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Plan

I will give a broad overview of multistate survival analysis

I will focus on (flexible) parametric models

All the way through I will show example Stata code using the
multistate package [1]

I’ll discuss some recent extensions, and what I’m working on now
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Background

In survival analysis, we often concentrate on the time to a single
event of interest

In practice, there are many clinical examples of where a patient
may experience a variety of intermediate events

Cancer
Cardiovascular disease

This can create complex disease pathways
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Figure 1: An example from stable coronary disease [2]
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Each transition between any two states is a survival model

We want to investigate covariate effects for each specific
transition between two states

What if where I’ve been impacts where I might go?

With the drive towards personalised medicine, and expanded
availability of registry-based data sources, including data-linkage,
there are substantial opportunities to gain greater understanding
of disease processes, and how they change over time
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Primary breast cancer [3]

To illustrate, I use data from 2,982 patients with primary breast
cancer, where we have information on the time to relapse and
the time to death.

All patients begin in the initial post-surgery state, which is
defined as the time of primary surgery, and can then move to a
relapse state, or a dead state, and can also die after relapse.

MJC Multistate survival analysis 15th November 2018 6/84



State 1: Post-surgery 

State 2: Relapse 

State 3: Dead 

Transition 1 
h1(t) 

Transition 3 
h2(t) 

Transition 2 
h3(t) 

Absorbing state 

Transient state 

Transient state 

Figure 2: Illness-death model for primary breast cancer example.
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State 1: Post-surgery 

State 2: Relapse 

State 3: Dead 

Transition 1 
h1(t) 

Transition 2 
h3(t) 

Figure 3: Illness-death model for primary breast cancer example.
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Covariates of interest

age at primary surgery

tumour size (three classes; ≤ 20mm, 20-50mm, > 50mm)

number of positive nodes

progesterone level (fmol/l) - in all analyses we use a
transformation of progesterone level (log(pgr + 1))

whether patients were on hormonal therapy (binary, yes/no)
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Markov multi-state models

Consider a random process {Y (t), t ≥ 0} which takes the values in
the finite state space S = {1, . . . , S}. We define the history of the
process until time s, to be Hs = {Y (u); 0 ≤ u ≤ s}. The transition
probability can then be defined as,

P(Y (t) = b|Y (s) = a,Hs−)

where a, b ∈ S. This is the probability of being in state b at
time t, given that it was in state a at time s and conditional
on the past trajectory until time s.
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Markov multi-state models

A Markov multi-state model makes the following assumption,

P(Y (t) = b|Y (s) = a,Hs−) = P(Y (t) = b|Y (s) = a)

which implies that the future behaviour of the process is only
dependent on the present.

This simplifies things for us later

It is an assumption! We can conduct an informal test by
including time spent in previous states in our model for a
transition
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Markov multi-state models

The transition intensity is then defined as,

hab(t) = lim
δt→0

P(Y (t + δt) = b|Y (t) = a)

δt

Or, for the kth transition from state ak to state bk , we have

hk(t) = lim
δt→0

P(Y (t + δt) = bk |Y (t) = ak)

δt

which represents the instantaneous risk of moving from state ak to
state bk . Our collection of transitions intensities governs the
multi-state model.

This is simply a collection of survival models!

MJC Multistate survival analysis 15th November 2018 12/84



Estimating a multi-state models

There are a variety of challenges in estimating transition
probabilities in multi-state models, within both
non-/semi-parametric and parametric frameworks [4], which I’m
not going to go into today

Essentially, a multi-state model can be specified by a
combination of transition-specific survival models

The most convenient way to do this is through the stacked data
notation, where each patient has a row of data for each
transition that they are at risk for, using start and stop notation
(standard delayed entry setup)
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Consider the breast cancer dataset, with recurrence-free and overall
survival

. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear
(Rotterdam breast cancer data, truncated at 10 years)

. list pid rf rfi os osi age if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi age

1 59.1 0 59.1 alive 74

1371 16.6 1 24.3 deceased 79
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We can restructure using msset
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. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear
(Rotterdam breast cancer data, truncated at 10 years)

. list pid rf rfi os osi age if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi age

1 59.1 0 59.1 alive 74

1371 16.6 1 24.3 deceased 79

. msset, id(pid) states(rfi osi) times(rf os) covariates(age)
variables age_trans1 to age_trans3 created

. mat tmat = r(transmatrix)

. mat list tmat

tmat[3,3]
to: to: to:

start rfi osi
from:start . 1 2

from:rfi . . 3
from:osi . . .
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. //wide (before msset)

. list pid rf rfi os osi age if pid==1 | pid==1371, sepby(pid)

pid rf rfi os osi age

1 59.1 0 59.1 alive 74

1371 16.6 1 24.3 deceased 79

. //long (after msset)

. list pid _from _to _start _stop _status _trans if pid==1 | pid==1371, noobs sepby(pid)

pid _from _to _start _stop _status _trans

1 1 2 0 59.104721 0 1
1 1 3 0 59.104721 0 2

1371 1 2 0 16.558521 1 1
1371 1 3 0 16.558521 0 2
1371 2 3 16.558521 24.344969 1 3
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. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear
(Rotterdam breast cancer data, truncated at 10 years)

. msset, id(pid) states(rfi osi) times(rf os) covariates(age)
variables age_trans1 to age_trans3 created

. mat tmat = r(transmatrix)

. stset _stop, enter(_start) failure(_status=1) scale(12)

failure event: _status == 1
obs. time interval: (0, _stop]
enter on or after: time _start
exit on or before: failure

t for analysis: time/12

7,482 total observations
0 exclusions

7,482 observations remaining, representing
2,790 failures in single-record/single-failure data

38,474.539 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 19.28268
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Now our data is restructured and declared as survival data, we
can use any standard survival model available within Stata

Proportional baselines across transitions
Stratified baselines
Shared or separate covariate effects across transitions

This is all easy to do in Stata; however, calculating transition
probabilities (what we are generally most interested in!) is not
so easy. We’ll come back to this later...
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Examples

Proportional Weibull baseline hazards

. streg _trans2 _trans3, dist(weibull) nohr nolog

failure _d: _status == 1
analysis time _t: _stop/12

enter on or after: time _start

Weibull PH regression

No. of subjects = 7,482 Number of obs = 7,482
No. of failures = 2,790
Time at risk = 38474.53852

LR chi2(2) = 2701.63
Log likelihood = -5725.5272 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_trans2 -2.052149 .0760721 -26.98 0.000 -2.201248 -1.903051
_trans3 1.17378 .0416742 28.17 0.000 1.0921 1.25546

_cons -2.19644 .0425356 -51.64 0.000 -2.279808 -2.113072

/ln_p -.1248857 .0197188 -6.33 0.000 -.1635337 -.0862376

p .8825978 .0174037 .8491379 .9173763
1/p 1.133019 .0223417 1.090065 1.177665
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Examples

Separate (stratified) Weibull baselines

. streg _trans2 _trans3, dist(weibull) anc(_trans2 _trans3) nohr nolog

failure _d: _status == 1
analysis time _t: _stop/12

enter on or after: time _start

Weibull PH regression

No. of subjects = 7,482 Number of obs = 7,482
No. of failures = 2,790
Time at risk = 38474.53852

LR chi2(2) = 935.32
Log likelihood = -5656.1627 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
_trans2 -3.168605 .2013437 -15.74 0.000 -3.563232 -2.773979
_trans3 2.352642 .1522638 15.45 0.000 2.05421 2.651073

_cons -2.256615 .0477455 -47.26 0.000 -2.350194 -2.163035

ln_p
_trans2 .4686402 .063075 7.43 0.000 .3450155 .592265
_trans3 -.6043193 .087695 -6.89 0.000 -.7761984 -.4324403

_cons -.0906001 .0224852 -4.03 0.000 -.1346702 -.0465299
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Examples

Separate (stratified) Weibull baselines and age

. streg age _trans2 _trans3, dist(weibull) anc(_trans2 _trans3) nohr nolog

failure _d: _status == 1
analysis time _t: _stop/12

enter on or after: time _start

Weibull PH regression

No. of subjects = 7,482 Number of obs = 7,482
No. of failures = 2,790
Time at risk = 38474.53852

LR chi2(3) = 968.10
Log likelihood = -5639.7693 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
age .0085662 .0014941 5.73 0.000 .0056379 .0114946

_trans2 -3.173808 .2017164 -15.73 0.000 -3.569165 -2.778451
_trans3 2.324363 .1505177 15.44 0.000 2.029354 2.619373

_cons -2.7353 .0971366 -28.16 0.000 -2.925684 -2.544916

ln_p
_trans2 .4697586 .0630304 7.45 0.000 .3462214 .5932959
_trans3 -.5827026 .0858211 -6.79 0.000 -.7509089 -.4144963

_cons -.0873818 .0224793 -3.89 0.000 -.1314404 -.0433231
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Examples

Separate (stratified) Weibull baselines and age

. streg age_* _trans2 _trans3, dist(weibull) anc(_trans2 _trans3) nohr nolog noshow

Weibull PH regression

No. of subjects = 7,482 Number of obs = 7,482
No. of failures = 2,790
Time at risk = 38474.53852

LR chi2(5) = 1314.91
Log likelihood = -5466.3633 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_t
age_trans1 -.0021734 .002071 -1.05 0.294 -.0062325 .0018857
age_trans2 .1289129 .0078069 16.51 0.000 .1136116 .1442142
age_trans3 .0063063 .0023447 2.69 0.007 .0017107 .0109019

_trans2 -11.78602 .623599 -18.90 0.000 -13.00825 -10.56379
_trans3 1.861322 .2348573 7.93 0.000 1.40101 2.321634

_cons -2.13714 .1230997 -17.36 0.000 -2.378411 -1.895869

ln_p
_trans2 .5773103 .0617153 9.35 0.000 .4563505 .6982701
_trans3 -.585393 .0865301 -6.77 0.000 -.7549889 -.415797

_cons -.0913214 .0224979 -4.06 0.000 -.1354165 -.0472262
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Fitting one model to the stacked data

The previous examples all fit ’one’ model to the full stacked
dataset

This is convenient

Data setup is nice and clean
We can share effects across transitions

This is not convenient

Syntax can get tricky with lots of interactions
We are restricted to the same distributional form for all
transition models
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Fitting separate models to the stacked data

Before we had:

Separate (stratified) Weibull baselines and age

streg age * trans2 trans3, dist(weibull) anc( trans2 trans3)

We can fit the same model with:

Separate (stratified) Weibull baselines and age

streg age if trans1==1, dist(weibull)

streg age if trans2==1, dist(weibull)

streg age if trans3==1, dist(weibull)
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Fitting transition-specific models to the stacked

data

We gain substantially more flexibility

No longer restricted to one distribution

Much easier in terms of model specification/syntax

Transition models could come from different datasets!
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Building our transition models

Returning to the breast cancer dataset

Choose the best fitting parametric survival model, using AIC and
BIC

Comparing:

exponential
Weibull
Gompertz
Royston-Parmar
Splines on the log hazard scale
...
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Building our transition models

We find...

Transition 1 - RP model with 3 degrees of freedom

stpm2 if trans1==1, scale(h) df(3)

Transition 2 - Weibull

streg if trans2==1, distribution(weibull)

Transition 3 - RP model with 3 degrees of freedom

stpm2 if trans3==1, scale(h) df(3)
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Figure 4: Best fitting parametric cumulative hazard curves overlaid on the
Nelson-Aalen estimate for each transition.
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Building our transition models

Next:

Adjust for important covariates; age, tumour size, number of
nodes, progesterone level

Check proportional hazards assumption
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Final models

Transition 1: Royston-Parmar baseline with df=3. Non-PH in
tumour size (both levels) and progesterone level, modelled with
interaction with log time.

. stpm2 age sz2 sz3 nodes hormon pr_1 if _trans1==1, scale(h) df(3) ///
> tvc(sz2 sz3 pr_1) dftvc(1) nolog

Log likelihood = -3476.6455 Number of obs = 2,982

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
age -.0062709 .0021004 -2.99 0.003 -.0103875 -.0021543
sz2 .4777289 .0634816 7.53 0.000 .3533073 .6021505
sz3 .744544 .0904352 8.23 0.000 .5672943 .9217937

nodes .0784025 .0045454 17.25 0.000 .0694937 .0873113
hormon -.0797426 .0824504 -0.97 0.333 -.2413424 .0818572

pr_1 -.0783066 .0122404 -6.40 0.000 -.1022973 -.0543159
_rcs1 .9703563 .0472652 20.53 0.000 .8777182 1.062994
_rcs2 .3104222 .0218912 14.18 0.000 .2675162 .3533282
_rcs3 -.0176099 .0114839 -1.53 0.125 -.0401179 .0048982

_rcs_sz21 -.1740546 .0446893 -3.89 0.000 -.261644 -.0864652
_rcs_sz31 -.2669255 .0616161 -4.33 0.000 -.3876909 -.1461601

_rcs_pr_11 .072824 .0086399 8.43 0.000 .0558901 .0897578
_cons -.9480559 .1266088 -7.49 0.000 -1.196205 -.6999071
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Final models

Transition 2: Weibull baseline.

. streg age sz2 sz3 nodes hormon pr_1 if _trans2==1, distribution(weibull) ///
> nolog noshow noheader

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.133232 .0090317 15.69 0.000 1.115668 1.151073
sz2 1.175333 .1897555 1.00 0.317 .8565166 1.61282
sz3 1.514838 .3533698 1.78 0.075 .9589683 2.392919

nodes 1.044921 .0190746 2.41 0.016 1.008197 1.082984
hormon .8694367 .1992656 -0.61 0.542 .5548194 1.362462

pr_1 1.022602 .0341792 0.67 0.504 .9577593 1.091835
_cons 8.13e-07 5.06e-07 -22.55 0.000 2.40e-07 2.75e-06

/ln_p .5106518 .0572511 8.92 0.000 .3984416 .622862

p 1.666377 .095402 1.489502 1.864256
1/p .6001043 .0343567 .5364071 .6713655

Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline hazard.
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Final models

Transition 3: Royston-Parmar with df=3. Non-PH found in
progesterone level, modelled with interaction with log time.

. stpm2 age sz2 sz3 nodes hormon pr_1 if _trans3==1, scale(h) df(3) ///
> tvc(pr_1) dftvc(1) nolog
note: delayed entry models are being fitted

Log likelihood = -929.11658 Number of obs = 1,518

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
age .0049441 .0024217 2.04 0.041 .0001977 .0096906
sz2 .1653563 .0712326 2.32 0.020 .025743 .3049696
sz3 .3243048 .0992351 3.27 0.001 .1298075 .5188021

nodes .0297031 .0057735 5.14 0.000 .0183873 .0410189
hormon .0315634 .0976384 0.32 0.746 -.1598045 .2229312

pr_1 -.1843876 .0211383 -8.72 0.000 -.225818 -.1429572
_rcs1 .5057489 .0581187 8.70 0.000 .3918383 .6196595
_rcs2 .1035699 .03143 3.30 0.001 .0419681 .1651716
_rcs3 -.0100584 .0117741 -0.85 0.393 -.0331352 .0130185

_rcs_pr_11 .0636225 .0121503 5.24 0.000 .0398085 .0874366
_cons .391217 .1659763 2.36 0.018 .0659094 .7165246
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Calculating transition probabilities

Transition probabilities

P(Y (t) = b|Y (s) = a)

Or even simpler, we define state occupation probabilities as

P(Y (t) = b) =
∑
a

P(Y (0) = a)P(Y (t) = b|Y (0) = a)

which is the probability of being in state b at time t [5].

When s = 0 and everyone starts in state a, transition probabilities are
the same as state occupation probabilities.

MJC Multistate survival analysis 15th November 2018 35/84



Calculating transition probabilities

P(Y (t) = b|Y (s) = a)

There are a variety of approaches within a parametric framework

Exponential distribution is convenient [6]

Numerical integration [7, 8] - computationally intensive,
dimension of the integration grows exponentially

Ordinary differential equations [9] - appealing but difficult to
generalise

Simulation [10, 11, 12] - my favoured approach!
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Simulation

Given our estimated transition intensities, we simulate n patients
through the transition matrix

At specified time points, we simply count how many people are
in each state, and divide by the total to get our transition
probabilities

To get confidence intervals, we draw from a multivariate normal
distribution, with mean vector the estimated coefficients from
the intensity models, and associated variance-covariance matrix,
and repeated M times

Some details come next...remember that the software does it all
for you!
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Simulating survival times

Under a general hazard model

h(t) = h0(t) exp(X (t)β(t))

H(t) =

∫ t

0

h(u) du, S(t) = exp[−H(t)]

F (t) = 1− exp[−H(t)]

U = exp[−H(t)] ∼ U(0, 1)

Solve for t... Under a standard parametric PH model,

T = H−10 [− log(U) exp(−Xβ)]
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Simulation methods [13]

Does H0(t) have a 
closed form 
expression?

Can you solve for T
analytically?

Scenario 1
Apply inversion 

method

Scenario 2
Use iterative root 

finding to solve for 
simulated time, T

Scenario 3
Numerically integrate 
to obtain H0(t), within 
iterative root finding 

to solve for T

Yes Yes

No No
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Simulation methods

Standard parametric models (Weibull, Gompertz, etc.) - closed
form H(t) and can invert -> extremely efficient

Royston-Parmar model - closed form H(t) but can’t invert ->
Brent’s univariate root finder

Splines on the log hazard scale - intractable H(t) and can’t
invert -> numerical integration and root finding

The last two are not as computationally intensive as you would
expect...
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predictms

Many more options...
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Computation time in Stata with predictms

Predicting transition probabilities at 20 evenly spaced points in
time across follow-up

Starting in state 1 at time 0

Times are in seconds

Tolerance of <1E-08

n Weibulls Royston-Parmar (df=1,5,5) Log-hazard splines (df=1,5,5)
10,000 0.05 0.31 3.23

100,000 0.30 2.60 32.10
1,000,000 2.50 29.70 302.04

10,000,000 22.35 300.46 3010.30

Baseline only models fit to ebmt3 data
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Examples

Separate baselines, transition specific age effects
. quietly streg age_trans1 age_trans2 age_trans3 _trans2 _trans3, ///
> dist(weibull) anc(_trans2 _trans3)

. predictms , transmat(tmat) at1(age 45)

. list _prob* _time in 1/10, noobs ab(15)

_prob_at1_1_1 _prob_at1_1_2 _prob_at1_1_3 _time

.98678 .01179 .00143 .09856263

.88871 .07766 .03363 1.1082532

.80736 .11835 .07429 2.1179437

.73707 .14444 .11849 3.1276343

.67506 .16351 .16143 4.1373248

.6189 .17816 .20294 5.1470154
.56723 .1882 .24457 6.1567059
.5207 .1943 .285 7.1663965

.47889 .19847 .32264 8.176087

.44077 .20048 .35875 9.1857776
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predictms

. predictms , transmat(tmat) at1(age 45) graph
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We can tidy it up a bit...
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predictms

. range temptime 0 15 100
(7,382 missing values generated)

. predictms , transmat(tmat) at1(age 45) graph timevar(temptime)
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predictms

Uncertainty...
. predictms , transmat(tmat) at1(age 45) timevar(temptime) ci

. list _prob_at1_1_1* temptime in 1/10, noobs ab(15)

_prob_at1_1_1 _prob_at1~1_lci _prob_at1~1_uci temptime

1 1 1 0
.98098483 .97647768 .98464194 .1515152
.96469169 .95788723 .97043065 .3030303
.94927773 .94101558 .95643615 .4545455
.93442814 .92525291 .94254704 .6060606

.92019291 .91009883 .92924175 .7575758

.90642898 .89544508 .91636675 .9090909

.89311497 .88136687 .90382663 1.060606

.88018498 .86774232 .89160327 1.212121

.86739877 .85438362 .87941482 1.363636
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predictms

Uncertainty...
. predictms , transmat(tmat) at1(age 45) timevar(temptime) ci
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predictms

Getting predictions for multiple covariate patterns
. predictms , transmat(tmat) timevar(temptime) ///
> at1(age 45) at2(age 80)

. list _prob_at1_1_3 _prob_at2_1_3 temptime in 1/10, noobs ab(15)

_prob_at1_1_3 _prob_at2_1_3 temptime

0 0 0
.00231 .00387 .1515152
.00577 .01048 .3030303

.01 .0192 .4545455
.01502 .02904 .6060606

.0203 .03961 .7575758
.02603 .05084 .9090909
.03143 .06292 1.060606
.03713 .07552 1.212121
.04324 .08852 1.363636
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predictms

Now let’s go back to our final models that we had before

Getting predictions from separate models
.
. qui stpm2 age sz2 sz3 nodes hormon pr_1 if _trans1==1, scale(h) df(3) ///
> tvc(sz2 sz3 pr_1) dftvc(1)

. estimates store m1

. qui streg age sz2 sz3 nodes hormon pr_1 if _trans2==1, distribution(weibull)

. estimates store m2

. qui stpm2 age sz2 sz3 nodes hormon pr_1 if _trans3==1, scale(h) df(3) ///
> tvc(pr_1) dftvc(1) nolog

. estimates store m3
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predictms

Getting predictions from separate models
. predictms , transmat(tmat) at1(age 45) timevar(temptime) graph ///
> models(m1 m2 m3)
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predictms

Everything available within predictms works on either the
stacked or separate modelling format

We tend to favour the separate modelling approach

This gives us a very powerful tool to model each transition as
simply or as complex as needed...yet still get easily interpreted
probabilities (and more...) with a single line of code!

MJC Multistate survival analysis 15th November 2018 51/84



predictms, transmat(tmat) at(age 54 pr 1 3 sz2 1)

models(m1 m2 m3)
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Figure 5: Probability of being in each state for a patient aged 54, with
progesterone level (transformed scale) of 3.
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predictms, transmat(tmat) at(age 54 pr 1 3 sz2 1)

models(m1 m2 m3) ci

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
Years since surgery

Post-surgery

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
Years since surgery

Relapsed

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
Years since surgery

Died

Probability 95% confidence interval

Figure 6: Probability of being in each state for a patient aged 54, 50> size
≥20 mm, with progesterone level (transformed scale) of 3, and associated
confidence intervals.
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Contrasts

It’s easy to show predictions for a particular covariate pattern,
but what about showing the impact of differences in covariate
patterns?

How does treatment change the probability if being in each
state?

How does tumour size at diagnosis influence these probabilities?

We can use contrasts - differences and ratios
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Contrasts - difference

P(Y (t) = b|Y (s) = a,X = 1)− P(Y (t) = b|Y (s) = a,X = 0)

The difference in transition probabilities for X = 1 compared to
X = 0
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Differences in transition probabilities
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. predictms, transmat(tmat) models(m1 m2 m3) ///

. at1(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) difference ci
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Contrasts - ratio

P(Y (t) = b|Y (s) = a,X = 1)

P(Y (t) = b|Y (s) = a,X = 0)

The ratio of transition probabilities for X = 1 compared to X = 0
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Ratios of transition probabilities
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. predictms, transmat(tmat) models(m1 m2 m3) ///

. at1(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci ratio
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Contrasts

predictms gives you the transition probabilities for each at#()

pattern, in variables called prob at#*

predictms gives you the difference between transition
probabilities for each at#() pattern compared to the reference
atref(1), in variables called diff prob at#*

predictms gives you the ratio between transition probabilities
for each at#() pattern compared to the reference atref(1), in
variables called ratio prob at#*

You can all these predictions in one call to predictms

. predictms, transmat(tmat) models(m1 m2 m3) ///

. at1(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1)

. difference ratio ci
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Length of stay in a state

A clinically useful measure is called length of stay, which defines the
amount of time spent in a particular state. This is the restricted
mean survival equivalent in a multi-state model.∫ t

s

P(Y (u) = b|Y (s) = a)du

This is the multi-state equivalent of restricted mean survival time [11]
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Length of stay in a state

Such a quantity allows us to ask questions such as

How much time would you spend in hospital over a ten year
period?

How much time would you spend relapse-free?

Does treatment influence the time spent in hospital?

What is my life expectancy?

Thanks to the simulation approach, we can calculate such things
extremely easily.
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Example - breast cancer

In our breast cancer example, we may be interested in

the amount of time a patient spends relapse-free

how does tumour size influence length of stay?
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Example - breast cancer

predictms

. range temptime 0 10 101
(7,381 missing values generated)

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> models(m1 m2 m3) los

. list _los_at1_1_* temptime if _n==51 | _n==101, noobs ab(15)

_los_at1_1_1 _los_at1_1_2 _los_at1_1_3 temptime

4.157891 .56545628 .27665273 5
7.0421219 1.5039284 1.4539497 10
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Example - breast cancer

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> models(m1 m2 m3) los ci
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Example - breast cancer

So after 10 years, a patient aged 45 with progesterone of 3 and 2
positive nodes, spends

7 years alive and relapse-free

1.5 years alive post-relapse

1.5 years dead...does that make sense?

Length of stay should only be reported for transient states
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Example - breast cancer

How about restricted mean survival? This is the total time spent in
the initial state and the relapse state

. gen rmst = _los_at1_1_1 + _los_at1_1_2
(7,381 missing values generated)

. list _los_at1_1_1 _los_at1_1_2 rmst temptime if _n==51 | _n==101, noobs ab(15)

_los_at1_1_1 _los_at1_1_2 rmst temptime

4.1537604 .56775277 4.721513 5
7.0281965 1.5145309 8.542727 10

What about confidence intervals?
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predictms

We can use the userfunction() ability of predictms, which let’s
us pass our own function of transition probabilities and/or length of
stays, to calculate bespoke predictions
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predictms

userfunction()

. mata:
mata (type end to exit)

: real matrix ufunc(M)
> {
> los1 = ms_user_los(M,1)
> los2 = ms_user_los(M,2)
> return(los1:+los2)
> }

: end

.

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> models(m1 m2 m3) los ci userfunction(ufunc)

. list rmst _user_at1_1* temptime if _n==51 | _n==101, noobs ab(15)

rmst _user_at1_1_1 _user_at1_1~lci _user_at1_1~uci temptime

4.721513 4.7231721 4.6753368 4.7710075 5
8.542727 8.5454766 8.3664569 8.7244962 10
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Example - breast cancer

All of our contrasts are available as well, so we can easily assess the
impact of covariates, through differences,

LoS(t|X = 1)− LoS(t|X = 0)

or ratios,
LoS(t|X = 1)

LoS(t|X = 0)
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Example - breast cancer

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> at2(age 45 pr_1 3 nodes 2 sz3 1) models(m1 m2 m3) los ci ///
> difference ratio
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Example - breast cancer
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Markov models - reminder

All the multistate models we have discussed so far have been
Markov models

Remember, this means that where you are going is not
influenced by where you have been

We can relax this assumption in a number of ways
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Semi-Markov multi-state models I

The Markov assumption can be considered restrictive

We can relax it by allowing the transition intensities to depend
on the time at which earlier states were entered - multiple
timescales [10]

This is commonly simplified further, by defining the transition
hazards/intensities to be dependent only on the time spent in
the current state - clock-reset approach [4]
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Figure 7: The impact of timescale.
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Clock reset approach

If the Markov assumption does not hold we may consider the
clock-reset approach

The transition from relapse to death may be a function of time
since entry into the relapse state

Timescale is set to zero after each new state entry
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Clock reset approach - estimation

Just as easy as the clock forward approach
. gen newt = stop - start

. stset newt , failure( status=1)

Before we had
. stset stop , enter( start) failure( status=1)

Given we’ve stset our data, we can now fit any models we like!
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predictms with clock-reset models

We’ve seen that the only thing you have to change is how you
stset your data

It’s equally simple to use predictms after fitting a clock-reset
model

Add the reset option...yes that’s it!
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A clock reset model

predictms and reset

. range temptime 0 10 101
(7,381 missing values generated)

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> models(m1 m2 m3) reset

. list _prob_at1_1_* temptime if _n==51 | _n==101, noobs ab(15)

_prob_at1_1_1 _prob_at1_1_2 _prob_at1_1_3 temptime

.66881 .19877 .13242 5

.49783 .17259 .32958 10
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A clock reset model

predictms and reset

. predictms , transmat(tmat) at1(age 45 pr_1 3 nodes 2) timevar(temptime) ///
> models(m1 m2 m3) reset graph
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Choice of timescale

It’s setting specific

Clock reset models would generally be more appropriate when an
intermediate event is ’substantial’, for example a heart attack

A useful property of state occupation probabilities is that they
are robust to deviations of the Markov assumption
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Current and future plans

The multistate package is actively being developed

Some future projects will include:
Reversible transitions

There’s no restriction on the transition matrix

Frailties for clustered data
I’ve begun syncing predictms with merlin

Find out more on mjcrowther.co.uk/software/merlin

Multiple timescales
Fitting survival models with multiple timescales is challenging
merlin can do this simply and flexibly, e.g.:

merlin

merlin (stime /// response
trt sex /// baseline covariates
trt#rcs(stime, df(3)) /// complex time-dependent effect
rcs(stime, df(2) offset(age)) /// second timescale

, family(rp, failure(died) df(5)) /// survival model
)
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