math Objects > Brackets, and choose a curly
brace | { |for the left bracket and the dashed vertical line (or null

bracket) H for the right bracket.
3. Choose Insert > Math Objects > Matrix.
4. Set the number of rows equal to the number of “pieces.”

S. Set the number of columns to 3 or 2.

62

Note

Piecewise-defined functions must be specified
by a two- or three-column matrix with at least
two rows. The function values must be in the
first column, and the range conditions must be
in the last column. If there are only two
columns, the “if” must be in text. The matrix
must be enclosed by expanding brackets with
aleft brace and a “null” right delimiter. (The
null right delimiter appears as a red dashed
line on the screen when Helper Lines are
selected on the View menu, and does not
appear when the document is printed or when
Helper Lines are turned off.)
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6. Choose OK.
7. Type function values in the first column.

8. Type if in the second column (in text or mathematics mode if
you use 3 columns, and text if 2 columns).

9. Type the range condition in the third column (or in the second
column after the “if” if you use only 2 columns), preferably be-
ginning with the smallest values of the variable.

Compute > Definitions > New Definition

x+2 if x<O0
flx)= 2 if 0<x<1
2/x if  1<x

t if <0

0 if 0<r<«l1
g(t)= I if 1<r<2

2 if 2<t<3

6—1 if 3<¢

Compute > Evaluate
f-1)=-12  f1/2)=2  f@l)=5
Defining Generic Functions and Generic Constants

You can choose Compute > Definitions > New Definition to de-
clare an expression of the form f(x) to be a function without spec-
ifying any of the function values or behavior. Thus you can use the
function name as input when defining other functions or performing
various operations on the function.

To define a generic function
e Place the insert point to the right of an expression of the form
f (x) and choose Compute > Definitions > New Definition.

In the following example, we define f as a generic function and we
define a particular function 4 to illustrate the behavior of f.

Compute > Definitions > New Definition
f(x)

~1
hx) =331

Defining Variables and Functions

Note

The function f has three “cases” or range
conditions on the independent variable, and
the function g has five. Note that the intervals
for the range conditions are arranged in order
with the smallest values of the independent
variable in the first row and the largest values
in the bottom row.
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Compute > Evaluate

h(f(x) = {01

flo+1
fh(x)=f(57)

You can choose Compute > Definitions > New Definition to de-
clare a character to be a constant.

To declare a character to be a (generic) constant
e Place the insert point to the right of the character and choose
Compute > Definitions > New Definition.

Compute > Definitions > New Definition
a

Showing and Removing Definitions

After making definitions of functions or expressions, you need to
know techniques for keeping track of them, saving them, and deleting
them.

To view the list of currently defined variables and functions
e Choose Compute > Definitions > Show Definitions.

Example Definea = b, p = ax, and f(x) = ax. Choose Compute >
Definitions > Show Definitions to see the list

fx)=ax
p=ax
a=>b

of defined functions and expressions. Evaluation of p and f(x) pro-
duces p = bx and f(x) = bx. Redefining a with the equation a = ¢
and again evaluating p and f(x) produces p = cxand f(x) = cx.

To remove a definition from a document
1. Place the insert point in the equation you wish to undefine, or
select the name of the function or expression.

2. Choose Compute > Definitions > Undefine.

Choose Compute > Definitions > Show Definitions to verify
that the definition has been removed from the list of defined func-
tions and expressions.
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Show Definitions

Show Definitions opens a window showing the
active definitions. In general, the defined
variables and functions are listed in the order
in which the definitions were made.

Check the Show Definitions list from time to
time. If your mathematics is behaving
strangely, this list is a place to look for a
possible explanation.

Caution

Itis easy to forget that a symbol has been
defined to be some expression. If you use that
symbol later, you can get surprising results. For
example, if you define @« = x?, forget about
it, and later compute f'(a) for some function
f thatyou have just defined, you are in for a
surprise. In complicated computations the
error may not be apparent.
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To remove all definitions from a document
¢ Choose Compute > Definitions > Clear Definitions.

If you have worked the preceding examples, you have made several
definitions and you should remove them before continuing. Defini-
tions that you do not remove remain active as long as a document is
open. As a default, definitions are saved and then restored when you
reopen a document.

To check for overlooked definitions
e Choose Compute > Definitions > Show Definitions

Exponents and Logarithms

You can work with exponential and logarithmic functions writ-
ten in their natural forms: €%, expx, logsx, Inx, and so forth. These
functions are inverses of one another, as exemplified by the identities
e = xand Ine* = x.

Exponents and Exponential Functions

Exponential functions are used in modeling many real-life situa-
tions. The laws of exponents are an important feature of these func-
tions.

Combining Exponentials

To combine expressions involving exponential functions with base e
¢ Choose Compute > Combine > Exponentials or Compute >

Expand
Compute > Combine > Exponentials Compute > Expand
(ex))’ — ¥ €x+3lny — y3ex
e =ty e =efeY

Combining Powers

To combine expressions involving exponential functions with symbolic base
¢ Choose Compute > Combine > Powers (or Compute > Sim-

plify)

Compute > Combine > Powers
aa = Xty

Exponents and Logarithms

Note
In some cases, the Expand and Combine
commands act as inverses of one another.
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Laws of Exponents

You can demonstrate some of the laws of exponents with some of
the menu commands. These laws apply for real or complex exponents
and for other expressions as well.

To demonstrate laws of exponents

e Choose a menu command.

Compute > Combine > Powers Compute > Combine > Exponentials
2%Y = Q¥ +y e =ty
a5y

ay
1053103 = 102* Compute > Expand

2V = 2% x

The function exp satisfies exp (x) = €. (Note that exp is a gray
Math Name.) Exponential expressions are normally returned to your
document in the form /™) rather than exp (f(x)), unless the expres-
sion f (x) is unusually complicated.

Evaluating Exponential Expressions

To evaluate an exponential expression

e Choose Compute > Evaluate, or

Choose Compute > Evaluate Numeric

For numerical approximations, use Evaluate Numeric or use
floating-point notation. You can change the number of digits shown
in these approximations by changing the number for Digits rendered
in the Scientific Notation Output settings at Tools > Preferences >
Computation, Output page. For details, see Appendix C “Customiz-
ing the Program for Computing.” In these examples, Digits rendered
is set to 5.

Evaluate Evaluate Numeric
e?=¢? e?~7.3891
90925 — 11,0025 90025 ~ 1.0025
5% =625 54~ 625.0

V5 =2V5 2V3 ~4.7111
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S X
a7 = Z—)
Function Name

Typing the letters exp in mathematics mode
automatically returns the grayed function

name exp.
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Logarithms and Logarithmic Functions

The function Inx is interpreted as the natural logarithm—that is,
the logarithm with base e. Logarithms to other bases are entered with
a subscript on the function log. Evaluation gives logs25 = 2 and
log, 10° = 3. By default, the symbol log.x is also interpreted as the
natural logarithm (base €). You can change this default.

To change the default for the function name log from base e to base 10
1. Choose Tools > Preferences > Computation, Input page.

2. Click the box to remove the check mark from the line “Base of

log is e (otherwise 10)

Properties of Logarithms

You can demonstrate properties of logarithms with Simplify and
Combine. Assume x,y, a, b are positive for the results below.

Exponents and Logarithms

Function Names

Typing the letters In in mathematics mode
automatically returns the grayed function
name In.

Similarly, typing the letters log in mathematics
mode returns the grayed function name log.

Evaluate Evaluate
assume (x, positive) = (0, 0) assume (a, positive) = (0,o0)
assume (y, positive) = (0, ) assume (b, positive) = (0, o0)
Compute > Simplify Compute > Combine > Logs
Inx’ =ylnx Inx+1Iny = In(xy)
log3® = 8log3 Ina—Inb=In%

2In3 =1In9

Evaluating Logarithmic Expressions

To evaluate a logarithmic expression
e Choose Compute > Evaluate, or

Choose Compute > Evaluate Numeric

For numerical approximations, use Evaluate Numeric or use
floating-point notation. You can change the number of digits shown
in these approximations by changing the number for Digits rendered
in the Scientific Notation Output settings at Tools > Preferences >
Computation, Output page. For details, see Appendix C “Customiz-
ing the Program for Computing.” In these examples, Digits rendered
is set to 5.
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Compute > Evaluate Compute > Evaluate Numeric
In2 =1In2 In2 ~ 0.69315

log;y5 =logp5 log;y5 ~ 0.69897
In0.0025 = —5.9915 In0.0025 ~ —5.9915

Solving Exponential and Logarithmic Equations

To find a symbolic solution to an exponential and logarithmic equation
e Choose Compute > Solve > Exact. Enter Variable(s) if requested.

Compute > Solve > Exact  (Variable(s): x)

3% =8, Solution: {3log;2+ 3% |k € Z}

0 if y=0

f”x:y’s"h“i"“‘{ {Iny+2ink |keZ} if y+#0

sinx = 1/2, Solution: { ¢+ 27k |k € Z} U{2n+2mk |k € Z}
In(3x+y) = 8, Solution: %68 — %y

Note that the solution to €* = y includes both a special case, y = 0,
and multiple values. Also the solution to sinx = 1/2 includes multi-
ple values.

To ignore special cases of a solution

¢ Choose Tools > Preferences > Computation, Engine page, and

check Ignore Special Cases.

Compute > Solve > Exact (Variable(s): x)
3% =8, Solution: {3logz 2+ 3 |k € Z}
To compute only the principal values of a solution
¢ Choose Tools > Preferences > Computation, Engine page, and
check Principal Value Only.

Compute > Solve > Exact (Variable(s): x)
3* =8, Solution: 31log;2
In4x? = 5, Solution: %e%
sinx = 1/2, Solution: é?‘[
To find a numerical solution to an exponential and logarithmic equation

e Enter a coefficient in decimal notation and choose Compute >
Solve > Exact, or

68

Note

For simplified results, you may want to use the
options Principal Values Only and Ignore
Special Cases.
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Choose Compute > Solve > Exact and then choose Compute
> Evaluate Numeric, or

With a single variable, choose Compute > Solve > Numeric.

Compute > Solve > Exact (Variable: x)
3* = 8.0, Solution: 1.8928

5
logs (4.X2 —_ 3y) = 5%, SOIUEiOn: _% 3y _|_ 551115
Compute > Evaluate Numeric

S
—1/3y+5™ ~ —0.5/3.0y+5.4494 x 10103

Compute > Solve > Numeric
3* =8, Solution: {[x = 1.8928]}

Toolbars and Keyboard Shortcuts

This manual gives most instructions in terms of menu items. Tool-
bars and keyboard shortcuts are designed to make common tasks both
easier and faster. See Appendix A “Menus, Toolbars, and Shortcuts for
Doing Mathematics” and Appendix B “Menus, Toolbars, and Short-
cuts for Entering Mathematics” for details. See Appendix C “Cus-
tomizing the Program for Computing” for details on customizing tool-
bars to suit your needs.

Math Toolbar

The Math Toolbar contains clickable buttons that duplicate many
menu items. Ifit does not appear above your document window, choose

View > Toolbars and check Math Toolbar.

Symbol Toolbar

The Symbol Toolbar makes it convenient to enter a wide variety of
special symbols. If it does not appear above your document window,
choose View > Toolbars and check Symbol Toolbar. These buttons
are also available in a Sidebar.

Keyboard Shortcuts

A standard keyboard contains several mathematical symbols such
as +, —, /, <, and > that can be typed directly. You can also use the
following keyboard shortcuts:

Toolbars and Keyboard Shortcuts

Use your mouse and hover over a tool to learn
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Menu Item Keyboard Shortcut
Compute > Evaluate Ctrl+e

Compute > Definitions > New Definition ~ Ctrl+=

Insert > Math Ctrl+m

Insert > Math Objects > Fraction Ctrl+/

Insert > Math Objects > Radical Ctrl+r

Insert > Math Objects > Superscript Ctrl+h or Ctrl+71
Insert > Math Objects > Subscript Ctrl-+lor Ctrl+,
Insert > Math Objects > Brackets () Ctrl+9

Insert > Math Objects > Brackets [ | Ctrl+[

Insert > Math Objects > Brackets { }  Ctrl+{

Insert > Math Objects > Brackets | |~ Ctrl+\

Insert > Math Objects > Brackets || || Ctrl+|

Insert > Math Objects > Display Ctrl+d

Exercises

1. Given that when x2 — 3x+ 5k is divided by x+4 the remainder
is 9, find the value of k by choosing Compute > Polynomials >
Divide and then choosing Compute > Solve > Exact.

2. Define functions f(x) = x> +xInxand g(x) = x+¢*. Evaluate
f(8(x)), (£ (x)), f(x)g(x), and f(x) + g (x).

3. Find the equation of the line passing through the two points
(X] V1 )’ (x27y2)‘

4. Find the equation of the line passing through the two points
(2,5),(3,-7).

S. Find the equation of the line passing through the two points
(1,2),(2,4).

6. Find the slope of the line given by the equation sx 4ty = c.

7. Factor the difference of powers " — y" for several values of n,
and deduce a general formula.
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8. Applying Factor to X2+ (\6 - 3) x—3v5 gives the factor-

x2+(\@—3>x—3\6= (x—l—\@) (x—3)

showing that the system can factor some polynomials with irra-
tional roots. However, applying Factor to x> — 3 and x° 4 3x? —
5x+ 1 does not do anything. Find a way to factor these poly-
nomials.

9. Find the standard form for the equation of the circle x> — 6x +
18 +y? +10y = O by “completing the square.” Determine the
center and radius of this circle.

Solutions
1. Choose Compute > Polynomials > Divide to get
2 _
X 3x+5k:x+ (5k+28)
x+4 x+4

Thus, the remamder is 5Sk+28. Solve the equation 5k +28 =9
togetk=—=%

2. Defining functions f(x) = x> +xInx and g(x) = x + ¢* and

evaluating gives

= (x4’ +In(x+e") (x+e)
= & 4 xinx 4

= (x+e€Y) (xlnx+x3)

= x4+ +xlnx+x>

3. For any two distinct points (x1,y1) and (x2,y2) in the plane,
there is a unique line ax + by 4 ¢ = 0 through these two points.
Substituting these points in the equation for the line gives the
two equations ax| + by +c¢ = 0and ax; + by, +¢ = 0. Set
Tools > Preferences > Computation, Engine page, to Principal
Value Only and Ignore Special Cases, then choose Compute >
Solve > Exact with the insert point in this system

ax;+byi;+c = 0
ax;+by,+c = 0

Exercises

7
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of linear equations, solving for the variables a, b.

. Y=y CX| —CXp
Solution: |[a = ———— b=———"=
X1Y2 —X2)1 X1Y2-Y1X2
Consequently, the equation for the line is
cy1 —cy2 €xX] —cx)
Y 22 +c=0
X1y2 —X2)1 X2Y1 —X1)2

or, clearing fractions and collecting coefficients,

(1 —y2)x—(x1 —x2)y+ (x1y2 —y1%2) =0

. For the points (2,5), (3, —7), the system of equations is

2a+5b+c = 0

3a—Tb+c = 0

Choose Compute > Solve > Exact to get
Solution: [a = —%c,b = —2—190] .

Consequently, the equation for the line is — % cx— (— 2—19) cy+
¢ =0, or, clearing fractions and simplifying,

—12x+y+29=0.

. Since the point (0, 0) lies on the line, you do not get a unique so-

lution to the system of equations for the pair a, b. Thus, choos-
ing Solve + Exact and specifying a, b for the variables gives no
response. However, specifying a, ¢ for Variable(s) to Solve for
gives the solution

[a=—2b,c=0]

Thus, the equation for the line is
—2bx+by=0
or, dividing by b and applying Simplify,

1
(—2bx+by)z =-2x+y=0

Note

An interesting method for finding the equation
of a line through two specified points using
determinants is described in a matrix algebra
exercise on page 337.
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6. 'The slope-intercept form of the equation for aline is y = mx+b,

where m is the slope and b the y-intercept. If a line is given as a
linear equation in the form sx + 1y = ¢, you can find the slope

by solving the equation for y. Expand the solution y = —*-¢

c s s
togety = — % revealing the slope to be —7

. Apply Factor to several differences:

=yt = (x=y) (x+y)

X =y = (x—y) (P +ay+y?)

x—yt=(r—y) () (F +57)

X =y = (x—y) (x4 + 3y +x2y? +xy° +y4)
10—y = (x—y)(x+y) (x2+xy+y2) (xz—xy—l-yz)

x'=y'=(x—y) (x6+xsy+x4y2+x3y3+x2y4+xy5+y6)

After looking at only these few examples, you might find it rea-
sonable to conjecture that, for n odd,

n—1
5 _yn — (x—y) Z xn—k—lyk
k=0
We leave the general conjecture for you. Experiment.

. Using the clue from the example that the system will factor over
roots that appear as cocflicients, factor the product V3 (x2 — 3)

to get \/g()c2 — 3) = \/§(x— \ﬁ) (x—l— \/37) Now you can
divide out the extraneous v/3 to get X2—3= (x — \/37) (x + \/g) .
For the polynomial 23 4+3x2—5x+1, choose Compute > Poly-
nomials > Roots to find the roots: [1, V5-2,—V5— 2] . You

can multiply by /5 to factor this polynomial:

V5 (€432 = 5x1) = V5 (x4 V5+2) (v = V542) (v 1)

Then, dividing out the extraneous factor of V5, you have

3541 = (x—1) <x+2+\@> (x+2—\6)

Exercises
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9. To find the center and radius of the circle

X2 —6x+18+y>+ 10y =0,

first subtract the constant term 18 from both sides of the equa-
tion to get

x> —6x+18+y>+10y—18=0—18

Simplify each side of the equation. This gives the equation x> —

6x +y? + 10y = —18. Add parentheses to put the equation in
the form
(x* —6x) + (y* + 10y) = —18.

To complete the squares, add the square of one-half the coeffi-
cient of x to both sides. Do the same for the coeflicient of .

<x2 —6x+ (—%)2) + <y2+ 10y + (‘—20)2) — 18+ (=9)7+ (1)
Factor the terms (x2 —6x+ (%6)2) and (y2 + 10y + (12—0)2)

2 2
(=3 + (v +5)* = ~18+(=$)" + (%)
Simplify the right side of the equation to get
(x—3)*+(y+5)* = 16.

You can read the solution to this problem from this form of the
equation. The center of the circle is (3, —5) and the radius is

V16 = 4.



Trigonometry

Since you are now studying geometry and trigonometry, | will give you a problem. A ship sails the ocean. It left Boston with a cargo of wool. It
grosses 200 tons. It is bound for Le Havre. The main mast is broken, the cabin boy is on deck, there are 12 passengers aboard, the wind is blowing

east-north-east, the clock points to a quarter past three in the afternoon. It is the month of May. How old is the captain?
Gustave Flaubert (1821-1880)

larly right triangles, and the relations between the lengths of
their sides and the sizes of their angles. The trigonometric
functions that measure the relationships between the sides of simi-
lar triangles have far-reaching applications that extend well beyond
their use in the study of triangles. While the history of trigonome-

T rigonometry developed from the study of triangles, particu-

try is closely connected with geometry and with astronomical studies,
it has become essential in many branches of science and technology.

Trigonometric Functions

Most of the trigonometric computations demonstrated here use
six basic trigonometric functions. The two fundamental trigonomet-
ric functions, sine and cosine, can be defined in terms of the unit cir-
cle—the set of points in the Euclidean plane of distance 1 from the
origin.

A point on this circle has coordinates (cost,sin?), where  is a
measure (in radians) of the angle at the origin between the positive
x-axis and the ray from the origin through the point measured in the
counterclockwise direction.

Trigonometric Functions

Trigonometric Identities

Inverse Trigonometric Functions

Hyperbolic Functions

Complex Numbers and Complex

Functions

(cost,sin t)
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For 0 < t < 7/2, these functions can be found as a ratio of certain
sides of a right triangle that has one angle of radian measure 7.

The other four basic trigonometric functions can be defined in
terms of these two—namely,

sinx 1
tanx = —— secx = ——
COSX CcOoSXx
COSX 1
cotx = —— CSCX = —|—
sinx sinx

To enter a trigonometric function
e Dut the insert point in mathematics mode and type the three
letters of the function name. (‘The function name automatically
turns gray when you type the final letter of the name.)

On the domain of real numbers, the sine and cosine functions take
values in the interval [—1,1]. To restrict computations to real num-
bers, you can use the function “assume.”

To make the assumption that variables are real
1. Type assume in mathematics mode. It will automatically turn
upright and gray when you type the final letter.

2. Inside parentheses, type x, real (or any variable name in place
of x). The math “real” will automatically turn upright and gray
when you type the final letter.

3. Choose Compute > Evaluate.

Compute > Evaluate
assume (x,real) = R

Ordinary functions require parentheses around the function argu-
ment, while trigonometric functions commonly do not (see Trigtype
Functions, page 122). You can modify this behavior so that evalua-
tions of trigonometric functions appear with parentheses.

To add parentheses for trigonometric functions in output
1. Choose Tools > Preferences > Computation > Output

2. Select Use Parentheses for Trig Functions.

Compute > Evaluate

sinx = sin (x)

76

Function names

The symbols used for the six basic
trigonometric functions—sin, cos, tan,
cot, sec, csc—are abbreviations for the
words sine, cosine, tangent, cotangent, secant,
and cosecant, respectively.

Note

The sine and cosine functions are defined for
all real and complex numbers. In this section,
we address only real numbers. For complex
arguments, see page 92.

Tip
See page 111 for further information on
making assumptions about variables.

Caution
The default behavior of your system allows
trigonometric functions without parentheses.
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Radians and Degrees

The notation you use determines whether the argument is inter-
preted as radians or degrees.

Compute > Evaluate Numeric

sin30 ~ —0.98803

sin30° ~ 0.5 (small red circle as superscript)
sin30° ~ 0.5 (green Unit Name)

The degree symbol is available in two forms—a green Unit Name
or a small red circle entered as a superscript. With no symbol, the ar-
gument of a trigonometric function is interpreted as radians, and with
either a green or red degree symbol, the argument is interpreted as de-

grees. All operations will convert angle measure to radians.

To enter the angle 33 °4713" with green degrees, minutes, and seconds

1.

2.

In mathematics mode type 33.

Choose Insert > Math Objects > Unit Name and select Plane
Angle, Degree.

Type 47.

Choose Insert > Math Objects > Unit Name and select Plane
Angle, Minute.

Type 13.

Choose Insert > Math Objects > Unit Name and select Plane
Angle, Second.

To enter the angle 33°47'13” with red degrees, minutes, and seconds
e In mathematics mode type 33.

e Choose Insert > Math Objects > Superscript and from the Sym-

bol toolbar select the Binary operations tool and click the small
red circle o.

e Press Enter and type 47'13” where the double quote is entered

by typing " twice.

Numerically evaluatingan angle in degrees gives a numerical result

in radians.

Trigonometric Functions

Unit Names

Unit names appear in green on the screen. See
Appendix B for details about entering unit
names.

Tip

Enter the symbols for degree, minutes, and
seconds by typing in math mode udeg,
udmn, and uds. The red letters will be
replaced by the symbols °, /, and "’ when you
type each of the last letters.
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Compute > Evaluate Numeric
33°47’13" 2 0.589 69rad (Green Unit Names)
33°47'13" ~ 0.589 69 rad (Small red degrees, minutes, seconds)
When any operation is applied, degrees are automatically converted
to radians. To go in the other direction, solve for the number of de-

grecs.

To convert radians to degrees symbolically
1. Startwith an equation suchas2 = 0°, using the red degree sym-

bol.

2. Choose Compute > Solve > Exact.

Compute > Solve > Exact
2 = 0°, Solution: %

Thus 2 radians = 3 degrees.
x deg

To convert radians to degrees numerically
1. Start with an equation such as 2rad = 0 °, using the green unit
name symbol.

2. Choose Compute > Solve > Exact.

Compute > Solve > Exact
2rad = 0 °, Solution: 114.59

Thus 2rad = 114.59°.
Solving Trigonometric Equations

When evaluating the trigonometric functions, translations by in-
teger multiples of 7T are eliminated from the argument. Further, argu-
ments that are rational multiples of 7 lead to simplified results. Ex-
plicit expressions are returned for the arguments

nnnan3rnt2r n w3t ® 3t ®w 5w

as well as for the same angles expressed in degrees.

To find values of the trigonometric functions
1. Place the insert point in a trigonometric expression.

2. Choose Compute > Evaluate, or

Choose Compute > Evaluate Numeric.
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Compute > Evaluate

Trigonometric Functions

Compute > Evaluate Numeric

sin3f = 12 sin 3 ~0.70711

sinl = sin1 sinl ~ 0.84147

sin60° = 11/3 sin60° ~ 0.86603

sin (—x) = —sinx sin(—x) ~ —1.0sinx

cos (x+7m) = —cosx cos (x+7m) ~ —1.0cosx
cotf =v2+1 cotf ~2.4142

All arguments that are rational multiples of 7 are transformed to
arguments from the interval [O, %)

Compute > Evaluate

sin%’r = sin (%7‘[)
cos (—ZOT”) =cos (%n)
tan% :tan(l—zln)

Tip

Choose Tools > Preferences > Computation
> Qutput to set the number of digits rendered
in response to Evaluate Numeric.

You can choose both Compute > Solve > Exact and Compute >
Solve > Numeric to find solutions to trigonometric equations. These

operations also convert degrees to radians. Use of decimal notation in

the equation gives you a numerical solution.

With radians or with red degree symbols, Solve > Exact gives sym-

bolic solutions and Solve > Numeric gives numerical solutions.

Compute > Solve > Exact
X =sin %, Solution: %\ﬁ

sin22° = 14 Solution: —#—
c s1

9
— 3°54/ i, A3
x = 3°54/, Solution: 500"

Compute > Solve > Numeric
X =sin %, Solution: {[x =0.70711]}
sin22° = 2, Solution: {[c = 37.373]}

x =3°54/, Solution: {[x = 0.068068]}

With green unit name symbols, Solve > Exact gives numerical so-

lutions.

Compute > Solve > Exact
sin22° = 1 Solution: 37.373
x = 3°54’, Solution: 0.068 068 rad

To solve a trigonometric equation

1. Place the insert point in the equation.

2. Choose Compute > Solve > Exact, or
Choose Compute > Solve > Numeric.
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The command Solve > Exact finds a complete solution in many
cases, either symbolic or numerical depending on the form of the equa-
tion.
Compute > Solve > Exact
sint = sin2t, Solution: {27k | k € ZYU{jn+ 37k |k € Z}
2sinx+ Scosx =5, Solution: {27k | k € Z} U {—iln (3§ + 39i) + 27k | k € Z}

The command Solve > Numeric finds one numerical solution.

Note
Compute > Solve > Numeric The union symbol U is used for OR. The letter
sint = sin?2t, Solution: {[t = 0.0]} Z. denotes the set of integers.

2sinx+ 5cosx =5, Solution: {[x = 0.0]}

To find a numerical solution in a specified interval
1. Enter the equation and a range in different rows of a one-column
matrix.

2. Choose Compute > Solve > Numeric.

Compute > Solve > Numeric

sint = sin2¢
t€(0.5,2.5)

Here is an example illustrating how plots of functions are helpful

], Solution: [t = 1.0472]

for selecting intervals for numeric solutions—especially when the so-
lutions are not periodic in nature.

Compute > Solve > Numeric

[ x = 10sinx

xe (5,7.5) ],Solution: [x =7.0682]

Intersection points
The interval (5,7.5) was specified for the solution. By specify-

ing other intervals, you can find all seven solutions: x = 0, +2.8523,
£7.0682, £8.4232. These are depicted as the intersection points of
the graphs of y = xand y = 10sin.x.

Trigonometric Identities

This section illustrates the effects of some operations on trigono-

metric functions. First, simplifications and expansions of various trigono-
metric expressions illustrate many of the familiar trigonometric iden-
tities.
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Definitions in terms of Basic Trigonometric Functions

To express a trigonometric function in terms of sine and cosine
e Place the insert point in the function and choose Compute >
Rewrite > Sin and Cos.

Compute > Rewrite > Sin and Cos

_ 1 __ sinx
secx = cosx tanx = COSX
_ 1 __ cosx
CSCX = Sinx cotx = Sinx

cosxsinx —2secxcscx = cosxsinx —

cosxsinx

Alternatively, for sec and csc, choose Simplify.

Compute > Simplify

_ 1 _ 1
SeCx = Cosx CSCx = Sinx

To express a trigonometric function in terms of the sine function
1. Place the insert point in the function.

2. Choose Compute > Rewrite > Sin.

Compute > Rewrite > Sin

cosxsinx — 2secxcscx = ———2— —ginx (2 sin? (%x) — 1)
(2 sin? ( %x) — 1) sinx
To express a trigonometric function in terms of the cosine function

1. Place the insert point in the function.

2. Choose Compute > Rewrite > Cos.

Compute > Rewrite > Cos

2

cosxsin®x = — (cosx) (cos?x— 1)

To express a trigonometric function in terms of the tangent function
1. Place the insert point in the function.

2. Choose Compute > Rewrite > Tan.

Compute > Rewrite > Tan
2tan(%x)

SIx = tan? ( %X)Jrl

Trigonometric Identities
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Pythagorean Identities
To compute Pythagorean identities
1. Place the insert point in an expression.
2. Choose Compute > Simplify, or
Compute > Rewrite > Sin and Cos.

3. Use basic techniques for simplifying such expressions.

Compute > Simplify
sin?x+cos?x = 1

Compute > Rewrite > Sin and Cos, Simplify

02
tan?x —sec?y=S0x L —
COS~=x COoS~x

Addition Formulas

To compute addition formulas
1. Place the insert point in an expression.

2. Choose Compute > Expand.

Compute > Expand
sin (x+y) = cosxsiny + cosysinx sin (x+ %) = cosx
cos (x+y) = cosxcosy —sinxsiny cos (x — %) =sinx

Combine and Expand act as reverse operations in many cases.

Compute > Combine > Trigonometric Functions
cosxsiny+ cosysinx = sin (x+y)
cosxcosy — sinxsiny = cos (x+y)

Multiple-Angle Formulas
You can obtain multiple-angle formulas with Expand.
To reduce a multiple-angle expression

e Place the insert point in the expression and choose Compute >
Expand.

Compute > Expand
sin26 = 2cos 0 sin O 0826 = cos? 6 —sin% 0

__ _ _2tanb
tan20 = o

$in60 = 6.cos’ Bsin @ — 20cos> O sin> O + 6.cos O sin> O
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Combining and Simplifying Trigonometric Expressions

Products and powers of trigonometric functions and hyperbolic
functions are combined into a sum of trigonometric functions or hy-
perbolic functions whose arguments are integral linear combinations
of the original arguments.

To simplify sums of products and powers of trigonometric expressions
1. Place the insert point in the expression.

2. Choose Compute > Combine > Trigonometric Functions.

Compute > Combine > Trigonometric Functions

sinxsiny = 1 cos (x—y) — 1 cos (x+)

sin®x = % — %cos (2x)
sinxcosy = %sin (x—y)+ % sin (x+y)

sin’ xcos® x = 52 sin (2x) — <35 sin (6x) + 515 sin (10x)

Here is another example where Expand and Combine act as re-
verse operations.

Compute > Expand
1

3 cos (x —y) — 3 cos (x+y) = sinxsiny
1sin(x—y)+ 3 sin (x+y) = cosysinx
Simplify also combines and simplifies trigonometric expressions.

Compute > Simplify
sin3a+4sin’a = 3sina

Inverse Trigonometric Functions

The following type of question arises frequently when working with
the trigonometric functions: for which angles x is sinx = y? There
are many COITECt answers to these questions, since the trigonometric
functions are periodic. The inverse trigonometric functions provide
solutions that lie within restricted ranges. The angle returned by these
functions is measured in radians, not in degrees.

Inverse function Domain  Range
arcsinxorsin”'x  [—1,1] [-%,%]
arccosxorcos 'x [—1,1]  [0,7]

arctanx or tan~! x (_g, %)

(_°°7°°)

Inverse Trigonometric Functions

Tip

There are many possible forms for
trigonometric expressions. To get expressions
in the form you want, you can experiment with
different combinations of commands.

Tip

The inverse trigonometric functions can be
entered by typing the function name in
mathematics mode or by choosing Insert >
Math Objects > Math Name and selecting
from a list. You can also type the 3-letter
trigonometric name with an exponent of —1.
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The other standard inverse functions are the following:

Inverse function Domain Range
arcsecxorsec” 'x  (—eo,—1]U[l,00) [0,5) U(5,7]
arccscxorcsclx  (—oo, —1]U[1,0) [—3.,0)0U(0,%]
arccotxorcot ! x  (—oo,00) [—%,0)0U(0,%]

You can check the relationships between the inverse functions with
Check Equality.

Compute > Check Equality
arcsecx = arccos % is TRUE
arccotx = arctan % is TRUE
arccscx = arcsin % is TRUE
Combining and Rewriting Inverse Trigonometric Functions

The sum of inverse tangent functions can be combined.

Compute > Combine > Arctan

_ 1
arctanx + arctany = —arctan (x+y)
_ = Xy
arctanx — arctany = arctan 3=

The Rewrite commands convert from one inverse trigonometric
function to another.

Compute > Rewrite > Arcsin

arctanx = — signIm (ix) <arcsin 12 - én)
xX“+

cos 1x= %7{ —arcsinx

The sign imaginary function of a complex variable z is given by
1 if Im(z) >0o0rz<0
signm(z) = ¢ 0 if z=0
—1 if Im(z) <Oorz>0

Thus if x is real, then

— (arcsin L éﬂ) if x>0
arctanx = 0 if x=0
T if x<O
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Inverse Trigonometric Functions

Compute > Rewrite > Arccos
arcsinx = %Jr — arccosx

Compute > Rewrite > Arctan

arcsinx = 2arctan ——2—— arccosx = %7‘5 — 2arctan

vV 1—-x2+1

X

V1-x2+1

Compute > Rewrite > Arccot

— 1-x2+1
arctanx = arccot% COoS l)C = %ﬂ' — 2arccot (ﬁ)

Trigonometric Equations and Inverse Functions

With Solve > Exact, solutions of trigonometric equations may be
given in terms of inverse trigonometric functions that you can evaluate
numerically. You can get numerical results directly by starting with
decimal notation in the equation.

For real solutions only, first evaluate assume (x,real). To return
to the default, evaluate unassume (x).

Notation
Compute > Evaluate The union symbol U is used for OR. The letter
assume (x,real) = R Z denotes the set of integers.

Compute > Solve > Exact
sinx = 7/10, Solution: {7 — arcsin f; + 27k |k € Z} U {arcsin 5 + 27k |k € Z}
sinx = 0.7, Solution: {6.2832k +0.77540 | k € Z} U {6.2832k +2.3662 | k € Z}

tan’ x — cot?> x = 1, Solution: {arcsin\/% +mklk € Z} U {—arcsin\/%i1 + mklk € Z}
+ +

Compute > Evaluate Numeric

arctan 4/ %f— % ~ 0.66624

To obtain a principal solution only
1. Choose Tools > Preferences > Computation.

2. Click the Engine tab.
3. Check Principal Value Only.
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Compute > Solve > Exact (Principal Value Only)
sint = sin?2¢, Solution: 0
8tanx — 13 + 5tan®x = 3, Solution: arctan <%\@— %)

V2
VV5+1

tan? x — cot?x = 1, Solution: arcsin

Hyperbolic Functions

Certain functions, known as the hyperbolic sine, hyperbolic co-
sine, hyperbolic tangent, hyperbolic cotangent, hyperbolic secant, and
hyperbolic cosecant, occur as combinations of the exponential func-
tions ¢* and e~ having the same relationship to the hyperbola that
the trigonometric functions have to the circle. It is for this reason that
they are called hyperbolic functions.

Hyperbolic functions

. e —e™* 1 2
sinhx = cschx = — —
2 sinhx e¥—e™*
e +e ¥ 1 2
coshx = te sechx = =
2 coshx e*+e™*
sinhx e —1 coshx e¥+1
tanhx = ——— = cothx = — =

coshx e +1 e —1

The function names used for the basic hyperbolic functions are
sinh, cosh, tanh, coth, sech, and csch. Most of these function names
automatically turn upright and gray when typed in mathematics mode.
When they do not, choose Insert > Math Objects > Math Name, type
the name in the Name box, and select Apply.

To obtain exponential expressions for the hyperbolic functions

1. Place the insert point in a hyperbolic function.

2. Choose Compute > Rewrite > Exponential.

Compute > Rewrite > Exponential
sinhx = %ex — %e‘x
e —1
e 41
To find values of hyperbolic functions
e Place the insert point in the expression and choose Compute >
Evaluate Numeric.

1

_ 1 x,1,—x
coshx—ze +5e

tanhx =

86

Note

The hyperbolic functions are “trigtype”
functions, allowing you to enter arguments
without parentheses.

Note

The hyperbolic cosine function occurs naturally
as a description of the curve formed by a
hanging cable.

28 cosh 2)6*8 —-20
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Compute > Evaluate Numeric
sinh1~1.1752 cosh2 ~ 3.7622 tanh3 ~ 0.99505

To solve equations involving hyperbolic functions
e Place the insert point in the equation and choose Compute >
Solve > Exact or Compute > Solve > Numeric.

Compute > Solve > Exact
sinhx + coshx = 3, Solution: {In3 + 2iwk|k € Z}

Compute > Solve > Numeric
sinhx 4 coshx = 3, Solution: {[x = 1.0986]}
To obtain addition formulas for hyperbolic functions

e Place the insert point in an expression and choose Compute >

Expand.

Compute > Expand
sinh (x +y) = coshxsinhy + coshysinhx
cosh (x+y) = coshxcoshy+ sinhxsinhy

To rewrite hyperbolic expressions in terms of sinh and cosh
1. Place the insert point in an expression.

2. Choose Compute > Rewrite > Sinh and Cosh.
Compute > Rewrite > Sinh and Cosh

: __ sinhx sinh?x
tanhx + sinhxtanhx = coshx T oshr

Products and powers of hyperbolic functions can be combined
into a sum of hyperbolic functions whose arguments are integral linear
combinations of the original arguments.

To combine products and powers of hyperbolic functions

1. Place the insert point in the expression.

2. Choose Compute > Combine > Hyperbolic Trigonometric
Functions
Compute > Combine > Hyperbolic Trigonometric Functions
sinhxsinhy = 4 cosh (x+y) — 1 cosh (x — )
sinhxcoshy = 1 sinh (x+y) -+ 4 sinh (x —y)
coshxcoshy = § cosh (x+y) + 1 cosh (x — )

Hyperbolic Functions
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Inverse Hyperbolic functions

Since the hyperbolic functions are defined in terms of exponential
functions, the inverse hyperbolic functions can be expressed in terms
of logarithmic functions.

Inverse Hyperbolic functions Domain
arcsinhx = sinh ™' x = In (x—|— \/xz—i—l) xeR

arccoshx = cosh ' x = In (x—l— Va2 — 1) x>1

1
arctanhx:tanh_lx:%1n<1+x> —l<x<l
—X

To enter the inverse hyperbolic function names
1. Choose Insert > Math Name.

2. Type the function name in the Name box, and choose OK.

To obtain logarithmic expressions for these functions, use the Rewrite
command.

Compute > Rewrite > Logarithm
arcsinhx = In (x V241
arcsecx = In (% +ivV1T—x2) (—i)
To find values of the inverse hyperbolic functions, use Evaluate
Numeric.
Compute > Evaluate Numeric

arcsinh5 =2.3124
cosh 110 =2.9932

To solve equations involving inverse hyperbolic functions, use Solve
> Exact or Solve > Numeric.

Compute > Solve > Exact
arcsinhx — arccoshx = 0.3, Solution: 1.3395

The following special values are implemented:

Compute > Evaluate

arcsinh0 =0 sinh 10 =0
arccoshl =0 cosh™'1=0
arctanh0 =0 tanh~'0 =0
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Complex Numbers and Complex Functions

Complex numbers are numbers of the form a + bi where a and b
are real numbers and i2 = —1. See Complex Numbers, page 32, for
general information on working with complex numbers.

Argument of a Complex Number

The polar coordinate system is a coordinate system that describes
a point P in terms of its distance 7 from the origin and the angle 0
between the polar axis (that is, the x-axis) and the line OP, measured
in a clockwise direction from the polar axis. The point in the plane
corresponding to a pair (a,b) of real numbers can be represented in
polar coordinates P(r, 0) with

a=rcos® and b=rsin0O

where r = v a? 4 b? is the distance from the point (a, ) to the origin

and 0 is an angle satisfying tan 6 = Z.

The angle 0 is called the amplitude or argument of z. Note that
the argument is not unique. However, any two arguments of z differ
by an integer multiple of 277. The function that gives the argument
between —7 and 7 is denoted argz. The form z = r(cost + isint)
for a complex number is called the (#rigonometric) polar form of z.

To find the argument of a complex number

1. Type arg in mathematics mode. It will automatically turn to a
gray math name when you type the last letter.

2. Type the number enclosed in parentheses.

3. Choose Compute > Evaluate, or

Choose Compute > Evaluate Numeric.

4. Choose Compute > Simplify if required.

Compute > Evaluate, Compute > Simplify

N 5
arg (3 +5i) = arctan 5

3 sin(31n5
arg (5°7%") = —arctan (;02((3125))) =21 —1In125

Complex Numbers and Complex Functions
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Compute > Evaluate Numeric
arg (3+5i) ~ 1.0304

arg (5%7) &~ 1.4549
Forms of a Complex Number

A form of writing a complex number that involves r and 6 rather

than x and y, where r = | z| = V% + b2 and 6 = arctan £, is called a
polar form of the complex number. This leads to three standard forms
for complex numbers:

Rectangular Trigonometric Polar Exponential Polar
z=a+ib z=r(cosO +isin0) z=re'®

To put a complex number in exponential polar form
1. Place the insert point in the number.

2. Choose Compute > Rewrite > Polar.

Compute > Rewrite > Polar
3+Sl: /34ei(arctan%)
V2N (i
167 — /3 = /260 162) (D gy

To put a complex number in rectangular form
1. Place the insert point in the number.

2. Choose Compute > Rewrite > Rectangular.

Compute > Rewrite > Rectangular

Ve 3 5

V2exp (—iarctan 5 2) V12877 +1 = v/2cos ( Lv2arctan {5 ) V12877 + 1
—iv2sin (%\@arctan %) V12872 +1

Compute > Simplify
ﬁ\/11287r2+1 i ,/12871r2+1 PN
\/W"FI 8”\/]287-"_1

For the Euler identity

re’ = r(cost +isinr)
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use Rewrite to change from exponential polar form to trigonometric
polar form.

To change from exponential polar form to trigonometric polar form
e Place the insert point in the expression.

¢ Choose Compute > Rewrite > Sin and Cos.
Compute > Rewrite > Sin and Cos
rel' = r(cost + (isint))

Complex Powers and Roots of Complex Numbers

Euler’s identity re’ = r(cost +isint) provides a method of tak-
ing complex powers of complex numbers. If z # 0 and w are complex
numbers, write z = re’’ and w = a + ib, with r,a, b real numbers and
r positive. Then the principal value of " is given by

Y = (reit)a""ih — (elnr) atib (eit)a""ih — ealnreiblnreitaefbt
= tnr—brgilartbing) _ pa,=bt (cos (ta+ blnr) +isin (ta+blnr))

This function is multi-valued because e? = ¢V 127 for any integer k.
The Rewrite command computes the principal value.

Compute > Rewrite > Rectangular

i = e 17

5% = cos(21n5) +isin (21n5)
DeMoivre’s Theorem

DeMoivre’s theorem says that if z = r(cos @ +isin@) and nis a
positive integer, then DeMoivre’s Theorem
. . The exponential polar form of DeMoivre’s
7' = (r(cost +isint))" = r" (cosnt + isinnt) Theorem is

To obtain DeMoivre's Theorem ( rel! ) n_ ngint

1. Type (r(cost +isint))>.
2. Choose Compute > Expand.
3. Choose Compute > Simplify.

Compute > Expand

(r(cost+isint))® = 13 cos® 1+ 3ir’ cos?t (sint) — 37> cost sin® f — ir (sin3 )
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Compute > Simplify
13 cos? 1+ 3ir3 cos?tsint — 37 cost sin®t — ir¥ sin’t = 3 (cos (3t) +ir’ sin (31))

Complex Trigonometric and Hyperbolic Functions

All trigonometric, inverse trigonometric, and hyperbolic functions
are defined for complex arguments. Arguments that are rational mul-
tiples of i are rewritten in terms of hyperbolic functions.

The function arcsinh produces values with imaginary parts in the

interval [—%, %] .

Compute > Evaluate

sin5i = i(sinh5) arcsin5/ = i (arcsinh5)
5 _ 5 5 1 . .15
cos 3 = cosh 3 arccos ; = 3w+ (arcsmh Z)

tan (—3i) = (tanh3) (—i) arctan (—3i) = (arctanh3) (—i)

Hyperbolic functions with arguments that are integer multiples of
i /2 are simplified by Evaluate.

Compute > Evaluate
sinh (%) =i cosh (40im) =1 cosh '0=lir

For other complex arguments, use Expand to rewrite trigonomet-
ric and hyperbolic functions.

Compute > Expand
sin (5i+ &) = 3v/3cosh5 — Ji(sinh5)
sinh (x+im) = —sinhx

Use Rewrite to obtain a representation in terms of specific target
functions.

Compute > Rewrite > Sin and Cos

¥ tanx — (sinx)(cos(2x)+isin(2x))
cosx

For arcsinand arccos, the branch cuts are the real intervals (—oo, — 1)
and (1,00). For arctan, the branch cuts are the intervals (—oo - 7, i] and
[i,00- i) on the imaginary axis. For arcsec and arccsc, the branch cut
is the real interval (—1,1). For arccot, the branch cut is the interval
[i,—i] on the imaginary axis. The values jump when the arguments
cross a branch cut.
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Compute > Evaluate
arcsin (—1.2) = —1.5708 +0.62236i

arcsin (—1.2+ —i-) = —1.5708 + 0.622 36i

1010

arcsin (—1.2— i) = —1.5708 — 0.62236i

1010

Note that arccot is defined by arccotx = arctan i although arccot
does not rewrite itself in terms of arctan. As a consequence of this
definition, the real line crosses the branch cut and arccot has a jump

discontinuity at the origin.

Compute > Evaluate
arcsinh (sinh (3 +25i)) = 3 — 8im +25i

With the default setting, Solve > Exact finds complex as well as

real solutions to trigonometric equations.

Compute > Solve > Exact
tan”x — cot’x = 1

Solution: {arcsin —%\@— % +7k | ke Z}

U< arcsiny/ 3 5—é—|—7tk|k€Z}
U —arcsin\/—éﬁ—é—}—nﬁkeZ}
U —arcsin\/éﬂ—é—l—ﬂHkEZ}

To obtain the principal solutions only

1. Choose Tools > Preferences > Computation > Engine.

2. Check Principal Value Only.

Compute > Solve > Exact
tan® x — cot?>x = 1, Solution: arcsin V2
VV5+1

Exercises

1. Define the functions f(x) = x> + xsinx and g(x) = sinx

Evaluate f(g(x)), g(f(x)), f(x)g(x), and f(x) + g(x).

2. At Metropolis Airport, an airplane is required to be at an al-
titude of at least 800 ft above ground when it has attained a

Exercises

Note
In this example,

1 1
\—=V5— -~ 1.272i
2‘[ 2 !
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horizontal distance of 1 mi from takeoff. What must be the
(minimum) average angle of ascent?

. Experiment with expansions of sinnx in terms of sinx and cos x

forn=1,2,3,4,5,6 and make a conjecture about the form of
the general expansion of sinnx.

. Experiment with parametric plots of (cosz,sinz) and (¢, sin?).

Attach the point (cos 1,sin 1) to the first plot and (1,sin 1) to
the second. Explain how the two graphs are related.

. Experiment with parametric plots of (cos?,sint), (cost,t),and

(t,cost), together with the point (cos 1, sin 1) on the first plot,
(cos1,1) on the second, and (1,cos 1) on the third. Explain
how these plots are related.

. To convert radians to degrees using ratios, write the equation

6 _ x . .
360 = 37> where x represents the angle in radians. Choose Com-

pute > Solve > Exact or Compute > Solve > Numeric and
name 0 as the variable. Use this method to convert x = %?07{
radians to degrees.

. To solve a triangle means to determine the lengths of the three

sides and the measures (in degrees or radians) of the three an-

gles.

a. Solve the right triangle with one side of length ¢ = 2 and
one angle & = .

b. Solve the right triangle with two sides a = 19 and ¢ = 23.

. 'The law of sines

a b c

sinag sinf siny

enables you to solve a triangle if you are given one side and two
angles, or if you are given two sides and an angle opposite one
of these sides. Solve the triangle with one side ¢ = 2 and two

angles ot = Z, 8 = 2.

. Using both the law of sines and the law of cosines,

a*+b? —2abcosy = ?
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you can solve a triangle given two sides and the included angle,
or given three sides.

a. Solve the triangle with sides a = 2.34, b = 3.57, and in-
cluded angle y = %TC.

b. Solve the triangle with three given sides a = 2.53, b =
4.15,and ¢ = 6.19.

10. Fill in the steps to show that i' = e~ 73. Find the general solu-

tion.
Solutions
1. Defining functions f(x) = x> 4+ xsinx and g(x) = sinx? and
evaluating gives
f(g(x)) = sin’x*+sinx’sin (sinxz)
g(f(x)) = sin(x’ —|—xsinx)2
fx)glx) = (x3 + xsinx) sinx?
f(x)+gx) = x°+xsinx+sinx?

2. You can find the minimum average angle of ascent by consider-
ing the right triangle with legs of length 800 ft and 5280ft. The

angle in question is the acute angle with sine equal to 800

Find the answer in radians with Compute > Evaluate > Nu-
meric:

arcsin L ~ 0.15037

V8002 4 52807

You can express this angle in degrees by using the following steps:

1
360 x 0.15037 ~ 8.6157
21
0.6157x60 = 36.942
6 ~ 8°37

or solve the equation 0.15037rad = x° to get 8.6156, then
solve 0.6156° = x" to get 36.936.

/8002452802

Exercises
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3. Note that
sin2x = 2sinxcosx
sin3x = 4sinxcos’x — sinx
sindx = 8sinxcos’x —4sinxcosx
sin5x = 16sinxcos*x — 12sinxcos’x+ sinx
sinbx = 32sinxcos’x —32sinxcos’ x+ 6sinxcosx

We leave the conjecture up to you.

. Figure 4a shows acircle of radius 1 with center at the origin. The

graph is drawn by starting at the point (1,0) and is traced in a
counter-clockwise direction. Figure 4b shows the y-coordinates
of the first figure as the angle varies from 0 to 27. The point
(cos1,sin 1) is marked with a small circle in the first figure. The
corresponding point (1,sin 1) is marked with a small circle in
the second figure.

. Figure Sashowsa circle of radius 1 with center at the origin. The

graph is drawn by starting at the point (1,0) and is traced in a
counter-clockwise direction.

Figure 5b shows the x-coordinates of the first figure as the an-
gle varies from 0 to 277. The point (cos 1,sin 1) is marked with a
small circlein the first figure. The corresponding point (cos 1, 1)
is marked with a small circle in the second figure.

Figure Sc shows the graph in the second figure with the hori-
zontal and vertical axes interchanged. Figure 5S¢ shows the usual
view of y = cos x.

(si07)

. . 0 . . Y
. Write the equation 360 = an With the insert point in this

equation, choose Compute > Solve > Exact to get 0 = % de-
grees, or choose Numeric to get 0 = 3.9 degrees.

. To obtain the solutions in the simple form shown below, choose

Compute > Engine Settings and check Principal Value Only.

a. Choose Compute > Definitions > New Definition for
cach of the given values & = § and ¢ = 2. Evaluate § =
Z—atogetf = 7. Evaluatecsin ot togeta =2sin g7
(= 0.68404). Evaluate ccosa to get b = 2cos én’ (=
1.8794).

o
——
=
N -
w -
i
o 4
XN

4b. (z,sinr)

Sa. (cost,sin?)
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b. Choose Compute > Definitions > New Definition to
cach of the given values, a = 19 and ¢ = 23. Place the in-
sert point in the equation a®+b? = ¢? and choose Com-
pute > Solve > Exact (Numeric) to get b = 2V42 (=
12.96). Place the insert point in each of the equations

sin@ = g, cosf = g in turn, and choose Compute >
Solve > Exact to get @ = arcsin 43, 8 = arccos 13; or 1:_\\
place the insert point in each of the one-column matrices 1
sinad=a/c d cosf =a/c '
ac(0,x/2) || Be(0,m/2)
Compute >Solve > Numeric to get & = 0.9721, f =
0.5987.

. -1
in turn, and choose

5b. (cost,t)

8. Choose Compute > Definitions > New Definition to define 1.0 7
a:g,ﬁ:%”,andc:Z Evaluate Y = w — ot — B to get 1
Y= %TE Definey= %n. Choose Compute > Solve > Exact to 0.5

. a c b
solve the equations —— = ——and —— = ——togeta = . .
sin¢  siny  sinff  siny 0.0 +—+—+——

% 3sin %71? and b = % 3sin %ﬂ. To get numerical solutions,

choose Compute > Solve > Numeric. 05+

9. Solving general triangles. 104t
a. Defineeachofa=2.34,b=3.57,andy= %n. Choose Sc. (t,cost)
Compute > Solve > Exact to to solve the equation a®+
b* —2abcosy = c2. You should get ¢ = 1.7255. Define

¢ = 1.7255. Choose Compute > Solve > Exact to solve
a c b c

the equations —

= ——and — = ——, or with
sina  siny sinfB siny b

the insert point in each of the matrices 0

a c b I

sinoe siny | and sin 3 - siny
a€(0,7/2) B € (0,7/2) ¢

choose Compute > Solve > Numeric to get & = 0.58859 9. General triangle

and § = 1.0104.

A triangle with three sides given is solved similarly: inter-
change the actions on Y and ¢ in the steps just described.
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b. Definea =2.53,b =4.15,and ¢ = 6.19. Choose Com-
pute > Solve > Exact to solve the equation a? + b —
2abcosy = ¢? to get ¥ = 2.3458. Define y = 2.3458.

Choose Compute > Solve > Exact to solve each of the

) a c b c
equatlons

—— = ——and —— = ——, or put the
sina siny sinfB siny

insert point in each of the matrices

a c b I

sinoe siny | and sin 3 - siny
ae(0.7/2) Be(0.7/2)

and choose Compute > Solve > Numeric to get o = 0.29632
and § = 0.49948.

10. In polar form,

i

SE]

. 717+.. T
[ =COos— +isin—=¢e
2 2

. N
l’:(e'l) =e 2.

For the general solution, for any integer &,

Then

B}

T T (T
i=cos (5 +27rk) +isin (5 +27rk> = e‘(7+2”")

and .
i i(2+2mk)\' _ %2k
ll = (el(2+ T ) —=e 2
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Function Definitions

“Then you should say what you mean,” the March Hare went on. “I do, ” Alice hastily replied; “at least | mean what | say, that's the same thing, you

know.” “Not the same thing a bit!” said the Hatter. “Why, you might just as well say that "I see what | eat'is the same thing as "I eat what | see!"”
Lewis Carroll (1832—-1898), Alice in Wonderland.

cal object, and to define a function using an expression or a

collection of expressions. Function definition is a powerful Deﬁning Variables and Functions
tool. Before elaborating on definitions, we discuss criteria for names
of functions, constants, and expressions. Hand"ng Definitions

D efinitions enable you to define a symbol to be a mathemati-  Function and Expression Names

Function and Expression Names Formulas

A mathematical expression is a collection of valid expression names
combined in a mathematically correct way. The notation for a function
consists of a valid function name followed by a pair of parentheses
containing a list of variables, called arguments. Trigonometric func-
tions and certain others (trigtype functions) do not always require the
parentheses around the argument. The argument of a function can ~ New in Version 6
also occur as a subscript. Overbar for complex conjugate

Decorated characters as expression names
o Examples of mathematical expressions: x,a>h~2¢, xsiny+3cosz, i
p p y Passthru Code to Engine

ajaz —3b1by

External Functions

Trigtype Functions

o Examples of ordinary function notation: a (x), G (x,y,z), f5 (a,b)
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Valid Names for Functions and Expressions or Variables

A variable or function name must be either

o Asinglecharacter (other than astandard constant), with or with-
out a subscript.

Or

e A custom Math Name, with or without a subscript.

Expression names, but not function names, may include decorated
characters such as Z.

e Examples of valid expression names include otx, f123, g0, Qoo
7,  (decorated character), Waldo (custom name), Johns (cus-
tom name with subscript).

e Examples of valid function names include 0x, fi23, g6, Qoo
e7, sin, Alice (custom name), Lana, (custom name with sub-
script).

¢ Examples of invalid function names include AF (two charac-
ters), 7, e (standard constants), f, (two-character subscript),
1’ (reserved for derivative).

In the example of function names, the subscript on fi23 is properly re-
garded as the number one hundred twenty-three, not “one, two, three.”

Custom Names

In general, function or expression names must be single charac-
ters or subscripted characters. However, the system includes a num-
ber of predefined functions with names that appear to be multicharac-
ter—such as gcd, cos, and lcm—but that behave like a single character
in the sense that they can be deleted with a single backspace. You can
create custom names with similar behavior that are legitimate function
or expression names.

There are three types of custom names: Operator, Function, and
Variable. When you choose Name Type to be Operator, the custom
name behaves like Y or | with regard to Operator Limit Placement.
When you choose Name Type to be Function or Variable, it behaves
like an ordinary character with regard to subscripts and superscripts.
Observe the different behaviors of these types for inline and displayed

situations:
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o Inline Operator: Y/, , fo, operator?
o Inline Function or Variable: a',i, Variable’g

e Displayed Operator, and displayed Function or Variable:

1

Z / operator a; variable,
k=1 0 a
To create a custom math name
1. Choose Insert > Math Objects > Math Name.
2. Type a custom name in the text box under Name.
3. For Name Type, choose Operator or Function or Variable.
4

. If you choose Operator, check your choice of Operator Limit
Placement.

5. Ifyouwant this name to automatically gray when typed in math-
ematics mode, check Add Automatic Substitution.

6. Choose OK.

Math Name |E
Marne ~ Mame Type ———, ﬁ)
| rmod B | ) Cperator MZJ
&) Function
) Variable
~ Cperator Limit Placement —
Auto
AboveBelow
At Right

|:| This is an engine skring
] add automatic substitution

ﬁj | Apply | .Cancell]

Function and Expression Names
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The gray custom name appears on the screen at the insert point.
You can use this name to define a function or expression. You can copy
and paste or click and drag this grayed name on the screen, or you can
recreate it with the Math Name dialog.

To create a decorated character

1. Type a character.

2. Select the character and choose Edit > Properties > Character
Properties.

3. Click the desired accent and choose OK.

Compute > Definitions > New Definition
a=3
a=x"+y

Compute > Definitions > Evaluate
ad = 3x% +3y?
Automatic Substitution

When automatic substitution is enabled, function names such as
sin, arcsin, and gcd automatically turn gray when typed in mathemat-
ics. For a list of these names, choose Tools > Auto Substitution.

To enable auto substitution in mathematics
e Choose Tools > Auto Substitution and under Enable auto sub-
stitution , check In Math.

If automatic substitution is not enabled in mathematics, no func-
tion names automatically gray and such names must be selected from
the Auto Substitution list or created by choosing Insert > Math Ob-
jects > Math Name.

You can evoke the automatic substitution behavior with new cus-
tom names using the Automatic Substitution dialog.

To make a custom name automatically gray
1. Choose Tools > Auto Substitution.

2. 'Type the keystrokes that you wish to use. (This may be an ab-
breviated form of the custom name.)

3. Click the Substitution box to place the cursor there and, leaving
Auto Substitution open, choose Insert > Math Objects > Math
Name.
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Defining Variables and Functions

4. Choose a custom name from the scroll-down list or type a cus-
tom name in the Name text box in the Math Name dialog.

Automatic substitution
5. Choose Apply. (The custom name will appear in gray in the  Foranotherexample, see Automatic
Substitution box of the Automatic Substitution dialog.) Substitution, page 512.

For further details, choose Help > Index >
6. In the Math Name dialog box, choose OK. (The Math Name General Information and look under automatic

dialog will close.) substitution.

7. In the Auto Substitution dialog box, choose Save and choose
OK.

Automatic Substitution

Kewvstrokes Substitukion %'J
| | . | Bemm-'e-_,l
~ Type af Subskitution —  ~ Conkext for Subskitution -

(%) Simple subskitution (¥ In Math

D Scripk ko execute D In Text

| O InMath or Text ~ Enable or Disable Auko Substitution -

[] 1n Math
|:| In Text

Defining Variables and Functions

When you choose Compute > Definitions, the submenu that opens
contains five items: New Definition, Undefine, Show Definitions, Clear
Definitions, and Define MuPAD Name. The choice New Definition
can be applied both for defining functions or variables and for naming
expressions.

Assigning Values to Variables, or Naming Expressions

You can assign a value to a variable by choosing Compute > Defi-
nitions > New Definition. There are two options for the behavior of
the defined variable, depending on the symbol you use for assignment.
The default behavior, triggered by =, is deferred evaluation, meaning
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the definition is stored exactly as you make it. The alternate behavior,
triggered by :=, is full evaluation, meaning the definition that is stored
takes into account earlier definitions in force that might affect it. See
Full Evaluation and Assignment page 105 for a discussion of the latter
option.

Deferred Evaluation

e Use an equal sign = to make an assignment for deferred evalu-
ation.

To assign the value 25 to z for deferred evaluation
1. Type z = 25 in mathematics.

2. Leave the insert point in the equation.
3. Choose Compute > Definitions > New Definition.

Thereafter, until you exit the document or undefine the variable,
the system recognizes z as 25. For example, evaluating the expression
“3 +7” returns “= 287

Another way to describe this operation is to say that an expression
such as x* + sinx can be given a name. Type y = x* + sinx, leave
the insert point anywhere in the expression, and choose Compute >
Definitions > New Definition.

Compute > Definitions > New Definition
y = x% +sinx

Now, whenever you evaluate an expression containingy, every oc-

currence of y is replaced by the expression x* + sinx.

Compute > Evaluate
Va3 = (sinx+x2)2 +x3

The value assigned can be any mathematical expression. For exam-
ple, you could define a variable to be

e A number: a = 245
e A polynomial: p = x> —5x+1
-1

x2+1

e A quotient of polynomials: b =

. _|a b
oAmatrlx.z—{c d]

104

Note

These variables or names are single characters.
See page 100 for information on
multicharacter names.

Functions and expressions

The symbol p represents the expression
x> — 5x+ 1. Itis not a function, so, for
example, p(2) is not the polynomial
evaluated at 2, but rather is

p(2) =2p = 2x3 —10x+2,the
product of pand 2.
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e Anintegral: d = [x?sinxdx

You will find this feature useful for a variety of purposes.

Compound Definitions with Deferred Evaluation

It is legitimate to define expressions in terms of other defined ex-
pressions.
To make compound definitions with deferred evaluation

e Assign a value to a variable and then use that variable name in
the definition of a second variable.

Compute > Definitions > New Definition
r=3p—cq s=nr+gq

Compute > Evaluate
s=q+n(3p—cq)

Full Evaluation and Assignment

With full evaluation, variables previously defined are evaluated be-
fore the definition is stored. Thus, definitions of expressions can de-
pend on the order in which they are made.

To make an assignment symbol for full evaluation
e Type a colon followed by an equals sign :=.

To assign the value 254 to 7 for full evaluation
1. Type z := 25a in mathematics.

2. Leave the insert point in the equation.

3. Choose Compute > Definitions > New Definition.

Thereafter, until you exit the document or undefine the variable z,
if a has not been previously defined, the system recognizes z as 25a. If
a has previously been defined to be x +y, then the system recognizes
zas25(x+y).

Try the following examples that contrast the two types of assign-
ments. After making the definitions, choose Compute > Definitions
> Show Definitions for each case.

1. Make the assignmentsa = 1,x:=a,y = a,and a = 2 (in that
order), and evaluate x and y. The result should be x = 1,y = 2.

Defining Variables and Functions

Note
Redefining 7 will change the evaluation of s.
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2. Make the assignments a = b, x := a?, y = a*, and a = 6 (in
that order), and evaluate x and y. The result should be x = b?,
y = 36.

3. Definer =3p—cqgandthens=nr+gqgandt :=nr+gq. Evalu-
atingsandz willthengives =g+n(3p —cq),t =q+n(3p —cq).
Now define r = x +y. Evaluating s and ¢ will now give s =
g+n(x+y),t=qg+nBp—cq).

Functions of One Variable

By using function notation, you can use the same general proce-
dure to define a function as was described for defining a variable.

To define the function f whose value at x is ax” + bx + ¢
1. Type the equation f (x) = ax? + bx +c.

2. Place the insert point in the equation.

3. Choose Compute > Definitions > New Definition.

After following this procedure, the symbol f represents the de-
fined function and it behaves like a function.

Compute > Definitions > New Definition
f(x)=ax’>+bx+c

Tip
Compute > Evaluate After defining a function, you can make a table
P g y
f(o)= at? + bt +¢ () =b+2at of values for selected points in the domain of

the function. See Chapter 7 “Calculus,” page

_ 2
fx+h)=c+b(h+x)+a(h+x) 205 for examples.

Compound Definitions

The algebra of functions includes objects such as f + g, f — g,
fog, fg and f~!. For the value of f + g at x, write f(x) + g(x);
for the value of the composition of two defined functions f and g,
write f(g(x)) or (f og) (x); and for the value of the product of two
defined functions, write f(x)g(x). You can obtain the inverse (or in-
verse relation) for some functions f(x) by choosing Compute > Solve
> Exact with the equation f(y) = x and specifying y as the Variable

to Solve for.
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To make compound definitions
1. Define functions by choosing Compute > Definitions > New
Definition, either as generic functions or in terms of an expres-
sion.

2. Combine these functions in standard ways and define the re-
sulting functions by choosing Compute > Definitions > New
Definition.

Define g (x) and & (x). Then the following equations are examples
of legitimate definitions:

Once you have defined both g(x) and f(x) = 2g(x), then chang-
ing the definition of g(x) will change the value of f(x).
Subscripts as Function Arguments

A subscript can be interpreted cither as part of the name of a func-
tion or variable, or as a function argument.

To define a subscript as a function argument
1. Place the insert point in an equation such as a; = 3i with a
symbolic subscript and choose Compute > Definitions > New
Definition.

2. In the Interpret Subscript dialog that opens, check A function
argument.

Observe the different behavior in the following examples.

Compute > Definitions > New Definition
a; = 3i (subscript a function argument)

b; = 3i (subscript a part of the name)

107



“Compute60” — 2011/12/20 — 14:27 — page 108 — #118

Chapter 5 | Function Definitions

Compute > Evaluate
a =6
by = by
Choose Compute > Definitions > Show Definitions to sce how
these definitions are listed:
Compute > Definitions > Show Definitions
a; = 3i (variable subscript)
b; =3i
Thus a; denotes a function with argument i, and b; is only a sub-
scripted variable.

Compute > Definitions > New Definition
fa(y) = 3ay

Compute > Evaluate

fa(5) = 15a f3(5) =513
Piecewise-Defined Functions

You can define functions of one variable that are described by dif-

ferent expressions on different parts of their domain. These functions
are referred to as piecewise-defined functions, case functions, or multicase
functions. Most of the operations introduced in calculus are supported
for piecewise-defined functions. You can evaluate, plot, differentiate,
and integrate piecewise-defined functions.

Structure of a piecewise-defined function
e The function definition must be specified in a two- or three-
column matrix with at least two rows, with the function values
in the first column, “if” (text) or “i f” (math) in the second col-
umn of a three-column matrix (and “if;” or any text, or no text,
in the second column of a two-column matrix), followed by the
range condition in the last (second or third) column.

e The matrix must be fenced with a left brace and null right de-
limiter, as in the following examples.

To form a matrix for a piecewise-defined function

1. Choose Insert Math Objects > Brackets and choose| { |for the
left bracket and the null delimiter (dashed vertical line) for the
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Note

A function cannot have both subscripted and
inline variables. For example, if you define
fa(y) = 3ay, then ais part of the function
name and y is the function argument.

Note
Note that f;, is a function but f5 is just a
subscripted character.

Note

For the null right delimiter, choose the dashed
vertical line. This line does not normally
appear in the printed document. It appears on
screen as a dashed red line only when Helper
Lines is checked in the View menu.
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right bracket.
2. Choose Insert > Math Objects > Matrix.

3. Set the numbers for Rows (number of conditions) and Columns
(2 or 3), and choose OK. Caution
There are fairly strict conditions concerning the
format for the piecewise definition of

To define a piecewise-defined function f using a matrix with three columns functions

1. Type f (x) = followed by a matrix enclosed in brackets as de-
scribed.

2. Type function values in the first column.
3. Typeif in the second column in text or mathematics mode.
4. Type the range conditions in the third column.

5. Leave the insert point in the equation and choose Compute >
Definitions > New Definition.

To define a piecewise-defined function f using a matrix with two columns

1. Type f(x) = followed by a matrix enclosed in brackets as de-

scribed. Tip
When entering piecewise-defined functions,
choose View and turn on Helper Lines to see

2. Type function values in the first column. ) )
important details.

3. (Optional) Type if in text mode in the second column.

4. Type the range conditions in mathematics mode in the second
column.

5. Leave the insert point in the equation and choose Compute >
Definitions > New Definition.

Functions should be entered as in the following examples.
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Compute > Definitions > New Definition

x+2 if x<O0

flx)= 2 if 0<x<l1 (3 x 3 matrix)
2/x if 1<x
t ift <0
0 ifo<r<1

g(t) = 1 if1<tr<?2 (5 X 2 matrix)
2 if2<tr<3
6—1t if3<t

(2 x 3 matrix)

_fx+2 if x<1
h(x) {3/x if 1<x

k(x)—{ 2 x<l (2 X 2 matrix)

3/x 1<x

m(x) = { x+1 wheneverx <1 (2 % 2 matrix)

o V/x  whenever 1 <x

Compute > Evaluate
f(=1H=1 f(1/2)=2
1 if x<0
if O0<xAx<l1
—= if 1<x

See page 155 for details on plotting piecewise-defined functions.

Defining Generic Functions

You can choose Compute > Definitions > New Definition to de-
clare an expression of the form f(x) to be a function without spec-
ifying any of the function values or behavior. Thus you can use the
function name as input when defining other functions or performing

various operations on the function.

To define a generic function
1. Write an expression of the form f (x).

2. With the insert point in the expression, choose Compute >

Definitions > New Definition.
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Tip

To evaluate, plot, differentiate, or integrate
such a function, you can make the definition
and then work with the function name f or
the expression (). You can also place the
insert point in the defining matrix to carry out
such operations.
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Here, f is defined as a generic function and g as a specific function.
The examples show how f and g interact.

Compute > Definitions > New Definition

flx) glx)=x"—3x

Compute > Evaluate

flg)=f(=3x)  g(f(x)=/,"(x)-3f(x)
Defining Generic Constants

You can choose Compute > Definitions > New Definition to de-
clare any valid expression name to be a constant.

To define a generic constant
1. Wrrite a valid constant name in mathematics.

2. Choose Compute > Definitions > New Definition.

Compute > Definitions > New Definition

a

Functions of Several Variables

Define functions of several variables in essentially the same way as
functions of one variable.

To define a function of several variables

1. Write an equation such as f(x,y,z) = ax +y?+2zor glx,y)=
2x + sin 3xy.

2. With the insert point in the equation, choose Compute > Def-
initions > New Definition.

Assumptions About Variables

In some situations it is useful to restrict the domain of a variable.
For example, you may want the variable to assume only positive val-
ues or only real values. Such restrictions are made with the function
“assume.” The functions available for making or checking or removing
assumptions are

assume additionally about unassume

These functions place restraints on specific variables, provide infor-
mation on the restraints, or remove restraints. The function assume

Defining Variables and Functions

Note

Just as in the case of functions of one variable,
the system always operates on expressions
that it obtains from evaluating the function at
apoint in the domain of the function.

Note

The normal global default is the complex
plane. Variables are assumed to be complex
variables and solutions to equations include
complex solutions.

m
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enables you to place a restraint on a variable. The function addition-
ally allows you to place additional restraints. The function about re-
turns information on the restraints. The function #nassume removes
restraints.

Allowable assumptions include

real complex integer positive negative nonzero

The functions and assumptions listed above will automatically turn
upright and gray when typed in mathematics mode. The following
assumptions are also allowed for real variables x and y, and complex z:

x<y x<3 x#0 x<y x>5
Im(z) >0 Re(z) <0 Re(z) #0

To enter the names of the functions and assumptions
e Type the name in mathematics mode. (It will automatically curn

gray.) Or

e Choose Insert > Math Objects > Math Name and type the
name in the input box or select from the list of names.

Marne ~ Mame Tywpe

| assUme v | @) Oper:

) Wariak
~ Dperatar L
(&) Auto

() Abovve
™ AF Din

To make an assumption about a variable
1. In mathematics, type assume.

2. Choose Insert > Math Objects > Brackets and click the left

parcn .

3. Type the variable name, followed by a comma, followed by the

desired assumption.

12

Note

After making the assumption
assume(x,real) = R, only real solutions
will be computed:

Tip
Use the keyboard shortcut Ctrl-+9 or Ctrl+( to
enter expanding parentheses.
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4. Choose Compute > Evaluate.

Compute > Evaluate Compute > Solve > Exact
assume(x,real) = R x? = —1, No solution found.

x*> =1, Solution: —1,1

To place an additional assumption on a variable without removing previous

assumptions
1. In mathematics, type additionally. Note
An additional assumption placed on a variable
2. ChOOSC Insert > Math ObjCCtS > Brackets and CliCk . using assume Would negate any previous
assumption.

3. Inside the parentheses, type the variable name, followed by a
comma, followed by the desired assumption.

4. Choose Compute > Evaluate.

Evaluation of the expressions assume(n,positive) and
additionally(n,integer), followed by evaluation of the expression
about(n), produces the following output:

Compute > Evaluate
assume(n, positive) = (0, )
additionally(n, integer) = Z N (0, 0)
about(n) = Z N (0,00)
To restrict the domain of a real variable x
1. Make the assumption that x is real.

2. Use the function additionally for additional restraints on x.

Compute > Evaluate

assume (x,real) = R

additionally (x < 10) = (—eo,10)
additionally (x > —10) = [—10, 10)

Compute > Solve > Exact
sinx = 0, Solution: —3m,—27m,—7x,0,7,27,37%
To assume the variable 1 is positive

e Dlace the insert point in the expression assume (n, positive),
and choose Compute > Evaluate.

13
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To clear the assumptions about a variable

e Select the variable and choose Compute > Definitions > Un-
define, or

Evaluate unassume (name of variable).

Compute > Definitions > Undefine or Compute > Evaluate
n unassume (n)

After cither procedure, you can check the status of the variable
with the function about.

Compute > Evaluate
about(n) =n

This response indicates there are no assumptions on the variable 7.

Note
Compute > Evaluate If you assume that 2 is an integer, the system
assume (n, integer) = 7Z will recognize that 2 is a positive integer.
about (n*) = ZN|0,0)
|n2 +1 | =n’+1
In the default mode, both real and complex solutions will be com-

puted:

Compute > Solve > Exact
x* =1, Solution: —i,—1,i,1

Assuming x is positive leads to only real positive solutions:

Compute > Evaluate Compute > Solve > Exact
assume (x, positive) = (0, o0) x? = 1, Solution: 1
x* =1, Solution: 1
To restrict the domain of a complex variable z

o Make assumptions on the real and imaginary parts of z.

Compute > Evaluate
assume (Re (z) > 0) = (0,0) +iR
additionally (Im (z) < 0) = (0,00) +i(—e0,0)
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Handling Definitions

After making definitions of functions or expressions, you need to
know techniques for keeping track of them. The choices on the Def-
initions submenu are New Definition, Undefine, Show Definitions,

Clear Definitions, and Define MuPAD Name. The choice Show Def-
initions also appears on the Math toolbar as a

Showing Definitions

To view the complete list of currently defined variables and functions
e Choose Compute > Definitions > Show Definitions.

A window opens showing the active definitions. The defined vari-
ables and functions are listed in the order in which the definitions were
made.

Removing and Changing Definitions

To remove all definitions
e Choose Compute > Definitions > Clear Definitions.

To remove a single definition
e Sclect the defining equation or select the name of the defined
expression or function and choose Compute > Definitions >

Undefine.

To change a definition

o Make anew definition using the same function or variable name.

You can select the equation or name by placing the insert point
within or on the right side of the equation or name that you wish to
remove, or you can select the entire equation, expression, or function
name with the mouse. You can find the equation or name in the Show
Definitions window if you do not have a copy readily at hand. Copy
an expression from this window into your document, then select the
expression and choose Undefine.

Formulas

The Formula dialog provides a way to enter an expression and a
Compute operation. What appears on the screen is the result of the

Handling Definitions

15
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operation and depends upon active definitions of variables that ap-
pear in the formula. Formulas remain active in your document—that
is, changing definitions of relevant variables changes the data on the
screen.

To insert a formula
1. Choose Insert > Math Objects > Formula.

2. Type an expression in the input box.

3. Inthe Operation area, select the operation you want to perform
on the expression. (Click the arrow at the right of the box for a
list of available operations.)

4. Choose OK.

The results of the operation will be displayed in your document
window.
To recognize a formula on the screen from a background color

e Choose View and turn on Helper Lines.

To change the formula background color
1. Choose Tag > Appearance.

2. Check Modify Style Defaults.

3. Under Tag Properties, choose Special Objects.

4. Under Special Objects choose Formula and click Modify.
5. Select background color and choose OK.

6. Choose Save if you wish to make a permanent change in the
screen style, and choose OK.

Example Choose Insert > Math Objects > Formula. In the For-
mula box, type @, and under Operations choose evaluate. Choose
OK. The a will appear on your screen at the position of the insert
point. Now, at any point in your document, define a = sinx. The
variable a will be replaced by the expression sinx wherever a appears
in the document. Make another definition for a. The variable a will
again be replaced by the new definition everywhere a appears in the
document.
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Note
With Helper Lines on, a Formula appears with
a colored background. The default is yellow.
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Example Insert a 2 X 2 matrix. With the insert point in the first
input box, choose Insert > Math Objects > Formula. In the Formula
box, type a. Under Operations, choose Evaluate. Choose OK. Repeat
for each matrix entry, typing b, a +2b, and (a — b)?, in turn, in the
formula box to get the matrix

{ a—be (a—bb)2 ]

Now define @ = sinx and b = cosx. The matrix will be replaced by
the matrix
sinx CcosXx
sinx+2cosx  (sinx— cosx)?

Define a = Inx and b = ¢*. The matrix will then be replaced by the

matrix

Inx e
Inx+2¢°  (Inx—e*)?

Example Insert a table with 2 columns and 5 rows. Insert formulas
X, ¥, 2 and X +y + z in the column on the right.

’ Date ‘ Income ‘
1/31/96 X
2/28/96 y
3/31/96 Z

Total | x+y+z

Define x = 20.56,y = 18.92, z = 23.45 to get the table

’ Date ‘ Income ‘

1/31/96 | 20.56
2/28/96 18.92
3/31/96 | 23.45

Total | 62.93

Formulas are useful for writing multiple choice examinations with
variations The next example outlines a way for constructing them man-
ually.

The questions in an examination depend on definitions that are
made globally for each document—they’re not local to each question

Formulas
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or variant. This means that you often should use a Math Name instead
of asingle character name for variables. A sample question is shown in
the next example. The variables al and b1 shown in the next example
are math names.

To enter a Math Name in a Formula window

1. Choose Insert > Math Objects > Formula. Tip
Using a Math Name (see page 100) instead of a
single character name for each variable avoids
conflicts with other definitions in the
document.

2. With the insert point in the Formula window, choose Insert >
Math Objects > Math Name.

3. Type or select a Math Name and choose OK.

Example  You can create an examination with variations by making
different definitions for the variables such as the al and b1l shown in
the following question. Turn on Helper Lines in your document and
look for background color to check that all appropriate entries are for-
mulas.

1. For which values of the variable xisal x — bl < 0?

a. x<bl/al
b. x>bl/al
c. x>bl
d. x<bl
e. None of these
Defineal =2andbl =5 by placing the insert point in each equa-

tion and choosing Compute > Definitions > New Definition. On
your screen you should see

1. For which values of the variable x is 2x — 5 < 0?
a. x<5/2
b. x>5/2

x>5

d x<5

e. None of these

0

After printinga quiz, make different definitions for all the variables
such as al and b1 to obtain variations of the quiz.
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External Functions

You can access functions available to the computation engine that
do not appear as menu items. These can be cither functions from one
of the libraries of the computation engine or user-defined functions.

Functions defined with the Compute > Definitions > Define Mu-
PAD Name dialog, with their MuPAD name correspondences, appear
in the Show Definitions window but they may not be removed by
Clear Definitions.

To remove a defined MuPAD function

e Select the function name and choose Compute > Definitions

> Undefine.

Accessing Functions in MuPAD Libraries

The following example defines the function divisors, which com-
putes the divisors of a positive integer.

To access the MuPAD function divisors and to name it D
1. Choose Compute > Definitions > Define MuPAD Name.

2. Respond to the dialog box as follows:

o MuPAD Name: numlib::divisors(x)
o Scientific Notebook (WorkPlace) Name: D(x)

e Check “That is built in to MuPAD” or “is automatically
loaded”

3. Choose OK.

Compute > Evaluate
D(24) =1,2,3,4,6,8,12,24]

An extensive MuPAD library is included with your system. Here
is a short list of functions from the many examples that are available

using the Define MuPAD Name dialog.

External Functions

Caution

Multiple notations for vectors are possible in
Scientific WorkPlace and Scientific Notebook,
including row or column matrices, and
n-tuples enclosed by either parentheses or
square brackets. However, to work with a
function defined from the MuPAD libraries, you
must use MuPAD syntax for the function
arguments.
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MuPAD Name Sample SWP/SNB Name
nextprime(n) p(n)

ithprime(n) I(n)

isprime(n) q(n)

numlib::phi(n) o(n)
numlib::legendre(a,b) L(a,b)
numlib::divisors(x) d(x)
polylib::resultant(a,b,x) r(a,b,x)

lllint(a) L(a)

The following example defines the function izhprime, which pro-
duces the ith member of the sequence of prime integers.

To access the MuPAD function ithprime and to name it /
1. Choose Compute > Definitions > Define MuPAD Name.

2. In the MuPAD Name box, type ithprime(x).

3. In the Scientific WorkPlace (Notebook) Name box, type I (x)
4. Check “That is built in to MuPAD or is automatically loaded.”
5. Choose OK.

Compute > Evaluate
1(100) =541 1(1000000000) = 22801763489

See page 453 for another example. In that section, the MuPAD
function nextprime is used.

The guidelines for valid function and expression names (see page
100) apply to the names that can be entered in the Define MuPAD
Name dialog box. You can give a multicharacter name to a function
as follows: with the Define MuPAD Name dialog box open and the
insert point in the Scientific WorkPlace/Scientific Notebook Name
box, choose Insert > Math Objects > Math Name, type the desired
function name, and click OK.

The preceding comments also apply to user-defined MuPAD func-

tions discussed in the following section.

User-Defined MuPAD Functions

You can access user-defined functions written in the MuPAD lan-
guage. Write a MuPAD function or procedure with MuPAD or any
ASCII editor, and save to a file filename.mu. While in a Scientific
WorkPlace (Notebook) document, choose Compute > Definitions >
Define MuPAD Name.
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Note
See Appendix D for additional MuPAD
functions.
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To access the function myfunc and name it M/
1. Choose Compute > Definitions > Define MuPAD Name.

2. Respond to the dialog box as follows:

e MuPAD Name: type myfunc(x).
o Scientific WorkPlace (Notebook) Name: type M (x).
o The MuPAD Name is a Procedure:
— Check In MuPAD format file (.mu file) for MuPAD
file.

- Choose Browse and locate your file.
3. Choose OK.

This procedure defines a function M (x) that behaves according to your
MuPAD program.

Example Create an ASCII file with the following content.

myfunc := proc(x)

begin

return(sin(2*x));

end_proc;
Save the file under the name myfuncmu, and define the function M in
Scientific Notebook or Scientific WorkPlace according to the instruc-
tions preceding this example. You can then evaluate M (2).

Compute > Evaluate
M (2) =sin4

Passthru Code to Engine

You can also pass MuPAD code directly to the MuPAD engine.
This is similar to using Define MuPAD Name, but is convenient for
accessing 2 MuPAD function that you may only use once or twice. It
requires knowledge of the exact MuPAD syntax.

To solve the system of equations 2x +y =7,3x —2y =0
1. Type the MuPAD code solve({2*x+y=7,3*x-2*y=0},{x,y}) in text.

2. Select the code with your mouse.

3. Choose Compute > Passthru Code to Engine.

External Functions
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Compute > Passthru Code to Engine
solve({2*x-+y=7,3*x-2*y=0},{x,y})
{xr=2,y=3]}

To list the numbers 7,/10, ¢, 11/4,2.718 in increasing order
1. Type the MuPAD code sort([Pl,sqrt(10),E,11/4,2.718]) in text.

2. Select the code with your mouse.

3. Choose Compute > Passthru Code to Engine.

Compute > Passthru Code to Engine
sort([sqrt(10),11/4,2.718])

[2.718, 11, V/10]
Trigtype Functions

Scientific WorkPlace and Scientific Notebook recognize two types of
functions—ordinary functions and #r4gtype functions. The functions
I' (x) and exp (x) are examples of ordinary functions while sinx and
Inx are examples of trigtype functions. The distinction is that the ar-
gument of an ordinary function is always enclosed in parentheses and
the argument of a trigtype function often is not.

Twenty six functions are interpreted as trigtype functions: the six
trigonometric functions, the corresponding hyperbolic functions, the
inverses of these functions written as “arc” functions (e.g. arctan (x)),
and the logarithmic functions log and In. These functions are identi-
fied as trigtype functions because they are commonly printed differ-
ently from ordinary functions in books and journal articles.

You can reset your system so that all output is written with paren-
theses around arguments.

To disable trigtype output
1. Choose Tools > Preferences > Computation > Output.

2. Check Use Parentheses for Trig Functions.
3. Choose OK.

Your system will continue to interpret sinx as a function with ar-
gumentx, but the output of all computations will be of the form sin (x)
with the argument enclosed in parentheses.
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Determining the Argument of a Trigtype Function

There is no ambiguity in determining the argument of an ordi-
nary function because it is always enclosed in parentheses. However it
can be rather tricky to find the argument of a trigtype function. Con-
sider I' (@ + b) x and sin (a + b) x for example. It is clear that one in-
tends to evaluate I" at a + b and then multiply the result by x. How-
ever, with the similar construction sin (a + b) x, it is quite likely that
the sine function is intended to be evaluated at the product (a + b) x.
If this is not what is intended, the expression is normally written as
xsin(a+b),oras (sin(a+b))x.

To determine how an expression you enter will be interpreted

e Place the insert point in the expression and choose Compute >
Interpret.

In the following examples, Use Parentheses for Trig Functions has

been checked.
Compute > Interpret
sinx/2 = %sin (x) sinx/y = sin (f)

Roughly speaking, the algorithm that decides when the end of the
argument of a trigtype function has been reached when it findsa + or
— sign, but tends to keep going as long as things are still being mul-
tiplied together. There many exceptions, some of which are shown in
the following examples.

Compute > Interpret Argument of sin
sinx+5 = sin (x) +5 x
sin(a+b)x=sin(a+b)x (a+b)
sinx(a+b) = sin(x(a+b)) x(a+b)
sinxcosx = sin (x) cos (x) X

sinx (cosx + tanx) = sin (x (cosx + tanx)) x(cosx +tanx)
(sinx) (cosx+tanx) = (sin(x)) (cosx+tanx) x

sinxe* = sin (xe*) xe*

e*sinx = ¢*sin (x) x

When in doubt, use extra parentheses or choose Compute > In-
terpret. Note that there is no ambiguity in the expression €* sinx. The
expression sinxe® may or may not be interpreted in the way you in-

tended.

Trigtype Functions
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Exercises

1. Define a = 5. Define b = a2. Evaluate b. Now define a = v/2.

Guess the value of b and check your answer by evaluation.

2. Define f(x) = x* 4 3x+ 2. Evaluate

fx+h)—f(x)
h

and simplify the result. Do computing in place to show inter-
mediate steps in the simplification.

3. Define f (x) = x> — 1, g (x) = 3x +2, h (x) = x> + 3x. Com-
pute f+g, (f +g)h,and fh+ gh. Compute (f +g) oh,and
foh+goh.

4. Redefine the function f(x) = max (x2 —-1,7—- xz) asapiecewise-
defined function.

S. Experiment with the Euler phi function ¢ (n), which counts the
number of positive integers k < n such that ged(k,n) = 1. Test
the statement “If ged(n,m) = 1 then @(nm) = @(n)e(m)”
for several specific choices of n and m. Choose Compute >
Definitions > Define MuPAD Name to open a dialog. Type
numlib::phi(n) as the MuPAD Name, @ (7) as the Scientific Work-
Place/Notebook Name, check That is Built Into MuPAD or au-
tomatically loaded, and click OK.

6. Choose Compute > Definitions > Define MuPAD Name to
open a dialog. Define d(n) by typing numlib::divisors(n) as
the MuPAD name, d(n) as the Scientific WorkPlace/Notebook
Name, check That is Built Into MuPAD or automatically loaded,
and click OK. Explain what the function d(n) produces. ('This
is an example of a set-valued function, since the function values
are sets instead of numbers.)

Solutions

1. If a = 5 then defining b = a* produces b = 25. Now define
a = /2. The value of b is now b = 2.
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2. Evaluate followed by Simplify yields

—f<x+h/)l_f(x) = % (3h—x2+(h+x)2)

= 2x+h+3

JEARZT) and, wich the Cerl key down,
dragthe expression to create a copy. Select the expression f (x + h)
and, with the Ctrl key down, choose Evaluate. Add similar steps
(use Factor to rewrite 2x/ + h? 4 3h) until you have the follow-

ing:

Select the expression =

ft+h) —f(x)  3h+3x+(h+x)°+2— (3x+22+2)
h B h
~ 3h43x+2hx+hr a2 +2-3x—x? -2
B h
2 2 2
_ 3h+ Zx—i—h :h(h+hx+3):h+2x+3

. The sum is given by (f +g) (x) = f (x) + g (x) so
(f+8)(x)=(x*—1)+(Bx+2) =x"+3x+1

The productis given by ((f+g)h) (x) = ((f +g) (x)) (h(x))

(f+8)h) (x) = (*+3x+1) (x +3x) =x* +6x +10x* +3x

The sum of the productsis (fh+ gh) (x) = f (x) h (x) +g (x) h (x)

SO

(¥ — 1) (6 +3x) + (3x+2) (¥* +3x)
x* 4627 4 10x% 4 3x

(fh+gh) (x)

Define k (x) = f(x)+g(x) then (f+ g)oh=kohso

(F+g)oh)(x) = (koh)(x)=(+3x)"+1+3>+9x
= e 123 +9x+1

Finally, (foh+goh)(x) = (foh)(x)+ (goh) (x) so that

Exercises
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(foh)(x)+(goh)(x) = <(x2+3x)2—1>+(3x2+9x+2)
= Are’+ 1222 +9x+1

This demonstrates that both product and composition distribute
over addition.

4. Toredefine f(x) = max (x2 —1,7— xz) asa piecewise-defined
function, first note that the equation x> — 1 = 7 — x? has the
solutions x = —2 and x = 2. The function f is given by

-1 if x< =2
gx)=¢ 7-x* if —2<x<2
=1 if x>2

As a check, note that f(—5) = 24, g(—5) =24, f(1) =6,
g(1)=6, f(3) =8,and g(3) = 8.

5. Construct the following table:

n o) n o o) n o)
1 1 11 10 21 12
2 1 12 4 22 10
3 2 13 12 23 22
4 2 14 6 24 8

5 4 15 8 25 20
6 2 16 8 26 12
7 6 17 16 27 18
8 4 18 6 28 12
9 6 19 18 29 28
10 4 20 8 30 8

Notice, for example, that

p4-5) = 8 =045
p4-7) = 12=9@4)e(7)
»(3-8) = 8=0(3)p(8)
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6. Construct the following table:

n o(n) n o(n)

1 1 11 [1,11]

2 1,2] 12 [1,2,3,4,6,12]
3 1,3] 13 [1,13]

4 [1,2,4] 14 [1,2,7,14]
5 1,5] 15 [1,3,5,15]
6 [1,2,3,6] 16 [1,2,4,8,16]
7 1,7] 17 [1,17]

8 [1,2,4,8] 18 [1,2,3,6,9,18]
9 [1,3,9] 19 [1,19]

10 [1,2,5,10] 20 [1,2,4,5,10,20]

Notice that d(n) consists of all the divisors of n.

21
22
23
24
25
26
27
28
29
30

¢(n)
[1,3,7,21]
[1,2,11,22]
[1,23]
1,2,3,4,6,8,12,24]
[1,5,25]
[1,2,13,26]
[1,3,9,27]
[1,2,4,7,14,28]
[1,29]
1,2,3,5,6,10,15,30]

Exercises
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Plotting Curves and Surfaces

[The universe] cannot be understood until we have learned the language and can interpret the characters in which it is written. It is written in the

language of mathematics, and its characters are triangles, circles and other geometrical figures, without which it is humanly impossible to
understand a single word of it...  Galileo Galilei (1564—1642)

their most powerful features. With the system you are using,
you can carry out operations interactively. You can plot func-
tions and expressions, examine the results, revise the plot and exam-
ine the results of the revision, add multiple functions to the plot, and

T he plotting capabilities of symbolic algebra systems are among

carry out a variety of other plotting procedures. This adds an exper-
imental dimension to problem solving that was not easily accessible
in the past. In the preceding chapter, several plots were provided to
illustrate properties of functions. You will find yourself creating plots
in many situations to help answer questions about the behavior of dif-
ferent functions or families of functions.

In this chapter, you will find techniques for creating plots, show-
ing how to plot lines and curves in the Euclidean plane, and lines,
curves, and surfaces in three-dimensional Euclidean space. These tech-
niques use the basic routines Rectangular, Polar, Implicit, and Para-
metric from the Plot 2D submenu, and Rectangular, Cylindrical, Spher-
ical, Implicit, and Tube from the Plot 3D submenu. The submenus of
Plot 2D, Plot 3D, and Calculus also contain a variety of specialized
plotting routines for advanced topics in calculus, vector calculus, and
differential equations. Those plotting options are introduced and dis-
cussed elsewhere, along with the related mathematics.

Getting Started with 2D Plots
Interactive Tools for 2D Plots
Graph User Settings

2D Plots of Functions and
Expressions

Creating Animated 2D Plots
Creating 3D Plots

Creating Animated 3D Plots

New in Version 6

Reorient 3D Plots with click and drag
Interactive plot tools in document window
Smoother 2D Plots
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Getting Started With 2D Plots

You can plot an expression or function in several ways, as described
in the following sections. Most of these are variations on the following
basic procedure.

To plot an expression involving one variable
1. Place the insert point in the expression.

2. Choose Compute > Plot 2D > Rectangular. Note
Shown here are both the expression x> and its
Compute > Plot 2D > Rectangular plot on the default interval —6 < x < 6.
3
X

i

A frame containing a plot of the expression appears after the ex-
pression, either displayed or in line (that is, with the lower edge rest-
ing on the text baseline) and the insert point appears at the right of
the plot. In the plot layout section you will find information on repo-
sitioning and resizing the frame. Following that is information on re-
vising plots.

The first attempt at a plot uses the default parameters. There are
many settings you can adjust to obtain the view you prefer.

To plot the function y = xsinx on the default interval -6 < x < 6
1. Leave the insert point in the expression xsin.x.

2. Choose Compute > Plot 2D > Rectangular.

To add the expression x” to a plot

2

e Dragand drop the expression x~ onto the plot frame.
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Compute > Plot 2D > Rectangular

xsinx

Rectangular Coordinates

When you choose Compute > Plot 2D > Rectangular, the view
that appears is determined by inequalities of the form a < x < b and
¢ <y <d. The standard default for the view is the region bounded by
—6 <x<6andc <y <d,wherecandd are chosen by the underlying
computational system and depend on the shape of the function plot.

To create a 2D plot with rectangular coordinates

1. Place the insert point in a mathematical expression with one

variable. Note
Shown here are both the expression x2 and its
2. Choose Compute > Plot 2D >Rectangular. plot on the default nterval —6 < x < 6.
Compute > Plot 2D > Rectangular
2
Y 30
20
10

X L

Polar Coordinates

In polar coordinates, you specify a point P by giving the angle 0
that the ray from the origin to the point P makes with the polar axis
and the distance 7 from the origin. The equations that relate rectan-
gular coordinates to polar coordinates are given by

x=rcosB and y=rsin@
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or equivalently,
- _y
X +y =r and tan@ = -
X

When you choose Compute > Plot 2D > Polar, the view that ap-
pears is determined by the inequality —7 < 0 < 7 on the angle. The
view intervals are chosen by the underlying computational system and

depend on the shape of the function plot.

To make a 2D plot in polar coordinates
1. Place the insert point in a mathematical expression with one

variable.

2. Choose Compute > Plot 2D >Polar.

To obtain the view shown in the following plots, check Equal Scal-
ing on Both Axes (see page 143).

Compute > Plot 2D > Polar
sin26 1 —cos@

Implicit Plots

When you choose Compute > Plot 2D >Implicit, the view is de-
termined by inequalities of the forma <x < band ¢ <y < d. The
default values for the Plot Intervals are —6 < x < 6and —6 <y < 6,
and the default View Intervals are determined by the undetlying com-
puter algebra system.
To create an implicit 2D plot with rectangular coordinates

1. Place the insert point in a mathematical equation with two vari-

ables.

2. Choose Compute > Plot 2D > Implicit.

132

1 —sinO +2sin360

Note
Plotting with Implicit assumes rectangular
coordinates.
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The following are default views.

Compute > Plot 2D > Implicit

¥ +y> =49 x> 4y* =25
/yjL RN /Vf\
X X
N s g
Tip

You can make an implicit plot of the equation x = f(y) to plotthe ot a more accurate representation of the
inverse function or inverse relation of a function y = f(x). circle, go to the Axes page and check Equal

To plot the inverse function or relation of a function y = f(x) asanimplicit ~ Scaling Along Each Axis (see page 143).
plot
e Reverse the variable names in the equation and make an implicit

plot.

For example, to plot the cube root functiony = x'/3, observe that
itis the inverse function to y = x> and create an implicit plot of x = y°.
Revise the plotand set Plot Intervalsto —5 <x < S5and —1.75 <y <
1.75. The default assigns y a wider domain, therefore computing many
points outside the view and producing a rather rough looking curve.

Compute > Plot 2D > Implicit
Y =x

y 15

10
0.5

For the inverse relation of the sine function y = sinx, do an im-
plicit plot of x = siny. Changing the view appropriately will give the
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plot of the inverse sine function. For a smooth curve, revise the plot
and set the Plot Intervals to match the view that appears in the plot.

Compute > Plot 2D > Implicit
siny = x

05T

10T

-15+
—1<x<1

Default view

Parametric Plots

When you choose Compute > Plot 2D > Parametric, the default
values for the Plot Interval are —6 < ¢t < 6 and the View Intervals
a <x<bandc <y <daredetermined by the underlying computer
algebra system.

To plot a 2D parametric curve with rectangular coordinates

1. Make the two defining expressions the components of a vector.
You can use any of the standard notations for a vector, including
the forms [sin27,cos3¢], (sin2¢,cos3r), [ sin2t cos3t |,

( sin2t  cos3t ), sin21 Y 2 . ('The last four
cos 3t cos 3t

vectors are 1 X 2 and 2 X 1 matrices, respectively.)
2. Place the insert point in the vector.
3. Choose Compute > Plot2D > Parametric.

The following are default views.

134

X, L

—n/2<y<m/2

Tip
See page 135 for plotting arcsin x using a
parametric plot.

Note

A 2D parametric curve is defined by a pair of
equationsx = f(),y = g(r). The curveis
the set of points ( /'(r), g(¢)), wherez
ranges over an interval.
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Compute > Plot 2D > Parametric
(6cosx,6sinx) ( 3cosx 3sinx )

The following plot shows the parametric curve defined by x =
sin2t, y = cos 3t as the parametric plot of the vector [sin27, cos 3¢]
with 0 <t <27 and Equal Scaling Along Each Axis.

Compute > Plot 2D > Parametric
(sin2¢,cos3t)

To plot the inverse function or inverse relation of a function y = f(x)
o Make a parametric plot of the pair (f(x),x).

For example, to plot the cube root functiony = x'/3, observe that
it is the inverse function to y = x> and create a parametric plot.

Compute > Plot 2D > Parametric

()

The inverse relation of sinx follows. Adjust the view to get the plot
of sin” ! x.

Getting Started With 2D Plots
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Compute > Plot 2D > Parametric

(sinx, x)
Y a+t
: -
-1 0.5 3 0.5 1.0
24 X
-4 \
- -15
(sinx,x) arcsinx

You can generate a regular pentagon with an enclosed five-point
star by creating two parametric plots of (sin27x, cos 27tx) and chang-
ing the Plot Intervals and number of Points Sampled.

Compute > Plot 2D > Parametric
(sin27x,cos 27x)
Points Sampled: 6

AN

Plot Interval Plot Interval
O<x<1 0<x<?2 Combined

Inequality Plots

You can plot the set of points (x,y) such that g (x,y) < h(x,y).
To plot an inequality

1. Enter an expression of the form g (x,y) < A (x,y).

2. With the insert point in the expression choose Compute > Plot
2D > Inequality.
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Getting Started With 2D Plots
Compute > Plot 2D > Inequality
y<x?
Note
You can change the fill and background colors on the Items Plotted By default, the region inside the rectangular
page of the Properties of Function Graph dialog box (sce page 140). fegion —6 < x < 6,—6 < y < 6 that
Compute > Plot 2D > Inequality satisfies the inequality g (x, y) < /2 (x,y)
) is shown in blue, and the region that does not
xX+y <5 . ) I
satisfy the inequality is in red.
Y 4
AR NS
Ny X
-4
Fill Color 2: Fill Color 2:
White Light Gray
You can also plot the set of points (x,y) that satisfy multiple in-
equalities by placing the inequalities in a row matrix and choosing
Compute > Plot 2D > Inequality.
To plot multiple inequalities
1. Enteran expression of the form [ g1 (x,y) <hi(xy) g (x,y) <ha(x,y) g3(x,y) <hs(x,y) ]
2. With the insert point in the expression, choose Compute >
Plot 2D > Inequality.
137
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Compute > Plot 2D > Inequality
[x+y?<5 —x+)y*<5 ] [ x+2y<5 —x+y<3 x—3y<4]

Other types of 2D plots

There are several other options under Compute > Plot 2D. See
Chapter 9 “Vector Calculus” for Conformal (page 379), Gradient (page
367), and Vector Field (page 363). See Chapter 10 “Differential Equa-
tions” for ODE (page 401). See Chapter 7 “Calculus” for Approxi-
mate Integral (page 238).

Interactive Tools for 2D Plots

When a plot frame is selected, several plotting tools become visible
just below other toolbars at the top of the screen.

LR

The tool on the left is Reset Viewpoint. Next is the Selection Tool,
then the Zooming Tool, the Moving Tool, and the Query Tool.

To display plotting tools
1. Click to the right of the plot.

2. Move the mouse to the insert point. (The arrow changes to a

hand.)

3. Click when you see a hand. (This creates a resizable frame and
brings the plotting tools into view.)

Or

o Ifaframe is visible, click the frame.
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Reset Viewpoint

Click the Reset Viewpoint tool to reset the viewpoint to a default
position.

Zooming In and Out

The Zooming Tool shows a small arrow pointing up and a larger
arrow pointing down.

To zoom in or out

1. Click the Zooming Tool.
2. Move the mouse pointer over the view.

3. Click and drag towards the top of the screen to zoom out, or

Click and drag towards the bottom of the screen to zoom in.

Translating the View

Changing the Plot Intervals reveals different portions of a plot. To
see different portions of a plot in an interactive way, you can translate
the view with the Moving Tool. The Moving Tool shows four arrows,
similar to the north, south, east, west arrows commonly shown on a
map.

To translate the view
1. Select the Moving Tool.

2. Move the mouse pointer over the view.
3. Click and drag in the direction you want to translate the plot.

Plot Coordinates
The default tool for 2D plots is the Query Tool. This is used to

view the coordinates of points on a plot.

To view plot coordinates
1. Select the Query Tool.

2. Move the mouse pointer to a point of interest on the plot.

3. Press and hold the left mouse button to view of coordinates.

Interactive Tools for 2D Plots
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Graph User Settings
From the Graph User Settings dialog box, you can change proper-
ties of Items Plotted, Axes, Layout, Labelling, and View.

To open the Graph User Settings dialog box
e Double click the gray plot frame.

If there is no visible plot frame,

1. Click to the right of the plot.

2. Move the mouse to the insert point. (The arrow changes to a

hand.)
3. Click when you sec a hand. ('This will create a resizable frame.)

4. Double click the blue frame.

There is a keyboard shortcut to make the Graph User Settings dia-
logbox open when a plot is created, so that you can customize settings
before generating the plot.

To open the Graph User Settings dialog box while creating a plot

1. Place the insert point to the right of a mathematics expression
or function name.

2. Press Cul while choosing the plot command.

This brings up the Graph User Settings dialog box with the tabbed
pages Items Plotted, Axes, Layout, Labelling, and View.

[tems Plotted

From the Items Plotted page of the Graph User Settings dialog
box you can edit, add, and delete expressions to be plotted. This page
shows the Dimensions (2 or 3), the Plot Type (Rectangular, Polar,
Implicit, Inequality, Parametric, Conformal, Gradient, Vector Field,
ODE, or Approximate Integral), and whether or not the plot is ani-
mated.

140

Graph User Settings

Layout | Labelling | Ttems Plotted  Axes |View |

r O linLtog O Loglin - () Log Leg
[ Equal Scaling Along Each Axis

-~ Bis labels

[ s Tick Marks

D axes tips on
[ arid lines on

- Axes Type
(&) Mot Specified () Automatic (O Mormal

(O Baxed () Frame ) None
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Editing a plot
To edit a plot

1. Open the Graph User Settings dialogbox, choose the Items Plot-
ted page, and select an Irem Number.

2. Select the Line Style (Solid, Dash, or Dots), Point Marker (Squares,
Circles, Crosses, Diamonds, Filled Squares, Filled Circles, Filled
Diamonds, Stars, or X Crosses), Line Thickness (Thin, Medium,
or Thick), and Color.

3. If the graph has a discontinuity and you want asymptotes to be
plotted, uncheck Adjust Plot for Discontinuities.

Line Style
The line style can be solid, dash, or dots.

Compute > Plot 2D > Rectangular

xsinx

IN AR R

Solid Dash Dots
Point Marker

Points can be plotted by using Squares, Circles, Crosses, Diamonds,
Filled Squares, Filled Circles, Filled Diamonds, Stars, or X Crosses.
Here are examples of a few of these point markers:

To plot points
1. Open the Graph User Settings dialog box.

2. On the Items Plotted page under Plot Style, check Point.

3. Select the Point Marker.

} _I/' } — —
5 \5/ 2 \5/ ‘5‘ 2 .5_
\y -4 \J - -4 -

Graph User Settings
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Compute > Plot 2D > Rectangular
xsinx
A1
e :
+ T
45+ +5, oo
+ -2 + ©
T+ + °o
Circle Cross Box
Line Thickness
The line thickness can be Thin, Medium, or Thick.
Compute > Plot 2D > Rectangular
xsinx
Thin
To change the line thickness

1. Open the Graph User Settings dialog box and choose the Items
Plotted page.

2. Select the line thickness (‘Thin, Medium, or Thick) and choose
OK.

Continuity

The options Not Specified, Adjust for Discontinuities, Show Asymp-

totes, and Don’t Adjust are available for discontinuous functions. Here
are the two most common choices:
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Compute > Plot 2D > Rectangular
X

1—x
y 1]
Lt
6 -4 271 2 4 6 ]
19 X 2 4 6
t X
2t f
3+
Adjust Plot for .
Discontinuities Don’t Adjust

To change the method for plotting a discontinuous function
1. Open the Graph User Settings dialogbox, select the item, choose
the Items Plotted page.

2. Select one of Not Specified, Adjust Plot for Discontinuities,
Show Asymptotes, and Don’t Adjust.

New ltem

To add a new item to an existing graph
e Select an expression and drag it to the plot.

Or

1. Open the Graph User Settings dialog box, choose the Items Plot-
ted page, and click New.

2. Typc or paste a new expression in the window and choose OK.

To delete an item from an existing graph
1. Open the Graph User Settings dialog box and choose the Items
Plotted page.

2. Select an item number, click Delete, and choose OK.

Axes

From the Axes page of the Graph User Settings dialog box you
can change the Axes Scaling (Linear, Lin Log, Log Lin, or Log Log),

Graph User Settings
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choose Equal Scaling Along Each Axis, change the labels for the co-
ordinate axes, change the Axis Tick Marks (None, Low, Medium, or
High), turn the axes tips on or off, turn the grid lines on or off, and
change the Axes Type (Not Specified, Automatic, Normal, Boxed, Frame,
or None).

Axes Scaling

To edit the axes scaling
1. Open Graph User Settings and choose the Axes page.

2. Select Linear (horizontal and vertical axes both linear scaling),
Lin Log (horizontal axis linear and vertical axis logarithmic scal-
ing), Log Lin (horizontal axis logarithmic and vertical axis lin-
car scaling), or Log Log (horizontal and vertical axes both log-
arithmic scaling).

Compute > Plot 2D > Rectangular

x2
y 10T y 1 Y o
| 01 0.01
0.01 0.001
0.0001
05+ 0.001 165
0.0001 1e-6
le-7
le-5
le-8
0.0 — le-6 0.0000.0010.01 0.1 1
0.0 05 1.0 0.0 0.5 10 X
X X
Linear Lin Log LogLog

A Lin Log plot is a two-dimensional plot with the vertical axis
given in a log scale. Exponential functions f(x) = c¢b" plot as straight
lineson a Log coordinate system.
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Graph User Settings
Compute > Plot 2D > Rectangular
5(2Y)
y T Y 1001 /
200+ 10_;/,////
6 4 20 2 46 64202 4 6
X X
Linear plot of 5 (2¥) Lin Log plot of 5 (2¥)
A Log Log plot is a two-dimensional plot with both the vertical
and horizontal axes given in a logarithmic scale.
Note
Compute > Plot 2D > Rectangular Power functions f (x) = ax" plot as
x2/3 straight lines on a Log-Log coordinate system.

Plot Interval 0.1 < x < 1.1

10T

041

2—|'|'|'|'|'
02 04 06 08 10 PN T T Y T

2/3 2/3

Linear plot of x Log Log plot of x

You can also make the scales equal along the horizontal and vertical
axes.

To make the scaling equal along the horizontal and vertical axes
1. Open the Graph User Settings dialog box and choose the Axes

page.
2. Turn on Equal Scaling Along Each Axis.
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Axes Labels
The default labels for the axes are x and y for two-dimensional
plots, or x, y, and z for three-dimensional plots. You can edit the de-

fault labels.

To edit the labels for the axes
1. Open the Graph User Settings dialog box and choose the Axes

page.
2. Type labels in the axis label boxes.

Axes Appearance

You can change the appearance of the tick marks and turn on or
off the axes tips and grid lines.

To edit the number of tick marks shown on the axes
1. Open the Graph User Settings dialog box and choose the Axes

page.

2. Edit the number of Axis Tick Marks by selecting None, Low,
Normal, or High.

To turn axes tips on or off
1. Open the Graph User Settings dialog box and choose the Axes

page.
2. Check or uncheck Axes tips on.

To turn grid lines on or off
1. Open the Graph User Settings dialog box and choose the Axes

page.
2. Check or uncheck Grid lines on.

Axes Type
You can change the axis type to be Not Specified, Automatic, Nor-
mal, Boxed, Frame, or None.

To edit the axis type
1. Open the Graph User Settings dialog box and choose the Axes

page.
2. Select an Axes Type.
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Tip
The number of grid lines is determined by the
setting for tick marks (Low, Normal, or High).
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Graph User Settings
Compute > Plot 2D > Rectangular
xsinx
Plot Interval 0.1 <x < 1.1
2
y
0
-4 -2
4
420 2 4
Framed None
Layout
Layout properties include the size of a graphic, its placement within
your document, and the print and screen display attributes. The de-
faults for the layout can be changed on the Layout page of the Graph
User Settings dialog box.
Resizing the Frame
All plots have an attribute known as fit to frame. When you resize
the frame, the plot is resized with it. You can resize the frame cither
with the mouse or with the Graph User Settings dialog box.
To resize the frame with the mouse
1. Click to the right of the plot.
2. Move the mouse to the insert point. (The arrow changes to a
hand.)
3. Click when you see a hand. (This will create a resizable frame.)
4. Resize the frame by dragging one of the eight handles.
Or
1. Ifa gray frame is visible, click the frame.
2. Resize the frame by dragging one of the eight handles.
When the plot frame is selected, eight handles are visible and you
can resize the frame by dragging one of the handles. The corner han-
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dles leave the opposite vertex fixed while moving the two sides adja-
cent to the handle, creating a frame that has edges proportional to the

original frame ;g} 4 \ 5; . The edge handles move only the cor-

responding edge in or out. Either type of change stretches or shrinks a
plot in the view, along with the frame. Resizing the frame retains the
same domain and view intervals. For example, use one of the side han-

2

-6 6
dles to create a tall and narrow frame or use one of the han-

dles on the top or bottom to create ashort and fat frame U 2 g T 2 E 6 .

The examples in the previous paragraph illustrate the use of inline
plots, one of the two placement options described in the next section.
Use the Graph User Settings dialog box to specify frame dimen-

sions precisely.

To resize the frame with the Graph User Settings dialog box
1. Select the plot and open the Graph User Settings dialog box.
2. Click the Layout tab.

3. In the Size boxes for Width and Height, set the sizing options

you want.
4. Select desired units (inches, centimeters, picas, or points).

5. Choose OK.

Screen Display Attributes

The model screen attributes can be turned on or off. When turned
on, placement and display attributes will be automatically determined.
When turned off, these attributes can be set manually for each plot.

Screen Display Layout

To change the screen display attributes of the frame and plot
1. Select the plot and open the Graph User Settings dialog box.

148



“Compute60” — 2011/12/20 — 14:27 — page 149 — #159

2. Click the Layout tab.

3. Selectone of the Screen Display Layout attributes (Plot in Frame,
Plot Only, Frame Only, or Iconified).

4. Choose OK.
Compute > Plot 2D > Rectangular
xsinx
2T 2T
A : 5 . 5
2 2T
N
Plot in Frame Plot Only Frame Only
Placement

With Scientific Notebook, there are two choices for frame place-
ment—In Line and Displayed. With Scientific WorkPlace you can also
choose Floating.

Open the Graph User Settings dialog box to seec how a frame is

placed in your document.
To verify and/or change the placement
1. Select the frame and open the Graph User Settings dialog box.

2. Choose the Layout tab and check your choice for Placement.

In-Line Placement

An inline frame behaves like a word in the text, in the sense that
the frame is pushed along in the line when you enter additional items
to the left of it.
To change a plot or graphic to in line

1. Select the frame and open the Graph User Settings dialog box.

2. Choose the Layout tab and change the Placement to In Line.

When the placement is In Line, you can move it up or down within
the line.

Graph User Settings
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To move an inline frame up or down with the mouse

1. Select the frame.

2. Drag the frame up or down.

You can drag the plot frame such that its lower edge is resting on

7

, hangs with the upper edge at the text baseline

the text baseline like , is centered on the line like

7T

like , or rests anywhere in between.

7T

Displayed Frames
When the placement is Displayed, the frame appears on the screen

centered on a separate line like

7T

To change a plot or graphic to displayed
1. Select the frame and open the Graph User Settings dialog box.

2. Choose the Layout tab and change the Placement to Displayed.

Floating Frames

Floating placement is a typesetting option, available in Scientific
WorkPlace or Scientific Word only. Floating frames containing plots
aren’t anchored to a precise location in your document. Instead, they
are positioned when you typeset the document, according to the op-
tions you choose for placement: Here, On a Page of Floats, Top of
Page, or Bottom of Page. Floating frames can carry numbers, captions,
and keys. The number is created automatically by EIEX unless you
suppress it. If you don’t typeset, in the File > Preview screen or on

paper, floating frames behave like displayed frames.

150

Displayed frame placement versus
mathematics Display

Choose Displayed to center a plot. To minimize
vertical white space above and/or below the
plot, use the backspace or delete key to
remove any new paragraph symbols { that
occur immediately before/after the plot. (To
see these symbols, choose View and select
Invisibles.)

The use of the mathematics display, which
treats the frame like mathematics, can lead to
unpredictable results when you preview or
print your document. If the frame appears red
on your screen, you can change the frame to
text mode by selecting it with the mouse and
clicking the Math/Text button.
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To change a plot or graphic to floating
1. Open the Graph User Settings dialog box. See Help > Search > floating objects for
further information on floating frames.
2. Choose the Layout tab and change the Placement to Floating.

2D Plots of Functions and Expressions

In the equation f(x) = xsinx, each of the two sides— f(x) and
xsinx—is an expression while f is a function. The function f is a rule
that assigns to each number the product of that number and the sine
of that number. Thus the function f defined by the equation f(x) =
xsinx is the same function as the function g defined by the equation
g(t) =tsint. The expression xsinx (or f(x) or g (x)) is different from
the expression 7 sint (or f(¢) or g (t)), since xsinux is tied to the vari-
able x, and 7 sint is tied to the variable .

Expressions

To plot an expression involving a single variable

e Type the expression and choose Compute > Plot 2D > Rect-
angular.

Compute > Plot 2D > Rectangular

xsin —
X

y=xsin—
X

Add the caption y = xsin % by typing it into the Graph User Set-
tings > Labelling dialog box in the Caption entry field. (See page
140.)
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To add an expression to a plot

e Select the expression with the mouse and drag it onto the plot.

Or
1. Open the Graph User Settings dialog box and click New.

2. Type or paste the expression in the Plot Expression box.

Functions of Degrees

You can plot trigonometric functions written as functions of de-
grees rather than radians.

To plot trigonometric functions of degrees

1. Type the expression(s) in your document window, using cither
the red degree symbol in a superscript or the green degree sym-
bol from the Insert > Math Objects > Unit Names dialog box.

2. With the insert point in an expression, choose Compute > Plot
2D > Rectangular.

3. With the plot selected, open the Graph User Settings dialog

box.
4. Click the Items Plotted tab and choose Variables and Intervals.

5. Change Plot Intervals to —180 < x < 180 (or other limits as
appropriate).

6. Choose OK.

Select and drag additional expressions onto the plot, as desired.
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Compute > Plot 2D > Rectangular
sinx®
cos2x®  (Select and drag to the frame.)

y = sinx°, y = cos 2x°

Compute > Plot 2D > Rectangular
sin2x° 4 cos 3x°
(Change Plot Intervals to —360 < x < 360)

iy A
300WA\/ 100

Defined Functions

You can plot a defined function.

To plot a defined function f of one variable

1. Select the function name f or select the expression f(x).

2. Choose Compute > Plot 2D < Rectangular.

Compute > Definitions > New Definition
g (x) = tansin (x?)

2D Plots of Functions and Expressions

Note
To get this view, change the Plot Interval to
—180 < x < 180.

Recall

You can define a function such as

f(x) = xsinx by placing the insert point
in the expression and choosing Compute >
Definitions > New Definition.
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Compute > Plot 2D > Rectangular

Continuous and Discontinuous Plots

The appearance of the plot of a discontinuous function depends
on the setting for Adjust for Discontinuities.

To change the appearance of a discontinuous function
e From the Plot User Settings dialog box, select Not Specified,
Adjust for Discontinuities, Show Asymptotes, or Don’t adjust.

Compute > Plot 2D > Rectangular

x+1
x—1
6T 6T
y y
4T 4T
2+ 2+
m.i_._ﬁ.q_ﬂ [E—— ]
6 -4 -2 2 4 6 6 4 2 2 4 6
-2 X 2 X
4+t 4
6+ 6+
Adjust for Discontinuities Show Asymptotes
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This setting applies to individual items so it is possible to plot to-
gether two functions that require opposite settings.

There may be expressions that do not plot with the setting Adjust
for discontinuities, but that will plot with the setting Show Asymp-
totes. If you know before creating a plot that you wish to change this
setting (Not specified is the default), hold down the Ctrl key while
applying the plot command. The Graph User Settings dialog box will
open for you to edit before the system generates the plot.

For more examples of continuous and discontinuous piecewise-
defined functions, see the following sections.

Plotting Piecewise-Defined Functions

A piecewise-defined function must be entered in a two- or three-
column matrix enclosed in expanding brackets—a left brace and right
null bracket (see Piecewise-Defined Functions, page 108 for details).

To plot a piecewise-defined function

1. Place the insert point in a matrix of a piecewise-defined func-
tion.

2. Choose Compute > Plot 2D > Rectangular

Compute > Plot 2D > Rectangular

-1 if x<—1
10—10x% if —1<x<1
x2—1 if 1<x

Y 30

6
X

You can also plot a continuous graph from a discontinuous expres-
sion g (x) (or directly from the defining matrix) by checking Show
Asymptotes, as described on page 154.

2D Plots of Functions and Expressions
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Compute > Plot 2D > Rectangular

-1 if x<—1
20—x%2 if —1<x<1
-1 if 1<x

Y3+
20T
10 T
6 4 2 0 2 4 6 6 -4 2 4 6
X X
Adjust for Discontinuities Show Asymptotes
Compute > Plot 2D > Rectangular
t if t<0
0 if 0<tr<«1
1 if 1<r<2
2 if 2<1t<3
6-—1t if 3<t
Yap _— yap
> 4 6 6 4 21 2 a1 s
X 2T X
-4+ 4+
-6+ 6+
Adjust for Discontinuities Vertical Asymptotes

Special Functions
Greatest integer function and floor function

The function | x| is the greatest integer function, ot floor function.

To use the greatest integer function (floor function)
1. Choose Insert > Math Objects > Brackets.
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2. Select the left floor

bracket| | | and choose OK.

Compute > Plot 2D > Rectangular

[x]

— |
2 4 6
X

Absolute value function

To use the absolute value function
e Choose Insert > Math Objects > Brackets and select the verti-

cal brackets.

The following shows the graph of f (x) = |sinx|.

Compute > Plot 2D > Rectangular

|sinx]

2D Plots of Functions and Expressions

Note
You can get a continuous plot of this function
by checking Vertical Asymptotes.

Tip
You can also use the keyboard shortcut Ctrl+\
to insert expanding absolute values.

Gamma function

X L

The Gamma function T'(x) extends the factorial function in the

sense that for cach nonnegative integer n, I'(n+1) = n!.

To use the Gamma function
1. Click the Uppercase Greek button on the Symbols toolbar.

2. Select I from the Greek panel that opens.

The plot of the Gamma function displays the vertical asymptotes

Tip
You can also use the keyboard shortcut
Ctrl+g,G for the Greek letter I

along with the graph if Vertical Asymptotes is checked, and displays
only the graph when Adjust for Discontinuities is checked as in the

following example.
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Compute > Plot 2D > Rectangular

T ﬂ

Heaviside function
0 if x<O
The Heaviside function Heaviside(x) = % if x=0 isa
1 if x>0

built-in function.
Compute > Plot 2D > Rectangular
Heaviside(x)

< L

To use the Heaviside function

1. Choose Insert > Math Objects > Math Name.

2. Type Heaviside in the Name box of the dialog box that opens
and choose OK.

The Heaviside function provides an alternative method for creat-
ing piecewise-defined functions. Note that

sinx if x>2
Heaviside(x —2) sin(x) +Heaviside(—x) cosx = 0 if 0<x<2
cosx if x<0
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Compute > Plot 2D > Rectangular
Heaviside(x — 2) sin(x) + Heaviside(—x) cosx

|6|5|4|3||1':t'il2|34|1|5|
X
1
Polygons and Point Plots
You can plot the points { (x1,y1) , (x2,¥2) , (x3,¥3) , - -, (Xn, ) }»
or a polygon whose vertices lie at these points, by typing the vector
X1
X2 2
(X1,Y1,X2,Y2,X3,Y3, - .., Xn, Yn) or by entering the matrix | *3 )3
Xn Yn
To plot a polygon connecting points
1. Create a list of n pairs of points or an 7 X 2 matrix containing
the points.
2. Place the insert point in the list or matrix and choose Compute
> Plot 2D > Rectangular. Note
The beginning point (1, 1) is also the last
Compute > Plot 2D > Rectangular point.

(1,1,2,1,2,2,1,2,1,1)
View Intervals: 0 <x <3,0<y <3

3T

X, L
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To plot points
1. Create a list of n pairs of points or an n X 2 matrix containing
the points.

2. Place the insert point in the list or matrix and choose Compute
> Plot 2D > Rectangular.

3. Double click the frame to open the Graph User Settings dialog
box.

4. On the Items Plotted page, change Plot Style to Point, Point
Matker to Circle, and choose OK.

Compute > Plot 2D > Rectangular

1
; , View Intervals: 0 <x < 3,0 <y <3
2

—_ N DN —

To generate a regular pentagon with an enclosed five-point star
1. Place the insert point in the vector

—,sin —,cos —, sin —,c0oS —, Sin —,COS —
57 57 57 5’7 5’7 5’7 5

(()7 I.sin Zg,cos 2n . 4w A . 6T 6m . 8w 8%707 1)

and choose Compute > Plot 2D > Rectangular.

2. Select the vector

0,1,sin 4n CcoS 4n sin 87 cos 87 sin 2z cos 2n sin 67 cos 67 0,1
) 9 57 57 57 57 57 57 57 57 )

with the mouse and drag it to the frame.
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3. Graph User Settings > Axes, under Axes Scaling select Equal
Scaling Along Each Axis and under Axes Type select None.

4. Choose OK.
Compute > Plot 2D > Rectangular
(0 1,sin 25”,c0s 25”,s1n 45”,005 45”,sm 65”,005 65”,s1n 85”,c0s 550, 1)
(0,1,sin 45”,003 45”,s1n 85”,005 85”,s1n 25”,003 25”,sm 65”,005 2,0, 1)

You may find it convenient to combine Line and Point styles, as
in the following plot that combines a data cloud with a line of best fit.

(See page 436 in Chapter 11 “Statistics” for information on curves of

2792 957
best fit.) That technique was used to obtain the expression ;7 + g75x

used in the next example.

Compute > Plot 2D > Rectangular

1 34 6 7 7 10 11
8 7 9 12 15 16 19 21

2792 957
T enx (Select and drag to the frame.)

Graph User Settings, Item 1
Plot Style: Points
Point Marker: Squares

Y 20+
15+

10+ -

5"::. + + +
0 2 4 6 8 100 12

2D Plots of Functions and Expressions
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You can create line graphs and bar charts with polygonal plots, as
demonstrated in the following two examples. The first example is a

line graph depicting the data

1 2 3 4 5 6
0.11 0.24 028 0.21 0.1 0.031

Compute > Plot 2D > Rectangular

(1,0,1,0.11)

Enter, select, and drag to the frame each of the following.

(2,0,2,0.24), (3,0,3,0.28), (4,0,4,0.21), (5,0,5,0.1), (6,0,6,0.031)

y

0.2

0.1

00 —+t+—+—T—+—1T—+—t1t—+—1 !
0 1 2 3 4 5 6
X

Following is a bar chart, or histogram, depicting the data

112 23 34 45 56 67
0.11 0.24 0.28 0.21 0.1 0.031

Compute > Plot 2D > Rectangular

(1,0,1,0.11,2,0.11)

Enter, select, and drag to the frame each of the following.
(2,0,2,0.24,3,0.24) (3,0,3,0.28,4,0.28,4,0) (4,0.21,5,0.21,5,0)
(5,0.1,6,0.1,6,0) (6,0.031,7,0.031,7,0)

0.0
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Plotting a Grid

To create a grid
e Create a 2D plot

e Open the Graph User Settings dialog box, Axes page, and turn
grid lines on.

Compute > Plot 2D > Rectangular Grid lines
X The number of grid lines is determined by the
grid lines on Tick Marks setting (None, Low, Medium, or
High) on the Axes page.
5
y i

4+

34

o

1+

Envelopes

An interesting phenomenon occurs when simple curves are dis-
played as the “envelope” of a more complicated function. Such things
happen in practice when low-frequency waves (say, frequencies in the
audible range for the human ear) ride carrier waves broadcast from a
radio station.

To create a plot with an envelope
1. Type an expression R (x) for the envelope.

2. With the insert point in the expression, choose Compute >
Plot 2D > Rectangular.

3. Select and drag the product R (x) ¢ (x) of the envelope and the

carrier wave to the plot.
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The following example shows the curve y = 4 sinx+ 3 cos 3x “rid-
ing” on top of the carrier y = sin30x. To get an accurate plot, increase
the point sampled—from the Items Plotted page of the Plot Proper-
ties dialog box, raise Item Number to 2, choose Variables and Intervals,
and raise the number of Points Sampled to 150 or higher.

Compute > Plot 2D > Rectangular
4sinx+3cos3x
Select and drag to the frame (4sinx + 3 cos 3x) sin 30x

Parametric Polar Plots

You can make a parametric polar plot using an expression of the
form (r(t), 0 (¢)) where r (¢) is a function for the radius and 6 (7) is
a function for the angle. You can use any of the forms (r(¢),0 (1)),
[r(t),0(t)], ( r(t) 0(r) ), or [ g((l;)) }, where the last two ex-

pressions are 1 X 2 and 2 x 1 matrices, respectively.

To make a parametric polar plot
e Place the insert point in a pair of expressions in one variable and
choose Compute > Plot 2D > Polar.

The polar plotof 0 = r? is the 2D polar plot of the vector (r, rz).

Compute > Plot 2D > Polar

(5
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Both the radius 7 and the angle 6 may be defined in terms of some
third variable f. You can make the polar plot of the parametric curve
defined by the equations r = 1 — sin#, 8 = cost as the polar plot of
the vector (1 —sint,cost). Revise the first plot, choosing Polar and
setting the Plot Intervals to 0 <1 < 271

Compute > Plot 2D > Polar
(1 —sint,cost)
y 10T

05T

0.0

05T

-10T

Creating Animated 2D Plots

For an animated 2D plot, you specify a second variable. One of
the two variables will be designated as the Animation Variable. The
standard variable names are x for the horizontal axis and 7 for the Ani-
mation Variable. The default intervals for x and # are —6 < x < 6 and
—6 <t < 6. To change these settings, see page 166.

When the frame of an animated plot is selected, several plotting
tools become visible just below other toolbars at the top of the screen.

@ k344 K M ek -3~

The tool on the left is Reset Viewpoint. Next is the Selection Tool,
then the Zooming Tool, the Moving Tool, and the Query Tool. The
remaining tools are designed to control the animation. These include
jumps to the beginning or the end, begin animation, a slider for manu-
ally moving through the animation sequence, and loop controls (Run
once, Back and forth, Loop), and speed controls (8 x slower to 8
faster).

To display the animation tools
e Click to the right of the animated plot, move the mouse to the
insert point, and click when you see a hand. (This creates a re-
sizable frame and brings the animation tools into view.)

(reating Animated 2D Plots
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To create a 2D animation

e Type an expression in x and ¢, and choose Compute > Plot 2D
Animated > Rectangular.

Compute > Plot 2D Animated > Rectangular

xt
obhobooooobobooobobooooboboboooboooaood

A

boooobooboboooboboboooboboboooboooaood

To edit the animation

1. Click the plot.frame to bring up the animation toolbar.

2. Reset Viewpoint, Animation Style, or Animation Speed.

The followinganimated plot shows the graph of y = sin 2x smoothly
transform itself into the graph of y = cos 3x.

Compute > Plot 2D Animated > Rectangular

(1 —1)sin2x+1cos3x
OobhOoooobooboboobobobooboboboooboboooon

oo | Ao | Ao

obhoooobooboooooboboooobobooooobooooooan
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To make a parameterized animated plot in rectangular coordinates

1. Type an expression of the form (x (s,7),y(s,1)).

2. Choose Compute > Plot 2D Animated > Parametric, or
Choose Compute > Plot 2D Animated > Rectangular.
To animate the following Lissajous figure, select the frame and
open the Graph User Settings dialog box. Choose the Items Plotted

page, Variables and Intervals, and set 0 <x < 1and 0 <¢ < 1. On
the Axes page turn on Equal Scaling Along Each Axis.

The first formula draws the small circle at the leading edge of the
figure. The second formula shows a static figure in light gray. The third

formula shows the animated curve.

Compute > Plot 2D Animated > Parametric
(sin8xr +0.02 cos 27x, cos 107s + 0.02 sin 27x)
(sin87mx,cos 107x)

(sin87xt,cos 107xr)

(reating Animated 2D Plots

obooooooboboobobobooboboboobobooooo

baooabobobooobobooboaboboooabobooooab

A circle of radius 1 with an arm of length 2 rolls around a second
circle of radius 1, leaving behind a smoke trail. The resulting curve is
called a Limagon.
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Compute > Plot 2D Animated > Rectangular

(0.5+ cos wxt +cos 2zxt, sinwxt +sin27wxt),0 <x < 1,0 <1 <2

Select and drag to the frame: (1/2+1/2cos2mx,1/2sin27mx)

Select and drag to the frame: (0.5 +cos 7wz + 0.5 cos 27x, sin w7 + 0.5 sin 27x)

Select and drag to the frame: (0.5 + cos 7wt + xcos 27t sin 7t + xsin 27t )

ubooooboboooobobooboabobooooaboooooab

obhoooooobooooboboooobobooooboobooooan

Animated Plots In Polar Coordinates

In polar coordinates, you specify a point P by giving the angle 0
that the ray from the origin to the point P makes with the polar axis
and the distance r from the origin.

For an animated plot in polar coordinates you also need an anima-
tion variable such as 7.

To make an animated plot in polar coordinates

1. Type an expression in two variables.

2. Choose Compute > Plot 2D Animated > Polar.

The following animation shows the effect of the parameter ¢ on
the polar equation r = sin ¢ as a three-leaved rose changes into an
cight-leaved rose and finally into a five-leaved rose.

For thisanimation, open the Graph User Settings dialogbox. Click
the Items Plotted tab, choose Variables and Intervals, and set —3.14159 <
0 <3.14159 and 3 <t < 5. On the View page, select Equal Scaling
Along Each Axis.
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Compute > Plot 2D Animated > Polar
sin Ot

obooooboobooooobobooooboboooooboooooan

obhoooooobooooboboobooboboooobobooooan

To make a parameterized animated plot in polar coordinates

e Type an expression of the form (r(s,#),6 (s,7)), and choose
Compute > Plot 2D Animated > Polar.

The following animation shows the effect of the parameter ¢ in the
polar equation ¥ = 1 —#cos 0 ast varies from —2 to 2.

For the following animation, select the frame and open the Graph
User Settings dialog box. Click the Items Plotted tab, choose Variables
and Intervals, and set —3.14159 < 6 < 3.14159 and —2 < < 2.
On the View page, select Equal Scaling Along Each Axis.

Compute > Plot 2D Animated > Polar
(1—tcos0,0)

gbooooboboooooboboooaboboooaboooooanb

obhoooobooboooooboboooobobooooobooooooan

S
(reating Animated 2D Plots
Note
The limagon, also called the limagon of Pascal,
is a polar curve of the form
r=>b+acosb.
169
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Animated Implicit Plots

To make an animated implicit plot
1. Type an equation in three variables.

2. With the insert point in the expression, choose Compute >
Plot 2D Animated > Implicit.

The following animation shows the effect of the parameter f on the
rectangular equation x? +ty? = 1 as  varies from — 1 (which yields
a hyperbola) to +1 (which yields the unit circle). For this animation,
select the frame and open the Graph User Settings dialog box. On the
Items Plotted page, choose Variables and Intervals, and set =2 < x <
2,-2<y<2,and —1 <t < 1. Click the View tab and select Equal
Scaling Along Each Axis. (You may notice a substantial delay as an
animated implicit plot is generated.)

Compute > Plot 2D Animated > Implicit
P41y’ =1

obooooboobooooobobooooboboooooboooooan

obhoooooobooooboboobooboboooobobooooan

Animated Inequality Plots
To plot an animated inequality
1. Enter an expression of the form g (x,y,1) < h(x,y,1).

2. With the insert point in the expression, choose Compute >
Plot 2D Animated > Inequality.

In the following, -1 <x < 1,-1 <y <1l,and0 <t < 1.
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Compute > Plot 2D Animated > Inequality

x>+ (1—1)y* <t(1—1)

OobhOoooooobobooboboboooboboooobobooooob

oobboooobooooooooobobooooobooooooooooooo

Creating 3D Plots

The environment for plotting curves and surfaces in space is sim-
ilar to the environment for plotting in the plane. The view is a box, a
rectangular solid determined by inequalities of the form xo < x <x,
yo <y <y1,andzg <z <zj. The frame is a rectangular region of the
computer screen.

The default view has the Plot Intervals —6 <x <6, -6 <y <
6, with the z-coordinates determined automatically from properties
of the plot. If you use other variable names, the order is determined

alphabetically.

To plot an expression involving two variables

e Place the insert point in the expression and choose Compute >

Plot 3D > Rectangular.

'The following plot shows the surface z = x> — 3xy? with the de-
fault Plot Intervals for x and y, and the default View Intervals for x, y,

and z.

To make this plot, leave the insert point in the expression X =

3xy? and choose Compute > Plot 3D > Rectangular.
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Compute > Plot 3D > Rectangular

To add expressions involving two variables to an existing 3D plot
e Sclect the expression and drag the expression onto the plot.

Or

1. Open the Graph User Settings dialog box.

2. Choose New and type or paste the expression in the Plot ex-
pression input box.

Compute > Plot 3D > Rectangular
x> —3xy?
0 (Type, select, and drag to the frame)

Interactive Tools for 3D Plots
Plots can be explored by using the Plot 3D toolbar.
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To activate the 3D Interactive Toolbar
1. Click to the right of a 3D plot.

2. Move the mouse to the Insert Point and click the hand that ap-
pears.

Description of tools from left to right

To reset the viewpoint
e Click the Reset Viewpoint tool.

To fit the plot to the frame
e Click the Fit Contents tool.

To select a plot and copy as graphic
e Click the Selection tool and choose Edit > Copy .

To rotate the plot horizontally
e Click the Rotation tool and then click and drag across the plot.

To zoom in [out]
e Click the Zooming tool and then click and drag towards the
bottom [top] of the window.

To move the plot
e Click the Moving tool and then click and drag in the direrction
you want the plot to move.

To view plot coordinates
o Click the Query tool and then hover over a point on the plot.

To start or stop a slow or fast rotation
o Click one of the four Rotate tools. (A second click will stop that
rotation.)

To start or stop a slow or fast zoom
o Click the Zoom In tool or the Zoom Out tool. (The plus sign
to zoom in and the minus sign to zoom out. A second click will
stop that motion.)

Creating 3D Plots
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To control the speed of rotation and zoom

e Click the Action Speed tool and sct the desired speed.

When the mouse pointer is over a 3D plot it turns into a double
arrow. Press the left button and move the mouse to rotate the plot.
Release the left button. The plot remains in its new position.

To change the orientation of a 3D Plot

1. Place the insert point over the plot and press and hold down the
left mouse button.

2. Drag to the desired orientation and release the mouse button.

Defined Functions

You can plot a defined function of two variables in two different
ways.

To plot a defined function f of two variables

1. Select the function name f or select the expression f(x,y).

2. Choose Compute > Plot 3D > Rectangular.

To add a defined function g of two variables to a 3D plot

1. Select the function name g or select the expression g(x, y).

2. Dragyour selection onto the plot.

For the example that follows, define f(x,y) = x> +y*and g(x,y) =
—5. This example shows 3D rectangular plots of both f(x,y) and
g(x,y), with Plot Intervals —6 < x < 6 and —6 < y < 6, and View
Intervals —6 <x < 6,—6 <y <6,and —5 <z <40.
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Recall that you define a function such as
f(x,y) = x? 4+ y? by placing the insert
point in the expression and choosing Compute
> Definitions > New Definition.



“Compute60” — 2011/12/20 — 14:27 — page 175 — #185

Creating 3D Plots

Compute > Plot 3D > Rectangular

f(x,y)
g (x,y) (Type, select, and drag to the frame)

Parametric Plots

Parameterized surfaces in rectangular coordinates are defined by
three functions x = f(s,t), y = g(s,t), and z = h(s,t) of a two vari-
ables. These three functions can be presented asarowvector: | f(s,r) g(s,) h(s,r) ]

(5,1) f(s:1)
or( f(s,t) g(s,t) h(s,t) );acolumnvector: g(s,t) |or| g(s,t) |;
h(s,t) h(s,t)

or as a fenced list: (f(s,7),8(s,7),h(s,7)) or [f(s,7),8(s,1),h(s,1)].
These are very general and allow you to generate a wide variety of in-
teresting plots.

To plot a parameterized surface

1. Typé expressions in a vector, making each expression a separate
component.

2. Place the insert point in the vector and choose Compute > Plot
3D > Rectangular.

In the following plot, 0 < s <2mand 0 < < 7.
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Compute > Plot 3D > Parametric
[ssinscos?,scosscost,ssint]

T,
s z

Ellipsoid

The parameterized surface (acos 0 cos ¢,bsin 6 cos @, csin @) is
an ellipsoid that fits in a box of dimensions 2a x 2b x 2c.

Compute > Plot 3D > Parametric
(4sin¢ cos,3sin@sin6,2cos P)

2
1 = N
0 =
-1 = »
z 5
-2 0
0
2 X
Yy 2
4
Hyperboloid of two sheets

In the followingexample,0 <5 < 1.2and —3.1416 <t <3.1416.
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Compute > Plot 3D > Parametric
[2tanssint,3tanscost,secs]
[2tanssinz,3tanscost, —secs]

Hyperboloid of one sheet
In this example, —1 < s <1and 3.1416 <t < 3.1416.

Compute > Plot 3D > Rectangular
[2secssint, 3 secscost, tans]

Implicit Plots

You can plot an equation involving three variables by choosing
Compute > Plot 3D > Implicit. You will find the Switch Variables
option in the Plot Components tabbed dialog useful when the vari-
ables are not interpreted as you intended.

To obtain an implicit plot of an equation involving three variables
1. Type the equation in three variables.

2. Choose Compute > Plot 3D > Implicit.

Creating 3D Plots
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The next example shows a 3D implicit plot of X2+ y2 +722+1=
(x+y+z+ 1)2 with Boxed axes, View Intervals —6 < x < 6, —6 <
y<6,and —6 <z <6.

Compute > Plot 3D > Implicit
P4yl =(x+y+z+1)>°

Curves in Space

A space curve is defined by three functions x = f(), y = g(t),
z = h(t) of asingle variable. These three functions can be presented as

arow vector: [ f&) g(t) h() ]or( f&) g(t) h() );acol-

f(@) f()
umnvector: | g(t) |or| g(¢) |;orasafencedlist: (f(¢),g(z),h (7))
h(t) h(t)

or [f () ,g(t) ,h(1)].
To plot a space curve as a rectangular plot

1. Type the three definingexpressions as the components of a three-
element vector.

2. Choose Compute > Plot 3D > Curve in Space, or

Choose Compute > Plot 3D > Rectangular.

In the following example, —6 <t < 6.
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Compute > Plot 3D > Curve in Space
[t 2sint 1 ]

For the following, —3.1416 <t < 3.1416.

Compute > Plot 3D > Rectangular
—10cost —2cos(5¢) 4 15sin(2t)
—15cos(2¢) 4 10sinz — 2sin(5¢)

10cos(3¢)

\

Tube Plots

You can create a “fat curve” by choosing Compute > Plot 3D >
Tube by specifying a radius for the curve in the Plot Properties dialog
box. This radius can be constant or can be a function of z. The Sample
Size is the number of computed points along the curve; the Number
of Tube Points is the number of computed points in a cross section
of the tube. Ranges refers to the range of computed values for the
parameter f. The View Intervals include intervals for x, y, and z of the
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formxg <x <xp,y0 <y <y1,20 <z< 21

To plot a space curve as a tube plot

1. Type the three defining expressions as a three-element vector.
2. Choose Compute > Plot 3D >Tube.

3. Tochange the radius, open the Plot Properties dialogand change
the setting on the Items Plotted page.

The “fat curve” is designed to show which parts of the curve are
close to the observer and which are far away. Otherwise, a curve in
space is difficult to visualize. In the following example, Radius is set
to 1, the Plot Interval is set to 0 < # < 6.28 (= 27) and Surface Style
is set to Hidden Line. To draw the “thin curve” as a tube plot, set the
radius to 0 in the Radius box.

Compute > Plot 3D > Tube
—10cost —2cos(5¢t) + 15sin(2)
—15cos(2t) 4+ 10sint — 2sin(5¢)
10cos(3¢)

Radius 1 Radius O

Surfaces of Revolution

By typing an expression in ¢ for the radius and choosing the curve
to be astraight line, you can get surfaces of revolution. In the following
example, the radius is set to 1 —sint, the range fort is =27 <t < 2.
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Compute > Plot 3D > Tube
(#,0,0)

Radius 2 — sint

Polygonal Paths

To plot the polygon whose vertices lie at the points

{(X] 7)’1,21) 3 (x2ay2712) 5 (x3a)’3,23),

X1 V1
X2 Y2
enter the three-column matrix | *3 Y3

Xn Yn

2]
22
<3

Zn

- (xmynazn)}

or in a fenced list

(Xl,}’13217)52,)’2’117)53,)’33217 e ,Xn,)’mZn)

and choose Compute > Plot 3D > Rectangular. The points are con-
nected with straight-line segments in the order that they are listed, as

in the following box.

— #191

Creating 3D Plots
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Compute > Plot 3D > Rectangular Transpose
T The superscript 7" represents the matrix
00110 transpose, which interchanges rows and
01100 columns.
0 00 0O
Select and drag to the frame each of the following:
o001 10\ /1 100\ /1100)\"
01 1 00 0 1 1 1 1 ,1 0 0 0 O
I 11 11 01 10 01 10

Select and drag to the frame:

Rotate the box.

Here are two stars, one of which floats above the other.
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Compute > Plot 3D > Rectangular

1 cos%” cos%’r cos ZZ  cos10Z r
0 sin 4?” sin 8?” sin 1?” sin @ 0
1 1 1 1 1 1
1 cos%’r cos%’r cos 22 coslfZ r
Select and drag to the frame: | 0  sin %” sin %” sin % sin @ 0
0 0 0 0 0 0

You can plot polygonal paths by adjusting the Points Sampled in
a rectangular plot. For Items 1 and 2 below, set Plot Intervals to 0 <

t <1, and Points Sampled to 6.
Compute > Plot 3D > Rectangular

(cos4nt,sindnt,0)
Select and drag to the frame: (cos4mz,sin4nz, 1)

(ylindrical Coordinates
In the cylindrical coordinate system, a point P is represented by
a triple (r,0,7), where (r,0) represents a point in polar coordinates
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and z is the usual rectangular third coordinate. Thus, to convert from
cylindrical to rectangular coordinates, we use the equations

x=rcosB y=rsin6 7=2

To go from rectangular to cylindrical coordinates, we use the equa-
tions
P =x>+y tanGz% 7=z
The default assumption is that r is a function of 8 and z. As usual,
you can plot several surfaces on the same axes by dragging expressions
onto a plot.

Expressions

To make a cylindrical plot of an expression
1. Type the expression in two variables.

2. With the insert point in the expression, choose Compute >
Plot 3D > Cylindrical.

The following example shows a plot of the cylinder r = 1 and a
cone r = 1 — z, obtained as the 3D cylindrical plot of the expressions
land1 —z,with0 < 0 <2m,and0 <z < 1.

Compute > Plot 3D > Cylindrical
1 1-z

THH
T

Parameterized Surfaces in Cylindrical Coordinates

You can create a cylindrical plot of the parameterized surface
r= f(s,t), 0 = g(s,t), z = h(s,t) by entering the expressions for
1,0, and z into a vector ( f(s,t) g(s,t) h(s,t) ) or list
(f(s,1),8(s,t),h(s,1)) and choosing Compute > Plot 3D > Cylin-
drical.
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To create a parameterized cylindrical plot
1. Type the three defining expressions for r, 8, and z as the compo-
nents of a row vector ( f(s,t) g(s,t) h(s,t) ) oracolumn

f(s:1)
vector | g(s,¢) | orasalist (f(s,7),g(s,1),h(s,t)).
h(s,t)

2. With the insert point in the vector, choose Compute > Plot 3D

> Cylindrical.

The following example shows the “spiral staircase” z = 6, a 3D
cylindrical plot of the vector [r,0, 0], with 0 < r < 1,0 < 6 < 4,
and Surface Style set to Color Patch.

Compute > Plot 3D > (ylindrical
[r,6,0]
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Spherical Coordinates

The spherical coordinates (p, 0, @) locate a point P in space by giv-
ing the distance p from the origin, the angle 6 projected onto the xy-
plane (the polar angle), and the angle ¢ with the positive z-axis (the
vertical angle). The conversion into rectangular coordinates is given

by
x=psin¢cosO y=psin¢sinO Z=pcos@
and the distance formula implies
p2 =24 y? 47
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The default assumption is that p is a function of ¢ and 6. You can
use other names for the polar and vertical angles. Any two variables
you give will be interpreted as the polar and vertical angles. Even when
you use the standard notation, however, the roles of the variables may
be reversed in the default interpretation from what you intended. You
can correct this interpretation with the Switch Variables option in the
Plot Properties dialog box.

You can plot more than one surface on the same axes by dragging
additional expressions to the plot or by adding additional items on the
Items Plotted page of the Plot Properties dialog.

Expressions
To make a spherical plot

1. Type an expression involving 6 and ¢.

1. Choose Compute > Plot 3D > Spherical.

A sphere and a cylinder can each be plotted as a function of the
radius. Following is a sphere of radius 2. Set 0 < 0 <27 and 0 <
¢ < 1, check Equal Scaling on Each Axis, and choose Color Patch for
Surface Style.

Compute > Plot 3D > Spherical
2
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Changing the setting for Points Plotted of 6 to 4 creates a solid
with a triangular cross section. In the following example, the plotting
intervalsaresetto —1 < 0 <7, —1<z<1,and0< ¢ < 7.
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Compute > Plot 3D > Spherical
2

Defined Functions

You can create a plot of a function defined in spherical coordinates
p=p(6.9).
To make a spherical plot of a defined function p of 0 and ¢

1. Define p asafunction of 6 and ¢ by choosing Compute > Def-
initions > New Definition.

2. Select the function name p or select the expression p(6, ¢).

3. Choose Compute > Plot 3D > Spherical.

Example To plot the nautilus determined by the expression
(1.2)?sin(8), you can do any one of the following:

o Plot the expression (1.2)? sin(0) and then choose Switch Vari-
ables on the Items Plotted page of the Plot Properties dialog.
Use the ranges —1 < ¢ <2mand 0 < 6 < 7 to get the view of
the nautilus shown below.

e Define p(6,¢) = (1.2)?sin(8), plot the expression p(6,9),
and then choose Switch Variables on the Items Plotted page of
the Plot Properties dialog. Use the ranges —1 < ¢ < 27 and
0 < 6 < 7 to get the view of the nautilus shown below.

e Define the function p(¢,0) = (1.2)? sin(8) and plot the ex-
pression p(0,¢). (Note the variables are already switched here.)
Use the ranges —1 < 0 <2mand 0 < ¢ < 7 to get the view of
the nautilus shown below.

Creating 3D Plots

187



“Compute60” — 2011/12/20 — 14:27 — page 188 — #198

Chapter 6 | Plotting Curves and Surfaces

Compute > Plot 3D > Spherical
p(6.9)

Parameterized Surfaces in Spherical Coordinates

Parameterized surfaces in spherical coordinates are given by equa-
tions of the form p = f(s,1), 0 = g(s,t),and ¢ = h(s,1).

These equations are very general and allow you to generate a wide
variety of interesting plots.
To plot a parameterized surface

1. Type the defining expressions as the three components of a vec-

tor, (f(s,2),8(s,1),h(s,1)).
2. Place the insert point in the vector.

3. Choose Compute > Plot 3D > Spherical.

The 3D spherical plot of the vector [p, 6, 1] gives the cone ¢ = 1.

For the following plot, the view issetas —1 <p <1and 0 < 0 <
27. The Surface Style is Color Patch, and the Surface Mesh is Mesh.
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Compute > Plot 3D > Spherical
(p.6,1)
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You can plot the surface defined by p =5, 8 = s> +1%, ¢ =1

by entering the three expressions as coordinates of a vector. For the
following plot, take 0 < s < land —1 <7 < 1.

Compute > Plot 3D > Spherical
( s S22t )

&
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g
//4%//////// 7
Z

Creating Animated 3D Plots

For an animated plot, you specify a third animation parameter.
The default animation parameter is 7.

— #199

(reating Animated 3D Plots
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Animated 3D Plots in Rectangular Coordinates
To make an animated plot in rectangular coordinates

1. Type an expression in three variables.

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Rectangular.

The next example shows a 3D animated plot with Boxed Axes and
Intervals —6 < x <6, —6 <y <6, -3 <t <3, wheret is the an-
imation variable. The surface changes from a hyperbolic paraboloid
(t <0), to a paraboloid (f = 0), then to a hyperbolic paraboloid with
a different orientation (¢ > 0).

Compute > Plot 3D Animated > Rectangular
x? +y2 +ixy

obooooboobooooobobooooboboooooboooooan

obhOoooooobooooboboooobobooooboobooooan

To make a parameterized animated plot in rectangular coordinates
1. Type an expression of the form (x (r,s,¢),y(r,s,2),z(r,s,1)).
2. Choose Compute > Plot 3D Animated > Parametric, or

Choose Compute > Plot 3D Animated > Rectangular.

The next example shows a surface of revolution generated by ro-
tating the graph of z = 2 4 siny about the y-axis with Boxed Axes and
Intervals —6 < s < 6,0 <r<1,0 <t <1,wheret is the animation
variable.
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Compute > Plot 3D Animated > Parametric
((2+sins)sin (27tr) , s, (24 sins) cos (27tr))
OD000000D000oDD000DDo0D0ooDooDoDoDUuoooD

00000000000000000000000000000000000
Animated Curves in Three Space

To make an animated curve in space

1. Type an expression of the form (x(s,7),y(s,7) ,z(s,1)).

2. Choose Compute > Plot 3D Animated > Curve in Space.

Here is a curve that plays “follow the leader.”

Compute > Plot 3D Animated > Rectangular
—10cos (t+s) —2cos(5(t+s)) + 15sin(2 (t +))
—15cos(2(t+s)) + 10sin (t +s) — 2sin(5(t +s))
10cos(3(t+))
0<s5<3,0<rt<6.28, Animation Variable: ¢
Oooooooooooguoooooooooooooogoooooog

obhoooobooboooooboboooobobooooobooooooan
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Animated Plots in Cylindrical Coordinates
To make an animated plot in cylindrical coordinates

1. Type an expression in three variables

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Cylindrical.

The next example shows a blooming flower, with Intervals 0 <z <
1,0<6<20,and0 < < 1.

Compute > Plot 3D Animated > Cylindrical
20

gbooooboboooooboboobooboboooooboooooan

obhOoooooobooooboboooobobooooboobooooan

To make a parametric animated plot in cylindrical coordinates
1. Type an expression of the form (r (u,v,1), 0 (u,v,t),z (u,v,t))

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Cylindrical.

The next example shows a cone being generated as the linez = r
is rotated about the z-axis with Intervals 0 < r < 1,0 < s < 1, and
0<r<l1.
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Compute > Plot 3D Animated > Cylindrical
(—142r2mts,—142r)
uooogoogoouooboonobooboboooooogoo

obhoooooobooooboboobooboboooobobooooan

Animated Plots in Spherical Coordinates

To make an animated plot in spherical coordinates
1. Type an expression in three variables.

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Spherical.

The next example shows a sphere growing from radius 1 to radius
2, with animation variable Interval 1 < ¢t < 2 and Boxed Axes.

Compute > Plot 3D Animated > Spherical
t

gbhOoooooobooooboboobooboboooobobooooan

obobooobooboboobobobooboboboobobooooo
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To make an parameterized animated plot in spherical coordinates

1. Type an expression of the form (p (7,5,1), 0 (r,5,1), ¢ (r,5,1))

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Spherical.

The next animation shows the surface that morphs from a sphere
into a surface shaped like a bagel. The Intervalsare 0 <r < 1,0 <s <
l,and0 <t < 1.

Compute > Plot 3D Animated > Spherical
(1 —tcos2mr,2ms, r)

obhoooooobooooboboooobobooooboobooooan
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OobhOoooooobooooboboooobobobooobobooooo

Animated 3D Implicit Plots

To make an animated implicit plot

1. Type an equation in four variables.

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Implicit.

The next animation show a hyperboloid on two sheets that morphs
intoasphere. Theintervalsare —2 <x <2, -2<y<2,-2<z<2,
—-1<r<1.
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Compute > Plot 3D Animated > Implicit
Py’ +12 =1
Oo00oooooooooooooooooooooooooooooood

OooooooooooUoooooooooooooooooooooog
Animated Tube Plot

To make an animated tube plot

1. Type an expression in one or two variables

2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Tube.

3. In the Plot Properties dialog, on the Items Plotted page, change

Radius to an expression of your choice, using the same variables

The next animation shows a knot being drawn. The Intervals are
0<s5<2mwand0.01 < ¢ < 1, and Radius is set to 3.

Compute > Plot 3D Animated > Tube
[ —10coszs —2cos5ts+ 15sin2ts  —15c0s2ts+ 10sints —2sin5ts - 10cos3ts |

[—lOcoss—ZcosSs—l—lSsinZs —15co0s2s+ 10sins — 2sinSs IOCOSSS]
O000000oooooo0ooooooooooooooooooooooog

obhoooobooboooooboboooobobooooobooooooan
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Exercises

1. Choose Compute > Plot 2D > Implicit to plot the conic sec-
tions x> +y* = 1,x*> —y?> = 1, and x + y?> = 0 all on the same
coordinate axes.

2. Choose Compute > Plot 2D > Implicit to plot the conic sec-
tions (x — 1)+ (y+2)2 =1, (x—1)2— (y+2)> = 1, and
(x— 1)+ (y+2)* = 0 on one pair of coordinate axes. With
the hand symbol visible over the view, translate the view so that
the curves match the curves in Exercise 1. In which direction
did the axes move?

3. Plotx® +y? = 4and x> — y? = 1 together. How many intersec-
tion points are there? Zoom in on the one in the first quadrant
to estimate where the curves cross each other. Verify your esti-
mate by typing the formulas into a matrix and choosing Com-
pute > Solve > Numeric.

4. Plot the astroid x*/3 + y2/3 = 1.
5. Plot the folium of Descartes x> +y> = 6xy.

6. Plot the surface z = sinxy, with —4 <x <4and —4 <y <4.
Compare the location of the ridges with the implicit plot of the
three curves xy = 7, xy = 37”, and xy = 57”

7. A standard calculus problem involves finding the intersection
of two right circular cylinders of radius 1. View this problem by
choosing Compute > Plot 3D > Rectangular to plot the two
parametric surfaces [s,cos?,sin?] and [cost, s, sinz]. Obtain a
second view by creating a tube plot of [0,0,7] and setting the

radius to v/2v/1 — 2 and number of tube points to 5.
8. Do the two space curves
[(2+sin7)10cost, (24 cosr)10sinz, 3 sin 37

and
[20cos?,20sint, —3sin 3¢]

intersect? Choose Compute > Plot 3D > Tube and rotate the
curves to find out.
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9. View the intersection of the sphere x*> +y? 4-z> = 1 and the
planex+y+z= % by expressing these equations in parametric
form and choosing Compute > Plot 3D > Rectangular. Verify
that the points of intersection lie on an ellipse (it is actually a
circle) by solvingx+y+z = % for z, substituting this value into
the equation 2+ y2 +72=1,and calculating the discriminant
of the resulting equation. 1.

10. Explore the meaning of contours by plotting the surface z = xy.
Rotate the surface until only the top face of the cube is visible,
and interpret the meaning of the curves that you see. Rotate the
cube until the top face just disappears, and interpret the mean-
ing of the contours that appear.

Solutions
2.
1. Compute > Plot 2D > Implicit: x> +y*> = 1,x> —y? = 1,x+
»¥=0
(Take =2 < x < 2 and —2 <y < 2. Choose Equal Scaling
Along Each Axis.)

2. Compute > Plot 2D > Implicit: (x — 1)2—|— (y+ 2)2 =1,(x— 1)2 —
(42 =1,x=1)+(+2)*=0
(Take —1 < x < 3 and —4 <y < 0. Choose Equal Scaling 3.
Along Each Axis.)

3. Compute > Plot 2D > Implicit: x> +y? = 4,x> —y* = 1
(Take =5 < x < 5and —5 <y < 5. Choose Equal Scaling

Along Each Axis.)
xZ +y2 —4
xZ o y2 -1
Compute > Solve > Numeric:
xe (1,2) 4
ye(1,2) '

Solution : {x = 1.58113883,y = 1.224744871}

4. Compute > Plot 2D > Implicit: |x|2/3 + |y|2/3 =1
(Take -1 <x<land—-1<y<1)

Without the absolute values, you obtain only the first quadrant
portion of the graph.
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5. Compute > Plot 2D > Implicit: x> +y? = 6xy

(Take =5 < x < 5and —5 <y < 5 and set the grid to 50 by
50.)

Notice how the folium of Descartes shows up as alevel curve on Sa
the surface z = x> + y* — 6xy.

Compute > Plot 3D > Rectangular: x> +y? — 6xy
Compute > Plot 3D > Rectangular: 0

(Use Patch & Contourand take —5 < x <5, -5 <y <5, Turn
16, and Tilt 10.)

5b
6. Compute > Plot 3D > Rectangular: sinxy

(Choose Patch and Contourand take —4 <x <4, -4 <y <4,
Turn 108, and Tilt 17.)

Compute > Plot 2D > Implicit: xy = 7/2,xy = 57/2,xy =
3m/2

(Take —4 < x < 4and -4 <y <4)

N\

Xa L

7. Compute > Plot 3D > Rectangular: [s,cost, sin]

Dragcost, s, sint] onto the plot, and set Plot Intervalsat —2 <
s <2and 0 <t < 27 Compute > Plot 3D > Tube: [0,0,7],
set the Radius to v/2 x V1 — 12, set Plot Intervalsat —1 <t <
1.
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(2+sint)10cost
8. Compute > Plot 3D > Tube: | (2+cost)10sinz
3sin 3¢
20cost
Drag 20sint onto the plot, set 0 <t < 27, and set the 8.
—3sin3t

radius for both items to 1.

Compute > Solve > Exact:

(2+sint)10cost = 20coss
(2+cost)10sint = 20sins
3sin3¢t = —3sin3s

Solution: {t =0,s =0} ,{t =n,s = 7}

9. The plane x+y+z = 1/2 can be expressed in parametric form

as 1
(x,y,z) = <S,f,2 _S_t>

and the sphere x? +y? 4+ z2 = 1 can be expressed in parametric
form as

(x,y,2) = (\/ 1—s2cost,\/1 —szsint,s>

For the plane, take —1 <5 <1, —1 <t <1, style Patch & Con-

tour. For the sphere, take =1 <s < 1and 0 <7 < 6.283 (27),

style Hidden Line. Set Equal Scaling Along Each Axis.) Solv- 9.
ing for z on the plane gives z = 5 — x —y, giving the equation

for points on the intersection of the plane and sphere:

1 2
x2+y2+(—x—y> =1

2
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Expanding this expression yields the equation

3
2x2+2xy—|—2y2—x—y—‘—1 =0

for the curve of intersection. The discriminant B2 — 4AC is
22-4(2)(2)=—-12<0
which indicates that the curve of intersection is an ellipse.

10. Here are three views:

Wireframe

Contour Contour

The contours trace paths where the elevation is constant.
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Nature laughs at the difficulties of integration.

his chapter covers the standard topics from differential and

I integral calculus, including limits, sequences, and series. The
notion of a function is fundamental to the study of calculus.
Functions were introduced in Chapter 3 “Algebra,” with a descrip-
tion of procedures for naming expressions and functions. Basic in-
formation on working with functions and expressions is summarized
in Chapter 5 “Function Definitions,” along with additional informa-
tion on storing and retrieving definitions. In this chapter we assume
that you have read and understand how to define and manipulate func-
tions. We give several examples in this chapter that illustrate connec-
tions between calculus and the function plots introduced in Chapter

6 “Plotting Curves and Surfaces.”

Evaluating Calculus Expressions

You can evaluate calculus expressions in the same manner as ex-
pressions from algebra or trigonometry.

To calculate a derivative or an integral
1. Enter a derivative or integral in standard mathematical nota-
tion.

2. Choose Compute > Evaluate.

Calculus

Pierre-Simon de Laplace (1749—1827)

Evaluating Calculus Expressions

Limits

Differentiation
Indefinite Integration
Methods of Integration
Definite Integrals
Sequences and Series

Multivariate Calculus

New in Version 6

Dot notation for derivatives

Specify center of a power series

Specify both dependent and independent
variables for implicit differentiation
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To calculate the derivative %x sinx
1. Choose Insert > Math Objects > Fraction

2. Type d in the numerator, and press tab to take the insert point
to the denominator.

3. Type dx and press spacebar to put the insert point back in line,
then type xsinx.

4. Leave the insert point in the expression %x sinx and choose
Compute > Evaluate.

Compute > Evaluate

%xsinx = sinx+xCcosx

To calculate the definite integral [ xsinxdx
1. Choose Insert > Math Objects> Operator and select |.

2. Choose Insert > Math Objects > Subscript and type the lower
limit O in the subscript box.

3. Press tab and enter the upper limit 7 in the superscript box.

4. Press spacebar to put the insert point back in line, and type
xsinxdx.

5. Leave the insert point in the expression foﬂ xsinxdxand choose
Compute > Evaluate.

Compute > Evaluate

Joxsinxdx=m
Limits

The concept of a limit is fundamental to the study of calculus. It is

the central idea of the subject and is what distinguishes calculus from
earlier mathematics. The notion, which encompasses subtle concepts
such as instantaneous velocity, can be fully understood only through
experience and experimentation. With Scientific WorkPlace and Sci-

entific Notebook, you have a variety of tools for computing and exper-
imenting with limits.

202
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Reminder

The mathematics shown to the right of the
gray bar depicts both what you enter,

%x sinx, and the result of the command
Compute > Evaluate, = sin.x + xcosx.

Symbol Toolbar

Select 7z from the Symbol toolbar.

To display the Symbol toolbar, choose View >
Toolbars > Symbol toolbar.

Integral and area

Compare the area under the curve

y = xsinx between 0 and 7z and the area
of the rectangle having sides of length 1 and
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Notation for Limits
The limit of f as x approaches a is L, written
lim f(x) = L

if for each number € > 0 there exists a number 0 > 0 such that
|f(x) —L| < € whenever 0 < |x —a| < 8.

To find a limit of the form lim,._,, f(x)
1. Choose Insert > Math and type lim.

2. Choose Insert > Math Objects> Subscript and enter the sub-
script X — a.

3. Press spacebar to put the insert point back in line, then type a
mathematical expression f(x).

4. Choose Compute > Evaluate.

Compute > Evaluate

.2
lim<=l =2
x—1 x=1

Limits of rational functions are not always apparent. You cannot
evaluate the following expression at x = —3/2, because the denomi-
nator is O for this value of x. The expression does, however, have alimit

at —3/2.
Compute > Evaluate

lim 4 4162 +19x+6:3+15 _ 25
x——3/2 2x34+5x24-5x43 7

Factoring the numerator and denominator suggests a method for
evaluating this limit by direct substitution.

Compute > Factor

4x* + 6x2 +19x +6x° + 15 = (2x +3) (x+ 1) (2% — 2x+5)
2 4+ 5x% +5x+3 = (2x+3) (> +x+1)
Ifan expression has a removable singularity, factoring in place may

allow you to fill in the steps leading to evaluation by direct substitu-
tion. This is illustrated in the following example, where the second

Limits

Informally, lim,_,, f(x) = L, if f (x)
gets close to L as x gets close to a.

When you type the name lim, it will turn
from red to gray as you type the third letter.

Limit ,
The result lim,_, % = 2 isreasonable

since x = 1 implies );2__11 = x+ 1, which

is close to 2 when x is close to 1.
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step removes the singularity from the expression. Copy the entire ex-
pression after an equals sign, and carry out in-place operations.

lim 4x* + 67 +6x2 +19x+15 lim (2x+3) (x4 1) (26> —2x+5)
=32 23 4+5x2+5x43 T 32 (2x+3) (x> +x+1)
(x+1)(2x2—2x+5)
= m
x—-3/2 (2 +x+1)
(x+1) (24 —2x+5)
- 2
(F+x+1) =32
_ >
T

You can do the substitution (see Substitution, page 47) in the pre-
ceding example as follows:
To substitute a value into an expression
(x+1) (20 —2x+5)

pow with the mouse, and copy

1. Select the expression

and paste in a new line.

2. Choose Insert > Math Objects> Brackets and select the left
dashed line and right vertical line.

3. Choose Insert > Math Objects> Subscript.

4. Enter the subscript x = —3/2, and choose Compute > Evalu-
ate.

Compute > Evaluate

(x+l)(2x2—2x+5) 25
2 1
ot x==3/2
You can also carry out a replacement using the editing features.

To do an automatic replacement of mathematics
(x+1) (262 —2x+5)
x24x+1

2. Choose Edit > Find and Replace.

1. Select the expression with the mouse.

3. Fillin the choices in the dialog box in mathematics mode.

a. Search for: x
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b. Replace with: (—3/2)
The result is the expression

((=3/2)+1) (2(=3/2) = 2(=3/2) +5)
(=3/2)%+(=3/2)+1

Special Limits
You can compute one-sided limits, limits at infinity, and infinite

limits.

Compute > Evaluate

lim % =1 lim % = —1

x—07t Il x—0~ ]

lim 22 = oo lim 3 = undefined
x—2+ X—

)lcl_r)%sm (;) = lim,_g (sm x) lim, o+ *3= =1

Tables of Values and Plots

You can generate a table of values by applying a function to a vec-
tor of domain values and then concatenating matrices, or you can do

it in one step by defining appropriate auxiliary functions. The limit
. _sinx L TR

lim —— = 1 is of special interest. After evaluating this limit, the fol-

x—0 X .

. . . . __ Sinx
lowing paragraphs examine the behavior of the function f(x) = **
near the origin, first by looking at numerical evidence and then at plots
containing the origin. Two methods are then illustrated for construct-

ing a table of values for this function.

Compute > Evaluate

lim S0 — |
x—=0 ¥
To see numerical evidence that lim, o ** = 1, you can evaluate
the expression ** for several values of x near 0. First define a function

f to be equal to this expression so that it can be evaluated easily, then
evaluate numerically at several points near zero.

Compute > Definitions > New Definition
flx) = o

Compute > Evaluate Numeric

£(0.1)~0.99833  £(0.01)~0.99998  £(—0.01) ~ 0.99998

Limits
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Note that the function values appear to approach 1. The graph of
y = *2* on an interval containing 0 gives additional strong evidence
that lim,_,q % =1.
Compute > Plot2D > Rectangular
sinx
X
(—0.5,1,-0.5,0.96,0.5,0.96,0.5,1,—0.5,1)

1.00 ——t

0.98 T

0.96 F——

(reating a Table of Values Using Auxiliary Functions

The matrix command Fill Matrix is useful for creating tables of val-
ues.

To create a table of values using auxiliary functions
1. Define the function f(x).

2. Define a function g(n) to provide a sample of values of the in-
dependent variable.

3. Define the function i(i, j) = (2 — j)g(i) + (j — 1) f(g()).
4. Choose Compute > Matrices > Fill Matrix.

5. Set Columns to 2 and set Rows to match the size of your sample.
6. Under Fill with, choose Defined by function.

7. In the input box for function name, type i. Choose OK.
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The following example illustrates this procedure for the function
fx)= %, with a sample of 10 values for the independent variable.
X

. sinx
Example W create a table of values for the function y = ——.
x

Compute > Definitions > New Definition
flo =12

g(i)=ix10"2

h(i, j) = (2—j)gli) + (j— 1)/ (g(i))

Choose Insert > Math Objects > Brackets, select square brackets,
and leave the insert point in the input box.

Compute > Matrices > Fill Matrix
(Rows 10, Columns 2, Matrix Type: Defined by Function, Function

155 100sin 155
% 50sind;
1% 13& sin %
5 25sins
5 20sin 55
% % sin %
ﬁ 17@ sin 17W
% % sin 2—25
% % sin %
| 5 10sins

In the matrix that results, the numbers in the first column are val-
ues of the independent variable, and the numbers in the second col-
umn are the corresponding function values.

Evaluate numerically to put the matrix in numeric format.

Limits
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Compute > Evaluate Numeric

- - [ 0.01 0.99998 1
g 10010 o5 0.02 0.99993
& 50sing;

3100 ... 3 0.03 0.99985
5 3o sinTas
v v 0.04 0.99973
1 E| . .
55 25sings
1 E|
5 20sin - 0.05 0.99958
3 Dsing; 0.06 0.9994
7 100 3y 7
00 7 SMT00 0.07 0.99918
Z Bsin2
25 2 725 0.08 0.99893
1% %sin%
T 10sinl 0.09 0.99865
L 10 10
| 0.1 0.99833 |
To generate a table of values by concatenating matrices

1. Type the equation f(x) = % and, with the insert point in the
equation, choose Compute > Definitions > New Definition.

2. Type the equation g (i, j) = 0.01i

3. Choose Compute > Matrices > Fill Matrix.

4. Specify some number of rows, 1 column, check Defined by Func-
tion, type g in the Item/Function/List box, and choose OK.

5. Choose Compute > Matrices > Map Function.
6. Type f in the Function or Expression box, and choose OK.

With the same function as in the previous example, this gives

1.0x 1072 0.99998
20x107% | result of map | 0.99993
3.0x 1072 0.9985

and concatcnating pI'OdllCﬁS

)
1.0x 10 0.99998 0.01 0.99998

2.0x 1072 0.99993 | | concatenate: | 0.02 0.99993
3.0x 1072 0.9985 0.03 0.9985
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(See Concatenate and Stack Matrices, page 292, for details on con-
catenating matrices.)

Differentiation
The derivative f' of a function f is defined by the equation

. +h)— f(x)

/ — 1 f(x

fx) = lim =

The derivative of a function f at the point x is the slope of the graph

of f at the point (x, f(x)).
Notation for Derivative

You can use a variety of notations for the derivative, including the

forms
d d" d d o"
E’ ﬁ’ Dx) Dxx> Dx2, ny, Dx"y’; a, an W
To compute a derivative

1. Enter an expression using one of the above forms.

2. With the insert point in the expression, choose Compute >
Evaluate.

Compute > Evaluate

d (x3) =342 d* (3.8) — 4

e (F) = 3x 4 (3x8) = 5040x

% (sin’x) = sin (2x) D,s.» (x%y’) = 90720x"y
8)37(59)’3 (sinxcosy) = —sinxsiny

If f is defined as a function of one variable, then the forms f/(x),
f"(x), ..., and £ (x) are recognized as first, second, and nth deriva-
tives, respectively.

Compute > Definitions > New Definition
f(x) = sinxcosx

Compute > Evaluate
f'(x) = cos?x —sin’x f® (x) = 16cosxsinx
S (x) = —4cosxsinx f*(x) = cos* xsin x
The following examples include some time-saving steps for key-
board entry.

Differentiation

Notation
Choose Tools > Preferences > Computation
> Derivatives to change default options for
derivatives.

Caution
There is a difference between f (n) (the nth
derivative of f)and £ (the nth power of

1.
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To enter a derivative of the form %xz

1. Place the insert point where you want the derivative to appear,
even in an existing input box.

2. Choose Insert > Math Objects > Fraction, and type the nu-
merator.

3. Move to the denominator by pressing down arrow, or pressing
tab, or clicking the denominator input box; and type the de-
nominator (usually similar to dx).

4. Press rightarrow or spacebar to leave the fraction, and type the
mathematical expression.

To enter a derivative of the form £ (x)
1. Choose Insert > Math and type f.

2. Choose Insert > Math Objects > Superscript.

3. Choose Insert > Brackets and select parentheses.
4. Type 3 in the input box.

5. Press rightarrow twice to leave the superscript.

6. Choose Insert > Math Objects > Brackets and select parenthe-
ses.

7. Type x in the input box.

To find the derivative of x2

. . . d (2
1. Place the insert point in the expression o (x )

2. Choose Compute > Evaluate.

You obtain the same result from any of the following expressions.

dx? d , d , , o, ,
w4t w5
ox? d

2 2 et v .2
D.x D, (x ) e axx

The “prime” notation works only for defined functions, not for
expressions.
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Compute > Evaluate

(x +sinx)’
% (x+sinx) = cosx+ 1
A derivative is applied to the term directly to the right of the op-

erator, as illustrated in the following two examples.

Compute > Evaluate

2
%xz +3x=3x+2
X
2
% (x2 + 3x) =2
Using good notation is important. The program may accept am-
biguous notation, but it may lead to an unexpected output. Experi-
ment with expressions such as
92 22
(42 “
BIS) (( + 3)6) and 7.2
to sec examples of how ill-formed expressions are interpreted. Choose
Compute > Interpret to observe the interpretation of an expression.

{x¥*+3x

The derivative of a piecewise-defined function is again a piecewise-
defined function. (See Piecewise-Defined Functions, page 108 for more
information on piecewise-defined functions.)

Compute > Definitions > New Definition

X if x<O
f(x>:{3x2 if x>0

Compute > Evaluate

6x if O0<x
d _
dxf(x)_{ 1 if x<0

It is not necessary to name a piecewise function in order to take its
derivative.

Compute > Evaluate

d x+2 if x<O0 1 if x<0
— 2 if 0<x<1 = 0 if O0<xAx<l
dx 2/x if 1<x —x% if I<x

The symbol A means that both of the conditions 0 < xand x < 1
are true. This is equivalent to the compound inequality 0 < x < 1.

Differentiation
Caution
Evaluate applied to (x + sin.x)" does not
give the derivative.
Parentheses

Making good use of expanding brackets
(fences) eliminates many common types of
ill-formed expressions.
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Plotting Derivatives

You can plot several functions on the same graph. In particular, a
function can be plotted together with one or more of its derivatives.
Defining the function first is often convenient.

Compute > Definitions > New Definition
flx) =x* =73+ 145> — 8x

To view the graph of f with its first and second derivatives
1. Type f(x) and, with the insert point in f (x), choose Compute
> Plot 2D > Rectangular.

2. Type f'(x), select it and drag it to the frame
3. Type f”(x), select it and drag it to the frame.
Open the Graph User Settings dialog and change settings to dis-

tinguish the three curves. You can change line thickness or line color
for each curve. Another way to distinguish the graphs is by determin-
ing the values at 0. Use Evaluate (or inspection) to find f(0) = 0,
f(0) = —8,and f"(0) = 28.

It is not necessary to define the functions. You can plot an expres-
sion and drag the first and second derivatives to the plot, as indicated

below.
Compute > Plot 2D > Rectangular
sin2x % (sin2x) 5722 (sin2x)

Itis possible to specify the symbol f(x) to be an arbitrary, or generic,
function. Simply define f(x) to be a function, without associating it
with a formula. (See Defining Generic Functions, page 110.)
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Compute > Definitions > New Definition

Standard rules of calculus apply to generic functions.

Compute > Evaluate
() +g00) = 5+ 250
[ rdr= 5

Dy (f(x)8(x)) = f (x) Dxg (x) + 8 (x) Duf (x)

D fx) _ (f(x)Dxg(x)—g(x)Dxf(x))
Tely) §2(x)

Implicit Differentiation

Variables can be linked to one another implicitly via an equation
rather than in an explicit way. For example, xy = 1 implicitly deter-
mines y as a function of x. This example is easily solved to give the ex-
plicit formulay = 1/x. Many other equations cannot easily be solved
for one of the variables. Also, some equations, such as x> +y* = 1, do
not determine a function, but pieces of the curves determined by such
equations are functions. Implicit Differentiation, an item on the Cal-
culus submenu, finds derivatives from an equation without explicitly

solving the equation for any one variable.

You specify the differentiation variable—that is, the independent
variable. Itis important to remember this variable in order to interpret
the result, because the derivative is returned in the prime notation y'.

To find a derivative of an implicitly defined function

1. Place the insert point in the equation.

2. Choose Compute > Calculus > Implicit Differentiation.

3. Place the insert point in the solution and solve for the derivative
with Solve > Exact.

Differentiation
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Compute > Calculus > Implicit Differentiation
xy +sinx =y (Independent variable x, Dependent variable y)
Solution: cosx+y (x) +xy' (x) =y (x)
xyz — x*y = 0 (Independent variable ¢, Dependent variables x, y, z)
Solution: x (£)y ()2 (t) —2x(¢) y (t) X' (t) + x(¢) z(t) ¥ (¢)
+y ()2 () (1) —x(1)*y (1) = 0
Note that in the first example above, Y = dy/dx. In the second
example above, X' = dx/dt,y’ = dy/dt,and 7 = dz/dt.

To ignore special cases
e Choose Tools > Preferences > Computation > Engine, and
check Ignore Special Cases.

Compute > Solve > Exact
y+xy +cosx =y (Variable(s) to Solve For: y'),
Solution: ﬁ (—y—cosx)
xyz' — 2xyx’ 4+ xzy' + yzx' — x?y = 0 (Variable(s) to Solve For: Z')
Solution: xiy (2xyx’ —xzy’ — yzx’ +x%y)
Use Implicit Differentiation combined with word processing edit-
ing features to find the second derivative y”.

1. Leave the insert point in y/ = —2 iiolsx, and choose Compute

> Calculus > Implicit Differentiation. Type x for the Indepen-
dent variable and y for the Dependent variable. Choose OK.
This returns the equation

dy' (x) cosx+y(x) sinx—y (x)

ox (x—1)2 x—1

9y (x) b

2. Use editing techniques to replace PR
y/ (x) by _y(x)+cosx.

x—1

y y" and to replace

3. Apply Compute > Simplify to obtain the following:

s cosx+y(x) sinx—(—%)
o (x—1)? x—1
~ 2cosx+2y(x) —sinx+xsinx
N (x—1)°
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You can use Implicit Differentiation to find an equation of a tan-
gent line. Find the derivative )/, evaluate at a point on the curve to
find the slope of the tangent at that point, and use the point-slope for-
mula to find the equation for the tangent line. You can then plot the
graph of the equation together with the tangent line. In the following
example, we find the equation for the tangent line at the point (1,1)
on the curve x> +3x%y = 2y3 + 2.

To find the equation of a tangent line

1. Place the insert point in the equation x> 4 3x?y = 2y +2 and
choose Compute > Calculus > Implicit Differentiation (Inde-
pendent variable x, Dependent variable y) to obtain

Solution: 6xy (x) +3x% +3x%y' (x) = 6y (x) Y/ (x)

2. Remove all the (x) and choose Solve > Exact (Variable(s) y')
for the result

0 if X2+ 2xy #0Ax2=2y2
Solution: C if x>+ 2xy=0 Ax2 = 2y2
(-2} 242y

3. For the slope at the point (1, 1) on the curve, enclose the ex-
pression in expanding brackets, add limits in a subscript, and
choose Evaluate. This yields

]
=3
2y2 =2 x=1ly=1

4. Place theinsert pointin the point-slope formulay—1=3 (x— 1)
and choose Solve > Exact (Variable(s) ) to find the formula for
the tangent line in standard form: y = 3x — 2.

5. Place the insert point in the equation x> + 3x%y = 2y* +2 and
choose Compute > Plot 2D > Implicit to plot the curve. Select
and drag the equation for the tangent line to the plot.

Numerical Solutions to Equations

You can use both exact and numerical methods for solving equa-
tions, as illustrated in the following three examples.

Differentiation

6+
X432y =2y +2
Tangent line at (1,1)
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Compute > Solve > Exact
5x3 — 5% = x, Solution: 0,1 — /5, 3v5+1
5.0x% — 5.0x% = x, Solution: 0,—0.17082,1.1708

Compute > Solve > Numeric

5x% — 5x% = x, Solution: {[x = 1.1708], [x = —0.17082] , [x = 0.0]}

|teration

You can also obtain numerical solutions for many equations of the
form f(x) = x by using Iterate from the Calculus submenu. This tech-
nique works for functions satisfying | f'(x)| < I near the intersection
of the curve y = f(x) and the line y = x. You start with an estimate
xo for the root, and Iterate returns the list of values

J(x0), £ (f(x0)), f (f (f (x0))).f (f (f (f(x0))))---

up to the number of iterations you specify. In appropriate situations,
these values converge to a root of the equation f(x) = x. For example,
solve the equation cosx = x.

Compute > Definitions > New Definition
f(x) =cosx
Choosing Compute > Calculus > Iterate opens a dialog. In the
box, type f (x) as the Expression, 1.0 as Initial evaluation point, and

10 as the Number of iterates. With Digits Shown in Results set to 5,
you receive the following vector of iterates:

Compute > (alculus > lterate
Expression: f (x)
Initial evaluation point: 1.0

Number of iterates: 5

1.0
0.54030
0.85755
0.65429
0.79348

| 0.70137

These entries are the initial value, followed by the values

f(1.0), f(f(1.0),... FFS U S UUS(1.0))))))))))
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Differentiation
Iteration
You can generate these numbers geometrically by starting at the ]
point (1,0) and moving vertically to the curve y = cosx, then hori- Yy T T
zontally to the line y = x, then vertically to the curve y = cosx, then T
horizontally to the line y = x, and so forth, as illustrated in the figure. 05+
This figure can be generated by plotting cosx and x as usual, then
selecting the matrix
- - 0.0 ¥——+— —
1.0 0 0.0 05 1.0 15
1.0 0.5403 X
0.5403  0.5403
0.5403  0.85755
0.85755 0.85755
0.85755 0.65429
0.65429 0.65429
0.65429 0.79348
0.79348 0.79348
0.79348 0.70137
0.70137 0.70137
and dragging it to the frame. This matrix can be created from two
copies of the column computed previously, modified appropriately,
using Matrices > Concatenate. (See Concatenate and Stack Matrices,
page 292 for details on concatenating matrices.)
Newton’s Method
The iteration method in the previous section can work very slowly.
However, it provides the basis for Newton’s method , which is usually
much faster than direct iteration. Newton’s method is based on the
observation that the tangent line is a good local approximation to the
graph of a function.
Let (x0,f(x0)) be a point on the graph of the function f. The
tangent line is given by the equation
y—f(x0) = f'(x0) (x —x0)
This line crosses the x-axis when y = 0. The corresponding value of x
is given by
ym g L0)
f'(xo)
In general, given an approximation X, to a zero of a function f (x),
the tangent line at the point (x,, f(x,)) crosses the x-axis at the point
217
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(Xn+1,0) where

£ (xn)

Xn+1 = Xnp — f’(x )
n

The Newton iteration function for a function f is the function g de-

fined by
f(x)
glx)=x—
W=
Given a first approximation X, Newton’s method produces a list X1, Newton’s method

X2, ..., X of approximations to a zero of f. In the graph, f(x) =x—

X3, x0 =0.44,x; = —0.41, x5 ~ 0.27, and x3 =~ —0.048.
3

Y 03

This figure can be generated by plotting x — x° as usual, zooming in to

change the viewing rectangle, then selecting the matrix

044 0
0.44  0.90475
—041 0
—041 091712
027 0 X
027  0.96377 x—x
~0.048 0

| —0.048 0.99885 |

and dragging it to the frame.

You can use Newton’s method to solve the equation x = cosx.

Compute > Definitions > New Definition

f(x) =x—cosx

W
g(x) =X f’(x)

With Digits Rendered set at 20, you receive the vector of values
shown below.

Compute > Calculus > Iterate

Expression g (x); Initial evaluation point 0.7; Number of iterates 5
0.7
0.73943649784805819543
0.7390851604651073986
0.73908513321516080562
0.73908513321516064166
0.73908513321516064166

Iterates:
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These values converge to the display precision in four iterations.
As a check, use Evaluate to verify that

cos (0.73908513321516064166) = 0.73908513321516064165

A graph of y = cosx and y = x displays the approximate solution
to the equation X = cOsXx.
You can observe that there is only one solution, so you do not need
to specify the interval for the solution. Type the equation cosx = x,
leave the insert point in the equation, and choose Compute > Solve
> Numeric.

Compute > Solve > Numeric
cosx = x, Solution : {[x =0.7390851332]}

Optimization

Many of the applications of differentiation involve finding a value
ofx that yields a local maximum or local minimum value of some func-
tion f(x). A good way to begin the investigation, when you know the
function f (x) either implicitly or explicitly, is to examine a plot of the
function.

A plot suggests that the function f(x) = cosx + sin3x has nu-
merous extreme values.

Compute > Plot 2D > Rectangular

cosx + sin 3x

2

S VENEEAVE

You can locate extreme values by solving f’(x) = 0 with Solve >
Numeric, since the function f(x) = cosx + sin3x is everywhere dif-
ferentiable.

Compute > Solve > Numeric

% (cosx+sin3x) =0

Solution: {[x = 1.6833]}

This calculation yields only one critical number, although the graph
indicates many more. You can specify the interval for a solution by

Differentiation

Tip

Agraphof y = cosxand y = x displays
the approximate solution to the equation

X = COSX.

With the insert point near the point of
intersection, press the left mouse button to
view the coordinates.

Tip

For most purposes, we suggest using floating
point coefficients for optimization problems.
Although Compute > Solve > Exact will give
symbolic solutions to equations with rational
coefficients, for many equations the solutions
are very long, full of nested radicals, and
awkward to work with.

In these examples, Digits Rendered is set at 5
on the Tools > Preferences > Computation
> Qutput dialog. See Appendix C
“Customizing the Program for Computing” for
details on changing this setting.
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placing the equation in a one-column matrix and entering a solution
interval in the second row.

Compute > Solve > Numeric

%(cosx—i— sin3x) =0 , Solution: [x = 0.4728]
x€(0,2)

Another strategy is to give the function a floating point coefficient
and then use an exact method.

Compute > Definitions > New Definition
f(x) =1.0cosx+sin3x

Compute > Solve > Exact
f'(x) =0, Solution: {6.2832k+z | k € Z,
z € {—2.6688, —1.4583,—0.58534,0.47280, 1.6833,2.5563} }

Indeed, the absolute minimum f (—2.6688) ~ —1.8787 occurs
at x &~ —2.6688 (and at —2.6688 4 27n for any integer 1), and the
absolute maximum f (0.4728) = 1.8787 occurs at x ~ 0.4728 (and
at 0.4728 4 27n for any integer n).

Example The extreme values of y = x> — 5x + 1 can be found directly.

Compute > Calculus > Find Extrema
x® — 5x+ 1, Candidate(s) for extremas: {%\/ 15+1, 719—0\/ 15+1 },

a{ [x=4V15], [x= - 4V15] |
Floating-point coeflicients produce floating-point approximations.

Thus, applying Find Extrema to 2 —=50x+1.0 gives numerical ap-

proximations to the extreme values.

Compute > Calculus > Find Extrema
x® —5.0x + 1.0 Candidate(s) for extrema: {—3.3033,5.3033},
at {[x=—1.2910], [x = 1.2910]}

Geometrically, the points (—1.291,5.3033) and (1.291, —3.3033)
represent a high point and a low point, respectively.
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Differentiation

r  Compute > Plot 2D > Rectangular
x —5x+1,(—1.291,5.3033), (1.291,-3.3033)

y 40T

20T
(-1.291,5.3033) |

+ + |
T t T t I e — 1
-2 -1 1 1 2 3 4
(1.291,-3.3033) X

20T

A0+

Example To find the minimum distance between the point (—2,2.25)
and the graph of the function f(x) = cos3x — sin2x, first plot the
graph of f on the interval —5 <x < 1 and drag the point (—2,2.25)
and the circle (—2+2cos27x,2.25+2sin27wx) with center
(—2,2.25) and radius 2 to the plot frame. The plot shows that there
are three regions of the graph of f thatare all roughly a distance 2 from
the point (—2,2.25).

Compute > Plot 2D > Rectangular
cos3x—sin2x (—5<x<1)

(—2,2.25) Point Marker: Circle
(—2+42co0s2mx,2.25+2sin27mx) (0 <x < 1)

Let

g(x) =/ (-2—x2+ (225 F ()

denote the distance between the point (—2,2.25) and the point
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(x,f(x)) on the graph of f. There are three candidates for a point
on the graph of f closest to the point (—2,2.25). Locate a minimum
value of g by setting the derivative equal to 0 and solving numerically
in appropriate intervals.

Compute > Solve > Numeric

"(x)=0 ,
xi é_)4,_3) , Solution: [x = —3.8667]

/
g(x)=0 o
xe(-25,-1.5) , Solution: [x = —1.9212]

g(x)=0 o [ — —
X€(-1,0) , Solution: [x = —0.3959]

Compare these trial solutions to locate the minimum.

Compute > Evaluate Numeric
g(—3.8667) ~1.9898  g(—1.9212)~2.0283  g(—0.3959) ~ 1.9823

The minimum distance is 1. 982 3.

Curve Sketching

A default plot may well obscure some of the subtle, and even not
so subtle, detail of a plot. You may need to adjust both the domain
and the range to obtain a useful plot. For example, let us examine the
graph of the function f(x) = x* — 20x + 100. In the default plot,

a decreasing curve is visible, not giving much clue about the overall

shape of the graph.
Tip
Compute > Plot 2D > Rectangular For a better ideal about the overall shape of
x2 —20x -+ 100 the graph, experiment with plot intervals such

as 0 < x < 20to get the view

100
y
50
0-t } —+— {
0 5 10 15 20
As a striking example of frustration, the first attempt at plotting X

the equation 7x% + 36xy — 50y% + 594x — 2363y — 26 500 = 0 will

not create a visible plot because there are no points on the graph in the

x2 —20x+ 100
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default region —6 < x < 6, —6 < y < 6. Again, you can zoom out
and experiment with different views and obtain the following:

Compute > Plot 2D > Implicit

7x2 + 36xy — 50y% + 594x — 2363y — 26500 = 0

-40+

When feasible, the view of a graph should be adjusted so that the
points where these extreme values occur are included in the view. Zoom-
ing and panning can help you to accomplish this.

To locate the relative extreme values of a graph
e Solve f'(x) =0.

In the following example, we locate extreme values of the function

_ X0 — 523 4 10x% — 40x

/) R

The default plot of this expression gives a good view of the three ex-
treme values.
You can find the points where extreme values might occur with
Solve.
Compute > Solve > Exact
d | x0—5x° +10x* — 40x
dx (x2 —4)?
RootOf (—40Z + 9022 — 102> + 3Z* — 1225 + Z7 + 80)

=0, Solution:

You can find approximate real roots of this seventh-degree polyno-
mial with Numeric from the Solve submenu. In the following, Digits

Differentiation

Default plot

4 2 1
20T
40 +

4 6
X

X0 —5x3 4 10x% — 40x
(2~ 4)’
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Rendered is set at 5 on the Output page of the Tools > Computation
dialog box.

Compute > Solve > Numeric
2(—40Z +90Z> — 102> + 3Z* — 1225 + Z7 + 80)
Solution: {[Z =2.2359], [Z = 3.0327], [Z = —3.8864],
[Z = —0.90484 +1.6422i], [Z = —0.904 84 — 1.6422i,
[Z=0.21375—0.90433i], [Z = 0.21375 +0.90433i]}
The three real roots of f” give two local minimums: f(—3.8864) =

32.812 and f(3.0327) = 22.553, and one local maximum:
£(2.2359) =29.656.

You can gain additional insight into the graph of a rational func-
tion by rewriting it as a polynomial plus a fraction.

Compute > Polynomials > Divide
05341082 —40x _ 2 5x3—58x>+40x4128 48

(x2-4)" (2—4)

Selectand dragthe polynomial x* 4-8 to the plot to see both curves
in the same picture. Note how well the graph of y = x? + 8 matches
the graph of y = f(x) for large values of x.

Compute > Plot 2D > Rectangular

=53 +10x2—40x
(-4’

and x> + 8
100 T
80 T

60 +

To determine concavity of a graph

e Find intervals where the second derivative is positive or nega-
tive.
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To locate the intervals where the graph of f(x) = x* 4 3x —x? —
3xis concave upward, evaluate f” (x) to obtain f”(x) = 12x* + 18x —
2, and solve the inequality 12x* + 18x —2 > 0.

Compute > Solve > Exact
12324+ 18x—2>0
Solution: (—007—£\/§\/478_ %) U (ﬁmm_ %700)

To solve more complicated inequalities or systems of inequalities,
you can set expressions equal to zero and test for sign changes.
One way to answer the question of where the graph of

X0 —5x7 4+ 10x? — 40x
(2 —4)°

f(x)

is concave upward is to find the sign of the second derivative.

Compute > Definitions > New Definition
_ -5 4 10¢2—40x
f('x) - (X274)2
Apply Evaluate and Factor to find the second derivative as the quo-
tient of two polynomials.

Compute > Evaluate, Compute > Factor
F1(x) = 28— 16x5—5x° +270x* —400x +320x% — 1200x+160)

(x—2)*(x+2)*
Since the denominator is always nonnegative, it is sufficient to in-
vestigate the sign of the numerator. Apply Solve > Numeric to the

equation
0 = x® — 16x° — 5% +270x* — 400x> + 3204 — 1200x + 160
to find the real solutions
[x &~ 0.13759], [x &~ 2.3414]

Compute the value at any point to the left, between, and to the right
of these solutions, using Evaluate Numeric:

'0) ~ 125
(1) ~ —21.481
(2.4) ~ 40.964

Differentiation
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Taking into account the vertical asymptotes, the graph is concave
upward on the intervals (—oo, —2), (—2,0.1376), and (2.3414,00),
and concave downward on the intervals (0.13759,2) and (2,2.3414).

Indefinite Integration

An antiderivative of a function f(x) is any function g(x) whose
derivative is f(x). If g(x) is an antiderivative of f(x), then g(x) +C
is another antiderivative. In fact, every antiderivative is of the form
g(x) + C for some constant C.

The indefinite integral of f(x) is the family of all antiderivatives of

f(x) and is denoted [ f(x) dx.
To evaluate an indefinite integral

e Place the insert point anywhere in an integral and choose Eval-
uate.

Compute > Evaluate
/ (2% +3x+5) dx = {x(4x> +9x+30)

The system does not automatically return the constant of integra-
tion—often called the arbitrary constant—so you must remain alert

and add the constant when needed. Simply type + C to change from

2 3
/(2x2+3x+5) dx = §x3 + §x2+5x

to

/ (2x2+3x+5) dx = §x3 + %xz +5x+C
Such constants are needed, for example, if you have a formula for ac-
celeration and you want to find an expression for velocity.

You can evaluate indefinite integrals of piecewise-defined func-
tions. You can define a function from a piecewise expression, or work
directly with the piecewise expression, as shown in the following ex-
amples. Turn on Helper Lines to see the null brackets on the right.

Compute > Definitions > New Definition

X if x<O0
f(x>:{3x2 if x>0

226

Spacing

It is common, although hardly necessary, to
add a thin space between f (x) and dxinan
integral | f (x) dx. The Thin Space (found
under Insert + Spacing + Horizontal Space) is
for readability only, and in no way affects the
way in which an integral is interpreted by the
underlying computing engine.
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Compute > Evaluate
$xr if x<0

rreax={

X if 0<x

/ x if x<0 dr— %xz if x<0
32 if x>0 YTV B if 0<x

Interpreting an Expression

The computer algebra system interprets many expressions that
might be considered ambiguous. You can check the interpretation
without evaluating an expression.

To interpret an expression without evaluation

e Place the insert point in the expression and choose Compute >
Interpret.

Compute > Interpret
2 3 _ 3
xy/z =7 Jax’ = [ax’d
sinx/y = sin (’y—‘) [xa= [Xad
Even though the interpretations of the integral expressions do not
indicate the variable of integration, they show that the expressions are
interpreted as indefinite integrals. If such an expression is evaluated, a
choice will be made, generally based on the alphabetical order of the
characters.
Compute > Evaluate
3_1 4 3_1.4
Jax’ = ax Jyx? = zxy
3 1 .4 3 1.4
[x¥a= jax Jxy=3x'y
If f is not defined as a function, then it is treated as a variable or

constant.

Compute > Evaluate
[f=3r
Jfx)dx = 5 fx?

In these expressions, f behaves the same as any other variable, and

f(x) is interpreted as simply the product of f and x.

Indefinite Integration
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Methods of Integration

Even though you can evaluate many integrals directly, several stan-
dard techniques of integration—such as integration by parts, change
of variables by substitution, and partial fractions—are also available
in Scientific WorkPlace and Scientific Notebook. These techniques were
necessary before computational systems were available, and are still
important to the understanding of calculus.

Integration by Parts

The integration by parts formula states that

/udv:uvf/vdu

This formula comes from the product formula for differentials
d(uv) =udv+vdu

and the linearity of integration, which implies that

/d(uv) :/udv+/vdu

and the fundamental theorem of calculus, which allows you to replace
J d (uv) by uv in the formula for integration by parts.

To use integration by parts
1. Place the insert point in an integral.

2. Choose Compute > Calculus > Integrate by Parts.

3. In the dialog box, type an appropriate expression for the Part to
Differentiate.

4. Choose OK.

For the integral [ xInxdux, for example, choosing Inx for the Part
to Differentiate gives the following result:

Compute > Calculus > Integrate by Parts (Part to Differentiate: Inx)
[xInxdx = 3x*In(x) — [ 1xdx

Since [ %xdx can easily be integrated, this solves the problem of

integrating xInx. Note that in this example, # = Inx and dv = xdx,

so that du = %dx andv = %xz.
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Change of Variable

It follows from the chain rule that if u = g(x), then du = g’ (x) dx.
This yields the change of variable formula for integration:

[ #e@)g wWdx= [ s

To perform a change of variable

1. Enter the integral [ xsinx?dx.
2. Choose Compute > Calculus > Change Variable.

3. In the dialog box, type an appropriate substitution u = g (x).

4. Choose OK.

For the integral [ x sinx? dx, the substitution u = x2 gives the fol-
lowing:
Compute > Calculus > Change Variable
(Expression for u: x?)

Jxsinx?dx = [ 3sin(u) du

This replaces the problem of integrating x sinx? by two much eas-
ier problems: first integrating % sinu and then replacing u by x? in the
result. Note that u = g(x) = x?, f(u) = sinu, and du = 2xdx.

For the integral [ x04/x3 + 1dx, the substitution u = x> + 1 is
useful.

Compute > Calculus > Change Variable

(Expression for u: x> 4 1)

[V +1ldx= [\ /u(u—1)du
Compute > Evaluate
JAa(u—1) du= Zu? (3u—>5)
Then do an in-place replacement with u = x* + 1:

2 sp 23p 23 52 23 3/2
54 5! —15(x+1) 9(x+1)

Methods of Integration
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Partial Fractions

The method of partial fractions is based on the fact that a fac-
torable rational function can be written as a sum of simpler fractions.
Notice how evaluation of the following integral gives the answer as a
sum of terms.

Compute > Evaluate

3x% +2x+4 0 N N
/mdx: iln(x— 1) —ln(x—l) (Z_le) —ln(x—|— 1) (Z — Zl)
To gain an appreciation for how this calculation might be done
internally, consider the method of partial fractions.

To use the method of partial fractions
e Replace arational function by its partial fractions expansion be-
fore carrying out its integration.

3024 2x+4

Example Here ishow you use this method on the integral D024

3%+ 2x+4
(x—1)(x2+1)"

1. Enter the rational expression
2. With the insert point in this expression, choose Compute >
Calculus > Partial Fractions or choose Compute > Polynomi-
als > Partial Fractions.
2 3 1
3)C + 2x + 4 9 jx )

(x—1)(2+1) 2(x—1) x2+1
Thus

3 1

3x2 4+ 2x+4 9 IX— 5
2 TV A= _2 214
/(x—l)(x2+1) * /(2(x1) x2+1> *
3. Write the preceding integral as a sum of three integrals.

9 3 X 1 1
o ax—> [ —dxt- [ ——a
/Z(xfl) * 2/x2+1 ”2/x2+1 *
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4. Evaluate each of these integrals.

9 9
/2(x_1)dx = Eln(x—l)

3 X 3
— [ == = —“In(x*+1
2/x2+ldx 4n(x—|—)
1 1 N
E/mdx = Etan ()C)
5. The original integral is the sum of the expressions above on the
right,
3x2 +2x+4 9 3., 1 1
——dx==-In(x—1)— =1 1)+ = arctanx — —
=21 D) X 2n(x ) 4n(x + )+2arcanx i

which differs from the answer previously computed directly with
Evaluate only by a constant.

Definite Integrals

The definite integral |, ab f(x)dx of a function f(x) defined on the
interval [a, b] is given by
n

/abf(x)dx: lim Y f(%)Ax;

IPl=0;=
where ¥; is a point in the ith subinterval of the partition

P={a=xp<x <xp<---<x,=b}

of theinterval [a, b], Ax; = x; — x;_1,and || P|| = max { Ax; }. The sum

is called a Riemann sum. The function f is integrable on [a, b] if the
preceding limit exists.

If f is integrable on [a, b], then

/(be(x)dx—}iigob;aizn;f<a+ib;a>

Definite Integrals
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In particular, if f is continuous on [a, b], then f is integrable on [a, b].
For positive-valued functions f, the sum

b—a f<a+ib_a>
n = n

can be interpreted as the sum of areas of rectangles of base b%a with
height determined by the value of the function f at right endpoints
of subintervals. For example, assume a = —1, b = 1, n = 10, and

flx)= ﬁ Then

()

i=1

represents the sum of the areas of the 10 rectangles in the figure. (See
Left and Right Boxes, page 240, for a discussion of Riemann sums us-
ing left and right boxes.)

Entering and Evaluating Definite Integrals

To enter a definite integral
1. Choose Insert > Math Objects > Operator and choose |.

2. Choose Insert > Math Objects > Subscript, and type the lower
limit.

3. Press tab and type the upper limit of integration. (Limits of in-
tegration work the same as any other subscripts or superscripts.)

4. Press the spacebar or the rightarrow to move out of the super-
script, and type the rest of the expression.

To evaluate a definite integral

e Leave the insert point in the expression and choose Evaluate or
FEvaluate Numeric.

Compute > Evaluate

Jo V3 +1dx=3v2 -2

Compute > Evaluate Numeric
Jo X2Vx3 4 Tdx ~ 0.40632
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Definite Integrals

Integrals involving absolute values or piecewise-defined functions
can be treated as any other function.

Compute > Evaluate
f32|x2—1} dx=4
To understand this computation, determine the intervals for which

2—1is positive or negative, and write the integral as a sum of several
integrals with the absolute value sign removed.

Compute > Solve > Exact
x? —1 > 0, Solution: (1,00) U (—o0,—1)
So’x2—1’:xz—lforx<—10rx>1,and|x2—1}:—(x2—l):

1 —x2for—1 < x < 1. Then you can write the integral as the sum of
the following three:

2 —1 1 2
/ ‘xz—l‘dx:/ (xz—l) dx—l—/ (l—xz) dx—l—/ (x2—1) dx
J=2 -2 -1 1

Compute > Evaluate
[Z@-ndr=%  -R)ar=%  FP-1)dv=}

You can find the definite integral of a piecewise function either by
integrating the expression directly or by defining a piecewise function

f ).

Compute > Definitions > New Definition

2 if x<0
f(x>{x if x>0

Compute > Evaluate

3 2
3 x> if x<0
2 fx)dx = %3 /2 ({ o> ) dx = —463

To understand this computation, write the integral as a sum of in-
tegrals involving ordinary functions. This yields

’ 0 3 8 43
/ f(x)dx:/ xzdx—i—/ wdi=24 2.8
-2 -2 0 3 26
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Methods of Integration with Definite Integrals

Methods that were introduced for indefinite integration—integra-
tion by parts, change of variables, and partial fractions—can also be
applied to definite integrals. See Methods of Integration, page 228
for general details about these methods.

To integrate by parts with a definite integral
1. Place the insert point in a definite integral.

2. Choose Compute > Calculus > Integrate by Parts.

3. Type in the dialog box an appropriate expression for the Part to
Differentiate.

4. Choose OK.

Compute > Calculus > Integrate by Parts
(Part to Differentiate: Inx)
JixInxdx =22 — [ Lxdx

To use a change of variables with a definite integral
1. Place the insert point in a definite integral.

2. Choose Compute > Calculus > Change Variable.

3. Type in the dialog box an Expression for u, and choose OK.

Compute > Calculus > Change Variable
(Expression for u: x> 4 1)

JEXOVB F 1dx = f?% u(u—1)du
This gives an integral that can be computed by elementary meth-
ods. Note that the limits have changed to match the new variable.

To use partial fractions with a definite integral
e Replace a rational expression with its partial fractions expan-

sion.

Compute > Calculus > Partial Fractions

32 42x+4 8 9
TR S A
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Thus

73 2x+4
/ 2t d—/3dx+/
3 (x—l
Compute > Evaluate
f373dx:12 J§ 25 dx=8In3

fs

Improper Integrals
If the proper integral | f f (x) dx exists for every b > a, the limit

/m ) dx = hm/ fx
a b—reo

defines an improper integral of the first kind. The integral is said to con-
verge if this limit exists and is finite.

dx=12+3+81In3

78
_1 x/3x—1

rdx=3 73 L dx=8In3+15

X— X

To compute an improper integral of the first kind
e Place the insert point in the integral and choose Evaluate or
FEvaluate Numeric.

Compute > Evaluate

[Cx2dx=1 [Fxldx=o0

Jo e dx = % [0 e 3 dx = oo

[ e dx=1\T Jo_ sinxdx = undefined

Compute > Evaluate Numeric

[Z.e ™ dx~1.7725 o gy~ 0.5
A definite integral for which the integrand has a discontinuity or
a place where it is not defined within the interval of integration is an
improper integral of the second kind. The discontinuity may occur
either in the interior or at one or both endpoints of the interval of
integration.

To evaluate an improper integral of the second kind
1. Place the insert point in the integral.

235



“Compute60” — 2011/12/20 — 14:27 — page 236 — #246 gf

Chapter 7| Calculus

2. Choose Compute > Evaluate. or

Compute > Evaluate Numeric.

Compute > Evaluate
Jo Inxdx = —1

If f has a discontinuity at a point ¢, and both [ f (x) dx and X
-1.0 -0.5 0.0 0.5 1.0

J? f (x) dxare convergent, then [ £ (x) dx = [€ f (x) dx+ [* f (x) dx. -1
If either diverges, then so does fff (x) dx
Compute > Evaluate 5
Ji g = Jon|x| dx = —1
Ny =—eo 2 In|x| dx=—1 10t
f13/2 2 —undefined [ In|x|dx = -2 In|x]

Use special care when working with improper integrals and make
certain that answers look reasonable. Limits that straddle a discon-
. . | T i .
tinuity, such as [, xiz dxor [” Lﬂxz dx, should be avoided en-
“ - X—C

T (x—cosx)

tirely. The latter will take a very long time to return a result and then
simply returns the form you entered. Any time the system appears to
hang up like this, examine the expression for a discontinuity.

Note that the indefinite integral / » _Lsinx 5 dx produces a solu-

—cosx)?
tion:

Compute > Evaluate
14-sinx —__1
/ (x—cosx)? dx X—cosx

A naive approach to this problem, namely computing the indefinite
integral and evaluating at the endpoints,

7t 1 —2n
X —COSX 7n_ T—1 m+1 nm2—1

gives an answer that is quite wrong. It is important to observe that

the function 1 is not defined when x = cosx. This improper

X—COSXx
integral is examined further in the exercises at the end of this chapter.
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Assumptions about Variables

The four functions assume, additionally, about, and unassume,
were discussed in Chapter 5 “Function Definitions,” beginning on page
111. We review this topic briefly to add an example of their applica-
tion in calculus. The function assume enables you to place a restraint
on a specific variable or on all variables. The function additionally al-
lows you to place additional restraints on the same variable. The func-
tion about shows which restraints are active. The function unassume
removes restraints.

Consider the following integral.

Compute > Evaluate

1 . 2n—1 o = 1f I’l:O
Jox dx-{ folxz”_ldx if n#0

This integral cannot be computed with no restraints because it
converges for n > 0, but fails to converge for n < 0. You can evaluate
this integral after applying the function “assume” to restrict possible
values of n.

Compute > Evaluate
assume(n, positive) = (0, )

1 2n—1 1
Jox?ldx= 5,

The available assumptions on variables include real, complex,
integer, positive, negative, and nonzero. When typed in mathemat-
ics mode, these function names turn upright and gray. These assump-
tions can be made locally (for a specific variable) or globally. Addi-

tional information about makingassumptions is available on page 111.

Definite Integrals from the Definition

You can use text editing and computing in place to fill in the steps
for finding definite integrals from the definition.

Example  Define f by the equation f(x) = x>, Calculate the integral
i 14 f(x)dx as follows.

1. Enter the equation

4 oz 4-1\4—-1
/lf(x)dx—r}groloz:f(l—l-l - ) "

i=1

Definite Integrals
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2. Select the term to the right of the summation sign.

3. Pressand hold down the Ctrl key and choose Compute > Eval-
uate, then choose Compute > Factor.

4. Select the series.

5. Press Ctrl+Evaluate, then choose Compute > Expand, then add
parentheses.

6. With the insert point in the expression, choose Compute >
Evaluate.

These steps produce the following sequence of expressions:
4 & 4—-1\4-1
/1 fx)dx = r}l—rgiz;f(l—i_l - ) -

n 3 3
— im0
i=1

o0 b= n
(189, 135255
C oase\ 20 4n?2 0 4
_ s
4

For comparison, you can compute this integral directly:

Compute > Evaluate
4
3 5. _ 255
/1 x’dx = =

Pictures of Riemann Sums

You can plot pictures of Riemann sums obtained from midpoints,
left endpoints, or right endpoints of subintervals. The choices are Mid-
dle Boxes, Left Boxes, Right Boxes, and Left and Right Boxes.

Middle Boxes

The Riemann sum determined by the midpoints is given by

b—a] b—a b—a
Zf a+ +i
= 2n n

n

which is the sum of the areas of rectangles whose heights are deter-
mined by midpoints of subintervals.
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To make a Middle Boxes plot

1.

2.

Place the insert point inside the expression you want to plot.

Choose > Compute > Calculus > Plot Approximate Integral.
A Middle Boxes plot will appear with default interval settings.

Click the plot to select the frame, or double-click the plot to
select the view.

Choose Edit > Properties and select the Items Plotted page.

a. Reset Number of Boxes as desired.

b. Choose Variables and Intervals and reset the Plot Interval
as desired.

Choose OK twice to close the dialog.

Example The following Middle Boxes plot uses 0 — 1 < x < 7 and
Number of Boxes is 6.

Compute > Calculus > Plot Approximate Integral
sin3x+3cosx
Edit > Properties (Reset Number of Boxes and Plot Interval)

RiemannMiddle: 4.43

y +— ; ; / y y
-1 1 1 2 4/ 5 6 7

“f A% X

For the expression sin3x + 3 cosx, with six rectangles and limits
—1and?7, the approximating Middle Boxes Riemann sum is as follows:

Compute > Calculus > Approximate Integral

(Formula: Midpoint; Subintervals: 6; Lower Bound: -1; Upper Bound: 7)

sin3x+ 3cosx

Approximate integral (midpoint rule) is% 2?3:0 (sin(4i3 —1)+3cos (

Definite Integrals
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Compare with the actual value:

Compute > Evaluate Numeric

X0 (sin (4i3 — 1)+ 3cos (3is — §)) ~4.5222
fz (sin3x+3cosx) dx ~ 4.3480
Left Boxes and Right Boxes

b
In general, theleft endpoint approximation L, for / f(x)dxwith

=)

b
and the right endpoint approximation R, for / S (x) dx with n sub-

n subdivisions is given by

[ s, =" ”"zlf(

divisions is given by

b h—a bh—
/uf(x)dx%Rn: naizif<a+i na)

To make a Left [Right] Boxes plot
1. Place the insert point inside the expression to be plotted.

2. Choose Compute > Calculus > Plot Approximate Integral. A
Middle Boxes plot will appear with default range settings.

3. Click the plot to select the frame, or double-click the plot to

select the view.

4. Choose Edit > Properties and select the Items Plotted page.

a. Check Left [Right] Boxes. Reset the number of boxes as
desired.

b. Choose Variables and Intervals and reset the Plot Interval
as desired.

c. Select Show Info option (No Info, Approximated Value,
Approximated and Exact Values, Both Values and Error)

5. Choose OK twice to close the dialog.

240
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Compute > Calculus > Plot Approximate Integral
sin3x+ 3cosx
(Formula: Left [Right, Both] Boxes; Subintervals: 6; Lower Bound: -1; Upper Bound: 7)

RiemannLeft: 2.86 RiemannRight: 5.02
_Integral: 4.35 Integral: 4.35

r}'-f\.. /*4

RiemannLeft: 2.86
RiemannRight: 5.02
Integral: 4.35

For the expression sin3x 4 3 cos x, with six rectangles and —1 <
x <7, the approximating Left [Right] Riemann sums are

42 4 4
gk,;) (sin (3 (—1+3k>> +3cos (—1+3k>>
4 6

- 3

2

(a2 n-104)

Upper Boxes and Lower Boxes
An upper [lower] Riemann sum is given by

2.8647 (Left)

Q

Q

5.0228 (Right)

b n
/ £ dx~ Y f () A
a i=1
where ; is a point in the ith subinterval x;_; <x < x; of the partition
P={a=xp<x <xp<---<x,=b}
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suchthat f (%;) =max {f (x) : xi_1 <x <x}[f (%) =min{f (x) : xi_1 <x <x}].

To make a plot of an upper [lower] sum
1. Place the insert point inside the expression to be plotted.

2. Choose Compute > Calculus > Plot Approximate Integral. A
Middle Boxes plot will appear with default range settings.

3. Open the Graph User Settings dialog.

a. Check Upper [Lower] Boxes. Reset the number of boxes

as desired.

b. Choose Variables and Intervals and reset the Plot Interval
as desired.

c. Select desired Plot Info.

4. Choose OK twice to close the dialog.

Compute > Calculus > Plot Approximate Integral
sin3x+3cosx
(Formula: Lower [Upper, Both] Boxes; Subintervals: 6; Lower Bound: -1; Upper Bound: 7)

RiemannLower: -7.05 RiemannUpper: 14.21

_ /T

2 4 6

RiemannUpper: 14.21
RiemannLower: -7.05

4 6
/ ’
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Upper Absolute and Lower Absolute Boxes

An upper [lower] absolute Riemann sum is given by

where ; is a point in the ith subinterval x;_; <x < Xx; of the partition
P={a=xp<x1<x2<---<x,=b}
such that

If (&) = max{[f(x)] : xi1 <x<x}
[f (&) = min{|[f(x)]:xi-1 <x<x}].

To make a plot of an upper [lower] absolute sum

1. Place the insert point inside the expression to be plotted.

2. Choose Compute > Calculus > Plot Approximate Integral. A
Middle Boxes plot will appear with default range settings.

3. Open the Graph User Settings dialog.

a. Check Upper [Lower] Absolute Boxes. Reset the number

of boxes as desired.

b. Choose Variables and Intervals and reset the Plot Interval
as desired.

c. Select desired Plot Info.

4. Choose OK twice to close the dialog.

Definite Integrals
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Compute > Calculus > Plot Approximate Integral
sin3x+ 3cosx
(Formula: Lower [Upper, Both] Absolute; Subintervals: 6; Lower Bound: -1; Upper Bound: 7)

RiemannLowerAbs: 1.29 RiemannUpperAbs: 5.87

RiemannUpperAbs: 5.87
RiemannLowerAbs: 1.29

Trapezoidal Sums

The formula for the trapezoid rule approximation T, is given by

/abf(x)dm T, = bz_n“ (f(a)+2§f<a+ib;a> +f(b)>

with an error bound of

(b—a)’
12n2

Tn—/bf(x)dx <K

where K is any number such that | /" (x)| < K forall x € [a, b].

To make a trapezoid plot
1. Place the insert point inside the expression to be plotted.

2. Choose Compute > Calculus > Plot Approximate Integral. A
Middle Boxes plot will appear with default range settings.
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3. Open the Graph User Settings dialog.

a. Check Approximation Method: Trapezoid. Reset the num-
ber of boxes as desired.

b. Choose Variables and Intervals and reset the Plot Interval
as desired.

c. Select desired Plot Info.

4. Choose OK twice to close the dialog.

Compute > Calculus > Plot Approximate Integral
sin3x+3cosx
(Formula: Trapezoid; Subintervals: 6; Lower Bound: -1; Upper Bound: 7)

Trapezoid: 3.94

Simpson’s Rule

Simpson’s rule gives the approximation S, (1 an even positive in-
teger) for an arbitrary function f by

n/2 —1+n/2

/abf(x)dx%Sn:b;la (f( V4 £ (b +4Zf<“+ zl—l)b )+2 Z f<a+2lb >>

The error bound for Simpson’s rule is given by

- [ 1o

where K is any number such that

b—a)’
180n4

f(4)(x)‘ <K forallx € [a,b]. In
particular, Simpson’s rule is exact for integrals of polynomials of de-

gree at most 3 (because the fourth derivative of such a polynomial is
identically zero).
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To make a Simpson plot
1. Place the insert point inside the expression to be plotted.

2. Choose Compute > Calculus > Plot Approximate Integral. A
Middle Boxes plot will appear with default range settings.

3. Open the Graph User Settings dialog.
a. Check Approximation Method: Trapezoid. Reset the num-

ber of boxes as desired.

b. Choose Variables and Intervals and reset the Plot Interval
as desired.

c. Select desired Plot Info.
4. Choose OK twice to close the dialog.

Compute > Calculus > Plot Approximate Integral
sin3x+3cosx
(Formula: Simpson; Subintervals: 6; Lower Bound: -1; Upper Bound: 7)

Simpson: 4.33
y 4
: ! s 6 7
X
2
Approximation Methods

You can use the midpoint method, the trapezoidal rule, and Simp-
son’s rule for approximating definite integrals. To apply each of these
approximation methods, place the insert point in a mathematical ex-
pression, choose Compute > Calculus > Approximate Integral, and
then choose the appropriate method in the dialog box.

Midpoint Rule

In general, the midpoint approximation M, for |, ab f(x)dxwithn
subdivisions is given by

b b—a"=l b—a b—a
dx~M, = j
/Gf(x) g n Zf<a+ 2n i n )

i=0
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with an error bound of

(b—a)’
24n?

‘M,,—/bf(x)dx <K

where K is any number such that | f”(x)| < K for all x € [a, b].
To approximate | ab f (x) dx using the midpoint method

1. Place the insert point in an expression of the form [, ab f(x) dx.
2. Choose Compute > Calculus > Approximate Integral.

3. Inthedialogthatappears, choose Midpoint and specify the num-
ber of Subintervals.

Or
1. Place the insert point in an expression f (x).
2. Choose Compute > Calculus > Approximate Integral.

3. In the dialog, choose Midpoint, specify the number of Subin-
tervals, and specify Lower Bound and Upper Bound.

To obtain the following output, in the dialog that appears, specify
10 Subintervals. The system returns a summation that you can evalu-
ate numerically.

Compute > Calculus > Approximate Integral
o' xsinxdx Approximate integral (midpoint rule) is
9
T ’):O%n (i3+3)sin {57 (i3+3)
13=
For the following output, specify 10 Subintervals, type 0 as Lower

Bound, and type 3.14159 as Upper Bound.

Compute > Calculus > Approximate Integral

xsinx Approximate integral (midpoint rule) is

9
0.31416 Y, (0.31416i4+0.15708)sin(0.314 16i4 4+ 0.15708)

i4=0

Compare these results with direct computations of the integral.

Definite Integrals
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Compute > Evaluate Numeric
9
Y .Zoﬁn (i3+1)sin 57 (i3+1) ~3.1545
i3=!

9
0.31416 Y, (0.31416i4+0.15708)sin(0.31416i4 +0.15708) ~ 3.1545
i4=0

Jo xsinxdx ~3.1416

Left Boxes and Right Boxes
In general, the left endpoint approximation L, for |, ab f(x)dxwith

n subdivisions is given by

b—a

n—1 o
/abf(x)dx%L,,: - %f(a—i—ibna)

and the right endpoint approximation R, for | f f(x)dx with n sub-

divisions is given by

/abf(x)dszn: bnaif<a—|—iba>

i=1 n

To approximate | ab f (x) dx using left [right] boxes

1. Place the insert point in the expression [, : f(x)dx.
2. Choose Compute > Calculus > Approximate Integral

3. In the dialog that appears, choose Left [Right] Boxes and spec-
ify the number of Subintervals.

Or
1. Place the insert point in the expression f (x).
2. Choose Compute > Calculus > Approximate Integral.

3. In the dialog, choose Left [Right] Boxes, specify the number of
Subintervals, and specify Lower Bound and Upper Bound.

For the following output, in the dialog that appears, select Left
Boxes and specify 10 Subintervals. The system returns a summation
that you can evaluate numerically.
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Compute > Calculus > Approximate Integral

9
foﬂ/z xsinxdx Approximate integral is % ﬂi ZO % Ti5 sin % i
o
For the following output, in the dialog that appears, select Right
Boxes and specify 10 Subintervals.

Compute > Calculus > Approximate Integral

10
foﬂ/ xsinxdx Approximate integral is %TE . Zl 2%%15 sin 2—10 Tis
5=

For the following output, specify Left Boxes, specify 10 Subinter-
vals, and type 0 as Lower Bound and 1.5708 as Upper Bound.

Compute > Calculus > Approximate Integral

9
xsinx Approximate integral (left boxes) is 0.15708 Y. 0.15708i7sin0.157 087
i7=0
For the following output, specify Right Boxes, specify 10 Subin-
tervals, and type 0 as Lower Bound and 1.5708 as Upper Bound.

Compute > Calculus > Approximate Integral
10
xsinx Approximate integral (right boxes) is 0.15708 Y. 0.15708igsin0.157 08ig

ig=1

Evaluate numerically to compare these outputs with one another
and with the integral.

Compute > Evaluate Numeric

9
T Y, 3575 sin 55 7is ~ 0.87869
is=0
510
T Y, 5576 sin 55 i ~ 1.1254
i6=
9
0.15708 Y. 0.15708i7sin0.15708i7 ~ 0.87869
i7=0
10
0.15708 ¥, 0.15708issin0.15708ig ~ 1.1254
ig=1

foﬂﬂxsinxdx ~ 1.0

L
20

The left boxes underestimate this integral, and the right boxes over-
estimate it.
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Trapezoid Rule
The formula for the trapezoid rule approximation T, is given by

/abf(x)dm T, = bz_n“ (f(a)+22if(a+ib;“) +f(b)>

with an error bound of

(- a)
12n2

Tn/bf(x)dx <K

where K is any number such that | f” (x)| < K forall x € [a, b].
To approximate a definite integral using the trapezoid rule

1. Place the insert point in an expression of the form |, ab f(x) dx.
2. Choose Compute > Calculus > Approximate Integral.

3. In the dialog that appears, choose Trapezoid and specify the

number of Subintervals.

Or
1. Place the insert point in an expression f (x).
2. Choose Compute > Calculus > Approximate Integral.

3. In the dialog, select Trapezoid, specify the number of Subinter-
vals, and specify Lower Bound and Upper Bound.

To obtain the following output, specify 10 Subintervals.
Compute > Calculus > Approximate Integral
JiF xsinxdx Approximate integral (trapezoid rule) is {570 2195 _y 15 7uis sin ({5 7wis)

To obtain the following output, specify 10 Subintervals, 0 as Lower
Bound, and 3.14159 as Upper Bound.

Compute > Calculus > Approximate Integral

xsinx Approximate integral (trapezoid rule) is

9
0.31416 Y 0.31416i19sin0.31416i10 +1.3095 x 1076

i10=1
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Compute > Evaluate Numeric

9
L Y Lmigsinbmio~3.1157  [Fxsinxdx~3.1416
ig=1
9
0.31416 ¥ 0.31416i10sin0.31416i19+ 1.3095 x 107~ 3.1157
ijp=1
Simpson’s Rule

Simpson’s rule gives the approximation S, (nan even positive in-
teger) for an arbitrary function f by

/abf(x)dx

Q
7

—a n/2 —a
- (f<a>+f<b>+4z (a+@i-n222)

i=1
—1+n/2 b—a
2 2i
+ 1; f(a—i—z . ))

The error bound for Simpson’s rule is given by

(b—a)
<K
~ 180n4

Sn/abf(x)dx

where K is any number such that ‘f(4) (x)‘ <K forallx € [a,b]. In

particular, Simpson’s rule is exact for integrals of polynomials of de-
gree at most 3 (because the fourth derivative of such a polynomial is
identically zero).

To approximate | : f (x) dx using Simpson's rule
1. Place the insert point in the expression [, ab f(x) dx.

2. Choose Compute > Calculus > Approximate Integral.

3. In the dialog that appears, select Simpson and specify Number
of Subintervals.

Or
1. Place the insert point in the expression f (x).
2. Choose Compute > Calculus > Approximate Integral.

3. In the dialog, select Simpson, specify the number of Subinter-
vals, and specify Lower Bound and Upper Bound.

Definite Integrals
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For the following output, select Simpson and specify 10 Subinter-
vals in the dialog that appears.

Compute > Calculus > Approximate Integral
foﬂ xsinxdx Approximate integral is

4 5
w2 Y imipgsinimi+4 % 1107r(2i11—1)sin1107r(2i11—1)>

in=1 =1

For the following output, select Simpson, specify 10 Subintervals,
and type 0 as Lower Bound and 3.14159 as Upper Bound.

Compute > Calculus > Approximate Integral
4
xsinx Approximate integral is 0.20944 '} 0.62832i1,sin0.62832i1,+

i12=1

5
0.41888 Y (0.62832i1, —0.31416)sin (0.62832i15 —0.31416) + 8.7299 x 1077

i12=1

Compare these results by evaluating numerically:

Compute > Evaluate Numeric

4 5
7T <2 zlgmnsmgmmw )y 1107r(2i11—1)sin1107r(2i11—1)> ~3.1418

in= in=1

4
0.20944 Yy 0.62832i1,sin0.62832i;,

ip=1
5
1+0.41888 ¥ (0.62832i1, —0.31416)sin (0.62832i1, —0.314 16)
in=1

+8.7299 x 1077 ~3.1414

Jo xsinxdx ~3.1416

Example To find the number of subdivisions required to approximate
fol e dx using Simpson’s rule with an error of at most 107>, you
need to find an upper bound for the fourth derivative of e~ on the
interval [0, 1]. One way you can do this is by plotting the fourth deriva-
tive on the interval [0, 1]. Define f(x) = ¢ . Then evaluate the ex-

pression f(4) (x)
Y (x)=12¢" 2 —48x%¢ s + 16x*e *?
(4)( ) 12¢~%
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and with the insert point in this expression, choose Compute > Plot
2D > Rectangular.

From the graph, you can see that f ) (x) has a maximum value on this
interval of f*)(0) = 12. Solve the inequality

(1-0° _ s
12 <1
18ont = 1"

to find the potential solutions
10 =4 10 =4
nﬁ—?\/g\@ A{n=0}, ?ﬂﬁgn

Since n must be an even positive integer, and also n > ?Oﬁ\/g =
9.036, we take n = 10. Calculating,

1 5 1 2 1
S 5’ 10 _
10~ 35" 30 Z 15 :

”M#

Direct evaluation using Evaluate Numeric yields

1
/ e dx ~ 07468241328
0

and the approximation just computed is indeed within the specified
margin of error since

0.7468241328 — 0.7468249483| = 8.155 x 107 < 1077

Numerical Integration

. 12 i
Many integrals (such as [ e dxand [; *dt) cannot be eval-
uated exactly, but you can obtain numerical approximations by choos-
ing Evaluate Numeric. See page 508 for information on changing set-
tings that affect these approximations.

Compute > Evaluate Numeric

e dx ~ 0.7468241328

= s‘—mdt ~ 1.851937052

Fourth derivative

Definite Integrals

e 55" ~0.7468249483
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Example Given a curve y = f(x), the arc length between x = a and
x = b is given by the integral

/ab V14 (F/(x)2dx

For example, given f(x) = xsinx, which has derivative f/(x) = sinx+
xcosx, you can find the length of the arc betweenx = 0andx =7
by applying Evaluate Numeric. Integrals associated with arc lengths of
curves can almost never be evaluated exactly.

Compute > Definitions > New Definition

f(x) = xsinx

Compute > Evaluate
JEA 14 (F/(x))2dx = [ \/xsin (2x) — cos?x +x2 + 2dx

Compute > Evaluate Numeric
Jo \/xsin (2x) — cos?x +x2 + 2dx = 5.04040692

Curves in the plane or three-dimensional space can be represented
parametrically.

Example In the following we compute the arc length of the circular
helix (cos 6,sin 6, 0) for 0 < 6 < 27 and then plot a view of this
helix.

Compute > Definitions > New Definition

x=cosO
y=sin6
z=0

Compute > Evaluate Numeric

2 dx\? dy 2 dz \?
— —= — ) d6 ~8.8858
/0 \/(d@) +<d6) +(d6)
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Compute > Plot 3D > Rectangular
(cosO,sin6,0)

z Tip
Rotate such plots on your screen with your
0 mouse to better visualize the curve.

(cosB,sin6,0)

Example In polar coordinates arc length is given by the integral

B dr 2
\/ 2 — | d
/a re+ ( 7 9> ?]
Following are the plot and arc length for the spiral r = 6 with 0 <

0 <6.2832.

Compute > Plot 2D > Polar
(0,0) (Plot Interval 0 < 8 < 6.2832)

Compute > Definitions > New Definition
r=2=0

Compute > Evaluate
JEm 2+ (%)20,’9 = Jarcsinh (27) + V472 + 1
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Compute > Evaluate Numeric
Larcsinh (27) + wV/4n2 +1 ~ 21.256294 15
Visualizing Solids of Revolution

Problems of finding volumes and surface areas can be simplified by
visualizing the solid.

Rectanqular Coordinates

Assume the curve y = 1 — x? is rotated about the x-axis to form a
solid. First, sketch the curve.

Compute > Plot 2D > Rectangular
1—x?

Then use a tube plot to visualize the surface.

Compute > Plot 3D > Tube (Radius: 1 —x?)
(0,x,0)

10 —1

0.5 —

.05 - -1

-1.0 0

-10 o5 0.0 0.5 10
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The volume is given by the integral
1 1 2
/ n:yzdx:n/ (l—xz) dx
-1 -

Compute > Evaluate
nf_ll (1 fxz)z dx = %7‘5

The surface area is given by

2

/27rya's:27z:/l1 (1—x%) \/1+ <jx(1 x2)> dx

Compute > Evaluate

27 [ (1= ) 1+ (L (1-22))dx = 2x (V35— Gm(-2+v5))

Compute > Evaluate Numeric
27 (5v/5 = I (<24 V/5) ) ~ 10.96548466
Consider the problem of rotating the circle x* 4 (y — 2)2 = labout

the x-axis. We first sketch the circle.

Compute > Plot 2D > Rectangular
(cost,2+sint)

To rotate this circle about the x-axis, use a tube plot with spine
(2cost,0,2sinf) and radius 1.

Definite Integrals
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Compute > Plot 3D > Tube (Radius: 1)
(2cost,0,2sint)

A differential of volume is equal to (27y) 2xdy and hence the vol-
ume is equal to the integral

47r/l3y\/1—(y—2)2dy

Compute > Evaluate

4 [Py\/1—(y—2)*dy = 4n?

The result 472 is intuitive because the volume is generated by ro-
tating a circle of area 77 and the center of the circle travels a distance of

4.

Parametric Equations

To find the volume generated by rotating the region bounded by
the x-axis and one cycle of the curve x =t +sint, y = 1 — cost, we
first draw the curve.
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Compute > Plot 2D > Rectangular
(t —sint, 1 —cost)

Use a tube plot to visualize the solid of revolution.

Compute > Plot 3D > Tube (Radius: 1 — cot?)
(0,¢ —sint,0)

To compute the volume, note that a differential of volume is given
by 7y? dx and hence the volume is

27 27 5
/ my?dx = 71:/ (1 —cost)” (1 —cost) dt
0 0

27 3
= n/ (1 —cost)” dt
0

Compute > Evaluate
T [37 (1 —cost)?® dt = 572
Polar Coordinates
To find the volume of the solid generated by rotatingr = 1 —cos 0

(0 < 6 < 1) about the x-axis, we note thatx = rcos = (1 — cos 0) cos 6
andy =rsinf = (1 —cos 0)sin 6.

Definite Integrals
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Compute > Plot 2D > Polar
1—cos6

Use a tube plot to visualize the surface of revolution.

Compute > Plot 3D > Tube (Radius: (1 —cost)sint)
(0, (1 —cost)cost,0)

Sequences and Series

A sequence can be thought of as an infinite list, and a series as a
sum of the terms of a sequence.

Sequences

A sequence {ay},_, is a function whose domain is the set of posi-
tive integers. Calculate limits of sequences by selecting an expression
such as lim, . (1+ %)n and choosing Compute > Evaluate, or by
defining ay,, writing lim,,_,c, a,, and choosing Compute > Evaluate.

Compute > Evaluate
lim, e (1+ 1) =
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The terms of the sequence can be defined as function values, with
the subscript as function argument (see page 107).

To define the sequence a,, = (1 +1 ) "

n

1. With the insert point in the equation a, = (1 + %)n, choose
Compute > Definitions > New Definition.

2. In the Interpret Subscript dialog that appears, check Subscript

is function argument and choose OK.

Compute > Definitions > New Definition

(check Subscript is function argument)
— (el

Compute > Evaluate
lim, ,ea, =e
To compute several terms of a sequence

1. With the insert point in mathematics, type seq. (It should turn
gray.)

2. Type the number of terms in the form n = 1..4 as a subscript,
to obtain seq,,_; 4

3. Type the general expression and choose Evaluate.

Compute > Evaluate
sed,_y 4 ((1+7) ) =2,3.5. %
sequ_; 4 ((1.04+1 ) 2.0,2.25,2.3704,2.4414

seq,_; scosx =cos1,cos2,cos3,cos4,cos 5

A sequence such as { (1+ %)n }m  can be visualized graphically

n=
by plotting the expression (1 + %)n at integer values of n. You can
generate this figure by plotting (1 + %)n, then revising the Items Plot-
ted page so that the Plot Style is Point, the Point Marker is Circle, the
Plot Interval is 1 to 50, and the Sample Size is 50.

Sequences and Series
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Compute > Plot 2D > Rectangular

n
(1+3)
............0...‘..........‘.....O..........Q.
y o°

2-re

1__
0 f f f f !
0 10 20 30 40 )?0

This plot indicates that lim, e (1 + %)n ~ 2.7. Indeed, Evaluate
yields e and Evaluate Numeric produces e ~ 2.718281828.

Series

The partial sums of the series Y ;° | ai are the finite sums s, =
Yi_; ak. These partial sums form a sequence {s, }. If limy, se08, = s
exists, then s is called the sum of the series Y ;| ax. To sum a series,
place the insert point in the series and choose Evaluate. (See page 41
for details on entering the symbols Y7 | ax.)

Compute > Evaluate

- n = 20" _ a0

Y. (0.99)" =99.0 Y —=e

n=1 n=0 ’l/l'

r G5 =-m2 L 5=t

n=1 1 n=1M1

Y 5=0(3) Y. sinnm = undefined
n=1"1 n=1

Occasionally, a result is obtained that may be obscure, such as the

response to Y, n% This series and the values of the zeta function { (+)
n=1
can be estimated numerically.

Compute > Evaluate Numeric

oo

1
Y — ~ 1.202056903
n=1n

£ (3) ~ 1.202056903

. - o .
To sumaseriesinaformssimilarto ), ay, enter an equation such

2 .. ..
as a, = 5, and choose Compute > Definitions > New Definition.
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Check Subscript is function argument in the Interpret Subscript box
that opens.

Compute > Definitions >> New Definition
(Subscript is function argument)

n
anzﬁ

Compute > Evaluate
Yo-1an =06
Ratio Test
Aseries Y | ap converges absolutelyify | |a,| converges, in which

case the series Y, ay also converges. The ratio test states that a series
Y| an converges absolutely (and therefore converges) if

ap+1
an

lim

n—voo

=L <1

o 2 2
To apply the ratio test to the series ), | 7, define @, = 7 and

ap+1 P
"1 to find if it is less than 1.

compute lim
e a,

Compute > Definitions > New Definition
(Subscript is function argument)

_n
an—27

Compute > Evaluate
lim %t 1
m =

n—eo 2

Thus, L = %, which is less than 1, so the series converges absolutely.

Root Test

The root test states that a series )| @, converges absolutely (and
therefore converges) if

lim \/|a,| =L < 1
n—oo

e 2 2
To apply the root test to the series )7 5, define a, = 77 and
compute lim {/|ay| to find if it is less than 1.
n—oo

Sequences and Series
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Compute > Definitions > New Definition
(Subscript is function argument)

_n
an*ﬁ

Compute > Evaluate

1
1
Jim {/lanl =3

Thus, L = %, whichisless than 1, showing that this series converges
absolutely.

Integral Test

The integral test states that a series )| @, converges absolutely
if there exists a positive decreasing function f such that f(n) = |a,|
for each positive integer n and

./1mf(x)dx< o0

2
To verify convergence of the series )| % using the integral test,

define f by f(x) = ’2‘—2, compute / )2% dx and determine if it is finite.
1

Compute > Definitions > New Definition
2
fx) =3

Compute > Evaluate, Compute > Evaluate Numeric

/ ’2% dx = % ~ 5.805497209
1

Thus, this integral is finite. (Although for f(x) = )z‘—i itis true that
f(1) < f(2) < f(3), you can verify that f is decreasing for x > 3. In
fact,

2 1,
fl(x)= 2% 5 In2
is positive only on the interval 0 < x < é =2.8854, so f is decreas-
ing on 3 < x < oo, Since convergence of a series depends on the tail
end of the series only, it is sufficient that the sequence of terms be even-
tually decreasing.)
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Maclaurin Series

The Maclaurin series of a function f is the series

f<"
2

where f(")(0) indicates the nth derivative of f evaluated at 0. It is a
power series expanded about x = 0.

To expand a function f (x) in a Maclaurin series
1. Place the insert point in the expression f(x).

2. Choose Compute > Power Series.
3. Specify Variable, Center, and Order.
4. Choose OK.

With f(x) = 8% and 10 terms, the result is as follows.

Compute > Power Series (Variable x; Center 0; Order 10)
sinx

. . 1.2 1 .4 1 .6 1 8 10
SCI‘ICS CXPQ.I’ISIOI'I — gx + mx — mx + mx +0 ()C )

The O (xlo) term indicates that all the remaining terms in the se-

10 55 a factor.

ries contain at least x
Plot 2D provides an excellent visual comparison between a func-

tion and an approximating polynomial.

Compute > Plot 2D > Rectangular
sinx

X
1—1 6x + 120x4
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To determine which graph corresponds to which equation, evalu-
ate one of the expressions where the graphs show some separation. For
example, bm4 —0.1892006238, and hence the graph o $INX 5o the
one that is ncgatlve atx =4,

You can define a generic function and reproduce the general for-
mula for a power series.

Compute > Definitions > New Definition

f(x)

Compute > Power Series

(Variable x, Center 0, Order 5)

£ (x) Series expansion f (0) +xf” (0) + %xzf” (0)+ éx3f(3) (0)+ 2—14x4f(4) 0)+0 (XS)

The following are additional examples of Maclaurin series expan-
sions.

Compute > Power Series (Variable x; Center 0; Order 7, 10,7 resp.)

e Series expansion 1 +x + %xz + éx3 + ix“ + ﬁxs + 7;—0x6 +O0 (x7)

5 1 7 1 9 10
5040° T 362880x +0 (%)

€ sinx Series expansion x+x2+ éx3 - %XS - 91—0)66 - 630)( +0 ( )

sinx Series expansion x — éx3 + ]éox

Remember that output can be copied and pasted (with ordinary
word-processing tools) to create input for further calculations. In par-
ticular, select and delete the +-O (x") expression to convert the series
into a polynomial. It is reassuring to note that, if the first few terms of
the Maclaurin series for €* are multiplied by the first few terms of the
Maclaurin series for sinx, then the result is the same as the first few
terms of the Maclaurin series for e sinx.

Compute > Expand

(Lxt 307 + g + 5t + 50°) (x— Ex + 120x5)
= a0 T e~ 360Y a0k~ 3% + 3P T+
Taylor Series

The Maclaurin series is a special case of the more general Taylor
series. The Taylor series of f expanded about x = a is given by

(n
e

and hence is expanded in powers of x — @ and centered about a.
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To expand a function f(x) in a Taylor series in powers of x — a
1. Place the insert point in the expression f(x).

2. Choose Compute > Power Series.
3. Specify Variable x, Center g, and Order.
4. Choose OK.

To find the Taylor series of Inx expanded about x = 1, choose
Power Series. In the dialog box, type the variable x, type the center
1, and select the desired order of the approximating polynomial.

Compute > Power Series (Variable x; Center 1; Order 5)

Inx Series expansion x — 1 — % (x—1)*+ % (x—1)° - % (x—1)*+ % (x—1°40 ((x— 1)6)

A comparison between Inx and the polynomial
1 2 1 3 1 4
)12 s 1) (k1
(1) g e P g 1) S 1)

is illustrated graphically in the following figure. Note how closely the
polynomial fits the graph of In.x in the neighborhood of the point x =
1

Compute > Plot 2D > Rectangular

Inx
2 3 4
(=D =g=1)"+3a—-1)" =7 (x—1)
1__
y —_— T~
~
N
1I5 ' 2?0 2I.5
X

dashed line: polynomial
solid line: Inx
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Multivariable Calculus

Multivariable calculus extends the fundamental ideas of differen-
tial and integral calculus to functions of several variables. The Com-
pute menu commands that have been described for one-variable cal-
culus easily adapt to functions of several variables. We look first at
the general area of optimization, which calls upon many of the ideas
of differential calculus. Following that we will briefly consider Taylor
polynomials in two variables and total differentials, and then describe
the general approach for working with iterated integrals.

Optimization

Optimization of functions of several variables requires special tech-
niques. The example immediately following demonstrates a direct ap-
proach, locating pairs where the partial derivatives are zero. Also see
Lagrange multipliers (page 271) and Compute > Calculus > Find
Extrema (page 220).
Extreme Values on a Surface

To find all candidates for the extreme values of a function such as
f(x,y) = x* = 3xy+y?, it is sufficient to locate all pairs (x,y) where
both partial derivatives are zero. Since only real solutions are perti-
nent, it is useful to assume the variables represent real numbers.

Compute > Evaluate
assume (x,real) = R
assume (y,real) = R

Compute > Definitions > New Definition
flxy) =x =3xy+y’

Compute > Solve > Exact
Ff () =0
£ (xy)=0

Thus the only candidates for real extreme values are (0,0) and

(1,1). You can identify the nature of these two points using the sec-
ond derivative test :

, Solution: [x =1,y =1],[x =0,y =0]

[D""f(x’y)D«Vyf(xvy) - (nyf(%y))z}x:o =0 —9<0
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hence (0,0) represents a saddle point; and

[Dxxf(xay)Dyyf(xay) - (nyf(xvy>>2:| rely=1 = 27>0

and [Dxxf(xay)]le,yzl = 6>0

so the surface has a local minimum at (1, 1).

You can visualize the local minimum at (1, 1) by generating a plot
of the surface. To create the following plot, with the insert point in
the expression x> — 3xy + 3, choose Compute > Plot 3D > Rectan-
gular. In the Items Plotted page of the Plot Properties dialog, choose
Hidden Line and Mesh. Choose Variables and Intervals and set the
Plot Intervals to —1 <x <2and —1 <y < 2. On the Axes page, set
Axes Type to Framed.

Compute > Plot 3D > Rectangular
X =3xy+y°

10 7
7
SO ////////
5 NS
v/
AR 4
B =

The level curve x* — 3xy +y* = 0 goes through the point (0,0,0).
For a better view of this level curve, make a 2D plot of x* — 3xy +y* =
0 and add the level curve x> — 3xy+y> = —0.5 to the plot.

Multivariable Calculus
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Compute > Plot 2D > Implicit
¥ =3xy+y’=0
X =3xy+y = -05

2T

2
X

The thick curve is the level curve at 0 and the thin curves are com-
ponents of the level curve at —0.5. This view gives an idea of where
the z-values are positive and where they are negative. Note that the
z-values on the surface 7 = x> — 3xy +y? are negative inside the loop
in the first quadrant and in the lower left corner of the xy-plane.

Extreme values of differentiable functions such as x> — 3xy + y?
can also be found choosing Compute > Calculus > Find Extrema.
In general, each application of Find Extrema reduces the number of
variables by one and rephrases the problem in one less variable. Using
this method with two or more variables requires multiple appropriate
applications of the command.

Choose Compute > Calculus > Find Extrema for the following
examples. Use floating point coefficients for these problems to obtain
numeric solutions. It is convenient to restrict the computations to real
variables.

Compute > Evaluate
assume (x,real) = R

assume (y,real) = R

Compute > Calculus > Find Extrema (Variable y)
x® —3xy+y? Candidate(s) for extrema: {x3 —2x3 X0+ 2% } ,

ac {ly = val, [y = —vAl}

Note that for y = #/x, the expression x*> — 3xy +y* simplifies
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to x> F 2x2. To find the extreme values, apply the command again to
the simplified expressions.

Compute > Calculus > Find Extrema (Variable y)
B =22 Candidate(s) for extrema: {—1,0},at {[x =0],[x = 1]}
% +2x3 Candidate(s) for extrema: {0}, ac {[x=10]}

The solution y = /x yields the points (0,0) and (1,1),and y =
—+/x yields the point (0,0). To determine the nature of these two
critical points, use the second derivative test (page 268).

Lagrange Multipliers

You can use Lagrange multipliers to find constrained optima. To
find extreme values of f(x,y) subject to a constraint g(x,y) = k, it is
sufficient to find all values of x, y, and A such that

Vf(xy) =AVe(x,y)
and g(x,y) = k where V is the gradient operator

Vi(x,y) = (g(x,y),g(m))

The variable A is called the Lagrange multiplier.

Example To find x and y whose sum is 5 and whose product is as large
as possible

1. Define f (x,y) = xyand g (x,y) = x+y.

2. Solve the equation V£ (x,y) = AVg (x,y) subject to g (x,y) =
5.

Compute > Definitions > New Definition
fly)=xy  glxy)=x+y

Compute > Evaluate

y 1
Viy) =1 x Ve(x,y)=| 1
0 0
Compute > Solve > Exact
y=2
x=A ,Solution: [x: %,y: %,A = %]
xX+y=3

Multivariable Calculus
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Example Optimization problems may require numerical solutions in
given search intervals.

Compute > Evaluate

1 e’ +ye
V(x+2y>: 2 V(yex+xe)’): ex+xey
0 0
Compute > Solve > Numeric
1=2A(ye"+¢)
2=2(e" +xe’)
ye'+xe¥ =5 o ~ N
xe(0,10) Solution: [~ 16665,y 0.45056, =~ 0.25290]
y € (0,10)
A€ (-5,5)

For f (x,y) =x+2yand g (x,y) = ye* +xe”, these numbers give

2(1.6665,0.45056) ~ 5.0001
£(1.6665,0.45056) ~ 2.5676

The point (1.6665,0.45056) gives a possible extreme value for f(x, )
satisfying the constraint g(x,y) = 5.

Taylor Polynomials in Two Variables

Let z be a function of two variables. The second-degree Taylor
polynomial of z at (a, b) is given by
I (xvy) = Z((l,b) +sz(a7b) (x—a) +Dyz(a’b) (y_b)
+3Dwz(a,b) (x—a)* + Dyz(a,b) (x—a) (y—b)
+%Dyyz (a,b) (y— b)2
To evaluate a partial derivative of a function z at (a,b)

1. Evaluate the partial derivative at (x,y) using an expression such
as

2
22(x,y), Daz(x,y), Z52(x,y), or Dyyz (x,y).

2. Evaluate at (a,b) using square brackets with the subscript x =
a,y=n>.

These steps can be combined into a single step:
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Compute > Evaluate

[203)] =

x=1,y=2 o

1
1-x2-y?
(0,0), first define the function z (x,y), then compute the second de-
gree Taylor polynomial as follows:

To find the second-degree Taylor polynomial of z =

Compute > Definitions > New Definition

_ 1
Z(X,y) - 1+x2+y2

Compute > Evaluate

2(0,0) =1 [D2z(x,)]x=0,y—0 = [0]
[DyZ (x>y)]x:o,y:0 = [0] {DxxZ (xay)}x=o,y:o = [_2]
[Dyyz (xa)’)}x:(),y:o =1[0] [Dyz (%)’)]X:()_,y:o =[-2]

These steps yield the second degree Taylor polynomial
T(xy) =1-2—y

The following plot has Plot Intervals —0.5 <x < 0.5and —0.5 <
¥y <0, Turn 75 and Tilt 75. This cutaway plot shows how well the
second-degree Taylor polynomial (the lower surface) matches the func-
tion z near (0,0).

Compute > Plot 3D > Rectangular
1

1-x24y2

1 —x* —y? (Drag to the plot.)

Multivariable Calculus
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Total Differential

To compute the total differential of a function of two variables,
define a function u (x,y), represent each differential by a Math Name
(du, dx, and dy) so that it will be treated as a variable. Then evaluate
the expression

0 0
du= au(x,y) dx—f—a—yu(x,y) dy

A similar procedure produces the total differential of a function of
three variables.

Compute > Definitions > New Definition
u(x,y) =xy?
To create the grayed function names du, dx, and dy
1. Choose Insert > Math Objects > Math Name.

2. Type the function name in the Name box and choose OK.

Compute > Evaluate
du= %u(x,y) dx+3%u(x,y) dy = 3x*y?dx +2x°ydy

|terated Integrals

You can enter and evaluate iterated integrals. If a < b, f(x) <
g(x) for all x € [a,b], and k(x,y) > O for all x € [a,b] and all y €
[f(x),g(x)], then the iterated integral

// k(x,y)dydx

can be interpreted as the volume of the solid bounded by the three
inequalitiesa < x < b, f(x) <y < g(x),and 0 < z < k(x,y).

Example Find the volume of the solid under the surface z = 1 4+ xy
and above the triangle with vertices (1,1), (4,1),and (3,2).

1. Plot the triangle with the given vertices.

1
Yy=2

2. Find the equations of the bounding lines:  y=5—x
y=1
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The solid can be viewed as a parameterized surface.
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x=2y—1

Solve for x in terms of y:
Y x=5-y 5

Setup and evaluate an iterated integral: flz f;}:yl (14+xy)dxdy = %

Multivariable Calculus

To view the integral ff f}g((;)) k(x,y) dydx as the volume of a solid 0 : 1

1.
2.
3.

Plot the expression (x, f (x) (1 —s) + g (x) s,k (x, f (x) (1 —5) + g (x) 5)).
Revise the plot, setting the intervalstoa <x < band0 <s < 1.

Drageach of the expressions (x, f (x) , sk (x, f (x))), (x,g (x) , sk (x,g (x))),
(a,y,sk(a,y)),and (b,y,sk(b,y)) to the plot frame.

. Revise the plot, setting the intervals for the fourth item to f (a) <
<

vy <g(a),0<s<1andtheintervalsforthe fifthitemto f (b)
y<g)and0<s<1.

Example In the following, the x- and y-coordinates are interchanged

to view the integral f12 fzsy__yl (1+xy) dxdy.

Compute > Plot 3D > Rectangular (Intervals: 0 <s < 1,1 <x<4,1 <y <?2)

((5- )(1—S) 2y =15y, 1+y((5=y)(1=5)+(2y—1)s))

2y —1y,s(1+y(2y—1)))

(5=yy,s(1+y(5-y)

(x ,l,s(l +x))

(Revise the plot by changing the intervals for the fourthitemto 1 <x <4,0<s<1.)

275



“Compute60” — 2011/12/20 — 14:27 — page 276 — #286

Chapter 7| Calculus

Here are two examples of iterated integrals.

Compute > Evaluate, Compute > Evaluate Numeric
Jo Jix2cosydydx = cos1+2sin1 —2 = 0.22324

3 x/3ex2dydx: 19— 1~1350.3
0 Jo 6 6

Following is an example illustrating a method for reversing the or-
der of integration.

Example Attempting to evaluate the double integral
1 rl
/ / VX3 + 1dxdy
0 Jyy

exactly leads to frustration. However, you can reverse the order of in-
tegration by looking carefully at the region of integration in the plane.
'This region is bounded above by y = x> and below by y = 0. The

new integral is
1 X2
/ / Va3 + ldydx
0 JO

This double integral can be evaluated directly. You can gain some in-
sight by iterated integration. The inner integral is just

2
/x \/x3+ldy:x2\/x3+l
0

You can integrate the resulting outer integral fol x*V/x3 + 1dx by
choosing Compute > Calculus > Change Variable, say with u = x> +
1. Then choosing Compute > Evaluate and Compute > Evaluate Nu-
meric, yields

1 21 4 2
/ (34 )P dx = g\/ﬁdu:§\ﬁ—§m0.4063171388
0 1

For double and triple indefinite integrals you can use either re-
peated integral signs or the double and triple integrals available in the
Operators dialog. Analogous to single indefinite integrals, for which
you must add an arbitrary constant to the result of computing an in-
definite integral, for a double integral [[ f (x,y) dxdy you must add
an arbitrary function of the form ¢ (x) + y (y). For a triple integral
JIT f (x,v,2) dxdydz you must add an arbitrary function of the form

@ (x,y) + ¥ (y2)+ 24 (x,2).
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To enter and evaluate a double or triple integral

1.

2.

3.

Choose Insert > Math Objects > Operator.

Select the double or triple integral and choose OK.

Enter the function and the differentials. (The latter are neces-
sary.)

With the insert point in the integral, choose Compute > Eval-
uate.

For a double integral, add an arbitrary function of the form

¢ (x) + y(y); for a triple integral, add ¢ (x,y) + v (y,2) +
A (x,2).

Compute > Evaluate (add “arbitrary functions”)
[fxydxdy = 32y + @ (x) + y (y)

J[ xsinxcosydxdy = (sinx —xcosx) siny+ @ (x) + v (y)
I xy?zdxdydz = 52°7°2 + @ (x,y) + ¥ (3,2) + 4 (x,2)

Exercises

1.

Verify the formula % (XS) =8x’ by starting with the definition
of derivative and choosing submenu items such as Expand and

Simplify.

Use Newton’s method on the function f(x) = x> + 1, starting
with xg = 0.5. What conclusions can you draw?

Find the equation of one line that is tangent to the graph of
flx) =x(x—1)(x—3)(x—6)

at two different points.

For 0 < k < 1, the elliptic integral E = foﬂ/z V1 —ksin?tdt
has no elementary solution. Use a series expansion of the inte-
grand to estimate E.

Find all the solutions to ¥’ = y* for unequal positive integers x
and y.

Exercises
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6. Blood flowing through an artery flows fastest at the center of
the artery, and slowest near the walls of the artery where friction
is a factor. In fact, the velocity is given by the formula v(r) =
a(R? — r?), where o is a constant, R is the radius of the artery,
and r is the distance from the center.

Set up an integral that gives the total blood flow through an
artery. Show that if an artery is constricted to one-half of its
original radius, the blood flow (assuming constant blood pres-
sure) is reduced to % of its original flow.

7. The mass of an object traveling at a velocity v with rest mass mg

is given by
| V2 —1/2
m=m - —
0 C2

where c is the speed of light. Use a Maclaurin series expansion
to show the increase in mass at low velocities.

8. Evaluate [2*cosbxdx.

1+ sinx

9. Evaluate ff” 5 dx. Hint: Don’t try to do it directly.

(x — cosx)
10. Evaluate limy,_,o+ [~ sin(x! ") dx.

11. The Fundamental Theorem of Calculus says that if f is contin-
uous on a closed interval [a, b], then

a. If g is defined by g(x) = [ f(¢)dt for x € [a,b], then
g'(x) = f(x),and

b. If F is any antiderivative of f, then jf fx)dx=F(b)—
F(a).

Demonstrate that these two conditions hold for each of the three
functions f(x) = x3, f(x) = xe*, and f(x) = sin®xcosx.

12. The arithmctic—gcometric mean of two positive numbers a > b
was defined by Gauss as follows. Let ag = @ and by = b. Given
an and by, let @, 1| be the arithmetic mean of a; and b,,, and
by+1 the geometric mean of a,, and by,:

a, + by,
2

ap+1 = and bn+1 = anbn
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Using mathematical induction, you can show thata, > a,,1 >
bn+1 > by and deduce that both series {a,, } and {b, } are con-
vergent, and, in fact, that lim, e @, = lim,_se0 by,.

Compute the arithmetic-geometric mean of the numbers 2 and
1 to five decimal places.

13. Two numbers x and y are chosen at random in the unit interval
[0, 1]. What s the average distance between two such numbers?

Solutions
1. By definition,
d g . (x4h)® —x®
g () = Jim =
C iy 3P 280K 4 - 2802RO 4 8xh” 41
=) h

= lim <8x7 1 28xOh + - -+ 28x2H + 8xh® + h7)
—
= 8

2. Defining g by g(x) = x— f(x)/f’(x), choose Compute > Cal-

culus > Iterate to obtain

0.5
—0.75
0.29167
—1.5684
—0.4654
0.84164

If this result seems to be headed nowhere, it is doing so for good
reason. The function f is always positive, so it has no zeroes.
Newton’s method is searching for something that does not exist.

3. It is sufficient to find three numbers a, b, and m that satisfy
f'(a) = m, f'(b) = m, and M = m. Put these three

equations inside a 3 X 1 matrix and choose Compute > Solve
> Exact to get several solutions, including the real solutions

5 1 5 1
a—i—i\/Zl,b—E—i 21,m——8
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[ 5 1 1 5 |
-a—§—§v2l,b—§v2l+§,m——8_
1 5 5 1 |
a—§V21+§,b—*—§ 21,m——8_
1 5 1
d= V2042 b= \20+2m=—8
2 2 2
5 5

Three of the solutions are not allowed, because the problem re-
quires @ # b. The two remaining solutions have the roles of a
and b reversed. Assuming a < b, that leaves the solution

[a = %— %\/21,1) = %\/21 + %,m = —8]Evaluatingandex—

panding,

fla)

so that

Plot the two curves x (x — 1) (x —3) (x —6) and —1 — 8x, just
for visual verification. Use a viewing window with domain in-

2 2 2

2

(G- - 3m) (- 3) (3-34)

—21+4v21

fla)+m(x—a)

—1—8x

1
—21+4v21-8 (x—§+2¢27)

0+

)

-20T

-40 T

terval —1 <x < 6.5 to generate the following picture.

4. The series is given by V1 —ksin%t

1+ (—3k)2 +

(%k — ékz) 40 (tS). Thus, an estimate for E is given by

E
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As acheck, k = 1 yields 1.0045 compared with the exact value
/2
/ V1 —sin’rdt =1
0

and k = 0 yields %7‘[, which agrees precisely with

/2 1
dt = ~
/o 2"

. Compute natural logs on both sides and separate variables to
get lnTX = lziy Plot InTX on the interval 1 < x < 10. Locate the
Inx . d (Inx) _ .
extreme values of = by solving o (7) = 0. Note that 2 is the
only integer between 1 and e, and verify that 24 = 42 is true.

. The flow is given by the integral fée a(R?—r*)2nrdr = %OUIRA'.

If R is reduced by one-half, then R* is reduced to T16 of the orig-
inal amount.

. 'The series expansion is given by

2\~ 1 5 3 4 5
m0<1—cz> :mo—f—z—czvmo—k@vmo—i—O(v)

v
If — is small, then the model m ~ mgy + %%Ovz is useful for es-

timating the increased mass.
. Evaluation yields

2% (bsinbx +cosbxIn2)
b2 +1n*2

/2)“ cosbxdx =

. The integral
T 1+sinx
[ Lsns
-7 (x—cosx)
is improper, because x — cosx = 0 has a root (= 0.73909) be-
tween —7 and 7. Evaluate Numeric gives

7391 4
/ Y~ 7018.2,and

-n (x—cosx)

/ Y g~ 52014
7392 (x — cOS X)

Exercises
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Change “Digits rendered” to 10, in the Output page of the Tools
> Preference > Computation dialogbox. Solving cosx = x nu-
merically gives x /= 0.7390851332.

Using this as a limit, Evaluate Numeric gives

116400.4055 and

Q

073908 | 4 i
/ ~+sinx dx

- (x — cosx)?

Q

/ I e~ 122772.6822
0.73909 (x — cOsx)

providing some evidence that both integrals diverge.

10. You obtain the result lim,_,q+ [5”sin(x!*#)dx = 1. This re-
sult is reasonable, because the integral f(h) = [3”sin(x!*") dx
can be viewed as a convergent alternating series for £ > 0, and
g(y) = Jg sinxdx = 1 — cosy ranges in value between 0 and
2, with an average value of 1.

11. We need to show that for each of the three functions f(x) = x3,
f(x) = xe*,and f(x) = sin® xcosx, (a) and (b) hold:
(a) If g is defined by g(x) = [ f(¢)dt for x € [a,b], then
g'(x) = f(x).
(b) IfF is any antiderivative of f, then fab fx)dx=F(b)—

For f(x) = x%, g(x) = [F3dt = {x* — la* and ¢'(x) =
% (%x4 — %a = x3. The antiderivatives of f are of the form
) 3

=b
F(b)—F(x) = [Ix*+C]_ =1p* - 1a*

which is the same as ff Xdx = %b“ — %a“.

For f(x) = xe*, g(x) = [ te' dt = xe* — €" — ae” + ¢* and
g'(x) = 4 (xe* — " — ae® + ¢*) = xe*. The antiderivatives of
fareof the form F (x) = [ xe*dx = xe* — " +C for different
constants C. Now

F(b)—F(x) = [xe" — "+ CJ"=0 = be® — " —ae + ¢°

282



“Compute60” — 2011/12/20 — 14:27 — page 283 — #293

which is the same as [” xe* dx = be? — ¢? — ae® + ¢°.

For f(x) = sin®xcosx,

X
_ T2 S DR DN UPVSPS G
g(x)—/a sin“fcostdt = zsinx— g sina+ 5 sin3a— 5 sin3x

d
gdx) = dx(lsmx—%smaJr & sin3a — .5 sin3x)

— 1 _1

= zCOSx—7 L cos3x
To check to see if this is the same as f (x), apply Compute >
Combine > Trigonmetric Functions to the expression sin“xcosx
to see that indeed sin®xcosx = %cosx — %cos 3x. The an-

tiderivatives of f are of the form
F(x)= /sinzxcosxdx = % sinx — ﬁ sin3x+C

for different constants C. Now

F(b)—F(x) = Hsmx 125in3x]xib
= %smb }Lsma—f— 2sm3a 2sin3b
while
b
/s1n2xcosxdx—4s1nb 4sma—i— 2s1n3a——sin3b
Ja

12. Since the arithmetic-geometric mean lies between a,, and b, for
all n, we know the arithmetic-geometric mean to five decimal
places when these two numbers agree to that many places.

241 3

oalzizzzl‘sandbl:\/m:\/izl'
41421

3

2 4+4/2
o ay=12 2\[:2+é\6:1.45711andb2: V2w
1.45648

3

34+v2 \/37

+1/3V2 3

e A 3 s e asen

8 4

andb3:\/(i +1v2) /32~ 1.45679

ﬁ

Exercises
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13. An average value can be determined by evaluating an integral.
The average distance between x and y is given by

1 rl 1
/ / |x—y| dydx = =.
0 Jo 3

This can be verified using the following steps:

1l
/O/O\x—y|dydx = //\x y|dydx—|—/ / |x—y| dydx
= /()/O(x y)dydx+// y—x) dydx

1

3

AN =

Ly
6
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Matrix Algebra

One cannot escape the feeling that these mathematical formulas have an independent existence and an intelligence of their own, that they are

wiser than we are, wiser even than their discoverers.  Heinrich Hertz (1857—1894)

atrices are used throughout mathematics and in related fields Creating and Edltlng Matrices
l \ / I such as physics, engineering, economics, and statistics. The
algebra of matrices provides a model for the study of vector Standard Operations
spaces and linear transformations.

A rectangular array of mathematical expressions is called a matrix. ~ Row Operations and Echelon
A matrix with m rows and 7 columns is called an m X n matrix. Matri- Forms
ces are sometimes referred to simply as arrays,andanm X 1 or 1 X n
array is also called a vector. Several methods for creating matrices are Equ ations
described in the ensuing sections.

Entries in matrices can be real or complex numbers, or mathemat-
ical expressions with real or complex coeflicients. Most of the choices
from the Matrices submenu operate on both real and complex matri-
ces. The QR and SVD factorizations discussed later in this chapter
assume real matrices.

Matrix entries are identified by their row and column number. The

Matrix Operators

Polynomials and Vectors
Associated with a Matrix

Vector Spaces Associated with a
Matrix

matrix can be considered as a function on pairs of positive integers.
If the matrix is given a name, this feature can be used to retrieve the
entries, with the arguments entered as subscripts.

Normal Forms of Matrices
Compute > Definitions > New Definition

85 _55 _37 Matrix Decompositions
A=| =35 97 50
79 56 49

New in Version 6
Map a function to a matrix
285
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Compute > Evaluate
Az =50
A3z =49

Note that the subscripted row and column numbers are separated
by a comma.

Creating and Editing Matrices

You can create a matrix via the Matrix dialog box or from the Ma-
trices submenu. There is also a keyboard shortcut, described at the end
of this chapter.

Each method involves different choices, as described in the follow-
ing paragraphs.

To create a matrix

1. Choose Insert > Math Objects > Matrix.

2. Select the number of rows and columns by clicking in the low-
est, right-most box you want.

3. Choose OK.

4. Type or copy entries into the input boxes.

The entries can be any valid mathematical expression. Both real
and complex numbers are legitimate entries, as well as algebraic ex-
pressions. The built-in delimiters have the same appearance as expand-
ing brackets on the screen, but they require less horizontal space when
typesct.

Matrix Delimiters

You can make choices in the View menu that affect the appearance
of matrices on the screen. Helper Lines and Input Boxes can be shown
or hidden. The default is to show them to make it easier to handle
entries on the screen. Matrix helper lines and input boxes normally do
not appear when you preview or print the document.

It is standard to enclose a matrix in brackets, either built-in or
added manually. These two options provide the same screen appear-
ance and mathematical properties. They differ only under Typeset—in
which case, the built-in brackets fit more tightly around the matrix en-
tries than added brackets. If you have a matrix without built-in delim-
iters, you will generally want to add brackets around it. The result of
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an operation on matrices usually appears with the same brackets as the

original matrices.

To set the default matrix delimiters

1.

2.

Choose Tools > Computation > Matrices.

Select the desired option: none, [ ], or ().

Fill Matrix

You can generate a matrix whose entries are defined by a function.

To define a Hilbert matrix
1
1. Define f(i,j) = T
2. Choose Compute > Matrices > Fill Matrix > Defined by Func-
tion.
3. Type f in the box for the function name.
4. Set rowsand columns. (Enter 2 or 3 for the following example.)
5. Choose OK.

Compute > Matrices > Fill Matrix > Defined by Function

Function: f

]

= =
W= N—

W= D= —

w

X Bl= W= =
D= A= Q=

(O8]

2x2

To define a Vandermonde matrix

1.

2.

Define the function g(i, j) = xlj*l.

Choose Compute > Matrices > Fill Matrix > Defined by Func-
tion.

Type g for the function name.

Set the Dimensions and choose OK.

(reating and Editing Matrices
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Compute > Matrices > Fill Matrix > Defined by Function
Function: g, Rows: 4, Columns: 4
1 xi x x
1 x x% x%
1 x3 x% xg
1 x4 xﬁ xi
To define a generic matrix
1. Define the function a(i, j) = a; ;. Caution
5 Ch C Matsi Fill Matri fned by F Without the comma in the definition of the
- & oose Compute > Matrices > Fill Matrix > Defined by Func- function (7, j), the subscript i j would be
tion. .
interpreted as a product.
3. Type a for the function name.
4. Set the Dimensions and choose OK.
Compute > Matrices > Fill Matrix > Defined by Function
Function: a, Rows: 3, Columns: 3
aig aip aig
ar) axp a3
asy] 4z dss
You can use the following trick to create a general matrix up to
9 x 9 with no commas in the subscripts.
To define a generic matrix with no commas in the subscripts
1. Define the function b(i, j) = aj0i+ ;.
2. Choose Compute > Matrices > Fill Matrix > Defined by Func-
tion.
3. Type b for the function name.
4. Set the Dimensions and choose OK.
Compute > Matrices > Fill Matrix > Defined by Function
Function: b, Rows: 3, Columns: 3
ail a2 a3
a1 dzp azs
a3y dsy ass
288
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(reating and Editing Matrices

To define a constant matrix

1. Choose Compute > Matrices > Fill Matrix > Defined by Func-
tion.

2. Type 5 for the function name.

Compute > Matrices > Fill Matrix > Defined by Function

Function: 5, Rows: 2, Columns: 2

55
55
Band

To define a band matrix
1. Choose Compute > Matrices > Fill Matrix > Band

2. Typeacomma-delimited list such as a, b, ¢ with an odd number
of entries in the List box.

3. Set the Dimensions and choose OK.

Compute > Matrices > Fill Matrix > Band

b ¢ 000

4 0 b e a b ¢ 00
0 b 0 a b ¢ O
a a 00 a b c
00 0 a b

List: a List: a,b,c List: a,b,c
Rows: 2, Columns: 2 Rows: 2, Columns: 2 Rows: 5, Columns: 5

Create a Band matrix with the sigle digit 0, the single digit 1, or the
list 0,A, 1 to get a zero matrix, an identity matrix, or a Jordan block,
respectively.

Compute > Matrices > Fill Matrix > Band

0 00 1 00 A 1 0

0 00 010 0 A 1

0 0O 0 0 1 0 0 A
List: O List: 1 List: 0,A,1

Rows: 3, Columns: 3 Rows: 3, Columns: 3  Rows: 3, Columns: 3
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Revising Matrices

You can add or delete rows, columns, or a full block of rows or
columns from a matrix. The alignment of rows and columns can be
reset. Entries in a rectangular block can be deleted or replaced.

Adding Rows and Columns

To add rows or columns to a matrix
1. Select the matrix by placing the insert point in a cell of the ma-
trix or by placing the insert point at the right of the matrix (but
not outside of any brackets).

2. Choose Edit > Insert Matrix Rows, or Edit > Insert Matrix
Columns.

3. Make appropriate choices from the dialog that appears and choose
OK.

Deleting Rows and Columns

To delete a block of rows or columns
1. Select a block of rows or columns with the mouse or with
Shift+arrow.

2. Press Del.

You can also use the procedure described above to delete entries
from a rectangular block that does not include a complete row or col-
umn of a matrix.

The choices Insert Row(s) and Insert Column(s) appear on the
Edit menu only when a matrix is selected. If they do not appear, repo-
sition the insertion point or select the matrix with click and drag, being
careful to select only the inside of the matrix—that is, not including
the exterior Helper Lines.

To lengthen a vector represented asan 7 X 1 or 1 X n matrix
e Place the insert point in the last input box and press Enter.

To shorten a vector represented asan 72 X 1 or 1 X n matrix
e Place the insert point in the last input box and press Backspace.

You can start with a display box, or the input boxes that appear
with the fraction, radical, or bracket buttons, and make similar changes
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Changing Alignment

To change the alignment of entries
1. Select the matrix using the mouse.

2. Choose Edit > Properties and make appropriate choices from
the dialog box that appears.

Replacing a Rectangular Block
You can replace arectangular block in an existing matrix with Copy
and Paste or with Fill Matrix.

To replace a rectangular block with Copy and Paste
1. Copy a rectangular matrix to the clipboard with Edit > Copy.

2. With the mouse or Shift+arrow, select a rectangular portion of
the same dimensions in any matrix and choose Edit > Paste.

To change a matrix with Fill Matrix
1. Select a rectangular portion of the matrix with the mouse or
Shift+arrow.

2. Choose Compute > Matrices > Fill Matrix.

3. Choose one of the items from the dialog.

4. Choose OK.

The selected region of the matrix is filled with the entries that you
chose.

Example To change the lower-right 2 X 2 corner of the matrix to
the zero matrix, select the lower-right 2 x 2 corner of the matrix using

the mouse. Choose Compute > Matrices > Fill Matrix. Choose Zero.
Choose OK.

11 9 4 11 9 4
53 -1 5 53 -1 5
-6 1 2 3 -6 1 2 3
9 5 5 4 95 00
8 7 8 9 8 7 00

The lower-right corner is replaced by the 2 X 2 zero matrix. No new
matrix is created.

(reating and Editing Matrices
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You can delete a block of entries in a matrix by selecting a rectan-
gular portion of the matrix with the mouse and pressing del.

Example To delete the entries in the lower-right 2 X 2 corner of
the matrix, select the lower-right 2 x 2 corner of the matrix using the

mouse and press del.

8 -9 4 8 -9 4
0 5 -6 0 5 -6
1 2 3 1 2 3
5 5 4 5 0O 0O
7 8 9 7 0 0O

Concatenate and Stack Matrices

You can merge two matrices horizontally into one if they have the
same number of rows. You can merge two matrices vertically into one
if they have the same number of columns.

To concatenate two matrices with the same number of rows

1. Place two matrices adjacent to each other.
2. Leave the insert point in one of the matrices.

3. Choose Compute > Matrices > Concatenate.

Compute > Matrices > Concatenate

1 2 5 6 C . 1 2 56
34 7 3 oncatenation | 5, 5 ¢

x+1 2 54w Concatenation x+1 2 54w
3y  4t+2 V7z oncatenatio 3y 4t+2 7z
To stack two matrices with the same number of columns

1. Place two matrices adjacent to each other.
2. Leave the insert point in one of the matrices.

3. Choose Compute > Matrices > Stack.
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Compute > Matrices > Stack

Lo L2
_35 471 (5 6)Suck| “5
5 6

x+1 2

(x;rl 4ti2>(w+5 V7 )Stack [ 3y 4142

Y w+5 /7

Reshaping Lists and Matrices

Alist of expressions entered in mathematics and separated by com-
mas can be turned into a matrix whose entries, reading left to right and
top to bottom, are the entries of the list in the given order.

To make a matrix from a list
1. Place the insert point within the list.

2. Choose Compute > Matrices > Reshape.
3. Specify the number of columns.

The number of rows depends on the length of the list. Extra input
boxes at the end are left blank.

Compute > Matrices > Reshape (3 columns)

45 21 8
45,21,8,19,0,5,15.6, | 19 0 5
15 6 0O

A matrix filled with data can be reshaped, with the new matrix
corresponding to the same list as the original data.

To reshape a matrix
1. Place the insert point in the matrix.

2. Choose Compute > Matrices > Reshape.

3. Specify the new number of columns.

Compute > Matrices > Reshape (3 columns)

-85 —55 —37 -35 85 =5 =T
97 50 79 56 | =35 97 30
79 56 O

(reating and Editing Matrices
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Standard Operations

You can perform standard operations on matrices, such as addi-
tion, subtraction, scalar multiplication, and matrix multiplication, by
evaluating expressions entered in natural notation.

Matrix Addition and Scalar Multiplication

You add two matrices of the same dimension by adding correspond-
ing entries. The numbers or other expressions used as matrix entries
are called scalars. You multiply a scalar with a matrix by multiplying
every entry of the matrix by the scalar.

To perform matrix addition and multiplication and other opera-
tions with scalars and matrices, place the insert point anywhere inside
the expression, and choose Compute > Evaluate.

Compute > Evaluate

1 -2 56 6 4
4 3 [(+]18 7 |=|12 10
=5 7 39 -2 16

Note that the sum appears with the same brackets as the original
matrices.

Compute > Evaluate
an an biy bip \ _ [ an+bn anntbin
ar axp by by a1 +by ax+bxp
1 2] a 2a

“l4 3|7 | 4a 3a

1 2] ,[56]_[a-5 2a-6b
“4 37718 7|7 | 4a—8b 3a—7b
Inner Products and Matrix Multiplication

The product ofa 1 x n matrix with an n X 1 matrix (the product of
two vectors) produces a scalar (called the inner product or dot product
in case the matrices are real). The matrix product of an m X k matrix
with a k X n matrix is an m X n matrix obtained by taking such prod-
ucts of rows and columns, the ijth entry of the product AB being the
product of the ith row of A with the jth column of B.
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Compute > Evaluate Complex numbers
The inner product of two vectors
(a b)(;):ac—i-bd u= (ur,up,...,u,)and
v = (v1,V2,...,V,) with complex

components is given by
a b
u v

5 61° [ 941 942
8 7| | 1256 1255
To put an exponent on a matrix, place the insert point immedi-

ately to the right of the matrix, choose Insert > Math Objects > Su-
perscript, and type the exponent in the input box.

Rows and Columns

You can find the vector that is the nth row or column of a ma-
trix A with the functions row (A,n) and col (A,n). These function
names automatically gray when typed in mathematics mode if Au-
tomatic Substitution is enabled. Otherwise, you can create them by

choosing Insert > Math Object > Math Name.

c\ ([ ac+bd
d ) \ uc+vd

5 6\ (21 20
8 7 )/ \ 44 45 where v is the complex conjugate of vy.

n
u-v=Y
k=1

o=
W N

Compute > Evaluate

or([43]3) 14+
(1 3]9)-[3

|dentity and Inverse Matrices

The n X nidentity matrix I has ones down the main diagonal (upper-
left corner to lower-right corner) and zeroes elsewhere. The 3 x 3 iden-
tity matrix, for example, is

=

SO =
S = O
— o O
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The inverse of an 7 X n matrix A is an 7 X n matrix B satisfying
AB = I. To find the inverse of an invertible matrix A, place the insert
point in the matrix and choose Compute > Matrices > Inverse; or
type A with —1 as a superscript and choose Compute > Evaluate.

Compute > Matrices > Inverse

7 6

5 6 \pieee [ 17T
g8 7 nversce: 8 5
13 13

Compute > Evaluate

_ 7 6

56\ (16 B
8 7) ~ | s _s
13 13

To check that this matrix satisfies the defining property, evaluate
the product.

Compute > Evaluate

(9)(F4)-(0)

Choose Compute > Evaluate Numeric to get a numerical approx-
imation of the inverse. The accuracy of this numerical approximation
depends on properties of the matrix, as well as on the settings for Dig-
its and Digits Rendered (see Appendix C, Customizing the Program
for Computing).

loo S~

Sl e

(98]

Compute > Evaluate Numeric

5 6\ ' _ [ —053846 0.46154
8 7 - 0.61538 —0.38462
Checking the product of a matrix with its inverse gives you an idea

of the degree of accuracy of the approximation.

Compute > Evaluate

56 —0.53846  0.46154 \ 0.99998 —0.00002
8 7 0.61538 —0.38462 / \ —0.00002 0.99998

. —1 1\ . .
Since (A")" = (A 1) , you can compute negative powers of in-
vertible matrices.
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Compute > Evaluate
1255 942

-3 _
56 B 2197 2197
8 7 o 1256 941
2197 2197
The m X n matrix with every entry equal to zero is the identity for
addition; that is, for any m X n matrix 4,
A+0=0+A=A
and the additive inverse of a matrix A is the matrix (—1) A.

Compute > Evaluate

ayy ap aps —ajy —ap  —aps 0 00
az axp axp —ay —ap —axp 0 00
as; axm  ass + —a31 —axn —axz | [0 0 O
a1 ag  a43 —a4]  —a4 —a43 0 00

Polynomials with Matrix Values

You can apply a polynomial function of one variable to a matrix.

To evaluate a polynomial p (x) at a square matrix A
o With the insert point in the expression p (A), choose Compute
> Evaluate.

Compute > Definitions > New Definition
p(x)=x>—5x—2
2 =2
=14 7]
Compute > Evaluate

= ¢

You can also define the function f(x) = x? — 5x — 2x° and eval-
uate f at a square matrix.

Note
The expression —5 L2 — 2isnot,
p 4 3 !

strictly speaking, a proper expression.

Compute > Definitions > New Definition However, when evaluated, the final 2 is

2 0
XxX) =x—5x—2x
) interpreted in this context as { (2) g ],or

Compute > Evaluate

(3 5)-[5 7]

twice the 2 X 2 identity matrix.
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Operations on Matrix Entries

To operate on one entry of a matrix, select the entry, press and
hold the Ctrl key, and choose a command. The program will perform
the operation in place, leaving the rest of the matrix unchanged. Be-
cause you are in a word—processing environment, you can edit indi-
vidual entries (click in the input box and then edit) and apply other
word-processing features to entries, such as copy and paste or click and
drag.

Many of the commands on the Compute menu operate directly on
the entries when applied to a matrix, as can be seen from the following
examples.

Compute > Factor
5 6] [5 2x3
8 7| |22 7
Compute > Evaluate
% sinx [ 6x*dx cosx 2x3
% Inx x+3x B —xiz 4x
Compute > Evaluate Numeric

[ sin’m e ]

- 0.0 2.7183
In5 x+3x

~ { 1.6094  4.0x

Compute > Combine > Trigonometric Functions

sin® x + cos® x 6x°
4sindxcos4x sinxcosy-sinycosx

Compute > Evaluate
d{x—i—l 2x3—3}_{ 1 6x° }

dx | sind4x 3secx 4cos (4x) —3sinx
Cos~x

Row Operations and Echelon Forms

One of the elementary applications of matrix arrays is storing and
manipulating coefficients of systems of linear equations. The various
steps that you carry out in applying the technique of elimination to a
system of linear equations
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anxit+apx+...+aux, = b
anxi+apxy+...+amxy, = by
A1 X1 +apaX2 + ... QX = by

can be applied equally well to the matrix of coefficients and scalars

aiy ap ... ay, bp
a ap ... ay b
aml am2 oo Amn bm

For this and numerous other reasons, you perform elementary row op-
erations on matrices. The goal of elementary row operations is to put
the matrix in a special form, such as a row echelon form, in which the
number of leading zeroes increases as the row number increases.

The Matrices menu provides the choices Fraction-free Gaussian
Elimination, Gaussian Elimination, and Reduced Row Echelon Form
for obtaining a row echelon form. The last of these produces the re-
duced row echelon form satisfying the following conditions:

e The number of leading zeroes increases as the row number in-
creases.

e The first nonzero entry in each nonzero row is equal to 1.
e Each column that contains the leading nonzero entry for any

row contains only zeroes above and below that entry.

Gaussian Elimination and Row Echelon Form

The three row echelon forms that can be obtained from the Ma-
trices submenu are illustrated in the following examples.

Compute > Matrices > Fraction-free Gaussian Elimination

a b . . L. a b
[ c d ]Fractlon Free Gaussian Elimination: { 0 ad—be ]

8 2 3 . o 8 2 3
[ 5 _5 3 ]Fractlon Free Gaussian Elimination: { 0 —44 58

|

Row Operations and Echelon Forms
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Compute > Matrices > Gaussian Elimination
[a b

b
¢ d ]Gaussian Elimination: { g (ad—bc) }

a

(8 2 3

_ > _5 3§ }Gaussian Elimination: { 8 5 8 }

0 22 -29

Compute > Matrices > Reduced Row Echelon Form
[a b

d

]Rcduccd Row Echelon Form: { (1) (1) ]

r 1 o 31
8 23 } Reduced Row Echelon Form: 4‘219
2 -5 8 01 -2

Elementary Row Operations

You can perform elementary row operations by multiplying on the
left by appropriate elementary matrices—the matrices obtained from
an identity matrix by applying an elementary row operation. The tech-
nique is illustrated in the following examples.

To create an elementary matrix, choose Compute > Matrices >
Fill Matrix > Identity and edit the identity matrix. Choose Compute
> Evaluate to get the following products.

e Add A times row 3 to row 1

1 0 A -5 -2 -1 A=5 41-2 A-1
01 0 3 -6 2 |= 3 —6 2
0 0 1 1 4 1 1 4 1

e Interchange rows 2 and 3

1 00 =50 —12 -18 -50 —-12 18
0 0 1 31 =26 —-62 | = 1 —47 -91
010 1 —47 -91 31 -26 —-62

o Multiply row 2 by A

1 0 0 80 -2 -—18 80 -2 —18
0 A 0 33 —26 82 | =] 3314 264 821
0 0 1 14 —-47 -91 14 —47 91
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You can perform other row or column operations that are available

in the MuPAD library, as in the following example.

Example To access the MuPAD function swapRow and name it §

1. Choose Compute > Definitions > Define MuPAD Name.

2. Respond to the dialog box as follows:

e MuPAD Name: linalg::swapRow(x,i,j)
o Scientific WorkPlace (Notebook) Name: S(x, i, j)

o In theareatitled The MuPAD Name is a Procedure, check
That is built in to MuPAD or is automatically loaded.

3. Check OK.

This procedure defines a function S(x, i, j) that interchanges the
rows i and j of a matrix x. Define

-85 =55 37 =35
x=| 97 50 79 56
49 63 57 =59

and evaluate S(x, 1,2) to get

97 50 79 56
S(x,1,2)=| -85 —55 —37 -35
49 63 57 —59

Equations

Elementary methods for solving systems of equations are discussed
on page 55. The algebra of matrices provides you with additional tools
for solving systems of linear equations, both directly and by translating
into matrix equations.

Systems of Linear Equations

You identify a system of equations by entering the equations in an
n X 1 matrix, with one equation to a row. When you have the same
number of unknowns as equations, put the insert point anywhere in
the system, and choose Compute > Solve > Exact. The variables are

Equations
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found automatically without having to be specified, as in the following
example.

Compute > Solve > Exact
x+y—2z=1
2x—4y+z=0 |, Solution: [x: %77),: %’Z: %]
2y—3z=-1

To solve a system of equations with two equations and three un-
knowns, you must specify Variables to Solve for in a dialog box. Put
the insert point anywhere in the matrix and choose Compute > Solve
> Exact. A dialog box opens asking you to specify the variables. Type

the variable names, separated by commas.

Compute > Solve > Exact
(Variable(s) to Solve for : x,y)

2x—y=1

t3e—4 , Solution: [y = —6z+7,x = —3z+4|

(Variable(s) to Solve for : x,z)

ione [y=41 41y, ,—7_1
Nt 3—4 , Solution: [x—z—f—zy,z—é Gy]
Matrix Equations
The system of equations
ayxy+apx+...+apuxs = b
anxi+anx+...+aux, = by
AuiX1+ amxa+ ...+ aGupxn = by
is the same as the matrix equation
ai aln daip X1 b]
ay ay ... ay X2 by
aml Am2 ... Qmn Xn bm
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Example To put the system of equations
x+y—-2z=1
2x—4y+4+z=0
2y—3z=-1
1 1 -2
in matrix form, multiply the coefficient matrix | 2 —4 1 | by
0O 2 -3
X
the vector | y
Z
1 1 -2 X xX+y—2z 1
2 —4 1 y | =| 2x—4y+z | = 0
0o 2 -3 Z 2y—3z —1

You can solve matrix equations by choosing Compute > Solve >
Exact. There are advantages to solving systems of equations in this way,
and often you can best deal with systems of linear equations by solving

the matrix version of the system.

Compute > Solve > Exact

1
1 1 -2 x 1 ?7
2 -4 1 y =] 0 |[,Solution: %‘1
0o 2 -3 z -1 5

1
01 [ s [
0 3 y | =] 4 | Solution: ~6f3

Z 13

In the first case, you can also solve the equation by multiplying
both the left and right sides of the equation by the inverse of the coef-
ficient matrix, and evaluating the product.

Compute > Evaluate

_ 17

x 11 27177 1 T
y|l=1]2 -4 1 0=1|4%4
z 0 2 -3 —1 5
4

Equations
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You can convert a system of linear equations to a matrix, and a
matrix to a system of equations by choosing Compute > Rewrite >
Equations as Matrix and Compute > Rewrite > Matrix as Equations,
respectively

To convert a system of equations to a matrix
1. Place the insert point in a system of equations that has been cre-
ated as a list or one-column matrix.

2. Choose Compute > Rewrite > Equations as Matrix.

3. In the dialog that appears, type the variables separated by com-
mas. Choose OK.

Compute > Rewrite > Equations as Matrix
(Variable(s): x,y)

{x+2y =3,3x— 5y = 0}, Corresponding matrix: [ 3 s o

(Variable(s): x,y,z)

x+y—2z=1 1 1 -2 1
2x—4y+z=0 |, Corresponding matrix: | 2 —4 1 0
2y—3z=-1 0 2 -3 -1

To change a matrix to a system of equations
1. Place the insert point in an m X 1 matrix.

2. Choose Compute > Rewrite > Matrix as Equations.

3. In the dialog that appears, type the variables separated by com-
mas and choose OK.

Compute > Rewrite > Matrix as Equations
(Variable List: x,y)

( é _13 _11 > , Corresponding equations: {x+y = —1,2x—3y =1}

Compute > Rewrite > Matrix as Equations

(Variable List: x,y,z)
1 1 -2 1

2 —4 1 0 |, Corresponding equations: {x+y—2z=1,2x—4y+z=0,2y —3z=—1}

0o 2 -3 -1
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Equations

The response is a list of equations. If you want these equations in
a one-column matrix, use Matrices > Reshape, and specify 1 column.

Compute > Matrices > Reshape
— 1 2x—3y— x+y=-—1
{x+y=—-1,2x 3y—1},{ 2w—3y—1 }

Rotation Matrices

The matrix product
cosf® —sin6 x\ _( xcos@ —ysin0
sin@  cos@ y /] \ ycosO+xsinf

has the effect of rotating the vector < § ) through an angle 0 in a

counter-clockwise direction about the origin. You can visualize this
by using an animation.

Compute > Plot 2D Animated > Rectangular
cos® —sinf X
sin@ cosH 0

0<06<2n,0<x<1
ubhobooaboboboooaboboboooboboboaboboaod

1T 1T 1T

<, 1
<, 1
<. 1

-1+ 1+ 1+
obobooobboooooooobbooobobooooboooaood

You can also rotate a parametric curve. In the following, the curve

(xz,x3) is rotated through an angle 6, as 6 increases from 0 to 27.
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Compute > Plot 2D Animated > Rectangular
cosf —sin6 x?
sinf@ cos6 X’
0<6<2m—-1<x<1
Oooooooooooooooooooooooooooooooon

-1.0-05

-10T

obhooooooboboobobobooobobooooboobooons

The following depicts the rotatation of the surface (x, y, sinx + cos y)
about the y-axis.

Compute > Plot 3D Animated > Rectangular

cos@ 0 —sinf X
0 1 0 y
sin@ 0 cos@ sinx 4 cosy

0<0<27,-6<x<6,—6<y<6
booooboboooobobobooobobobooobooaood

obhooooooboboooboobobooobobooooooboood

This three-dimensional animation uses one of these 3 X 3 rotation
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matrices:
cos®@ —sinf O cos@ 0 —sin6 1 0 0
sin@ cosf® O 0 1 0 0 cosf® —sinf
0 0 1 sin@ 0 cos@ 0 sinB cos@
Rotate about z axis Rotate about y axis Rotate about x axis
Matrix Operators

A matrix operator isa function that operates on matrices. The Ma-
trices menu contains a number of matrix operators.

Trace

The trace of an 72 X 1 matrix is the sum of the diagonal elements.
This operation applies to square matrices only.

To compute the trace of a square matrix
1. Place the insert point in the matrix.

2. Choose Compute > Matrices > Trace.

Compute > Matrices > Trace

b -85 —-55 -37
< “ d ) Trace: a+d -35 97 50 Trace: 61
¢ 79 56 49

Transpose and Hermitian Transpose

The transpose of an 7 X 1 matrix is the # X m matrix that you ob-
tain from the first matrix by interchanging the rows and columns.

To compute the transpose of a matrix

1. Place the insert point in the matrix.

2. Choose Compute > Matrices > Transpose.

Compute > Matrices > Transpose

a b T fa c
c d ransposc. b d

You can also compute the transpose of a matrix or vector by using
the superscript 7.

Matrix Operators
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Compute > Evaluate
< a b c )T B Z i
d e f c f

(5) (&) e

The last example demonstrates a common way to take the inner prod-
uct of vectors.

The Hermitian transpose of a matrix is the transpose together with
the replacement of each entry by its complex conjugate. It is also re-
ferred to as the adjoint or Hermitian adjoint or conjugate transpose
of a matrix (not to be confused with the classical adjoint or adjugate,
discussed elsewhere in this chapter.)

To compute the Hermitian transpose of a matrix

1. Place the insert point in the matrix.

2. Choose Compute > Matrices > Hermitian Transpose.

Compute > Matrices > Hermitian Transpose
241 —i . 2—i 4+4i
< 4 o l 2 + l ) Hermitian Transpose. < l 2 _ l )

You can also compute the Hermitian transpose of a matrix using

the superscript H.

Compute > Evaluate

i 2+i\" (- -4
4 3-2i ) T\ 2-i 3+2i

To compute the Hermitian transpose of a matrix with non-numeric
entries, first assume real variables.

Compute > Evaluate Compute > Evaluate

assume (a,real) = assume (e,real) = R

R
assume (b,real) =R assume (f,real) =
assume (c,real) = R assume (g, real) =
( R (

assume (d,real) = assume (h,real) =

308
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Matrix Operators
Compute > Matrices > Hermitian Transpose
a+ib c+id . a—ib e—if
< etif g+ih ) Hermitian Transpose: ( c—id g—ih >
Determinant
The determinant of an n X 1 matrix (a;;) is the sum and difference
of certain products of the entries. Specifically,
det(ai;) = Y (—=1)*") a5y a26(2) ** tno(n)
o
where 0 ranges overall the permutationsof {1,2,...,n}and (—1 )Sgn(d)
= =£1, depending on whether © is an even or odd permutation. Note
To compute the determinant of a square matrix Determinants apply to square matrices only.
1. Place the insert point in the matrix.
2. Choose Compute > Matrices > Determinant.
Compute > Matrices > Determinant
a b -85 —-55 -37
[ c d ] Determinant: ad — be —35 97 50 | Determinant: —121529
79 56 49
alg alp a3 _ _
4\ s ars | Determinant: a1,1a22a33 — 1,142,303 — a2,141 2033
' ’ +aza13a32 +az1a12a23 —az 1a1 3422
asl dzpz d4ass
You can compute the determinant by enclosing the matrix in ver-
tical expanding brackets or by using the function det, then choosing
Compute > Evaluate.
Tip
Compute > Evaluate Create vertical brackets by selecting the matrix
_ and typing Ctrl+\ or by choosing Insert >
35 501 5665 det| ¢ P | = aa—be . o
79 49 c d Math Objects > Brackets and clicking| | |.
-85 =55 82
det { _;g ig ] = —5665 —35 97 —17 | =223857
42 33 —65

To obtain the function det, type the letters def in mathematics,
and they will turn gray when the ¢ is typed. You can also choose Insert
> Math Objects > Math Names and select det from a list.
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Adjugate

The adjugate or classical adjoint of a matrix A is the transpose of
the matrix of cofactors of A. The i, j cofactor A;; of A is the scalar
(—=1)"*/ detA (i| j), where A (i j) denotes the matrix that you obtain
from A by removing the ith row and jth column.

Compute > Matrices > Adjugate

a b , d —b
< e d )Ad}ugatc. ( e a )

a b ¢ ej—fh —bj+ch bf—ce

d e f |Adjugate: | —dj+fg aj—cg —af+cd

g h dh—eg —ah+bg ae—bd
9 6 7 =5 3384 469 —3183 7130
4 -8 -3 92 Adi ) 3329 301 —3200 —8153

3 -6 7 6 |V 4068 —261 6896 —2976
5 =5 0 -1 275 840 85 —1116

The product of a matrix with its adjugate is diagonal, with the en-
tries on the diagonal equal to the determinant of the matrix.

a b d —b ad — bc 0
c d —c a 0 ad — bc

This relationship yields a well-known formula for the inverse of an in-

vertible matrix A:

1
1= adjugate A

- detA
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Matrix Operators

Compute > Evaluate

9 6 7 -5
4 -8 -3 9
det| “ TS | =783

5 =5 0 -1

9 6 7 5| (3384 469 3183 7130

1 4 -8 -3 92| (3329 301 —3200 —8153
TIBT -3 -6 7 6 4068 —261 6896 —2976
5 =5 0 -—1]1]275 840 85 —1116

[N ool
(=N e e
o = O O
-0 O O

Permanent

The permanent of an 7 X 1 matrix (;;) is the sum of certain prod-
ucts of the entries. Specifically,

permanent(d;j) = Y d16(1)420(2)** no(n)
o

where G ranges over all the permutations of {1,2,...,n}. This oper-
ation applies to square matrices only.

To compute the permanent of a matrix

1. Place the insert point in the matrix.

2. Choose Compute > Matrices > Permanent.

Compute > Matrices > Permanent

a Permanent: ad + bc

b
d
a aiz aij

a1 azp a3 | Permanent:

as| azp a3

ajaxpa33+ay1a23a32+as 1412433+ az1a13a32 +az 1a1 2023+ a3 1413422

Maximum and Minimum Matrix Entries

The functions max and min applied to a matrix with integer en-
tries will return the entry with maximum or minimum value.
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Compute > Evaluate
-85 —-55 -37 -35 097
max | 50 79 56 49 63 =97
57 =59 45 -8 -93
92 43 —-62 77 66
min 54 -5 99 —-61 -50 | 9]
—12 —-18 31 26 —-62 |
1 —47 -91 —-47 -61
Matrix Norms
Choosing Compute > Matrices > Norm gives the Euclidean norm
of a vector or matrix. The Euclidean norm, or 2-norm, of a vector is
the Euclidean length of the vector: Norm notation
Type Ctrl+| (CtrI+Shift+\) to enter the norm
a brackets || |
Z = Va2 +b? IZ = Va?+b*+c?+d?
d
The Euclidean norm, or 2-norm, of a matrix A with real or complex
entries is its largest singular value—the number defined by
A
4] = max 1]
xA0 |||
This can also be computed as max { var } where the E;’s range over
the eigenvalues of the matrix AAH,
Compute > Matrices > Norm
) 3 2 —1 0
Norm: 9.3268 —1 2 —1 | Norm: 3.4142
5 7
0 -1 2
3 1 1
< 4 >Norm: 5 2 1 | Norm: %\/ 73+ %
1 1
2+3i 5 3+4i
< 6 740 )Norm. 9.9378 < 15 )Norm. \/5>1
312
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Matrix Operators

The Euclidean norm of a matrix can also be obtained with double
brackets.

To put norm symbols around a matrix
1. Select the matrix by using the mouse.

2. Choose Insert > Math Objects > Brackets, and select the norm
symbols.

3. Choose OK.

Compute > Evaluate
5 7

0.2 03

H 05 o || =093268 H IR H:14.454
243 5| _

R e

The 1-norm of a matrix is the maximum among the sums of the
absolute values of the terms in a column:

)

1Al = max (
<isn\ i

To generate the 1-norm

e Type 1 as a subscript on the norm brackets.

Compute > Evaluate

a b 0.2234 03158
e d l—max(|a|+|c|,|b|+|d|) H 05624 07111 1—1.0269
s 7| s+3 7 ||
H 13 6,7 "® H _13 6-si || T VD

The oo-norm of a matrix is the maximum among the sums of the
absolute values of the terms in a row:

n
4]l = max (,; }aij})
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To generate the co-norm
e Enter oo as a subscript on the norm brackets.
Compute > Evaluate
a b 0.2234 0.3158
¢ d|. =max (|a| + |b|,|c|+|d|) H —0.5604 07111 Hm =1.2735
5 7 _ 5+3i 7 _
H ~13 6 Hw_w H 13 6-5i Hw_BJ”“
The Hilbert-Schmidt norm (or Frobenius norm) ||A|| » of a matrix
A is the square root of the sums of the squares of the terms of the matrix
A. This is also sometimes called the Euclidean norm, although it is not
the same as the 2-norm (see page 312).
1
2
2
lAlr=1 Y ||
1<j<n
1<i<n
Compute > Evaluate
5+43i 7 a b 2 2 2 2
H T3 6osi| = V3D ; F—\/(|a| b +[cf + 1)
5 7 — 0.2234 0.3158
H —-13 6 F_3 31 H —-0.5624 0.7111 F_0'98569
Spectral Radius
The spectral radius of a real symmetric matrix is the largest of the
absolute values of the cigenvalues of the matrix.
Compute > Matrices > Spectral Radius
5 -3 1 s 4
-3 0 5 | Spectral Radius: 7.7627 Spectral Radius: 8.123 1
-4 3.0
1.0 5 4
314
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Matrix Operators

Compute > Matrices > Eigenvalues

5 =3 1
-3 0 5 | Eigenvalues: 7.7627,5.6174,—4.3801
1.0 5 4

[ _54 3_3 }Eigcnvalucs: 8.1231,-0.12311

Condition Number

The condition number of an invertible matrix A is the product of
the 2-norm of A and the 2-norm of A~!. This number measures the
sensitivity of some solutions of lincar equations Ax = b to perturba-
tions in the entries of A and b. The matrix with condition number 1
is perfectly conditioned.

Compute > Matrices > Condition Number

[ (1) (1) },condition number: 1.0

, condition number: 15514.0

Bl W= = =
N— A= W= N|—
Q= L= A= W=
Ni— QN—= D= A=

Compute > Matrices > Condition Number

[18 7

3 4 } Condition Number: 4.0315

[ 1 1.0(;001 }Condition Number: 4.0 x 107

These final two matrices are extremely ill-conditioned. Small changes
in some entries of A or b may result in large changes in the solution to
linear equations of the form Ax = b in these two cascs.
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Exponential Functions

A natural way to define e is to imitate the power series for e

1 1 1
e = 1+x+§x2+6x3+ﬂx4+---
1 1 1
M 2 3 4
= M4 M oM Mt
e M+ oM M M
and more generally,
(=) k
m _ g (M)
M M

To evaluate the expression ¢ (or exp (M)) for a matrix M

e Leave the insert point in the expression e and choose Com-
pute > Evaluate.

Compute > Definitions > New Definition

12 12
los] o=l ]
010 130
c=]001 p=|010
00 0 00 1

Compute > Evaluate

3 t 3t t
o e e —e A e e —e
S CR B PR
e —e+té’ e —e+e¥
)= (o 5T)  ewa=|§ A
Compute > Evaluate
1 ¢ 3412
2 _n,2 4 2
eA+B:[eO 2e” 2 ] DD =10 1 ¢
¢ 00 I
1t 2(3+0)
2 2 3 B t 2
eAeB—[eO 2 eege 6)} PP =10 1 1(341)-3
0 0 1
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Note that one of the properties of exponents that holds for real
numbers fails for matrices. The equality ATB = A8 requires that
AB = BA, and this property fails to hold for the matrices in the exam-
ple. However, exponentiation preserves the property of similarity, as

—1
demonstrated by De/ D! = ¢P1CP

Polynomials and Vectors Associated with a Matrix

A square matrix has a characteristic and a minimal (minimum)
polynomial. The characteristic polynomial determines eigenvalues and
eigenvectors of the matrix. Eigenvalues are an important feature of any
dynamical system. One important application is to the solution of a
system of ordinary differential equations.

Characteristic Polynomial and Minimal Polynomial

The characteristic polynomial of a square matrix A is the determi-
nant of the characteristic matrix x/ — A.

Compute > Matrices > Characteristic Polynomial

410
0 4
0 0

Compute > Evaluate

100 410 —4+X -1
xX{0o10|-l040]= 0  —44X
00 1 00 4 0 0

—4+X -1 0
det 0 —4+X 0 = (x—4)?
0 0  —4+X

The minimal polynomial of a square matrix A is the monic polyno-
mial p(x) of smallest degree such that p(A) = 0. This is often called
the minimum polynomial of A.

By the Cayley-Hamilton theorem, f(A) = 0if f(x) is the charac-
teristic polynomial of A. The minimal polynomial of A is a factor of
the characteristic polynomial of A.

Polynomials and Vectors Associated with a Matrix

0 | Characteristic Polynomial: X 3_12X24+48X — 64
4

0
0
44X
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Compute > Matrices > Minimal Polynomial

4 1 0
0 4 0 |Minimal Polynomial: X2-8X+16
0 0 4

Compute > Factor
X2 —8X +16 = (X —4)?

Example This example illustrates the Cayley-Hamilton theorem.

4 10
Define p(X) = X>—8X +16X%andA=| 0 4 0
0 0 4

Choose Compute > Evaluate to get

pA)=

S O O
o O O
S O O

The minimal and characteristic polynomial operations have to re-
turn a variable for the polynomial. In the preceding examples, they
returned X. However, the variable used depends on the matrix entries
and you do not need to avoid X in the matrix. You will be asked to
supply a name for the polynomial variable.

Compute > Matrices > Minimal Polynomial
(Polynomial Variable 1)

5
Eigenvalues and Eigenvectors

Given a matrix A, the matrix commands Eigenvectors and Eigen-
values on the Matrices submenu find scalars ¢ and nonzero vectors v
for which Av = cv. If there is a floating-point number in the matrix,
the resultis a numerical solution. Otherwise, the resultis an exact sym-
bolic solution or no solution. When a solution is not found, change
at least one entry to floating point to obtain a numeric solution.

( 3X ;C )Minimal Polynomial: A+ (=3X —y)A+3Xy—5x

These scalars and vectors are sometimes called characteristic values
and characteristicvectors. The eigenvalues, or characteristic values, are
roots of the characteristic polynomial.
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Polynomials and Vectors Associated with a Matrix

Compute > Matrices > Eigenvalues

cosa —sino
sinx cosa

> Eigenvalues: cos @ + (isino) ,cos @ — (isin )

This matrix has characteristic polynomial X 2_2Xcoso+ 1. Re-
placing X by the eigenvalue cos ot +isin & and applying Simplify gives

(cosa +isina)* —2(cos o +isina)cosa+1= 0

demonstrating that cigenvalues are roots of the characteristic polyno-
mial. Note the different results obtained using integer versus floating-
point entries.

Compute > Matrices > Eigenvalues

1 2
<3 4 >Eigcnvalues:é\/§—|—g,g_; 33

< ]:'),0 i >Eigenvalues: 5.3723,-0.37228

When you choose Compute > Matrices > Eigenvectors, the sys-
tem returns eigenvectors paired with the corresponding eigenvalues.
The eigenvectors are grouped by eigenvalues, making the multiplicity
for each eigenvalue apparent. Symbolic solutions will be returned in
some cases. When a symbolic solution is not found, change at least
one entry to floating point to obtain a numeric solution.

Compute > Matrices > Eigenvectors

49 —-69 99 0.93733
23 —81 20 Eigenvectors: 0.18622 < 66.398
48 1.0 -87 0.29451
0.1599 0.54043
0.88794 + —67.144, 0.11389 < —118.25
0.43127 —0.83364
5 —6 -6 1 2 2

[u—

—1 4 2 |Eigenvectors: — 1,
3 -6 —4 1 0 1

W=
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In the preceding example, 1 is an eigenvalue occurring with mul-
tiplicity 1, and 2 is an cigenvalue occurring with multiplicity 2. The
defining property Av = cv is illustrated in the following example:

Compute > Evaluate

5 -6 —6 2 4 2
—1 4 2 1 = 2 =2 1
3 6 —4 0 0 0
5 -6 -6 2 4 2
1 4 2 0o l=(o0|=2(o0
3 -6 —4 1 2 1
5 6 —6 -3 -3
1 4 2 1] = 1
3 6 —4 -3 -3
Positive Definite Matrices

A square matrix is called Hermitian if it is equal to its conjugate
transpose. A Hermitian matrix with real entries is the same as a sym-
metric matrix.

A Hermitian matrix A is positive definite if all the eigenvalues of A
are positive. Otherwise, the computational engine MuPAD classifies
A as indefinite.

An indefinite Hermitian matrix A is sometimes classified as posi-
tive semidefinite if all the eigenvalues of A are nonnegative; as negative
definite if all the eigenvalues are negative; and as negative semidefinite
if all the eigenvalues are nonpositive.

Compute > Matrices > Definiteness Tests

[ _% _é } is positive definite [ _} _i ] is indefinite
20— . -2 0. .
[i | } is positive definite [ P ] is indefinite
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Compute > Matrices > Eigenvalues

[ 2 —1

= ) } Eigenvalues: 3,1

bt Eigenvalues: 0,2
| -1 1

—il. 3 1. /z 1 3
o }E1gcnvalues: 2—2\6,5\6—1—5

i .
P }Elgenvalues. -3,—1

Vector Spaces Associated with a Matrix

Four vector spaces are naturally associated with an m X n matrix
A: the row space, the column space, and the left and right nullspaces.

A basis for a vector space is a linearly independent set of vectors
that spans the space. Commands on the Matrices submenu find bases
for these vector spaces. These bases are not unique and different meth-
ods may compute different bases.

The Row Space

The row space of a matrix A is the vector space spanned by the row
vectors of A. Any choice of row basis has the same number of vectors
and spans the same vector space. However, there is no natural choice
for the vectors that make up a row basis.

You can find other bases for the row space by choosing Compute
> Matrices > Reduced Row Echelon Form, or by choosing Compute
> Matrices > Fraction-Free Gaussian Elimination and then taking the
nonzero rows from the result.

To find a basis for the row space

1. Leave the insert point in the matrix.

2. Choose Compute > Matrices > Row Basis.

Vector Spaces Associated with a Matrix
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Compute > Matrices > Row Basis

[ _; _12 ]RowBasis: [ -1 3 ]
-85 —55 -—-37 -35
97 50 79 56 .
49 63 57 _59 Row Basis:
-36 8 20 —94

[[ -85 —-55 -37 -35 ],[ 97 50 79 56 ],[ 49 63 57 -59 H
Compute > Matrices > Reduced Row Echelon Form
1 0 0 133337
—85 —55 —37 -35 s
97 50 79 56 01 0 —xm
49 63 57 59 Reduced Row Echelon Form: 0 0 1 o
—36 8 20 —94 9752
0 0 O 0
The nonzero rows in the preceding matrix give the following basis
for the row space:
[1 00 & J.[01 0 5] [00 1 —55]
Compute > Matrices > Fraction Free Gaussian Elimination
-85 —-55 —-37 -35
Z; 2(3) ;3 728 Fraction Free Gaussian Elimination:
-36 8 20 —94
-85 55 —37 -35
0 1085 —-3126 —1365
0 0 136528 —43190
0 0 0 0
The nonzero rows in the preceding matrix give the following basis
for the row space:
[—85 -55 =37 —35],[0 1085 —3126 —1365] , [0 0 136528 —43190}

322



EF “Compute60” — 2011/12/20 — 14:27 — page 323 — #333

Vector Spaces Associated with a Matrix

Compute > Matrices > Gaussian Elimination

[ 49 63 57 —59 ]
-85 —55 —37 -35 0 380 3032 6730
97 S0 79 56 | gl Tw 49
49 63 57 759 aussian imination: 0 0 % _63187
— 20 —94
36 8 0 -9 0o 0 o 0

The nonzero rows in the preceding matrix give the following basis
for the row space:

-85 -s5 -37 -35),[0 % % R0 0 N 5

The Column Space

The column space of a matrix A is the vector space spanned by the
columns of A.

To find a basis for the column space

1. Leave the insert point in the matrix.

2. Choose Compute > Matrices > Column Basis.

Compute > Matrices > Column Basis

-85 =55 37 =35 -85 —55 -37
97 50 79 56 Column Basis: 97 50 79
49 63 57 =59 ' 49 [ | 63 || 57

-36 8 20 94 -36 8 20

You can also take the transpose of A and apply to the transpose the
various other methods demonstrated in the previous section, because
the column space of A is the same as the row space of AT

The Left and Right Nullspaces

The (right) nullspace is the vector space consisting of all n x 1 vec-
tors X satisfying AX = 0. You find a basis for the nullspace by choos-
ing Compute > Matrices > Nullspace Basis.
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Compute > Matrices > Nullspace Basis

133337
85 —55 —37 —35 7§§jg4
97 50 L 56 Nullspace Basis: 34132
49 63 57 —-59 P ' 3085
~36 8 20 —94 97152

The left nullspace is the vector space consisting of all 1 X m vectors
Y satisfying YA = 0. You find a basis for the left nullspace by first
taking the transpose of A and then choosing Compute > Matrices >
Nullspace Basis.

Compute > Evaluate

—85 —55 —37 -351" -85 97 49 36
97 50 79 56 | =55 50 63 8
49 63 57 59 S| =37 79 57 20

-36 8 20 94 -35 56 =59 -9%4

Compute > Matrices > Nullspace Basis
-85 97 49 -36 -1

—55 50 63 8 . 0
—-37 79 57 20 Nullspace Basis: 1
-35 56 —-59 -94 1

To check that this vector is in the left nullspace, take the transpose
of the vector and check the product.

Compute > Evaluate

1777 -85 —55 —37 —35
0 97 50 79 56
1 9 63 57 _50|= L1000 0]
1 36 8 20 —94

Orthogonal Matrices

An orthogonal matrix is a real matrix for which the inner product
of any two different columns is zero and the inner product of any col-
umn with itselfis one. The matrix is said to have orthonormal columns.
Such a matrix necessarily has orthonormal rows as well.
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Vector Spaces Associated with a Matrix
Compute > Matrices > Orthogonality Test

0 0 1 0 1
1 0 O | orthogonal? TRUE < > orthogonal? FALSE
01 0 b

The QR Factorization and Orthonormal Bases

Any real matrix A with at least as many rows as columns can be
factored as a product OR, where Q is an orthogonal matrix—that is,
the columns of Q are orthonormal (the inner product of any two dif-
ferent columns is 0, and the inner product of any column with itself
is 1) and R is upper-right triangular with the same rank as A. If the
original matrix A is square, then so is R. If A is a square matrix with
linearly independent columns, R is invertible.

To obtain the QR factorization
1. Leave the insert point in a matrix.

2. Choose Compute > Matrices > QR Decomposition.
Compute > Matrices > QR Decomposition

30 - 5 4
< 4 5 >QRDecomposmon.< ) ( 0 3 >

4 2 — V1T —5V2V1
1 -1 QR Decomposition: 7V 17 — % \ﬁ\/ 1
0 2 0 SV2V17

b L
nw U

\1‘_‘
~lQ
Q=W NN —
NIV

ooﬁ
)
Qo
N

]
3 3

When A is a square matrix with linearly independent columns, the
two matrices Q and A = QR have the same column spaces.

Example The preceding product comes from the following linear

Jo( )
J=( )

combinations.

7 N
W
S~—
I
A/
(O IFNRO I[N

[V[SSRVIFN

and

(VN [SRVTFN

RS
wm O
N————
Il
N
VR
wlH W
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Observe that the columns of A are linear combinations of the columns
of Q. Then, since both column spaces have dimension 2 and one con-
tains the other, it follows that they must be the same space.

This conversion of the columns of A into the orthonormal columns
of Q is referred to as the Gram—Schmidt orthogonalization process.
In general, since R is upper-right triangular, the subspace spanned by
the first k columns of the matrix A = QR is the same as the subspace
spanned by the first k columns of the matrix Q.

Rank and Dimension

The rank of a matrix is the dimension of the column space. It is
the same as the dimension of the row space or the number of nonzero
singular values.

Compute > Matrices > Rank

[ -8 -5 7 =2
7 5 9 5
1 0 —-16 =3
8 5 -7 2

Rank: 2

Compute > Matrices > Row Basis

[ -8 -5 7 -2
7 5 9 5
1 0 —16 -3
8 5 -7 2

Row Basis: [[ -8 -5 7 —2],[7 59 5]]

Compute > Matrices > Column Basis

[ -8 -5 7 -2 ] —
7 5 9 5
1 0 —-16 -3
8 5 -7 2

Normal Forms of Matrices

Column Basis:

oo — ] o0
wn O W W

Any equivalence relation on a set of matrices partitions the set of
matrices into a collection of equivalence classes. A normal form, or
canonical form, for a matrix is a choice of another matrix that displays
certain invariants for that equivalence class, usually together with an
algorithm for constructing the form from the given matrix.

Two such equivalence relations are similarity and equivalence. Two
n X n matrices A and B are similar if there is an invertible n X n matrix
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C such that B = C'AC. Two m x n matrices A and B are equivalent
if one can be obtained from the other by a sequence of elementary row
and column operations. In other words, B = QAP for some invertible
matrices Q and P.

When the context is matrices over the integers, “invertible” should
be interpreted as “unimodular;” that is, both the matrix and its inverse
have integer entries—in particular, a unimodular matrix has determi-
nant 1. When the context is matrices over the ring F [x] for a field F,
“invertible” means both the matrix and its inverse have entries in F [x].

Smith Normal Form

Every matrix A over a principal ideal domain (PID) is equivalent
to a diagonal matrix of the form

diag(la~~~,1aP1,P2,---aPkaOa~~~,0)

where for each i, p; is a factor of pj 1. This matrix, which is uniquely
determined by A, is called the Smith normal form of A. The diagonal
entries of the Smith normal form of a matrix A are the invariant factors
of A. The Smith normal form of A can be obtained as a matrix S =
QAP where Q and P are invertible over the PID.

Integer Matrices

The Smith normal form of an integer matrix A is a matrix S = QAP
where Q and P are unimodular—nonsingular matrices with integer
entries whose inverses also have integer entries. In particular, Q and P
have determinant 1. You can find the Smith normal form of a square
integer matrix.

Compute > Matrices > Smith Normal Form

2 9 5 1 0 0
3 4 3 Smith Normal Form: 01 0
4 1 -1 0 0 56

The following product illustrates the equivalence relation. The
two new matrices that occur are unimodular.

2 9 5 2 9 -5 1 0 0 1 0
34 3 = 3 4 -3 01 O 0 1
4 1 -1 4 1 -2 0 0 56 00

21
2
1

3

Normal Forms of Matrices
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Matrices over F' [x]

It is a remarkable fact that two 7 X n matrices with entries in a field
F aressimilar if and only if their characteristic matrices x/ — A and x/ —
B are equivalent. These characteristic matrices are matrices over the
principal ideal domain F' [x], and two square matrices with polynomial
entries are equivalent if and only if they have the same Smith normal
form. The entries can be any polynomials with rational or symbolic
coefficients.

Compute > Matrices > Smith Normal Form
x> —=2i (x3 —l—xZ) +2x%
0 V2i (x3 —l—xz)

The Smith normal form can be used to test whether two matrices

2
) Smith Normal Form: < Y )
0 x

are similar. The field in question can be the rationals or any finite field
extension of the rationals. We illustrate this with an example.

Example Take two similar matrices: A = [ é i } and
| 19 ) 1ol [ 5 -5
| -3 4 3 4 -3 4| | _24 9
31 31

These matrices have the following characteristic matrices:
x 0 1 2 x—1 =2
XI_A_[O x}_{3 4]_{—3 x—4}

61 319 61 319
x 0 31 T3 =31 31
xI—B= — =
0 x 24 94 24 94
31

31

with Smith normal forms both equal to

1 0
0 x2—5x—2

See page 331 for another example relating Smith normal forms
and characteristic polynomials.

Hermite Normal Form

Given a matrix A with entries in a PID, the Hermite normal form
of A is a row echelon matrix H = QA where Q is invertible in the
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ring of matrices over the PID. The first nonzero entry in each row is
from a prespecified set of nonassociates, and the entries above that first
nonzero entry are from a prespecified set of representatives of the ring
modulo that entry. If the PID is the ring of integers, the first nonzero
entry in each row is a positive integer 7;;, and the entries above that
first nonzero entry are often chosen from the set {0, 1,2,...,n;;—1 }

Compute > Matrices > Hermite Normal Form

( 1 33 gg ) Hermite Normal Form: ( (1) i g )

2 5 ) 2 5
[ 45 } Hermite Normal Form: { 0 15 }

Companion Matrix and Rational Canonical Form

The companion matrix of a monic polynomial ag + a1 X +--- +
ap 1 X"V X" of degree n is the n X n matrix with a subdiagonal of
ones, final column

T
[ —ap —ai - —dp-1 J
and other entries zero.

Compute > Polynomials > Companion Matrix

00 0 -1
1 00 2
4 2 _ ionh:
x" 4+ 3x° —2x+ 1, Companion: 01 0 -3
00 1 0
(System Variable x)
I 0 —c
x> +ax? +bx +c, Companion: | 1 0 —b
1 —a

Note that the first of the following matrices is the companion ma-
trix of its own characteristic and minimal polynomials.

Normal Forms of Matrices

329



“Compute60” — 2011/12/20 — 14:27 — page 330 — #340

Chapter 8 | Matrix Algebra

Compute > Matrices > Minimal Polynomial
0 00 0 —a

1 00 0 —-b
0 1 0 O —c |MinimalPolynomial: X4 eX*+dX3+cX?+bX +a
0 01 0 —d
0 0 01 —e

A rational canonical form, sometimes called a Frobenius form, is a
block diagonal matrix with each block the companion matrix of its
own minimal and characteristic polynomials. Each of the minimal
polynomials of these blocks is a factor of the characteristic polynomial
of the original matrix. The polynomials that determine the blocks of
the rational canonical form sequentially divide one another.

Choosing Compute > Matrices > Rational Canonical Form pro-
duces a factorization of a square matrix as PBP~ I where B is in ratio-
nal canonical form. The matrix B will have entries from the smallest
subring of the complex numbers containing the entries of the origi-
nal matrix. The invertible matrices will have entries from the smallest
subfield of the complex numbers containing the entries of the origi-
nal matrix. For example, if the matrix has integer entries, the rational
canonical form will also, and the invertible matrices will have rational
entries.

Compute > Matrices > Rational Canonical Form

1 -2

1 2 3 1 1 30 00 O 17

4 5 6 | Rational Canonical Form: | 0 4 66 1 0 18 0 - 9
7 8 9 0 7 102 0 1 15 7

54

Notice that the rational canonical form in the preceding exam-
ple is the companion matrix of its minimal polynomial X3 —15x2—
18X. Now look at the companion matrix of this same matrix.

Compute > Evaluate

1 00 1 2 3 x—1 -2 =3
x[0O 1 0O|—-|14 5 6|= -4 x-5 -6
0 0 1 7 8 9 -7 -8 x-9
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—®
Normal Forms of Matrices
Compute > Matrices > Smith Normal Form
x—1 -2 =3 1 0 0
—4 x—5 —6 |SmithNormal Form: | 0 1 0
-7 -8 x-9 0 0 —18x—15x"+x°
Notice that the polynomial occurring in the preceding Smith not-
mal form is the same polynomial as occurred earlier.
Compute > Matrices > Rational Canonical Form
5 -6 —6 39 2 0 -2 0 1 -1 =2
—1 4 2 | Rational Canonical Form: [ 0 —1 — 1 3 0 0O -1 0
3 -6 —4 1 5 1 0 0 2 -1 6 3
There are two blocks in the preceding rational canonical form:
1. The companion matrix [ ) ;2 } of X2—3X+2=(X—1)(X-2)
2. The companion matrix [2] of X — 2
Compute > Matrices > Characteristic Polynomial, Compute > Factor
5 -6 —6
-1 4 2|,
3 -6 —4
characteristic polynomial: X3 —5X% +8X —4 = (X —1)(X — 2)?
Compute > Matrices > Minimal Polynomial, Compute > Factor
5 -6 —6
-1 4 2, Note
3 -6 —4 The Smith normal form of the characteristic
minimal polynomial: X2_3X+2 = (X-1)(X-2) matrix of A displays the factors of the
o ‘ ' o characteristic polynomial of A that determine
The characteristic matrix xI — A of the preceding matrix A is the rational canonical form of A.
1 00 5 -6 -6 x—5 6 6
x{fo 1 0f—-| -1 4 2= 1 x—4 =2
0 01 3 -6 —4 -3 6 x+4
Compute > Matrices > Smith Normal Form
5 -6 —6 1 00
—1 4 2 | Smith Normal Form: | 0 2 0
3 -6 —4 0 0 2
331
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The previous examples illustrate a relationship among the Smith
normal form, the characteristic matrix, and the rational canonical form
of a matrix.

Jordan Normal Form

Choosing Compute > Matrices > Jordan Normal Form produces
a factorization of a square matrix as PJP~!, where J is in Jordan nor-
mal form. This form is a block diagonal matrix with each block an ele-
mentary Jordan matrix. More specifically, the Jordan normal form of
an n X n matrix A with k linearly independent eigenvectors is a matrix
of the form

I, (A1) 0 0

0 Jny (L) - 0

J(4) = : : . :
0 0 o Jy (M)

where ny +ny + - - - + ng = n, and each diagonal block J,,, (;) is an
n; X n; elementary Jordan matrix of the form

Ai 1 - 0 0
0 A -+ 0 0
T (i) =0
0 0 - A 1
0 0 - 0 A

The matrix J (A) is similar to A and its form is as nearly diagonal as
possible among all matrices of the form P~AP.

Compute > Matrices > Jordan Normal Form

2 -1 0 : -4 2-v2 0 0 1
-1 2 —1|=|L2 -Iv2 o 0 V242 0 1
1 1 1
0 -1 2 ! ! ! 0 0o 2 —1
Thus, the Jordan normal form of
2 -1 0
A= -1 2 -1
0 -1 2
is
2 -1 0 2 0 0
J -1 2 -1 =0 V242 0
0 -1 2 0 0 —V2+2
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Normal Forms of Matrices

In this case, J(A) is diagonal, so each J,,, (1;) isa 1 x 1 matrix. The

matrix A has the characteristic and minimal polynomial
—44+10X —6X>+ X7 = (X —-2) (X —2-V2) (X -2+ 2)

whose roots {2, 2+ \ﬁ, 22 } are the diagonal entries of the Jor-

dan normal form.

Compute > Matrices > Jordan Normal Form

20 0 O 10 0 O 2 0 0 0 1 0 0 O
12 0 0 |01 0 O 1 2 00 01 0 O
00 2 Ol |ooO —% 0 00 20 0 0 -3 0
00 -3 2 00 0 1 001 2 00 0 1
Thus, the Jordan normal form is
20 0 O 2 0 0 0
dlr2 0 0] _|1200
00 2 0 10 0 20
00 -3 2 0012
. 2 0 .
In this case, J,, (A1) = Jp, (A2) = { | 2 ], the companion
matrix of the minimal polynomial of
20 0 O
1 2 0 O
A= 00 2 0
0 0 -3 2
The characteristic polynomial of the matrix A is (X — 2)* with re-
peated roots {2, 2, 2, 2}, and the minimal polynomial of A is X2 —
4X +4= (X -2)%
Compute > Matrices > Jordan Normal Form
2 0 0 O 1 0 0O 2 0 00 1 0 0O
0200 |(01O0O0 02 00 01 00
00 20| (0010 00 2 0 001 0
00 0 2 0 0 0 1 0 0 0 2 0 0 0 1

The preceding matrix is already in Jordan normal form. Its mini-
mal polynomial is X — 2 and its characteristic polynomial is (X — 2)4,
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the same characteristic polynomial as the previous one, but a different
minimal polynomial and a different Jordan normal form.

Compute > Matrices > Jordan Normal Form
1 27 _ ' ' 0 % - %i 1
-1 =1 )| i-4i t4di i 3+5i 1

In this case, J,, (A1) = [i] and Jp,, (A2) = [—i] are 1 x 1 matrices.

N
|
<
| I
| — |
o |
<.

The matrix I 2 ] has the characteristic and minimal polyno-

-1 -1
mial x* + 1 = (x+1i) (x —§).

Matrix Decompositions

There are various ways to decompose a matrix into the product of
simpler matrices of special types. These decompositions are frequently
useful in numerical matrix calculations.

Singular Value Decomposition

Any m X n real matrix A can be factored into a product A = UDV,
with U and V real orthogonal m x m and n X n matrices, respectively,
and D a diagonal matrix with positive numbers in the first rank-A en-
tries on the main diagonal, and zeroes everywhere else. The entries on
the main diagonal of D are called the singular values of A. This factor-
ization A = UDV is called a singular value decomposition (SVD) of
A.

Compute > Matrices > Singular Values

5 =5 3
-3 0 5 |Singular Values: [10.053,4.6119,3.5588]
1.0 5 4

[ _53 *05 ;3 }SingularValues: [8.8882,3.7417|
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Matrix Decompositions

Compute > Matrices > Singular Value Decomposition

5 =5 3 0.72152  0.19119 0.66547
-3 0 5 |=1| —045504 -0.59348 0.66387
1 5 4 —0.52187 0.78181 0.34121

[ 10.053 0 0 0.44273 —0.61841 —0.64927
0 4.6119 0 0.76285 0.64032 —8.9706 x 1072
0 0 3.5588 0.47122 —0.45558 0.75525

These two outer matrices fail the orthogonality test because they
are numerical approximations only. You can check the inner products
of the columns to sce that they are approximately orthogonal.

Compute > Matrices > Singular Values

( ; 240 )Singular Values: [5.4650,0.36597]

Compute > Matrices > Singular Value Decomposition
1 2\ [0.40455 —0.91451) (5.4650 0 0.57605 0.81742
3 4) 1091451 0.40455 0 0.36597 ) \0.81742 —0.57605
PLU Decomposition

Any m X n real or complex matrix A can be factored into a prod-
uct A = PLU, with L and U lower and upper triangular m x m and
m X n matrices, respectively, with 1’s on the main diagonal of L, and
with P a permutation matrix. This factorization A = PLU is called
the PLU decomposition of A. The matrices P and L are invertible and
the matrix U is a row echelon form of A.

Compute > Matrices > PLU Decomposition

PLU Decomposition:

NSRS )
— O\ W

1
2
3

S O =
- o O
S = O

0
1.5 0.0013 1

[ 0.532  1.95

] PLU Decomposition:{ [ 10 0.0 ] [ 1.5 0.0013 ]

0.35467 1.0 0.0 1.9495

50 V2 . 10 1 0 5i V2
( 7 27t/3 )PLUDecomposmon.( 0 1 >( %i 1 )( 0 %ﬂ—}i\/ﬁ)

O =
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Note that the upper triangular matrix in the first line of the preced-
ing example is the same as that in the following example. In general,
the upper triangular matrix in the PLU decomposition is the echelon
form of the original matrix obtained by Gaussian elimination.

Compute > Matrices > Fraction Free Gaussian Elimination

1 2 3 1 2 3
2 4 6 |Fraction Free Gaussian Elimination: | 0 —4 -8
3 2 1 0 O 0
QR Decomposmon Keyboard Shortcuts

A real m x n matrix A with m > n can be factored as a product
OR, where Q is an orthogonal m x m matrix (the columns of Q are
orthonormal—that is, QQ7 is the m x m identity matrix) and R is o Press Ctrl+k and then press
upper-right triangular with the same rank as A. If the original matrix m, or
A is square, then so is R. If A has linearly independent columns, then
R is invertible. (See more examples on page 325.)

The QR decomposition is often used to solve the linear least squares
problem, and is the basis for a particular eigenvalue algorithm, called

To create a matrix with a keyboard shortcut

e Press Cerl+k and then press
Shift+m.

The first choice produces a matrix

the QR algorithm. ) )
QRalg with the same attributes as your
To obtain the QR factorization most recently created matrix. The
o With the insert point in a matrix, choose choose Compute > ¢..ond choice producesa2 x 2
Matrices > QR Decomposition. matrix.

Compute > Matrices > QR Decomposition

70 . L2 —L 1
( ? 1 ) QRDecomposmon:< N %2\@ > < .
/10

- N

0 —2 [ QR Decomposition: 0 V5

3 -1 =RV T -
Cholesky Decomposition

For a real square matrix that happens to be symmetric (A = AT)
and positive definite (all eigenvalues are positive), there is a particu-
larly efficient triangular decomposition, significantly faster than alter-

v

V14 V10 —
x/ﬁ 0
V14 0

\)

)

[STE TR
[STES IR

|

S

e
—

n|—

SIS
S
3_
AN )

[9%)

N
~—

\l\v—

=
P
N
E\—

native methods for solving linear equations.

Ann X n real symmetric positive-definite matrix A can be factored
into a product A = GG”, with G a real positive-definite lower trian-
gular n x n matrix. This factorization A = GG iscalled the Cholesky
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decomposition of A.

Compute > Matrices > Cholesky Decomposition

Exercises

I Thevectorsu =1 1 0 ]andv=[1 1 1]spana

plane in R3. Find the projection matrix P onto the plane, and
find a nonzero vector b that is projected to zero.

. For the matrix

20 0 O
1 2 0 O
00 2 0
0 0 -3 2

find the characteristic polynomial, minimal polynomial, eigen-
values, and eigenvectors. Discuss the relationships among these,
and explain the multiplicity of the eigenvalue.

. Which of the following statements are correct for the matrix

111 "
A= [ L 0 2 ] ? The set of all solutionsx = | x» | ofthe
X3
. 0.
equation Ax = E the column space of A; the row space

of A; a nullspace of A; a plane; a line; a point.

1

y
. Show that det b 1 = 0 is the equation of the line
d

o Q =

through the two points (a,b) and (c,d).

_ \ﬁ 0
Cholesky Decomposition:
| 1 —iV2 3V2V3
20 -1.0 .. 1.4142
_ 10 20 ] Cholesky Decomposmon.[ _070711 1.2247
1 1
1 14 1 0 0
% % % Cholesky Decomposition: % %\/§ 0
1 1 1 1 1 1
3 4 3 3 6\/§ %\6

I

1
0
0

1
2

A=

o SN\'—‘
W

2
1/2v3

1.4142
0

Exercises
—0.70711
1.2247
1
3
V3
1
V5
337
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S. Show that the 4 x 4 Vandermonde matrix has determinant

(x2 —x1) (x3 —x1) (x3 —x2) (X1 —xa) (X2 — Xa) (x4 — x3).

Solutions

338

1. The projection matrix P onto the plane in R3 spanned by the
vectorsu = [1,1,0]andv=[1, 1, 1] is the product P=A (ATA)i

where u and v are the columns of A.

—1
11 1 11771 1 1 177
P=|11 11 11 11| =
0 1 0 1 0 1 0 1

Note that Pw is a lincar combination of # and v for any vector
w = (x,,z) in R%, so P maps R® onto the plane spanned by u
and v.

AT

(@) SIS

1 1

202 O Tx X+ 3 X+
Loy = ety —(2—z) -
0 0 1 2 z 0

To find a nonzero vector b that is projected to zero, leave the in-
sertion point in the matrix P and choose Compute > Matrices
> Nullspace Basis.

1 1
3 20 —~
% % 0 | Nullspace Basis: 1
00 1 0
2 0 0 0
. The matrix (1) (2) g 8 has characteristic polynomial
0O 0 -3 2

(X - 2)4, minimal polynomial 4 —4X + X2 = (X — 2)2, and

Vandermonde Matrix
1 x x3 x
1 x 3 3
1 x3 x% xg
1 x4 xﬁ xi
(see page 287)

1

? 0

5 0

0 1

1

1

1
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Exercises

cigenvalues 2. To compute eigenvectors, first change at least one
entry to floating point.

[ 0.0 ] 0.0

0.0 1.0

0.0 +~ 2.0, 0 2.0
| 1.0 | | 0 |
[ 0.0 ] [ 0.0 ]

0.0 0.0

0.0 ~ 2.0, 0.0 2.0
| 0.0 | | 0.0 |

The minimal polynomial is a factor of the characteristic poly-
nomial. The eigenvalue 2 occurs with multiplicity 4 as a root of
the characteristic polynomial (X — 2)4. The cigenvalue 2 has
two linearly independent eigenvectors. Note that

20 0 0 0 0 0
1 2 0 0 0 B 0 _, 0
00 2 0 0 0 0
00 -3 2 1 2 | 1

[2 0 0 0] [O0] [0 [0
1 2 0 0 1 B 2 _, 1
00 2 0 0 0 0

(00 -3 2|0 ] | 0 | | 0 |

3. 'The solutions of this equation are in R?, and the column space
of A is a subset of R2, so these solutions cannot be the column
space of A. They do form the nullspace of A by the definition
of nullspace; consequently, this set is a subspace of R3. The

1
product of A with the first row of A is . 1 | =
1 0 2 )

, so the solution set is not the row

3 L 0
{ 3 },whlch is not 0

space of A. To determine the nature of this space, solve the sys-
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tem of equations by choosing Compute > Solve > Exact to get

P T 2T0) gousion: e
1 0 2 x| =\ | Solution: 1
X3 I

The subspace is the line that passes through the origin and the
point [ -2 11 ]

4. Solving the equation det = 0 for y gives the

o Q =
QU T <
.

xd —xb+ cb —ad

solution y = , which can be rewritten as
d—b cb—ad
= X +
c—a c—a

y . If ¢ # a, this is the equation of the line

through the two points (a,b) and (¢, d). If c = a, det

Q Q =

y
b 1 | =
d

xb —xd + ad — ab = 0 has the solution x = a, the equation of
the line through the points (a,b) and (a,d).

5. Choose Evaluate, then Factor to obtain

1 x; x% x%
1 x X2 X3
§ § = (x2 —x1) (x3 —x1) (x3 —x2) (x1 —x4) (x2 — x4) (x4 — x3)
1 x3 x5 x3
1 xy 2 x
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Vector Calculus

The calculus is the greatest aid we have to the application of physical truth in the broadest sense of the word. ~ William Fogg Osgood (1864—1943)

to points in space. It is concerned with differentiation and
integration of vector fields, primarily in 3-dimensional Eu-  Gradient, Divergence, Curl, and
clidean space. Related Operators

Vector calculus operations are of particular importance in solving
physical problems. They can be applied to problems such as finding Plots of Vector Fields and
the work done by a force field in moving an object along a curve or Gradients
finding the rate of fluid flow across a surface.

‘ Y cctor calculus is the calculus of functions that assign vectors Vectors

Scalar and Vector Potentials
Vectors

Matrix-Valued Operators

The term vector is used to indicate a quantity that has both mag-
nitude and direction. A vector is often represented by an arrow or a
directed line segment. The length of the arrow represents the magni-
tude of the vector and the arrow points in its direction. Two directed
line segments are considered equivalent if they have the same length
and point in the same direction. In other words, a vector v can be
thought of as a set of equivalent directed line segments.

A rwo-dimensional vector is an ordered pair @ = (aj,az) of real
numbers. A three-dimensionalvectorisan ordered triplea = (a;,az,a3)

Plots of Complex Functions

of real numbers. More generally, an n-dimensional vector is an ordered
n-tuplea = (aj,ay,...,a,) of real numbers. The numbersay,az, ..., a,
are called the components of a.
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Notation for Vectors

You can represent vectors in any of the following ways.

o n-tuples within parentheses or square brackets: (2,—1,0), (x1,x2,x3),
3,2, 1], [x1,%x2,%3]

olxnmatrices:[l 2 3},[5 -1 3 17 -8 2],
[xl Xy X3 X4]

1
e 1 X 1 matrices: 0 ,[35 },<x1>
1 —4 X2

This flexibility allows you to use the output of previous work as
input, without undue worry about the shape of the output. For pur-
poses of clear exposition, you will find it preferable to use consistent
notation for vectors. Calculations involving vectors
Although vectors may be represented in
various ways, the result of an operation on
vectors will be returned in matrix form.

To create a vector in matrix form
1. Choose Insert > Math Objects > Matrix.

2. Set the number of rows (or columns) to 1 and the number of
columns (or rows) to the dimension of the vector.

3. Type the values for the components in the input boxes.

4. Select the vector with the mouse and choose Insert > Math Ob-
jects > Brackets and click a left bracket to enclose the vector in
expanding brackets.

To create a vector in list form

1. Choose Insert > Math Objects > Bracketsand click aleft bracket.

2. With the insert point inside the expanding brackets, type the
vector components, separated by commas.

Plots of vectors in 2D and 3D

To plot the vectora =
1. Definea= (3 2 ).

2. Place the insert point in the expression xa.

3. Choose Compute > Plot 2D > Rectangular.
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4. Revise the plot. Change the Plot Interval to 0 < x < 1.

Or

=)

1. Place the insert point in the matrix < g ) >

2. Choose Compute > Plot 2D > Rectangular.

Compute > Plot 2D > Rectangular

(32)

20 + f + f
y
15T T
D
10T & T
051 T
0.0 - : - : -
0 1 2 3

Toplotthevectora=( 3 2 1)
l. Definea= (3 2 1).

2. Place the insert point in the expression xa.
3. Choose Compute > Plot 3D > Rectangular.

4. Revise the plot, changing the Interval to 0 <x < 1.
Or

1. Place the insert point in the matrix < 2 g (1) )

2. Choose Compute > Plot 3D > Rectangular.

.
Vectors
Plot of 2D vector
With Axes Type Boxed, the vector should
appear as the diagonal of a rectangle.
343
.
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Compute > Plot 3D Rectangular

0 00
3 21

y
2 1.0
10 =—"1 '
' (. 32 ) Plot of 3D vector
- With Axes Type Boxed, the vector should
Z 05 appear as the diagonal of a box. Rotate the
plot on your screen for better visualization.
0.0 7 T
3 2 1 0

Vector Sums and Scalar Multiplication

The sum of two vectors [X],X2, ..., Xz] and [y1, V2, ..., V| is defined

by
(X152, w0 Xn] V1, Y25 -5 Yn] = [X1 4+ 21,02 + 2,05 X + Y]
The product of a scalar a and a vector [x1,X2, ..., %,] is defined by

alx1,X2, ..., x| = [ax1,axz,...,axy]

To evaluate a vector sum

e Type the expression in mathematics mode and choose Compute
> Evaluate.

Compute > Evaluate
(x1,%2,%3) + V1, y2,33) = [ X14+y1 %2+y2 X343 |

(2,~-1,0)+(2,3,-5)=[4 2 -5]

Vector output
[1,2,3,4.3] —[3,-5.1,6,0] = [ —2 7.1 =3 4.3 } Although the vectors for the input can be in
any standard form, the output is always a
(6,—1+i)+(2-3i,3)=[ 8-3i 2+i | matrix.
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Compute > Evaluate
(5)+(5)-(5%%)
27

[x y]+[w z]=[wt+x y+z]

Compute > Plot 3D > Rectangular

00
2 1

E

U9

To evaluate the product of a scalar with a vector

e Type the expression in mathematics mode and choose Compute

> Evaluate.

Compute > Evaluate
a[xl Xy X3 ]:[axl ax) axs ]

6[2 3 -5]=[12 18 —30]

ivV3[2 —6i 5-3i |=[2iV3 6V3 (3+5i)V3 ]

Vectors

Vector sum
The vector sum a + b appears as the diagonal

of a parallelogram with edge vectors a and b.
Rotate the plot for better visualization.
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Dot Product

The dot product (or inner product) of two vectors (ay,az, ..
and (by, by, ...,b,) with real entries is defined by

'aan)

(ar,az,...,an) - (b1,by,...,by) = a1by +axby +--- +ayby,

and the inner product of two vectors with complex entries is defined

by

(ay,az,...,an) - (b1,b2,...,by) = a1b] +azbs + - - - +ayb;,

where b* = x — iy is the complex conjugate of b = x + iy. For real
numbers b, it is clear that b* = b, so these two definitions are consis-
tent. The dot product can also be obtained by matrix multiplication:

by
b3
an)-(b1,b2,....by)=[ a1 @ )

(a],az,..., ay ]

b*

n

To enter the dot used for the dot product

e Select - from the Binary Operations tab .

To compute a dot product
1. Type the expression.

2. With the insert point in the expression, choose Compute >
Evaluate.

Compute > Evaluate

(1,2 3).(3 2,1)=10

1,5-[1,1,1] =3x+4
3i)-(5,1—i)=8+7i

1420 —3i )< (11’)* )—8+7i

The standard default on variables returns complex solutions. You
can change this default with the function assume.

[3x
(1+21
(

346

Complex Conjugate

To use overbar notation for complex conjugate,
choose Tools > Preferences > Computation
> Input and check “Overbar accent means

conjugate.”
T *

1

by

b,
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Compute > Evaluate

(u,v,w) - (x,,2) = ux*+vy* +wz*
assume (u,real) =

assume (v, real) =

(

(
assume (w,real) = R

assume (x,real) = R

assume (y,real) = R

assume (z,real) =

(u,v,w) - (x,y,2) = ux+vy+wz

For the following examples of dot products with n = 3, define

1
a=[1 2 3],b= (1) ,e=1[3,2,1],d=(2,-1,0)

by placing the insert point in each equation and choosing Compute >
Definitions > New Definition.

Compute > Evaluate
a-c=10 a-b=-2 c-d=4

Cross Product

The cross product of three-dimensional vectorsa = (ay,a,a3) and

b = (b1,by,b3) is defined by
axb = (axb3 —a3bs,a3by — a\bz,a1by — azby)

To enter the cross used for the cross product

e Select x from the Binary Operations panel under .

To compute a cross product
e Place the insert point in the cross product and choose Compute
> Evaluate.

For the following examples, use the vectors a = [ 1 2 3 ],
1

b= 0 |,c=13,2,1],andd = (2,—1,0) defined in the previ-
-1

ous section.

Vectors

Note
Type assume, real, and complexin

mathematics mode, and they will turn upright

and gray.
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Compute > Evaluate
axb=[ -2 4 -2 axe=(—4 8 —4)

exd=(1 2 -7)

0.35 0.85 0.1781
—-0.73 | x 032 | = 1.2895
1.2 —0.77 0.7325

[1 =2 5]x[5 3 =5]=[-5 30 13 ]

An important geometric property of the cross product is that the
vector U X V is perpendicular to both u and v. In the following exam-
ple, defineu = [ 1 10 ],Vz [ 1 0 1 ],andWZUXV:
[ 1 -1 -1 } . Plot these three vectors and revise the plot (on the
Axes page, select Equal Scaling Along Each Axis).

Compute > Plot 3D Rectangular

0 00
1 0 1

000
1 10

Cross product
Rotate the plot on your screen to observe that
vector w is perpendicular to both 2 and v.

Standard Basis
Three-dimensional vectors are often written in terms of the stan-
dard basis:
i = (1,0,0)
j (0,1,0)
k = (0,0,1)

348



“Compute60” — 2011/12/20 — 14:27 — page 349 — #359

The cross product of the two vectors aji+azj+azk and byi+byj+
b3k can then be computed by using the determinant
i j k
ay ay az |=i(axbs—aszby)—j(a1bs —biaz)+k(ajby —azby)
b1 by bj

Compute > Evaluate

j k

1 2 3 |=-2i+4j—2k
1 0 —1
Triple Cross Product

Since the cross product of two vectors produces another vector,
it is possible to string cross products together. Use the same vectors
a, b, ¢, and d as before for these #riple vector products. Note that dif-
ferent choices of position for parentheses generally produce different
results. This demonstrates that the cross product is not an associative
operation.

The default order of operations for products is from left to right.

To compute a triple cross product
1. Enter the cross product with appropriate choices of parentheses

2. With the insert point in the expression, choose Compute >
Evaluate.

For the following examples, use the vectors a = [ 1 2 3 ],
1
b= 0 |.c=[3,2,1],andd = (2,—1,0) defined earlier.
-1

Compute > Evaluate

axbxe=[8 —4 —16 | (axb)xe=[8 —4 —16]

ax(bxe)=[16 4 -8 ] ax((bxe)xd)=[0 0 0]

(ax(bxec))xd=] -8 —16 —24]

To obtain intermediate results, select a subexpression that is sur-
rounded by parentheses and hold the Ctrl key down while evaluating,
This technique does an in-place computation, as illustrated in the fol-
lowing examples.

Vectors
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(Ctrl+Compute > Evaluate

2 2
ax(bxec)=ax| —4 ax | —4
2 2

(axb)xe=( -2 4 -2 )xc
Triple Scalar Product

A rtriple scalar product is the dot product of one vector with the
cross product of two vectors.

To compute a triple scalar product

1. Enter the triple scalar product with appropriate choices of paren-
theses.

2. With the insert point in the expression, choose Compute >
Evaluate.

(trl+Evaluate, Compute > Evaluate
(1,0,1)-((1,2,3) x (3,2,1)) = -8
((1,0,1) x (1,2,3))-(3,2,1) = —8
(1,0,1)-(1,2,3) x (3,2,1) = ( 12 8 4)
To find the volume of the parallelepiped spanned by the vectors A, B,and C

o Evaluate the absolute value of the triple scalar product A - (B x C).

To plot the parallelepiped spanned by the vectors A, B, and C
1. Define each of the vectors A, B, and C.

2. With the insert point in the expression sA + ¢B, choose Com-
pute > Plot 3D > Rectangular.

3. Revise the plotintervalsto0 < s <1land0 < < 1.

4. Selectand dragto the plot each of the expressions sA +¢C, sB+
tC,A+sB+1tC,sA+B-+1tC,and sA+tB+C.

Compute > Definitions > New Definition

A=[0,1,1] B=1[1,0,1] C=1,1,0]
Compute > Evaluate
|A-(BxC)| =2 |B-(CxA)|=2 |IC-(AxB)|=2
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Compute > Evaluate

=(16 4 -8)

(-2 4 —2)xe=(8 —4 —16)

Tip

When mixing cross products with scalar
products, use parentheses for clarity. As
always, careful and consistent use of
mathematical notation is in order. Whenever
in doubt, add an extra set of parentheses to
clarify an expression.

Caution

(1,0,1)-(1,2,3) x (3,2,1) isnot
interpreted as a triple scalar product, but as the
product of the scalar (1,0, 1) - (1,2,3) =
4 with the vector (3,2, 1).

Volume

The volume of the parallelepiped spanned by
three vectors A, B, and C'is equal to
|A-(BxC).

The volume of a parallelipiped does not
depend on the order in which the triple scalar
product is computed.
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Vectors

Compute > Plot 3D > Rectangular
SA+tB(0<s<1,0<s<1)
sA+1tC,sB+tC,A+sB+1tC,sA+B+tC,sA+tB+C

Tip
Any three-dimensional object can be rotated
on the screen to view the back side.

The triple product (ay,az2,a3) - [(b1,b2,b3) X (c1,¢2,¢3)] canalso

be interpreted as the determinant Volume of a parallelepiped
Itis clear from this equation that if all the
a ax a3 vertices of a parallelepiped have integer
by by b3 | = aibacz—aibscry—brasxc coordinates, then the volume is also an integer.
¢ €2 C3

+biazcy + crazbs — crazby

Vector Norms

You can compute vector norms ||v||, for vectors V.= (vi,...,vx)
and positive integers 7 and for oo, where

% 1/n
Vil = <Z|Vi|"> (Voo = max (Jvi[)
i=1

with entries v; cither real or complex, as illustrated by the following
examples.

To compute a vector norm
1. Select the vector, choose Insert > Math Objects > Brackets,
and choose the norm symbols. Choose OK. Norm symbol

Type Ctrl+| to enter the norm symbol || || .
2. Choose Insert > Subscript, and type a positive integer or the

symbol co.
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3. With the insert point in the vector, choose Compute > Evalu-
ate.
Compute > Evaluate
[(a,b,c)lly = la| +|b] + |c|
3 3 3
l(a,b,¢) |15 = i/ lal* + [b]> + |c]
||(717271)H5 = Vs 34
|(a,b,c,d)||., = max(|al,|b],|c],|d])
||[8,—10,2}

You can also obtain the 2-norm by choosing Compute > Matrices
> Norm.

oo = 10
(1))

Compute > Matrices > Norm
(a b c),2-notm: \/|a]* +[b]> +|c|?
[8,—10,2+i],2-norm: 13

Before doing the next set of examples, make the following defini-
tion.

Compute > Definitions > New Definition

v=1[3,2,1]
Compute > Evaluate, Compute > Evaluate Numeric
Ivl[; =6 [v][; ~6.0
IIvl, =v14 |v]l, = 3.7417
V]l = V794 [v]|g ~ 3.043
V]I, = V/3487832978 V]9 = 3.0
[vlw=3 vl 3.0
Example The area of the parallelogram in the plane with vertices

(0,0), (al,az), (bl,bz), and ((11 +bi,a; —i—bz) is given by
[(a1,a2,0) x (b1,b2,0)

In particular, the area of the parallelogram spanned by the two vectors
(1,2) and (2,1) is given by

1(1,2,0) % (2,1,0)[| = 3

352

Euclidean norm

The default ||v|| is the 2-norm, which is also
known as the Euclidean norm. It computes the
magnitude, or length, of a vector. The 2-norm
does not require a subscript.

Interesting tidbit
This series of examples suggests that

Tim v, = [v]..
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This parallelogram appears in the following plot.

Compute > Plot 2D > Rectangular
(0,0,1,2,3,3,2,1,0,0), Equal Scaling Along Each Axis

3T

y

3
X

Since A - B = ||A|| || B|| cos 6, where 0 is the angle between the
vectors A and B, you can use the dot product to find the angle between
tWo vectors.

Compute > Evaluate
(1,2,-3)-(=2,1,2) = =6
I1(1,2,-3)]||(—=2,1,2)||cos 6 = 3v/14cos 6
The angle between the vectors (1,2, —3) and (-2, 1,2) is given
by the principal solution to the equation —6 = 3 (cos 6)+/14. For

this, choose Tools > Preferences > Computation, Engine page, and
check Principal Value Only.

Compute > Solve > Exact, Compute > Evaluate Numeric
—6 =3(cos6)+/14, Solution: 7 + arccos %\/ 14 ~ 4.148446

Thus the angle between these two vectors is approximately

2.1347rad or roughly 122.31°.

Planes and Lines in [R3

A vector equation of the plane through the point (xg, yo,z0) and
orthogonal to the vector (a, b, ¢) is given by

[(x,y,z) - (XO,YO,ZO)] : (a7b7c) =0

Vectors
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To find an equation of the plane through three points

1. For the points (xo,yo,z()), (xl,yl,zl), and (xz,y2,22), com-
pute the differences

u= (x07y07Z0) - (X1,y1,Z1)

and

v = (x0,0,20) — (x2,¥2,22)
2. Compute the cross product
n=uxyv
3. Simplify the equation
[(X,y,z) - (x07)’0720)} n=0

Example To find an equation of the plane through the points (1, 1,0),
(1,0,1),and (0,1, 1), we first compute the vectors

and the cross product
n=(0,1,-1)x(1,0,-1)=(-1,—-1,-1)

and simplify the equation

[(x,y,z)—(l,l,O)]'(—1,—1,—1) =0
—x+2-y—-z = 0
x+y+z = 2

W plot this plane by first solving for z.

Compute > Solve > Exact (Variable: 7)
x+y—+z=2,Solution: 2—y—x
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Compute > Plot 3D > Rectangular
2—y—x(Intervals: 0 <x<2,0<y<2,-2<7<2)

A vector form of this plane is given by

[0 1 1]+s[0 1 —1]+¢[1 0 —1]

Compute > Plot 3D > Rectangular

[0 1 1]+s[0 1 —1]+s[1 0 —1]
(Intervals: 0 < s < 1,0<t < 1)

20 10

To plot the filled triangle with edges a and b, starting at the point ¢

o With the insert point in the expression ¢ + sta+s(1 —1¢)b,

choose Compute > Plot 3D > Rectangular.

Vectors

Filled parallelogram

If s and # are restricted to the unit interval

(0 <s< 1,0 <t < 1), thenthe plot of
w + su + tvisafilled parallelogram with
edgesuandv.
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Compute > Plot 3D > Rectangular

[0 1 1]+st[0 1 —=1]+s(1—=1)[1 0 —1]
(Intervals: 0 < s < 1,0<t < 1)

X

20 10

A vector equation of the line through the point (a, b, ¢) in the di-
rection of m = (u1,uz,u3) is given by

(x,y,Z) = (a,b,c) +1 (u17u27u3)
This is equivalent to the system of three parametric equations

X = a-+tu
= b+tuy
= c+tus

To find the equation of a line through two points
1. For the two points (a1,b1,c1) and (az,by,¢2), compute the
difference

(a1,b1,c1) — (a2,b2,¢2) = (a1 — az,by — by, c1 —¢2)
to find a vector that is parallel to the line.

2. An equation for the line is

(x,y,2) = (a1,b1,c1) +t(ay —az,by —ba,c1 —c2)
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Example To find an equation of the line through the two points
(1,2,3) and (2,1,2), first compute a vector

m=(1,2,3)—(2,1,2) = (—1,1,1)
that is parallel to the line, then simplify the equation
(x,y,2) = (1,2,3)+¢(—1,1,1) = (1 —1,2+1,3+1)
The line can now be plotted.

Compute > Plot 3D > Rectangular
(1—1,24+1,3+1)

Y 20
25

3.0
4.0

3.8

3.6
34

32
3.0

z

1.0 ' X

Lines and other curves in space can sometimes be more easily vi-
sualized by using a fat curve.

Compute > Plot 3D > Tube
(1 —¢,241¢,341) (Radius = 0.05)
y

20

20,

Vectors
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Gradient, Divergence, Curl, and Related Operators

Three operations are of particular importance in vector calculus:

e gradient: measures the rate and direction of change in a scalar

field; the gradient of a scalar field is a vector field.

e divergence: measures a vector field’s tendency to originate from
or converge upon a given point.

e curl: measures a vector field’s tendency to rotate about a point;
the curl of a vector field is another vector field.

The operators gradient, divergence, curl, and the Laplacian are im-
plemented with their usual notation V, V-, Vx, and V - V, respec-
tively, followed by Evaluate. They also appear as special commands
on the Vector Calculus menu. Directional derivatives have a similar
implementation.

To enter the nabla symbol V select the nabla from the Miscella-

neous Symbols tab .

Gradient

If f(x1,X2,...,%,) is a scalar function of n variables, then the vec-
tor

af af af
<9xl (cl,cz,...,cn),gxz(cl,cz,...,cn),...,axnl(cl,cz,...,cn)>

is the gradient of f at the point (c1,c2,...,¢,) and is denoted Vf.
For n = 3, the vector Vf at (a,b,c) is normal to the level surface

f(x,y,2) = f(a,b,c) at the point (a, b, c). Potential energy and force
To compute the gradient of a function f/(x, y, ) In physics, f represents potential energy, and
V f represents force.

1. Place the insert point in the expression V f(x,y, z).

2. Choose Compute > Evaluate.
Or

1. Place the insert point in the expression f(x,y,z).

2. Choose Compute > Vector Calculus > Gradient.
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Compute > Evaluate
vz
Vixyz) = | xz
Xy

Compute > Vector Calculus > Gradient
yz

xyz, Gradientis | xz
Xy

You can also operate on a function name after defining the func-
tion. For example, if f is defined by the equation f(x,y,z) = xyz,
then you can evaluate V£ (x,y,7).

Compute > Evaluate
vz
Vfxyz)=| xz
Xy

The default basis variables are x,y, z, in that order. You can change
the default by setting new basis variables.

To specify basis variables
1. Choose Compute > Vector Calculus > Set Basis Variables.

2. Enter a new set of basis variables in the dialog that appears. The
basis variables should be in mathematics mode, separated by red
commas.

3. Choose OK.

After setting u,v,w as basis variables, the computing engine re-
gards ¢ as a constant.

Compute > Evaluate

cv
A% (cuv + vzw) = | cu+2vw
2
v
In the following example, we regard xy as the value of a function
of the default basis variables x, y, and z.

Gradient, Divergence, Curl, and Related Operators

Vector Calculus Basis Variables |X|

~ Wariable Lisk

X, Y. W

—
Ok | | Cancel |
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Compute > Evaluate

y
Viy)=1 x
0

Divergence

A vector field is a vector-valued function. If
F(x,y,2) = [p(x,3,2),q(x,3,2), 7(x,3,2)]

is a vector field, then the scalar
dq

dp ar
a(a,b,c)—l—a—y(a,b,c)—l—a—Z (a,b,c)

is the divergence of F at the point (a,b, ¢). The dot product notation
is used because the symbol V can be thought of as the vector operator

Jd d 4
V= <axaayvaz>

To compute the divergence of a vector field F'(x,y,z)

V.-F=

e DPlace the insert point in the expression V- F(x,y, z) and choose
Compute > Evaluate.

The default is that the field variables are x, ¥, and z, in that order. If
you want to label the field variables differently, or change the order of
the variables, reset the default with Set Basis Variables on the Vector
Calculus submenu.

For the following example, choose Compute > Definitions > New
Definition to define the vector fields F, G, H, and J.

Compute > Definitions > New Definition

F = [yz,2x7,x] H=[yz 2xz xy|
2
x
G = (xz,2yz,7%) J=1 xy
2xz

Compute divergence by choosing Compute > Evaluate, or by choos-
ing Compute > Vector Calculus > Divergence.
Compute > Evaluate
V-F=0 V-H=0
V-G=5z V-J=5x
V- (xz,2yz,7%) = 5z V- [ax,bxy,cz?] = a+bx+2cz
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Gradient, Divergence, Curl, and Related Operators

Compute > Vector Calculus > Divergence

[vz,2xz,xy], Divergence is 0 [ vz 2xz xy ] , Divergence is 0
)C2
(xz, 2yz, zz), Divergence is 5z xy |, Divergence is 5x
2xz
Curl
IfF(x,y,2) = (p(x,3,2),q(x,¥,2),r(x,y,2)) isavector field, then
the vector

is called the cur/ of F. The default is that the field variables are x, y, and
Z, in that order. If you wish to label the field variables differently, reset
the default with Set Basis Variables on the Vector Calculus submenu.

To compute the curl of a vector field F' (x,y, z)
1. Enter the curl in standard notation.

2. Choose Compute > Evaluate.
Or

1. Place the insert point in a vector field.
2. Choose Compute > Vector Calculus > Curl.

The vector field F' in the following example is defined to be F =
[vz,2xz,xy], as in the previous section.

Compute > Evaluate

—X —X
V x (yz,2xz,xy) = 0 VXF = 0
z z
ax? 0 ]
Vx| bxy | = —2¢cz
2cxz by |
Compute > Vector Calculus > Curl
—X x? 0
(yz,2xz,xy), Curlis | 0 xy |,Curis | —2z
Z 2xz y
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In terms of the basis

i = (1,0,0)
(0,1,0)
(0,0,1)

T e
\

the curl of F can be interpreted as the determinant

k

i J
0 0 d .(dr dq\ .(dp Or dqg dp
V = —_— [— e e _—— —_— —_—
<F ox dy Jz 1<8y 82)+J(3Z 8x>+k<8x dy

p(x,y,2) qxyz) r(xyz)

Laplacian

The Laplacian of a scalar field f(x,y,z) is the divergence of V f
and is written The name of this operator comes from its
relationship to the Laplace’s equation

Vif = V.Vf
of of of I’f  I*f  Pf _
(L2 2 SATANT A A A
ox’ dy’ dz ox2  dyr 072
*f  f  I*f
Err T
The default field variables for the Laplacian are x, ¥, and z, in that

order. If you wish to label the field variables differently, reset the de-
fault with Set Basis Variables on the Vector Calculus submenu.

To compute the Laplacian of a scalar field f(x,y, )
1. Type the Laplacian in standard notation.

2. Choose Compute < Evaluate.
Or

1. Place the insert point in a scalar field.

2. Choose Compute > Vector Calculus > Laplacian.

Compute > Evaluate
V2 (x+y2+273) =12z+42 V-V (x+)y>+223) =12z+2

Compute > Vector Calculus > Laplacian
x+y? 42723, Laplacian is 12z +2 1 — 2y + 622, Laplacian is 12
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Directional Derivatives

The directional derivative of a function f at the point (a,b,c¢) in
the direction u = (u1,u2,u3) is given by the inner product of V f and
uat the point (a, b, ¢). Thatis, for a vector u of unit length and a scalar
function f,

Dyf(a,b,c) = Vf(a,b,c) -u

_df af af
- $(a7b7c)ul+aiy(a7bac)u2+aiz(a>buc)u3

To compute the directional derivative of f (x, , z) in the directionu = (17, up, u3)
1. Enter the dot product (V (f(x,y,z))) - (u1,u2,u3). Note that
the expression V (f(x,,2)) is enclosed in parentheses.

2. Leave the insert point in the expression.

3. Choose Compute > Evaluate, or

Choose Compute > Evaluate Numeric.

In the following example, we compute the directional derivative of
f (x,¥,z) = xyzin the direction

u = (cos= sin—,sin=sin—,cos —
8 98 9’ 9

Compute > Evaluate

(V(xyz))- (cos & sinZ,sin§ sin § ,cos )

:xycosén—i- %xz (sin%ﬂ?) V2— ﬁ—k %yz (sin%ﬂ) \ﬁ—|—2

Compute > Evaluate Numeric
(V(xyz))- (cos ZsinZ,sin % sin &, cos §)
~ 0.93969xy 4+ 0.13089xz 4+ 0.31599yz

Plots of Vector Fields and Gradients

A function that assigns a vector to each point of a region in two-
or three-dimensional space is called a vecror field. The gradient of a
scalar-valued function of two variables is a vector field.

Plots of Vector Fields and Gradients
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Plots and Animated Plots of 2D Vector Fields

The operation Compute > Plot 2D > Vector Field requires a pair
of expressions in two variables representing the horizontal and vertical
components of the vector field.

To plot a two-dimensional vector field
1. Type a pair of two-variable expressions, representing the hori-
zontal and vertical components of a vector field, into a vector.

2. Leave the insert point in the vector, and choose Compute >
Plot 2D > Vector Field.

To visualize the vector field F(x,y) = [x+y,x —y], place the in-
sert point in the vector [x 4y, x — y], and choose Compute > Plot 2D

> Vector Field.

Compute > Plot 2D > Vector Field
e+ y,x =]

y R TR S

M WA llssssssss

¥ NA N AdAasass>S>>

Vv R Arsss>>>>

Vvv NN Ars>>>>>>

vvv YN Ar>>>>rrr

vy A AE>>>FFFT

vy vy S>>FrrTTT

vy vV >>rrrTTTA

vy i 77
Z A AGATTAT

s L MAZ444443

\\f\AAA/ﬂ/ﬂﬂ?«

“RAAAAAA AT

cosec<<<NHNNNAAAAAAA

cccc<<SSTNHNNNANANAAAAA

ccccssSYETINNNAAAAAA
<<<<<<SSTYTNYMSNMNNMAAA
<<<<<SSENNTNMMNMAA
<<<<SSSTEERNNMNNAA

At a point (x,y) on a solution curve of a differential equation of

d
the form d—y = f(x,y) the curve has slope f(x,y). You can get an
x
idea of the appearance of the graphs of the solution of a differential
equation from the direction field—that is, a plot depicting short line

segments with slope f(x,y) at points (x,y). This can be done using
Plot 2D > Vector Field and the vector-valued function

d
(%)

F(xy) = H(lT%)
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Plots of Vector Fields and Gradients

that assigns to each point (x,y) a vector of length one in the direction
of the derivative at the point (x,y).

The direction field for the differential equation dy/dx = y — x* is
the two-dimensional vector field plot of the vector valued function

(1y—»")
F(x,y)=———7_
= Ty =]
Compute > Plot 2D > Vector Field

1 y—x?

J(+b=2P) (1127

)/ N\ =

N—

=
S
i

\JIN

)
ZINS
=20,
~
XVT
X |

Sy

Several of the solution curves are depicted in the plot on the right.

To plot an animated two-dimensional vector field

1. Type a pair of three-variable expressions, representing the hori-
zontal and vertical components of a vector field, into a vector.

2. Leave theinsert point in the vector and choose Compute > Plot
2D Animated > Vector Field.

To visualize the animated vector field [x + #y,x — ty], place the in-
sert point in the vector [x +7y,x —ty], and choose Compute > Plot
2D Animated > Vector Field. From the Items Plotted page of the Plot
Properties dialog, choose Intervals and set —1 <t < 1.
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Compute > Plot 2D Animated > Vector Field

[x+1y,x —ty] (Interval —1 <7 < 1)
OOodooooooooodooooooooooooooooggddg
e@&\\\k\i* L v ¥ by g 2] i\&\\\\%
<<J<5 N A LNy g A A WART x>
cec<s<¥NANAAA LU ¥ Hygqga g/ PV VNN s> >
srezc<<aA4 A L ey qga277 YV VYINRA > > > 7
v LLEApa 41T V¥ Fr g 1127 by vy V> g 777
%'gVVV>7'1/7r LE¥+Hy a1/ sLg L Ihaa AT
A Wv»x;\>7;)§ Ve Y R AR L2 <~[had R

¢W}Jl:~\&s—>a //g@//,,,,ﬂﬂ)g eeesv\srgz4\
(cUN A >—>> Y ¥ bH Yy <<
it\\%\\&% 5/%‘:5ka%/; <—<\<\\\5\\\N$$
OOodooooooooodooooooooooooooooggddg

Plots and Animated Plots of 3D Vector Fields

The operation Compute > Plot 3D > Vector Field requires three
expressions in three variables representing the rectangular components
of the vector field.

To plot a three-dimensional vector field
1. Type three three-variable expressions, representing the x-, y-,
and z-components of a vector field, into a vector.

2. Leave the insert point in the vector and choose Plot 3D > Vec-

tor Field. Tip
Compute > Plot 3D > Vector Field

[~y/2,%/z,27] screen for a better view.

To rotate the view
e Press the left mouse button as you move the mouse over the plot.
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Animated views and boxed axes can be helpful in visualizinga vec-

tor field.
To plot an animated three-dimensional vector field
1. Type three four-variable expressions, representing the three com-

ponents of a vector field with an animation variable, into a vec-
tor

2. Leave the insert point in the vector, and choose Compute >
Plot 3D Animated > Vector Field.

To visualize the vector field [x+1y+z,x+y—tz,tx—y+7z] ast
varies from —1 to 1, place the insert point in the vector, and choose
Compute > Plot 3D Animated > Vector Field. Change the interval
for the animation variable to —1 < < 1.

Compute > Plot 3D Animated > Vector Field
x+ty+z,x+y—tz,tx—y+z] (Interval =1 <t < 1)

ubobooabobobooabobooboaboboooabobooooab

obooooboobooooobobooooboboooooboooooan

Plots and Animated Plots of 2D Gradient Fields

Scalar-valued functions of two variables can be visualized in sev-
cral ways. Given the function f(x,y) = xysinxy, choosing Compute
> Plot 3D > Rectangular produces a surface represented by the func-
tion values.

Another way to visualize such a function is to choose Compute >
Plot 2D > Gradient. This choice produces a plot of the vector field
that is the gradient of this expression, plotting vectors at grid points
whose magnitude and direction indicate the steepness of the surface
and the direction of steepest ascent.
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The vector field that assigns to each point (x,y) the gradient of f
at (x,y) is called the gradient field associated with the function f.

\\ xS F> < 7 //
\ AN 5y <= 4 £ # /
O T A 2<“7 7z b ¥ g
L NN A 4
RN N A
wovov e oy
R A NN NN
vog 4 £ <> 3 « N
J ¢ 7 > 2<__> < v N\
VA SN I NN
Gradient field
S O A N N 2
> A < y =l> > > A <
72 A NN/ 77 A~
/A\\i///A\
TANSNI T s
Ny INNY v X
NV TN N NV s
> A < « <€<7T> => > A <
7 A NXHS 7 7 A~
2 2.,)2
_(COS x+cos y) Gradient field
To plot a gradient field

1. Type an expression f(x,y).

2. Choose Compute > Plot 2D > Gradient.

For example, type the expression x> + 2y?, and choose Compute
> Plot 2D > Gradient. This procedure produces a plot of the vector
field that is the gradient of this expression. The first plot shows the
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relative steepness, the second is the surface, and the third shows the

contour lines.

Compute > Plot 2D > Gradient

x2+2y2

NN 4L
\\\N%J?%ﬂ/
A N L L NArra S
NYXY XY NMNATA 4 A4 7 7
S U S AN
v ¥ ¥ ¥ ¥V N N N\ N\
AR IR R R
YA ATV VNN
VAV S AR AR NN

Compute > Plot 3D > Rectangular

X2 + 2y2

Gradient field

Q
“"z‘lllll”/t
X 'l"‘l’f””

To plot an animated gradient field
1. Type an expression f(x,y,1).

717

o

)

Turn: 0

Tile: O

Contour

W

/).
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2. With the insert point in the expression, choose Compute >
Plot 2D Animated > Gradient.

Type the expression

1/ (10+ (x+3cost) + (y+3sint)2)

and choose Compute > Plot 2D Animated > Gradient. This pro-
duces an animated plot of the vector field that is the gradient of this
expression.

The following animation shows a point of attraction that moves
around a circle of radius 3. Set the interval for the animation variable

to —3.1416 <r < 3.1416.

Compute > Plot 2D Animated > Gradient
1/ (10+ (x+3cost)? + (y+3 sint)z)

oboooobooboooobobooooboboooooboooooan
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Plots and Animated Plots of 3D Gradient Fields

The gradient field for a scalar-valued function f(x,y,z) of three
variables is a three-dimensional vector field where each vector repre-
sents the direction of maximal increase. The surface represented by the
function values is embedded in four-dimensional space, so you must
use indirect methods such as plotting the gradient field to help you
visualize this surface.
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Compute > Plot 3D > Gradient
xZ2+xy+yz

Another way to visualize the function f (x,y, z) is to plot a series of
implicit plots of surfaces of constant values. The gradient field points
from surfaces of lower constant values to surfaces with higher constant
values.

Compute > Plot 3D > Implicit
xz+xy+yz=1 xz+xy+yz=-1

xz2+yz+xy=1 x2+yz+xy=—1

To plot an animated gradient field in 3D
1. Type an expression f(x,y,2,1).
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2. With the insert point in the expression, choose Compute >
Plot 3D Animated > Gradient.

For example, type 1/ (IO—I— (x+t)2 + (y+t)2 + (Z+t)2) and
choose Compute > Plot 3D Animated > Gradient. This procedure
produces an animated plot of the vector field that is the gradient of this
expression. The following animation shows the interest generated in a
fish tank as a tasty morsel moves from one corner to the opposite cor-
ner of the tank. From the Items Plotted page of the Plot Properties di-
alog, choose Variables, Intervals, and Automation and set —6 <t < 6.

Compute > Plot 3D Animated > Gradient
1/ (10+ (x+3cost)? + (y+3 sint)2)

gbooooboboooooboboooaboboooabobooooanb

obhoooooobooooobooboooobobooooobooooooan

Scalar and Vector Potentials

The Scalar Potential command on the Vector Calculus menu pro-
duces the inverse of the gradient in the sense that it finds a scalar func-
tion whose gradient is the given vector field, or it tells you that such a
function does not exist. The vector potential has an analogous inter-
pretation in terms of the curl.

Scalar Potential
A scalar potential exists for a vector field F if and only if the curl
is O:
VxF=0
That is, the vector field is irrotational.
The following are examples of scalar potential with the standard
basis variables.
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Compute > Vector Calculus > Scalar Potential
(x,y,2) Scalar potential is 3x* + 1% + 122
(x,z,y) Scalar potential is %xz +yz

(,2,x) Scalar potential does not exist.

The vector field (y, z,x) does not have a scalar potential because its
curl is not 0.

Compute > Evaluate

—1 0
Vx(yazax): -1 7é 0
—1 0

In the next example, choose Compute > Evaluate and then choose
Compute > Vector Calculus > Scalar Potential. Because the vector
field is a gradient, it has the original function as a scalar potential.

Compute > Evaluate

y2

\Y (xy2 —I—yz3) = | 2 +2xy
3yz?

Compute > Vector Calculus > Scalar Potential

y2

23 +2xy | Scalar potential is xy* + yz*
3yz?

You would normally expect the scalar potential of the vector field
(cv,cu+2vw,v?) to be ucv +v?w; that is, you expect ¢ to be treated
as a constant. When the number of variables differs from the num-
ber of components in the field vector, a dialog box asks for the field
variables. In this case, you can type u, v, w to get the expected result.

The dialogbox also appears when you ask for the scalar potential of
avector field that specifies fewer than three variables, such as (y,x,0).
Typex,y,zin the dialog box to get the expected resultxy for the scalar
potential of this vector field.

Vector Potential

A vector potential exists for a vector field F ifand only if

divF=V.-F=0

Scalar and Vector Potentials
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That is, the vector field is solenoidal.

Unless otherwise specified, the operators cur! and vector potential
apply to scalar or vector functions of a set of exactly three standard ba-
sis variables. The default is x, Y, z, but you can use other scts of basis
variables by choosing Compute > Vector Calculus > Set Basis Vari-
ables and changing the default variables.

-y
Start with V X (xy,yz,zx) = | —z | to get the following vector
—X

potential.

Compute > Vector Calculus > Vector Potential

1.2
-y XY — 3%
—z | Vector potential is vz
—x 0

Notice that we did not get the original vector field when we asked
for a vector potential of its curl. That is because the vector potential
is determined only up to a field whose cutl is zero. You can verify that
this is the case. First, calculate the difference of the two vectors. Then

compute the curl of the difference.

Compute > Evaluate

Xy Xy — %22 %zz
vz | — vz = 0
o 0 Xz
2] o
V x 0 =10
Xz 0

Try the same experiment after changing the basis variables to u, v, w
by choosing Compute > Vector Calculus > Set Basis Variables. Note
that a vector field can be written either as the triple (u,v,w) or as a

column matrix.
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Compute > Vector Calculus > Vector Potential

—v uy — %WZ
—w | Vector potential is vw
—u 0
%wz —uv
(v,w,u) Vector potential is —vw
0

Matrix-Valued Operators

Matrix-valued operators include the Hessian, the Jacobian, and

the Wronskian matrices.

Hessian

The Hessian is the n X n matrix

A A AR A
ax% 0x10x 0x19x,
ik 2f 9
0x20x1 8x§ 9x20x,
’f ’f ’f
| 0x,0x1  9x,0x2 oxz |
of second partial derivatives of a scalar function f (x1,X2,...,X,)of n

variables.

The order of the variables affects the ordering of the rows and columns
of the Hessian. For the following examples, the list of variables is x, y, z.

Matrix-Valued Operators
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Compute > Vector Calculus > Hessian

0 z vy 2 0 0
xyz, Hessianis | z 0 x x>+, Hessianis | 0 6y 0
y x 0 0 0 O

0 0O 0 wz wy

a®+ b3 Hessianis | 0 0 0 wxyz, Hessianis | wz 0 wx
0 0O wy wx O

Choose Compute > Vector Calculus > Set Basis Variables and
type a, b, ¢ in the input box to change the basis vectors.

Compute > Vector Calculus > Hessian

6a 0 O
@+ b3 Hessianis | 0 6b 0
0O 0 O

Choose Compute > Vector Calculus > Set Basis Variables and
type a, b in the input box to change the basis vectors.

Compute > Vector Calculus > Hessian

6a 0
a’ + b, Hessian is { 0 6b }

Choose Compute > Vector Calculus > Set Basis Variables and
type X, ¥,2,w in the input box to change the basis vectors.

Compute > Vector Calculus > Hessian

2z 0 2x O
0 6wy 0 3y?
2r 0 0 0
0 3? 0 0

x%z+ y>w, Hessian is
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Jacobian
The Jacobian is the n X n matrix
Con an . on
ox; 0Jxy 0x,
on op  on
ox1  0xy o0x,
oh A
| dx1  Odxo ox, |

of partial derivatives of the entries in a vector field

(ft (1,22, x0) 5 o (X0, X2, -, X0) ooy S (X1, X2, 000, XR))

Jacobians resemble Hessians in that the order of the variables in the
variable list determines the order of the columns of the matrix. In the
following examples, the variable list is x, y, z. To verify these examples,
choose Compute > Vector Calculus > Jacobian while the insertion
point is in the given vector field.

Compute > Vector Calculus > Jacobian

0 z vy
(vz,xz,xy), Jacobianis | z 0 x
y x 0
2xz 0 X7
(xzz, x4z, xzz) , Jacobian is 1 0 1
Z 0 2z

Set the basis variables to a, b, c.

Compute > Vector Calculus > Jacobian

0 0 O
(xzz,y + c,yzz) ,Jacobianis | 0 0 1
0 0 O

Wronskian

The Wronskian with respect to functions f1, f2, . . ., f; defined on
an interval I, often denoted by W (fi (x),f2(x),...,[u(x)), is

Matrix-Valued Operators
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defined as
fix) AW S ()
Mw Ve - AW
det . . .
ey A () A ()

The matrix is the Wronskian matrix. Observe that W (f1 (x), f2 (x),...

is a function defined on the interval I. To compute the Wronskian,
take the determinant of the Wronskian matrix.

Compute > Vector Calculus > Wronskian

x> —3x?
(x3 —3x2,3x% —7,x* + 5x2), Wronskian matrixis | 3x%> — 6x
6x—6

Compute > Matrices > Determinant

X =3x2 3x2-7 x*45x2
3x% — 6x 6x 453 +10x |, determinant: —6x° + 84x*
6x—6 6 12x2 410

It follows that the Wronskian of the functions

filx) = =32

L) = 3-7
f3(x) x*t 4542
is given by
W (o —3x%,3x% — 7,x% + 5x%) = —62° + 84x* — 210x% — 3361

Consider the special case where there are two functions. We define
two generic functions f] and f>.

Compute > Definitions > New Definition

Ji(x) fa(x)
Compute > Vector Calculus > Wronskian
filx) fa(x)
(f1 (x), f2 (x)), Wronskian matrix is l ) hK)
T ox ox

378

Jn (%))

S
6x  4x3+10x
6 1222+ 10

—336x3 —210x2
Note

Two functions are proportional if and only if

J;}E ; is a constant, which is equivalent to
)

() —0sme (35) -

3f2 f()afl

(f1 )?
to the Wronskian being zero.

ht 9x__ this is equivalent
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Compute > Matrices > Determinant

{ fi(x) fax)

9f(x)  df(x)

] , determinant: fj (x) % —fa(x) %

dx ox

Plots of Complex Functions

A complex-valued function F(z) of a complex variable is a chal-
lenge to graph, because the natural graph would require four dimen-
sions. One of the techniques for visualizing such functions is to make

conformal plots.

Conformal Plots

A conformal plot of a complex function F (z) is the image of a two-
dimensional rectangular grid of horizontal and vertical line segments.
The defaultisan 11 x 11 grid, with each of the intervals 0 <Re (z) <
1 and 0 <Im(z) < 1 subdivided into 10 equal subintervals. If F(z)
is analytic, then it preserves angles at every point at which F'(z) #
0; hence, the image is a grid composed of two families of curves that

intersect at right angles.
—1
To create a conformal plot of F (z) = Z_’_—l, put the insert point
<

in the expression, and choose Compute > Plot 2D > Conformal. The
number of grid lines and the view can be changed in the Plot Proper-
ties tabbed dialogs.

Compute > Plot 2D > Conformal
z—1
z+1

20

AL

[ 7
.
[ 7

s
4

s
o

Plots of Complex Functions
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In the following example,
e Re(z) and Im(z) both range from —3 to 3.

o The View Intervalsaresetat —2 <Re(z) <4and —3 <Im(z) <
3.

e The Grid Size has been increased to 40 by 40.

e Samples per Horizontal Grid Line and Samples per Vertical Grid
Line have both been increased to 60.

Compute > Plot 2D > Conformal
z—1

z+1

Animated Conformal Plots

To create an animated conformal plot of a complex function
e Place the insert point in the expression, and choose Compute
> Plot 2D Animated > Conformal.

The number of grid lines and the view can be changed in the Plot
Properties dialogs. Following is an animation of (z—1) / (z+1¢) as ¢
varies from 1 to 2. In the following example,

e Re(z) and Im(z) both range from —3 to 3.
e franges from 1 to 2.

e The View Intervalsaresetat —2 <Re(z) <4and —3 <Im(z) <
3.
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Compute > Plot 2D Animated > Gradient

z—t

z+t
Oo00oooooooooooooooooooooonoooooooood

gbhooooboobobooboobobooboboobooobobooooooo

Exercises

1. Evaluate the directional derivative of f (x,y,z) = 3x — 5y +2z
at (2,2, 1) in the direction of the outward normal to the sphere

X 4+y?+72=0.
2. Findavectorvnormal to the surface z = \/x2 + y2 + (x* +?) 3/2
at the point (x,y,z) # (0,0,0) on the surface.

mM

\/x2 +y2+Z2

potential. Show that the gradient is given by

3. Let f(x,y,2) =

denote Newton’s gravitational

mM
Vix,yz) = *m

4. Let uy (1) ,u (1) ,u3(t) be three functions having third-order
derivatives.  Show that the derivative of the Wronskian
W (uy (t) ,up (¢) ,u3 (¢)) is the determinant

Uy (l‘) up (l‘) U3 (l‘)
%m (t) %uz (t) %LQ (l)
d? d? d?

Sun(r) 5w Smus()
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In other words, the derivative of W (u (¢) ,u2 (¢) ,u3 (¢)) may
be obtained by first differentiating the elements in the last row
of the Wronskian matrix of (u; (¢) ,uz (¢) ,u3 (¢)) and then tak-
ing the derivative of the resulting matrix.

5. Starting with the function f(x,y) = sinxy, observe connec-
tions between the surface z = f(x,y), the gradient of f(x,y),
and the vector field of V£ (x, ).

6. Observe the vector field of (sinxy, cos xy) and describe the flow.
Is there a function g (x,y) whose gradient is (sinxy, cosxy)?

Solutions

1. Thedirectional derivativeis given by D, f (x,y,2)) = V£ (x,y,2) -
u, where u is a unit vector in the direction of the outward nor-
mal to the sphere x> +y? 4 z2 = 9. The vector

2x
V(E+y +2)= | 2y
2z

is normal to the sphere x*> +y? +z> = 9, and at (2,2, 1) this

normal is (4,4,2). A unit vector in the same direction is given

by
4 4 4 2/3
2 2 612 1/3

Hence, Vf (x,y,z) - u evaluated at (2,2, 1) is —%.
2. A normal vector is given by
\/X%Tyz +3xy/x2 4?2
V( x2+y2+(x2+y2)3/2_z): R S/ )
-1

x4 yz

- (21_‘_2)(x(1+3x2+3y2),y(1+3x2+3y2),_ (x2+y2)>
S

Hence, any scalar multiple of
{x (1432 +3y%) ,y (1+3x +3y%) , —/ (2 +y2)]
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Exercises
is also normal to the given surface.
3. Evaluate the expression
—-Mm—=——
(24y2+22)2
mM Mm—y mM .
V| == 122 | T T 53 | Y
VX242 +22 (20242 (2 +y2+22)"
—Mm————
(x2+y2+22> 2
This gives the Newtonian gravitational force between two ob-
jects of masses m and M, with one object at the origin and the
other at the point (x,y,z).
ur () wa(t)  wuz(t)
4. Evaluate each of % %Ml () %Mz (1) %Mg (1) and
2 2 2
L (1) Hup () s (r)
ur(t)  w(t)  us(t)
%ul (1) %uz (1) %u3 (t) |. Each gives
3 3 3
L (1) Sup (1) Gus(r)
8u2 (t) 83143 (l‘) 8u3 ([) 33112 (l) 8u1 (t) 83143 (t)
t — — 1
u (1) ot o u (1) ot or ot uz (1) o
duy (1) A3uy (1) 23u, (1) dus (1) 3u; (1) duy (1)
t t — 1
g el s g el =5 o ) =5
5. The surface z = sinxy has ridges along the hyperbolas xy = 7 +
2n7 and valleys along the hyperbolas xy = 37” +2n7 in the first
quadrant. The gradient V sinxy = (ycosxy,xcosxy) produces
a vector field whose vectors show the steepness of the surface
z = sinxy. Note that plotting the gradient of f(x,y) is the same
as plotting the vector field of V f (x,y). The ridges and valleys
are indicated by vectors of zero length.
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6. A plot of the vector field (sinxy, cosxy) suggests an interesting 7 (&\2\1, 2 1;71 N = ¢,<@ N
1 QVTVL‘\ AN<—¢ \ =7}
pattern of flow. However, a search for a scalar potential fails. N> >‘/\1,22ﬂ Ny =7 N< | =
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vector field of (sinxy, cosxy)
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Differential Equations

Everything should be made as simple as possible, but not simpler.  Albert Einstein (1879—1955)

differential equation is an equation that includes differen- Ordinary Differential Equations
A tials or derivatives of an unknown function. A solution to a
differential equation is any function that satisfies the given Systems
equation. Thus f(x) = sinx is a solution to the differential equation
y" +y =0, because if y = sinx, theny’ = cosxand y” = —sinx,and  Numerical Methods
hence y” +y = sinx — sinx = 0. Differential equations are encoun-
tered in the study of problems in both pure and applied mathematics,

in the sciences, in engineering, and in business and the social sciences.

Ordinary Differential Equations

With the choices on the Solve ODE submenu you will be able to
find closed-form solutions to many differential equations. The solu-
tion is generally returned as an equation in y(x) and x (or whatever
variables were specified) with any arbitrary constants represented as
Ci,C,...,Cy.

To solve a differential equation

1. Type the differential equation using standard mathematical no-

tation.

2. With the insert point in the equation, choose Compute > Solve
ODE > Exact, Laplace, Numeric, or Series.
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To solve a differential equation with initial condition(s)
1. Place the differential equation in a one-column matrix or in a
display, with initial condition(s) in separate rows.

2. Place the insert point in the equation and, choose Compute >
Solve ODE > Numeric.

These different choices are explained in more detail in the next few
sections.

Exact Solutions

Two methods, Exact and Laplace, return exact solutions to a lin-
car differential equation. Laplace, which as its name suggests, uses the
Laplace transform to derive solutions, works for either homogeneous
or nonhomogeneous linear differential equations with constant coef-
ficients. Initial conditions are displayed in the solution. Exact is more
general in the sense that is works for some nonlinear differential equa-
tions as well.

Exact Method

To solve a differential equation by the Exact method
1. Place the insert point in the differential equation.

2. Choose Compute > Solve ODE > Exact.

When a notation is used for differentiation that names the inde-
pendent variable, the variable is taken from context.

Compute > Solve ODE > Exact

% = xyODE Solution: {Cl ¥ }
To check this result, define y (x) = e%xzcl. Replace y by y(x) in

the differential equation and evaluate both sides.

Compute > Evaluate

dy(x 1,2 1.2
%:xaez)‘ xy (x) = xCye2*

For any given number Cj, the solution describes a curve. Since
C| may, in general, take on infinitely many values, there is an infi-
nite family of solution curves—or a one-parameter family of solution
curves—for this equation.

When a prime indicates differentiation, the independent variable
will be named if it is unambiguous; otherwise, a variable name must
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be specified. In the equations y’ =y, )’ = sinxand y’ = sinx+1, the
independent variable is ambiguous and a dialog box appears asking for
the independent variable.

Compute > Solve ODE > Exact
Y =y (Specify t)ODE Solution: {Cje'}
% = sinxODE solution: {C| —cosx}

y' = sinx (Specify 7)ODE Solution: {C; +#sinx}

y = sinx +1 (Specify x)ODE Solution: {C| — cosx + tx}

y' = sinx+1 (Specify t)ODE Solution: {C1 + % (t+ sinx)z}

There is a family of solutions, one for each choice of Cj. The fol-

lowing figure shows solutions for y’ = y corresponding to the choices
%, 1,2, 3, and 4 for Cy. To replicate this plot, drag solutions to the
frame one at a time.

Compute > Plot 2D > Rectangular

i

(Select and drag to the frame each of the following)

e*,2¢",3¢", 4¢*

le'

)
|

==

-10 -08 -06 -04 -02 00 02 04 06 08 )1(.0

Five solutions for y’ =y

Compute > Solve ODE > Exact

d

d—y = y+ xODE Solution: {Cje* —x—1}
X

D,y —y = sinxODE Solution: {C1ex — % sinx — %cosx}
Y +xy = ax, (Specify x)ODE Solution: {a —Cie” 2 }
Followingis a plot of three particular solutions for D,y —y = sinx

corresponding to Cy = 1,2, 3. To replicate this plot, drag the second

and third solutions to the frame one at a time.

Ordinary Differential Equations

Notation

Avariety of notations for a differential
equation will be interpreted properly. The
examples illustrate some of this variety. The
Leibniz notation 'y /dx and the D, notation
provide enough information so the
independent variable can be determined by
the computational engine. The prime notation
for derivative prompts a dialog in which you
can specify the independent variable.
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Compute > Plot 2D > Rectangular
e — %cosx— % sinx
2¢F — % COSX — % sinx (Select and drag to the frame)

3e* — % cosx — % sinx (Select and drag to the frame)

-10 -08 -06 -04 -02 00 02 04 06 08 )1(.0

Three solutions for Dy y —y = sinx

Compute > Solve ODE > Exact

Tip

The three solutions can be distinguished by
evaluation at . For example, the solution
with C; = 1 crosses the y-axisaty = 1/2.

¥4y = x* (specify x), ODE solution: {x2 —C;sinx+Cycosx — 2}

The following plot shows three solutions generated with constants
(C1,C2) = (1,1),(C1,C2) = (5,1),and (C1,C2) = (1,5). To repli-
cate this plot, drag the second and third solutions to the frame one at

a time.

Compute > Plot 2D > Rectangular

sinx + cosx + x> —2

5sinx +cosx +x% — 2 (Select and drag to the frame)
sinx + 5c0sx 4 x? — 2 (Select and drag to the frame)

2

Three solutions to y” +y = x

388

Tip

The particular solution

y(x) = sinx +5cosx 4 x% — 2isthe
one whose graph crosses the y-axisat y = 3.
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Compute > Solve ODE > Exact
xy —y = x? (specify x), ODE solution: {x2 + Clx}
;% + % = x+y, ODE solution: {Clefx(%ﬁ+%) —x—Q—Clex(%ﬂ*%) — 1}

Laplace Method

Laplace transforms solve either homogeneous or nonhomogeneous
linear systems in which the coefficients are all constants. Initial con-
ditions appear explicitly in the solution.

To solve a differential equation by the Laplace method
e Place the insert point in the differential equation and choose
Compute > Solve ODE > Laplace.

Compute > Solve ODE > Laplace

d
d—y =y, ODE Solution (Laplace): {Cje*}
X

y +y = x+sinx, (Specify x), ODE Solution (Laplace)
{x— %cosx—l— % sinx+Cre ™" — 1}

The following examples compare exact and Laplace solutions. In

each case, the ODE Independent Variable is x.

Compute > Solve ODE > Exact

y = sinx, ODE Solution: {C — cosx}

y' =y+x, ODE Solution: {Cje* —x— 1}
D,y = cosx, ODE Solution: {C; + sinx}

Compute > Solve ODE > Laplace
y' = sinx, ODE Solution (Laplace): {C2 — cosx}
y' =y+x, ODE Solution (Laplace): {—x—1,Cje* —x— 1}
D,y = cosx, ODE Solution (Laplace): {Cj + sinx}
Series Solutions

For many applications requiring a solution to a differential equa-
tion, a few terms of a Taylor series solution are sufficient.

To find a Taylor series solution to a differential equation
1. Type the differential equation in standard mathematical nota-
tion.

2. With the insert point in the equation, choose Compute > Solve
ODE > Series.
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3. In the dialog box, type the Variable, Center (Default 0), and
Order (Default 5) and choose OK.

In the following examples, notice that the initial condition y(0)
appears explicitly in each solution.

Compute > Solve ODE > Series
D,y =y, Series solution is: {y (0) +xy (0) + 3x?y (0) + $x*y (0) + 25x*y (0) + O (%) }
y = Y Series solution is: O +x— L+ o’ +0(x7)}

x

dy +y= e, Series solution is: {y (0) —x(y(0) — 1) +x? (%y (0) — %)

dx
—2 (53(0) +5) +x* (339(0) + 33) +O () }
Heaviside and Dirac Functions

Laplace and Fourier transforms interact closely with the Heaviside
unit-step function and the Dirac unit-impulse function. The Dirac
and Heaviside functions are related by

X d
/ Dirac (1) dt = Heaviside (x) and o Heaviside (x) = Dirac (x)
oo x

The Dirac function is not a function in the usual sense. It represents an

infinitely short, infinitely strong unit-area impulse. It satisfies Dirac (x)
= 0if x # 0, and can be obtained as the limit of functions f;, (x) sat- Dirac (x)
isfying |7 fn (x) dx = 1.

The Heaviside function satisfies

0 if x<0
Heaviside(x) =¢ 1 if x=0 10-
1 if x>0 Tt
05T
The value of the Heaviside function at 0 is taken to be % : : I I
Neither the Dirac or Heaviside function is defined for nonreal ! 0 ! X2
complex numbers.
Compytg > Evaluate N Heaviside(x)
Heaviside (7) = 1 Heaviside (—e) =0
Dirac(2) =0

To enter the name of the Dirac or Heaviside function

1. Choose Insert > Math Objects > Math Name.

390



“Compute60” — 2011/12/20 — 14:27 — page 391 — #401

2. Type the function name in the Name box with upper and lower
case as they appear above, and choose OK.

The Heaviside and Dirac functions respect conditions set by the
functions “assume” and “additionally”

Ordinary Differential Equations

Note
Type assume, positive, real, and
additionally in mathematics mode, and

Compute > Evaluate Compute > Evaluate they will turn upright and gray.
assume (x, positive) = (0,o) assume (x,real) = R
Heaviside (x) = 1 additionally (x # 0) =R\ {0}

Dirac (x) =0

If you prefer to work with shorter names, you can define them as
follows. Results of computations will, however, return the long name.

Compute > Definitions > New Definition
0 (x) = Dirac (x) H (x) = Heaviside (x)

You can test these definitions by calculating an appropriate inte-
gral or derivative.

Compute > Evaluate
e dx=1 H' (x) = Dirac (x)

You can create characteristic functions with the Heaviside func-
tion. For example, the product Heaviside (1 —x) Heaviside(2 + x)
gives the function that is 1 on the interval [—2, 1] and 0 elsewhere.

Laplace Transforms
If f is a function on [0, o], the function .Z (f) = f defined by the

integral
Fls) =L (F(1),1,5) = /0 e (1) dt

for those values of s for which the integral converges is the Laplace
transform of f, thatis, itis the integral transform with kernel K (s,1) =
e~ . The Laplace transform depends on the function f and the num-
ber 5. The equation above also defines the Laplace operator 2.

A constant coeflicient linear differential equation in f (f) is trans-
formed into an algebraic equation in f (s) by the operator .Z. A so-
lution can be found to the differential equation by first solving the
algebraic equation to find £ (s) and then applying the inverse Laplace
transform to determine f (¢) from f (s).

3 -2 -1 0 1 2

3
X

Heaviside (1 — x) Heaviside(2 + x)
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Expressions involving exponentials, polynomials, trigonometrics
(sin, cos, sinh, cosh) with linear arguments, and Bessel functions
(BesselJ, Bessell) with linear arguments can be transformed.

The Laplace transform also recognizes derivatives and integrals,
the Heaviside unit-step function Heaviside (x), and the Dirac-delta
unit impulse function Dirac (x).

Computing Laplace Transforms

To compute the Laplace transform of an expression
e With the insert point in the expression, choose Compute >
Transforms > Laplace.

Compute > Transforms > Laplace
t, Laplace Transform is: slz

3/2 — ¢! 4 sinhat, Laplace Transform is: iT‘/z S e Bl

You can also compute a Laplace transform using the symbol .Z".

To compute a Laplace transform using the symbol .Z’
1. From the Miscellaneous Symbols panel, choose 2.

2. Choose Insert > Math Objects > Brackets.

3. Click , and choose OK.

4. Inside the parentheses, type an expression in the variable 7.

5. Choose Compute > Evaluate. Tip
The default variable of integration is # and the
Compute > Evaluate default transform variable is s. The computing

1 3\ _ 6 . 3 engine evaluates a Laplace transform with 7 as
Z()=2% @) =5 & (3sint) = 25 engine ev p mwit
input variable and produces a solution using

To compute the Laplace transform of an expression F with variable of inte- the variable s.

gration x and transform variable y
1. Place the insert pointin .Z (E, x,y).

2. Choose Compute > Evaluate.

You can use other variable names by specifying the variable of in-
tegration and the transform variable as in the following examples.

Compute > Evaluate
g(xvxﬂy) = yil g(x37x7s) = S% Z(ezﬂw,w,u) = —%

T—u
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Computing Inverse Laplace Transforms

To compute the inverse Laplace transform of an expression
1. Place the insert point in the expression.

2. Choose Compute > Transforms > Inverse Laplace.

Compute > Transforms > Inverse Laplace

s%, Is Laplace Transform of 1>
1
s+o’

1, Is Laplace Transform of Dirac ()

Is Laplace Transform of e~

Tip
The default variable for the inverse transform
is s, and the default output variable is . The

You can also compute an inverse Laplace transform by evaluating

an expression of the form .2~ (f (s)).

To compute an inverse Laplace transform using the symbol &’ inverse Laplace transform will interpret
e With the insert point in the expression .2~ (f(s)), choose Forrectlyan expression with the variable s as
Compute > Evaluate. input.

Compute > Evaluate
K7 (}2) =1 7 (%) =7 7 (Szil) = 3sint

For other variable names, the variable of integration and the trans-
form variable must be specified, as in the following examples.

Compute > Evaluate
27 (3s) =2 L (dgay) =e® 27 (Lab) = Dinac(h

If the range of parameters must be restricted, use the functions as-
sume and additionally.

The following two examples demonstrate the use of the Laplace
transform to solve a differential equation.

Example In order to solve the problem

[ (#)+af(t)=0,£(0)=b

define f () as a generic function and a and b as generic constants.
Then evaluate both sides of the equation:

Z(f'()+af (1)) =2£(0)
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to gCt

sZ(f(t).1,5) = f(0)+aZ (f(1),1,5) =0
Solve this equation for .Z (f () ,t,s) to get

Now use the inverse Laplace transform to get

_ -1 b _ —ta
fiy=%¢ <s+a) = be

Check: Define f () = be ' and evaluate ' (1) +af () and f (0) to
get

Example Consider the second-order differential equation
y/l + y — 0

with the initial conditions y (0) = 1 and y'(0) = —2. Define y(¢) as
a generic function and apply Evaluate to .2 (y (1) +y (1) ,1,s) to get

L) +y(t),t,8) =L (y(t) ,1,8) =5y (0) =y (0)+.Z (y (1) ,2,5)
Solve the equation

L (y(1),1,5) —5y(0) =y (0)+.Z (y(t) ,t,5) =0
for £ (y(t),t,s) with Solve > Exact to get

50 +Y(0)
20015 = 2O
Replace y (0) with 1 and y’ (0) with —2 to get

s—2

g(y(t)vtvs) = m

Now take the inverse Laplace transform by applying Evaluate to the

152
g <s2—H,S,t)

expression
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to gCt

7 <s2_2,s,t> = cost — 2sint
sc+1
Check: If y(¢) = cost — 2sint then y” () = —cost + 2sins then
indeed y" (1) +y(t) =0,y (0) = 1,and y' (0) = —2.
Fourier Transforms

Fourier transforms provide techniques for solving problems in lin-
ear systems and provide a unifying mathematical approach to the study
of diverse fields including electrical networks and information theory.

If f is a real-valued function on (—eo, 00), the function f = .7 (f)
defined by the integral

~

o0 =2 (F@)xw) = [ e (o)

for those values of w for which the integral converges is the Fourier
transform of f ; thatis, itis the integral transform with kernel K (w,1) =
e ™ or K (w,t) = ™. The Fourier transform depends on the func-
tion f and the number w.

Computing Fourier Transforms
To compute the Fourier transform of an expression

1. Place the insert point in the expression.

2. Choose Compute > Transforms > Fourier.

Compute > Transforms > Fourier

1, Fourier Transform is: 27 Dirac (w)

e~ ™, Fourier Transform is: 27 Dirac (w — 1)
™ Fourier Transform is: 27t Dirac (27 + w)

You can also compute a Fourier transform using the symbol .%.

To compute a Fourier transform using the symbol .7
1. From the Miscellaneous Symbols Panel, choose ..

2. Choose Insert > Math Objects > Brackets, click ,and choose
OK.

3. Inside the parentheses, type an expression in terms of the vari-
able x.

Ordinary Differential Equations
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4. Choose Compute > Evaluate.

Compute > Evaluate
Z (1) =2mDirac (w) F (e7™) =2z Dirac(w—1)

You can also specify both the expression variable and the trans-

form variable.

Compute > Evaluate

Z (1,x,y) = 2z Dirac (y) F (e7V,y,z) =2nDirac(z— 1)
Computing Inverse Fourier Transforms

To compute the inverse Fourier transform of an expression
e With the insert point in the expression, choose Compute >
Transforms > Inverse Fourier.

Compute > Transforms > Inverse Fourier
1, Is Fourier Transform of Dirac (x)
e~3™_ Is Fourier Transform of Dirac (x4 5)
To compute an inverse Fourier transform using the symbol .7 ~ !

e With the insert point in the expression .7 ~! (f (w)), choose
Compute > Evaluate.

Compute > Evaluate
F7'(-2L, w,t) = 2Heaviside (—1) — 1

You can also specify the variable of integration and the transform
variable, as in the following examples.

Compute > Evaluate
Z~!(2nDirac (h),h,s) = 1 F 1 (—2i/w,w,t) = 2Heaviside (—t) — 1

For some of these expressions, Simplify gives a better form for the

solution.

Compute > Simplify
Z ! (~inDirac (—® + @) + i Dirac (® + @) , ®,1) = —sin (t@p)

! (3nDirac (® — 4) + 37 Dirac (@) + 3w Dirac (0 +4) , 0,1) = 3= (4 + 1)2
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Computing Fourier Transforms of Multiple Expressions

To compute the transforms and inverse transforms of multiple expressions
e Type the expressions in a single column matrix preceded by the
symbol F or F ~1 and choose Compute > Evaluate.

Compute > Evaluate
7 1 B 27 Dirac (w)
e¥x | 7\ 2xDirac (27 +w)
Systems

Systems consisting of more than one equation are handled in a
consistent manner. Such problems include initial-value problems and
systems of differential equations.

Exact Solutions

The statement of some problems requires more than one equation.
You enter systems with initial conditions, systems of differential equa-
tions, boundary-value problems, or a mixture of these problems using
n x 1 matrices, where n is the number of equations and conditions
involved.

To create a system of differential equations in a matrix
1. Choose Insert > Math Objects > Matrix.

2. Select 1 column, set the number of rows equal to the number of
equations, and choose OK.

3. Choose View and select Helper Lines and Input Boxes to show
where to enter the required equations.

4. Type the equations, one to a row.

To create a system of differential equations in a display
1. Choose Insert > Math Objects > Display.

2. Choose View and select Helper Lines and Input Boxes to show
where to type the required equations.

3. Type the equations, one to a row, pressing Enter to create each
new row as needed.

Systems
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To solve a system of differential equations
1. Leave the insert point in the matrix or display.

2. Choose Compute > Solve ODE > Exact, or
Choose Compute > Solve ODE > Laplace.
(ompute > Solve ODE > Exact
Yty= , (Independent Variable: x), ODE solution: {x+2¢™* — 1}

¥(0) = 1
Y+y=0
y(0) =0 , (Independent Variable: x), ODE solution: {sinx}
Y (0)=1
Compute > Solve ODE > Laplace
y// +y= x2
y(0) =1 (Independent Variable: x), ODE solution (Laplace): {3 cosx + sinx +x% — 2}
/
y(0)=1

The following examples illustrate some of the different notations
you can use for entering and solving systems of differential equations.

Compute > Solve ODE > Laplace

dy .
o sinx , ODE solution (Laplace): {2 —cosx}
y(O) =1
Dyyy—y=0
¥(0) =1 , ODE solution (Laplace): {Cie* —e *(C; — 1)}
Y (0)=0
Dyy—y=0
E g (1) ODE solution (Laplace); {%ex -I-% (Cos %\/gx) ef%x}
yll(o) — O

A new independent variable is introduced in certain instances where
none is provided.
Compute > Solve ODE > Laplace
r_
y/ B )i y (Independent Variable: ), ODE solution (Laplace):

{[x(r) = Cse" +Cee™",y (1) = iCse" — iCse"] }
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Systems

Notice thatan exact solution to this problem involves a two-parameter
family of solutions.

Compute > Solve ODE > Exact

y=x
/

x)EO)::_g (Independent Variable: 7), ODE solution: {[x () = —sinz,y(r) = cost|}
y(0)=1

Subscripted dependent variables are allowed.

Compute > Solve ODE > Laplace

Doy +y1 =€ - {20y 12
() =1" ODE solution (Laplace): {3(3 +3e }
Dyyr—y1=0
y1(0) =1 , ODE solution (Laplace): {coshx}
1(0)=0

The next two examples show solutions using Exact for nonlinear
equations. the command Laplace produces no result for these equa-
tions, as Laplace transforms are appropriate for linear equations only.

Compute > Solve ODE > Exact

)
i;(o_)y: t; , (Independent Variable: 1), ODE solution: {{2tan (2t — 7w+ Csx) if Cs € Z} }
/ - t
ety ;L({)_zhig , (Independent Variable: x), ODE solution: {lnx — e Tt Ve (Inx— 10)}

Series Solutions

The following examples illustrate series solutions to two types of
differential equations with boundary conditions.

To solve a differential equation by the series method
1. Enter the equation and boundary conditions in a display or one-
column matrix.

2. Place the insert point in the display or matrix and choose Com-

pute > Solve ODE > Series.

3. Ifthe Math Computation Arguments dialogappears, type a vari-
able, center, and order in the dialog box.
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For the following examples, the series center is 0 and order is 5 (the
default values).

Compute > Solve ODE > Series

/ 2
y =y +4 , , , 2, 128,3 3204 5
3(0) = —2 ,(Variable: 1), Series expansion: {—Z—I— 8t — 16t~ + 551" — 51"+ 0 (t )}
Dyyr—y1 = 0 1 1
y1(0) =1 , Series expansion: { 1 + ~x> 4+ —x*+0 (xs)
NG 2 24
y1(0)=0

Numerical Methods

Appropriate systems can be solved numerically. The numeric so-
lutions are functions that can be evaluated at points or plotted.

Numerical Solutions for Initial-Value Problems

An initial-value problem is a problem that has one or more condi-
tions specified.

To solve an initial-value problem numerically
1. Start with a column matrix and enter an initial-value problem,

such as

/ /

==y o Y =sinlety) =2y
y(0)=1

with one equation per row.

2. Choose Compute > Solve ODE > Numeric.

Compute > Solve ODE > Numeric

Yy =sin(x+y)—2y
y(0)=1

This calculation defines a function y that can be evaluated at given

arguments. You can use the function to generate a table of values, and
as you will see in the next section, the function can be plotted.

(Variable: x), Functions defined: y

Compute > Evaluate
y(1) =0.54343
y(10.7) = —0.28601
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To generate a table of function values for a function y
1. Define the function g(i) = 0.1i and choose Compute > Matrix
> Fill Matrix.

2. In the dialog box, select 10 rows and 1 column, select Defined
by function and type the function name g.

3. Select the column, and choose Matrices > Map Function. Type
y in the dialog box and choose OK.

Compute > Evaluate

0.1 0.89478
0.2 0.808 88

0.3 0.73965

0.4 0.68471

05 | | 0.64190
Y106 | T | 060918
0.7 0.58468

0.8 0.56661

0.9 0.55336

1.0 0.54343

This calculation generates a list of function values for y as x varies

from 0.1 to 1.
Graphical Solutions to Initial-Value Problems

To plot numerical solutions to initial-value problems
1. Compute the numerical solution to an initial-value problem.

2. Select the function defined.

3. Choose Compute > Plot 2D > Rectangular.

To find a solution to the initial-value problem y’ = sinxy, y (0) =
3, enter the two equations into a 2 X 1 matrix, and choose Compute
> Solve ODE > Numeric.

Compute > Solve ODE > Numeric
y' = sin (xy)
¥(0)=3

Now plot y by choosing Compute > Plot 2D > Rectangular or
Compute > Plot 2D > ODE.

, Functions defined: y

Numerical Methods

401



“Compute60” — 2011/12/20 — 14:27 — page 402 — #412

Chapter 10| Differential Equations

Compute > Plot 2D > Rectangular
y

6
X
Numerical Solutions to Systems of Differential Equations

To find numerical solutions for systems of differential equations with initial
values

1. Enter the equations into an 7 X 1 matrix or display.

2. Place theinsert point into the matrix or display and choose Com-
pute > Solve ODE > Numeric.

Solve the following system numerically by entering the equations
into a 6 X 1 matrix and choosing Compute > Solve ODE > Numeric.
Three functions x, ¥, and z are returned as output.

Compute > Solve ODE > Numeric

¥=x+y—z
Y =-—x+y+z
?=—x—y+z )
X0y =1" Functions defined: x,y,z
y(0) =1
z(0)=1

The following table lists values of x, y, and 7 as the independent
variable # varies from O to 1.
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t x y Z

0 1.0000 1.0000 1.0000
0.1 1.1158 1.0938 0.8842
0.2 1.2668 1.1695 0.7332
0.3 1.4582 1.2173 0.5418
04 1.6953 1.2253 0.3047
0.5 1.9830 1.1791 0.0170
0.6 2.3256 1.0619 —0.3256
0.7 2.7265 0.8542 —0.7265
0.8 3.1873 0.5344 —1.1873
0.9 3.7077 0.0777 —1.7077
1.0 4.2842 —-0.5424 —2.2842

You can create a matrix with these values.

To generate a table of function values for numerical solutions x, y, z

1.

With the insert point in the column at the right, choose Com-
pute > Matrices > Map Function. Type x in the dialog box.

Similarly, apply Map Function to get the y and z columns.

To create a matrix with all four columns, place the ?, x, y, and z
columns next to one another and choose Compute > Matrices
> Concatenate.

. To add a row at the top for labels, select the matrix by placing

the insert point immediately to the right of the matrix. Choose
Edit > Insert Rows.

. To line up entries, select a column, choose Edit > Properties,

and change Column Alignment to Left or Right.

You can also take advantage of the fact that you are using a text ed-
itor to move the values into a 12 x 4 table. This is only for the purpose
of creating a special appearance—a table does not behave mathemat-
ically as a matrix. To make a table that will print with lines, choose
Insert > Table. Copy the information from the matrix into the table
by selecting, clicking, and dragging each piece of data. Choose Edit >

Properties and add lines according to instructions in the Table Prop-

erties dialog box.

Numerical Methods

[ 0.0 ]
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Note

For matrices that do not have built-in
delimiters, you must select only the matrix,
not including brackets, to have Insert Rows
appear on a menu.
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Graphical Solutions to Systems of Ordinary Differential
Equations

You can create and plot matrices for cach of x, y, and z of the pre-
ceding example.

To create matrices and plot numerical solutions to initial-value problems

1. Concatenate the columns for f and x.
2. Choose Compute > Plot 2D > Rectangular.

3. Generate a similar matrix using # and y and drag it to the plot
frame.

4. Generate a similar matrix using ¢ and z and drag it to the plot
frame.

Compute > Plot 2D > Rectangular

[0 1.0 ]
0.1 1.116
0.2 1.267
0.3 1.458
04 1.695
0.5 1.98
0.6 2.326
0.7 2.726
0.8 3.187
0.9 3.708
1.0 4.284

Select and drag to the plot the matrix corresponding to f and y

Select and drag to the plot the matrix corresponding to 7 and z

01 02 03 04 05 06

Note that the numeric output for # between 0 and 1 does not pre-
dict long-range behavior. This system of differential equations de-
scribes a highly unstable system.

404

Note

You can distinguish between the following
three curves by noting, for example, that
x(1.0) ~ 4.2842,

y(1.0) = —0.5424,and

7(1.0) = —2.2842.

Curve in space

You can also visualize the solution by plotting
the points (x (¢) ,y (1) ,z(t)) for
t=0,0.1,...,1.0.
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Bessel Functions

The Bessel functions 1, (z) = Bessell, (z), J, (z) = Bessell,, (z),
K,(z) = BesselK, (z), and Y, (z) = BesselY, (z) are rather compli-
cated oscillatory functions with many interesting properties. They are
defined for complex arguments v and z.

The functions J, (z) and ¥, (z) are solutions of the first and second
kind, respectively, to the Bessel equation

= v2) w=0
They can be defined in terms of the I function:

(g)v T
Jy(z) = 27/ cos (zcost) sint>'dt
SV CON
Jy () cosvt —J_, (2)

Sinvim

YV(Z) =

The functions I,,(z) and K,,(z) are solutions known as first and sec-
ond kind, respectively, to the modified Bessel equation

They can be defined in terms of the I" function:

HO = e ) ovteeminia
K@ = 2REhE

The Gamma I is defined for all complex numbers except for the
nonpositive integers. The Gamma function satisfies I' (n) = (n — 1)
if n is a positive integer.

To create custom names for the Bessel functions

1. Choose Insert > Math Objects > Math Name.

2. Type Bessell, BesselK, Bessell, or BesselY in the Name box
with capital letters as indicated.

3. Click the Function radio button in the Name Type pane and
choose OK.

Numerical Methods

107
0.8 ]
0.6 ]
0.4 ]
0.2 ]
0.0 T

-0.2 7

-04-
Bessell, (z),v=0,1,2,3,4

BesselY, (z),v=0,1,2,3,4

Custom names

The custom names Bessell, BesselK,
BesselJ, and Bessel Y are automatically
interpreted as Bessel functions. Choose
Compute > Definitions > New Definition to
define the functions
I,(z) = Bessell, (z),
K,(z) = BesselK, (2),
Jy(z) = Bessell, (z),and
Y,(z) = BesselY, (z).
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4. Typeasubscriptand press the spacebar to return to the base line.

5. Type an argument enclosed in parentheses.

A floating-point value is returned if either of the arguments is a
floating-point number and the other argument is numerical, or when
you use Evaluate Numeric.

Compute > Evaluate
Bessellp43; (3.5 —5i) = —12.996 — 2.3116i
Bessell, (6.0 +i) = —0.37649 — 0.21941i

Compute > Evaluate Numeric
BesselK;3; (3 — 5i) 2 0.0073755 —0.004792 8i
BesselY; (3i) ~ 0.039159 —2.2452

Explicit symbolic expressions are returned when the index v is a

half integer.
Compute > Evaluate
Bessell| » (x) = \/‘ﬁ/\i/;c sinx
Bessel Y3/, (x) = — \/\ﬁ/\iﬁ (sinx+ % cosx)

The negative real axis is a branch cut of the Bessel functions for
noninteger indices v. A jump occurs when crossing this cut:

Compute > Evaluate

Bessell_3/4(—1.2) = —0.76061 —0.76061i
Bessell_3 4 (—1.2+101%) = —0.76061 — 0.76061i
Bessell 34 (—1.2—107'%) = —0.508 58 +0.20505i

The Bessel functions can be used in conjunction with other math-
ematical operations.

Compute > Evaluate

d
%BesselJo (x) = —Bessell; (x)

d

g Bessell; (x) = % (xBessellp (x) — BesselJ; (x))
X

lim,_,.. Bessell, (x2 + 1) =0

limy_,.. Besselly 5 (x% +i) = Y2 (ioo4-oo)

SIS
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0.0 05 1.0 15 2.0
X

BesselK, (z),v=0,1,2,3,4

If floating-point approximations are desired for
arguments that are exact numerical
expressions, then we recommend using a
floating-point expression in the argument
rather than evaluating the result numerically.
In particular, for half-integer indices the
symbolic result is costly to compute and
floating-point evaluation of the resulting
symbolic expression may be numerically
unstable. Increasing the number for Digits
Used in Computations may achieve a
satisfactory result, but as a general rule, the
use of a floating-point expression in the
argument gives more accurate results.
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Exercises

Compute > Power Series

BesselVs) = 16 2, L1 0(x)
Exercises

1. Find the general solution of the equation y” — 6y’ + 5y = 0.
Find the general solution of the equation x%y"” — 3xy’ — 6y = 0.

Find the general solution of the equation 2x%y’ = xy + 3y?.

L

Solve the initial-value problem y’ +y =2, y(0) = 0.
5. Solve the initial-value problem % —y+3=0,y(0)=1.
6. Solve the Bessel equation 12% + z’% + (22 — v2) w=0.

7. Solve the equation y’ +y? + b -+ ax = 0 and verify that the re-

sult is indeed a solution.

8. By Newton’s law of cooling, the rate of change in the tempera-
ture of an object is % = k(T — R), where k is a constant that
depends on how well insulated the object is, T is the tempera-
ture of the object, and R is room temperature. A cup of coffee is
initially 160°; 10 minutes later, it is 120°. Assuming the room
temperature is a constant 70°, give a formula for the tempera-
ture at any time 7. What will the temperature of the coffee be
after 20 minutes?

Solutions

1. Compute > Solve ODE > Exact (Independent Variable ?):
y" — 6y’ + 5y = 0, Exact solution: Cje>' + Coé

2. Compute > Solve ODE > Exact (Independent Variable x): x?y" —
3xy’ — 6y = 0, Exact solution: Cjx2+V10 4 Cpx2 V10

3. Compute > Solve ODE > Exact (Independent Variable x): 2x%y’ =
372

xy + 3y?, Exact solution: y (x) = VT

4. Compute > Solve ODE > Laplace (Independent Variable ¢):
Y4y=2

y(0) =0 , Laplace solution: y (1) =2 —2e¢'
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—y+3=0
y(0)=1

5. Compute > Solve ODE > Exact: dx Exact

solution: y (x) =3 —2¢*

6. Compute > Solve ODE > Exact: zz‘i, dw 4 gdw e (z2 - vz) W=
0, Exact solution: C31 BesselJ, (z) + C3p BesselY,, (z).

7. Compute > Solve ODE > Exact: y/ +y? + b+ ax = 0, Exact

Cao AiryA1< 1Lt ,1) +AiryB1< Lo 1)
Vi 5
AiryBi<—;b3+”,o> \/; +Ca9 AiryAi(—[ll brax o ) \ﬁ
Vi Vi
Compute > Definitions > New Definition: y (x) =

Cog AiryAi (— 1 btax 1) +AiryBi <_ 1 btax |

Vr Uy
AiryBi (—‘ ”\71 0> f +Cy9 AiryAi <—;%,0> %/g
Compute > Evaluate, Simplify: y (x) +y (x)* +b+ax=b—
AiryBi<—a3\]/T(b+ax),0) AiryAi( - . T (o) o)
% az (bJrax)Jréng % (b+ax)
/i Vi
AiryBi( (b+ax), ) +Cy9 A1ryA1< 1 (b+ax),0> Y1
a \/Z Ve A/E

+ax=0.

solution: —

8. Compute > Solve ODE > Exact: % = k(T —70), Exact so-
lution: T (1) = 70 + €K' C,

160 =C;e" +70
120 = C1 10+ 70

Compute > Solve > Exact: , Solution:

{k=%mn3,Cr =90}
Compute > Definitions > New Definition: C = 90,k = {5 ln 5
Compute > Definitions > New Definition: T () =70+ ektcl

Compute > Evaluate: T (¢) = 90e 107113 +70
Compute > Evaluate Numeric: 7'(20) = 97.778°
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Statistics: the mathematical theory of ignorance.

tatistics is the science and art of obtaining and analyzing quan-
S titative data in order to make sound inferences in the face of
uncertainty. The word szasistics is used to refer both to a set of
quantitative data and to a field of study. The field includes the devel-

opment and application of effective methods for obtaining and using
quantitative data.

Introduction to Statistics

You can perform statistical operations on data using the various
items on the Statistics submenu. In addition to the menu items, a num-
ber of the standard statistical distribution functions and densities are
available, either built in or definable.

The items Mean, Median, Mode, Moment, Quantile, Mean De-
viation, Standard Deviation, and Variance on the Statistics submenu
take a single argument that can be presented as a list of data or as a ma-
trix. The result of an operation is a number or, in the case of a matrix
or vector, a number for each column.

The items Correlation, Covariance, and Fit Curve to Data on the
Statistics submenu take a single argument that must be a matrix. For
the multiple regression curve-fitting commands, the columns must be
labeled with variable names. The choice Compute > Statistics > Ran-
dom Numbers allows you to get random samples from standard fam-
ilies of distributions.

11

Statistics

Introduction to Statistics
Measures of Central Tendency
Measures of Dispersion
Distributions and Densities

Families of Continuous
Distributions

Morris Kline (1908—1992)

Families of Discrete Distributions

Random Numbers

Curve Fitting
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Lists and Matrices

You can store data in lists or in matrices. Numbers in a list should
be separated by commas, with the numbers and commas both in math-
ematics mode. Lists can be plain or enclosed in brackets. A list of data
is also referred to as a sez of data. A list can be reshaped into a matrix.

To reshape a comma-delimited list or set of data into a matrix
1. Place the insert point in the list or set, and choose Compute >
Matrices > Reshape.

2. In the dialog box that appears, type a number for Columns and
choose OK.

3. Ifbracketsdo notappear, select the matrix with the mouse, choose
Insert > Math Objects > Brackets, and select appropriate brack-
ets.

Compute > Matrices > Reshape

(1 3.1 ]
2 96
3 105
1,3.1,2,9.6,3,10.5,4,6.8,5,2.9,6,2.2, (Columns: 2) | , ¢
5 29
|6 22 |
Compute > Plot 2D Rectangular
1 2 3 4 5 61"
3.1 9.6 10.5 6.8 2.9 2.2
-
10 o— =
y y \\
8 / N
/ 8
6 / AN
N
at’ N
S
2k : : : ——
1 2 3 4 5 6
X

For this plot, the matrix of points was used for two items. Item 1 is
a Point Plot with Point Marker set to Circle. Item 2 has Line Style
set to Dash. (See Reshaping Lists and Matrices, page 293, for more

examples.)
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Measures of Central Tendency

You can compute ordinary measures of central tendency. Several
of these, such as Mean, Median, Mode, Geometric Mean, and Har-
monic Mean, are items on the Statistics submenu.

Arithmetic Mean

The mean (arithmetic mean, average) of the numbers x1,x2, . .., xp
is the most commonly used measure of central tendency. It is the sum
of the numbers divided by the number of numbers.

n .
i=1%i
n

To find the mean of the numbers in a list

1. Place the insert point in the list.

2. Choose Compute > Statistics > Mean.

Compute > Statistics > Mean
a,b,cMean(s) $a+ 1b+ %c 23,5,—6,18,23,—22,5Mean(s) %
16.5,22.1,6.9,14.2,9.0, Mean(s) 13.74

Choosing Compute > Statistics > Mean gives the means of the
columns. Applying Mean again, this time to the list of column means,
gives the mean of the matrix entries.

Compute > Statistics > Mean

23 5 -6
18 23 —22 | Mean(s) [43—6,%,—%] [?,%,—%]Meam(s)
5 0 0

Notice that two of the following matrices are interpreted as Zabeled
matrices, so the first row is ignored.

Measures of Central Tendency
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Compute > Statistics > Mean

Xy z

1 1 4 a b

3 2 5 [Mean(s) [4,%,%} ¢ d |Mean(s) [%C—i—%f,%d—l—%g]
536 f g

7 4 7

[4, %, %]Mcan(s) 4 [%C-F %f, %d—l— %g] Mean(s) %C—i— %d—|— %f—|— %g

Median

A median of a finite list of numbers is a number such that at least
half the numbers in the set are equal to or less than it, and at least half
the numbers in the set are equal to or greater than it. If two different
numbers satisfy this criterion, MuPAD takes the smaller number as
the median. The value computed for a median may vary according to
different conventions.

You do not have to arrange the numbers in increasing order before
computing the median. Leave the insert point in a list or set of data, a
vector, or a matrix and choose Compute > Statistics > Median.

Compute > Statistics > Median

1,5,2 Median(s) 2 2,3,3,3 Median(s) 3

1,2,3,4 Median(s) 2 23,5,-6,18,23,-22,5,7 Median(s) 5
For a matrix, you obtain the medians of the columns. The second

of the following matrices is interpreted as a labeled matrix, and the first
row is ignored.

Compute > Statistics > Median

23 5 —6 ‘11 12’
18 23 —22 | Median(s) [18,5,—6] 5 6 Median(s) [3,4]
5 0 0 > 4

Quantile

The gth quantile of a set, where g is a number between zero and
one, is a number Q satisfying the condition that the fraction ¢ of the
numbers falls below Q and the fraction 1 — g lies above Q. The 0.5th
quantile is a median or 50th percentile, whereas the 0.25th quantile is
a first quartile or 25th percentile, and so forth. Take the gth quantile
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of a matrix to find the gth quantiles of the columns.

The value of a quantile of a finite set of numbers may vary accord-
ing to different conventions. The quantile is interpreted here accord-
ing to the algorithms implemented by the MuPAD computational en-
gine. You can find quantiles of a list of numbers, a set of numbers, a

vector, or columns of a matrix.

Compute > Statistics > Quantile
1,2,3,4,5,6,7,8,9,10 Quantile(s): 0.87,9
{5.6,7,8.3,57,1.4,37,2} Quantile(s): 0.25,2
[765,654,345,789] Quantile(s): 0.99,789

1137 4 4
[ o 33 } Quantile(s): 0.75, %

100 20" 25
[23 5 -6
18 23 —22 | Quantile(s): 0.33,[5,0,—22]
| 5 0 0
(23 5 -6
9 -3 7 Quantile(s): 0.50,[18,5, —6]
18 23 -2

Mode

A mode is a value that occurs with maximum frequency. To find
the mode or modes of a list of numbers or of the columns of a ma-
trix, leave the insert point in the list or matrix and choose Compute >
Statistics > Mode. The computational engine also returns the multi-
plicity of the mode or modes.

Compute > Statistics > Mode

23,5,—6,18,23,—22,5 Mode(s) [23,5],2

1,1,5,5,5,7,7,8,9,9,9 Mode(s) [5,9] , 3
23 5 -6

18 23 —22 | Mode(s) [[23,18,5],1,[23],2,[—6,—22,0], 1]

5 23 0

The following matrix is interpreted as a labeled matrix, and the

modes returned are the modes of the matrix { ? 3 } .

Measures of Central Tendency
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Compute > Statistics > Mode

a b
3 4 | Mode(s) [3,1],1,[4,2],1]
1 2
Geometric Mean
The geometric mean ofn nonnegative numbers x1,X2, ..., X, is the

nth root of the product of the numbers

”/xlxz.. - Xp

The geometric mean is useful with data for which the ratio of any two
consecutive numbers is nearly constant, such as money invested with
compound interest.

To find the geometric mean of a set of nonnegative numbers, leave
the insert point in a list, set, vector, or matrix of numbers and choose
Compute > Statistics > Geometric Mean. For a matrix, the result is
a list of geometric means of the columns.

Compute > Statistics > Geometric Mean
3,56, 14,2Geometric Mean(s) v4704  5.19,7.3Geometric Mean(s) 6.1552

[2.9 52 97

62 88 11 }GcomctricMean(s) [4.2403,6.7646,3.2665]

You can also find the geometric mean directly from the defining
formula, as follows.

Compute > Evaluate Numeric

V3 %56 x 14 x 2~ 8.2816
Y/(5.19)(7.3) (2.77) (3.67) (8) ~ 4.9859

More generally, you can compute the geometric mean by defining

the function
G(z,n) = {/ Hzi
i=1

and a vector Z = (21,22, . . ., 2| and then evaluating G (z,n).

Compute > Definitions > New Definition

G(Zvn) = n\/ H;l:l Zi
s =[3,56,14,2] t=[5.19,7.3,2.77,~3.67, 8|
w=[4,7,18] v=[4,7,13,1§]
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Measures of Central Tendency

Compute > Evaluate Compute > Evaluate Numeric
G (s,4) = V4704 G(s,4) ~8.2816
G(t,5) =4.9859 G(t,5) ~4.9859
G (u,3) = v/504 G(u,3)~7.9581
G (v,4) = V6552 G (v,4) ~8.9969

If you invest $1 and carn 10% per year for six years, the value of
your investment in this and the succeeding years is

1.00,1.10,1.21,1.33,1.46,1.61,1.77

The geometric mean of these seven numbers is 1.33.

Harmonic Mean

The harmonic mean of n positive numbers x1,x2, . .., X, is the re-
ciprocal of the mean of the reciprocals.

n
no 1
i=1 %

The harmonic mean can be used in averaging speeds, where the dis-
tances applying to each speed are the same.

To find the harmonic mean of a set of positive numbers, leave the
insertion point in a list, set, vector, or matrix of numbers, and choose
Compute > Statistics > Harmonic Mean. For a matrix or vector, the
result is a list of harmonic means of the columns.

Compute > Statistics > Harmonic Mean

a,b,c Harmonic Mean(s) 2,4,6,8 HarmonicMean(s) %

1 1 1
aThTe

0.67,1.9,6.2,5.8,4.7 HarmonicMean(s) 1.949 1

You can also compute a harmonic mean directly from the defining
formula. Following are the harmonic mean of 2, 4, 6, and 8, and the

harmonic mean 0f 0.67, 1.9, 6.2, 5.8, and 4.7, respectively.
Compute > Evaluate
4 _ 9%
i

1 1 1 1 1\
5(gh+ 15+ ey + 55 +45) | =1.9491
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You can compute the harmonic mean by defining the function

n

1
n -
Y- =

H(z,n) =

and the vector z = [z21,22,. . ., 24| and then evaluating H (z,n).

Compute > Definitions > New Definition

H(Z,I’l) = .
n J—

i
s=1[2,4,6,8] 1=10.67,1.9,6.2,5.8,4.7]
u=1[4,7,18] v=[4,7,13,18]
Compute > Evaluate Compute > Evaluate Numeric
H (s,4) = 32 H (s,4) ~3.84
H(u3) =158 H (u,3) ~6.6903
H(t,5)=1.9491 H(t,5)~1.9491
H(v4) =115 H(v,4) ~7.6142

Ifyou average 20 m.p.h. driving from your home to a friend’s home
and 30 m.p.h. driving back home over the same route, then your “av-
erage” speed for the round trip is the harmonic mean

2
20 30
This computation gives the speed that you would have to travel if you
did the round trip at a constant speed, taking the same total amount
of time.

Measures of Dispersion

The various measures of dispersion describe different aspects of the
spread, or dispersion, of a set of variates about their mean.

Mean Deviation

The mean deviation is the mean of the distances of the data from
the data mean. The mean deviation of x1,x7, ..., X, is

n

X

X — j=1"]
! n

P

n
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Measures of Dispersion

where the vertical bars denote absolute value. For example, the mean

deviation of {1,2,3,4,5} is

[1-3[+|2-3|+[3-3[+[4-3|+[5-3] 6
5 5

You can present the data as a list, vector, or matrix. In the latter case,
you get the mean deviations of the columns.
Compute > Statistics > Mean Deviation
1,2,3,4,5 Mean deviation(s) g
-85 —-55 -37
=35 97 50
Variance and Standard Deviation

The sample variance for x1,x2, ... ,Xp is the sum of the squares of
differences with the mean, divided by n — 1.

. 87
] Mean deviation(s) [25,76,7]

n

i 2
B (s-2)

=1

n—1

To compute sample variance
e Place the insert point in a list of data, in a vector, or in a matrix
and choose Compute > Statistics > Variance.

Compute > Statistics > Variance
5,1,89,4,29,47, 18Variance(s) 21033

21
18.1 23 5 -6
5.3 | Variance(s) 46.563 18 23 —22 | Variance(s) [?, 4%—9, %]
7.6 5 0 0

Note that the following matrix is treated as a labeled matrix and
the first row is ignored in the computation.

Compute > Statistics > Variance

Xy
a b | Variance(s) [2 (%a— %6)2,2 (%b— %d)z}
c d
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The square root of the variance is called the standard deviation. It
is the most commonly used measure of dispersion.

2
n (x__Eﬁzgﬁ)
i=1 1 n

n—1

Compute > Statistics > Standard Deviation
[5,1,89,4,29,47,18]Standard Deviation(s) - v21/21055

18.1
5.3 | Standard Deviation(s) 6.8237
7.6
[23 5 -6
18 23 —22 | Standard Deviation(s) [%\@\/ 259, %\@\/ 439, %\@\/97]
5 0 0

Note that the following matrix is treated as a labeled matrix, and
the first row is ignored.

Compute > Statistics > Standard Deviation

Xy
a b | Standard Deviation(s) {\@ (%a—%c)z,ﬁ (éb—éd)z]
c d

Covariance

The covariance matrix of an m X n matrix X = [x;;] isann x n
matrix with (i, j)th entry

m
Lol Xsi i
Y (in—ism Xkj— =5,
k=1

m—1

Note that for each i, the (i,7)th entry is the variance of the data in the
ith column, making the variances of the column vectors occur down
the main diagonal of the covariance matrix. The definition of covari-
ance matrix is symmetric in i and j, so the covariance matrix is always
a symmetric matrix.
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Measures of Dispersion

Compute > Statistics > Mean
1 2
3 5 | Mean(s) |
| 4 3

w|oo

4

85 =55 =37

—35 97 50 |Mean(s)[4.3,3.2667,2.0667]
79 56 49

Compute > Statistics > Variance
1 2
. 717
3 5 | Variance(s) [5,5]
| 4 3

85 55 37

—3.5 9.7 5.0 | Variance(s) [45.72,61.843,24.943|
79 56 49

Compute > Statistics > Covariance

; g Covari .| 2.3333 1.1667
ovariance matrix | | oo 5 3300
| 4 3
85 —-55 3.7 45.72 —-39.3 —18.45
—-3.5 9.7 5.0 | Covariance matrix —39.3 61.843 38.018
79 56 49 —18.45 38.018 24.943
Moment
The rth moment of a set {x1,x2,...,x,} about the point a is the
following sum:

(xi —a)’

1

n

S |-

1

Thus, the mean is also known as the first moment about zero. The sec-
ond moment about zero is the quantity 4% + 62, where f is the mean
and 67 is the variance of the data. The rth moment about the mean is

the sum
1 e\
- xi—-Y x
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As easily seen, the first moment about the mean is always 0.

Example
about the mean are

1 12 ’
— 2i— =Y 2j = 0
9'—1< = )

3776

4
19
20— =) 2j = —— ~1258.7
(-332) - %

M

1
9 =

Compute > Statistics > Moment
(Moment Number: 1, Give Origin: 0)
[ 85 ]
-5.5
-3.7
| 3.5 ]
(Moment Number: 2, Give Origin: 0)
[ 85 ]
-5.5
-3.7
| 3.5 ]
(Moment Number: 1, Give Origin: 0.5)
(10.123 0.703 0.445 0.284 ) Moment(s): —0.11125

(Moment Number: 2, Compute moment about the mean.)

( 0.123 0.703 0.445 0.284 )Momcnt(s): 4.5878 x 1072

Moment(s): 0.7

Moment(s): 32.11

Correlation

In dealing with two random variables, we refer to the measure of
their linear correlation as the correlation coefficient. When two ran-
dom variables are independent, this measure is 0. If two random vari-
ables X and Y are linearly related in the sense Y = a + bX for some
constants a and b, then the coefficient of correlation reaches one of
the extreme values +1 or —1. In either of these cases, X and Y are
referred to as perfectly correlated. The formula for the coeflicient of
correlation for two random variables is

Cov(X,Y) Oy

= X.Y)= =
p=p(XY) .5, 50,

420
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Distributions and Densities

where 0 and 0 are the standard deviations of the two random vari-
ables.

To compute the coeflicient of correlation between two samples,
enter the data as two columns of a matrix and choose Compute >
Statistics > Correlation. You can apply this operation to any size ma-
trix to get the coeflicient of correlation for each pair of columns: the
number in the 7, j position is the coefficient of correlation between
column i and column j. A correlation matrix is always symmetric,
with ones on the main diagonal.

Compute > Statistics > Correlation
[ 43 —62
77 66 . . 1.0 7.4831x 102
COI’I‘ClatIOH matrix:

54 -5 7.4831 x 102 1.0
| 99 —61

[ —50 —12 —18 1.0 —0.52883 —0.71054
31 —-26 —62 | Correlation matrix: | —0.52883 1.0 0.97297
1 —47 -91 —0.71054 0.97297 1.0

Cov (X,Y)

0,0y
variance, and the standard deviations is illustrated in the following:

The relationship

= p (X,Y) among correlation, co-

Correlaci _[10 —0.52883
orrelation matrix: —0.52883 1.0
1677.0 —381.5]

—-50 —12 i ix:
Covariance matrix: [381.5 310.33

31 -26
1 —-47
Standard Deviation(s): [\/ 1677,2/3 \/E]

Evaluate Numeric: —381.5 ~ —0.52881

V1677 x 1v/3V/19

Distributions and Densities

A cumulative distribution function F (x) of a random variable X is
the function F (x) = P (X < x), the probability that X < x. If F(x)
has a derivative f(x), then f(x) is nonnegative and is called the prob-
ability density function of x. The inverse distribution function G(Q)
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satisfies G (F (x)) =xand F (G (a)) = . The names for these func-
tions are obtained by adding Dist, Den, or Inv to the name of the dis-
tribution. For example, NormalDist, NormalDen, and Normallnv
are the three functions for the normal distribution. These function
names will automatically turn gray when typed in mathematics mode.

Cumulative Distribution Functions

A cumulative distribution function is a nondecreasing function
defined on the interval (—eo, ), with values in the interval [0, 1]. The
definition of a distribution function generally describes only the val-
ues where the function is positive, the implicit assumption being that
the distribution function is zero up to that point. For discrete cumu-
lative distribution functions, the definition also gives only the values
where the function changes, the implicit assumption being that the
cumulative distribution function is a step function. Commonly, def-
initions of these functions are stated only for integers. The definition
of adensity function also generally describes only the values where the
function is positive, the implicit assumption being that the function is
zero elsewhere.

These distribution and density functions satisfy the relationships

d

:aF(x) and F(x):[wf(u)d”

f()

Also note that the cumulative distribution function satisfies

limF(x)=1 and lim F(x)=0.

fraress X—r—oo
In Scientific WorkPlace and Scientific Notebook, cumulative distribu-
tion functions are named FunctionDist, and the density functions are
named FunctionDen. For example, the probability density functions
for the normal distributions are called NormalDen.

You can compute with several families of distributions: Normal,

Cauchy, Student’s t, Chi-Square, F, Exponential, Weibull, Gamma,
Beta, Uniform, Binomial, Poisson, and Hypergeometric.

Inverse Distribution Functions

For a distribution function F mapping (—ee, o) into [0, 1], the in-
verse distribution function G performs the corresponding inverse map-
ping from (a subset of ) [0, 1] into (—eo,e0); thatis, G (F (x)) = xand
F(G(a)) = a. Equivalently, Prob[X < G ()] = F(x) = o.. Note
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that the value that is exceeded with probability ¢t is given by the func-
tion G(1 — ). This function is also of interest.

Prob X <G(1—0a)]=F(x)=1—a=1—-Prob[X <G(a)]

When cumulative distribution functions are named FunctionDist,

then the inverse cumulative distribution functions are named FunctionInv.

For example, Normallnv is the name of the inverse cumulative distri-
bution function for the normal distribution.

Distribution Tables

Depending on the particular family of distributions, the distribu-
tion tables in statistics books list function values for selected parame-
ters of one of the functions described earlier—either the cumulative
distribution, the inverse cumulative distribution, or the probability
density function. With access to these functions, not only can you
compute the tabular entries easily and accurately, but you can also find
the corresponding values directly for any variables and parameters to
any degree of accuracy you wish.

Families of Continuous Distributions

The relationship of the various distribution, inverse distribution,
and density functions to the entries in standard statistical tables is ex-
plained in the following sections for each of the families of distribu-
tions available.

Gamma Function

The Gamma function T'(t) that appears in the definition of the
Student’s ¢ distribution and the gamma distribution is the continu-
ous function I'(#) = [;” e *x'~!dx defined for positive real numbers
t. The Gamma function satisfies

['(1)=1 and T(t+1)=1I(¢)
and for positive integers , it is the familiar factorial function
['(k)=(k—1)!

The Gamma function symbol I is recognized as a function. For exam-
ple, place the insert point in the expression I'(5) and choose Evaluate
to get I'(5) = 24. Note that 24 =4 x 3 x 2 X 1. (See page 157 fora
plot of the Gamma function.)

Families of Continuous Distributions

423



“Compute60” — 2011/12/20 — 14:27 — page 424 — #434

Chapter 11| Statistics

Use Rewrite > Factorial to convert the Gamma function to a fac-
torial expression. (First you must assume that x is an integer.)
Compute > Evaluate

assume (x, integer) = Z

Compute > Rewrite > Factorial
I'(x)=(x—1)! (") =

n n!(m—n)!

Use Rewrite > Gamma to convert factorials, binomials, and multi-
nomial coefficients to expressions in the Gamma function.

Compute > Rewrite > Gamma

(x—1)!'=T(x) iyl =Tx+1)T(y+ 1) (z+1)
(m) _ C(m+1)
n I'(n+1)L(m—n+1)

Normal Distribution

The normal cumulative distribution function is defined for all real
numbers it and for positive O by the integral

1 x ()’
/ e 22 du

NormalDist (x; 1, 0) =
oVlrn

of the normal probability density function

1 (u-p)?

NormalDen (u; it,0) = e
oV2arn

The inverse of the normal cumulative distribution function,
Normallnv, is also available. All three of these function names can
be typed in mathematics, and they will automatically turn gray as you
type the final letter.

The parameters U and O are optional parameters for mean and
standard deviation, with the default values 0 and 1 defining the szan-
dard normal distribution

w2
NormalDist (x " Zdu

1 x
LS
V2T J—e0
A normal distribution table, as found in the back of a typical statis-
tics book, lists some values of the standard normal cumulative dis-

tribution function. Certain versions of the table list the values 1 —

NormalDist (x).

424
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Families of Continuous Distributions

Note that the function NormalDist can be evaluated as a function
of one variable (with default parameters (0, 1)) or as a function of one
variable and two parameters.

Compute > Evaluate Numeric
NormalDist(2.44) =~ 0.992 66 NormalDist(2.44;1,2) ~ 0.76424
NormalDist(2.44;0, 1) ~ 0.99266 NormalDen(2.44;1,2) ~ 0.15393

Graphs of the normal density functions are the familiar bell-shaped
curves.  The plots to the right show the density functions
NormalDen (x; it, &) and distribution functions NormalDist (x; it, &)
for the parameters (1,0) = (0,1),(0,5),(0,0.5),(1,1)

Student’s t Distribution

The Student’s t cumulative distribution function TDist(x;v) is de-
fined by the integral

NCSN 1,\ 2
TDist(x;v) = (2)/ <l + u2> du
of the density function
et 1,\ 7
TDen(u;v) = TG (l + uz)

with shape parameter v, called degrees of freedom, that ranges over
the positive integers. The variance for a Student’s t distribution is é,
provided v > 2. 10—+

The function TInv(p; v) is the value of x for which the integral has y

the value p, as demonstrated here:

Student’s t density functions

Compute > Evaluate Numeric 057

TDist(63.66;1) ~ 0.995  TDist(—0.97847;3) ~ 0.2

TInv(0.995;1) ~ 63.657 TInv(0.2;3) =~ —0.97847 . , , —
-4 -2 0 2 4

The plots to the right display the density and distribution func- X
tions TDen (x;v) and TDist (x;v) for the parameters v =1 and v =
15 with —5 < x < 5. Student’s t distribution functions

Note that the Student’s t density functions resemble the standard
normal density function in shape, although these curves are a bit flat-
ter at the center. It is not difficult to show, using the definitions of the
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two density functions, that lim,_,.. TDen(u;v) = NormalDen(u),
the density function for the standard normal distribution.

Student’s t distribution tables list values of the inverse distribu-
tion function corresponding to probabilities (values of the distribu-
tion function) and degrees of freedom. For values of v above 30, the
normal distribution is such a close approximation for the Student’s t
distribution that tables usually provide values only up to v = 30.

Example Assuming a Student’s t distribution with 5 degrees of
freedom, determine a value ¢ such that Pr(—c < T < ¢) = 0.90,
where Pr denotes probability. Now Pr(—c¢ < T < ¢) =Pr(T < ¢)—
Pr(T < —c) = TDist(c¢;5) — TDist(—c;5). So, you need to solve
TDist (¢;5) — TDist (—c;5) = 0.90. The Student’s t distribution sat-
isfies TDist (¢;5) + TDist (—c;5) = 1. So, the problem reduces to

2TDist(c;5) —1=0.90
0.90+1
2

The problem is solved by TInv(0.95;5) = 2.015.
Chi-Square Distribution

The chi-square cumulative distribution function is defined for non-

TDist(c;5) = =0.95

negative x and {4 by the integral

ChiSquareDist(x; i) =

1 "X "
m / u%fleffdu
F(%)Zf Jo

The integrand is the chi-square probability density function

1 £
i’
r(5)22

_u
e 2

ChiSquareDen(u; i) =

The indexing parameter i > 0 is the mean of the distribution; it
is referred to as the degrees of freedom.

The plots to the right show density functions ChiSquareDen (x; i)
and distribution functions ChiSquareDist(x; 1) for 4 = 1,5, 10,15
and 0 < x < 25.

The function, ChiSquarelnv (z; v) gives the value of x for which

ChiSquareDist(x; V) =1t.

This relationship is demonstrated in the following examples:
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Compute > Evaluate Numeric
ChiSquarelnv(0.1;5) ~ 1.6103
ChiSquarelnv(0.5;3) ~ 2.366

A chi-square distribution table shows values of vV down the left col-
umn and values u of ChiSquareDist across the top row. The entry in
row V and column u is ChiSquarelnv(u; v).

F Distribution

The F cumulative distribution function is given by the integral

(7)Y N (X no no\-4
FDist(x;n,m) = ——2—— (—) / uz (1 + —u) du
( ) C(5HT(%) \m/ Jo m
of the probability density function
C(&™Y N5 n2 no\-""
FDen(u;n,m) = ———2—"— (—) u?z (1 + *M)
) \n m

The variable x can be any positive number, and 7 and m can be any
positive integers. The F distribution is used to determine the valid-
ity of the assumption of identical standard deviations of two normal
populations. It is the distribution on which the analysis of variance
procedure is based.

The inverse distribution function FInv(p;n,m) gives the value of
x for which the integral FDist(x; n, m) has the value p. These function
names automatically turn gray when they are entered in mathematics
mode. The relationship between these two functions is illustrated in
the following examples.

Compute > Evaluate Numeric
FDist(0.1;3,5) 2 4.3419 x 102
FDist(3.7797;2,5) ~ 0.90000
FInv(0.9;2,5) ~ 3.7797
FInv(0.043419;3,5) ~ 0.1

Standard F distribution tables list some of the values of the inverse
F distribution function. Thus, for example, the 4.4th percentile for the
F distribution having degrees of freedom (3,5) is FInv(0.044;3,5) =
0.1, and the 90th percentile for the F distribution having degrees of
freedom (2,5) is FInv(0.90;2,5) = 3.7797.

Families of Continuous Distributions

ChiSquareDist (2.366;3) =~ 0.5
ChiSquareDist(1.6103;5) a2 9.9999 x 1072 ~ 0.1

y 0.8

0.6
0.4
0.2

F density functions

10T

0571

0.0

XL

F distribution functions
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The plots on the previous page show probability density functions
FDen(x;n,m) and cumulative distribution functions FDist(x;n,m)

for (n,m) = (1,1),(2,5),(3,15),and 0 < x < 5. 0.3
Exponential Distribution
The exponential cumulative distribution function with parameter |1, 027X
or mean W, is defined by the integral
01T
1 (% —u —x
ExponentialDist (x; 1) = ﬁ/ efdu=1—e#*
0
0.0
of the exponential density function 0 5 10 1 20 =

1 Exponential density functions
ExponentialDen(u; i) = Eef

forx > 0, and is O otherwise.
The inverse exponential distribution function

Exponentiallnv (a; ) = pln -

is the value of x for which the integral has the value @, as illustrated
by the following:

Compute > Evaluate Numeric
Exponentiallnv (0.73;0.58) ~ 0.75941
ExponentialDist (0.75941;0.58) ~ 0.73000 Exponential distribution

ExponentialDen (0.75941;0.58) ~ 0.46552
The plots to the right show density functions ExponentialDen (x; it )
and distribution functions ExponentialDist (x; it ), for the parame-
ters it = 1,3,5 and 0 < x < 25.

Weibull Distribution

The Weibull distribution with scale parameter b > 0 and shape pa-
rameter @ > 0 is defined by the integral

X ajp—a ajp,—a
WeibullDist (x; a,b) = abf“/ u e gy =1 — et
0

of the density function

a

WeibullDen (i;a,b) = ab™“u®~'e """
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for x > 0, and is 0 otherwise.

The inverse Weibull distribution function

1
1 a
11—«

is the value of x for which the integral has the value @, as illustrated
by the following:

Weibulllnv (o;a,b) = b <ln

Compute > Evaluate Numeric
WeibullDist (0.51431;0.5,0.3) ~ 0.73
Weibulllnv (0.73;0.5,0.3) = 0.51431

Plots show the probability density functions WeibullDen (x; a, b)
and cumulative distribution functions WeibullDist (x; a, b) for param-

eters (a,b) = (0.5,1),(1,1),(3,0.5),and (3,1),and 0 < x < 3.

Gamma Distribution

The gamma distribution is defined for x > 0 by the integral

1 X u
GammaDist (x;a,b) = T )/ u e bdu
a)Jo

where (1) = [3” e “u'~!du is the Gamma function. The parameters
a and b are called the shape parameter and scale parameter, respec-
tively. The mean of this distribution is @b and the variance is ab?. The
probability density function for the gamma distribution is

1
bl (a)

u
ulemh

GammaDen(u;a,b) =

Plots show the probability density functions GammaDen (x; a, b)
and cumulative distribution functions GammaDist (x;a,b) for

(a,b) = (1,0.5),(1,1),and (2,1) and 0 < x < 4.
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20
15
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X

Gamma distribution
Gamma density functions functions

Beta Distribution
The beta distribution is defined for 0 < x < 1 by the integral

1 Yol -1
T v 1—uw)" ' d
B(v,w)/o (1 —u) u

where B(v,w) = fol w1 (1 —u)" " du is the Beta function with pa-
rameters v and w.

BetaDist (x;v,w) =

The probability density function for the beta distribution is

W (1 —u) !

BetaDen (u;v,w) = Blm)
v, W

The parameters v and w are positive real numbers called shape param-

eters, and O < u < 1. The mean of the beta distribution is

Compute > Evaluate Numeric
BetaDist (0.5;2,3) ~ 0.6875 BetaDen (0.5;2,3) ~ 1.5

Plots show the probability density functions BetaDen(x; b, ¢) and
cumulative  distribution  functions  BetaDist (x;b,¢)  for

(b,c) =(2,3),(5,1),(3,8),and 0 < x < 1.
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Cauchy Distribution

The Cauchy cumulative distribution function is defined for all real
numbers @, and for positive 3, by the integral

CauchyDist(x; &, B) = 751[5’/1 (1 + (MEOC)z) 71du

The integrand is the Cauchy probability density function

1
u—o 2
np (1 + ( B ) )
The median of this distribution is &. The Cauchy probability density
function is symmetric about @ and has a unique maximum at .
Plots show the probability density functions CauchyDen(x; &, B)

and cumulative distribution functions CauchyDist(x; &, B) for the
parameters (¢, ) = (—3,1), (0,1.5),and (3,1),and =5 < x <5.

CauchyDen(u; o, ) =

Cauchy density functions ~ Cauchy distribution functions

Uniform Distribution

The uniform cumulative distribution function UniformDist (x; a, b)
for a < b is the function

0 if x<a
UniformDist (x;a,b) = ¢ =5 if a<x<b

1 if b<x

The probability density function of the uniform distribution on an

Families of Continuous Distributions
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interval [a,b], where a < b, is the function

0 if x<a
UniformDen(x;a,b) = ﬁ if a<x<b
0 if b<x
The uniform random variable is the continuous version of “choosing a
number at random.” The probability that a uniform random variable
on [a, b] will have a value in either of two subintervals of [a, b] of equal
length is the same.
Plots show the probability density functions UniformDen (x; a, b)
and cumulative distribution functions UniformDist (x;a,b) for

(a,b) = (0,1), (1.5,5), (3,15) and —5 < x < 20.

Families of Discrete Distributions

Several of the standard distributions are functions of a discrete
variable, usually the integers. They are commonly plotted with bar
graphs or broken line (polygonal) graphs.

Binomial Distribution

The binomial distribution functions are functions of a nonnegative
integer X,

X
BinomialDist(x;n, p) = Z (Z) prgk
k=0

with Bernoulli trial parameter (or sample size) a positive integer n,
Bernoulli probability parameter a real number p with 0 < p < 1,

n!

and g = 1 — p. (To enter binomial coefficients, (Z) = Ry choose

Compute > Math Objects, select the binomial fraction (g) and check
None for line.) The corresponding binomial probability density func-
tion is

BinomialDen(x;n, p) = (Z) P
for the same conditions on x, #, and p. The mean for this distribution
is np, and the variance is npq.

Binomial distribution tables found in statistics books give selected
values of either the binomial probability density function
BinomialDen(x;n, p) or the cumulative distribution function
BinomialDist(x; n, p).
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The binomial density BinomialDen(x; n, p) gives the probability
of x successes in 1 independent Bernoulli trials, when the probabil-
ity of success at each trial is p. It is by far the most common discrete
distribution, since people deal with many experiments in which a di-
chotomous classification of the result is of primary interest. The name
binomial distribution comes from the fact that the coefficients

are commonly called binomial coefficients.

Example The probability that, in 100 tosses of a coin with Pr(heads)
= 0.55, no more than 54 heads turn up, assuming a binomial distri-

bution, is Pr(X < 54) = BinomialDist(54;100,0.55) = 0.45868.

The binomial distribution function with parameters n and p can
be approximated by the normal distribution with mean np and vari-
ance np (1 — p); that is,

BinomialDist(x;n, p) &~ NormalDist(x;np, \/np(1 — p))

Such approximations are reasonably good if both np and n (1 — p) are
greater than 5. For example, to find an approximate solution to the
preceding problem using a normal distribution, use

Pr(X < 54) ~ NormalDist(54;55.0,4.9749) = 0.42035

The plots to the right show the graph of NormalDist(x;55.0,4.
974 9) with a point plot of BinomialDist(x; 100,0.55), and the graph
of

NormalDen(x;55.0,4.9749)

with a point plot of BinomialDen(x; 100,0.55) for 0 < x < 100.
Poisson Distribution

The Poisson cumulative distribution function is a discrete function
defined for non-negative integers. The Poisson distribution with mean
U > 0is given by the summation

pke ¥
|

X
PoissonDist (x; ) = Y
= k!

Families of Discrete Distributions

10T
08T
06T
04T
02T
0.0 l * f + {
0 50 100
X
0.08 T
0.06 T
0.04 1
0.02 1
0.00 # f # 9
0 50 100
X
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The Poisson probability density function is

k=Mt
. ke
PoissonDen (k; i) = o
for nonnegative integers k and real numbers (1 > 0. A Poisson dis-

tribution table lists selected values of the Poisson probability density
function PoissonDen (k; 1t).

Compute > Evaluate Numeric

PoissonDen (2;3) ~ 0.22404 PoissonDen (5;0.3) ~# 1.5002 x 1073

The Poisson distribution can be used to approximate the binomial
distribution when the probability is small and 7 is large; that is,

PoissonDist(k; i) ~ BinomialDist (k; i, 1 (1 — p))

where & = np. This distribution has been used as a model for a variety
of random phenomena of practical importance.

Hypergeometric Distribution

Suppose that, from a population of M elements, of which x possess
a certain attribute, you draw a sample of 7 items without replacement.
The number of items that possess the certain attribute in such a sample
is a hypergeometric variate. The hypergeometric cumulative distribu-
tion function is a discrete function defined for nonnegative integers x.
The hypergeometric distribution with M elements in the population,
K successes in the population, and sample size 7 is defined by the fol-
lowing summation of quotients of binomial coefficients for 0 <x < n:
. 5 () Cor)
HypergeomDist (x; M,K,n) = Z e
k=0 ( n )
For x < 0, the distribution function is 0, and for x > n, the function
is 1. The hypergeometric probability density function is

K\ (M—K

() Gis)

()

n

for integers k , K , n, and M satisfying0 < k <n,0 <K <M, and
O0<n<M.

The hypergeometric distribution is the model for sampling with-
out replacement. The hypergeometric distribution can be approxi-

mated by the binomial distribution when the sample size is relatively
small.

HypergeomDen (k; M, K ,n) =
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Example What is the probability of at most five successes when you
draw a sample of 10 from a population of 100, of which 30 members
are identified as successes?

The probability of exactly x successes is given by

HypergeomDen (x; 100,30, 10).

Thus, the probability of at most five successes is the sum of exactly 0,
1,2, 3,4, and 5 successes, or

HypergeomDist (5;100,30,10) = 0.96123.

The previous plots (created as polygonal plots) depict the functions

HypergeomDen (x; 100,30, 10) and HypergeomDist (x; 100,30, 10)

for 0 <x < 10.

Random Numbers

The random-number generators on the Statistics submenu give you
a set of random numbers from one of several families of distribution
functions. The choices in the dialog are Beta, Binomial, Cauchy, Chi-
Square, Exponential, F, Gamma, Normal, Poisson, Student’s t, Uni-
form, and Weibull. Choose Compute > Statistics > Random Num-
bers.

Choose a distribution from the dialog, specify how many random
numbers you want, and enter appropriate parameters. Following are
sample results.

Compute > Statistics > Random Numbers

Beta, Order 3, Order 7: 0.31172,0.28533, 7.8338 x 1072, 0.14925, 0.41693
Binomial, Number of Trials 10, Probability of Success 0.5: 6,2,6,5,6

Cauchy, Median 10, Shape Parameter 5: 13.069,13.412,7.5245,—-3.8907,12.29
Chi-Square, Degrees of Freedom 3: 0.91006, 2.2787, 4.4748, 2.7026, 1.5385

Exponential, Mean Time Between Arrivals 10: 16.851, 16.865, 8.8222,32.037, 12.434

Random Numbers

F, Degrees of Freedom 1 and 3: 1.1585 x 1072, 1.3279 x 1072, 0.18187, 1.5567, 1.8483
Gamma, Shape Parameter 2, Scale Parameter 5: 4.4875,7.3945,10.114,6.1566,21.808

Normal, Mean 3, Standard Deviation 7: 5.223, —4.8075, —5.5782, —1.1218, 1.357

Poisson, Mean Number of Occurrences 4: 2,4, 1,2, 5
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Compute > Statistics > Random Numbers

Student’s t, Degrees of Freedom 7: —3.6549 x 1072, —0.35357,1.3031,—1.1615,1.1861
Uniform, Lower End of Range 0, Upper End of Range 20: 5.6016, 16.744, 10.275, 14.057, 10.136
Weibull, Shape Parameter 5, Scale Parameter 3: 2.2615,3.0731,3.0868,3.8504,2.4592

Curve Fitting

You have the tools to do general curve fitting in an intuitive man-
ner. Choose Compute > Statistics > Fit Curve to Data and make a
choice in the dialog box.

e For straight-line fits, choose Multiple Regression or Multiple
Regression (no constant).

e For best fits by polynomials, choose Polynomial of Degree [ ].

Linear Regression

Multiple Regression calculates linear-regression equations with
keyed or labeled data matrices. The result is an equation expressing
the variable at the head of the first column as a linear combination of
the variables heading the remaining columns, plus a constant (that is
missing if Multiple Regression (no constant) was chosen).

The equation produced is the best fit to the data in the least-squares
sense.

Compute > Statistics > Fit Curve to Data > Multiple Regression

(Location of Dependent Variable: First Column)

y X

0 1.1
0.5 1.5 | Regressionis: y =1.159x —1.2493
1 19

1.5 24

Compute > Statistics > Fit Curve to Data > Multiple Regression
(Location of Dependent Variable: First Column)

zZ X .y

1 0 1.1

2 0.5 1.1 [Regressionis: z=2.0x+1.25y—0.375
4 1 19

5 1.5 19
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Curve Fitting

The choice Multiple Regression (no constant) gives the following
linear equations:

Compute > Statistics > Fit Curve to Data > Multiple Regression

(no constant; Location of Dependent Variable: First Column)

u y
0 1.1
0]'5 }g Regression is: u = 0.56733vy
1.5 24
i 2 29 ]
i Z X y 1
1 0 1.1
i 01.5 ié Regrcssion is: 7 = 2.1829x +0.91245y
5 15 19
i 7 2 29 |
p 1.0 (ab+cd)
a b |Regressionis: x = Y
c d b*+d
Polynomial Fit

Polynomial of Degree [ ] calculates polynomial equations from la-
beled or unlabeled two-column data matrices. The result is a polyno-
mial of the specified degree that is the best fit to the data in the least-
squares sense. For the polynomial fit, the x column appears first.

To find the best fit by a polynomial of second degree to the set
of points (0,0.64) , (0.5,0.09) , (1,0.04) , (1.5,0.49) , (2, 1.44), re-
move the parentheses and convert the entries into a two-column ma-
trix. To make this conversion, place the insert point in the list and
choose Compute > Matrices > Reshape; then specify two columns.

Compute > Matrices > Reshape

(2 columns)

0 0.64
0.5 0.09
0,0.64,0.5,0.09,1,0.04,1.5,0.49,2,1.44, | 1 0.04
1.5 0.49
2 144
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Compute > Statistics > Fit Curve to Data
(Check Polynomial of Degree [ ], type 2, choose OK.)

0 0.64
0.5 0.09
1 0.04 |,Polynomial fit: y = 1.0x> — 1.6x +0.64
1.5 0.49
2 144

You can plot the points and polynomial on the same graph. You
will notice that these points were chosen such that they lie on the

parabola.

Compute > Plot 2D > Rectangular

0 0.64
0.5 0.09
1.0 0.04
1.5 0.49
20 1.44

64— 1.6x+ 1.0x*
(For Item 1, change Plot Style to Point and Point Marker to Circle.)
(For Item 2, set Plot Intervals to 0 < x < 2.)

15

y

1.0
0.5

0.0
00 02 04 06 08 10 12 14 16 18 %O

The Fit Curve to Data command operates on labeled matrices.
Compute > Statistics > Fit Curve to Data
(Polynomial of Degree 2)

X oy
0 6
1 0.1 |,Polynomial fit: y =6.265—9.685x+ 2. 725x2
2 -3
3 2

You can also fit data with polynomials of higher degree.
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Curve Fitting

Compute > Statistics > Fit Curve to Data (Polynomial of Degree 3)
0 0.64
0.5 0.09

1.0 8.04 |,Polynomial fit: y = 8.1143 x 1072+ 1.4114x+9.1143x> — 5.92x°
1.5 0.49
20 —7.44

02 04 06 08 10 12 14 1

-10 T

Compute > Statistics > Fit Curve to Data (Polynomial of Degree 4)
1 12

2 Polynomial fit:

g | y="7.1563x> —22.042x —0.95833x> +4.6875 x 10~ 2x* +27.797
18

O 3 L W

Y 301
20

10

Overdetermined Systems of Equations

The Solve command has been extended to handle overdetermined

systems, returning the least-squares solution. Here we give an example
of an overdetermined system. Note that (as before) the least-squares
solution is the actual solution, when an actual solution exists.
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Compute > Solve > Exact
1 2 3
3 4 [ x } = 7 Solution: [ ! }
5610y 1| 1
7 8 15

It is easy to multiply both sides of a matrix equation by A” to check
that, when you “solve” AX = B, you are actually getting the solution
of (ATA) X = AT B. Here,

~N N W =

Compute > Evaluate

(84100
TA—
A4 = 1100 120]
184
Tp
A B=1 20 }

This calculation gives the following equation, which has an exact
solution.

Compute > Solve > Exact

84 100\ [x]_[1847] (. [1

100 120 ||y |~ | 220 00O |
Exercises

1. Consider a normal random variable with mean 50 and standard
deviation 10, and a random sample of size 80 from which we
are to compute the values of X, the sample mean. What is the
probability of getting a value of X as low as 462

2. Suppose a working widget deteriorates very little with age. That
is, a widget that has been running for some time will have nearly
the same failure probability during the following hour as it had
duringits first hour of operation. Then, the failure times have an

exponential distribution P(T < ) of the form 1 — ¢ . Given
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that the widget has a mean life of 5 years, what is the probabil-
ity that the widget will have a lifetime exceeding 7.5 years? If
the widget is guaranteed for 2 years, what percentage of such
widgets can be expected to need replacement while under war-
ranty?

. A widget has a mean life of 5 years with a standard deviation
of 2 years. Assuming a normal distribution, what is the prob-
ability that the widget will have a lifetime exceeding 7.5 years?
If the widget is guaranteed for 2 years, what percentage of such
widgets can be expected to need replacement while under war-
ranty?

. 'The mean of a continuous distribution with probability density
function f(u) is the integral [~ uf(u)du = p of the product
of the variable and the probability density function. The vari-
ance is the integral [©_ (u— u)zf(u)du. Find the mean and
variance for each of the continuous distributions discussed in

this chapter.

. The mean ofadiscrete distribution with probability density func-
tion f(u) is the sum ¥'° uf(u) = W, and the variance is

o

Y (a1 f(w) = 0.

—o0

Find the mean and variance for the discrete distributions dis-
cussed in this chapter. If the probability density function for a
distribution is f(n) = (%)n , what is the mean of the distribu-
tion? What is the variance?

. A die is cast until a 4 appears. What is the probability that it

must be cast more than S times?

. A telephone switchboard handles 600 calls on average during a
single rush hour. The board can make a maximum of 20 connec-
tions per minute. Use the Poisson distribution to evaluate the
probability that the board will be overtaxed during any given
minute of a rush hour.

. Find the probability that x2 < 4 for a normal distribution with
mean 1 and standard deviation 1.
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Solutions

442

1. To solve this problem, you need to know that the distribution

of the mean of a sample of size 7 from a normal distribution of
mean U and standard deviation G is normal with mean gt and

standard deviation %. Thus, the probability is

_ 1
Pr(X <46) = NormalDist (46;50,2\@>

= NormalDist (46;50,1.118) = 1.7324 x 10~*

. ExponentialDist (7.5;5) = 0.77687 = P(X < 7.5), so the

probability that X is greater than 7.5is 1 — 0.78 = 0.22.
ExponentialDist (2;5) = 0.32968 = P(X < 2), so the answer

to the second question is “about 33 percent.”

. NormalDist (7.5;5,2) =0.89435 = P(X <7.5),so the prob-

ability that X is greater than 7.5is 1 — 0.894 = 0.106, or 10.6

pcrcent.

NormalDist (2;5,2) = 6.6807 x 1072 = P(X < 2), so the

answer to the second question is “about 7 percent”

For the normal distribution, Evaluate gives

/ NormalDen (u; 4, 0)udu = U

I
Q

/ NormalDen (u; i1, 0) (u — p1)* du 2

For the Student’s t distribution, with five degrees of freedom,
Evaluate gives [*7_uTDen (u;5)du = 0 for the mean and

[ u? TDen (u;5)du = 2+/5 for the variance.

Here is a sample solution. For the binomial distribution, Eval-
uate followed by Simplify gives the mean:

§X<z>px(1 —p)"=np(1—p)"" (—_11+p>n_1 =pn

When the parameters are symbolic, there can
be problems in carrying out computations of
the integrals that give mean and variance. You
should have no difficulty when you specify
numerical parameters.
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Evaluate followed by Simplify and then Factor gives the vari-
ance:

n

Y (x—pn)® (Z)px(l —p)"F = pn—p’n=(1—p)pn

x=0

(The intermediate expression for the variance is complicated
and does not appear here. Also, you need to make the simplifi-
cations (— l)zn =land (— 1)2n+1 = —1. Note that the symbol
(Z) is a binomial fraction, rather than a matrix. To enter a bino-
mial fraction, choose Insert > Math Objects > Binomial, and
choose None for Line.)

If the probability density function for a distribution is f(n) =
(%) "forn > 0, the mean of the distributionis ), n (%)n =2
and the variance is Y=, (n —2)* ()'=2.

. The probability of getting a 4 on a single cast is %, so the proba-
bility of getting a different result is % The probability of casting

the die 5 times without getting a 4 is (%)5 = 0.40188.

. With 600 calls on average during rush hour, the average num-
ber of calls per minute is 10. The probability that the number
of connections in a given minute is less than or equal to 20 is

the sum Y2, PoissonDen(k, 10) = Y20, 10 % — 0.99841.

Thus, the probability that the board will be overtaxed is 1 —
0.99841 = 0.00159.

.x? <4when -2 <x <2 SoPr(x<4) =Pr(x<2)—
Pr(x < —2) = NormalDist(2; 1, 1) —NormalDist(—2;1,1) =
0.84.

Exercises
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12

Applied Modern Algebra

[On the concept of group:] ... what a wealth, what a grandeur of thought may spring from what slight beginnings.

receiving confidential messages, for assuring that recordings

always sound perfect, and for packinga lot of data into a very
small space. This chapter includes an introduction to some of the un-
derlying computational tools that make such applications possible.

3 pplied modern algebra provides techniques for sending and

Solving Equations

Many techniques in applied modern algebra are designed to solve
equations, from integer equations to polynomial equations to matrix
equations. In this section, we describe a few of the methods that can

be applied to such problems.
Integer Solutions

The solver can be restricted to the domain of integers. Choose
Compute > Solve > Integer to find integer roots of polynomial ex-
pressions with rational coeflicients, and integer solutions to equations
of the same type.

To find integer roots or integer solutions to an equation
1. Place the insert point in an expression or equation.

2. Choose Compute > Solve > Integer.

Henry Frederick Baker (1866—1956)

Solving Equations
Integers Modulo m
Other Systems Modulo m

Polynomials Modulo
Polynomials

Linear Programming
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Compute > Solve > Integer

41x+421x* — 165x> — 4x* 4 4x> — 105, Solution: {—7,3,5}

2x? — 11x+ 15 = 3x> — 16x + 21, Solution: {2,3}
Continued Fractions

A simple continued fraction is an expression of the form

1
ap+ n i
a
1 art 1 :
az+ T
a4+a5+..
where ag is an integer and ag,a, ... are positive integers. There can

be either an infinite or a finite number of terms g;. A number is ra-
tional if and only if it can be expressed as a simple finite continued
fraction. You can find rational approximations to irrational numbers
by expanding the irrational as a simple continued fraction, then trun-
cating the continued fraction to obtain a rational.

Continued fractions have been utilized within computer algo-
rithms for computing rational approximations to real numbers, as well
as solving indeterminate equations. Connections have been establish-
ed between continued fractions and chaos theory.

Use the MuPAD command contfrac to construct a continued frac-
tion of the real numerical expression x to 7 significant digits.

To define a continued fractions command

1. Choose Compute > Definitions > Define MuPAD Name.

2. In the MuPAD Name box, type numlib::contfrac(x,n).

3. In the Scientific WorkPlace (Notebook) Name box, type r (x,n).
4

. Check “That is built in to MuPAD or is automatically loaded”
and choose OK.

Use the continued fractions command to generate continued frac-
tions.

Compute > Evaluate
r(m,10) =3+ - 111
15+ ————
It
292+I

T
R

The two dots at the bottom indicate an infinite continued fraction.
However, you can easily truncate the continued fraction.
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Solving Equations

To find a good rational approximation to PI

1. Select the tail —l—ﬁ of the continued fraction and
T
1+

I+..

delete it.

2. Evaluate the remaining finite continued fraction.

Compute > Evaluate  Compute > Evaluate Numeric

341 355 31416 Rational Approximation
7+ﬁ 3 Therationalnumber%isgood

. . approximation to 7t. This is to be expected,
Recursive Solutions because continued fractions provide good

Recursion finds solutions to a recursion or a system of recursions. rational approximations.
To solve a recursion or a system of recursions
e Place the insert point in a recursive equation, or in a system of

recursive equations entered in a column matrix or display, and
choose Compute > Solve > Recursion.

Compute > Solve > Recursion
y(n+2)+3y(n+1)+2y(n) =0, Solution: {y(n) = (—1)"C; 4+ (-2)"C>}

You can also solve recursive equations written in sequence nota-
tion.

Compute > Solve > Recursion
Xn + 2X41 + Xn+2 = 0, Solution: {x, = (—1)" (C; + Con)}

n n
S+ 35041+ 3012 = 0, Solution: {1, = 3 (~3v5-3) + ¢ (3v5-3)}

You can specify initial conditions by listing a system of equations
in a column matrix.

Compute > Solve > Recursion
Yn+2 + 3yn+1 + 2yn =0
yo= -2 , Solution: y, = (—2)" =3 (-1)"

yi=1 ) )
Fibonacci Numbers

This closed-form solution makes it easy to find specific terms. For The Fibonacci numbers are defined by

example, if you define y(n) = (—2)" —3(—1)", then y(n) can be di-
rectly evaluated. F =0

Compute > Evaluate =1

y(20) =1048573 F, = F.+F_
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Integers Modulo m

The Euclidean algorithm for integers leads to the notion of con-
gruence of two integers modulo a given integer. Mod Function
Two integers a and b are congruent modulo m if and only if @ —  The mod function is a function of two
b is a multiple of m, in which case we write @ = b (modm). Thus, variables, with the function written between
15 =33 (mod9), because 15 — 33 = —18 is a multiple of 9. Given the two variables. This usage is similar to the
integers @ and m, the mod function is given byamodm = bifandonly ~ common usage of 4, which is also a function
ifa =b (modm) and 0 < b < m — 1; hence, amodm is the smallest of two variables with the function values
nonnegative residue of @ modulo m. expressed as a + b, rather than the usual
The underlying computer algebra system does not understand the  functional notation +(a, b).
congruence notation a = b (modm), but it does understand the func-
tion notation amodm. This section shows how to translate problems
in algebra and number theory into language that will be handled cor-
rectly by the computational engine.
Traditionally the congruence notation a = b (modm) is written
with the mod m enclosed inside parentheses since the modm clarifies
the expression @ = b. In this context, the expression b (modm) never
appears without the precedinga =. On the other hand, the mod func-
tion is usually written in the form a mod m without parentheses.

To evaluate the mod function
e Place theinsert point in the expression amod b and choose Com-
pute > Evaluate.

Compute > Evaluate
23mod 14 =9

In terms of the floor function |x], the mod function is given by
amodm=a—|a/m|m

Compute > Evaluate
23— |8|14=9
Multiplication Tables Modulo m
You can make tables that display the products modulo m of pairs
of integers from the set {0,1,2,...,m—1}.
To get a multiplication table modulo m withm =6
1. Type the equation g (i, j) = (i—1) (j — 1) and choose Com-
pute > Definitions > New Definition.
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Compute > Evaluate

A more efficient way to generate the same multiplication is to de-

0
0
0
0
0

0

0

A W -

5

0

o N B~

10

0
3
6
9
12
15

20

Select Defined by Function.

0
5
10
15
20
25

Choose Compute > Evaluate.

Type g in the Enter Function Name box.

Type mod 6 at the right of the matrix.

mod6 =

Choose Compute > Matrices > Fill Matrix

Select 6 rows and 6 columns and choose OK.

SO O oo

0

AW~ O

5

N O BN O

4

W O WO Wo

fineg(i,j) = (i—1) (j — 1) mod6 and follow steps 2—6 above.

X

N HE W=D

You can also find the multiplication table modm as the product of
a column matrix with a row matrix.

Compute > Evaluate

Make a copy of this last matrix. Add a new row at the top (position
1) and add a new column at the left (position 1); fill in the blanks and
change the new row and column to Bold font, to get the following
multiplication table modulo 6:

0

[eNeNeNeNeNe)

0

EENUS I (S

5

1

Nk W= O

[0 1 2 3 4 5]mod6=

2

AN OBRNO

3

WO WO Wo

4

N~ O NN B~O

S

—_ N Wk 0O

(=il Ne Nl

0

Lo —=O

5

A~ NDO B~ DO

O WO WwWo

3

A~ O D ~O

2

~ oD B~O

2

—_— N W ks O

— N WAk O
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Integers Modulo m

Tip
A shortcut that creates the multiplication table
mod 6 in essentially one step is to define

g0, j) = |i=2[]j —2|mod6

and use Compute > Matrices > Fill Matrix
and the function g to createa 7 X 7 matrix.
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From the table, we sce that2-4mod6 =2 and 3-3mod 6 = 3.
You can generate an addition table by defining (i, j) =i+ j —
2mod6.

Example If p is a prime, then the integers modulo p form a field,
called a Galois field and denoted GF),. For the prime p = 7, you can
generate the multiplication table by defining g(i,j) = (i —1)(j —
1)mod7 and choosing Compute > Matrices > Fill Matrix, then se-
lecting Defined by function from the dialog box. You can generate
the addition table in a similar manner using the function f(i, j) =
i+ j—2mod7.

- 01 2 3 456 + 012 3 45 6
0 000O0OO0OGO0OTO 0 01 23 456
1 01 2 3 456 1 1234560
2 02461335 2 23 45601
30362514 3 345601 2
4 041526 3 4 456 01 2 3
505316 4 2 5 56012 3 4
6 06 543 21 6 6 01 2 3 45

Inverses Modulo m

Ifabmodm = 1, then b is called an inverse of a modulo m, and we
write a1 modm for the least positive residue of b. The computation
engine also recognizes both of the forms 1/amodm and é modm for
the inverse modulo m.

To compute the inverse of an integer modulo m
1. Type the inverse in standard notation .

2. Choose Compute > Evaluate.

Compute > Evaluate

5" 'mod7 =3
tmod7=3
1/5mod7 =3

The three notations ab~ ' modm, a/bmodm, and % modm are all
interpreted as a(b_1 modm) modm; that is, first find the inverse of
b modulo m, multiply the result by a, and then reduce the product
modulo m.

450

Note

The inverse ¢~ ' mod m exists if and only if
a’is relatively prime to mz; that is, it exists if
andonly if gcd (a,m) = 1. Thus, modulo
6, only 1 and 5 have inverses. Modulo any
prime, everynonzero residue has an inverse. In
terms of the multiplication table modulo 7z,
the integer a has an inverse modulo 7z if and
only if 1 appears in row a mod m (and 1
appears in column a mod m).

Note
The inverse of 5 modulo 7 is indeed 3 because
5-3mod7 = 1.
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Compute > Evaluate
3/23mod257 =56

Solving congruences Modulo m

To solve a congruence of the form ax = b (modm)
e Multiply both sides by a~! modm to get x = b/amodm.

Additional Solutions
The congruence 17x = 23 (mod 127) has a solution x = 91, as Note that, since 91 is a solution to the

the following two evaluations illustrate. congruence 17x = 23 (mod 127),

additional solutions are given by

Compute > Evaluate 91 + 127n, where n is any integer. In fact,

23/17mod 127 =91 x =91 (mod 127) is just another way of
17-91mod 127 =23 writing x = 91 + 127n for some integer .

Pairs of Linear Congruences

Since linear congruences of the form ax = b (modm) can be re-
duced to simple congruences of the form x = ¢ (modm), we consider
systems of congruences in this latter form.

To solve a pair of linear congruences
¢ Reduce the problem to a single congruence.

Example Consider the system of two congruences

x = 45(mod237)
x = 19 (mod419)

Checking, gcd(237,419) = 1, so 237 and 419 are relatively prime.
The first congruence can be rewritten in the form x = 45 + 237k for
some integer k. Substituting this value into the second congruence,
we see that

45+237k=19+419r

for some integer r. This last equation can be rewritten in the form

237k = 19 — 45mod 419, which has the solution
k= (19—45)/237mod419 = 60

Hence,

x=45+237-60 = 14265
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Checking, 14265 mod237 =45 and 14265mod 419 = 19. The com-

plete set of solutions is given by
x = 14265+ 237-419s = 14265 (mod99303)

Thus, the original pair of congruences has been reduced to a single
congruence,

x = 14265 (mod99303)

In general, if m and 7 are relatively prime, then one solution to the
pair
= a(modm)
= b (modn)
is given by
x=a+m[(b—a)/mmodn]

A complete set of solutions is given by
x=a+m|[(b—a)/mmodn|+ rmn

where r is an arbitrary integer.

Systems of Linear Congruences

You can reduce systems of any number of congruences to a single
congruence by solving systems of congruences two at a time. The Chi-
nese remainder theorem states that, if the moduli are relatively prime
in pairs, then there is a unique solution modulo the product of all the
moduli.

To solve a system of congruences
¢ Reduce the system to a single congruence.

Example Consider the system of three linear congruences

= 45 (mod237)
= 19 (mod419)
x = 57 (mod523)

Checking, gcd(237-419,523) = 1 and ged (237,419) = 1; hence

this system has a solution. The first two congruences can be replaced
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by the single congruence x = 14265 (mod99303); hence the three

congruences can be replaced by the pair

= 14265 (mod99303)
= 57 (mod523)

As before, 14265 + 99303k = 57 4 523r for some integers k and 7.
Thus, k = (57 — 14265) /99303 mod 523 = 134; hencex = 14265+
99303 - 134 = 13320867. This system of three congruences can thus
be reduced to the single congruence

x = 13320867 (mod 51935469)

Powers Modulo m

To calculate large powers modulo 1
e Evaluate " modm.

Compute > Definitions > New Definition
a=12789596378267275
n = 3848590389047349
m = 2838490563537459

Compute > Evaluate
a"modm = 2622018141 09828

Fermat’s Little Theorem states that, if p is prime and 0 < a < p,
then
a’ 'modp =1

The integer 1009 is prime, and the following is no surprise.

Compute > Evaluate
2198 1m0d 1009 = 1

Generating Large Primes

There is not a built-in function to generate large primes, but the
underlying computational system does have such a function. The fol-
lowing is an example of how to define functions that correspond to
existing functions in the underlying computational system.

In this example, p(x) is defined as the Scientific WorkPlace (Note-
book) Name for the MuPAD function, nextprime(x), which generates the
next prime greater than or equal to x.

Integers Modulo m

453



“Compute60” — 2011/12/20 — 14:27 — page 454 — #464

Chapter 12| Applied Modern Algebra

To define p(x)
1. Choose Compute > Definitions > Define MuPAD Name.

2. Type nextprime(x) as the MuPAD Name.
3. Type p(x) as the Scientific WorkPlace (Notebook) Name.
4

. Under The MuPAD Name is a Procedure, check That is Built In
to MuPAD or is Automatically Loaded.

5. Choose OK.
Test the function using Evaluate.

Compute > Evaluate

p(5)=5

p(500) = 503

p(8290) = 8291

p(593756145682465582) = 593756 145682465583

Other Systems Modulo m
The mod function also works with matrices and with polynomials.

Matrices Modulo m
You can reduce the entries of an integer matrix modulo .

To reduce a matrix A modulo m
1. Type the expression A modm.

2. Choose Compute > Evaluate.

Compute > Evaluate

5 8 2 2
[9 4}m0d3—[0 1}

-1

375 9 9 3
5 4 8 modll=| 2 5 1
2 05 3 3 10
375 9 9 3 1 00
5 4 8 2 5 1 modll=| 0 1 O
2 0 5 3 3 10 0 0 1
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Example A2 X 2 block cipher is given by

1 aylp  ap X1
Yool mod 26
Y2 ay ax X2
where the x;’s represent plaintext, the y;’s represent ciphertext, and the
matrix entries are integers. For example,

|37 [ o= 5]

means that the plaintext pair [E, L] (two adjacent letters in the secret
message “Elroy was here”) gets mapped to the ciphertext pair [E, H],
using the correspondence A +— 0, B+— 1,C +—2, ..., Z +—
25.

Given the ciphertext, you can recover the plaintext by computing
the inverse of the two-by-two matrix modulo 26. For example,

-1
5 8 25 16
{ ) 7 } mod26 = [ 4 3 ]

25 16 4 4
|3 L7 =[]
recovers the original plaintext. You can handle longer messages by re-

E R'Y A H
L ow § E

and hence

placing the column vector [ Iz } by the matrix {

and calculating one matrix product

25 16 4 17 24 0 7 17
4 3 11 14 22 18 4 4

16 25

}m0d26: [ 3 6

Polynomials Modulo m
The mod function can also be combined with polynomials to re-

duce each of the coefficients modulo m.

To reduce integer polynomial coefhicients modulo
e Type modm immediately to the right of the polynomial and
choose Compute > Evaluate.

Compute > Evaluate
4% =P+ 7x—2mod5 = x° +4x* +4x3 +2x+3

Given a prime p, the set of polynomials with coefficients reduced

modulo p is a ring, denoted by GF),[x].

Other Systems Modulo m
R
E
16 2 5 21
6 2 14 2
Note

Evaluating a polynomial modulo /72 reduces
each of the coefficients in the polynomial
modulo 771
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To calculate the product of polynomials a(x) and b(x) in GF}, [x]
1. Expand the product a(x)b(x).

2. Reduce the product modulo p.

To calculate the product of 4 +5x+3 and 6x* +x* + 3 in
GF7[x], do the following two operations.

Compute > Expand
(4 +5x43) (6x* +x7 +3) = 24x” +4x® 4+ 420" +23x* +3x° + 15x+9

Compute > Evaluate
24x°% +4x8 + 420 +23x* + 33 + 15x+9mod 7 = 3x7 +4xB + 2x* + 33 +x+2

The sum of 4x° + 5x + 3 and 6x* + x> + 3 in GF;[x] is slightly

simpler.

Compute > Evaluate
(40 +5x+3) + (6x* +x° +3) mod 7 = 4x° + 6x* +x* +5x+6

To factor a polynomial a (x) in GF), [x]

1. Type the expression a (x) mod p. Note
The polynomial x' + x factors as the
product of all of the irreducible polynomials of
degrees 1,2, and 4. In particular,
x% 4 x + Listhe only irreducible
polynomial of degree 2in GF; [x].

2. Choose Compute > Factor.

To factor x'° +x in GF, [x], apply the command Factor to the ex-
pression x'® + xmod?2.

Compute > Factor
x04xmod2 =x(x+1) (P +x+1) (x*+x+1) (H 4+ +1) (H 4+ + 22 +x+1)

Polynomials Modulo Polynomials

The Euclidean algorithm for polynomials leads to the notion of
congruence of polynomials modulo polynomials.

Two polynomials f(x) and g(x) are congruent modulo a polyno-
mial q(x) if and only if f(x) — g(x) is a multiple of g(x), in which
case we write

f(x) = g(x) (modg(x))
We write
g(x)modg(x) = h(x)
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if h(x) is a polynomial of minimal degree that is congruent to g(x)

modulo g(x).
To reduce a polynomial p (x) modulo a polynomial g (x)

e Place the insert point in the expression p (x) mod (g (x)) and
choose Compute > Evaluate.

Compute > Evaluate
x*+x+ 1mod (x> +4x+5) = —23x— 54

To verify this calculation, note the following computation:

Compute > Polynomials > Divide
4
X +x+1 2 —23x—54
i LS PV e
Padrts Mt e
This result implies that indeed x* 4+ x+ 1mod (xz +4x+ 5) =
—23x—54.

Greatest Common Divisor of Polynomials

The greatest common divisor of two polynomials p(x) and g(x) is a
polynomial d(x) of highest degree that divides both p(x) and g(x).

To compute the greatest common divisor of two polynomials p (x) and g (x)
1. Type gcd in mathematics. (It will automatically turn gray.)

2. Place the insert point in the expression ged (p (x),¢(x)) and
choose Compute > Evaluate.

Compute > Definitions > New Definition
p(x) = 18x7 —9x 4+ 36x* +4x3 — 16x> +19x + 12
g(x) =15 = 9x* + 113 + 1722 — 10x + 8

Compute > Evaluate
ged (p(x),q(x)) =3x° +x+4
Use the following procedure to verify that 3x> +x + 4 is indeed a
common divisor.
Compute > Polynomials > Divide
3,)(311();)_’_4 =6x* —5x* +4x+3

3x3q+(jc)+ i

Polynomials Modulo Polynomials
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These results demonstrate that
p(x) = (6)(4 —5x% +4x+ 3) (3x3 +x+4)
and

g(x) = (5x* = 3x+2) (3x +x+4)

Multiplicity of Roots of Polynomials
A root a of a polynomial f(x) has multiplicity k if f(x) = (x —
a)kg(x), where g(a) # 0. Ifk > 1, then

7'x) =k(x—a) " g(x)+ (x—a)'g'(x) = (x—a)* " (kg (x) + (x—a)g'(x))
and hence
ged(f(x), f'(x)) = (x=a)*""h(x) # 1
This observation provides a test for multiple roots: If ged (f(x), f/(x))
is a constant, then f(x) has no multiple roots; otherwise, f(x) has

at least one multiple root—in fact, each root of ged(f(x), f'(x)) isa
multiple root of f (x).

To test a polynomial f (x) for multiple roots
1. Define the polynomial f (x).

2. Typetheexpression ged (f (x), f' (x)) and, with the insert point

in this expression, choose Compute > Evaluate.

3. Observe whether or not the result is a constant.

The graphs of
f(x) =5537x° —34804x* +60229x> —29267x% 4 19888x+ 54692
and
g(x) = 5537x° —34797x* +60207x> —29260x% 4 19873x+ 54670
appear indistinguishable. Both appear to have a root near 3.1.
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Polynomials Modulo Polynomials

Compute > Plot 2D > Rectangular
f(x)

Y 80000

60000

\
—
-4
N 4
o 4

However, the test for multiple roots gives a different result for the
two functions.

Compute > Evaluate
ged(f(x), f'(x) =791 (x= %) ged(g(x),8'(x) =7
Thus, x = % is aroot of f(x) of multiplicity at least two, whereas
g(x) has no multiple roots. Solving f(x) = 0 and g(x) = 0, the real
solutions are computed below. We show both symbolic exact and nu-
meric solutions.
Compute > Factor
() =113 (3 +x41) (7x - 22)
g(x) =7(7x—22) (113x—355) (x* +x+1)
To find an approximation to the roots of these two polynomials
with multiplicities, choose Compute > Polynomials > Roots.

Compute > Polynomials > Roots

—0.68233 —0.68233
3.1429 3.1416
f (x), roots: 3.1429 g (x), roots: 3.1429
0.34116—1.1615i 0.34116+1.1615i
0.34116+1.1615: 0.34116—1.1615i

The polynomial g has two distinct roots that are extremely close,
whereas f has a root of multiplicity two at % ~ 3.14209.

The Galois Field GFpn

Assume that g(x) is an irreducible polynomial of degree n over
GF; that is, assume that g(x) is of degree n and, whenever g(x) =
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a(x)b(x) for some a(x) and b(x) in GF, [x], either deg(a(x)) = 0 or
deg(b(x)) =0.

Given two polynomials f(x) and g(x) in GF}[x], define the prod-
uct to be the polynomial (f(x)g(x) modg(x)) mod p and the sum to
be the polynomial (f(x) 4 g(x)) mod p.

With these definitions, the set of polynomials in GF), [x] of degree
less than 7 forms a field called the Galois field GF .

The set of polynomials in GF»[x] of degree less than 2 forms the

The multiplication and addition tables for GF> are given by

x |0 1 + 10 1
010 O 00 1
110 1 11 0

'The polynomial g(x) = x*> +x+ 1 is an irreducible polynomial of de-
gree 2 over GF. Itis, in fact, the only one. The elements of GF; are 0,
I,x,and 1 +x.

To find the product x - x in GFy, reduce the product modulo x>+
x+ 1, then reduce the result modulo 2.

Compute > Evaluate
(x* modg(x)) mod2 = x+ 1

Thus, x2 = x+ 1 in GFy.

You can generate the entire multiplication table efficiently using
matrix and modular arithmetic.

Compute > Evaluate

0 0 O 0 0

1 0 1 X x+1

X [0 1 x x+1]= 0 x x? x(x+1)
x+1 0 x+1 x(x+1) (x+1)
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Polynomials Modulo Polynomials
Compute > Evaluate
[0 O 0 0 0 0 0 0
0 1 X x+1 5 10 1 X x+1
0 «x 2 x(ep1) |[modeAxEI=0
| 0 x+1 x(x+1) (erl)2 0 x+1 -1 X
[0 0 0 0 0 0 0 0
0 1 X x+1 mod? — 0 1 x  x+1
0 x —x—1 -1 |™T 0o x xt+1 1
i 0 x+1 —1 X 0 x+1 1 X
Sums require only reduction of polynomial sums modulo 2. The
multiplication and addition tables are given by
X ‘ 0 1 X x+1 + ‘ 0 1 X x+1
0 0 0 0 0 0 0 1 X x+1
1 0 1 X x+1 1 1 0 x+1 X
X 0 X x+1 1 X X x+1 0 1
x+1 10 x+1 1 X x+1 | x+1 X 1 0
Given a polynomial f(x) = ax+ b with a and b in GF>, consider
the binary representation (ab),. The binary representations for the
multiplication and addition tables for GFj are given by
x |00 01 10 11 + (00 11 10 11
00|00 00 00 00 00|00 01 10 11
01 |00 01 10 11 01|01 00 11 10
10|00 10 11 o1 10|10 11 00 01
11100 11 01 10 11|11 10 01 00
Converting from binary to decimal, we have 0 = (00)5, 1 = (01),
2 = (10)2, and 3 = (11),. Using this shorthand notation for poly-
nomials, the multiplication and addition tables become
x|[0 1 2 3 +]/0 1 2 3
0[O0 O O O 0/0 1 2 3
1/0 1 2 3 11 0 3 2
210 2 3 1 212 3 0 1
310 3 1 2 313 2 1 0
Calculations in larger finite Galois fields can be done without gen-
erating addition and multiplication tables. In the following few para-
graphs, assume that f3 is a root of the irreducible polynomial ¢ (x) of
461
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degree n used to generate GFjn. Since every element of GFyn satis-
fies the polynomial x” " — x modulo p, it follows that every nonzero
element u of GFpn satisfies the polynomial x” "=1 — 1 modulo p, and
hence the inverse of u is given by u?" 2.

Let ¢ (x) = x* +x+ 1 and let B be a root of ¢ (x), so that B* +
B +1=0. To calculate the inverse ofﬁ3 + [32 + 1 in GF4, carry out
the following steps:

Compute > Evaluate
3o 14 A ,
(ﬁ +B —I—l) modB”+B+1 |mod2=J
To calculate the product of two elements « and v in GFyn
1. Expand the product uv.
2. Evaluate the result modulo g (f3).
3. Evaluate the result modulo p.

Let ¢(x) = x* +x+ 1 and let B be a root of g (x), so that B* +
B +1=0. To calculate the product of u = B*+B*+1andv=p>
in GF,4, carry out the following steps.

Compute > Expand
(B +B>+1) (B*+B) =B+B°+p*+2p7+p
Compute > Evaluate

BS+ B> +B*+2B° +Bmod B +B+1=p> 2>~ -1
B>—2B*—B—1mod2=p>+pB+1

Thus ([33+ﬁ2+1) <B3+ﬁ) = B*+ B +1in GFy.

These steps can also be combined.

Compute > Evaluate
((B2+B>+1) (B*+B)mod p*+B+1)mod2 = B>+ B +1
To calculate the inverse of an element i in GF )y
o Evaluate the expression (u”n*2 modg (8 )) mod p.

Compute > Evaluate
14
([33+I32+ 1) mod B* + B + 1> mod?2 = 8>
((B3 1B+ 1) B2mod B* + B + 1) mod2 = 1
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This verifies that 82 is the inverse of B> + B* + 1 in GF,u.

Example This setting provides the basis for the Bose-Chaudhuri-
Hocquenghem (BCH) Codes. Given the message word
(ar,ar—1,...,a2,ai,ap)z as a number in base 2, associate the polyno-
mial

a(x) = ax’ +a, X "+ tax taix+ag

in GF[x]. A codeword is then generated by the formula
a(x)g(x) mod?2, where g(x) is a specially selected polynomial. Con-
sider the Galois field GFy4 = GFj6. Let & be a primitive element in
GFjg, so that the nonzero elements of GFj¢ are all powers of @. In par-
ticular, this property holds if we take ¢ to be a root of the irreducible
polynomial x* 4 x 4 1. Let m;(x) be the minimal polynomial of ¢’
If

q(x) =lem[m; (x),ma(x),...,mz (x)]
then the corresponding BCH code corrects at least ¢ errors.
Since a* 4+ o + 1 = 0, it follows that
0= (o +a+1)=(a*) +0?+1=(a?) +0o2+1
Hence, mj (x) = my(x). By the same reasoning, my(x) = my(x) =
mg(x). Likewise,
m3(x) = (x—0)(x—a®)(x—a?)(x— ) =x* + >+ 2 +x+1

Hence, a double error-correcting code is generated by

q(x) =lem[my (x),ma (x),m3(x), ma(x)| mod2 = x® +x7 + x5 +x* +1

Linear Programming

A linear programming problem consists of minimizing (or maxi-
mizing) a linear function subject to certain conditions or constraints
expressible as linear inequalities. The word “programming” is used
here in the sense of “planning.” The importance of linear program-
ming derives in part from its many applications and in part from the
existence of good general-purpose techniques for finding optimal so-
lutions.

Linear Programming
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The Simplex Algorithm

The basic purpose of the simplex algorithm is to solve linear pro-
gramming problems. In the following example, the function f(x,y) =
X+ is to be maximized subject to the two inequalities shown. The
function f(x,y) is the objective function, and the set of linear con-
straints is called the linear system.

To enter a linear programming problem with two constraints
1. Createa 3 x 1 matrix.

2. Type the function to be maximized in the first row.
3. Type the linear constraints in the subsequent rows.
4. Leave the insert point in the matrix.

5. Choose Compute > Simplex > Maximize.

Compute > Simplex > Maximize

x+y
. . 12 2
4x+3y <6 |, Maximum is at: {x: =,y = —7}
3x+4y <4

Of course, these are the same coordinates that minimize —x — y.
In the following linear programming problem, place the insert point
in the matrix and choose Compute > Simplex > Minimize.

Compute > Simplex > Minimize

—x—y
4x+3y <6 |, Minimum is at: {y:—%,ng}
3x+4y<4

Feasible Systems

Two things may prevent the existence of a solution. There may be
no values of x and y satisfying the constraints. Even if there are such
values, there may be none maximizing the objective function. If there
are values satisfying the constraints, the system is called feasible.

The following example illustrates a set of inequality constraints
with no function to be maximized or minimized. You can ask whether
the constraints are feasible—that is, whether they define a nonempty
set. Place the insert point in the matrix and choose Compute > Sim-
plex > Feasible.
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Linear Programming

Compute > Simplex > Feasible?

4x+3y<6
3x+4y<4 . 4x+3y <6 .
x>0 |’ Is feasible? true { dx43y > 7 ], Is feasible? false
y>0
. 4x+3y<6 | . T
Saying that the system [ Ax43y>7 ] is not feasible implies,
in particular, that there are no values minimizing the objective func-
X+Yy
tion in the problem | 4x+43y <6 |. Geometrically, the two re-
dx+3y>7

gions that satisfy the inequalities are disjoint.

Standard Form

A system of linear inequalities is in standard form when all the in-
equalities are of the form <. To convert a system of linear inequalities
to a system in standard form, choose Compute > Simplex > Stan-
dardize.

Compute > Simplex > Standardize

4x+3y<6 —*=0
3x+4y<4 ; is: <0
x>0 | System in standard form is: 3xt+dy<4

With a linear function added, you can maximize the resulting lin-
ear programming problem.

Compute > Simplex > Maximize
x+3y
3x—y<4
4x+3y <6 |,Maximumisat: {x =0,y =2}
—y<0
—x<0

The Dual of a Linear Program

The other item on the Simplex menu is Dual. It computes the dual
of a linear program.
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Compute > Simplex > Dual
x+y
4x+3y<6 duz + 6uy
3x+4y <4 |,Dualsystemis: | u; —3usz —4uy < —1
x>0 uy —4uz —3ug < —1
-y<0

Applying the simplexalgorithm to these two linear programs yields
the following results.

Compute > Simplex > Maximize

X+y
4x+3y <6
3x+4y <4 |, Maximum is at: {y: 0,x= %}
x>0
—-y<0

Compute > Simplex > Minimize
i 6uy + 4us i
1 <4ug+3u; —uy
1 < 3ug+4uz —u
u; >0 , Minimum is at: {u1:0,u2:0,u4:0,u3:%}
uy >0
uzy >0
ug >0

Exercises

1. Give a multiplication table for the integers modulo 11. From
the table, find the inverses of 2 and 3. Verify your answers by
evaluating 27" 'mod11and 3 ' mod11.

2. Solve the congruence 5x+4 = 8 (mod 13). Verify your answer
by evaluating 5x +4mod 13.

3. Ajar is full of jelly beans. If the jelly beans are evenly divided
among five children, there are three jelly beans left over; and if
the jelly beans are evenly divided among seven adults, there are
five jelly beans left over. How many jelly beans are in the jar?
Are other solutions possible? If so, what are they?

4. What is the smallest 100-digit prime?
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Exercises

5. If p is the smallest 100-digit prime, what is 2°~! mod p? What
is 2(P=1/2mod p? What about 2(P~1)/*mod p?

1 1 1
6. ThematrixM = | 1 2 4 | isusedasablock cipher mod-
1 4 9

ulo 26 to scramble letters in a message, three letters at a time.
Assume A 0,B 1,C 2, and so forth. Descram-
ble the ciphertext FKBHRTMTU.

7. Find an irreducible polynomial of degree 3. Use this polyno-
mial to describe how to calculate sums and products in the field

GFy;.

8. A barge company transports bales of hay and barrels of beer up
the Mississippi River. The company charges $2.30 for each bale
ofhay and $3.00 for ecach barrel of beer. The bales of hay average
75 pounds and take up 5 cubic feet of space; the barrels of beer
weigh 100 pounds and take up 4 cubic feet of space. A barge
is limited to a payload of 150,000 pounds and 8,000 cubic feet.
How much beer and how much hay should a barge transport to
maximize the shipping charges?

9. The Riemann Hypothesis states that all of the nontrivial zeros of
the Riemann zeta function lie on the line Re (s) = % Visualize
the Riemann zeta function alongRe (s) = % by drawinga curve
in three-dimensional space.

10. Let Z3p denote the integers modulo 30. Write Z3 as a (dis-
joint) union of groups.

Solutions

1. Define the function f(i, j) = ij. Choose Compute > Matrices
> Fill Matrix with 10 rows and 10 columns, and use the func-
tion f to generate a matrix. Then, reduce the matrix mod 11 to

get the following:
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1 2 3 4 5 6 7 8 9 10
2 4 6 8 101 3 5 7 9
36 9 1 4 7 10 2 5 8
4 8 1 5 9 2 6 10 3 7
5 10 4 6 3 8 2 7 1 6
6 1 7 2 8 3 9 4 10 5
7 3 10 6 2 9 5 1 8 4
8 5 2 10 7 4 1 9 6 3
9 7 5 3 1 10 8 6 4 2
w9 8 7 6 5 4 3 2 1

Select the matrix and choose Edit > Insert Column(s). Add
one column at position 1. You have now added a column on the
left. Repeat this procedure using Insert Row(s), adding a row at
position 1. Fill in the empty boxes with X and the integers 1
through 10 to generate the final multiplication table,

x 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 101 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
S 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8§ 8 5 2 10 7 4 1 9 6 3
9 0 7 5 3 1 10 8 6 4 2
10 10 9 &8 7 6 5 4 3 2 1

From the table, 2 -6 = 1 implies 2-1=6,and3-4=1 implies
371 =4. Asacheck,27'mod11 =6and 3 'mod 11 = 4.

2. Thessolution is given by x = (8 —4) /5mod 13 = 6. Asacheck,
6-5+4mod13 = 8.

3. The problem requires the solution to the system

= 3 (mod5)
x = 5 (mod7)

of congruences. The system is equivalent to the equation x =

34+5a=35+7b,0or34+5a =5 (mod7),which has a solution
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a=(5—3)/5mod7 = 6, which means x = 3+ 5a = 33 jelly
beans. Other possible solutions are x = 33 4 35n, where n is
any positive integer.

. Define the function nextp as indicated in this chapter. Then
nextp(10°?) produces a number with lots of zeroes that ends in
289. The prime p can be written as p = 107 +289.

. Note that 27" 'modp = 1 and 2(?~"1/2mod p = 1, whereas
2(P=1)/4mod p produces another number with lots of zeroes
that ends in 288. More precisely, 2(?~1/4 = —1mod p. This
congruence illustrates the fact that, if p is a prime, then 2=
1 (modp) has only two solutions, x = 1 (mod p) and x =
—1 (modp).

-1

1 1 1 24 5 24
. Wehave | 1 2 4 mod26 = 5 18 3 |.The
1 4 9 24 3 25

ciphertext FK BHR T M T U has a numerical equivalent of
[5,10,1,7,17,19,12,19,20]. Picking three at a time, we get

24 5 24 5 7 12 12 7 5
5 18 3 10 17 19 |mod26=| 0 8 20
24 3 25 1 19 20 19 18 13

Thevector [12,0,19,7,8,18,5,20, 13] corresponds to the plain-
text MATHISFUN, or MATH IS FUN.

. Defining g(x) = x> +x + 1, we see that g(1)mod3 = 0, and
hence g(x) is not irreducible (since it has a root in GF3). How-
ever, if f(x) = x> +2x+1,then f(0)mod3 =1, f(1)mod3 =
1,and f(2)mod3 = 1, and hence f(x) is irreducible. (If f(x)
were reducible, it would have a linear factor, and hence a root.)
An element of GF>7 can be thought of as a polynomial of degree
less than 3 with coefficients in GF3. Given the field elements
2x2 +x+2and 2x+ 1, the product is

(2% +x+2) (2x+1)mod x* +2x+ 1) mod3 = x* + 1,
and the sum is given by

(2¢* +x+2) + (2x+ 1)mod 3 = 2x°.

Exercises
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8. The objective function is 2.3/ 4 3b. The constraints are 4h +
5b < 8000, 75h + 100b < 150000, b > 0, and & > 0. With
the insert point in the display

2.3h+3b
Sh+4b < 8000
75h 41005 < 150000
b>0
h>0

choose Compute > Simplex > Maximize to get: Maximum is

4550 at h = 1000, b = 750.

9. Type (t,Re (C (% —I—ti)) ,Im (C (% —I—ti))) and choose Com-
pute > Plot 3D > Tube. Type (¢,0,0) and drag it to the plot
frame. From the Plot Properties dialog, choose the Items Plot-
ted page. For Items 1 and 2, set Interval: 0 to 35, Points Sam-
pled: 99, Points per Cross Section: 7, Radius: 0.2 and set the
Surface Style to Hidden Line.

0
5 10
20

1

z0 30 X
-1
-2
y

View the curve from several different angles. Note that the in-
tersection points display zeros of the Riemann zeta function.

10. Consider first the positive integers < 30 thatare relatively prime
to 30. Let Gy = {1,7,11,13,17,19,23,29} be the group of

units modulo 30.

In a similar fashion, for each divisor 7 of 30 define G,, to be the
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positive integers @ < 30 such that ged (a,30) = n. Thus

Gi
Gy
G3
Gs
Ge
Gio
Gis
G3o

{1,7,11,13,17,19,23,29}
{2,4,8,14,16,22,26,28}
{3,9,21,27}

{5,25}

{6,12,18,24}

{10,20}

{15}

{0}

For each of these subsets, create a multiplication table modulo
30 such as the following one for Gy, for which 16 acts as an

identity.
T
4
8
14
16
22
26
28
[ 4 8 16
8 16 2
16 2 4
28 26 22
2 4 8
14 28 26
22 14 28
26 22 14

28
26
22
16
14
8
4
2

[2 4 8 14 16 22 26 28 |mod30 =

2 14 22 26
4 28 14 22
8 26 28 14
14 8 4 2

16 22 26 28
22 4 2 16
26 2 16 8

28 16 8 4

Note that cach of these sets is closed under multiplication, and
that each element appears once in each row and once in each
column. Since multiplication is certainly commutative and as-
sociative, it follows that each subset is in fact a group.

Exercises
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Menus and Shortcuts for
Doing Mathematics

If | feel unhappy, | do mathematics to become happy. If | am happy, | do mathematics to keep happy. ~ Alfréd Rényi (1921-1970)

menu, corresponding commands on the Math Toolbar, and
keyboard shortcuts for these commands. Details and exam-  Toolbar and Keyboard Shortcuts
ples are given in the main text. for (ompute Menu Commands

T his appendix summarizes information about the Compute Compute Menu

Compute Menu

e Calculus > Approximate Integral Apply approximation
methods Left, Right, Left and Right, Middle, Lower, Upper,
Lower and Upper, Lower Absolute, Upper Absolute, Lower and
Upper Absolute, Trapezoid, or Simpson for approximating def-
inite integrals by a mathematical expression.

e Calculus > Change Variables Simplifies an indefinite in-
tegral: specify a substitution and get the result of the substitu-
tion.

e Calculus > Find Extrema Given a mathematical expres- New in Version 6
sion, returns candidates for extrema. Compute > Passthru Code to MuPAD

) ] Compute > Rewrite > Mixed
e Calculus > Implicit Differentiation Given an equation

and a differentiation variable, performs differentiation.
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e Calculus > Integrate by Parts Simplifies an indefinite in-
tegral: specify the part to be differentiated and invoke the inte-
gration by parts method.

e Calculus > Iterate Find numerical approximations to a
root of an equation f(x) = x, starting with your estimate of a
root.

o Calculus > Partial Fractions Writes a factorable rational
function as a sum of simpler fractions. (Same as Polynomials >
Partial Fractions)

e Calculus > Plot Approximate Integral Plot pictures of
Riemann sums obtained from midpoints, left endpoints, or right
endpoints of subintervals.

¢ Check Equality Verify equalities and inequalities. There
are three possible responses: true, false, and undecidable.

e Combine > Arctan Combines or simplifies expressions in-
Volving inverse tangent functions.

e Combine > Exponentials Combines or simplifies expres-
sions involving exponential functions with base e.

¢ Combine > Hyperbolic Trigonometric Functions Prod-
ucts and powers of hyperbolic trigonometric functions are com-
bined into a sum of hyperbolic functions whose arguments are
integral linear combinations of the original arguments.

e Combine > Logs Combines or simplifies expressions in-
volving logarithmic functions with base e.

e Combine > Powers Combines or simplifies expressions
involving exponential functions with arbitrary base.

¢ Combine > Trigonometric Functions Productsand pow-
ers of trigonometric functions are combined into a sum of trigo-
nometric functions whose arguments are integral linear combi-
nations of the original arguments.

e Definitions > Clear Definitions Removes all active user-
defined definitions from a document.
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Definitions > Define MuPAD Name Allows users to ac-
cess functions available to the computation engine that do not
appear as menu items, cither functions from one of the libraries
of the computation engine or user-defined functions.

Definitions > New Definition Allows users to define new
functions and variables for computation.

Definitions > Show Definitions Provides a list of all ac-
tive user-defined definitions in a document.

Definitions > Undefine Removes a selected user-defined
definition from a document.

Evaluate Evaluate yields symbolic or numerical results, de-
pending on the input.

Evaluate Numeric Evaluates and gives numerical results.

Expand Expand polynomial and rational products, trigono-
metric and exponential expressions.

Factor Factor polynomials and rational, trigonometric and
exponcntial expressions.

Interpret Shows the interpretation of possibly ambiguous
expressions as made by the computing engine.

Matrices > Adjugate Produces the adjugate or classical ad-
joint of a square matrix A, namely, the transpose of the matrix
of cofactors of A.

Matrices > Characteristic Polynomial Produces the char-
acteristic polynomial of a square matrix A, namely, the determi-
nant of the characteristic matrix x/ — A.

Matrices > Cholesky Decomposition Factorsareal square,
symmetric, and positive definite matrix A asa product A = GGT,
with G a real positive-definite lower triangular square matrix.

Matrices > Column Basis Produces a basis for the vector
space spanned by the columns of a matrix.

Matrices > Concatenate Merges two matrices with the
same number of rows horizontally into one matrix.

— #485

Compute Menu
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e Matrices > Condition Number Produces the condition
number of an invertible matrix A, the product of the 2-norm of
A and the 2-norm of A~!. This number measures the sensitivity
of some solutions of linear equations Ax = b to perturbations
in the entries of A and b.

e Matrices > Definiteness Tests Determines whether a Her-
mitian matrix (a square matrix equal to its conjugate transpose)
is positive definite, positive semidefinite, negative definite, or
negative semidefinite.

e Matrices > Determinant Produces the determinant of a
square matrix.

e Matrices > Eigenvalues Produces a list of eigenvalues of a
square matrix, that is, the roots of its characteristic polynomial.
The results are symbolic or numerical approximations depend-
ing on the matrix entries.

e Matrices > Eigenvectors Produces a list of eigenvectors
paired with eigenvalues of a square matrix, that is, the roots of
its characteristic polynomial. Given a matrixA, these are a scalar
¢ and a vector v with Av = cv. The results are symbolic or nu-
meric depending on the matrix entries.

e Matrices > Fill Matrix Create a matrix: choose from ma-
trix types Band, Defined by Function, Identity, Jordan Block,
Random (integers between -1000 and 1000), and Zero (filled
with zeroes).

e Matrices > Fraction-Free Gaussian Elimination Elemen-
tary row operations are used to reduce a matrix of integers to
row echelon form with integer entries.

e Matrices > Gaussian Elimination Elementary row oper-
ations are used to reduce a matrix to row echelon form. The re-
sults are symbolic or numeric depending on the matrix entries.

e Matrices > Hermite Normal Form Produces, from a ma-
trix A with integer entries, a row echelon matrix H = QA where
Q is invertible in the ring of matrices over the integers.

e Matrices > Hermitian Transpose Produces, from a com-
plex matrix, the Hermitian transpose.
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Matrices > Inverse Produces the inverse of a square, in-
vertible matrix.

Matrices > Jordan Normal Form Produces a factorization
of a square matrix as PJP~!, where J is in Jordan normal form.

Matrices > Map Function Applies afunction (either built-
in or user defined) to the entries of a matrix or vector.

Matrices > Minimal Polynomial Computes the monic
minimal polynomial of a square matrix.

Matrices > Norm Computes the 2-norm, or Euclidean
norm, of a matrix A with real or complex entries. This is the
number defined by [|A|| = max, [|Ax|| /||x||. In the special
case A is a vector, this is the Euclidean length of the vector.

Matrices > Nullspace Basis Finds a basis for the vector
space consisting of all vectors X satisfying AX = 0.

Matrices > Orthogonality Test Tests a real matrix to de-
termine if the inner product of any two different columns is zero
and the inner product of every column with itself is one, and re-
ports truc or false.

Matrices > Permanent Computes the sum of certain
products of the entries of a square matrix (a;;), namely,
permanent(a;j) = Y5 @15(1)%20(2) ** * dno(n) Where O ranges
over all the permutations of {1,2,...,n}.

Matrices > PLU Decomposition Factors a real matrix A
into a product A = PLU, with L and U real lower and upper
triangular matrices with 1’s on the main diagonal of L, and with
P a permutation matrix. The matrices P and L are invertible and
the matrix U is a row echelon form of A.

Matrices > QR Decomposition Factors a real m X n ma-
trix A with m > n as a product QR, where Q is an orthogonal
m X m matrix and R is upper-right triangular with the same rank
as A. If the original matrix A is square, then so is R. If A has lin-
carly independent columns, then R is invertible.

Matrices > Random Matrix Creates a matrix of integers.
Set dimensions and the range of random entries. Select a matrix
typc—unrestricted, symmetric, antisymmetric, or triangular.

Compute Menu
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e Matrices > Rank Reports the dimension of the vector
space generated by the columns of a matrix.

e Matrices > Rational Canonical Form Produces a block
diagonal matrix with each block the companion matrix of its
own minimum and characteristic polynomials.

e Matrices > Reduced Row Echelon Form Produces a row-
equivalent matrix in row echelon form in which the number
of leading zeros increases as the row number increases; the first
nonzero entry in each nonzero row is equal to 1; and each col-
umn that contains the leading nonzero entry for any row con-
tains only zeros above and below that entry.

¢ Matrices > Reshape Creates a matrix of specified dimen-
sions from a list. Also changes dimensions of a matrix.

e Matrices > Row Basis Produces a set of vectors that form
a basis for the vector space spanned by the rows of a matrix.

¢ Matrices > Singular Value Decomposition Factorsanm X
n real matrix A can into a product A = UDV, with U and V real
orthogonal m x m and n X n matrices, respectively, and D a di-
agonal matrix with positive numbers in the first rank(A) entries
on the main diagonal, and zeros everywhere else.

e Matrices > Singular Values Computes the nonnegative
scalars a for which there exist two nonzero vectors # and v so
that Av = au and A”u = av, where A" is the complex conju-
gate transpose of a complex matrix. These singular values ap-
pear as entries on the main diagonal of the diagonal matrix in
the singular value decomposition of A.

e Matrices > Smith Normal Form Given a matrix A over a
principal ideal domain (in particular, a matrix of integers), pro-
duces an equivalent diagonal matrix of the form diag(1,...,1,
DP1,D2y- -+ Pks0,...,0) where for each i, p; is a factor of p;1 ;.

e Matrices > Spectral Radius Computes the largest of the
absolute values of the eigenvalues of a square matrix.

e Matrices > Stack Merges two matrices with the same num-
ber of columns vertically into one matrix.
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Matrices > Trace Computes the sum of the diagonal ele-
ments of a square matrix.

Matrices > Transpose Interchanges the rows and columns
of a matrix.
Passthru Code to Engine Allows users to enter and send

MuPAD code directly to the compute engine.

Plot 2D > Approximate Integral Plots an expression to-
gether with pictures of Riemann sums obtained from midpoints,
left endpoints, or right endpoints of subintervals.

Plot 2D > Conformal Given a complex function F(z),
maps a two-dimensional grid from the plane into a second
(curved) grid determined by the images of the original grid lines
under F. Yields a sct of curves in the plane with the property
that they also intersect at right angles at the points where F is
analytic.

Plot 2D > Gradient Plots a rectangular array of arrows
that describe the gradient of an expression f (x,y).

Plot 2D > Implicit Plots the graph of an equation in rect-
angular coordinates.

Plot 2D > Inequality Plots points in the plane that satisfy
a given inequality of the form f (x) < g (x) or f (x) > g (x).

Plot 2D > ODE Plots a function f given as the numerical
solution to an ordinary differential equation.

Plot 2D > Parametric Plots a parametric curve (x(¢) ,y (7))
in rectangular coordinates.

Plot2D > Polar Plots the polar graph of f (0) or the polar
graph ofa parametric curve (r (t) ,0 (t))

Plot 2D > Rectangular Plots the graph of an expression
f (x) in rectangular coordinates. Also plots the graph of a para-
metric curve (x(¢),y(¢)) in rectangular coordinates.

Plot 2D > Vector Field Given an equation of the form
F (x,y) = [u(x,y),v(x,y)], plots a vector field in rectangular

coordinates.

Compute Menu
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e Plot 2D Animated > Conformal Animates a conformal
plot as a parameter £ increases over an interval a <t < b.

e Plot 2D Animated > Gradient Animates a gradient as a
parameter f increases over an interval a <t < b.

e Plot 2D Animated > Implicit Animates an implicit plot
as a parameter ¢ increases over an interval a <t < b.

e Plot 2D Animated > Inequality Animates an inequality
as a parameter f increases over an interval a <t < b.

e Plot 2D Animated > Parametric Animates the plot of a
parametric curve as a parameter  increases over an interval a <
t<b.

e Plot 2D Animated > Polar Animates a polar plot as a pa-
rameter ¢ increases over an interval a <t < b.

e Plot 2D Animated > Rectangular Animates a rectangu-
lar plot as a parameter ¢ increases over an interval a <t < b.

e Plot 2D Animated > Vector Field Animates a plot of a
vector field as a parameter f increases over an intervala <1 < b.

e Plot3D > Curve in Space Plots a rectangular curve, given
alist or vector (x (¢),y(r) ,z(¢)).

e Plot3D > Cylindrical Plots the expression f (0, z) in cylin-

drical coordinates or the parameterized cylindrical surface

(r(s,1),0(s,1),z(s,1)).

e Plot 3D > Gradient Plots a three-dimensional array of ar-
rows that describe gradient of the expression f (x,y,z).

e Plot 3D > Implicit Plots an equation f (x,y,z) = c.

e Plot 3D > Parametric Plots a parametric surface
(x(s,1),y(s,1),z(s,t)) in rectangular coordinates.

e Plot 3D > Rectangular Plots a surface given by an expres-
sion f (x,Y) in rectangular coordinates. Also plots a parametric
surface (x(s,7),y(s,7),z(s,1)) in rectangular coordinates.
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Plot 3D > Spherical Plot an expression f (6, ¢) in spheri-

cal coordinates or a parameterized surface (p (s,7), 0 (s,1), 9 (s,1))

in spherical coordinates.

Plot 3D > Tube Plots a fat curve (x(¢),y(¢),z(t)) of ra-
dius r(1).

Plot 3D > Vector Field Plots a vector field F (x,y,z) =
[u(x,,2),v(x,y,2) ,w(x,y,2)] in rectangular coordinates.

Plot 3D Animated > Curve in Space Animates a curve in
space as a parameter f increases over an interval a <t < b.

Plot 3D Animated > Cylindrical Animates a cylindrical
plot as a parameter ¢ increases over an interval a <t < b.

Plot 3D Animated > Gradient Animates a gradient as a
parameter f increases over an intervala <t < b.

Plot 3D Animated > Implicit Animates an implicit plot
as a parameter f increases over an intervala <t < b.

Plot 3D Animated > Parametric Animates a parametric
plot as a parameter ¢ increases over an interval a <t < b.

Plot 3D Animated > Rectangular Animates a rectangu-
lar plot as a parameter ¢ increases over an interval a <t < b.

Plot 3D Animated > Spherical Animates a spherical plot

as a parameter f increases over an intervala <t < b.

Plot 3D Animated > Tube Animates a tube plot as a pa-
rameter f increases over an interval a <t < b.

Plot 3D Animated > Vector Field Animates a vector field
as a parameter ¢ increases over an interval a <t < b.

Polynomials > Collect Rewrites a polynomial by collect-
ing all coefficients of terms of the polynomial.

Polynomials > Companion Matrix Produces the compan-
ion matrix of a monic polynomial ag+a1 X +- - - +a, 1 X"+
X" of degree n, which is the n X 1 matrix with a subdiagonal of
ones, final column [ —ay —ap -+ —ap_1| ] Tand other
entries zero.

Compute Menu
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Polynomials > Divide Rewrites a rational quotient of poly-
nomials f'(x) /g(x) with rational coefficients to the form g(x) +
r(x)/g(x), wherer(x) and g(x) are polynomialsand deg r(x) <
degg(x).

Polynomials > Partial Fractions Writes a factorable ratio-
nal function as a sum of simpler fractions.

Polynomials > Roots Finds real and complex roots of a
real or complex polynomial with rational coefficients. It finds
roots symbolically for polynomials of degree 4 or less, and finds
the roots numerically for polynomials of higher degree.

Polynomials > Sort Rewrites a polynomial by collecting
the numeric coefficients of terms of a polynomial expression
and returns the terms in order of decreasing degree.

Power Series Produces the Taylor series of a function ex-

panded about a specified point.

Rewrite > Arccos Rewritesan inverse trigonometric func-
tion in terms of arccos.

Rewrite > Arccot Rewrites an inverse trigonometric func-
tion in terms of arccot.

Rewrite > Arcsin Rewrites an inverse trigonometric func-
tion in terms of arcsin.

Rewrite > Arctan Rewritesan inverse trigonometric func-
tion in terms of arctan.

Rewrite > Cos Rewritesa trigonometric function in terms
of the cosine function.

Rewrite > Equations as Matrix Converts a system of lin-
car equations to the matrix of its coeflicients.

Rewrite > Exponential Rewrites an expression in terms of
the natural exponential function.

Rewrite > Factorial Rewrites an expression in terms of fac-
torials.
Rewrite > Float Rewrites an expression in terms of ﬂoating—

point numbers.
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Rewrite > Gamma Rewrites a factorial expression in terms
of the gamma function.

Rewrite > Logarithm Rewrites an expression in terms of
the natural logarithm.

Rewrite > Matrix as Equations Takes a matrix and pro-
duces a list of linear equations with the matrix entries as coefhi-
cients.

Rewrite > Mixed Converts a fraction to a mixed number.

Rewrite > Normal Form Combines rational polynomial
expressions over a common denominator.

Rewrite > Polar Rewrites a complex number in polar form
re'?.
Rewrite > Rational Rewrites a floating-point number as

a quotient of integers; rewrites an inverse in rational notation.

Rewrite > Rectangular Rewrites a complex number in rect-
angular form a + bi.
Rewrite > Sin Rewritesa trigonometric expression in terms

of the cosine function.

Rewrite > Sin and Cos Rewrites a trigonometric expres-
sion in terms of the sine and cosine functions.

Rewrite > Sinh and Cosh Rewrites an exponential expres-
sion in terms of the hyperbolic sine and cosine functions.

Rewrite > Tan Rewritea trigonometric expression in terms
of the tangent function.

Simplex > Dual Gives the dual of a linear programming
problem.
Simplex > Feasible? Tests whether or not a set of constraints

is feasible.

Simplex > Maximize Finds the maximum value of a linear
expression subject to a feasible system of constraints.

Compute Menu
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e Simplex > Minimize Finds the minimum value of a linear
expression subject to a feasible system of constraints.

e Simplex > Standardize Rewritesalinear programming prob-
lem in standard form.

e Simplify Simplifies an algebraic expression, rationalizes de-
nominators.
¢ Solve > Exact Finds an exact solution to an equation or

system of equations.

e Solve > Integer Finds integer roots of polynomial expres-
sions with rational coeflicients, and integer solutions to equa-
tions of the same type.

e Solve > Numeric Computes an approximate ﬂoating-point
solution to an equation or an approximate floating-point solu-
tion in a given interval.

¢ Solve > Recursion Solves a recursion or system of recur-
sions.
¢ Solve ODE > Exact Computes an exact solution to an or-

dinary differential equation.

e Solve ODE > Laplace Uses the Laplace method to com-
pute a solution to an ordinary differential equation.

¢ Solve ODE > Numeric Computes an approximate solu-
tion to an ordinary differential equation.

e Solve ODE > Series Computes an approximate finite se-
ries solution to an ordinary differential equation.

o Statistics > Correlation Computes the coefficient of cor-
relation between two samples.

o Statistics > Covariance Computes the n X n covariance
matrix of an m X n matrix.

e Statistics > Fit Curve to Data > Multiple Regression Cal-
culates linear-regression equations from keyed or labeled data
matrices. The equation produced is the best fit to the data in
the least-squares sense.
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Statistics > Fit Curve to Data > Polynomial of Degreen  Cal-
culates polynomial equations from labeled or unlabeled two-
column data matrices. The result is a polynomial of the specified
degree that is the best fit to the data in the least-squares sense.

Statistics > Geometric Mean Calculates the nth root of
the product of numbers in a comma delimited list or a vector,
and calculates the nth roots of the products of numbers in
columns of an 1 X m matrix for n > 2.

Statistics > Harmonic Mean Calculates the reciprocal of
the mean of the reciprocals of numbers in a comma delimited
list or a vector, and calculates the harmonic means for columns
of an n X m matrix forn > 2.

Statistics > Mean Calculates the arithmetic mean, or av-
erage, of numbers in a comma delimited list or a vector, and cal-
culates the arithmetic means of numbers in columns of ann X m
matrix for n > 2.

Statistics > Mean Deviation Calculates the mean of the
distances of the data from the data mean for data in a comma
delimited list or in a vector, and calculates the mean deviations
of data in columns of an n X m matrix for n > 2.

Statistics > Median Calculates a number such that at least
half the numbers in a data set are equal to or less than it, and at
least half the numbers in the data set are equal to or greater than
it for data in a comma delimited list or in a vector, and calculates
the medians of data in columns of an n X m matrix forn > 2.

Statistics > Mode Finds the value or values that occur with
maximum frequency in a data set, and also gives the multiplicity
of each of the modes for data in a comma delimited list or in a
vector, and calculates the modes of data in columns of an n X m
matrix forn > 2.

Statistics > Moment Computes the 1st, 2nd, and higher
moments about the mean or about a specified point for dataina
comma delimited list or in a vector, and calculates the moments
of data in columns of an n X m matrix for n > 2.

Compute Menu
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o Statistics > Quantile Computes the gth quantile of a set,
where g is a number between zero and one. The result is a num-
ber Q for which the fraction g of the numbers falls below Q and
the fraction 1 — g lies above Q for datain a comma delimited list
or in a vector, and calculates the quantiles of data in columns of
an n X m matrix forn > 2.

e Statistics > Random Numbers Produces a list of random
numbers from one of several families of distribution functions.
You specify the distribution, the size of the set, and appropriate
parameters.

e Statistics > Standard Deviation Computes the square root
of the variance of a data set, giving a measure of variation from
the mean for data in a comma delimited list or in a vector, and
calculates the standard deviations for columns of an 7 X m ma-
trix for n > 2.

o Statistics > Variance Computes the sample variance for
data in a comma delimited list or in a vector, and computes the
sample variances for columns of an 1 X m matrix for n > 2. For
a data set of size n, the sample variance is the sum of the squares
of differences with the mean, divided by n — 1.

e Transforms > Fourier Computes the Fourier transform

F(f (x),x,w) = / e () dx

of a function f (x).

o Transforms > Inverse Fourier Computes the inverse Fourier
transform of a function.

¢ Transforms > Inverse Laplace Finds the inverse Laplace
transform of a function.

e Transforms > Laplace Computes the Laplace transform

2 0)09)= [ 0 a
of a function f (7).
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Vector Calculus > Curl Computes the curl

VxF:(ar dqg dp dr dgq 8p>

of a function F (x,y,z) = (p (x,,2) ,q (x,%,2) , 7 (x,,2)).

Vector Calculus > Divergence Computes the divergence
0 0 0
V-F= 8—17 (a,b,c)+ 875 (a,b,c)+ (72 (a,b,c)

of a function F (x,y,z) = (p (x,,2) ,q (x,,2) ,7 (x,¥,2)).

Vector Calculus > Gradient Computes the gradient V f

of a scalar function f (x1,x2,...,x,) of n variables.
Vector Calculus > Hessian Compute the n X n Hessian
[ 9% e
matrix | =———— | of second partial derivatives of a scalar func-
8xi8xj
tion f (x1,X2,...,X,) of n variables.
Vector Calculus > Jacobian Computes the n X 1 Jacobian

. [afi . L .
matrix | =— | of partial derivatives of the entries in a vector

8xj
field
(fl (x17-x27”'7'xl’l) 7f2 (x17x27' .. >xn)7' . '7fn (x17x27"' 7xn))

Vector Calculus > Laplacian Computes the Laplacian

Vif = V.Vf

v.<3f9f3f>
dx’ dy’ dz

’f I*’f I*f

a2 oy Tz
of ascalar field f(x,y,z).

Vector Calculus > Scalar Potential Computes the scalar
potential or informs that such a function does not exist.

Vector Calculus > Set Basis Variables Allows the user to
enter a new set of basis variables.

Compute Menu
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e Vector Calculus > Vector Potential Computes the vector
potential of a vector fields. The vector potential of a vector fields
is a vector field whose curl is the given vector field.

e Vector Calculus > Wronskian Computes the Wronskian,

. . i—1
the determinate of the 7 X n matrix [fj( ) (x)} , of a vector

field (fl ()C) 7f2 (x)v"'7fn (x))

Toolbar and Keyboard Shortcuts for Compute Menu
Math Toolbar and Keyboard Shortcuts

Tooltips identify the buttons on the toolbars in the program win-
dow. To see the button name, hold the mouse pointer on a toolbar
button for several seconds until the tooltip appears.

N0 QL BRI O NNORZI RS I Q]SS E S

Following are Math Toolbar and keyboard shortcuts for commands
on the Compute menu.

Button Compute Menu Keyboard Shortcut
=7 Evaluate Crurl+e
i FEvaluate Numeric

e Definitions > New Definition  Cerl+=
‘FQ\%{ Definitions > Show Definitions
Interpret Curl+shift+/  or  Curl+?

x? Solve > Exact

O Simplify
@ Expand

% Plot 2D > Rectangular
% Plot 3D > Rectangular
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Menus and Shortcuts for
Entering Mathematics

Time is the most valuable thing a man can spend. ~ Theophrastus (372 B(—287 B()

keyboard shortcuts for performing basic mathematical oper-
ations and entering symbols, characters, and the most com- Entering Mathematical Objects
mon mathematical objects are faster to use than the mouse. The lists
on the following pages summarize shortcuts related specifically to en- Entering Symbols and Characters
tering mathematics. For many additional shortcuts, consult Creating
Documents with Scientific WorkPlace and Scientific Word, Version 6 or Entering Units of Measure
choose Help and search for keyboard shortcuts.
We use standard computer conventions to give keyboard instruc-
tions. The names of keys in the instructions match the names shown
on most keyboards. Ctrl (Windows) and Cmd (Mac) are synony-
mous, as are Enter (Windows) and Return (Mac). Names of keys are
always shown in Windows format. Mac users should substitute Mac

K eyboard shortcuts are available for many common tasks. The ~ Entering Mathematics and Text

keys (e.g., Cmd and Return) as appropriate.

A plus sign (+) between the names of two keys indicates that you
must press the first key and hold it down while you press the second
key. For example, Ctrl+g means that you press and hold down the Cerl
key, press g, and then release both keys.

Entering mathematics is straightforward. Working right in the
program window, you use familiar notation to enter mathematical char-
acters, symbols, and objects into your document. Simple commands
let you create displayed or inline mathematics.

Editing mathematics is equally straightforward. You can use stan-
dard clipboard and drag-and-drop operations to cut, copy, paste, and
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delete selections. You can also use the search and replace features to
locate or change mathematical information.

Entering Mathematics and Text

During information entry you are either entering text or mathe-
matics, and the results obtained from keystrokes and other user inter-
face actions will differ depending on whether you are entering text or
math. Thus we refer to being in either text mode or math mode. The
default state is text mode; it is easy to toggle between the two modes
and it is also casy to determine what mode you are in.

When you toggle to mathematics, the Math/Text button changes
to an “M” and the program

e Displays the insert point between brackets for mathematics.

e Interprets anythingyou type as mathematics, displaying it in red
in the program window.

o Italicizes alphabetic characters and displays numbers upright.

e Automatically formats mathematical expressions, inserting cor-
rect spacing around operators such as + and relations such as =.

e Advances the insert point to the next mathematical object when
you press the spacebar.

To switch from text to mathematics from the keyboard
e Press Cerl+m.

Subsequent editing in math mode will continue until you press the
spacebar at the end of math. Subsequent editing in text mode will
enter text objects.

To switch from text to mathematics from the Insert menu
e Choose Insert > Math.

Subsequent editing will enter math objects.

To switch from mathematics to text from the keyboard

o Press Spacebar once or twice.
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To switch from mathematics to text from the Insert menu
e Choose Insert > Text.

Subsequent editing will enter text objects.
Unless you actively change to mathematics, the program displays
a “T” on the Standard toolbar.

To toggle between mathematics and text from the Standard Toolbar

e To toggle entry mode to Math, click the “T” on the standard
toolbar.

The “T” changes to “M” and the insert point changes to red and
appears between brackets. Subsequent editing will enter math objects.

e To toggle entry mode to Text, click the “M” on the standard
toolbar.

The “M” changes to “T” and the insert point changes to black.
Subsequent editing will enter text objects.

Entering Mathematical Objects

You can enter mathematical objects from the keyboard, from the
Math toolbar, and from the Insert > Math Objects menu. The menu
operation Insert > Math Objects has been used throughout the pre-
vious chapters. The keyboard and toolbar choices are summarized in
the following tables.

Tooltips identify the buttons on the toolbars in the program win-
dow. To install the Math toolbar, if it does not appear in your program
window, choose View > Toolbars and check Math toolbar.

2R LBl ENNOQBE b X O BB e s
Math Toolbar

To see the button name, hold the mouse pointer on a toolbar button
for several seconds until the tooltip appears.

To enter math objects from the Math toolbar or the keyboard
e Click the appropriate button, or

¢ Hold the Ctrl key down and press the indicated key

Entering Mathematical Objects

Tip

Expanding parentheses, brackets, and braces
grow to an appropriate size, depending on
what they enclose, such as fractions or
matrices. Their use also tends to minimize
errors associated with unbalanced fences.
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Insert Menu

Math Objects > Fraction
Math Objects > Radical
Math Objects > Superscript
Math Objects > Subscript
Math Objects > Brackets, [ ]
Math Objects > Brackets, ()
Math Objects > Brackets, { }
Math Objects > Brackets, ()
Math Objects > Brackets, | |
Math Objects > Brackets, || ||
Math Objects > Operators, Y.
Math Objects > Operators, [
Math Objects > Unit Name

Math Objects > Display
Math Objects > Operators

Math Objects > Math Name
Math Objects > Binomial
Math Objects > Decoration

Entering Symbols and Characters

Button

Press Ctrl+key
/

r
h or up arrow

| or down arrow

ior8
See page 496
d

There are many useful symbols and characters that can be entered
directly from the keyboard. The following table summarizes many of

those that are commonly used in mathematics.

To enter symbols and characters from the keyboard

e Press Cerl+k and press the key indicated in the following table.
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To enter

OCIiN DIU<+«~ T — |

P
~

:sx@ﬁm 2 el

Zooo™M NDO

Z,
O

X

Last matrix created

Press Ctrl-+k
then press

1

NN N R W N

8

9or0or (or)

< N

To enter

—
—

c P <O 8w HRNRUNT=U| < e

>

(N AV VAN

Press Ctrl-+k
then press

cor&

,\
S v~ mE 4+ R u® - » 5 o <
.y

V AN Z2 <0 X Oonw>»

N

<

Entering Symbols and Characters
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To enter Greek Letters from the Keyboard
1. Press and hold the control key down and type the letter g.

2. Release the control key and type a Roman letter corresponding
to the desired Greek letter.

Lowercase Roman letters yield lower-case Greek. Uppercase Roman
letters yield uppercase Greek. Many uppercase Roman letters agree
exactly with their Greek equivalents, and for these, no Ctrl+g prefix is

needed.

Examples

Type Ctrl+g, g for  (lowercase gamma),
(trl+g, G for I (uppercase gamma) and
Ctrl+g,D for A. Note that the shortcut Ctrl+g,
A does nothing, as A is already the symbol for
the uppercase alpha.

Press Ctrl+g Press Ctrl-+g
To enter To enter
then press then press

alpha o a pi T p
beta B b Pi II P
gamma Y g varpi (0] v
Gamma r G tho P r
delta 0 d varrho 0 R
Delta A D sigma o s
varepsilon € e Sigma X S
epsilon € E varsigma G T
zeta ¢ z tau T t
eta n h upsilon D u
theta 0 y Upsilon T U
vartheta Y Z phi ) f
Theta ® Y Phi o F
iota 1 i varphi () j
kappa K k chi X q
varkappa K psi v c
lambda A 1 Dsi v C
Lambda A L omega @ w
mu u m Omega Q W
nu Vv n digamma F I
xi £ X

Xi o X
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The Greek characters are mapped to U.S. keyboards like this:

Lowercase Greek

To enter symbols and characters from the Symbols toolbar or Symbols side-
bar

e Click the symbol or character you want on the Symbol pane on

the sidebar.
Or

1. Click the symbol palette you want on the Symbols toolbar.

2. From the list of available symbols, click the symbol you want.

To enter symbols and characters using TeX commands

If you are very familiar with TEX and know the TEX command for
an object or operation, you can enter it in a TEX field o, if you know
the TEX name for a character or symbol, from the keyboard.

To enter a TeX field
e Choose Insert > Typeset Object > TeX Field.

o Type the TEX command in the dialog box.

Entering Symbols and Characters
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To enter a character or symbol using its TeX name
1. Type Crrl+space.

2. Type the character or symbol name without the leading back-

slash (\).

3. Press Enter.

TEX is case-sensitive. The TEX name for & is delta and the TEX
name for A is Delta. Choose Help > Index > General Reference and
search on Keyboard Shortcuts for more information.

In addition to the Greek alphabet, here are a few other examples.

Character L Character X Character
or symbol name or symbol name or symbol
X aleph e dots I
£ angle 0 emptyset d
~ approx € euro +
L bot 3 exists I
. bullet 4 forall C
N cap e geq )y

cdot € in :
cdots oo infty X
¢ cents Ik int T
o circ < lcq
= cong F mp \
U cup \% nabla A
. ddots #* ne
+ div ¢ notin

Entering Units of Measure

Enter units of measure from the Insert menu or from the keyboard.

To enter units from the Insert menu
1. Choose Insert > Math objects > Unit Name.
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vdots
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2. When the Unit Name dialog box appears, select a measurement

category and a unit, then click Apply.

Units are automatically recognized and can be entered from the
keyboard. Following the general guidelines given below, and a table
of unit prefixes, are tables giving specific keyboard shortcuts for each
of the built-in physical quantities.

To enter units from the keyboard
1. Choose Insert > Math.

2. Type ‘u’ followed by the unit symbol, with the exceptions:

e Type ‘mc’ for ‘micro’ in place of 4 which will appear in the
unit symbol.

e Type ‘uhr’ for the hour symbol h.

e Type 'uda’ for the day symbol d.

e Type use’ for the second symbol s.

e Type ‘ume’ for the meter symbol m.

e Type ‘uan’ for the angstrom symbol A
e Type ‘uCo’ for the Coulomb symbol C.
e Type ‘uTe’ for the Tesla symbol T.

o Type ‘uli’ for the Liter symbol 1.

o Type ‘ohm’ (after the prefix) for the symbols for ohm (and
its derivatives) Q.

e Type ‘ucel’ and ‘ufahr for degrees Celsius °C and de-
grees Fahrenheit °F, respectively.

o Type ‘udeg’ for the degree symbol (planc angle) °.

o Type ‘udmn’ and ‘uds’ for (degree) minute " and (degree)
second ”, respectively.

Autorecognition is case sensitive, so type upper case where indi-
cated. The unit symbol should turn green when you type the last char-
acter.

Entering Units of Measure
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Unit prefixes

Prefix Factor  Symbol Prefix  Factor  Symbol
kilo 100 &k milli 107 m
mega 10° M micro 107  u (mc)
giga 10° G nano 107° n
tera T pico 10712 p
peta 105 P femto 1071 f
exa 0% E atto 10718 4
Activity

To enter Unit Symbol  In Math, type

Becquerel Bq uBq

Curie Ci uCi

Amount of substance

To enter Unit Symbol  In Math, type
Attomole amol uamol

Examole Emol uEmol

Femtomole fmol ufmol

Gigamole Gmol uGmol

Kilomole kmol ukmol

Megamole Mmol uMmol
Micromole umol umcmol

Millimole mmol ummol

Mole mol umol

Nanomole nmol unmol

Petamole Pmol uPmol

Picomole pmol upmol

Teramole Tmol uTmol

Area

To enter Unit Symbol  In Math, type

Acre acre uacre

Hectare hectare uhectare

Square foot ft? uft (insert exponent)

2
2

Square inch in uin (insert exponent)

Square meter m ume (insert exponent)

498

Tip

To enter units such as ftz, ft3, inz, in3,
m2, and m3, type the unit symbol and then
choose Insert > Math Objects > Superscript
and type the appropriate number.
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Current

To enter Unit Symbol  In Math, type
Ampere A uA
Kiloampere kA ukA
Microampere UA umcA
Milliampere mA umA
Nanoampere nA unA

Electric capacitance

To enter Unit Symbol  In Math, type
Farad F ul’
Microfarad uF umcF
Millifarad mF umkF
Nanofarad nF unkF
Picofarad pF upF
Electric charge

To enter Unit Symbol  In Math, type
Coulomb C uCo

Electric conductance

To enter Unit Symbol  In Math, type
Kilosiemens kS ukS
Microsiemens us umcS
Millisiemens mS umsS
Siemens S uS

Electrical potential difference

To enter Unit Symbol In Math, type
Kilovolt kV ukV
Megavolt MV uMv
Microvolt  pV umcV
Millivolt ~ mV umV
Nanovolt nV unV
Picovolt pV upV

Volt \" uV

Entering Units of Measure
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Electric resistance

To enter Unit Symbol  In Math, type
Gigaohm GQ uGohm
Kiloohm kQ ukohm
Megaohm MQ uMohm
Milliohm mQ umohm
Ohm Q uohm
Energy

To enter Unit Symbol  In Math, type
British thermal unit  Btu uBtu
Calorie cal ucal
Electron volt eV ueV
Erg erg uerg
Gigaclectronvolt GeV uGeV
Gigajoule GJ uGJ
Joule J uJ
Kilocalorie kcal ukcal
Kilojoule kJ ukJ
Megaclectronvolt MeV uMeV
Megajoule MJ uMJ
Microjoule ul umcJ
Milljjoule mJ umJ
Nanojoule nJ unJ
Force

To enter Unit Symbol  In Math, type
Dyne dyn udyn
Kilonewton kN ukN
Meganewton ~ MN uMN
Micronewton ~ uUN umcN
Millinewton ~ mN umN
Newton N uN
Ounce-force  ozf uozf
Pound-force ~ 1bf ulbf
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Frequency
To enter Unit Symbol

Exahertz EHz
Gigahertz  GHz
Hertz Hz
Kilohertz  kHz
Megahertz  MHz
Petahertz PHz
Terahertz THz

llluminance
To enter Unit Symbol

Footcandle fc

Lux Ix
Phot phot
Length

To enter Unit Symbol
Angstrém A
Attometer am
Centimeter cm
Decimeter dm
Femtometer fm
Foot ft
Inch in
Kilometer km
Meter m
Micrometer Um
Mile mi

Millimeter mm

Nanometer nm
Picometer pm
Luminance

To enter Unit Symbol
Stilb sb

Luminous flux

To enter Unit Symbol
Lumen Im

In Math, type

uFEHz
uGHz
uHz
ukHz
uMH?z
uPHz
ulTHz

In Math, type
ufc

ulx
uphot

In Math, type

uan
uame
ucm
udme
ufme
uft

uin
ukme
ume
umcme
umi
umme
unme
upme

In Math, type

usb

In Math, type

ulm

Entering Units of Measure
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Luminous intensity

To enter Unit Symbol  In Math, type
Candela cd ucd
Magnetic flux

To enter Unit Symbol  In Math, type
Maxwell Mx uMx

Microweber ~ uWb umcWb
Milliweber mWb umWb
Nanoweber nWb unWb

Weber Wb uWb

Magnetic flux density

To enter Unit Symbol  In Math, type
Gauss G uGa
Microtesla uT umcT
Millitesla mT umT
Nanotesla nT unT
Picotesla pT upT

Tesla T uTe

Magneticinductance

To enter Unit Symbol  In Math, type
Henry H uHe
Microhenry uH umcH
Millihenry mH umH
Mass

To enter Unit Symbol  In Math, type
Atomic mass unit u uu
Centigram cg ucg
Decigram dg udg

Gram g ugr
Kilogram kg ukg
Microgram ug umcg
Milligram mg umg
Pound-mass 1b ulbm

Slug slug uslug
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Plane angle
To enter

Degree
Microradian
Milliradian
Minute
Radian
Second

Power
To enter

Gigawatt
Horsepower
Kilowatt
Megawatt
Microwatt
Milliwatt
Nanowatt

Watt

Pressure
To enter

Atmosphere
Bar

Kilobar
Kilopascal
Megapascal
Micropascal
Millibar
Mercury
Pascal

Torr

Solid angle
To enter

Steradian
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Unit Symbol

o

urad
mrad
/

rad
"

Unit Symbol

GW
hp
kW
MW
uw
mW
nW
W

Unit Symbol

atm
bar
kbar
kPa
MPa
uPa
mbar
mmHg
Pa

torr

Unit Symbol

ST

In Math, type

udeg
umcrad
umrad
udmn
urad
uds

In Math, type

uGWa
uhp
ukWa
uMWa
umcWa
umWa
unWa
uWa

In Math, type

uatm
ubar
ukbar
ukPa
uMPa
umcPa
umbar
ummHg
uPa
utorr

In Math, type

usr

Entering Units of Measure

Mercury
Millimeters at 0°C.
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Temperature
To enter

Celsius
Fahrenheit
Kelvin

Time
To enter

Attosecond
Day
Femtosecond
Hour
Microsecond
Millisecond
Minute
Nanosecond
Picosecond
Second

Year

Volume

To enter
Cubic foot
Cubic inch
Cubic meter
Gallon (US)
Liter
Milliliter
Pint

Quart

504

Unit Symbol
°C
°F
K

Unit Symbol

as

d

fs

h
us
ms
min
ns
ps

S

y

Unit Symbol

lin
in®
m3
gal
1

ml
pint
qt

In Math, type

ucel
ufahr
uk

In Math, type

uas
uda
ufs
uhr
umcs
ums
umn
uns
ups
use
uy

In Math, type

uft (insert exponent)
uin (insert exponent)

ume (insert exponent)
ugal

uli

uml

upint

uqt



Customizing the Program
for Computing

Wherever there is number, there is beauty.  Proclus Diadochus (412—485)

layouts for the toolbars and symbol panels. Asbefore, amouse-
activated tooltip gives the name of each toolbar button and Customizing the Sidebars
panel symbol. Most tools work the same way they did in carlier ver-
sions. The Version 6 system offers a number of ways to customize its Customizing the Compute
features. Settings
Use Preferences in the Tools menu to customize the universal and
local settings. The Computation choices replace the previous Com- customizing the Plot Settings
putation Setup and Engine Setup. You will find some new features in
these dialogs. o Automatic Subsitution
You can define automatic substitution sequences for text and math-
ematics, thus speeding the entry of the text and mathematical expres-
sions you use most often with an enhanced automatic substitution fea-

T he program window has an updated look with streamlined Customizing the Toolbars

ture.

You can enter content quickly with fragments. With Version 6 you
can create fragments containing XHTML code, TEX code, graphics,
or anything else that can go on the clipboard. Fragments are no longer
limited to TEX strings. Fragments and many other text editing short-
cuts are documented in the manual Creating Documents with Scientific

WorkPlace and Scientific Word, as well as in the Help.
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Customizing the Toolbars

The Version 6 program window has three customizable toolbars.

e The Standard toolbar contains buttons for invoking common
file operations and the text boxes for tag lists.

e The Editing toolbar buttons invoke ordinary editing tools.

¢ The Math toolbar buttons insert mathematical objects directly
into your document or open dialog boxes so that you can make
additional specifications. Certain buttons invoke common com-
putational operations.

The Symbol toolbar has palettes of buttons for adding a wide vari-
ety of symbols to your documents. With the exception of those on the
Symbol toolbar, the buttons on the toolbars are identical in function
to commands on the menus. Point the mouse at each toolbar button
for a few seconds to display a brief tooltip that identifies the button.
As with menu commands, buttons that appear dimmed are unavail-

able.
The default screen displays the first three of these toolbars.

To add or remove toolbars

1. Choose View > Toolbars.

2. Check or uncheck the desired toolbars.

To customize a toolbar
1. Place the insert point in one of the toolbars and click the right
button.

2. Choose Customize Toolbars.

3. Click and drag buttons from the panel to a toolbar.

With the Customize toolbar dialog box open, you can also add
a new toolbar, restore the default set of toolbars, drag a button to a
different position on a toolbar, or drag a button from one toolbar to
another. You can show icons only, icons and text, or text only. The
icons can be small or normal.
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Customizing the Sidebars

The Version 6 sidebars display several palettes that make document
editing easier. You can toggle the display of sidebars on cither side of
the document window, and you can choose which palettes to display
in either sidebar using the Add drop-down menu.

You can toggle the display of either sidebar. Note the small graphic
on the inside border of each, containing two arrowheads separated by
a column of dots. Click this graphic to toggle the sidebar display. You
can also toggle the sidebar display from the View menu.

Customizing the Compute Settings

Choose Tools > Preferences > Computation to change default
behavior for Scope, Input, Output, Matrices, Derivatives, Entities, and
Engine. Mac users choose SWPPro > Preferences > Computation.

Scope
When Defaultis chosen, the settings apply to all documents. With
Scope set to This Document Only, the settings specified apply only to

the open document.

Input

On the Input page, you can customize notation that activates sev-
eral behaviors.

Base of Log

The default interpretation for logx is the same as Inxx, namely the
natural logarithm with base e. You can uncheck this option, so that
logx =loggx.

Dot Accent

There are several different notation recognized for a derivative.
(See Chapter 7 “Calculus” for a description of these.) The default
includes the use of Newton’s notation for differentiation, also called
the dot notation, placing a dot over the function name to represent
a derivative. If x = f (¢), then X and ¥ represent the first and second
derivative, respectively, of x with respect to ¢. This notation is com-
mon in physics and other applied mathematics. You can uncheck this
option.

Customizing the Sidebars

- Scope
() Default
() This document anly

Base of Log
Base of log is e (otherwise 10)

Dot Accent
Dok accent means derivative

Bar Accent

Cwerbar accent means conjugate
i

Recognize plain i as imaginary

i

Recagnize j as imaginary i

2

Recognize plain & as exponential

Input |Output | Matrices | Derivatives | Entit
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Bar Accent

The use of a bar over a complex expression is commonly used to de-
note the complex conjugate: if @ and b are real numbers, thena + ib =
a — ib. You can use this notation or disable it. An asterisk is also used
for this purpose: if @ and b are real numbers, then (a +ib)" = a — ib.

The imaginary unit can be denoted either by the letter i, or 1 (Imag-
inaryl)
J

In electrical engineering and related fields, the imaginary unit is
often denoted by j to avoid confusion with electrical current. The
Python programming language also uses j to denote the imaginary
unit. MATLAB associates both i and j with the imaginary unit. You
can set j as the default notation for the imaginary unit.

e
The number e can be denoted cither by the letter e, or as & (Expo-
nentialE).

Output

The appearance of mathematical expressions produced as the re-
sult of a computation can be customized.

Scientific Notation Qutput

Numbers with many digits are often presented in scientific nota-
tion, such as the speed of light in a vacuum 2.99792458 x 108 ms~!.
You can set numbers for Digits Rendered (the number of digits dis-
played), the Upper Threshold (digits to the left of the decimal before
switching to scientific notation) and Lower Threshold (zeros to the
right of the decimal before switching to scientific notation).

Rational Numbers

You can reset the system so that fractions resulting from a compu-
tation are presented as mixed numbers, yielding computations such as
4% +5 % = 9%. The default is for computations to result in, possibly
improper, fractions: 4% —+ 5% = %
Trigonometric Functions

Scientific WorkPlace and Scientific Notebook recognize two types
of functions—ordinary functions and #rigtype functions. The distinc-
tion is that the argument of an ordinary function is always enclosed
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Input  Output |Matr\ces | Derivatives | Ertities |

Scientific Matation Output

Digits Rendered 5
Upper Threshold c

{digits left of decimal before switching)

Lowser Threshald 1

(zeros to right of decimal before switching)

Rational Murmbers
Cutput fractions as mixed numbers F

Trigonametric Functions
Use Parentheses For Trig Functions F

Use "arc" prefix for inverse Trig Functions
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in parentheses and the argument of a trigtype function often is not. If
you check Use Parentheses for Trig Functions, then computations will
produce trigonometric functions with parentheses enclosing the argu-
ment. See Trigtype Functions, page 122, fora complete list oftrigtype
functions and other details.

Inverse trigonometric and hyperbolic functions have two possible
'y = arcsinx for example, and both are used by de-
fault. You can disable the use of the “arc” prefix for inverse functions
by unchecking the option Use “arc” prefix for inverse Trig Functions.

Matrices

You can reset the default matrix delimiter. The original default is
square brackets.

Default matrix delimiter

The choices for default matrix delimiter are None, square brackets,
and parentheses.

Derivatives

There are many choices of notation for derivatives. These settings

notations, Sin—

can guarantee a uniform choice for output. The factory default is to
use notation that agrees with the input.

Derivative Qutput Notation

The choices for Derivative Output Notation are input notation,
d/dx, D, primes, and dots.
Derivatives as Primes

The usual notation for higher derivatives is f () (x). This setting
lets you designate for which n the system switches from prime nota-
tion to the () notation. A setting of 4, for example, gives the sequence

of notations £, f/, /", f", f@, O, ..
Prime Notation

By default, a prime after a function name means derivative. You
can uncheck this option and disable it.

Entities

These settings allow you to change the appearance of several enti-
ties that result from a computation.

Imaginary i Output

Set the output for the imaginary unit as i, j, or 1 (Imaginaryl).

Customizing the Compute Settings

Input | Qutput Matrices |Derivatives ||
Makrices
Default matrix delimiter  (7) none

el
o)

Tnput | Oubput | Matrices  Derivatives [¢

Derivative Outpuk Notation

O didx
(@]

O primes
O dats

Derivatives as Primes

switch from primes to (n)

Prime Motation
Prime means derivative

Triput | Outpuk | Matrices | Detivatives  Entities

Iraginaty i Oukpuk

O Imaginaryl
Differential D Outpuk
®o

O CapitalifferentialD
Differential d Output
®d

O DifferentialD
Exponential e Qutput
®@e

() ExponentialE
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Differential D Output
Reset the output for the differential D asID (Capital Differential D).

Differential 4 Output
Reset the output for the differential d as d (DifferentialD).

Exponential e Output

Reset the output for the exponential e as € (ExponentialE).
Engine

Engine on

The default is for the engine to be on. If you wish to temporarily
disable the computation engine, simply uncheck Engine on. (When
editing a large document, some activities are faster with the engine

off)
Digits
This setting determines the number of digits employed in compu-

tations. Set the number higher for increased accuracy, and lower for
increased computation speed.

Solve Options

These options determine the appearance of solutions to equations.

Maximum Degree

For many polynomial equations of degree greater than 4, explicit
solutions in terms of radicals do not exist. In these cases, implicit solu-
tions are given in terms of roots of a polynomial. When the equation is
a polynomial equation with degree 3 or 4, the explicit solution can be
very complicated—and too large to preview, print, or save. To avoid
this complication, you can set the engine to return solutions that are
not rational solutions in implicit form for smaller degree polynomials
as well.

See Equations With One Variable, page 53, for examples.
Principal Value Only

Use this setting to get simplified solutions. For example, the de-
fault for Solve > Exact applied to sinx = % returns the complete so-
lution

1 5
{67t+27rk|keZ}U{67t+27rk|k€Z}
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Engine on
Digits
Solve Options
Maximum Degree

Principal Yalue Only
Ignore Special Cases

Debugging

Lag MathML commands sent
Log MathML conkent received
Log engine strings sent

Lag engine strings received
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With Principal Value Only checked, the solution returned is

! T
6
Ignore Special Cases
Use this setting to get simplified solutions. For example, the de-
fault for Solve > Exact applied to ¢* = y (variable x) returns the solu-
tion

{lny+2ink |k Z} if y#0
0 if y=0

With Ignore Special Cases checked, the solution returned is
{Iny+2ink |k € Z}

Note that with both Ignore Special Cases and Principal Value Only
checked the solution returned is simply Iny.

Debugging

You can investigate possible syntax errors in mathematics being
sent to or returned by the computing engine by creating logs of the
process.

Customizing the Plot Settings

Choose Tools > Preferences > Plots to change the settings for
Axes, Layout, Labelling, and View.

Axes

The Axes Scaling options are Linear, Lin Log, Log Lin, and Log
Log. The option Lin Log uses linear scaling along the horizontal axis
and logarithmic scaling along the vertical axis. Log Lin uses logarith-
mic scaling along the horizontal axis and linear scaling along the ver-
tical axis.

Check Equal Scaling Along Each Axis for plotting geometric ob-
jects, such as circles, where you want the scaling to be the same on both
axes.

You can change the axis labels to other letters of names. The Axis
Tick Marks can be None, Low, Normal, or High. Arrow tips at the
positive ends of the axes can be turned on or off. You can turn on Grid
Line for 2D plots.

The Axes Type choices are Not Specified, Automatic, Normal,

Boxed, Frame, or None.

Customizing the Plot Settings

Axes |Layout | Labelling | View |
Axes Scaling
(@ Linear O linlog (O Leglin (O Loglog
[ Equal Scaling Along Each Axis

Axis Labels

Axis Tick Marks
[] Axes tips on
[ @rid lines on

Axes Type
(%) Mot Specified () Automatic () Mormal

() Boxed () Frame () Mone
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Layout

You can change the Default Size for New Plots in Pixels (1in =75
Pixels).

The Default Placement for New Plots choices are In line, Displayed,
or Floating. Floating plots can be placed at the Top of page, Bottom

of page, On a page of floats, Here, or Force Here. The placement can
be Left, Right, Inside, Outside, of Full width.

View

Set the Background color by choosing from a color from the Ba-
sic colors or by entering numeric values. For 3D plots, you can check
Orthogonal projection, Keep up vector, or Use default view intervals.
You can also set the Initial View Intervals.

Automatic Substitution

You can create your own names for variables and functions that
will be automatically recognized.

Automatic Substitution

Keystrokes Substitution (ia?-)
bh v Eeob ert| (Remove )
~ Type of Substitution —— - Context For Substitution -
(& simple substitution & InMath
O Scripk bo execute O In Text
O math or Text | Enable or Disable Auto Substitution —
[ 1n Math
1 1n Text

To recognize bob as the variable Robert
1. Choose Tools > Automatic Substitution.

2. Type bob in the Keystrokes box

3. Choose Type of Substitution: Simple substitution.

4. Choose Context for Substitution: In Math.

5. Choose Enable or Disable Auto Substitution: In Math.
6. Leave the insert point in the Substitution entry box.

7. Choose Insert > Math Objects > Math Name.

512
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Bxes Layout |Lahe\hng| View |

Default Size For Mew Plots
Width: A | pixels

Height: m pixels

- Default Placement For New FPloks
@ Inline () Displayed (O Floating
[] Force here
[ Here
[] on a page of floats
[ Tap of page
[ Bottom of page

@ Left

) Right
O Inside
O Outside
Q) Ful width

Axes | Layout | Labelling  View |
Background color [

|:| Keep up veckar
[ Use default view intervals
Initial Wiew Inkervals

Math Name
Name ~ Name Type
() Operator
(O Eunction
(&) Yariable

Auka

A Right

~ Cperator Limit Placement —

Above/Below

|:| This is an engine skring
[] Add automatic substitution

Ok | | Apply | | Cancel |

—
Delets |
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Automatic Substitution

8. Type Robert in the Name box.
9. Choose Name Type: Variable.
10. Check This is an engine string.
11. Check Add automatic substitution.

12. Choose Apply. (The name ‘Robert’ should appear in the Sub-
stitution Box in the Automatic Substitution box.)

13. In the Automatic Substitution dialog, choose Save.

Compute > Definitions > New Definition

(In mathematics, type bob.)
Robert = 17

Compute > Evaluate
Robert> = 289

For additional examples and information about automatic substi-
tution, see Automatic Substitution, page 102, choose Help > Search,
or consult the manual Creating Documents with Scientific WorkPlace

and Scientific Word.
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MuPAD Functions
and Expressions

There is nothing so troublesome to mathematical practice ... than multiplications, divisions, square and cubical extractions

of great numbers ... | began therefore to consider ... how | might remove those hindrances.  John Napier (1550—1617)

Compute menu or through evaluating mathematical expres-
sions. There are also many built-in functions and expressions. compute Menu Items
MuPAD equivalents are given for all of these and, where needed, a

C onstants and functions are available either as items on the Constants

brief description of the constant, function, or expression.

The two menu items Compute > Definitions > Define MuPAD
Name and Compute > Passthru to Engine offer additional ways to
take advantage of the computational capabilities of MuPAD. This ap-
pendix concludes with a brief discussion of each of these items.

Functions and Expressions

Constants

Common constants can be expressed in ordinary mathematical
notation. See page 507 in Appendix C “Customizing the Program
for Computing” for some choices for the appearance of some of the
constants.

If a name such as gamma does not automatically gray when typed
in mathematics, then choose Insert > Math Objects > Math Name
and select or type the name.
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SWP/SNB

e

i or j (see page 89)
T

gamma

oo

true

false

MuPAD
exp(1) or E
I

PI

EULER
infinity

TRUE
FALSE

Compute Menu Items

Following is a summary of Compute menu items and the equiva-
lent functions or procedure in MuPAD. Items marked with M are
programmed, generally using several MuPAD functions and proce-

dures.

Other MuPAD functions can be used by choosing Compute >
Definitions > Define MuPAD Name and with Compute > Passthru

Comments
base of natural logs
imaginary unit: v/ —1

circular constant

r}grolo mgl P Inn

positive real infinity
Boolean true
Boolean false

Code to Engine (see Chapter 5 “Function Definitions”).

Compute

Evaluate

Evaluate Numeric
Simplify

Factor

Factor

Expand

Check Equality

Compute > Combine
Exponentials

Logs

Powers

Trig Functions
Arctan

Hyperbolic Trig Functions

516

MuPAD

eval
float

simplify

factor
ifactor
expand
testeq

MuPAD

combine

combine

simplify
simplify

combine

combine

FAIL or undecidable

This is the translation for MuPAD’s FAIL,
UNKNOWN, or UNDEFINED. Either the answer
cannot be determined or a nonexistent
function was used.
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Compute > Rewrite
Rational

Float

Mixed

Exponential
Factorial

Gamma

Logarithm

Sin and Cos

Sinh and Cosh

Sin

Cos

Tan

Arcsin

Arccos

Arctan

Arccot

Polar

Rectangular
Normal Form
Equations as Matrix
Matrix as Equations

Compute > Solve
Exact

Numeric

Integer
Recursion

MuPAD

numeric::rationalize
float

M
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
M
rectform
normal
linalg::expr2Matrix
Ml

MuPAD

solve
numeric::fsolve
Dom::Integer, solve
solve, rec

Compute > Polynomials  MuPAD

Collect

Divide

Partial Fractions
Roots

Sort

Companion Matrix

collect

div

parfrac

solve
polylib::sortMonomials
linalg::companion

Compute Menu ltems
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Compute > Calculus MuPAD

Integrate by Parts intlib::by parts
Change Variables intlib::changevar
Partial Fractions parfrac
Approximate Integral student::trapezoid
Approximate Integral student::simpson
Approximate Integral student::riemann
Plot Approximate Integral Ml

Plot Approximate Integral Animated 1

Find Extrema sl

Iterate sl

Implicit Differentiation diff

Compute > Solve ODE  MuPAD

Exact ode::solve

Laplace ode::laplace

Numeric numeric::odesolve2

Series ode::series

Compute > Power Series  MuPAD
Power Series series
Power Series taylor

Compute > Transforms  MuPAD

Fourier transform::fourier
Inverse Fourier transform::invfourier
Laplace transform::laplace
Inverse Laplace transform::invlaplace

Compute > Vector Calculus  MuPAD

Gradient linalg::grad
Divergence linalg::divergence
Curl linalg::curl

Laplacian linalg::laplacian
Jacobian linalg::jacobian
Hessian linalg::hessian
Wronskian ode::wronskianMatrix
Scalar Potential scalarpot

Vector Potential linalg::vectorPotential
Set Basis Variables Ml
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Compute > Matrices
Adjugate

Characteristic Polynomial
Cholesky Decomposition
Column Basis
Concatenate

Condition Number
Definiteness Tests
Determinant

Eigenvalues

Eigenvectors

Fill Matrix

Fraction-free Gaussian Elimination

Gaussian Elimination
Hermite Normal Form
Hermitian Transpose
Inverse

Jordan Normal Form
Map Function

Minimum Polynomial
Norm

Nullspace Basis
Orthogonality Test
Permanent

PLU Decomposition
QR Decomposition
Random Matrix

Rank

Rational Canonical Form
Reduced Row Echelon Form
Reshape

Row Basis

Singular Values

Singular Value Decomposition

Smith Normal Form
Spectral Radius
Stack

Trace

Transpose

MuPAD

linalg::adjoint
linalg::charPolynomial
linalg::cholesky
linalg::basis
linalg::concatMatrix
norm

linalg::isPosDef
linalg::det
linalg::cigenvalues
linalg::cigenvectors

Ml

linalg:: gaussElim
linalg::gaussElim
linalg::hermiteForm
conjugate + linalg::transpose
numeric::inverse
linalg::jordanForm
map

linalg::minpoly

norm

linalg::nullspace
linalg::isUnitary
linalg::permanent
numeric::factorLU
numeric::factorQR
linalg::randomMatrix
linalg::rank
linalg::rationalForm
linalg::GaussJordan

MSI

linalg::basis
numeric::singularvalues
numeric:: singularvectors
linalg::HermiteForm
numeric::spectralradius
linalg::stackMatrix
linalg::cr
linalg::transpose

Compute Menu ltems
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Compute > Simplex  MuPAD

Dual linopt::dual
Feasible Ml

Maximize linopt::maximize
Minimize linopt::minimize
Standardize Ml

Compute > Stat. > Fit CurvetoData MuPAD

Multiple Regression stats::reg
Multiple Regression (No Constant)  stats:linReg
Polynomial of Degree n stats::reg

Compute > Stat. > Random Numbers  MuPAD

Beta stats::betaRandom
Binomial stats::binomialRandom
Cauchy stats::cauchyRandom
Chi-Square stats:chisquareRandom
Exponential stats::exponentialRandom
F stats::fRandom

Gamma stats::gammaRandom
Normal stats::normalRandom
Poisson stats::poissonRandom
Student’s t stats::tRandom
Uniform stats::uniformRandom
Weibull stats::weibullRandom

Compute > Statisticc  MuPAD

Mean stats::mean
Median stats::median
Mode stats::modal
Correlation stats::correlation
Covariance M

Geometric Mean stats:geometric
Harmonic Mean stats::harmonic
Mean Deviation Ml

Moment M

Quantile stats::a_quantil
Standard Deviation  stats::stdev
Variance stats::variance
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Compute > Plot2D  MuPAD

Rectangular plotfunc2d or plot::Function2d
Polar plot::polar

Implicit plot::Implicit2d

Parametric plot::Curve2d

Conformal plot2d

Gradient Ml

Vector Field plot::VectorField2d

ODE plot::Ode2d

Compute > Plot3D  MuPAD

Rectangular plotfunc3d or plot::Function2d
Cylindrical plot::Cylindrical

Spherical plot::Spherical

Implicit plot::Implicit3d

Tube plot::Tube

Gradient st

Vector Field sl

Compute > Plot 2D Animated

Plot 2D Animated + Rectangular
Plot 2D Animated + Polar

Plot 2D Animated + Implicit
Plot 2D Animated + Parametric
Plot 2D Animated + Conformal
Plot 2D Animated + Gradient
Plot 2D Animated + Vector Field
Plot 2D Animated + ODE

Compute > Plot 3D Animated

Plot 3D Animated + Rectangular
Plot 3D Animated + Cylindrical
Plot 3D Animated + Spherical
Plot 3D Animated + Implicit
Plot 3D Animated + Tube

Plot 3D Animated + Gradient
Plot 3D Animated + Vector Field

MuPAD

plotfunc or plot::Function2d
plot::polar

plot::Implicic2d
plot::Curve2d
plot::Conformal

M

plot::VectorField2d
plot::Ode2d

MuPAD

plotfunc3d or plot::Function3d
plot::Cylindrical
plot::Spherical

plot::Implicit3d

plot::Tube

M1

M

Compute Menu ltems
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Functions and Expressions

There are a number of built-in functions that you can evaluate with
Compute > Evaluate. Some are entered directly in mathematics and
some use 2 Math Name. If a function name does not automatically
turn gray when typed in mathematics (many do), choose Insert > Math
Objects > Math Name and type the function name in the Name box.
The following lists show the MuPAD function names that are used to

implement the built-in functions.

Algebra and Number Theory

SWP/SNB MuPAD
Vx oor x!/2 sqre(x)
e ~(1/n)
|x| or abs(x) abs(x)
max(a,b,c)oraVbVc max(ab,c)
min(a,b,c)oraAbAc  min(a,b,c)

ged(x® 4+ 1,x+1)
lem(x® 4+ 1,x+1)

ged(x"2+1,x+1)
lem(x*2+1,x+1)

L%J floor(123/34)

[%—I ceil(123/34)

(g) binomial(6,2)

x! x!

123mod 17 123 mod 17

a*modm powermod(a,n,m)

3x° 4+ 2xmodx? + 1 divide + Rem
{a,b}U{b,c} {a,b} union {b,c}

{a,b} N {b,c} {a,b}intersect{b,c}

signum (x) sign(x)

Trigonometry

SWP/SNB MuPAD SWP/SNB MuPAD
sinxorsin(x)  sin(x) cotxorcot(x) cot(x)
cosxorcos(x) cos(x) secxorsec(x) sec(x)
tanxor tan(x)  tan(x) cscxoresc(x)  esc(x)
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Functions and Expressions

Trigonometry

SWP/SNB MuPAD

arcsinx or sin” !
1

xorarcsin(x) orsin~!(x)  arcsin(x)
arccos x or cos ! x or arccos(x) or cos ! (x)  arccos(x)
(

arctanx or tan~! x or arctan(x) ortan~!(x)  arctan(x)

arccotx or cot ™! x or arccot (x) orcot ™! (x)  arccot(x)

arcsecx or sec” ! x or arcsec (x) orsec ™! (x)  arcsec(x)
X) or csc™! (x)  arcesc(x)

arccscx or 08071 X or arccsc

—~~

Exponential, Logarithmic, and Hyperbolic Functions

SWP/SNB MuPAD

e or exp(x) exp(x)
logxor Inx In(x)
log;ox orlog;o(x) In(x)/In(10)
sinhx or sinh(x) sinh(x)
cosh.x or cosh(x) cosh(x)
tanh.x or tanh(x) tanh(x)
cothx or coth (x) coth(x)

cosh™!xorcosh™(x) arccosh(x)
sinh ! x or sinh ! (x arcsinh(x)
tanh~!xortanh~!'(x)  arctanh(x)

Calculus
SWP/SNB MuPAD
4 (xsinx)  diff(x*sin(x),x)

dx
f,Df,D  D(f)
f(3) D(£)(3)

Jxsinxdx  int(x*sin(x),x)

jgxsinxdx int(x*sin(x),x = 0..1)

limxﬁoﬁ% limit(sin(x)/x,x=0)
2

Y5 sum(i?2/2%, i = l..infinity)
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Complex Numbers

SWP/SNB MuPAD Comments
Re(z) Re(z) Real part a of z = a + bi
Im (z) Im(z) Imaginary part b of z = a + bi
4 abs(2) 1 = /(Re (2))* + (Im (2))?
1 ifRe(z) > 0;0r Re(z) =0and Im(z) >0
csgn(z) 0 ifz=0

—1 ifRe(z) <0;or Re(z) =0and Im(z) <0

Z

—ifz#0
signum (z) sign(z) 2] ifz 7

0ifz=0
ZForz conjugate(z) Z =Re(7)—Im(2)i
arg (z) atan(Im(z)/Re(z)) z=z] olare(2)

Linear Algebra
SWP/SNB MuPAD Comments

(411 g 2) array(1..2,1..3,[[1,2,3],(4,5,6]])  matrix

AB A*B matrix product

Al AN(-1) matrix inverse

AT linalg::transpose(A) matrix transpose
Amod17 map(A, x ->xmod 17)

AH conjugate + linalg::transpose Hermitian transpose
AB~! A*BA(-1)

A~ 'mod17 map(A~(-1), x -> x mod 17)

lIxIl,, norm(x,n) n-norm

l|x|l 7 norm(x,Frobenius) Frobenius norm

[1%]| oo norm(x,Infinity) infinity norm
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Vector Calculus

Functions and Expressions

SWP/SNB MuPAD Comments
Vxyz linalg::grad(x*y*z,[x,y,z]) gradient
1(1,=3,4)], norm( SWPmatrix(1,3,[[1,-3,4]]).p) p-norm
VXW linalg::crossProduct(S,T) cross product
S-T linalg::scalarProduct(S,T)

V- (x,xy,y—z) linalg:divergence([x,x*yy-z],[xy,z]) divergence

V x (x,xy,y—z) linalg::curl([xx*yy-z],[xy,z]) curl

v? (xzyz3) linalg::divergence(linalg::grad(x"2*y*z"3,[x,y,z]),[x;y,;z])  Laplacian

Differential Equations
SWP/SNB
F(f(1),1,w)
F(f(0),1,w)

MuPAD

transform::fourier(expr,t,w)

transform::ifourier(expr,t,w)

LA(f(s),s,t) transform::laplace(expr,t,s)
L7V (f (s),s,1) transform::ilaplace(expr,s,t)
Dirac (x), Dirac (x,n)  dirac(x), dirac(x,n)
Heaviside (x) heaviside(x)

Statistics

SWP/SNB

NormalDist, NormalDen, Normallnv

TDist, TDen, TInv

ChiSquareDist, ChiSquareDen, ChiSquarelnv
FDist, FDen, FInv

ExponentialDist, ExponentialDen, Exponentiallnv
WeibullDist, WeibullDen, Weibulllnv
GammaDist, GammaDen, Gammalnv
BetaDist, BetaDen, Betalnv

CauchyDist, CauchyDen, CauchyIlnv
UniformDist, UniformDen

BinomialDist, BinomialDen

PoissonDist, PoissonDen

HypergeomDist, HypergeomDen

Comments

Fourier transform
inverse Fourier transform
Laplace transform
inverse Laplace transform

Dirac function, nth derivative of Dirac function

0 if x<0O
Heaviside function % if x=0
1 if x>0

Comments

Normal distribution
Student’s t distribution
Chi Square distribution
F distribution
Exponential distribution
Weibull distribution
Gamma distribution
Beta distribution
Cauchy distribution
Uniform distribution
Binomial distribution
Poisson distribution
Hypergeometric distribution
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Appendix D | MuPAD Functions and Expressions

Special Functions
SWP/SNB

Bessell, (z)
BesselK, (z)
Bessell, (z)
BesselY, (2)

Beta (x,y)

dilog (x)

erf(x)

1 —erf(x)
F(f(1),1,w)
LambertW (x)
Z(f(t),1,5)
polylog (k, x)
bernoulli ()

bernoulli (n,x)

Chi (z)

526

MuPAD

bessell(v,z)
besselK(v,z)
bessel](v,z)
besselY(v,z)

beta(xy)

dilog(x)

erf(x)
erfc(x)
transform::fourier(f(t),t,w)

lambertW (x)
transform::laplace(f(t),t.s)
heaviside(x)

bernoulli(n)

bernoulli(n,x)

Ci(x)
eint(x)
igamma(z,0)
igamma(a,z)

Si(x)

psi(x)
psi(x,n)

zeta(x)

Comments

Alternate notation: ,(z)
Alternate notation: K, (z)
Alternate notation: J,,(z)
Alternate notation: ¥,(z)

r'x)r
Beta function: M
Cx+y)
Int
p——;

N R g
error function: ﬁfoe dt

complementary error function
Fourier transform

LambertW (x) elambertW(x) —
Laplace transform

polylogarithm: polylog (k,x) =Y.

[e<] _xn
n=1 pk

nth Bernoulli number

S =Y bernoulli (n) &;

nth Bernoulli polynomial

et,ejll =Y, bernoulli (n,x) £;

hyperbolic cosine integral:
gamma-+Inz— [§ 1SN dr  (arg(z) < )

cosine integral: gamma+Inx — [ 125 gy

.1 . X ‘i
exponential integral: [~ ~dt
Gamma function: fooo e ' dr
incomplete Gamma function: [ e ™'t dt

sine integral: (;C ydt

hyperbolic sine integral: fg Sir;htdt

Psi function: W (x) = dilnf(x)

X

nth derivative of Psi function

w 1

for s > 1
N

Zetafunction: {(s)=Y | —
n



A
about, 112,237
absolute convergence, 263
absolute value
complex number, 33
integration, 233
number, 27
plots, 157
symbol, 27
acre, 498
activity, 498
addition
complex numbers, 33
general, 7
matrices, 294
numbers, 20
polynomials, 40
trigonometric formulas, 82
vectors, 344
additionally, 112,237
adjoint
classical adjoint, 310
Hermitian transpose, 308
adjugate, 310
algebra of functions, 106
allowable assumptions, 112

ambiguous notation, 8, 211
amount of substance, 498
ampere, 499
amplitude, 89
and, logical
intersection, 32
logical operator, 31
minimum or meet, 28
angle
conversions, 35
degrees and radians, 77
notation, 77, 503
angstrom, 501
animated plots
2D plots, 165
3D plots, 172, 189
gradient field 2D, 367
gradient field 3D, 370
vector field 2D, 365
vector field 3D, 367
antiderivative, 226
Approximate Integral
Left Boxes, 240, 248
Lower Absolute Boxes, 243
Lower Boxes, 241
Midpoint, 246

Index

Right Boxes, 240, 248
Simpson, 245, 251
Trapezoid, 244, 250
Upper Absolute Boxes, 243
approximation
continued fractions, 446
Evaluate Numeric, 26
integrals, 246
linear regression, 436
Newton’s method by iteration,
217
numerical integration, 253
polynomial fit to data, 437
power series, 265
rational, 446
Riemann sums, 238
Approximatre Integral
Upper Boxes, 241
arbitrary constant, 8
arbitrary functions, 212
arc length, 254
area, 498
arg, 89
argument
complex number, 89
function, 99
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Index

ordinary and trigtype
functions, 123
arithmetic mean, 411
arithmetic-geometric mean, 278
arrows, 10
assigning values to variables, 47,
59
assignment
deferred evaluation, 104
defining variables, 103
full evaluation, 105
assume
assumptions about variables,
111
calculus example, 237
real, 49
asymptotes, 141
atmosphere, 503
automatic selection, 12
automatic substitution, 102, 512
average, 411
Axes Scaling, 511
Axes Type
2D plots, 144, 146
axis scaling, 143

B

band matrix, 289

bar, 503

bar chart, 162

base of log, 67, 507

basic guidelines, 7

basis
column space, 323
nullspaces, 323
orthonormal, 325
rank of matrix, 326
row space, 321
variables, 359

BCH code, 463

528

becquerel, 498
Bernoulli
number, 526
polynomial, 526
Bessel functions, 392, 405
beta
distribution, 430
function, 526
binary
operations, 10
relations, 10, 12
representation, 461
binomial
coefficients, 22, 432
distribution, 432
Rewrite Factorial, 23
block cipher, 455
blood flow problem, 278
brackets
built-in delimiters, 286
choosing and entering, 5
expanding, 6
British thermal unit, SO0

C

Calculus, see calculus
Approximate Integral, 246
Change Variable, 229
Change Variables, 234
Find Extrema, 220, 270
Implicit Differentiation, 111,

213

Integrate by Parts, 228, 234
Iterate, 216
Partial Fractions, 230, 234
Plot Approx. Integral, 238

calculus, see Calculus
definite integral, 231
derivative, 209
evaluate expression, 201

indefinite integral, 226

limit, 202

Newton’s method, 217

plotting derivatives, 212
calorie, 500
candela, 502
carrier waves, 163
case function, 62, 108
Cauchy distribution, 431
Cayley-Hamilton theorem, 317
ceiling function, 29
celsius, 504
center

graphics, 6

mathematics, 6

text, 6
chain rule, 213
Change from i to j, 508
Change Variable, 229
characteristic

matrix, 328

polynomial, 317

value, 318

vector, 318
Check Equality, 30
chi-square distribution, 426
Chinese remainder theorem, 452
Cholesky Decomposition, 336
circle center and radius, 74
Clear Definitions, 115
code word, 463
coefficient of correlation, 420
cofactor, 310
Collect, 44
column

matrix, 290

select, 15

space, 323
Combine

Arctan, 84



“Compute60” — 2011/12/20 — 14:27 — page 529 — #539 gf

Exponentials, 65

Hyperbolic Trig Functions, 87

Logs, 67

Powers, 65

Trig Functions, 83
companion matrix, 329
completing asquare, 71
complex conjugate, 33, 346, 508
complex numbers

absolute value, 33

argument, 89

assume, 112

basic operations, 32

complex conjugate, 33

complex powers and roots, 91

form, 89

imaginary uniti or j, 32

polar form, 90

real and imaginary part, 33

rectangular form, 33, 90

trigonometric form, 90
complex or real default, 49
components, 341
composition of functions, 106
compound units, 35
Compute menu, 516
computing, 7
computing in place, 16
Concatenate, 208, 292
concave upward, 225
Condition Number, 315
conformal plot, 379
congruence

inverse modulo m, 450

matrix modulo m, 454

modulo m, 448

modulo polynomial, 456

polynomials modulo

polynomials, 456

solving linear congruences,

451
conjugate, 33
conjugate transpose, 308
constant of integration, 226
constants
generic constants, 111
MuPAD constants, 515
m,i,e 8
constrained optima
Find Extrema, 270
Lagrange multipliers, 271
constraints, 463
conventions, 2
correlation, 420
cosecant, 76
cosine, 75
cotangent, 76
coulomb, 499
covariance, 418
cross product, 347
cubic meter, 504
cumulative distribution function,
421
curie, 498
curl, 361
current, 499
cursor, 4
curve fitting, 436, 437
curve sketching, 222
curves in space
polygonal paths, 181
rectangular plot, 178
tube plots, 179
custom name, 100
custom settings
Change from i toj, 32
imaginary unit, 32
input, 507
scope, 507
sidebars, 507

Index

toolbars, 506
customer support, ix
customizing computation
settings, see Settings
cylindrical coordinates, 184

D
data
2D plots, 159
3D plots, 181
convert list to matrix, 293, 410
fitting curves to data, 436
random numbers, 435
reshape lists and matrices, 293
day, 504
decimal notation, 23
deferred evaluation, 104
Define MuPAD Name, 446
defined function
2D plots, 153
3D plots, 174
valid names, 100
definite integral
midpoint rule, 246
notation, 232
Simpson’s rule, 245, 251
trapezoid rule, 244, 250
using the definition, 237
Definiteness Tests, 320
definition, see assignment
deferred evaluation, 104
defining a variable, 59
full evaluation, 105
function of one variable, 106
function of several variables,
111
generic constant, 111
generic function, 110, 212
making a definition, 59
remove a definition, 115
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Index

subscripted function, 107
valid names, 100
Definitions, see definition
Clear Definitions, 115
Define MuPAD Name, 119
New Definition, 59, 103, 106,
107
Show Definitions, 115
Undefine, 115
degrees
degrees and radians, 77
keyboard shortcut, 503
notation and behavior, 77
plot trig functions, 152
unit names, 504
delimiters, 11
DeMoivre’s theorem, 91
derivative
2D plot, 212
definition, 209
directional, 363
implicit, 213
notation, 202, 209, 507, 509
piecewise-defined functions,
211
Descartes, folium, 196
determinant, 309
difference of sets, 32
differential, 274
differential equations
Bessel functions, 392, 405
direction field, 364
exact method, 386
graphical solutions, 401
initial-value problems, 400,
401
Laplace method, 389
linear, 386
numerical solutions, 400, 402

ordinary, 385

530

series solutions, 389

Solve ODE, 400

systems of equations, 402
digits in computations, 510
Digits Rendered, 508
Digits rendered, 66, 67
Dirac function, 390
direction, 356
direction field, 364
directional derivative, 363
discontinuities, 142
display, 14

graphics, 6

mathematics, 6

text, 6
distribution, see statistics

continuous distributions, 423

discrete distributions, 432

function, 421

tables, 423
divergence, 360
divide

division, 20

divisors, 119

general, 7

integers, 21

polynomials, 41
domain, 111
dot product, 294, 308, 346
double integral, 276
double-angle formulas, 82
dual of a linear program, 465
dyne, 500

E

e, 8,508,515
echelon forms, 298
Eigenvalues, 318
Eigenvectors, 318
electric

capacitance, 499
charge, 499
conductance, 499
potential difference, 499
resistance, 500
electron volt, 500
elementary
Jordan matrix, 332
matrix, 300
number theory, 21
row operations, 300
ellipsoid, 176
elliptic integral, 277
email technical support, ix
empty set, 32, 49
energy, 500
Engine settings
Debugging, 511
Engine on, 18
Ignore Special Cases, 68
Maximum Degree, 510
Principal Value Only, 68
envelope, 163
equality
Check Equality, 30
logical operators, 31
equations, trigonometry, 78
equivalent matrices, 327
erf, 526
erg, 500
error function, 526
Fuclidean
algorithm for polynomials,
456
norm, 312, 314
plane, 75
Euler identity, 90
Evaluate
add numbers, 20
at endpoints, 47, 204
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calculus expression, 201
expression, 7
matrices, 294
multiply numbers, 20
polynomial, 40
series, 262
Evaluate Numeric, 26
evaluation
deferred evaluation, 103
full evaluation, 103, 105
exact solutions, 52
exp, 66
Expand
complex trigonometric
functions, 92
polynomial, 40
expanding brackets, 5
exponential distribution, 428
exponential equations, 68
exponential function
complex numbers, 90
laws of exponents, 66
matrices, 316
notation, 65
exponential integral, 526
exponents, 5, 24
expressions
naming expressions, 103
plotting expressions, 151
valid names, 100
external functions, 119
extreme values
Find Extrema, 220, 270
Lagrange multipliers, 271
onacurve, 219
on a surface, 268

F
F distribution, 427
Factor

integer, 21
polynomial, 44
factorial, 22, 423
fahrenheit, S04
farad, 499
feasible system, 464
fence, 5
Fermat’s little theorem, 453
Fill Matrix
Band, 289
example, 206
Find Extrema, 220
finite field, 459
floating point, 23, 26
floor function, 448
greatest integer, 29
foot, 501
footcandle, 501
force, 500
Formula, 115
Fourier transform, 395
fraction
mixed number, 21
notation, 8
rationalize denominator, 25
template, 5
frequency, 501
Frobenius form, 330
Frobenius norm, 314
full evaluation, 105
function name, 99
subscripts as function
arguments, 107
valid names, 100
functions, see distributions
absolute value, 33
algebra and number theory,
522
assume real, 49
beta function, 430

Index

built-in, 522

calculus, 523

ceiling, 29

complex numbers, 524
defining case functions, 108
defining generic functions, 110
definitions, 59
differential equations, 525
floor, 29

Gamma, 423

greatest integer, 29

Im, 33

inverse, 60

istrue, 31

linear algebra, 524

menu items, 516

MuPAD, 522

notation, 99

piecewise definition, 108
plotting, 151

Re, 33

smallest integer, 29
special functions, 526
statistics, 525

step, 29

tables of equivalents, 515
trigonometry, 522
trigtype, 122

valid names, 100

vector calculus, 525

fundamental theorem

algebra, 49
calculus, 278

gallon, 504
Galois field

integers mod p, 450
inverse, 462

irreducible polynomial, 459
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Index

product, 462
I,526
gamma, 515
gamma distribution, 429
Gamma function
definition, 526
plot, 157
statistics, 423
gauss, 502
Gaussian Elimination, 299
ged
integers, 22
polynomials, 46, 457
generic constants, 111
generic functions, 110, 212
Geometric Mean, 414
GFig, 462
GFy, 460
GFy, 460
gradient
field, 367
optimization, 271
vector calculus, 358
gram, 502
Gram-Schmidt
orthogonalization, 326
Graph User Settings, 140
graphical solutions
initial-value problems, 401
systems of ODEs, 404
greatest common divisor
integers, 22
polynomials, 46
greatest integer function, 29
Greek letters, 9
green unit symbol, 77
grid, 163

H
Harmonic Mean, 415

532

Heaviside function, 158, 390
hectare, 498
help
additional information, x
discussion forum, x
technical support, ix
henry, 502
Hermite Normal Form, 328
Hermitian Transpose, 308
hertz, 501
Hessian, 375
highlight, 5
Hilbert matrix, 287
Hilbert-Schmidt norm, 314
histogram, 162
horsepower, 503
hour, 504
hyperbolic
cosine integral, 526
function inverse, 88
functions, 86
sine integral, 526
hyperboloid, 176
hypergeometric distribution, 434

I
i, 8,509
Ignore Special Cases, 68,511
ill-formed expressions, 211
illuminance, 501
imaginary
part, 33
unit, 32, 508
Implicit
Plot 2D, 132
Plot 3D, 177
Implicit Differentiation, 213
improper integrals
definite integrals, 235
example, 236,278

in-place computations, 16, 203
inch, 501
indefinite integral, 226
index symbol, 8
inequality
numbers, 30
plot, 136
solve, 58
co-norm, 313
initial conditions, 386
initial-value problems, 400
inline plots, 148
inner product
matrices, 294
parallelepiped volume, 350
using transpose, 308
vectors, 346
input settings
Base of Log, 67
Input page, 507
Insert, see Math Objects
Math, 1, 4, 20
Math Objects, 492
Text, 4, 20
insert point, 4
integer
modulo m, 448
restraint, 112
solutions, 445
integrable function, 231
integral
blood flow problem, 278
change of variable, 234
computing volumes, 274
definite, 231
improper, 235
indefinite, 226
integration by parts, 234
iterated, 274
notation, 202
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numerical integration, 253
partial fractions, 234
piecewise-defined functions,
226
integral test, 264
integral transform, 391
Integrate by Parts, 228
interactive plot tools, 138
intcrchange matrix rows, 301
Interpret, 8, 211, 227
intersection, 32
inverse
distribution function, 422
function, 60
function plot, 135
hyperbolic functions, 88
matrices, 296
modulo m, 450
trigonometric functions, 83
inverse function, 106
irreducible polynomial, 459
irrotational, 372
Is prime, 119
istrue, 31
iterated integral
definite integrals, 274
indefinite integrals, 276
iteration
Newton iteration function,
218
solving equations, 216

Ithprime, 120

J

Jacobian, 377

join, 28, 31

Jordan Normal Form, 332
joule, 500

K
kelvin, 504

keyboard conventions, 2
keyboard shortcuts
algebra, 69
common tasks, 11
entering units, 34, 497
Greek characters, 494
matrix, 336
symbols and characters, 492
TeX commands, 495
kilogram, 502

L
Lagrange multiplier, 271
Laplace method, 389
Laplace transform, 391
Laplacian, 362
law of cosines, 94
law of sines, 94
layout properties, 147
lem
integers, 22
polynomials, 46
least common multiple
integers, 22
polynomials, 46
least positive residue, 450
least-squares solution, 439
Left Boxes, 240, 244, 245, 248
length
units of length, 501
vector, 312
level curve, 269
limit, 202
at infinity, 205
infinite, 205
notation, 203
one-sided, 205

line
graph, 162
style, 141
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Index

vector equation, 356
linear programming, see Simplex
constraints, 464
dual, 465
objective function, 464
standard form, 465
linear regression, 436
list of data, 410
liter, 504
local maximum, 219
local minimum, 219
local minimum and maximum on
a surface, 268
logarithmic function, 65
logarithms
base, 67
notation, 67
logical operators, 31
long division
integers, 21
polynomials, 41
Lower Absolute Boxes, 243
Lower Boxes, 241
lumen, 501
luminance, 501
luminous flux, 501
luminous intensity, 502

lux, 501

M
MacKichan Software, ix
Maclaurin series, 265
magnetic
flux, 502
flux density, 502
inductance, 501, 502
making assumptions about
variables, 237
mass, 502
Math Name, 100
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Index

Math Objects
Binomial, 23
Brackets, 6, 62
Display, 6, 55
Formula, 115
Fraction, 5, 20
Math Name, 100
Matrix, 15, 55
Operator, 41, 202
Radical, 5, 25
Subscript, 5, 24
Superscript, 5, 24
Unit Name, 34
Math toolbar, 9
Math/Text button, 4
mathematics mode, 4, 490
Matrices, see matrix
Adjugate, 310
Characteristic Polynomial, 317
Cholesky Decomposition, 336
Column Basis, 323
Concatenate, 292
Condition Number, 315
Definiteness Tests, 320
Determinant, 309
Eigenvalues, 315,318
Eigenvectors, 318
Fraction-Free Gaussian
Elimination, 299
Gaussian Elimination, 299
Hermite Normal Form, 328
Hermitian Transpose, 308
Inverse, 295
Jordan Normal Form, 332
Minimal Polynomial, 317
Norm, 312, 352
Nullspace Basis, 323
Orthogonality Test, 324
Permanent, 311

PLU Decomposition, 335

534

QR Decomposition, 325, 336

Rank, 326

Rational Canonical Form, 329

Reduced Row Echelon Form,
299

Reshape, 293, 410

Row Basis, 321

Singular Value
Decomposition, 334

Singular Values, 334

Smith Normal Form, 327

Spectral Radius, 314

Stack, 292

Trace, 307

Transpose, 307

matrix, see Matrices

addition, 294

additive inverse, 297

adjugate, 310

algebra, 285

alignment, 291

brackets, 286

classical adjoint, 310

cofactor, 310

column space, 323

companion matrix, 329

convert equations to matrix,
304

convert matrix to equations,
304

definition, 285

deleting rows and columns,
290

determinant, 309

echelon forms, 298

elementary, 300

elementary row operations,
300

entries, 285

equations, 302

equivalence, 327
exponential functions, 316
Frobenius form, 330
identity, 295
insert rows and columns, 290
inverse, 296
Jordan form, 332
matrix equations, 302
matrix multiplication, 294
maximum entry, 311
minimum entry, 311
modulo m, 454
normal form, 327, 328
notation, 286
nullspace, 323
operations on entries, 298
orthogonal, 325, 336
orthonormal columns, 325
polynomial expressions, 297
positive definite, 320
powers, 294, 296
product, 294
projection matrix, 338
rational canonical form, 330
replacing a block of cells, 291
row operations, 298
row space, 321
scalar multiplication, 294
screen appearance, 286, 287
similar, 326
swap rows, 301
transpose, 307
unitary, 334

matrix operator
adjugate, 310
condition number, 315
determinant, 309
Euclidean norm, 312
exponential function, 316
Hermitian transpose, 308



“Compute60” — 2011/12/20 — 14:27 — page 535 — #545 gf

Hilbert-Schmidt (Frobenius)
norm, 314
co-norm, 313
maximum and minimum, 311
norm, 312
1-norm, 313
permanent, 311
trace, 307
transpose, 307
maximum
degree, 53,510
finite sequence, 29
join, 28
matrix entries, 311
numbers, 28
optimization, 219
maxwell, 502
Mean
Geometric Mean, 414
Harmonic Mean, 415
Mean, 411
Mean Deviation, 416
Median, 412
meet, 28, 31
meter, 501
methods of integration
change of variable, 229, 234
integration by parts, 228, 234
partial fractions, 230, 234
Middle Boxes, 238
midpoint rule, 246
mile, 501
minimal polynomial, 317
minimum
finite sequence, 29
matrix entries, 311
meet, 28
numbers, 28
optimization, 219

polynomial, 317

minute, 503, 504
miscellancous symbols, 10
mixed number, 21
mixed number output, 508
mod function, 448
mode, 413
modern algebra, 445
modulo, 448
mole, 498
moment, 419
mouse pointer, 4
multicase function, 62, 108
multiple choice examination
formula, 118
multiple integral, 274
Multiple Regression, 436
multiple roots, 458
multiple-angle formulas, 82
multiplication
general, 7
inner product, 294
matrices, 294
matrices by scalars, 294
numbers, 20
polynomials, 40
vector cross product, 347
vector dot product, 346
vector with scalar, 345
multiplicity of a root, 458
multivariable calculus, 268
MuPAD
constants, 515
engine, 18
functions, 119,516
swapRow, 301

N

nabla symbol, 358

naming expressions
definitions, 103

Index

valid names, 100
naming functions
subscripts as arguments, 107
valid names, 100
natural linear notation, 8
negated relations, 10
negative, 112
New Definition
assignment, 103
function, 60, 106
function and expression
names, 100
variables, 59
newton, 500
Newton iteration function, 218
Newton’s method, 217,218
nextprime, 119, 453
no rules, 7
nonzero, 112
Norm, 312
normal distribution, 424
notation, 2
null delimiter, 108
nullspace, 323
number theory
lem and ged, 22
prime numbers, 21
numbers
basic operations, 23
complex numbers, 32
mathematics mode, 19
mixed numbers, 21
real numbers, 23
symbolic, 23
numerical
integration, 253
results, 26
solutions to ODEs, 400

0
objective function, 464
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Index

ohm, 500
1-norm, 313
one-parameter family, 386
Operator, 100, 202
optimization
Find Extrema, 270
Lagrange multipliers, 271
local extremes, 219
several variables, 268
or, logical
logical operator, 31
maximum or join, 28
union, 32
order of integration, 276
ordered pair, 341
ordered triple, 341
ordinary differential equation
initial conditions, 386
series solutions, 389, 399
solve systems, 397
orientation of 3D plot, 174
orthogonal matrix, 324, 334
Orthogonality Test, 324
orthonormal, 324, 325, 334, 336
ounce-force, 500
output
differential , 510
exponential, 510
imaginary i, 509
output settings, 508
overdetermined systems, 439

P
parallelepiped, 350
parallelogram, 352
parametric equations, 258
parametric plot, 134
parametric polar plot, 164
parentheses and trig type
functions, 76
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partial derivatives
extreme values on a surface,
268
notation, 209
Partial Fractions
algebra, 43
integration, 230
partial sums, 262
pascal, 503
Passthru Code to Engine, 121
pentagon, 136, 160
percentile, 412
Permanent, 311
Phi, 119
¢,119
phot, 501
Physical Quantity, see units
7, 8,515
piecewise-defined function
definite integral, 233
definition, 62
derivative, 211
indefinite integral, 226
notation, 108
pint, 504
plane
in 3-space, 354
vector equation, 353
plane angle, 503
Plot 2D
Approximate Integral, 239
Conformal, 379
Gradient, 367
Implicit, 132
Inequality, 136
ODE, 401
Parametric, 134
Polar, 131, 164
Rectangular, 131
Vector Field, 364

Plot 2D Animated
Conformal, 380
Gradient, 370
Implicit, 170
Inequality, 170
Parametric, 167
Polar, 168
Rectangular, 165
Vector Field, 365

Plot 3D
Curve in Space, 178
Cylindrical, 183
Gradient, 370
Implicit, 177
Parametric, 175
Rectangular, 171
Spherical, 185
Tube, 179, 256
Vector Field, 366

Plot 3D Animated
Curve, 191
Cylindrical, 192
Gradient, 372
Implicit, 194
Parametric, 190
Rectangular, 173, 190
Spherical, 193
Tube, 195
Vector Field, 367

Plot Approximate Integral
Left Boxes, 240
Lower Absolute Boxes, 243
Lower Boxes, 241
Middle Boxes, 238
Right Boxes, 240
Upper Absolute Boxes, 243
Upper Boxes, 241

plot coordinates, 139

plot inverse function, 135

Plot Properties, 140
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Items Plotted, 140
plotting
adding expression, 130
discontinuities, 142
envelope, 163
expressions, 129, 151
grid, 163
inverse, 133, 135
multiple expressions, 152
piecewise function, 155
points, 141
Riemann sums, 238
tools, 138, 165
zoom tool, 139
PLU Decomposition, 335
point marker, 141
point plots, 159
Poisson distribution, 433
polar
coordinates, 90, 131
form, 89, 90
plots, 259
polygon, 181
polygonal path plot, 159
Polynomials, see polynomials
Collect, 44
Companion Matrix, 329
Divide, 41, 224
Partial Fractions, 43, 230
Roots, 48, 49
Sort, 44
polynomials
collecting and ordering terms,
44
congruent, 456
Factor, 44
general form, 39
greatest common divisor, 457
irreducible, 459

long division, 41

matrix values, 297
modulo m, 455
modulo polynomials, 456
roots of 3rd- and 4th-degree
polynomials, 50
roots of fifth and higher degree
polynomials, 51
roots of second-degree
polynomials, 49
positive, 112
positive definite symmetric
matrix, 320
potential
scalar, 372
vector, 373
pound-force, 500
pound-mass, 502
power, 503
Power Series, 265
powers
complex powers, 91
modulo m, 453
notation, 24
power series, 265
pressure, 503
prime number, 21
Principal Value Only, 68, 93, 510
probability density function, 421
problems and solutions
algebra, 70
applied modern algebra, 466
calculus, 277
differential equations, 407
function definitions, 124
matrices, 337
numbers and units, 36
plotting, 196
statistics, 440
trigonometry, 93
vector calculus, 381

Index

product
formula, 213
polynomials, 40
program resources, ix
projection matrix, 338
Psi function, 526
Pythagorean identities, 82

Q

QR Decomposition, 325, 336
Quantile, 412

quart, 504

quotient of polynomials, 41
quotient rule, 213

R
radian, 503
radical notation, 24
Random Numbers, 435
Rank, 326
ratio test, 263
rational canonical form, 330
rational expression, 41
rationalize denominator, 25
real
assume, 112
default for real roots, 49
real part of complex number,
33
recognizing constants, 8
rectangular coordinates, 131
recursion, 447
regression, 436
removing definitions, 115
reshape
list, 293
lists and matrices, 410
matrix, 293
residue, 448
resize a plot, 147
restraints on variables, 111
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restrict domain, 111
resultant, 119
revise matrix, 290
Rewrite
Arccos, 85
Arccot, 85
Arcsin, 84
Arctan, 85
Cos, 81
Equations as Matrix, 304
Exponential, 86
Factorial, 23, 423
Float, 24, 26
Gamma, 424
Logarithm, 88
Matrix as Equations, 304
Mixed, 21
Normal Form, 42
Polar, 90
Rational, 23, 42
Rectangular, 48, 90
Sin, 81
Sin and Cos, 81, 82,91, 92
Sinh and Cosh, 87
Tan, 81
Riemann sum, 231, 238
Right Boxes, 240, 248
root test, 263
roots
complex roots, 91
exponential notation, 24
numbers, 24
polynomials, 48
radical notation, 24
rotate 3D plot, 174
row echelon forms, 299
row operations, 298
row space, 321
rows, 15,290
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S
scalar potential, 372
scientific notation, 26, 508
scope, 507
secant, 76
second, 503, 504
second derivative, 225
selection
automatic, 12
mathematics in a display, 14
mathematics in a matrix, 15
operating on, 16
replacing, 16
user, 15
with the mouse, 5, 16
sequence
finite, 29
notation, 260
terms as functions, 261
series
integral test, 264
Maclaurin, 265
notation, 262
ratio test, 263
root test, 263
solution, 399
Taylor, 266, 389
set of data, 410
sets
difference, 32
empty set, 32
intersection, 32
union, 32
sidebars, 507
siemens, 499
sigma, 41
similar matrices, 326
similar triangles, 75
Simplex
Dual, 465

Feasible, 464
Maximize, 464
Minimize, 464
Standardize, 465
Simplify
built-in function, 24
mixed numbers, 21
polynomial, 50
Simpson, 245, 251
sine, 75
sine integral, 526
singular value decomposition,
334
singular values, 334
slug, 502
smallest integer function, 29
smallest nonnegative residue, 448
Smith Normal Form, 327
solenoidal, 374
solid angle, 503
solid of revolution
parametric plots, 258
polar plots, 259
rectangular plots, 256
tube plots, 256
solution to ODE, 385
Solve
Exact, 52, 54, 215
Integer, 445
Numeric, 56, 215
Recursion, 447
solve
equations, 13
systems of linear equations,
301
the function “solve”, 54
Solve ODE
Exact, 386, 398
Laplace, 389, 398
Numeric, 400
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Series, 389
Solve Options
Ignore Special Cases, 68,511
Maximum Degree, 510
Principal Value Only, 68,510
solving equations, see Solve
by iteration, 216
inverse trig functions, 85
matrix equations, 302
Newton’s method, 217
trigonometric equations, 78
solving triangles, 94
Sort, 44
Spectral Radius, 314
stacking matrices, 292
Standard deviation, 418
star plot, 136
Statistics, see statistics
Correlation, 420
Covariance, 418
Fit Curve to Data, 436
Geometric Mean, 414
Harmonic Mean, 415
Mean, 411
Mean Deviation, 416
Median, 412
Mode, 413
Moment, 419
Quantile, 412
Random Numbers, 435
Standard Deviation, 417
Variance, 417
statistics, see Statistics
cumulative distributions, 421
distribution
beta, 430
binomial, 432
Cauchy, 431
chi-square, 426
exponential, 428

F 427
gamma, 429
hypergeometric, 434
normal, 424
Poisson, 433
Student’s t, 425
uniform, 431
Weibull, 428
inverse distribution function,
422
multiple regression, 436
polynomial fit to data, 437
probability density function,
421

statistics functions

BetaDen, 430, 431
BetaDist, 430
BinomialDen, 432
BinomialDist, 432
CauchyDist, 431
ChiSquareDen, 426
ChiSquareDist, 426
ExpenentialDen, 428
ExponentialDist, 428
FDen, 427

FDist, 427
GammaDen, 429
GammaDist, 429
HypergeomDen, 434
HypergeomDist, 434
NormalDen, 424
NormalDist, 424
PoissonDen, 433
PoissonDist, 433
TDen, 425

TDist, 425
UniformDen, 431
UniformDist, 431
WeibullDen, 428
WeibullDist, 428

Index

step function, 29
steradian, 503
stere, 504
stilb, 501
Student’s t distribution, 425
subscript
as function argument, 107
on function name, 100
template, 5
substitution
automatic substitution, 102
change of variable, 229
evaluation, 47, 204
subtraction, 7, 20
summation notation, 41
superscript, 5
surface area, 257
surface of revolution, 180, 257
swap matrix rows, 301
Symbol sidebar, 11
symbolic real numbers, 23
Symbols
shortcuts, 492
toolbar, 9
system of congruences, 452
system of ODEs, 397, 402
systems of equations
differential equations, 402
equations to matrix, 304
linear equations, 302
matrix to equations, 304
notation, 55

solving, 55

T
table of values
from a function, 205
using auxiliary functions, 206
table with formulas, 117
tables of equivalents
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compute menu items, 516
functions, 522
tables of units, 497
tangent function, 76
tangent line, 215, 277
tautology, 31
Taylor polynomials
one variable, 267
two variables, 272
Taylor series, 266
technical support, ix
techniques of integration
change of variable, 229, 234
integration by parts, 228, 234
partial fractions, 230, 234
telephone MacKichan, ix
temperature, 504
tesla, 502
test for multiple roots, 458
Text/Math button, 4
three-dimensional vector, 341
time, 504
Toggle Text/Math button, 4
toll-free number, ix
torr, 503
total differential, 274
Trace, 307
Transforms
Fourier, 395, 396
Inverse Fourier, 396
Inverse Laplace, 393
Laplace, 391
translate view, 139
Transpose, 307
trapezoid rule, 244, 250
trigonometric
form of z, 89
inverse functions, 83
trigonometry
identities, 80

540

simplifying expressions, 83
solution of triangles, 94
solving trigonometric
equations, 78
trigonometric functions, 75
trigtype functions
argument defaults, 123
parentheses, 76
triple cross product, 349
troubleshooting, ix
Tube, 256
tube plot, 179
two-dimensional vector, 341
2-norm, 312, 352

]

unassume, 112

Undefine, 115

uniform distribution, 431

union, 32

unit circle, 75

Unit Name, 34

unit prefixes, 498

unitary matrix, 334

units
activity, 498
amount of substance, 498
angle, 503
area, 498
arithmetic operations, 35
compound names, 35
converting, 35
current, 499
degree, 77
electric capacitance, 499
electric charge, 499
electric conductance, 499
electric resistance, 500
electrical potential difference,

499

energy, 500
force, 500
frequency, 501
illuminance, 501
keyboard shortcuts, 497
length, 501
luminance, 501
luminous flux, 501
magnetic flux, 502
magnetic flux density, 502
magnetic inductance, 501, 502
mass, 502
physical units, 33
plane angle, 503
power, 503
pressure, 503
solid angle, 503
temperature, 504
time, 504
volume, 504
Upper Absolute Boxes, 243
Upper Boxes, 241
user selection, 16
user-defined
functions, 106

v
valid names for definitions, 100
Vandermonde matrix, 287
variables
deferred evaluation, 105
definitions, 59
full evaluation, 105
making assumptions, 111, 237
valid names, 100
Variance, 417, 418
vector
components, 341
cross product, 347
definition, 341
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dot product, 294, 346

inner product, 294, 346

length, 312

matrix notation, 285

norm, 351

notation, 342

product with scalar, 345

sum, 344

triple cross product, 349

triple scalar product, 350
Vector Calculus

Curl, 361

Divergence, 360

Gradient, 358

Hessian, 375

Jacobian, 377

Laplacian, 362

Scalar Potential, 373
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Set Basis Variables, 359, 362,
374

Vector Potential, 374

Wronskian, 378
vector calculus, 341
vector equation

line, 356

plane, 353
vector field

divergence, 360

plot, 363

solenoidal, 374
vector space

column space, 323

nullspaces, 323

row space, 321
vertical notation, 8
View Intervals

Plot 3D, 171
volt, 499
volume
iterated integral, 274

surface of revolution, 257
units, 504

w

watt, 503

weber, 501, 502

Weibull distribution, 428
Wronskian, 377

Y
year, 504

z
zeta function, 262, 526
zoom in and out, 139

Index
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