APPLIED GAME THEORY

Nicola Orsini

Karolinska Institutet, Stockholm, Sweden

Debora Rizzuto and Nicola Nante

Dept. Public Health, University of Siena, Italy

1st Italian Stata Users Group meeting Rome 25 October 2004

GAME THEORY

- Formal study of decision-making where several intelligent and rational players must make choices that potentially affect the interests of the other players.
- It is applied in economy, sociology, biology, health care, and whenever the actions of several agents (individuals, groups or any combination of these) are interdependent.

GAMET

Type of game

- Strategic or Normal Form Payoff Matrix
- Extensive Form Game Tree

Solution or equilibrium

- Dominant and dominated strategies (domist)
- Iterated elimination of strongly dominated strategy (elids)
- Nash equilibrium in pure strategies (neps)
- Nash equilibrium in mixed strategies (nems)
- Maximin criterion (maximin)
- Backward induction (gtree)

GENERAL PAYOFF MATRIX

```
lab_S1 | clab1 . clab_c . clab_C

rlab1 | (#u111; #u211) . (#u11_c; #u21_c) . (#u11_C; #u21_C)

rlab2 | (#u121; #u221) . (#u12_c; #u22_c) . (#u12_c; #u22_C)

... | ...

rlab_r | (#u1_r1; #u2_r1) . (#u1_r_c; #u2_r_c) . (#u1_r_C; #u2_r_c)

... | ...

rlab_R | (#u1_R1; #u2_R1) . (#u1_R_C; #u2_R_C) . (#u1_R_C; #u2_R_C)
```

```
#u1_r_c is the utility for lab_S1 if lab_S1 chooses
strategy r and lab_S2 chooses strategy c
```

#u2_r_c is the utility for lab_S2 if lab_S1 chooses
strategy r and lab_S2 chooses strategy c

Greatest is the number and greatest is the utility.

DOMINANT AND DOMINATED STRATEGIES

. gamet , payoff(2, 2, 0, 1 \ 3, 0 , 1, 1) player1(High
>Low) player2(Buy Not_buy) ls1(Provider) ls2(Customer)
> domist

```
| Customer
Provider | Buy Not_buy

High | (2; 2) (0; 1)
Low | (3; 0) (1; 1)
```

DOMINATED AND DOMINANT STRATEGIES

Dominated strategies for Provider = High
No dominated strategies for Customer
Dominant strategies for Provider = Low
No dominant strategies for Customer

ITERATED ELIMINATION OF STRONGLY DOMINATED STRATEGIES

. gamet, payoff(0, 0, 12, 8, 18, 9, 36, 0\ 8, 12, 16, 16,
20, 15, 32, 0\ 9, 18, 15, 20, 18, 18, 27, 0\0, 36, 0, 32,
0, 27, 0, 0) player1(H M L N) player2(h m l n) ls1(Firm_I)
ls2(Firm_II) elids

		Firm II			
Firm_I	l h	m	_ 1	n	
M L	(8; 12) (9; 18)	(12; 8) (16; 16) (15; 20) (0; 32)	(20; 15) (18; 18)		

Iteration 1

```
DOMINATED AND DOMINANT STRATEGIES
    Dominated strategies for Firm I = N
    Dominated strategies for Firm II = n
    No dominant strategies for Firm I
    No dominant strategies for Firm II
                     Firm II
   Firm I | h
        H \mid (0; 0) \quad (12; 8) \quad (18; 9)
        M \mid (8; 12) \quad (16; 16) \quad (20; 15)
        L | (9; 18) (15; 20) (18; 18)
```

Iteration 2

```
DOMINATED AND DOMINANT STRATEGIES
    Dominated strategies for Firm I = H
    Dominated strategies for Firm II = h
    No dominant strategies for Firm I
    No dominant strategies for Firm II
                Firm II
   Firm I | m
        M \mid (16; 16) \quad (20; 15)
        L \mid (15; 20) \quad (18; 18)
```

Iteration 3

```
DOMINATED AND DOMINANT STRATEGIES

Dominated strategies for Firm_I = L

Dominated strategies for Firm_II = l

Dominant strategies for Firm_I = M

Dominant strategies for Firm_II = m
```

```
| Firm_II
| Firm_II | m
| M | (16; 16)
```

NASH EQUILIBRIUM IN PURE STRATEGIES

```
. gamet , payoff(2, 2, 0, 1 \ 3, 0 , 1, 1) player1(High
> Low) player2(Buy Not buy) ls1(Provider) ls2(Customer)
> neps
         | Customer
Provider | Buy Not_buy
    High | (2; 2) (0; 1)
     Low | (1; 0) (1; 1)
NASH EQUILIBRIUM IN PURE STRATEGIES
   1. High Buy (2; 2)
   1. Low Not buy (1; 1)
```

NASH EQUILIBRIUM IN MIXED STRATEGIES

```
. gamet, pay(0, 0, -10, 10 \setminus -1, 0, -6, -90)
player1 (Not inspect Inspect) player2 (Comply Cheat) ls1(I)
1s2(II) nems
         I | Comply Cheat
Not inspect | (0; 0) (-10; 10)
   Inspect | (-1; 0) (-6; -90)
// Player I
// p * 0 + (1-p) * -10 = p * -1 + (1-p) * -6
// Player II
// q * 0 + (1-q) * 0 = q * 10 + (1-q) * -90
```

NASH EQUILIBRIUM IN MIXED STRATEGIES

```
player I
   p = 0.80
   0.80 * Comply + 0.20 * Cheat
   player II
   q = 0.90
   0.90 * Not inspect + 0.10 * Inspect
   Nash equilibrium in mixed strategy = (-2.00; 0.00)
// Player I
// 0.8 * 0 + (1-0.8) * -10 = 0.8 * -1 + (1-0.8) * -6 = -2
// Player II
// 0.9 * 0 + (1-0.9) * 0 = 0.9 * 10 + (1-0.9) * -90 = 0
```

EXTENSIVE FORM GAME

. gamet , payoff(2, 2, 0, 1 \ 3, 0 , 1, 1) player1(High >Low) player2(Buy Not buy) ls1(I) ls2(II) gtree

BACKWARD INDUCTION

Equilibrium path: High Buy

Payoffs pair: (2; 2)

. gamet, payoff(0, 0, 12, 8, 18, 9, 36, 0\ 8, 12, 16, 16, 20, 15,
>32, 0\ 9, 18, 15, 20, 18, 18, 27, 0\0, 36, 0, 32, 0, 27, 0, 0)
>player1(H M L N) player2(h m l n) ls1(Firm_I) ls2(Firm_II) gtree
>title(Extensive form) // scatter options

		Firm_II			
Firm_I	l h	m	1	n	
M L	(8; 12) (9; 18)	(12; 8) (16; 16) (15; 20) (0; 32)	(20; 15) (18; 18)	(32; 0)	

BACKWARD INDUCTION

Equilibrium path: H 1
Payoffs pair: (18; 9)

ZERO-SUM GAMES

```
. gamet, payoff(-5, 5, 3, -3, 1, -1, 20, -20\5, -5, 5, -5,
> 4, -4, 6, -6\ -4, 4, 6, -6, 0, 0, -5, 5) player1(1 2 3)
> player2(1 2 3 4) maximin

S2
S1 | 1 2 3 4

1 | (-5; 5) (3; -3) (1; -1) (20; -20)
2 | (5; -5) (5; -5) (4; -4) (6; -6)
3 | (-4; 4) (6; -6) (0; 0) (-5; 5)
```

```
ZERO-SUM GAME - MAXIMIN CRITERION
    Minimal Column Maximum for S1 = 4
    Maximal Row Minimum for -{S2} = -4
    Saddle-point = 2 3
```

KEYWORDS OF GAMET

- System variable (_n) to handle a bi-matrix
- Display payoff table (tabdisp)
- Math functions (max, min) to seek maximum payoffs
- Lists of elements (macrolists) to handle with subscripts
- Create coordinates (y and x) with labels based on players' strategies and overlay scatter plots (scatter) to produce a game tree.

ON-LINE MATERIAL

Download gamet typing at the Stata command line

- . net from http://nicolaorsini.altervista.org/stata
- . ssc install gamet