M statistic commands: interpoint distance distribution analysis with Stata

Pietro Tebaldi
Universita' Bocconi
pietro.tebaldi@studbocconi.it

Marco Bonetti
Universita' Bocconi
marco.bonetti@unibocconi.it

Marcello Pagano
Harvard School of
Public Health
pagano@hsph.harvard.edu

Motivation: spatial distribution (1)

In many situations we are interested in answering the following

QUESTION: Is a certain phenomenon more (less) concentrated in a certain area?

Typical question of cluster analysis

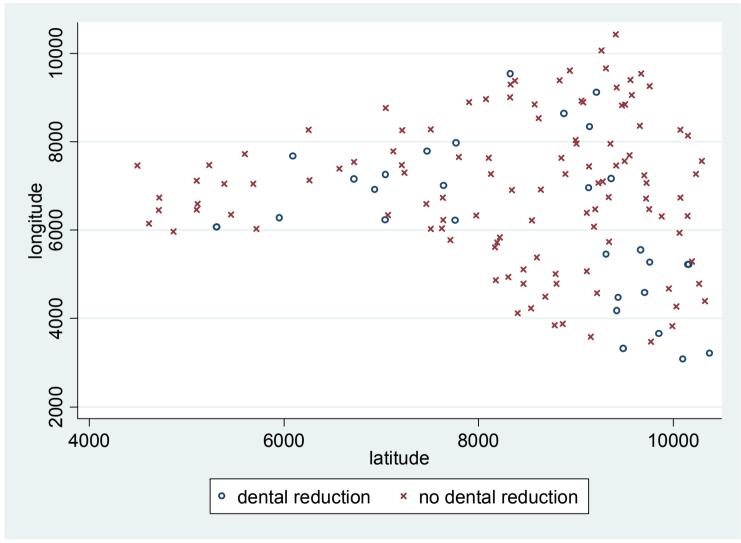
Motivation: spatial distribution (2)

More general problem: spatial distribution analysis

QUESTION: Does the group of interest have a different <u>spatial distribution</u> than the population (null distribution)?

QUESTION: Does group 1 have a different <u>spatial</u> <u>distribution</u> than group 2?

Motivation: spatial distribution (3)



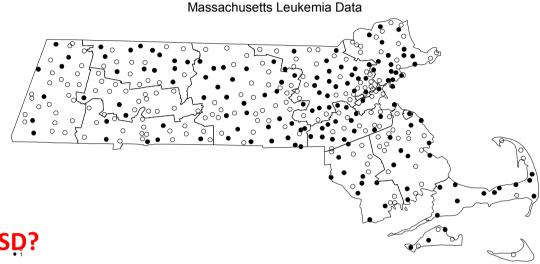
Source: Alt and Vach Data, Waller, L. and Gotway, C., Applied Spatial Statistics for Public Health Data. Wiley-IEEE, 2004.

Motivation: spatial distribution (4)

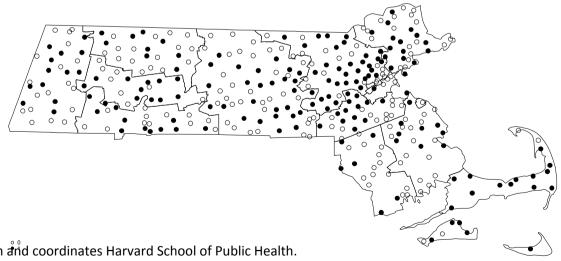
Leukemia Data
In Massachusetts

H0: do locations w/ OBS>EXP and OBS<EXP have the same SD?

Breast Cancer Data
In Massachusetts



Massachusetts Breast Cancer Data



Source: Massachusetts Cancer Report 2006, elaboration and coordinates Harvard School of Public Health.

New commands

Mstat and Mtest are Stata routines that can be used to test H₀. Based on the Euclidean distance in bi-dimensional spaces.

Applications

Epidemiology, Sociology, Economics, Demography, etc... whenever the fact that two phenomena are equally distributed over a given area of interest is not obvious and relevant at the same time.

Extensions

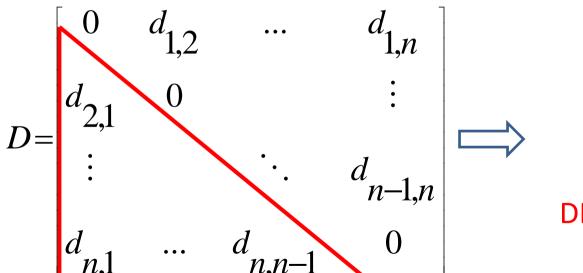
- K-dimensional spaces
- Non-Euclidean metrics or general dissimilarity measures
- H_0 : is group j distributed as the underlying null (population) distibution (1-sample M statistic)

Theory: Interpoint Distance Distribution (IDD)

The main statistic on which M is based is the Empirical (Cumulative) Density Function (ECDF) of the Interpoint Distance Distribution.

Interpoint Distance Distribution (2)

From *n* observations \longrightarrow D is an *nxn* symmetric matrix w/zero main diagonal. We calculate



d is a sample of

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

DEPENDENT distances

Interpoint Distance Distribution (3)

We use **all** the
$$\binom{n}{2} = \frac{n(n-1)}{2}$$
 distances.

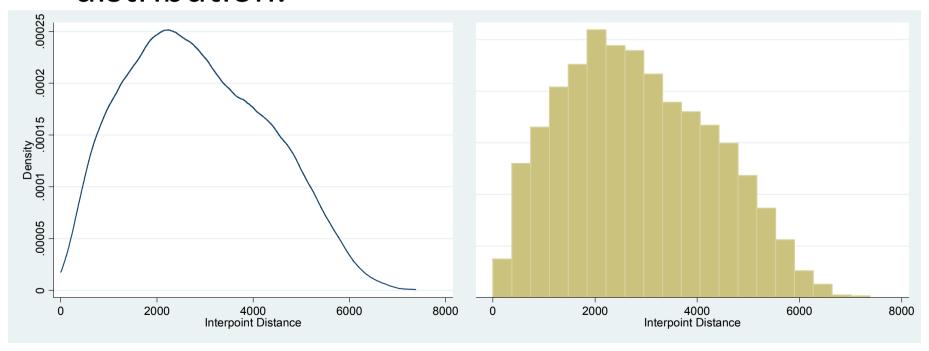
From a sample of n observations we get roughly $n^2/2$ distances: COMPLEX RELATION.

Others use different, less informative statistics: distance to the nearest neighbor (or k < n-1 neighbors), average distance, etc...

Forsberg et al. [4] show that using **all distances** is **more powerful**.

Interpoint Distance Distribution (4)

We build the Empirical Density Function *f(d)* for the IDD: a statistic we use to collect information on the (unknown) spatial distribution.



The M statistic

Based on a discretized version of the ECDF:

d vector of cutoffs values of the **BINS**, whose number affects the power of our test [3].

With k bins:

$$\hat{F}(\mathbf{d}) = \left[\hat{F}(\mathbf{d}_1), ..., \hat{F}(\mathbf{d}_k)\right]$$

where
$$\hat{F}(\mathbf{d}_{\ell}) = \binom{n}{2}^{-1} \sum_{i \neq j} 1\{d_{i,j} \leq \mathbf{d}_{\ell}\}$$

The M statistic (2)

1-sample M statistic: one group vs population

Ho:
$$F(d) = F^0(d)$$

 $\hat{F}(\mathbf{d})$ being the observed ECDF:

$$M = (\hat{F}(d) - F^{0}(d))^{T} \Sigma^{-} (\hat{F}(d) - F^{0}(d))$$

 Σ^- is the Moore-Penrose (Mata pinv()) generalized inverse of the variance covariance matrix of $\hat{F}(d)$, Σ .

The M statistic (3)

$$\Sigma = igl[oldsymbol{\sigma}_{\ell,m} igr]$$
 , with

$$\sigma_{\ell,m} = 4 \binom{n}{3}^{-1} \sum_{i < j,k} 1 \left\{ d_{i,j} \le d_{\ell} \right\} 1 \left\{ d_{i,k} \le d_{m} \right\} - \hat{F}(d_{\ell}) \hat{F}(d_{m})$$

Bonetti and Pagano (2005) show that

$$M \xrightarrow{d} \chi_k^2$$

Slow convergence \Longrightarrow Monte Carlo test.

The M statistic (4)

2-samples M statistic: Group 1 vs Group 2

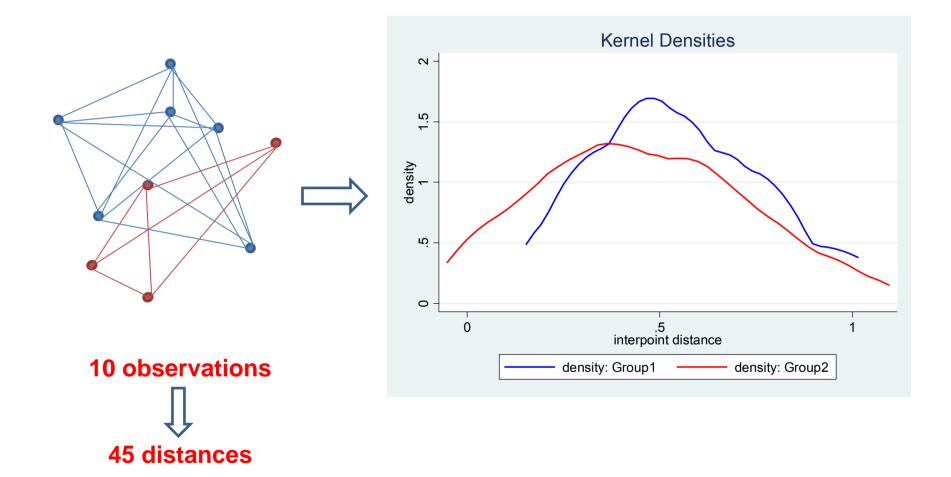
Ho:
$$F_1(d) = F_2(d)$$

$$M = \left(\hat{F}_1(d) - \hat{F}_2(d)\right)^T \sum_{l=1}^{T} \left(\hat{F}_1(d) - \hat{F}_2(d)\right)$$

Equal variance assumption:

$$\sigma_{\ell,m} = \left(\frac{n_1 + n_2}{n_1 n_2}\right) 4 \binom{n}{3}^{-1} \sum_{i < j,k} 1 \{d_{i,j} \le d_{\ell}\} 1 \{d_{i,k} \le d_m\}$$

2-samples M Test



Mstat and Mtest algorithm

Mstat:

- (1) Generate the distance matrix D;
- (2) Generate the cutoff vector **d** so to have **EQUIPROBABLE BINS** (wrt the population);
- (3) Compute the ECDF in Group 1 and 2 at d;
- (4) Compute the matrix \sum , take its (generalized) inverse and compute M.

Mtest:

- (A) Execute steps (1)-(4) of Mstat algorithm;
- (B) Permute the Group indicator variable (dummy 0-1);
- (C) Execute step (3) of Mstat algorithm;
- (D) Using **d** and \sum^{-} from step (2) and (4) of Mstat algorithm compute M;
- (E) Iterate (A)-(D) P times, generating a vector [M,M₁,M₂,...,M_P];
- (F) Compute the Monte Carlo p-value= (#Mi≥M)/P, and its exact binomial confidence interval.

Mstat and Mtest commands

DATASET: must contain three variables

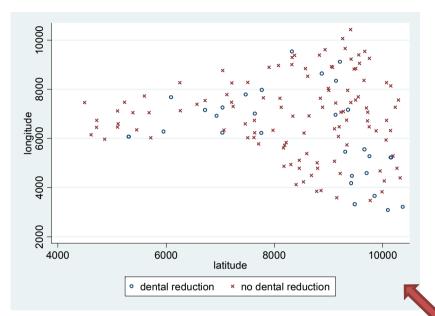
- x-coordinates
- y-coordinates
- Group dummy variable

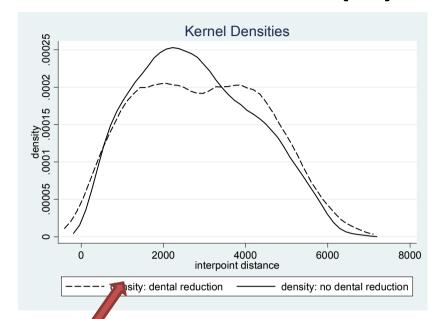
Syntax:

Mstat, x(varname) y(varname) g(varname) bins(#) scatter density chi2

Mtest, x(varname) y(varname) g(varname) bins(#) sc den iter(#) level(#)

Mstat and Mtest commands (2)





. Mtest , x(X) y(Y) g(CASE) iter(1000) scatter density

M statistic

Monte Carlo permutation results

HO: The two groups have the same spatial distribution

Number of bins = 20

Number of permutations = 1000

Т		T(obs)	С	n	p=c/n	SE(p)	[95% Conf.	Interval]
	М	79.63794	23	1000	0.0230	0.0047	.0146346	. 0343123

Note: confidence interval is with respect to p=c/n.

Note: $c = \#\{T >= T(obs)\}$

Tebaldi, Bonetti, Pagano. M statistic with Stata

Mstat options

x*(varname) x-coordinates

y*(varname) y-coordinates

g*(varname) 0-1 dummy

bins(#) number of bins

scatter scatter plot

density Kernel density

chi2 asymptotic Chi2 pvalue

Mtest options

x*(varname)
y*(varname)
g*(varname)

x-coordinates y-coordinates 0-1 dummy

bins(#)
scatter
density
iter(#)
level(#)

number of bins scatter plot Kernel density # of permutations conf level for pvalue C.I.

Cancer Data in Massachusetts

Datasets are fully compatible with Pisati's spmap

Leukemia Data

From MA cancer report, we have 348 locations (census tracts) with

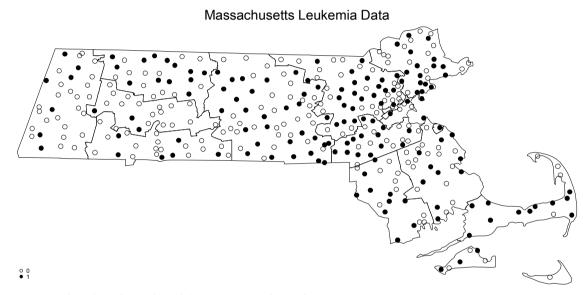
EXPECTED EVENTS
OBSERVED EVENTS

We build the dummy

Group1: EXP<OBS

Group2: OBS≤EXP

Plot with *spmap* Run *Mtest*



Mtest, x(Lat) y(Long) g(G) den iter(1000)

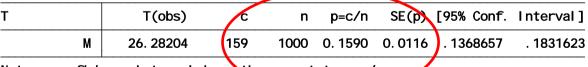
M statistic

Monte Carlo permutation results

HO: The two groups have the same spatial distribution

Number of bins = 20

Number of permutations = 1000



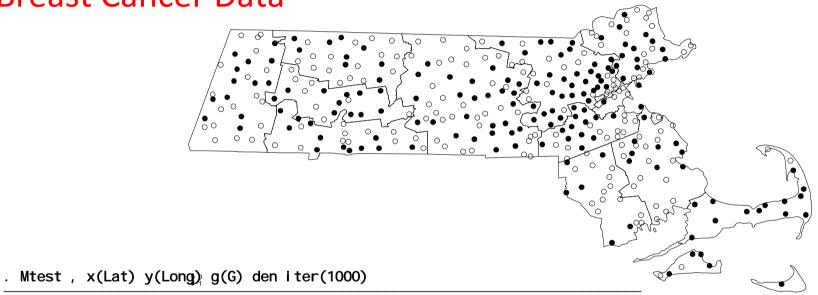
Note: confidence interval is with respect to p=c/n.

Note: $c = \#\{T >= T(obs)\}$

Cancer Data in Massachusetts (2)

Breast Cancer Data

Massachusetts Breast Cancer Data



M statistic

Monte Carlo permutation results

HO: The two groups have the same spatial distribution Number of bins = 20

Number of permutations = 1000

T	T(obs)	С	n	p=c/n	SE(p)	[95% Conf	. Interval]
М	38. 56281	4	1000	0. 0040	0. 0020	. 0010909	. 0102097

Note: confidence interval is with respect to p=c/n.

Note: $c = \#\{T >= T(obs)\}$

Future Developments

- Two-samples M with general, non-Euclidean dissimilarity. Possible for the user to input the matrix D.
- One-sample M. The user need to be familiar with the underlying theory: specification of the **null distribution** critical.

Acknowledgments

- Harvard University, School of Public Health, Biostatistics Department.
- Universita' Commerciale Luigi Bocconi, Dipartimento di Scienze delle Decisioni.
- Research supported in part by a grant from the NIH,
 P01 CA 134294.
- A special thanks to Justin Manjourides, PhD and Al Ozonoff, PhD for the helpful insights and suggestions during my Summer 2010 visit at HSPH.

Selected References

- [1] Bonetti, M. and Pagano, M., The interpoint distance distribution as a descriptor of point patterns, with an application to spatial disease clustering. Stat Med 2005; 24(5):753-773.
- [2] Manjourides, J. and Pagano, M., A test of the difference between two interpoint distance distributions. Submitted
- [3] Forsberg, L., Bonetti, M. and Pagano, M., *The choice of the number of bins for the M statistic.* Computational Statistics & Data Analysis 2009; 53(10): 3640-3649.
- [4] Bonetti, M., Forsberg, L., Ozonoff, A. and Pagano, M., *The distribution of interpoint distances. Mathematical Modeling Applications in Homeland Security.* HT Banks and C Castillo-Chavez, Eds.; 2003:87-106.
- [5] Forsberg, L., Bonetti, M., Jeffery, C., Ozonoff, A. and Pagano, M., *Distance-Based Methods for Spatial and Spatio-Temporal Surveillance. Spatial and Syndromic Surveillance for Public Health (ch.8).* John Wiley & Sons, Ltd; 2005.