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The problem of missing data

◮ Missing data is a pervasive problem in epidemiological,
clinical, social, and economic studies.

◮ Missing data always cause some loss of information which
cannot be recovered.

◮ But statistical methods can often help us make best use of
the data which has been observed.

◮ More seriously, missing data can introduce bias into our
estimates.
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Untestable assumptions

◮ Whether missing data cause bias depends on how missingness
is associated with our variables.

◮ Crucially, with missing data we cannot empirically verify the
required assumptions.

◮ e.g. consider the following distribution of smoking status (for
males in THIN from [1]):

Smoking status n (% of sample) (% of those observed)

Non 82,479 (36) (48)
Ex 30,294 (13) (18)
Current 57,599 (25) (34)
Missing 56,661 (25) n/a

◮ Are the %s in the last column unbiased estimates?
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A principled approach to missing data

◮ We cannot be sure that the required assumptions are true
given the observed data.

◮ Data analysis and contextual knowledge should be used to
decide what assumption(s) are plausible about missingness.

◮ We can then choose a statistical method which is valid under
this/these assumption(s).

6 / 55



Outline

The problem of missing data and a principled approach

Missing data assumptions

Complete case analysis

Multiple imputation

Inverse probability weighting

Conclusions

7 / 55



Rubin’s classification

◮ Rubin developed a classification for missing data ‘mechanisms’
[2].

◮ We introduce the three types in a very simple setting.

◮ We assume we have one fully observed variable X (age), and
one partially observed variable Y (blood pressure (BP)).

◮ We will let R indicate whether Y is observed (R = 1) or is
missing (R = 0).
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Missing completely at random

◮ The missing values in BP (Y ) are said to be missing
completely at random (MCAR) if missingness is independent
of BP (Y ) and age (X ).

◮ i.e. those subjects with missing BP do not differ systematically
(in terms of BP or age) to those with BP observed.

◮ In terms of the missingness indicator R , MCAR means

P(R = 1|X ,Y ) = P(R = 1)

◮ e.g. 1 in 10 printed questionnaires were mistakenly printed
with a page missing.
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Example - blood pressure (simulated data)

We assume age has been categorised into 30-50 and 50-70.

n = 200, but only 99 subjects have BP observed:

Age n Mean (SD) BP

30-50 72 129.7 (10.3)
50-70 27 160.6 (11.7)
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Checking MCAR

◮ With the observed data, we could investigate whether age X

is associated with missingness of blood presure (R).

◮ If it is, we can conclude the data are not MCAR.

◮ If it is not, we cannot necessarily conclude the data are
MCAR.

◮ It is possible (though arguably unlikely in this case) that BP is
associated with missingness in BP, even if age is not.
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Example - blood pressure (simulated data)

We compare the distribution of age in those with BP observed and
those with BP missing:

. tab age r, chi2 row

Key

frequency

row percentage

r
age 0 1 Total

30-50 28 72 100
28.00 72.00 100.00

50-70 73 27 100
73.00 27.00 100.00

Total 101 99 200
50.50 49.50 100.00

Pearson chi2(1) = 40.5041 Pr = 0.000

p < 0.001 from chi2 test, shows we have strong evidence that
missingness is associated with age.
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Missing at random

◮ BP (Y ) is missing at random (MAR) given age (X ) if
missingness is independent of BP (Y ) given age (X ).

◮ This means that amongst subjects of the same age,
missingness in BP is independent of BP.

◮ In terms of the missingness indicator R , MAR means

P(R = 1|X ,Y ) = P(R = 1|X )
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Checking MAR

◮ We cannot check whethe MAR holds based on the observed
data.

◮ To do this we would need to check whether, within categories
of age, those with missing BP had higher/lower BP than
those with it observed.
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BP MAR given age
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A different representation of MAR

◮ We have defined MCAR and MAR in terms of how
P(R = 1|Y ,X ) depends on age (X ) and BP (Y ).

◮ From the plot, we see that MAR can also be viewed in terms
of the conditional distribution of BP (Y ) given age (X ).

◮ MAR implies that

f (Y |X ,R = 0) = f (Y |X ,R = 1) = f (Y |X )

◮ That is, the distribution of BP (Y ), given age (X ), is the
same whether or not BP (Y ) is observed.

◮ This key consequence of MAR is directly exploited by multiple
imputation.
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Missing not at random

◮ If data are neither MCAR nor MAR, they are missing not at
random (MNAR).

◮ This means the chance of seeing Y depends on Y , even after
conditioning on X .

◮ Equivalently, f (Y |X ,R = 0) 6= f (Y |X ,R = 1).

◮ MNAR is much more difficult to handle. Essentially the data
cannot tell us how the missing values differ to the observed
values (given X ).

◮ We are thus led to conducting sensitivity analyses.
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Complete case analysis

◮ Complete case (CC) (or complete records) analysis involves
using only data from those subjects for whom all of the
variables involved in our analysis are observed.

◮ CC is the default approach of most statistical packages
(including Stata) when we have missing data.

◮ By only analysing a subset of records, our estimates will be
less precise than had there been no missing data.

◮ Arguably more importantly, our estimates may be biased if the
complete records differ systematically to the incomplete
records.

◮ However, CC can be unbiased in certain situations in which
the complete records are systematically different.
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Validity of complete case analysis

◮ CC analysis is valid provided the probability of being a CC is
independent of outcome, given the covariates in the model of
interest [3].

◮ Note that this condition has nothing to do with which
variable(s) have missing values.

◮ This condition does not ‘fit’ into the MCAR/MAR/MNAR
classification.

◮ It is not true, as is sometimes stated, that CC is always biased
if data are not MCAR!
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The complete case assumption

◮ The validity of the assumption required for CC analysis to be
unbiased depends on the model of interest.

◮ Returning to the example of estimating mean BP, we can
think of this as the following linear model with no covariates:

BPi = α+ ǫi

with ǫi ∼ N(0, σ2
ǫ
).

◮ Here CC analysis is unbiased only of missingness is
independent of BP (Y ), i.e. P(R = 1|Y ) = P(R = 1).
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Estimating mean BP - complete case analysis

. reg sbp

Source SS df MS Number of obs = 99
F( 0, 98) = 0.00

Model 0 0 . Prob > F = .
Residual 29924.3689 98 305.350703 R-squared = 0.0000

Adj R-squared = 0.0000
Total 29924.3689 98 305.350703 Root MSE = 17.474

sbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 138.1012 1.756232 78.63 0.000 134.616 141.5864

◮ The estimated mean (138.1) is biased downwards
(truth=145).

◮ This is because missingness is associated with BP (higher BP
→ more chance of BP missing).
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A model for which CC is unbiased

. reg sbp age

Source SS df MS Number of obs = 99
F( 1, 97) = 163.17

Model 18767.6873 1 18767.6873 Prob > F = 0.0000
Residual 11156.6816 97 115.017336 R-squared = 0.6272

Adj R-squared = 0.6233
Total 29924.3689 98 305.350703 Root MSE = 10.725

sbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

age 30.9154 2.420199 12.77 0.000 26.11197 35.71882
_cons 129.6697 1.263908 102.59 0.000 127.1612 132.1782

◮ This CC analysis is unbiased, because we condition on the
cause of missingness (BP).

◮ Of course this alternative model does not (by itself) give an
estimate of mean BP.
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Multiple imputation

◮ Multiple imputation (MI) involves ‘filling in’ each missing
values multiple times.

◮ This results in multiple completed datasets.

◮ We then analyse each completed dataset separately, and
combine the estimates using formulae developed by Rubin
(‘Rubin’s rules’).

◮ By using observed data from all cases, estimates based on MI
are generally more efficient than from CC.

◮ And, in some settings, MI may remove bias present CC
estimates.
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MI in a very simple setting

◮ There are many different imputation methods.

◮ We describe one (the ‘classic’) in the context of a very simple
setting.

◮ Suppose we have two continuous variables X and Y .

◮ X is fully observed, but Y has some missing values.

◮ Our task is to impute the missing values in Y using X .
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Imputing Y from X
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Linear regression imputation

1. Fit the linear regression of Y on X using the complete cases:

Y = α+ βX + ǫ

where ǫ ∼ N(0, σ2).

2. This gives estimates α̂, β̂ and σ̂2.

3. To create the mth imputed dataset:

3.1 Draw new values αm, βm and σ2
m
based on α̂, β̂ and σ̂2.

3.2 For each subject with observed Xi but missing Yi , create
imputation Yi(m) by:

Yi(m) = αm + βmXi + ǫi(m)

where ǫi(m) is a random draw from N(0, σ2
m
).
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The end result

Data Imputation 1 Imputation 2 Imputation 3 Imputation 4
Subject Y X Y X Y X Y X Y X

1 1.1 3.4 1.1 3.4 1.1 3.4 1.1 3.4 1.1 3.4
2 1.5 3.9 1.5 3.9 1.5 3.9 1.5 3.9 1.5 3.9
3 2.3 2.6 2.3 2.6 2.3 2.6 2.3 2.6 2.3 2.6
4 3.6 1.9 3.6 1.9 3.6 1.9 3.6 1.9 3.6 1.9
5 0.8 2.2 0.8 2.2 0.8 2.2 0.8 2.2 0.8 2.2
6 3.6 3.3 3.6 3.3 3.6 3.3 3.6 3.3 3.6 3.3
7 3.8 1.7 3.8 1.7 3.8 1.7 3.8 1.7 3.8 1.7
8 ? 0.8 0.2 0.8 0.8 0.8 0.3 0.8 2.3 0.8
9 ? 2.0 1.7 2.0 2.4 2.0 1.8 2.0 3.5 2.0
10 ? 3.2 2.7 3.2 2.5 3.2 1.0 3.2 1.7 3.2
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The analysis stage

◮ For each imputation, we estimate our parameter of interest θ,
and records its standard error.

◮ e.g. θ = E (Y ), the average value of Y .

◮ Let θ̂m and Var(θ̂m) denote the estimate of θ and its variance
from the mth imputation.

◮ Our overall estimate of θ is then the average of the estimates
from the imputed datasets

θ̂MI =

∑

M

m=1 θ̂m
M

where M denotes the number of imputations used.
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Variance estimation

◮ The ‘within-imputation variance’ is given by

∑

M

m=1 Var(θ̂m)

M
.

This quantifies uncertainty due to the fact we have a finite
sample (the usual cause of uncertainty in estimates).

◮ The ‘between-imputation variance’ is given by

∑

M

m=1(θ̂m − θ̂MI )
2

M − 1
.

This quantifies uncertainty due to the missing data.

◮ The overall uncertainty in our estimate θ̂ is then given by

Var(θ̂MI ) = σ2
w +

(

1 +
1

M

)

σ2
b.
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Inference

◮ The MI estimate and its variance can be used to form
confidence intervals and performs hypothesis test.

◮ Implementations of MI in statistical packages like Stata
automate the process of analysing each imputation and
combining the results.
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Assumptions for MI

◮ MI gives unbiased estimates provided data are MAR and the
imputation model(s) is correctly specified.

◮ To be correctly specified, we must include all variables
involved in our model of interest in the imputation model(s).

◮ The plausibility of MAR can be guided by data analysis and
contextual knowledge.

◮ Often we have variables which are associated with missingness
and the variable(s) being imputed, but which are not in the
model of interest.

◮ Including these in the imputation model increases likelihood of
MAR holding.
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Specification of imputation models

◮ We should also ensure as best as possible that our imputation
models are reasonably well specified.

◮ e.g. if a variable has a highly skewed distribution, imputing
using normal linear regression is probably not a good idea.

◮ Various diagnostics can be used to aid this process, e.g.
comparing distributions of imputed and observed
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MI in Stata

◮ Historically the only imputation command in Stata was
Patrick Royston’s ice command, which performed ICE/FCS
imputation (more on this later).

◮ Stata 11 included imputation using the multivariate normal
model.

◮ Stata 12 adds ICE/FCS imputation functionality.
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Imputing missing BP values in Stata
Step 1 - mi set the data

◮ e.g. mi set wide

◮ Alternatives include mlong, flong.

◮ This only affects how Stata organises the imputed datasets.
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Imputing missing BP values in Stata
Step 2 - mi register variables

◮ At a minimum, we must mi register variables with missing
values we want to impute.

◮ e.g. mi register imputed sbp
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Imputing missing BP values in Stata
Step 3 - imputing the missing values

◮ We are now ready to impute the missing values.

◮ Since we have only missing values in one continuous variable,
we shall impute using a linear regression imputation model:

. mi impute reg sbp age, add(10) rseed(5123)

Univariate imputation Imputations = 10
Linear regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

sbp 99 101 101 200

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)
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Imputing missing BP values in Stata
Step 4 - analysing the imputed datasets

◮ We are now ready to analyse the imputed datasets.

◮ This is done by Stata’s mi estimate command, which
supports most of Stata’s estimation commands.

. mi estimate: reg sbp

Multiple-imputation estimates Imputations = 10
Linear regression Number of obs = 200

Average RVI = 0.7163
Largest FMI = 0.4420
Complete DF = 199
DF: min = 35.63

avg = 35.63
DF adjustment: Small sample max = 35.63

F( 0, .) = .
Within VCE type: OLS Prob > F = .

sbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 145.3263 1.747398 83.17 0.000 141.7811 148.8715

◮ The estimate is quite close to the true value (145).
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Other MI imputation methods in Stata

In addition to linear regression Stata’s mi command offers
imputation using:

◮ Logistic, ordinal logistic, and multinomial logsitic models

◮ Predictive mean matching

◮ Truncated normal regression for imputing bounded cts
variables

◮ Interval regression for imputing censored cts variables

◮ Poisson regression for imputing count data

◮ Negative binomial regression for imputing overdispersed count
data
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MI with more than one variable

◮ So far we have considered setting with one variable partially
observed.

◮ Often we have datasets with multiple partially observed
variables.

◮ Stata 11/12 supports imputation with the multi-variate
normal model.

◮ What if we have categorical or binary variables with missing
values?

◮ More on this in tomorrow’s course...
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Inverse probability weighting

◮ Inverse probability weighting (IPW) for missing data takes a
different approach [4].

◮ We perform a CC analysis, but weight the complete cases by
the inverse of their probability of having data observed (i.e.
not being missing).

◮ Those who had a small chance of being observed are given
increased weight, to compensate for those similar subjects
who are missing.

◮ This requires us to model how missingness depends on fully
observed variables.
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Using IPW to estimate mean BP

◮ Recall our previous analysis of missingness in BP and age:
. tab age r, chi2 row

Key

frequency

row percentage

r
age 0 1 Total

30-50 28 72 100
28.00 72.00 100.00

50-70 73 27 100
73.00 27.00 100.00

Total 101 99 200
50.50 49.50 100.00

Pearson chi2(1) = 40.5041 Pr = 0.000

◮ The probability of observing BP is 0.72 for 30-50 year olds,
and 0.27 for 50-70 year olds.

◮ So the ‘weight’ for 30-50 year olds is 1/0.72 = 1.39 and for
50-70 year olds is 1/0.27 = 3.7.
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The IPW estimator

◮ Since we are interested in estimating a simple parameter
(mean BP), we can manually calculate the IPW estimate:

72× 129.7 × 1.39 + 27× 160.6 × 3.7

72× 1.39 + 27× 3.7
= 145.1

◮ IPW appears has removed the bias from the simple CC
estimate of mean BP.
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IPW more generally
Step 1 - Constructing weights

◮ With multiple fully observed variables, we can use logistic
regression to model missingness:

. logistic r age

Logistic regression Number of obs = 200
LR chi2(1) = 42.00
Prob > chi2 = 0.0000

Log likelihood = -117.62122 Pseudo R2 = 0.1515

r Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .1438356 .0455618 -6.12 0.000 .0773103 .2676059
_cons 2.571428 .5727026 4.24 0.000 1.661869 3.9788

. predict pr, pr

. gen wgt=1/pr
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IPW more generally
Step 2 - parameter estimation

◮ We can then pass the constructed weights to our estimation
command:

. reg sbp [pweight=wgt]
(sum of wgt is 2.0000e+02)

Linear regression Number of obs = 99
F( 0, 98) = 0.00
Prob > F = .
R-squared = 0.0000
Root MSE = 19.008

Robust
sbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 145.1274 2.162726 67.10 0.000 140.8356 149.4193

◮ Notice that the SE is larger (2.16) compared to the MI SE
(1.75).
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Problems caused by missing data and a principled approach

◮ Missing data reduce precision and potentially parameter bias
estimates and inferences.

◮ Producing valid estimates requires additional assumptions
about the missingness to be made.

◮ Ad-hoc methods should generally be avoided.

◮ Both data analysis and contextual knowledge should guide us
in thinking about missingness in a given setting.

◮ We can then choose a statistical method which accommodates
missing data under our chosen assumption (e.g. MAR).
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Complete case analysis

◮ Complete case (CC) analysis is the default method of most
software packages, including Stata.

◮ CC analysis is generally biased unless data are MCAR.

◮ But it can be unbiased in certain non-MCAR settings when
the model of interest is a regression model.

◮ Even when it is unbiased, CC may be inefficient compared to
other methods.
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Multiple imputation

◮ Multiple imputation is a flexible approach to handling missing
data under the MAR assumption [5].

◮ Stata 12 now includes a comprehensive range of MI
commands, including ICE/FCS MI.

◮ In settings where both CC and MI are unbiased, MI will
generally give more precise estimates.

◮ We must carefully consider the plausibility of the MAR
assumption and whether imp. models are correctly specified.
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Inverse probability weighting

◮ IPW involves performing a weighted CC analysis.

◮ Rather than model the partially observed variable, we model
the observation/missingness indicator R .

◮ The weights based on this model are then passed to our
estimation command, and most Stata estimation commands
support weights.

◮ Sometimes modelling missingness may be easier than
modelling the partially obs. variable (e.g. if the partially
observed variable has a tricky distribution).

◮ However, IPW estimators can be quite inefficient compared to
MI or maximum likelihood.

◮ IPW is also difficult (or impossible) to use in settings with
complicated patterns of missingness.

52 / 55



Sensitivity to the MAR assumption

◮ Since we can never definitively our assumptions (e.g. MAR)
hold, we should consider sensitivity analysis.

◮ MI can also be used to perform MNAR sensitivity analyses [6].

◮ If you want to learn more, come on our missing data short
course at LSHTM in June.

◮ And/or visit our website www.missingdata.org.uk
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