

Simulating Gaussian Stationary Dynamic Panel Data Models: New Features of xtarsim

Giovanni Bruno¹

¹Bocconi University

Italian SUG, 26/09/2019

Motivations	Models	Examples	Applications

Motivations	Models	Examples	Applications

- Monte Carlo analysis helps the finite-sample evaluation of estimators and tests
- provides also pedagogical benefits: allows direct experience of randomness in repeated samples
- At the base of Monte Carlo analysis there is a procedure for simulating the data from a known population: xtarsim (Bruno, 2005) simulates dynamic panel data in Stata
- I present new features of xtarsim allowing for different types of predetermined or endogenous regressors, along with possibly serially-correlated idiosyncratic errors.

The data generating processes (N individuals are independently drawn, for notational simplicity the subscript indicating individuals is omitted throughout):

$$y_t = \gamma L y_t + \beta x_t + \eta + \epsilon_t$$

$$x_t = \rho L x_t + H_t$$

t = 1, ..., T, where $|\gamma| < 1$, $|\rho| < 1$, ϵ_t and ξ_t are mutually independent i.i.d. series with $\epsilon_t | \eta \sim N(0, \sigma_{\epsilon}^2)$ and η is a time-invariant individual component. Depending on the form chosen for H_t , we have cases of an exogenous, endogenous or predetermined x_t .

Motivations	Models	Examples	Applications
Evorenous v			

As in Kiviet (1995):

$$H_t = \omega \eta + \xi_t. \tag{1}$$

with $\xi_t | \eta \sim N\left(0, \sigma_{\xi}^2\right)$ independent of ϵ_t (Kiviet sets ω to zero and so does not accommodate correlated effects); I also consider the case x exogenous with MA(1) errors in the main equation, $y_t = \gamma L y_t + \beta x_t + \eta + \epsilon_t + \delta L \epsilon_t$, as in Bowsher (2002))

Motivations	Models	Examples	Applications
Predetermined	x		

Two schemes (Bun and Kiviet, 2006): Scheme 1

$$H_t = (1 - \rho L) (\alpha L \epsilon_t + \omega \eta) + \xi_t$$

Scheme 2

$$H_t = \alpha L y_t + \omega \eta + \xi_t$$

Motivations	Models	Examples	Applications
Endogenous x			

Three schemes: Scheme 1

$$H_t = (1 - \rho L) (\alpha \epsilon_t + \omega \eta) + \xi_t$$
$$H_t = \alpha y_t + \omega \eta + \xi_t$$

Scheme 3

Scheme 2

$$H_t = \omega \eta + \alpha \epsilon_t + \xi_t$$

Motivations	Models	xtarsim	Examples	Applications
xtarsim				

Dynamic models need start-up values. I follow McLeod and Hipel (1978) and Kiviet (1995) to obtain start-up values according to the data generation process, so to avoid wasting random numbers in the estimation of start-up values and also small-sample non-stationarity problems.

Motivations	Models	xtarsim	Examples	Applications
xtarsim				

The basic syntax of xtarsim is as follows xtarsim *depvar indepvar ind_effect_var*, nid(#) time(#) gamma(real) beta(real) rho(real) snratio [sigma(real) omega(real) ma1(real) seed]

Motivations	Mode		xtars		Examples	Applications
Example: exo	genous	x				
. xtarsim y x . describe	fe, nid(1	00) time(5)	gamma(.2)	beta(.8) rho(.8)	snratio(snr 9) seed(12345)
Contains data obs: vars: size:	500 5 13,000					
variable name	storage type	display format	value label	variable label		
ivar tvar y x fe	byte byte double double double	%8.0g %8.0g %10.0g %10.0g %10.0g		panel variable time variable dependent varia regressor individual offe	ble	

Sorted by: ivar tvar

Motivations	Models	Examples	Applications
Example: ov			

This generates a panel of N=100 and T=5 from a model with exogenous x:

$$y_t = 0.2Ly_t + 0.8x_t + \eta + \epsilon_t$$

$$x_t = 0.8Lx_t + \xi_t$$

The signal to noise is $Var\left(y_t - \frac{\eta}{1-\gamma} - \epsilon_t\right) / \sigma_{\epsilon}^2 = 9$, which determines the variance of ξ_t . The variance of ϵ_t is controlled by the option sigma(real), set to unity by default.

Motivations Models xtarsim Examples Applications Example: exogenous x with MA(1) errors

. xtarsim y x fe, nid(100) time(5) gamma(.2) beta(.8) rho(.8) mal(.2) snratio(snr 9)

$$y_t = 0.2Ly_t + 0.8x_t + \eta + \epsilon_t + 0.2L\epsilon_t$$

$$x_t = 0.8Lx_t + \xi_t$$

 Motivations
 Models
 xtarsim
 Examples
 Applications

 Example:
 predetermined x - scheme 1

. xtarsim y x fe, nid(100) time(5) gamma(.2) beta(.8) rho(.8) pred(s1 .5) snratio(snr 9)

$$y_t = 0.2Ly_t + 0.8x_t + \eta + \epsilon_t + 0.2L\epsilon_t$$

$$x_t = 0.8Lx_t + (1 - 0.8L) 0.5L\epsilon_t + \xi_t$$

Motivations	Models		Examples	Applications
Example: enc	logenous x - so	cheme 1		

. xtarsim y x fe, nid(100) time(5) gamma(.2) beta(.8) rho(.8) endog(s1 .5) snratio(snr 9)

$$y_t = 0.2Ly_t + 0.8x_t + \eta + \epsilon_t + 0.2L\epsilon_t$$

$$x_t = 0.8Lx_t + (1 - 0.8L) 0.5\epsilon_t + \xi_t$$

Motivations	Models	Examples	Applications
Applications			

Possible Monte Carlo applications of xtarsim,

- Evaluation of finite-sample biases and RMSEs of panel data estimators (Bruno, 2005)
- Evaluation of power and size distortion of specification tests
- Evaluation of symptoms of instrument proliferation (Roodman 2009)

On testing overidentifying restrictions in dynamic panel data models. *Economics Letters*, 77:211–220, 2002.

Giovanni S. F. Bruno.

Estimation and inference in dynamic unbalanced panel data models with a small number of individuals.

The Stata Journal, 5:473-00, 2005.

M. J. G. Bun and J. F. Kiviet.

The effects of dynamic feedbacks on Is and mm estimator accuracy in panel data models.

Journal of Econometrics, 132:409–44, 2006.

J. F. Kiviet.

On bias, inconsistency and efficiency of various estimators in dynamic panel data models.

Journal of Econometrics, 68:53–78, 1995.

A. I. McLeod and K. W. Hipel.

Simulation procedures for box-jenkins models.

Water Resources Research, 14:969–975, 1978.

D. M. Roodman.

How to do xtabond2: An introduction to difference and system gmm in stata. The Stata Journal, 9(1):86–136, 2009.