
ddml: Double/debiased machine learning in
Stata

Achim Ahrens (ETH Zürich)

Mark E Schaffer (Heriot-Watt University, IZA)
Christian B Hansen (University of Chicago)
Thomas Wiemann (University of Chicago)

Package website: https://statalasso.github.io/

Italian Stata Group Meeting

May 19, 2022

https://statalasso.github.io/

Introduction
▶ A rich and growing literature exploits machine learning to

facilitate causal inference.
▶ A central focus: high-dimensional controls and/or

instruments, which can arise if
▶ we observe many controls/instruments
▶ controls/instruments enter through an unknown function

▶ Belloni, Chernozhukov, and Hansen (2014) and Belloni et al.
(2012) propose estimators relying on the Lasso that allow for
high-dimensional controls/instruments.

⇒ Available via pdslasso in Stata (Ahrens, Hansen, and
Schaffer, 2020)

1 / 31

Introduction
What if we don’t want to use the lasso?
▶ The Lasso might not be the best-performing machine learner

for a particular problem.
▶ The Lasso relies on the approximate sparsity assumption,

which might not be appropriate in some settings.

Chernozhukov et al. (2018) propose Double/Debiased Machine
Learning (DDML) which allow to exploit machine learners other
than the Lasso.

Our contribution:
▶ We introduce ddml, which implements DDML for Stata.
▶ We provide simulation evidence on the finite sample

performance of DDML.
▶ Our recommendation is to use DDML in combination with

stacking.
2 / 31

Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

How do we account for confounding factors xi? — The standard
approach is to assume linearity g(xi) = x ′

i β and consider
alternative combinations of controls.

Problems:
▶ Non-linearity & unknown interaction effects
▶ High-dimensionality: we might have “many” controls
▶ We don’t know which controls to include

3 / 31

Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

Post-double selection (Belloni, Chernozhukov, and Hansen, 2014)
and post-regularization (Chernozhukov, Hansen, and Spindler,
2015) provide data-driven solutions for this setting.

Both “double” approaches rely on the sparsity assumption and use
two auxiliary lasso regressions: yi ⇝ xi and di ⇝ xi . lasso PDS

Related approaches exist for optimal IV estimation (Belloni et al.,
2012) and/or IV with many controls (Chernozhukov, Hansen, and
Spindler, 2015).

4 / 31

Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2020), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

A quick example using AJR (2001):
. clear
. use https://statalasso.github.io/dta/AJR.dta
.
. pdslasso logpgp95 avexpr ///

(lat_abst edes1975 avelf temp* humid* steplow-oilres)
.
. ivlasso logpgp95 (avexpr=logem4) ///

(lat_abst edes1975 avelf temp* humid* steplow-oilres), ///
partial(logem4)

Example 1 (pdslasso) allows for high-dimensional controls.

Example 2 (ivlasso) treats avexpr as endogenous and exploits
logem4 as an instrument. (More details in the pds/ivlasso help
file.)

5 / 31

Background
There are advantages of relying on lasso:
▶ intuitive assumption of (approximate) sparsity
▶ computationally relatively cheap (due to plugin lasso penalty;

no cross-validation needed)
▶ Linearity has its advantages (e.g. extension to fixed effects;

Belloni et al., 2016)

But there are also drawbacks:
▶ What if the sparsity assumption is not plausible?
▶ There is a wide set of machine learners at disposable—Lasso

might not be the best choice.
▶ Lasso requires careful feature engineering to deal with

non-linearity & interaction effects.

6 / 31

Review of DDML
The partial linear model:

yi = θdi + g(xi) + εi

di = m(xi) + vi

Naive idea: We estimate conditional expectations ℓ(xi) = E [yi |xi]
and m(xi) = E [di |xi] using ML and partial out the effect of xi (in
the style of Frisch-Waugh-Lovell):

θ̂DDML =
(

1
n
∑

i
v̂2

i

)−1 1
n
∑

i
v̂i(yi − ℓ̂),

where v̂i = di − m̂i .

7 / 31

Review of DDML
Yet, this approach is flawed: The estimation error ℓ(xi) − ℓ̂ and vi
may be correlated due to over-fitting, leading to poor
performance.

DDML, thus, relies on cross-fitting. Cross-fitting is sample
splitting with swapped samples.

DDML for the partial linear model (DML 2)
We split the sample in K random folds of equal size denoted by Ik :
▶ For k = 1, . . . , K , estimate ℓ(xi) and m(xi) using sample Ic

k and
form out-of-sample predictions ℓ̂i and m̂i for all i in Ik .

▶ Construct estimator θ̂ as(
1
n
∑

i
v̂2

i

)−1
1
n
∑

i
v̂i(yi − ℓ̂),

where v̂i = di − m̂i . m̂i and ℓ̂i are the cross-fitted predicted values.
8 / 31

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive model

yi = g(di , xi) + ui E [ui |xi , di] = 0
zi = m(xi) + vi E [ui |xi] = 0

As in the Partial Linear Model, we are interested in the ATE, but
do not assume that di (a binary treatment variable) and xi are
separable.

We estimate the conditional expectations E [yi |xi , di = 0] and
E [yi |xi , di = 1] as well as E [di |xi] using a supervised machine
learner.

9 / 31

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Partial linear IV model

yi = diθ + g(xi) + ui E [ui |xi , zi] = 0
zi = m(xi) + vi E [vi |xi] = 0

where the aim is to estimate the average treatment effect θ using
observed instrument zi in the presence of controls xi . We estimate
the conditional expectations E [yi |xi], E [di |xi] and E [zi |xi] using a
supervised machine learner.

10 / 31

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

High-dimensional IV model

yi = diθ + g(xi) + ui

di = h(zi) + m(xi) + vi

where the estimand of interest is θ. The instruments and controls
enter the model through unknown functions g(), h() and f ().

We estimate the conditional expectations E [yi |xi], E [d̂i |xi] and
d̂i := E [di |zi , xi] using a supervised machine learner. The
instrument is then formed as d̂i − Ê [d̂i |xi] where Ê [d̂i |xi] denotes
the estimate of E [d̂i |xi].

11 / 31

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive IV model

yi = µ(xi , zi) + ui E [ui |xi , zi] = 0
di = m(zi , xi) + vi E [vi |xi , zi] = 0
zi = p(xi) + ξi E [ξi |xi] = 0

where the aim is to estimate the local average treatment effect.

We estimate, using a supervised machine learner, the following
conditional expectations: E [yi |xi , zi = 0] and E [yi |xi , zi = 1];
E [D|xi , zi = 0] and E [D|xi , zi = 1]; E [zi |xi].

12 / 31

The ddml package
We introduce ddml for Stata:
▶ Compatible with various ML programs in Stata (e.g.

lassopack, pylearn, randomforest).
→ Any program with the classical “reg y x” syntax and

post-estimation predict will work.
▶ Short (one-line) and flexible multi-line version
▶ 5 models supported: partial linear model, interactive model,

interactive IV model, partial IV model, optimal IV.

13 / 31

Stacking regression
Which machine learner should we use?

ddml supports a range of ML programs: pylearn, lassopack,
randomforest. — Which one should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear. We don’t know whether, e.g., lasso or random
forests will perform better.

Stacking, as implemented in pystacked, provides a solution: We
use an ‘optimal’ combination of base learners.

14 / 31

qddml example: Partial linear model
qddml is the one-line (‘quick’) version of ddml and uses a syntax
similar to pds/ivlasso.

. use https://statalasso.github.io/dta/AJR.dta, clear

.

. global Y logpgp95

. global X lat_abst edes1975 avelf temp* humid* steplow-oilres

. global D avexpr

.

. qddml $Y $D ($X), model(partial) cmdopt(method(rf gradboost))
DML with Y=m0_y and D=m0_d1:

m0_y Coef. Std. Err. z P>|z| [95% Conf. Interval]

m0_d1 .3391897 .0621291 5.46 0.000 .217419 .4609604

15 / 31

Extended ddml syntax
Step 1: Initialise ddml and select model:

ddml init model
[

, kfolds(integer) reps(integer) ...
]

where model is either ‘partial’, ‘iv’, ‘interactive’, ‘ivhd’, ‘late’.

Step 2: Add supervised ML programs for estimating conditional
expectations:

ddml eq newvarname
[

, eqopt
]
: command depvar indepvars

[
,

cmdopt
]

where eq selects the conditional expectations to be estimated. command
is a ML program that supports the standard reg y x-type syntax. cmdopt
are specific to that program.

Multiple estimation commands per equation are allowed.

16 / 31

Extended ddml syntax
Step 3: Cross-fitting

ddml crossfit

Step 4: Estimation of causal effects

ddml estimate
[

, robust ...
]

Additional auxiliary commands:

ddml describe (describe current model set up),ddml save & ddml
use (to import/save ddml objects), ddml extract (to retrieve objects),
ddml export (export in csv format).

17 / 31

Extended ddml syntax: Example
. global Y logpgp95
. global X lat_abst edes1975 avelf temp* humid* steplow-oilres
. global D avexpr
.
. *** initialise ddml and select model;
. ddml init partial
.
. *** specify supervised machine learners for E[Y|X] ("yeq") and E[D|X] ("deq")
. * y-equation:
. ddml yeq, gen(pyy): pystacked $Y $X, type(reg) method(rf gradboost)
Equation successfully added.
.
. * d-equation:
. ddml deq, gen(pyd): pystacked $D $X, type(reg) method(rf gradboost)
Equation successfully added.

18 / 31

Extended ddml syntax: Example (cont’d.)
. *** cross-fitting and display mean-squared prediction error
. ddml crossfit
Model: partial
Number of Y estimating equations: 1
Number of D estimating equations: 1
Cross-fitting equation 1 2
Mean-squared error for y|X:
Name Orthogonalized Command N MSPE

logpgp95 m0_pyy pystacked 64 0.573751
Mean-squared error for D|X:
Name Orthogonalized Command N MSPE

avexpr m0_pyd pystacked 64 1.648804
.
. *** estimation of parameter of interest
. ddml estimate
DML with Y=m0_pyy and D=m0_pyd (N=):

m0_pyy Coef. Std. Err. z P>|z| [95% Conf. Interval]

m0_pyd .3794184 .0569073 6.67 0.000 .2678821 .4909546

19 / 31

Simulation I: Advantages of Stacking
We demonstrate the use of ddml using the partially linear model
by extending the analysis of 401(k) eligibility and total financial
wealth of Poterba, Venti, and Wise (1995). The data consists of
n = 9915 households from the 1991 SIPP.

Simulation set-up: We consider a linear DGP and a non-linear
DGP, and compare performance of OLS, PDS-Lasso and various
machine learners, including meta learners.

We would expect that stacking performs well under both settings,
while linear approaches only perform well if the DGP is linear.

20 / 31

Simulation I: Advantages of Stacking
1. Use the full sample OLS estimate to obtain τ̂OLS . Construct

the partial residuals y (r)
i = yi − τ̂OLSdi .

2. Fit a supervised learning estimator that aims to predict y (r)
i

with the controls xi and di with xi , respectively. Denote the
fitted values as g̃ and h̃. We either use
▶ linear regression (Linear DGP)
▶ gradient boosting (Non-linear DGP)

3. Sample from the empirical distribution of xi by bootstrapping
ns observations from the original data. Denote the
bootstrapped sample by Db.

4. Generate the treatment and outcome variable over the
bootstrap sample:

d̃ (b)
i = 1{h̃(xi) + νi ≥ 0.5} (1)

ỹ (b)
i = τ0d̃ (b)

i + g̃(xi) + εi , ∀i ∈ Db (2)

where νi
iid∼ N (0, κ1) and εi

iid∼ N (0, κ2), τ0 = 6, 000.
21 / 31

Simulation I: Advantages of Stacking
We consider the following base learners:
▶ CV-Lasso with interactions and 2nd order polynomials
▶ CV-Ridge with interactions and 2nd order polynomials
▶ CV-Lasso with 10th order polynomials and no interactions
▶ CV-Ridge with 10th order polynomials and no interactions
▶ Random forest with low regularization: 8 predictors considered at each

leaf split, no limit on the number of observation per node, bootstrap
sample size of 70% (max_features(8) min_samples_leaf(1)
max_samples(.7))

▶ Random forest with high regularization: 5 predictors considered at each
leaf split, at least 10 observation per node, bootstrap sample size of 70%
(max_features(5) min_samples_leaf(10) max_samples(.7))

▶ Gradient boosted trees with low regularization: 500 trees and a learnings
rate of 0.01 (n_estimators(500) learning_rate(0.01))

▶ Gradient boosted trees with high regularization: 250 trees and a learnings
rate of 0.01 (n_estimators(250) learning_rate(0.01))

▶ Feed-forward neural nets with 3 hidden layers of size 5
(hidden_layer_sizes(5 5 5))

22 / 31

Simulation I: Advantages of Stacking

Table: Average Stacking Weights

Stacking Single-Best

Panel (A): Linear DGP Y |X D|X Y |X D|X
OLS .646 .492 .813 .643
Lasso with CV (2nd order poly) .111 .158 .161 .267
Ridge with CV (2nd order poly) .063 .061 .018 .019
Lasso with CV (10th order poly) .032 .08 .003 .049
Ridge with CV (10th order poly) .03 .047 .005 .016
Random forest (low regularization) .013 .012 0 0
Random forest (high regularization) .017 .027 0 0
Gradient boosting (low regularization) .028 .043 0 .006
Gradient boosting (high regularization) .024 .074 0 .002
Neural net .036 .005 0 0

Stacking assigns the highest weight to OLS if the DGP is linear. . .

23 / 31

Simulation I: Advantages of Stacking

Table: Average Stacking Weights

Stacking Single-Best

(1) (2) (3) (4)
Panel (B): Non-Linear DGP Y |X D|X Y |X D|X
OLS .037 .021 0 0
Lasso with CV (2nd order poly) .039 .067 .083 .149
Ridge with CV (2nd order poly) .177 .23 .12 .125
Lasso with CV (10th order poly) .052 .077 .088 .061
Ridge with CV (10th order poly) .078 .068 .019 .044
Random forest (low regularization) .041 .01 0 0
Random forest (high regularization) .028 .069 .001 0
Gradient boosting (low regularization) .517 .213 .678 .359
Gradient boosting (high regularization) .02 .239 .011 .262
Neural net .012 .005 0 0

. . . and the highest weight to gradient boosting if the DGP is
non-linear.

24 / 31

Simulation I: Advantages of Stacking

Table: Bias and Coverage Rates in the Linear and Non-Linear DGP
ns = 9915 ns = 99150

Panel (A): Linear DGP Bias MAB Rate Bias MAB Rate
Full sample:

OLS 100.99 918.03 .95 -22.61 255.52 .94
PDS-Lasso 101.83 913.18 .95 -19.9 257.29 .94

DDML methods:
Base learners

OLS 105.07 906.96 .94 -23.05 256.51 .94
Lasso with CV (2nd order poly) 104.33 907.84 .94 -22.45 257.23 .94
Ridge with CV (2nd order poly) 103.22 898.56 .94 -23.27 255.54 .94
Lasso with CV (10th order poly) 49.56 1120.59 .93 37.98 260.53 .95
Ridge with CV (10th order poly) 1066 1342.38 .9 15.85 260.41 .95
Random forest (low regularization) -59.63 1083.64 .91 -59.29 343.46 .86
Random forest (high regularization) 105.58 952.35 .94 -46.54 275.56 .91
Gradient boosting (low regularization) 53.97 930.93 .94 -41.84 252.14 .94
Gradient boosting (high regularization) 162.75 923.08 .95 48.31 259.12 .95
Neural net -3594.99 5380.31 .17 -2165.41 3212.12 .16

Meta learners
Stacking: NNLS 100.01 935.27 .94 -22.7 254.01 .94
Stacking: Single best 92.79 944.07 .95 -25.03 255.75 .94
Stacking: NNLS interactive 690.88 1245.02 .95 -51.29 359.4 .96
Short-stacking 100.51 912.88 .94 -24.04 252.17 .94
Single best 103.31 917.74 .94 -24.88 252.16 .94

25 / 31

Simulation I: Advantages of Stacking

Table: Bias and Coverage Rates in the Linear and Non-Linear DGP
ns = 9915 ns = 99150

Panel (B): Non-Linear DGP Bias MAB Rate Bias MAB Rate
Full sample:

OLS -2496.16 2477.19 .63 -2658.04 2636.31 0
PDS-Lasso -2507.47 2489.77 .62 -2657.5 2635.94 0

DDML methods:
Base learners

OLS -2522.98 2540.36 .62 -2660.54 2640.98 0
Lasso with CV (2nd order poly) 767.2 1078.29 .91 691.67 695.3 .64
Ridge with CV (2nd order poly) 825.21 1091.19 .9 702.55 707.28 .64
Lasso with CV (10th order poly) -4214.09 1895.22 .92 -10.06 294.34 .94
Ridge with CV (10th order poly) -2123.59 2095.56 .91 4.42 288.37 .94
Random forest (low regularization) -104.54 1019.55 .92 -28.83 332.87 .87
Random forest (high regularization) -110.06 959.96 .95 -21.52 280.36 .94
Gradient boosting (low regularization) 69.44 890.94 .95 7.28 263.62 .95
Gradient boosting (high regularization) 213.04 895.47 .95 174.14 291.63 .93
Neural net -4706.76 5831.79 .17 -3216.85 3837.37 .15

Meta learners
Stacking: NNLS -62.97 1068.87 .84 18.36 269.02 .95
Stacking: Single best -135.15 1035.41 .89 7.94 263.06 .95
Stacking: NNLS interactive 118.88 1102.99 .95 10.27 280.24 .95
Short-stacking 209.14 915.02 .95 13.67 261.73 .95
Single best 125.64 914.56 .95 7.28 263.62 .95

26 / 31

Simulation II: Small Sample Performance
Wüthrich and Zhu (2021, henceforth WZ) consider two
applications to demonstrate that PDS-Lasso suffers from a large
finite sample bias and tends to underselect; again using the
application of (Poterba, Venti, and Wise, 1995; Belloni et al.,
2017).

They use two specifications:
▶ two-way interactions (TWI) (as in Chernozhukov and Hansen,

2004); p = 167
▶ quadratic splines & interactions (QSI) (as in Belloni et al.,

2017); p = 272
WZ run their simulations on bootstrap samples of the data
(nb = {200, 400, 800, 1600}) and calculate the bias as the mean
difference to the full sample estimate (N = 9915).

27 / 31

Simulation II: Small Sample Performance

(a) Bias (TWI specification) (b) Bias (QSI specification)

Notes: The figures report the mean bias calculated as the mean difference to the
full sample estimates. Following WZ, we draw 600 bootstrap samples of size nb =
{200, 400, 600, 800, 1200, 1600}. ‘TWI’ indicates that the predictors have been ex-
panded by two-way interactions. ‘QSI’ refers to the quadratic spline & interactions
specification of Belloni et al. (2017).

Figure: Replication of Figure 8 in WZ

28 / 31

Simulation II: Small Sample Performance

(a) CV-Lasso (b) CV-Ridge

Figure: Mean bias relative to full sample

29 / 31

Simulation II: Small Sample Performance

(a) Boosted trees (b) Stacking

Figure: Mean bias relative to full sample

Main result: The finite sample bias of stacking stabilizes for
nb > 600, but in contrast to OLS/PDS-Lasso, stacking doesn’t
assume linearity.

30 / 31

Summary
▶ ddml implements Double/Debiased Machine Learning for

Stata:
▶ Compatible with various ML programs in Stata
▶ Short (one-line) and flexible multi-line version
▶ Uses Stacking Regression as the default machine learner;

implemented via separate program pystacked
▶ 5 models supported

▶ The advantage to pdslasso is that we can make use of
almost any machine learner.

▶ But which machine learner should we use? – We suggest
Stacking as it combines multiple ML methods into one
prediction.

▶ We are in the final phase of development; hopefully we can
make ddml available soon (following your feedback)

31 / 31

References I
Acemoglu, Daron, Simon Johnson, and James A Robinson (Dec.
2001). “The Colonial Origins of Comparative Development: An
Empirical Investigation”. In: American Economic Review 91.5,
pp. 1369–1401. url: http:
//www.aeaweb.org/articles?id=10.1257/aer.91.5.1369.
Ahrens, Achim, Christian B. Hansen, and Mark E. Schaffer (2020).
“lassopack: Model selection and prediction with regularized regression
in Stata”. In: The Stata Journal 20.1, pp. 176–235. url:
https://doi.org/10.1177/1536867X20909697.
Belloni, A et al. (2017). “Program Evaluation and Causal Inference
With High-Dimensional Data”. In: Econometrica 85.1, pp. 233–298.
url: https:
//onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12723.
Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen
(2014). “Inference on treatment effects after selection among
high-dimensional controls”. In: Review of Economic Studies 81,
pp. 608–650. url: https://doi.org/10.1093/restud/rdt044.

http://www.aeaweb.org/articles?id=10.1257/aer.91.5.1369
http://www.aeaweb.org/articles?id=10.1257/aer.91.5.1369
https://doi.org/10.1177/1536867X20909697
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12723
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12723
https://doi.org/10.1093/restud/rdt044

References II
Belloni, Alexandre et al. (2012). “Sparse Models and Methods for
Optimal Instruments With an Application to Eminent Domain”. In:
Econometrica 80.6. Publisher: Blackwell Publishing Ltd,
pp. 2369–2429. url: http://dx.doi.org/10.3982/ECTA9626.
Belloni, Alexandre et al. (2016). “Inference in High Dimensional
Panel Models with an Application to Gun Control”. In: Journal of
Business & Economic Statistics 34.4. Genre: Methodology,
pp. 590–605. url:
https://doi.org/10.1080/07350015.2015.1102733 (visited on
02/14/2015).
Chernozhukov, Victor and Christian Hansen (Aug. 2004). “The
effects of 401(K) participation on the wealth distribution: An
instrumental quantile regression analysis”. In: The Review of
Economics and Statistics 86.3. tex.eprint:
https://direct.mit.edu/rest/article-
pdf/86/3/735/1614135/0034653041811734.pdf, pp. 735–751. url:
https://doi.org/10.1162/0034653041811734.

http://dx.doi.org/10.3982/ECTA9626
https://doi.org/10.1080/07350015.2015.1102733
https://doi.org/10.1162/0034653041811734

References III
Chernozhukov, Victor, Christian Hansen, and Martin Spindler (May
2015). “Post-Selection and Post-Regularization Inference in Linear
Models with Many Controls and Instruments”. In: American
Economic Review 105.5, pp. 486–490. url:
https://doi.org/10.1257/aer.p20151022.
— (2016). “High-dimensional metrics in r”. In: 401, pp. 1–32.
Chernozhukov, Victor et al. (2018). “Double/debiased machine
learning for treatment and structural parameters”. In: The
Econometrics Journal 21.1. tex.ids= Chernozhukov2018a publisher:
John Wiley & Sons, Ltd (10.1111), pp. C1–C68. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097.
Poterba, James M, Steven F Venti, and David A Wise (1995). “Do
401 (k) contributions crowd out other personal saving?” In: Journal
of Public Economics 58.1, pp. 1–32.
Wüthrich, Kaspar and Ying Zhu (2021). “Omitted variable bias of
Lasso-based inference methods: A finite sample analysis”. In: Review
of Economics and Statistics 0.(0), pp. 1–47.

https://doi.org/10.1257/aer.p20151022
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097

	Appendix
	References

