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CTREATREG follows in the footsteps of  IVTREATREG

IVTREATREG   =>  ESTIMATING BINARY TREATMENT MODELS  

□ Cerulli (2012). “ivtreatreg: a new STATA routine for estimating binary treatment models with 

heterogeneous response to treatment under observable and unobservable selection”, CNR-Ceris 

Working Papers, No. 03/12. Available at: 

http://econpapers.repec.org/software/bocbocode/s457405.htm 

CTREATEREG => ESTIMATING CONTINUOUS TREATMENT MODELS
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Introduction

Consider a policy program where a binary treatment is assigned not randomly  

The program provides a different “level” of treatment (or dose t) to treated -  from 0 (absence of treatment) 

to 100 (maximum treatment level).  

Two groups of units:  

(i) Untreated:  level of treatment (or “dose”) is zero, and  

(ii) Treated:  level of treatment is greater than zero.  

!  We are interested in estimating the causal effect of the treatment variable t on an outcome y by 

assuming that treated and untreated units may respond differently to observable confounders (x) 

!  We wish to estimate a Dose-Response-Function of y on t.   

The STATA routine “ctreatreg” estimates a Dose-Response-Function (DRF) for such a model.  

The DRF is the “Average Treatment Effect (ATE), given the level of treatment t” (i.e. ATE(t)), along with 

other “causal” parameters of interest (ATE, ATET, ATENT). 
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Compared with similar models - as the one proposed by Hirano and Imbens (2004) implemented in 

STATA by Bia and Mattei (2008) – the present model:  

1. does not need a full normality assumption, and  

2. is well-suited when many individuals have a zero-level of treatment.  

3. may account for treatment “endogeneity”, by exploiting an Instrumental-Variables (IV) estimation.  

The Dose-Response-Function is estimated by a third degree polynomial approximation.  

Both OLS and IV estimation are available. In particular: 

IV is based on two steps:  

!STEP 1.  Heckman bivariate selection model of w (the yes/no decision to treat a given unit) and t (the 

level of the treatment) in the first step,  

!STEP 2.  2SLS estimation for the outcome (y) equation.  

The routine provides also a graphical representation of results. An empirical application to real data will 

be set out.         
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The model

□  Two exclusive outcomes  =>  when a unit is treated: y1 ; when the same unit is untreated:  y0; 

□  w is the treatment indicator, taking value 1 for treated and 0 for untreated units; 

□  g1(x) and g0(x): response to confounding variables x when the unit is treated and untreated; 

□ µ1 and µ0;  two scalars; 

□  e1 and e0: errors with zero unconditional mean and constant variance;  

□  h(t): outcome response function to the level of treatment t.   

The model takes on this additive form:    
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Define the Average Treatment Effect (ATE) conditional on x as: 
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By simple algebra: 
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We can define the Dose-Response-Function (DRF) simply by averaging ATE(x, t) on x: 
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The estimation of [4] is main purpose of this paper.  
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The Regression Approach 

From the Potential Outcome Model (POM), the observable outcome is 0 1 0( )= + −y y w y y  is: 
  

0 1 0 0 1 0[( ) ] ( ) ( ( ) ) ( )         [5]µ µ µ= + ⋅ − + + + + ⋅ − + ⋅ − + + ⋅ −y w h w w h t h e w e e0xδ xδ x x δ

By assuming Conditional Mean Independence (CMI), namely that – given x both w and t are exogenous in 

equation [5], we can write the regression line of y as: 
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In equation [6] we show (see the proof in the paper) that: 

1 0ATE = ( ) .µ µ− + + hxδ

This leads to the estimation of this regression equation: 
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where the term [ ( )h t h− ] can be estimated by polynomial regression.  
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Estimation of the Dose-Response-Function under CMI 

By assuming a three degree polynomial form for the function h(t): 

2 3( )h t at bt ct= + +

we get that equation [7] becomes:
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Under CMI, an OLS estimation of equation [8] leads to consistent estimates of the parameters. 

The Dose-Response-Function, is estimated by: 
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Estimation of the Dose-Response-Function under treatment “endogeneity” 

When w (and thus t) are endogenous, CMI does not hold and OLS are biased. Nevertheless, an 

Instrumental-Variables (IV) estimation procedure may be implemented to restore consistency.  

Express the model in extensive form: 
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! w* is he latent unobservable counterpart of the binary treatment w; 

!  t is fully observed only when w=1 (and t=t’); otherwise it is unobserved (and put equal to zero).  
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By defining T1=t-E(t), T2=t2-E(t2) and T3= t3-E(t3), the previous model may be re-written as follows:
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where: 

"   Error terms  εw, εt and εy are supposed to be freely correlated with zero mean 

"   Equation [10-2] is the selection equation  

"   Vector of covariates x1 are the selection criteria  

"   Equation [10-3] is the treatment-level equation 

"   The vector of covariates x2 are exogenous variables determining the treatment level.    
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IV estimation 

In equation [10-1], both w and T1, T2 and T3 are endogenous. To estimate consistently the 

parameters of that system we may proceed in two steps:  

1. First: Estimate the last two equations [10-2]-[10-3] jointly by a Heckman two-step  

“bivariate sample-selection model” (Heckman, 1979).  

□ The Heckman two-step procedure performs a probit of w on x1 in the first step and a OLS regression of 

t’ on x2  augmented with the Mills’ ratio obtained from the probit in the second step. 

2. Second: Take the all sample predicted values of w (i.e. ˆ
wp ) and t (i.e. t̂ ) from the previous 

Heckman estimation, and then we perform a 2SLS for equation [10-1] using as instruments 

the following exogenous variables ( 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , [ ], , ,−w w w w wp p p T p T p Tx x x ), thus getting a consistent 

estimation of the coefficients ( 0, ,ATE, , , ,µ a b c0δ δ ).  

□ Observe that the instruments used are based on the orthogonal projection of w and t on the vector 

space generated by the all exogenous variables of the model.     
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IDENTIFICATION

The problem of this procedure is with parameters’ identification. To get precise 

estimation, we need at least one instrumental variable (z) appearing only in equation [10-

2], that is, only able to explain directly the selection process (exclusion restriction). 

Thus, we run under the following identification assumption: 

x1 = [x; z] 

                         x2 = [x] 

so that a full specified model (all the equations depend on the same exogenous x) is 

considered, where z is the instrumental variable directly correlated with the selection, 

but directly uncorrelated with the level of the subsidization as well as the level of the 

outcome. This procedure indentifies correctly the parameters of interest. 
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Estimation of comparative Dose-Response-Functions 

The model allows also for calculating the average comparative response at different level of treatment (as in 

Hirano and Imbens, 2004). This quantity takes this formula:  

ATE( , ) E[ ( ) ( )]          [11]∆ = + ∆ −t y t y t

Equation [11] identifies the average treatment effect between two states (or levels of treatment): t and t + ∆ .  

Given a certain level of: 

∆ = ∆

we can get a particular:  

ATE( , )t ∆

i.e, the “treatment function at ∆ ”. 

An estimation is given by (see paper): 

2 3 2 3ˆ ˆˆ ˆ ˆ ˆ ˆATE( , ) ( ) ( ) ( ) [ ]∆ = + ∆ + + ∆ + + ∆ − + +t a t b t c t at bt ct

We can use a bootstrap of ˆ ( , )ATE t ∆ over ˆˆ ˆ( , , )a b c  to get the standard errors of ˆATE( , )∆t and then its statistical 

significance at various level of t.  
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The STATA routine ctreatreg

 

help ctreatreg 

---------------------------------------------------------------------------------------------------------------------- 

 

Title 

 

    ctreatreg -  Dose-Response model with "continuous" treatment, endogeneity and heterogeneous response to 

                   observable confounders 

 

 

Syntax 

 

        ctreatreg outcome treatment [varlist] [if] [in] [weight], model(modeltype) ct(treat_level) 

                 [hetero(varlist_h) iv(instrument) delta(number) graphic conf(number) vce(robust) const(noconstant) 

                 head(noheader) beta] 

 

 

    fweights, iweights, and pweights are allowed; see weight. 

 

 

 

Description 

 

    ctreatreg estimates the Dose-Response-Function (DRF) of a given treatment on a specific target variable, within 

    a model where units are treated with different levels. The DRF is defined as the “average treatment effect, 

    given the level of the treatment t” (i.e. ATE(t)).  The routine also estimates other “causal” parameters of 

    interest, such as the average treatment effect (ATE), the average treatment effect on treated (ATET), the 

    average treatment effect on non-treated (ATENT), and the same effects conditional on t and on the vector of 

    covariates x.The DRF is approximated by a third degree polynomial function.  Both OLS and IV estimation are 

    available, according to the case in which the treatment is not or is endogenous. In particular, the implemented 

    IV estimation is based on a Heckman bivariate selection model for w (the yes/no decision to treat a given unit) 

    and t (the level of the treatment provided) in the first step, and a 2SLS estimation for the outcome (y) 

    equation in the second step.  The routine allows also for a graphical representation of results. 
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Options 

     

    model(modeltype) specifies the treatment model to be estimated, where modeltype must be one of the following 

two models: "ct-ols", "ct-iv".  it is always required to specify one model 

   

    ct(treat_level) specifies the treatment level (or dose).  This variable takes values in the [0;100] interval, 

        where 0 is the treatment level of non-treated units. The maximun dose is thus 100. 

 

    hetero(varlist_h) specifies the variables over which to calculate the idiosyncratic Average Treatment Effect 

        ATE(x), ATET(x) and ATENT(x), where x=varlist_h. It is optional for all models. When this option is not 

        specified, the command estimates the specified model without heterogeneous average effect. Observe that 

        varlist_h should be the same set or a subset of the variables specified in varlist.  Observe however that 

        only numerical variables may be considered. 

 

    iv(instrument) specifies the variable to be used as instrument in the Heckman bivariate selection model. This 

        option is required only for "ct-iv". 

 

    delta(number) identifies the average treatment effect between two states: t and t+delta. For any reliable delta, 

we can obtain the response function ATE(t;delta)=E[y(t)-y(t+delta)]. 

         

    graphic allows for a graphical representation of the density distributions of ATE(x;t), ATET(x;t) and 

        ATENT(x;t). It is optional for all models and gives an outcome only if variables into hetero() are 

        specified. 

 

    vce(robust) allows for robust regression standard errors. It is optional for all models. 

 

    beta reports standardized beta coefficients. It is optional for all models. 

 

    const(noconstant) suppresses regression constant term. It is optional for all models. 

 

    conf(number) sets the confidence level equal to the specified number.  The default is number=95. 
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  modeltype_options           description 

  ------------------------------------------------------------------------------------------------------------------ 

  Model 

  ct-ols                      Control-function regression estimated by ordinary least squares 

  ct-iv                       IV regression estimated by Heckman bivariate selection model and 2SLS 

  ------------------------------------------------------------------------------------------------------------------ 

 

 

    ctreatreg creates a number of variables: 

 

        _ws_varname_h are the additional regressors used in model's regression when hetero(varlist_h) is specified. 

 

        _ps_varname_h are the additional instruments used in model's regression when hetero(varlist_h) is specified 

        in model "ct-iv". 

 

        ATE(x;t) is an estimate of the idiosyncratic Average Treatment Effect. 

 

        ATET(x;t) is an estimate of the idiosyncratic Average Treatment Effect on treated. 

 

        ATENT(x;t) is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated. 

 

        ATE(t) is an estimate of the Dose-Response-Function. 

 

        ATET(t) is the value of the Dose-Response-Function in t>0. 

 

        ATENT(t) it is the value of the Dose-Response-Function in t=0. 

 

        probw is the predicted probability from the Heckman selection model (estimated only for model "ct-iv"). 

 

        mills is the predicted Mills' ratio from the Heckman selection model (estimated only for model "ct-iv"). 

 

        t is a copy of the treatment level variable, but only in the sample considered. 

 

        t_hat is the prediction of the level of treatment from the Heckman bivariate selection model (estimated  only 

for model "ct-iv"). 

         

        der_ATE_t is the estimate of the derivative of the Dose-Response-Function. 
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        std_ATE_t is the standardized value of the Dose-Response-Function. 

 

        std_der_ATE_t is the standardized value of the derivative of the Dose-Response-Function. 

 

        Tw, T2w, T3w are the three polynomial factors of the Dose-Response-Function. 

 

        T_hatp, T2_hatp, T3_hatp are the three instruments for the polynomial factors of the Dose-Response-Function 

        when model "ct-iv" is used. 

 

 

 

    ctreatreg returns the following scalars: 

 

        r(N_tot) is the total number of (used) observations. 

 

        r(N_treated) is the number of (used) treated units. 

 

        r(N_untreated) is the number of (used) untreated units. 

 

        r(ate) is the value of the Average Treatment Effect. 

 

        r(atet) is the value of the Average Treatment Effect on Treated. 

 

        r(atent) is the value of the Average Treatment Effect on Non-treated. 

 

 

Remarks  

 

    The variable specified in treatment has to be a 0/1 binary variable (1 = treated, 0 = untreated). 

 

    The standard errors for ATET and ATENT may be obtained via bootstrapping. 

 

    Please remember to use the update query command before running this program to make sure you have an up-to-date 

    version of Stata installed. 
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Following the Help-file this routine is rather straightforward to use and provides suitable 

graphical representation of results. In particular it provides a graph for the DRF and a combined 

graph for the densities of ATE(x,t), ATET(x,t) and ATENT(x,t).  

NEXT TO DO …

- Monte Carlo (to asses reliability) 

- Non-parametric form of h(t) 

- Non-normal assumption for the Bivariate Selection Model 
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