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The problem of missing data

» Missing data is a pervasive problem in epidemiological,
clinical, social, and economic studies.

» Missing data always cause some loss of information which
cannot be recovered.

» But statistical methods can often help us make best use of
the data which has been observed.

» More seriously, missing data can introduce bias into our
estimates.
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Untestable assumptions

» Whether missing data cause bias depends on how missingness
is associated with our variables.

» Crucially, with missing data we cannot empirically verify the
required assumptions.

» e.g. consider the following distribution of smoking status (for
males in THIN from [1]):

Smoking status n (% of sample) (% of those observed)
Non 82,479 (36) (48)
Ex 30,204 (13) (18)
Current 57,599 (25) (34)
Missing 56,661 (25) n/a

> Are the %s in the last column unbiased estimates?



A principled approach to missing data

» We cannot be sure that the required assumptions are true
given the observed data.

» Data analysis and contextual knowledge should be used to
decide what assumption(s) are plausible about missingness.

» We can then choose a statistical method which is valid under
this/these assumption(s).

55



Outline

Missing data assumptions

/55



Rubin’s classification

v

Rubin developed a classification for missing data ‘mechanisms’
[2].

We introduce the three types in a very simple setting.

v

» We assume we have one fully observed variable X (age), and
one partially observed variable Y (blood pressure (BP)).

We will let R indicate whether Y is observed (R = 1) or is
missing (R = 0).

v
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Missing completely at random

The missing values in BP (Y') are said to be missing
completely at random (MCAR) if missingness is independent
of BP (Y) and age (X).

i.e. those subjects with missing BP do not differ systematically
(in terms of BP or age) to those with BP observed.

In terms of the missingness indicator R, MCAR means
P(R=1/X,Y)=P(R=1)

e.g. 1in 10 printed questionnaires were mistakenly printed
with a page missing.
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Example - blood pressure (simulated data)

We assume age has been categorised into 30-50 and 50-70.

n = 200, but only 99 subjects have BP observed:

Age n  Mean (SD) BP

30-50 72 129.7 (10.3)
50-70 27 160.6 (11.7)
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Checking MCAR

» With the observed data, we could investigate whether age X
is associated with missingness of blood presure (R).

» If it is, we can conclude the data are not MCAR.

» If it is not, we cannot necessarily conclude the data are
MCAR.

» It is possible (though arguably unlikely in this case) that BP is
associated with missingness in BP, even if age is not.
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Example - blood pressure (simulated data)

We compare the distribution of age in those with BP observed and
those with BP missing:

. tab age r, chi2 row

Key

frequency
row percentage

age 0 1 Total
30-50 28 72 100
28.00 72.00 100.00

50-70 73 27 100
73.00 27.00 100.00

Total 101 99 200
50.50 49.50 100.00

Pearson chi2(1) = 40.5041 Pr = 0.000

p < 0.001 from chi2 test, shows we have strong evidence that

missingness is associated with age.
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Missing at random

» BP (Y) is missing at random (MAR) given age (X) if
missingness is independent of BP (Y') given age (X).

» This means that amongst subjects of the same age,
missingness in BP is independent of BP.

> In terms of the missingness indicator R, MAR means

P(R=1X,Y) = P(R=1|X)
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Checking MAR

» We cannot check whethe MAR holds based on the observed
data.

» To do this we would need to check whether, within categories
of age, those with missing BP had higher/lower BP than
those with it observed.
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A different representation of MAR

» We have defined MCAR and MAR in terms of how
P(R =1|Y, X) depends on age (X) and BP (Y).

» From the plot, we see that MAR can also be viewed in terms
of the conditional distribution of BP (YY) given age (X).

» MAR implies that
f(YIX,R=0)=f(Y|X,R=1)=f(Y|X)

» That is, the distribution of BP (Y'), given age (X), is the
same whether or not BP (Y) is observed.

» This key consequence of MAR is directly exploited by multiple
imputation.
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Missing not at random

» If data are neither MCAR nor MAR, they are missing not at
random (MNAR).

» This means the chance of seeing Y depends on Y, even after
conditioning on X.

» Equivalently, 7(Y|X,R=0) # f(Y|X,R=1).

» MNAR is much more difficult to handle. Essentially the data

cannot tell us how the missing values differ to the observed
values (given X).

» We are thus led to conducting sensitivity analyses.
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Complete case analysis

» Complete case (CC) (or complete records) analysis involves
using only data from those subjects for whom all of the
variables involved in our analysis are observed.

» CC is the default approach of most statistical packages
(including Stata) when we have missing data.

» By only analysing a subset of records, our estimates will be
less precise than had there been no missing data.

» Arguably more importantly, our estimates may be biased if the
complete records differ systematically to the incomplete
records.

» However, CC can be unbiased in certain situations in which
the complete records are systematically different.
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Validity of complete case analysis

» CC analysis is valid provided the probability of being a CC is
independent of outcome, given the covariates in the model of
interest [3].

» Note that this condition has nothing to do with which
variable(s) have missing values.

» This condition does not ‘fit" into the MCAR/MAR/MNAR
classification.

» It is not true, as is sometimes stated, that CC is always biased
if data are not MCAR!
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The complete case assumption

» The validity of the assumption required for CC analysis to be
unbiased depends on the model of interest.

» Returning to the example of estimating mean BP, we can
think of this as the following linear model with no covariates:

BP,'ZO['FE,‘

with ¢; ~ N(0,0?).

» Here CC analysis is unbiased only of missingness is
independent of BP (Y), i.e. P(R=1]Y)=P(R=1).
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Estimating mean BP - complete case analysis

. reg sbp
Source SS df MS Number of obs = 99
F(C o, 98) = 0.00
Model 0 0 . Prob > F = .
Residual 29924 .3689 98 305.350703 R-squared = 0.0000
Adj R-squared = 0.0000
Total 29924 .3689 98 305.350703 Root MSE = 17.474
sbp Coef. Std. Err. t P>|t| [95% Conf. Intervall
_cons 138.1012 1.756232 78.63  0.000 134.616 141.5864

» The estimated mean (138.1) is biased downwards
(truth=145).

» This is because missingness is associated with BP (higher BP
— more chance of BP missing).
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A model for which CC is unbiased

. reg sbp age
Source SS df MS Number of obs = 99
F(C 1, 97) = 163.17
Model 18767.6873 1 18767.6873 Prob > F = 0.0000
Residual 11156.6816 97 115.017336 R-squared = 0.6272
Adj R-squared = 0.6233
Total 29924 .3689 98 305.350703 Root MSE = 10.725
sbp Coef.  Std. Err. t P>t| [95% Conf. Intervall
age 30.9154 2.420199 12.77 0.000 26.11197 35.71882
_cons 129.6697  1.263908  102.59  0.000 127.1612 132.1782

» This CC analysis is unbiased, because we condition on the

cause of missingness (BP).

» Of course this alternative model does not (by itself) give an

estimate of mean BP.
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Multiple imputation

» Multiple imputation (MI) involves ‘filling in" each missing
values multiple times.
» This results in multiple completed datasets.

» We then analyse each completed dataset separately, and
combine the estimates using formulae developed by Rubin
(‘Rubin’s rules’).

» By using observed data from all cases, estimates based on Ml
are generally more efficient than from CC.

» And, in some settings, Ml may remove bias present CC
estimates.
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Ml in a very simple setting

v

There are many different imputation methods.

v

We describe one (the ‘classic’) in the context of a very simple
setting.

» Suppose we have two continuous variables X and Y.

v

X is fully observed, but Y has some missing values.

v

Our task is to impute the missing values in Y using X.
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Imputing Y from X
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Linear

regression imputation

. Fit the linear regression of Y on X using the complete cases:

Y=a+p8X+e

where € ~ N(0,0?).
This gives estimates &, /3’ and 62.

To create the mth imputed dataset:

3.1 Draw new values o, Bm and 02, based on &, § and 62.
3.2 For each subject with observed X; but missing Y;, create
imputation Yj(m) by:

Yitm) = &m + BmXi + €i(m)

where €;() is a random draw from N(0,032,).
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The end result

Data Imputation 1 | Imputation 2 | Imputation 3 | Imputation 4
Subject Y X Y X Y X Y X Y X
1 1.1 | 34|11 3.4 1.1 3.4 1.1 3.4 1.1 3.4
2 15|39 | 15 3.9 15 3.9 1.5 3.9 1.5 3.9
3 23|26 | 23 2.6 2.3 2.6 2.3 2.6 2.3 2.6
4 36 | 1.9 | 3.6 1.9 3.6 1.9 3.6 1.9 3.6 1.9
5 08| 22| 08 2.2 0.8 2.2 0.8 2.2 0.8 2.2
[§ 36 | 3.3 | 3.6 33 3.6 3.3 3.6 3.3 3.6 3.3
7 38| 1.7 | 3.8 1.7 3.8 1.7 3.8 1.7 3.8 1.7
8 ? 0.8 | 0.2 0.8 0.8 0.8 0.3 0.8 2.3 0.8
9 ? 20 | 1.7 2.0 2.4 2.0 1.8 2.0 3.5 2.0
10 ? 32 | 2.7 3.2 2.5 3.2 1.0 3.2 1.7 3.2
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The analysis stage

» For each imputation, we estimate our parameter of interest 6,
and records its standard error.

» eg. = E(Y), the average value of Y.

» Let ,, and Var(ém) denote the estimate of 8 and its variance
from the mth imputation.

» Our overall estimate of 6 is then the average of the estimates
from the imputed datasets

where M denotes the number of imputations used.
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Variance estimation

» The ‘within-imputation variance' is given by

Zrl\gzl Var(ém)
v .

This quantifies uncertainty due to the fact we have a finite
sample (the usual cause of uncertainty in estimates).

» The ‘between-imputation variance’ is given by

Zrl\::l(ém - é’\/’/)2
M—-1 )

This quantifies uncertainty due to the missing data.

» The overall uncertainty in our estimate 0 is then given by

A 1
Var(Opy) = o2, + <1 + M) o3
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Inference

» The MI estimate and its variance can be used to form
confidence intervals and performs hypothesis test.

» Implementations of Ml in statistical packages like Stata
automate the process of analysing each imputation and
combining the results.
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Assumptions for Ml

> MI gives unbiased estimates provided data are MAR and the
imputation model(s) is correctly specified.

» To be correctly specified, we must include all variables
involved in our model of interest in the imputation model(s).

» The plausibility of MAR can be guided by data analysis and
contextual knowledge.

» Often we have variables which are associated with missingness
and the variable(s) being imputed, but which are not in the
model of interest.

> Including these in the imputation model increases likelihood of
MAR holding.
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Specification of imputation models

» We should also ensure as best as possible that our imputation
models are reasonably well specified.

» e.g. if a variable has a highly skewed distribution, imputing
using normal linear regression is probably not a good idea.

> Various diagnostics can be used to aid this process, e.g.
comparing distributions of imputed and observed
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MI in Stata

» Historically the only imputation command in Stata was
Patrick Royston's ice command, which performed ICE/FCS
imputation (more on this later).

» Stata 11 included imputation using the multivariate normal
model.

» Stata 12 adds ICE/FCS imputation functionality.
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Imputing missing BP values in Stata
Step 1 - mi set the data

> e.g. mi set wide
> Alternatives include mlong, flong.

» This only affects how Stata organises the imputed datasets.
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Imputing missing BP values in Stata

Step 2 - mi register variables

> At a minimum, we must mi register variables with missing
values we want to impute.

> e.g. mi register imputed sbp
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Imputing missing BP values in Stata

Step 3 - imputing the missing values

» We are now ready to impute the missing values.

» Since we have only missing values in one continuous variable,
we shall impute using a linear regression imputation model:

. mi impute reg sbp age, add(10) rseed(5123)

Univariate imputation Imputations = 10

Linear regression added = 10

Imputed: m=1 through m=10 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

sbp 99 101 101 200

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
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Imputing missing BP values in Stata

Step 4 - analysing the imputed datasets

» We are now ready to analyse the imputed datasets.

» This is done by Stata’s mi estimate command, which

supports most of Stata's estimation commands.

. mi estimate: reg sbp

Multiple-imputation estimates Imputations = 10
Linear regression Number of obs = 200
Average RVI = 0.7163
Largest FMI = 0.4420
Complete DF = 199
DF: min = 35.63
avg = 35.63
DF adjustment: Small sample max = 35.63
FC o0, ) o= .

Within VCE type: (1) Prob > F =
sbp Coef. Std. Err. t P>t [95%, Conf. Intervall
_cons 145.3263  1.747398 83.17  0.000 141.7811 148.8715

» The estimate is quite close to the true value (145).
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Other MI imputation methods in Stata

In addition to linear regression Stata's mi command offers
imputation using:

» Logistic, ordinal logistic, and multinomial logsitic models
» Predictive mean matching

» Truncated normal regression for imputing bounded cts
variables

> Interval regression for imputing censored cts variables
» Poisson regression for imputing count data

» Negative binomial regression for imputing overdispersed count
data
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MI with more than one variable

» So far we have considered setting with one variable partially
observed.

» Often we have datasets with multiple partially observed
variables.

» Stata 11/12 supports imputation with the multi-variate
normal model.

» What if we have categorical or binary variables with missing
values?

» More on this in tomorrow's course...
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Inverse probability weighting

» Inverse probability weighting (IPW) for missing data takes a
different approach [4].

» We perform a CC analysis, but weight the complete cases by
the inverse of their probability of having data observed (i.e.
not being missing).

» Those who had a small chance of being observed are given
increased weight, to compensate for those similar subjects
who are missing.

» This requires us to model how missingness depends on fully
observed variables.
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Using IPW to estimate mean BP

» Recall our previous analysis of missingness in BP and age:

. tab age r, chi2 row

Key

frequency
row percentage

r
age 0 1 Total
30-50 28 72 100
28.00 72.00 100.00

50-70 73 27 100
73.00 27.00 100.00

Total 101 99 200
50.50 49.50 100.00

Pearson chi2(1) = 40.5041 Pr = 0.000

> The probability of observing BP is 0.72 for 30-50 year olds,
and 0.27 for 50-70 year olds.

» So the ‘weight’ for 30-50 year olds is 1/0.72 = 1.39 and for
50-70 year olds is 1/0.27 = 3.7.

44 /55



The IPW estimator

> Since we are interested in estimating a simple parameter

(mean BP), we can manually calculate the IPW estimate:

72 x 129.7 x 1.39 + 27 x 160.6 x 3.7

= 145.1
72 x 1.39 + 27 x 3.7

» IPW appears has removed the bias from the simple CC
estimate of mean BP.
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IPW more generally

Step 1 - Constructing weights

» With multiple fully observed variables, we can use logistic

regression to model missingness:

. logistic r age

Logistic regression Number of obs = 200
LR chi2(1) = 42.00

Prob > chi2 = 0.0000

Log likelihood = -117.62122 Pseudo R2 = 0.1515
r | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

age .1438356 .0455618 -6.12  0.000 .0773103 .2676059

_cons 2.571428 .56727026 4.24 0.000 1.661869 3.9788

. predict pr, pr

. gen wgt=1/pr
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IPW more generally

Step 2 - parameter estimation

» We can then pass the constructed weights to our estimation
command:

. reg sbp [pweight=wgt]
(sum of wgt is  2.0000e+02)

Linear regression Number of obs = 99
FC o, 98) = 0.00
Prob > F = .
R-squared = 0.0000
Root MSE = 19.008
Robust
sbp Coef.  Std. Err. t P>t [95% Conf. Intervall
_cons 145.1274  2.162726 67.10  0.000 140.8356 149.4193

» Notice that the SE is larger (2.16) compared to the M| SE
(1.75).
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Problems caused by missing data and a principled approach

» Missing data reduce precision and potentially parameter bias
estimates and inferences.

» Producing valid estimates requires additional assumptions
about the missingness to be made.

» Ad-hoc methods should generally be avoided.

» Both data analysis and contextual knowledge should guide us
in thinking about missingness in a given setting.

» We can then choose a statistical method which accommodates
missing data under our chosen assumption (e.g. MAR).
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Complete case analysis

» Complete case (CC) analysis is the default method of most
software packages, including Stata.

» CC analysis is generally biased unless data are MCAR.

» But it can be unbiased in certain non-MCAR settings when
the model of interest is a regression model.

» Even when it is unbiased, CC may be inefficient compared to
other methods.
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Multiple imputation

» Multiple imputation is a flexible approach to handling missing
data under the MAR assumption [5].

» Stata 12 now includes a comprehensive range of Ml
commands, including ICE/FCS MI.

> In settings where both CC and MI are unbiased, MI will
generally give more precise estimates.

» We must carefully consider the plausibility of the MAR
assumption and whether imp. models are correctly specified.
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Inverse probability weighting

» IPW involves performing a weighted CC analysis.

» Rather than model the partially observed variable, we model
the observation/missingness indicator R.

» The weights based on this model are then passed to our
estimation command, and most Stata estimation commands
support weights.

» Sometimes modelling missingness may be easier than
modelling the partially obs. variable (e.g. if the partially
observed variable has a tricky distribution).

» However, IPW estimators can be quite inefficient compared to
MI or maximum likelihood.

» IPW is also difficult (or impossible) to use in settings with
complicated patterns of missingness.
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Sensitivity to the MAR assumption

» Since we can never definitively our assumptions (e.g. MAR)
hold, we should consider sensitivity analysis.

» MI can also be used to perform MNAR sensitivity analyses [6].

» If you want to learn more, come on our missing data short
course at LSHTM in June.

» And/or visit our website www.missingdata.org.uk
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