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1 Summary

Stata/MP1 runs on multiprocessor computers—computers with more than one CPU.

In a perfect world, software would run twice as fast on 2 CPUs, three times as fast on 3 CPUs, and
so on. Stata/MP achieves about 72% efficiency. It runs 1.4 times as fast on 2 CPUs, 1.8 times as fast
on 3 CPUs, and 2 times as fast on 4 CPUs. Half the commands run faster than that, and a few achieve
performance beyond what would have been considered theoretically possible (more than twice as fast
on 2 CPUs, etc.) because multiple-CPU sys-
tems have greater cache size. The other half
of the commands run slower than the median
speedup, and some commands are not sped up
at all, either because they are inherently se-
quential (time-series commands) or because no
effort was made to parallelize them (graphics,
xtmixed).

In terms of evaluating average performance
improvement, commands that take longer to
run—such as estimation commands—are of
greater importance. When estimation com-
mands are taken as a group, Stata/MP achieves
an even greater efficiency of approximately
88%: estimation commands run 1.7 times as
fast on 2 CPUs, 2.4 times as fast on 3 CPUs,
and 2.8 times as fast on 4 CPUs. Stata/MP
supports up to 32 CPUs.

This paper provides a detailed report on
the performance of Stata/MP. Command-by-
command performance assessments are pro-
vided in section 8.
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Figure 1. Performance of Stata/MP. Speed on
multiple processors relative to speed on a single
processor.
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3 Introduction

Stata/MP was designed to take advantage of computers with multiple processors or with dual-core
processors by partitioning the work among the multiple processors. From the outset, it was required
that Stata/MP be 100% compatible with all other flavors of Stata, including Stata/SE and Intercooled
Stata, and that Stata/MP run scripts, user-written programs, and analyses that run under existing
Stata without any change or special action on the user’s part.

Stata/MP runs on multiprocessor and dual-core computers, including computers running MS Win-
dows (2000, XP, and later), Intel-based Apple Macintosh computers, Linux computers, and 64-bit Sun
computers running Solaris.

With multiple processors, one might expect to achieve the theoretical upper bound of doubling the
speed by doubling the number of processors—2 processors run twice as fast as 1, 4 run twice as fast as 2,
and so on. However, there are three reasons why such perfect scalability cannot be expected: (1) some
calculations have parts that cannot be partitioned into parallel processes; (2) even when there are parts
that can be partitioned, determining how to partition them takes computer time; and (3) multiprocessor
systems duplicate only CPUs, not all the other system resources.

Stata/MP achieved 72% efficiency overall and 88% among estimation commands.

Speed is more important for large problems, where large is quantified in terms of the size of the
dataset or some other aspect of the problem, such as the number of covariates. On large problems,
Stata/MP with 2 processors runs half of Stata’s commands at least 45% faster than on a single processor.
With 4 processors, the same commands run at least twice (100%) as fast as on a single processor.

Figure 1, shown in the summary above, summarizes the observed performance across all Stata
commands as a shaded region. All Stata commands fall somewhere in the shaded region. Performance
is measured as a percentage: 0% means zero speedup, whereas 100% means twice as fast or half the
time with respect to a single processor.

Half of Stata’s commands run at last 45% faster on 2 processors, and half improve less. Half run
100% faster on 4 processors, and half improve less.

The shaded region reveals that some commands improved more than would have been thought
theoretically possible. This is usually due to better use of the processors’ onboard cache, and such
superscalability depends on the size of the problem. At the other end of the spectrum, some Stata
commands experience no speedup at all. This is because their calculations are inherently sequential or
because no effort was made to partition the work into parallel processes.

In typical use, Stata’s estimation commands consume the bulk of the time required to perform
analyses, and therefore speeding them up was a priority. Figure 1 also shows the median performance
of Stata’s estimation commands.

The median estimation command runs 70% faster on 2 processors and 180% faster on 4 processors.
Again, half of the estimation commands speed up more, and half, less. Not shown on the graph is that
25% of estimation commands speed up more than 90% with 2 processors and more than 245% with 4
processors.

Figure 1 emphasizes 2- and 4-processor computers because those are the most common multiprocessor
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platforms available to users. Stata/MP will work with up to 32 processors, however, and performance
improvements continue with more processors. For example, 25% of estimation commands run at least
600% faster on 8-processor computers, 900% faster on 16-processor computers, and 1300% faster on
32-processor computers.

For assessments of performance gains of individual Stata commands, see section 8. See appendices A
and B for results reported in graphical form.

4 Parallel computing hardware

There is a movement toward making computers that have two or even more CPUs. Until recently, chip
makers essentially have doubled the speed of processors every 18 months, a fact known informally as
Moore’s law (Moore 1965). This has been done by making components smaller, hence reducing electrical
resistance, and by placing more transistors on a processor. Chip makers, however, are reaching the
physical limits of what can be achieved through reduced size and increased complexity using existing
technology. Although there are alternatives on the horizon for further speeding up processors, they
involve dramatic changes in technology and fabrication.

The other solution to making computers run faster is simply to give you more of them.

One way is to put multiple processors in one box, with each processor sharing the main memory,
disk drives, and other devices on the computer. The multiple processors can be on different chips or
together on one chip. When the multiple processors are on one chip, they are called multicore CPUs.

Multicore or multiprocessor makes no difference: both are multiple-processor systems. These designs
work exceptionally well when running different programs simultaneously, especially when programs run
independently. Hence a 4-processor computer can do as much work as 4 separate computers, and none of
the programs needs to be modified to recognize that they are running in a multiprocessor environment.

Single programs can take advantage of multiprocessor environments, too, but they must be modified
to do so. This is done by allowing different parts of the program to run simultaneously in what are
called separate execution threads. For example, a word processor might allow you to print a document
and edit simultaneously. This type of threading is relatively easy to implement and is even allowed on
single-processor computers to make programs more convenient.

This type of threading adds convenience but does not address the issue of speeding the computations
in a statistical package. What is required there is the ability to perform computations at the same time
on the same task. This is typically referred to as symmetric multiprocessing (SMP).

Stata/MP is a modified version of Stata for running in the SMP environment.

There is another type of parallel processing that involves using multiple computers over a network.
This is known as cluster computing or distributed computing. Such methods require problems that
admit large-grain parallelization. Although such methods can be of interest in the computation of
statistical results, Stata/MP does not address such parallel architectures.

For a thorough discussion of parallel computing, see Culler, Singh, and Gupta (1999) and
Grama, Kumar, Gupta, and Karypis (2003).
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5 Constructing Stata/MP

For Stata to take advantage of SMP systems, sections of its code had to be rewritten to distribute
their work across processors. Stata’s internal design includes a few core algorithms that are used in
many contexts. Those core algorithms were rewritten. The benefits then spread themselves across
Stata. Statistical computations lend themselves especially well to parallelization because observations
are usually independent, and independent pieces can be calculated separately. That is, statistical
computations can often be partitioned over observations.

This resulted in a little more than half the observed performance gains.

The remaining gains were achieved by modifying individual routines for important Stata commands
and including custom code to parallelize them.

In all, approximately 387 sections of Stata’s internal code were modified.

This parallelization was performed using the Open/MP API for developing SMP applications (see
Dagum and Menon 1998).

6 Measuring Stata/MP’s performance

There is a theoretical limit to how much the performance of a program or command can be improved
with multiple processors. With 2 that limit is twice as fast (or half the run time), with 4 processors it
is 4 times as fast (or one-quarter the run time), and so on. This is called linear or perfect scaling.

Furthermore, not all algorithms or sections of code can be made to run in parallel. Some computa-
tions, or parts thereof, are inherently single threaded, e.g., a formula that depends on prior values of
itself such as the autoregressive process:

yt = φ + ρyt−1

Statistical calculations are often more parallelizable than one imagines. For instance, many inher-
ently sequential computations can be parallelized when performed on longitudinal (panel) data because
the dependencies that made the problem inherently sequential are broken at panel boundaries. Rather
than partitioning on observations, one partitions on panels. Stata/MP does this. Whereas most time-
series commands run only a little faster in the SMP environment, most panel-data commands run
substantially faster.

There can also be sections of code that are simply not worth the effort of parallelization because
they take so little time to run or parallelization would be technically difficult. Either way, the effort
simply is not worth the benefit.

Taken together, these are the nonparallelized region. Some authors refer to the parallelizable regions
and the parallelized regions—the first referring to what could be parallelized and the second to what
was actually parallelized—and even focus on the ratio between the two. We will focus on run times,
however, and draw no distinction between parallelizable and parallelized.
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How much of a calculation has been parallelized is measurable, and measuring it is useful because
it allows one to make extrapolations on how problems will run when the number of processors varies.

Figure 2 presents a stylized view of the component run times associated with a command that
has been parallelized. Block A represents the time spent in parallelized regions of code; Block B, the
unparallelizable (or just unparallelized) regions of code; and Block C, the additional overhead required
for parallelization.

Figure 2. Parallelization components.

Let each letter represent an amount of time consumed in running a particular command on a partic-
ular dataset. Then A+B is the run time of the command when using a single processor. If we parallelize
the command, however, there is an additional time, C, associated with the overhead of partitioning the
problem and coalescing the results from the processors.

We will refer to 100A/(A + B) as the percentage parallelized:

percentage parallelized =
100A

A + B

The percentage parallelized is a useful measure of how much performance will improve as processors
are added. All gains to parallelization occur because region A can be made to run on multiple processors
in parallel. If we partition the region perfectly and each processor runs uninterrupted, when we double
the number of processors, we halve the time to perform A while the time required to perform B and
C remains unchanged. B + C is a constant time for running the command that cannot be reduced by
adding more processors.
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Said differently, the total time to execute a process on a single processor is A+B. The total time to
execute the process on p processors is A/p+B +C. We can rewrite that as (P/100p)∗ (A+B)+B +C.
Thus P/p is an approximation of how much the command’s run time decreases, ignoring the fixed cost
of B + C.

We can also measure the parallelization overhead in terms of the overall run time on a single pro-
cessor:

parallelization overhead =
100C

A + B

Theoretically, there is no good reason why the denominators in both expressions could not be
(A + B + C). Operationally, however, there is a great deal of difference in how processors, caches,
computer architectures, and operating systems handle the division of labor between the first processor
and all the remaining processors. For this reason C, and thus parallelization overhead, varies from one
computing platform to another, whereas A and B, and thereby percentage parallelizable are comparable
across platforms.

We are also ignoring another contribution to run time. Sometimes there is overhead associated
with each processor, rather than, or in addition to, an overall parallelization overhead. Because of the
methods used to build Stata/MP, this overhead is extremely small and it affects only four commands,
and even on those commands the effect is small.

Understanding percentage parallelizable and parallelization overhead clarifies why some commands
will have less than perfect scaling and allows results to be extrapolated to more processors. We also
present performance results as simple relative run times that can be read directly from tables or graphs
to find the run time for multiple processors compared with the run time for a single processor.

7 Performance summary

The performance of Stata/MP has been measured on all 332 Stata commands that take any appreciable
time to run. Commands such as display—which writes output to the Results window—or local—
which sets the value of a program macro—are not considered. Such commands consume a negligible
part of the time required to perform any analysis.

Other commands that were not explicitly assessed include replication-based commands such as
bootstrap, jackknife, permute, simulate, and statsby; as well as other prefix commands. These
commands run another target command repeatedly, and to the extent the target command’s perfor-
mance is improved for a particular problem size, a similar improvement will be obtained when it is run
repeatedly.

For each of the 332 commands, timings were recorded on a multiprocessor computer where Stata/MP
used 1, 2, 3, and 4 processors to execute the same command. All these timings were from the same
installation of Stata/MP on the same computer. To reduce the impact of interruptions by the operating
system, the timings were repeated three times and the median time reported. Timings have also been
performed on other 2-processor and dual-core computers, 4-processor computers, 8-processor computers,
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and 16-processor computers. Although timings relative to a single processor do vary among tested
platforms, they are generally comparable, and the results presented are indicative of what can be
expected across a spectrum of platforms. The timings are presented in section 8, Stata/MP performance,
command by command, and appendix A, Performance assessment graphs.

Appendix A, Performance assessment graphs, shows graphs for each of the 332 commands. Here is
the graph of Stata’s linear regression command, regress:

25

35

50

70

100
Pe

rc
en

ta
ge

 o
f s

in
gl

e−
pr

oc
es

so
r t

im
e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure 3. regress performance plot.

The y-axis shows run times relative to the run times on single processors. For regress, the relative
run times are 54% (2 processors), 38% (3 processors), and 30% (4 processors). Also shown is a 45o

reference line reflecting perfect scalability or, if you prefer, 100% parallized: 50% (2 processors), 33%
(3 processors), and 25% (4 processors). regess very nearly achives theoretical limits; it has run times
that decline very nearly in proportion to the number of processors.
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Here is the graph for arima:
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Figure 4. arima performance plot.

arima, a time-series command, hardly benefits from parallelization. Run times fall to 90% (2 processors),
91% (3 processors), and 91% (4 processors). Run times actually increased just a little at one point.
Remember, these are empirical timings (3 measurements, median reported). In any case, arima shows
little gain from parallelization.
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Here is the graph for Stata’s regression with random effects, xtreg:
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Figure 5. xtreg, re performance plot.

Run times fall to 74% (2 processors), 63% (3 processors), and 58% (4 processors). What is interesting
about this graph is the flattening out as the number of processors increases. This is what happens when
a command is not 100% parallized: the relative run time approaches a horizontal asymptote that is the
percent not parallelized, which here is about 61%.
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Figure 6. Performance of Stata/MP. Run times on
multiple processors relative to a single processor.

Finally, all 332 figures can be combined into one figure, such as figure 6. The shaded area shows
the region containing the 332 individual results. The lower boundary of the area extends a little
below the 45o line. This means that at least one command exhibited better-than-perfect scaling. Such
superscalability is due to cache effects.

Also included are the median results over all 332 commands; 166 commands have better performance
gains (their curves lie below the line), and 166 exhibit lesser performance gains (their curves lie above
the line).

Median performance across users will probably be better than median performance across commands
as we calculated it. To be able to measure performance, we had to choose large problems even when,
for a particular command, large problems are rarely run. For instance, few users would run analyses
that spend as much time running t tests as did those we had to run to record reliable results. Stata’s t
test command runs quickly on single or multiple processors. Meanwhile, Stata/MP development efforts
were focused on improving run times of commands that require substantial run times. Ergo, the median
improvements are understated.

By the way, figure 6 is logically the same as the graph shown in figure 1 of the Summary. Just the
units are different.
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Figure 7. Quartiles of Stata/MP performance.
Run times on multiple processors relative to a single
processor.

Figure 7 better shows the distribution of results by showing not just the median but the quartiles.
The most interesting thing about figure 7 is the first quartile (blue swath at the bottom). It shows that
25% of commands exhibit nearly perfect scaling. The worst of this group run in 54% of the time on two
processors and 30% of the time on four processors.

Figures 6 and 7 present results for all commands, whereas the time required by most analyses is
dominated by execution of estimation commands. Estimation commands tend to be the most compu-
tationally intensive, particularly those that required iterative solutions.

Figure 8 summarizes the observed performance and median performance for the 130 estimation
commands. These include all the estimation commands in Stata, and some commands are included
more than once to include critical options, such as robust and cluster for robust standard errors and
correlation within groups. The options themselves are not important; what is important is that these
options (and a few others like them) substantively affect how the calculation is made and thus run
times.
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Figure 8. Performance of Stata/MP on
estimation commands. Run times on
multiple processors relative to a single
processor.
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Figure 9. Quartiles of Stata/MP
performance on estimation commands.
Run times on multiple processors relative to a
single processor.

Compared with figure 6, note that the median performance for estimators is better than the overall
median. The median run time for estimators is less than 60% (2 processors) and 35% (4 processors).
Half of all estimators perform even better and thus approach perfect scaling. Figure 9 reveals that only
25% of all estimators run in more than three-fourths of the time (2 processors) and 60% of the time (4
processors).

We have emphasized results on two and four processors, because that is the most common architec-
ture currently available to users. Stata/MP supports up to 32 processors, however, and performance
continues to improve as processors are added. Figure 10 shows the performance boundary and median
for 115 common commands on a 16-processor computer, and figure 11 shows the performance quartiles.
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Figure 10. Performance of Stata/MP on
1 to 16 processors. Run times on multiple
processors relative to a single processor.
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Figure 11. Quartiles of Stata/MP
Performance on 1 to 16 processors. Run
times on multiple processors relative to a
single processor.

Despite a slight, temporary flattening of growth at 8 processors, performance continues to improve—
and to improve at generally the same rate through 16 processors. If commands exhibited perfect scaling
with 4 processors, they continued to exhibit it through 16 processors. This supports extrapolating
results from 4 processors to more.

8 Stata/MP performance, command by command

The performance summaries from the prior section provide an overall sense of the performance of
Stata/MP but will not reflect the experience of most users. Few users perform all the commands in
Stata, and no users perform them with equal frequency. Most users will be interested in a subset of
commands and often in only a few commands that they use regularly and on large problems.

The table at the end of this section provides timings on individual commands, comparing the run
time on 2, 4, and 8 processors with the run time on a single processor. It also provides an estimate of
the degree to which each command is parallelized.

All commands were run on moderately large to very large problems. The goal was to measure
performance on problems that require substantial time to solve and that were large enough to measure
performance gains on 8, 16, or even 32 processors. For commands that are parallelized, such problems
have a larger parallelizable region (A) relative to the unparallelizable region (B) and are thus more
amenable to parallelization, particularly when run on many processors. Longer timings also ameliorate
variations in timings, such as interruptions for operating system processes or the memory status of the
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system when the command begins. Substantial variation occurs when run times are short.

Timings were typically performed on commands that took between 8 and 15 seconds to run on a
single-processor computer running at 2.8 to 3.2 GHz. For some commands, this meant the problems
used extremely large numbers of observations or covariates, because some commands are inherently fast.
For others, the problems were smaller because the commands are inherently slower, due for example to
iterative or even simulated solutions. For details on the size of the problems, see appendix D.

Stata/MP was designed to improve performance on large problems, such as those reported in ap-
pendix D. Even so, the performance improved surprisingly well on small to moderate problems. Using
the same commands as those in appendix D, but with problems 100 to 1,000 times smaller (run times of
two-fifths to just over 1 second on a 2.8- to 3.2-GHz machines), substantial speedups were still observed.
Among commands that were at least 50% parallelized, more than half exhibited better than 80% of the
speedup exhibited on the larger problems. These are typical results. Run times for smaller problems
vary more from computer to computer because small problems are more sensitive to the architecture of
the computer, processor, and operating system.

All values, except the columns for 8 and 16 processors, were obtained from the median of three runs
on an 4-processor computer. The columns for 8 and 16 processors were obtained from a single run—
not three—using a 16-processor computer in 8-processor and 16-processor modes. All commands were
not tested on the 16-processor computer. When timings were not performed for 8- and 16-processors,
expected values were extrapolated from the results on the 4-processor computer.

Stata/MP performance has been tested on many computers under MS Windows, Macintosh, Linux,
and Solaris operating systems. Although performance varies somewhat across platforms, the results
from the table below can reasonably be applied to any of the platforms. The percentage run times are
rounded to integer percentages; when comparing across platforms it would be reasonable to round them
to the nearest 5th, or occasionally 10th, percentage.

Most users should simply look at the column reporting results for the number of processors in which
they are interested. This column estimates the run time on that number of processors as a percentage
of the run time on a single processor. Given a computer with a known number of processors, this is the
most direct measure of performance improvement.

The table also presents the percentage parallelized discussed in section 6. Given a set of percentage
run times for at least 3 processors, we can estimate the percentage parallelized and parallelization
overhead parameters from the run times. The form of the model is particularly simple,

percentage run time =
̂A

p
+ ̂Cδ1 + ̂B (1)

where p is the number of processors and δ1 is an indicator for p > 1.

As defined in section 6, we then have

percentage parallelized =
100 ̂A
̂A + ̂B

(2)
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and

parallelization overhead =
100 ̂C
̂A + ̂B

(3)

Equation 1 is estimated by median regression (qreg) using Stata. Median regression is used in
preference to ordinary least squares (OLS) because occasionally a timing will be far too large because
of interruptions from the operating system. Such effects are ignored in median regression.

The estimated value for parallelization overhead is particularly sensitive to the computing platform,
and so we do not report it here. Note from equation 1 that it captures any unexpected difference in
the speed using one processor. Because different computer, processor, cache, and operating system
architectures respond differently in moving from 1 to 2 processors, ̂B captures not only the theoretical
parallelization overhead B but also anything that causes the time from the first processor to differ from
the second.

Percentage parallelized is the most concrete measure of how a command responds to more processors.
For most commands, the run time in this percentage of the code falls by half for each doubling of the
number of processors.

The estimated percentage parallelized is also the most comparable measure across computing plat-
forms; it is nearly constant from one platform to another. Most of the differences across computing
platforms are captured in ̂B, which does not enter in the formula for percentage parallelized. Because
the simpler percentage run times are compared with the run time on a single processor, they necessarily
include the parallelization overhead and are thus not quite as comparable across machines.

Each line in the table represents a command run on a particular problem. The command column
shows the Stata command name and relevant options. For those unfamiliar with Stata syntax, ap-
pendix C provides short descriptions of what each command does. For those without access to the Stata
manuals and wanting still more information on a command, go to http://www.stata.com/capabilities/
and enter the command name in the search section at the bottom of the page.

A few of the results for cluster commands produced overly optimistic projections for 8- and 16-
processor performance. For 16 processors, these projections are left blank; for 8 they are reported
but are likely too optimistic. The estimated percent parallelized is also over 100% for several of these
commands. These results will be updated when the cluster commands have been tested on 8- and
16-processor computers.

Appendix A contains performance graphs for each command using 1, 2, 3, and 4 processors. Ap-
pendix B contains graphs using 1 through 16 processors. The graphs plot the observed percentage time,
the modeled performance using equation 1, and the perfect scalability reference line. If you are reading
the PDF version of the document, clicking on the command name in the table will take you to the page
with the associated graph.
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Stata/MP Performance Report Stata/MP performance, command by command (17)

Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

adjust 85 78 74 72 28

alpha 65 40 28 22 86

ameans 69 45 32 26 83

anova (oneway) 71 47 34 26 85

anova (twoway) 69 47 37 30 77

arch 83 75 72 70 30

areg 84 77 73 71 29

arima 90 91 92 92

asmprobit 67 50 48 51 40

binreg 55 32 20 15 91

biplot 100 100 100 100 0

biprobit 55 31 19 14 93

biprobit (seemingly unrelated) 53 29 17 11 95

bitest 63 42 31 26 80

blogit 58 39 30 25 78

boxcox 54 30 18 12 94

bprobit 56 35 25 20 85

brier 79 63 55 51 57

bsample 91 84 81 79 25

by: generate 51 26 14 8 98

by: generate (small groups) 52 27 14 8 99

by: replace 51 26 14 8 99

by: replace (small groups) 51 26 14 7 99

ca 85 83 82 95 8

canon 60 42 26 18 90

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

centile 99 98 97 97 4

ci 77 61 53 49 60

ci, binomial 65 44 33 28 79

ci, poisson 61 34 21 15 93

clogit (k1 to k2 matching) 71 55 47 43 62

clogit (1 to k matching) 63 45 33 31 75

cloglog 54 30 17 11 95

cluster averagelinkage 58 26 10 105

cluster centroidlinkage 57 22 4 110

cluster completelinkage 59 27 11 104

cluster generate 85 74 69 66 40

cluster kmeans 26 16 11 8 88

cluster kmedians 44 33 28 26 65

cluster medianlinkage 57 22 4 111

cluster singlelinkage 97 97 97 97 0

cluster wardslinkage 59 27 11 104

cluster waveragelinkage 58 26 10 105

cnreg 54 30 17 11 95

cnsreg 51 27 15 9 97

collapse 85 71 64 60 49

compare 63 39 27 21 86

compress 100 100 100 100 0

contract 93 90 88 87 14

correlate 51 27 13 7 99

corrgram 82 71 66 63 42

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

count 51 26 13 7 100

ctset 54 27 14 8 99

cttost 70 51 41 36 71

cumul 95 95 94 94 3

cusum 91 81 76 73 37

dfgls 91 85 83 81 22

dfuller 74 61 54 51 53

dotplot 89 84 81 80 22

dstdize 99 99 99 99 1

eivreg 50 28 15 15 98

factor 65 46 32 25 85

fcast compute 99 98 98 98 2

fracpoly 77 59 50 45 64

frontier 54 29 16 12 97

gen (small expressions) 43 23 15 12 88

generate 50 25 13 7 100

glm, family(gamma) 59 35 23 18 88

glm, family(gaussian) 60 37 26 21 85

glm, family(igaussian) 55 32 19 13 93

glm, family(nbinomial) 58 32 21 16 89

glm, family(poisson) 59 33 23 17 88

glogit 48 27 17 11 93

gprobit 46 24 13 8 97

graph bar 92 87 85 84 19

graph box 85 77 72 70 35

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

graph pie 85 76 71 69 36

grmeanby 89 80 75 73 34

hausman 75 74 66 65 27

heckman 55 32 19 13 93

heckman, twostep 52 28 15 10 97

heckprob 54 31 20 15 89

hetprob 54 28 16 10 96

histogram 78 63 56 52 54

hotelling 52 23 11 6 100

impute 84 73 68 65 41

intreg 53 28 16 11 95

irf create 54 45 66 38 50

ivprobit 52 28 19 15 88

ivprobit, cluster() 51 29 17 12 94

ivprobit, robust 52 30 19 13 92

ivreg 55 31 17 11 97

ivtobit 53 30 20 17 88

kap 93 90 89 88 12

kappa 60 34 21 14 93

kdensity 56 34 23 17 88

ksmirnov 82 68 62 58 50

ksmirnov, by() 88 81 77 75 29

ktau 100 99 99 99 1

kwallis 93 88 85 84 20

ladder 66 46 35 30 77

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

levelsof 99 98 98 98 3

loadingplot 79 66 60 57 49

logistic 50 27 16 10 95

logit 50 27 15 9 97

loneway 84 72 66 63 43

lowess 46 27 17 12 92

ltable 85 79 76 75 25

manova (oneway) 94 93 92 102 4

manova (twoway) 77 71 67 66 30

markout 54 30 16 9 98

marksample 53 27 14 7 99

marksample if exp 53 27 14 7 99

matrix accum 52 26 13 7 100

matrix eigenvalues 100 100 100 100 0

matrix score 51 27 14 7 99

matrix svd 100 100 101 101

matrix symeigen 100 100 100 100 0

matrix syminv 75 44 23 13 98

mds 47 41 39 38 34

mdslong 52 47 45 44 31

mean 98 96 96 96 3

median 67 46 36 31 76

mfp 55 33 22 17 89

mfx 84 76 71 72 28

mkmat 100 100 100 100 0

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006



Stata/MP Performance Report Stata/MP performance, command by command (22)

Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

mkspline 71 46 33 27 83

mleval 52 26 13 7 100

mleval, nocons 52 26 13 7 100

mlmatbysum 53 33 23 18 86

mlmatsum 53 28 14 8 99

mlogit 52 27 14 9 99

mlsum 65 40 27 18 88

mlvecsum 55 28 15 8 98

mprobit 99 99 99 99 0

mvreg 63 44 30 23 85

nbreg 55 31 19 14 91

newey 88 80 76 74 31

nl 83 72 67 64 41

nlogit 65 46 37 32 73

nptrend 95 92 91 90 11

ologit 48 27 14 8 97

oneway 100 100 100 100 0

oprobit 48 26 14 8 98

orthog 60 35 22 16 92

pca 71 54 41 42 64

pcorr 51 28 15 9 98

pctile 64 45 35 30 75

pergram 100 100 100 100 0

pkcollapse 90 81 76 73 35

pkexamine 101 102 102 103

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

pksumm 94 88 85 84 21

poisson 54 30 16 10 96

pperron 94 93 93 92 4

prais 86 81 79 77 22

predict, cooksd 50 26 14 8 98

predict, covratio 50 26 14 8 98

predict, dfbeta 51 27 14 8 98

predict, dfits 50 26 14 8 98

predict, e 53 34 20 13 92

predict, leverage 50 26 13 7 100

predict, pr 53 29 17 11 95

predict, residuals 53 27 14 8 98

predict, rstandard 51 26 13 7 99

predict, rstudent 51 26 13 7 99

predict, stdf 50 25 13 7 100

predict, stdp 50 26 13 7 100

predict, stdr 50 27 15 9 97

predict, welsch 50 26 13 7 99

predict, ystar 53 28 19 15 91

predictnl 59 38 30 24 79

probit 53 28 16 9 97

procrustes 71 51 43 38 65

proportion 74 60 53 50 55

prtest1 60 38 27 22 85

prtest2 64 44 33 28 78

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

prtest, by() 86 77 72 70 35

qreg 62 41 30 24 82

ranksum 77 58 48 43 67

ratio 89 82 79 77 26

ratio (exp1) (exp2) 89 83 79 78 25

recode 93 70 59 53 65

reg3 55 32 19 14 92

regress 54 30 16 9 97

regress, cluster() 70 52 43 38 69

regress, robust 79 66 60 57 49

replace 50 25 13 7 100

replace (small expression) 50 29 18 12 92

reshape long 96 95 95 94 4

reshape wide 101 100 100 99 2

robvar 83 78 75 74 21

rocfit 65 44 33 28 79

roctab 71 53 44 39 67

rotatemat 98 98 98 98 1

rreg 51 28 17 11 94

runtest 65 46 36 31 75

scobit 54 28 16 10 96

scoreplot 99 99 98 98 3

screeplot 92 87 84 83 19

sdtest1 76 61 53 49 57

sdtest2 77 61 54 50 57

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

sdtest, by() 75 60 52 49 58

sfrancia 80 68 61 58 48

signrank 81 61 52 47 65

signtest 59 32 19 12 95

sktest 63 43 34 28 76

slogit 57 41 34 31 69

sort 72 53 43 27 75

spearman 75 54 49 45 58

stack 94 91 89 88 13

stbase 93 86 82 81 26

stci 93 90 88 87 14

stcox 97 95 94 94 7

stcurve, hazard (after stcox) 95 93 92 92 7

stcurve, hazard (after streg) 97 93 91 90 15

stgen 75 55 45 40 70

stir 73 56 48 44 63

stptime 98 91 88 86 24

strate 71 62 58 55 40

streg, distribution(exponential) 54 30 17 11 95

streg, dist(exp) cluster() 59 36 24 18 88

streg, dist(exp) frailty() 53 29 18 13 92

streg, dist(exp) frailty() shared() 53 30 18 12 94

streg, dist(exp) robust 57 34 23 18 88

streg, distribution(gamma) 50 27 15 9 96

streg, distribution(lnormal) 52 27 19 15 88

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

streg, distribution(weibull) 58 33 21 15 92

streg, dist(weibull) frailty() 49 26 16 11 93

streg, dist(weibull) frailty() shared() 52 30 19 13 93

sts generate 93 90 89 89 10

sts graph 90 87 85 85 13

sts list 87 83 81 81 16

sts test 83 80 79 78 14

stset 67 45 34 29 79

stsplit 91 83 79 77 31

stsum 95 90 88 86 19

stvary 74 51 39 34 76

summarize 60 31 16 9 98

sunflower 69 52 43 38 68

sureg 55 33 20 14 92

svar 44 39 36 35 37

svmat 98 99 99 99

svy: logit 75 60 53 49 57

svy: poisson 69 51 41 36 70

svy: regress 80 67 60 56 50

swilk 77 61 52 48 61

symmetry 91 84 80 78 27

table (oneway) 86 70 62 59 53

table (twoway) 83 65 57 52 60

tabstat 80 67 61 58 48

tabstat, by() 94 88 85 84 21

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

tabulate (oneway) 100 100 100 100 0

tabulate (twoway) 100 100 100 100 0

tetrachoric 95 93 92 91 10

tobit 53 28 16 10 96

total 96 94 93 92 9

treatreg 53 29 18 14 90

treatreg, twostep 53 28 16 9 97

truncreg 52 29 18 13 92

tsset 94 90 89 88 14

tssmooth exp 85 76 71 69 35

tssmooth ma 89 83 80 78 25

ttest1 77 61 53 49 58

ttest2 74 55 45 40 69

ttest, by() 75 60 53 49 57

twoway fpfit 70 50 40 36 72

twoway lfitci 100 100 99 99 1

twoway mband 62 48 42 38 61

twoway mspline 62 48 41 37 63

var 81 69 64 62 16

vargranger 100 100 100 100 1

varlmar 77 63 56 52 54

varnorm 77 64 58 55 49

varsoc 81 69 63 59 46

varstable 100 100 100 100 0

vec 79 67 63 65

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

veclmar 80 68 63 60 45

vecnorm 81 69 63 60 46

vecrank 82 69 63 60 46

vecstable 100 100 100 100

vwls 58 34 22 16 90

wntestb 100 100 100 100 0

wntestq 93 91 89 89 10

xcorr 94 91 90 90 9

xtabond 92 87 85 83 20

xtabond, twostep 92 87 85 84 18

xtcloglog, re 48 26 15 9 96

xtdata, be 80 69 63 60 44

xtdata, fe 73 57 49 45 60

xtdata, re 75 60 53 49 56

xtfrontier 54 33 23 17 87

xtgee, family(gaussian) corr(ar2) 81 71 65 63 42

xtgee, fam(gauss) corr(unstruct) 82 71 66 63 42

xtcloglog, pa 66 45 35 30 77

xtlogit, pa 75 61 57 55 43

xtnbreg, pa 68 49 43 43 52

xtpoisson, pa 74 58 54 52 45

xtprobit, pa 75 60 58 56 38

xtreg, pa 81 70 68 66 32

xtgls 76 60 52 49 53

xthtaylor 65 43 32 27 80

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

xtintreg 49 26 14 8 98

xtivreg, be 69 50 41 36 70

xtivreg, re 67 48 38 34 72

xtlogit, fe 63 45 33 27 78

xtlogit, re 47 27 17 12 92

xtmixed 99 99 99 99 0

xtmixed (crossed effects) 100 100 100 100 1

xtnbreg, fe 59 32 19 13 94

xtnbreg, re 51 27 15 9 97

xtpcse 92 87 85 86 10

xtpcse, corr(ar1) 100 100 100 100 0

xtpcse, corr(psar1) 95 92 91 90 11

xtpoisson, fe 63 40 29 23 83

xtpoisson, re 60 36 24 18 89

xtprobit, re 50 27 15 9 96

xtrc 71 58 52 49 53

xtreg, be 75 61 54 51 54

xtreg, fe 73 57 49 45 61

xtreg, mle 84 76 72 72 27

xtreg, re 74 58 50 45 61

xtregar, fe 74 59 51 47 59

xtregar, re 73 56 48 44 62

xtsum 66 47 38 33 73

xttab 90 84 81 80 23

xttobit 50 28 16 11 95

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 1. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

zinb 52 28 16 11 94

zip 53 29 17 11 95

ztnb 53 29 18 13 91

ztp 56 31 19 15 94

predict, xb 53 27 15 9 98

rmcoll 53 29 15 8 99

robust 100 100 100 100 0

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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9 Performance variability across computing platforms

As discussed in sections 2 and 3, there are many reasons why multiprocessor performance will vary across
computing platforms. Those reasons include differences in how operating systems partition tasks, how
CPUs pipeline and partition instructions, how memory is accessed, and how onboard CPU cache is
handled. Any of these reasons may cause performance to vary across platforms.

Stata/MP performance has been tested on dozens of different platforms, including different CPU
chips (both Intel and AMD), different cache architectures, different operating systems (including Mi-
crosoft Windows, Mac OS X for Intel, Linux, and Sun Solaris), and different architectures for accessing
memory. Despite the possibility for varying performance, the results from all these tests support the
results presented in section 8 and appendices A and B.

To quantify this assertion, consider the benchmarks on which section 8 and appendix A are based.
Among all the tests run on Stata/MP, this set of timings was collected on 10 architectures other than
the one used for the table in section 8, including several MS Windows configurations, several Linux
configurations, a Macintosh platform, a Sun platform, both AMD and Intel chips, and machines with
anywhere from 2 to 16 processors. We can compare the run time for two processors as a percentage
of the time for one processor (column 2 in table 1) across all these platforms. With 332 commands
timed across 10 architectures, this makes for 3,320 timings. Well over 50% of those timings fell within
±3 percentage points of those reported in column 2 of table 1, and 75% of all timings fell within ±5
percentage points. At the tail of the distribution, just under 10% of timings fell outside ±10 percentage
points of column 2, and 5% fell outside ±13 percentage points. Considered differently, the command
performance gains from 1 to 2 processors were correlated above .9 for all 55 pairings of the 11 platforms.
The reported results generalize well across computing platforms.

It is not beneficial to break these results down by platform. There were no conclusive patterns
among operating systems, CPUs, or other platform characteristics.

10 Hyperthreading—single- and multiple-processor platforms

Hyperthreading is an Intel technology for allowing a CPU with a single core to masquerade as a dual-
processor or dual-core CPU. The operating system and other applications see the CPU as having
two processors and treat it just as they would a two-processor system. Intel achieves performance
improvements primarily because main computer memory is slow compared with the processor and its
onboard cache memory. When the thread of execution of one virtual process must wait for something
from main memory, the thread for the other virtual process can execute. The effect is clearly not the
same as having two processors, but for many applications, performance can be improved by treating a
computer with a hyperthreaded CPU as a multiple-processor computer.

Stata/MP runs on hyperthreaded CPUs. Our setup recommendations and the implied performance
gains depend on whether the computer has a single hyperthreaded CPU or multiple hyperthreaded
CPUs.

Most Stata commands are computationally intense, and because hyperthreaded CPUs contain only

Revision 1.0.0 30mar2006



Stata/MP Performance Report Hyperthreading—single- and multiple-processor platforms (32)

a single floating-point coprocessor, gains were expected to be small for computers with a single hyper-
threaded CPU. In reality, performance gains on such platforms was surprisingly good, though not near
those of truly parallel computers.

To ease comparison with true multiprocessor or dual-core computers, figure 12 presents the now
familiar boundary region and median performance. With only 2 processors (and the 2nd virtual), we
are interested in the left and right ends of the graph. The performance boundary over all commands
still includes both perfectly parallelized and completely nonparallelized. The median of all commands
shows only about half the performance gain that would be expected of two real processors, but even so,
half the commands run in less than 85% of the time required by a single, nonhyperthreaded processor.
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Figure 12. Performance of Stata/MP on
hyperthreaded processors. Run times on
multiple processors relative to a single
processor.
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Figure 13. Quartiles of Stata/MP
Performance on hyperthreaded
processors. Run times on multiple
processors relative to a single processor.

Figure 13 presents the quartiles of command performance. The most parallelized 25% of commands
run in less than 79% of their time on a single, nonhyperthreaded processor, but there is less difference
between the best 25% and the best 50% than on true multiprocessor.

This raises the question of which commands performed so well on a single hyperthreaded processor.
The commands that ran in less that 79% of the time of a single, nonhyperthreaded processor were canon,
cluster kmeans, cluster kmedians, ctset, dfuller, generate, generate (small expressions), irf
create, kdensity, markout, mds, mds long, pctile, most predictions, replace, runtest, summarize,
svar, twoway mspline, xtcloglog, re, xtlogit, re, and xttobit.

By way of caution, Stata/MP has not been evaluated on a wide range of single-processor hyper-
threaded computers, and these results should therefore be considered provisional.

On multiprocessor computers where each CPU is hyperthreaded, the current recommendation is to
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set Stata/MP to use the number of real CPUs, not the number of virtual processors. Under such archi-
tectures, each CPU appears to Stata/MP and the operating system as two processors, and Stata/MP
would by default try to use all the (virtual) processors. On these computers, users should type

. set procs use #

where # is the number of CPUs on the computer.

This can be done either interactively or placed in Stata’s profile.do startup script.

Current experience indicates that setting the number of processors to be used above the number
of real CPUs on the computer leads to contention for the floating-point unit (FPU), which can make
commands run slower when trying to use virtual processors.

Figures 14 and 15 show the results of two commands run on an 8-processor computer, each hyper-
threaded, giving the appearance of 16 virtual processors.
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Figure 14. by: replace performance plot on
computers with multiple hyperthreaded
processors.
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Figure 15. weibull performance plot on
computers with multiple hyperthreaded
processors.

The by: replace command, however, is an exception to this recommendation. Aside from a small
uptick in going from 8 to 9 processors, the problem remains nearly perfectly parallelized through all 16
processors (half of which are virtual).

Most commands do not exhibit results like this, and weibull is an example. Beyond the number
of real CPUs, performance actually degrades. This occurs because each CPU has only one FPU, and
weibull, along with most Stata commands, requires many floating-point computations. The computa-
tions are dominated by access to the FPU, and the virtual processors must contend for access to this
single FPU.
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Consider this recommendation provisional until results have been obtained on more architectures
that use multiple hyperthreaded CPUs.

A Performance assessment graphs

Below, the performance of Stata/MP as reported in columns 2 and 3 of the tables in section 8 is
presented graphically along with the modeled performance from equation 1 and a line representing
perfectly scalable performance.

Figures A.1 and A.2 show two typical graphs. As with the table in section 8, the performance is
measured as the time required to execute the command as a percentage of the time required by a single
processor.
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Figure A.1. regress performance plot.
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Figure A.2. xtreg, re performance plot.

For a perfectly scalable command, the percentage time will be halved each time the number of
processors is doubled. This type of scalability is linear when the number of processors and percentage
time are graphed on a logarithmic scale, and that is the scale used in these graphs. Perfect scaling is
shown on the graph as a dashed green line that diagonally bisects the graph.

Linear regression, figure A.1, is nearly perfectly scalable. Both the observed values and the modeled
performance are barely above the reference line. The run time is nearly halved each time the number
of processors is doubled.

As shown in figure A.2, regression with random effects (random intercepts) clearly performs better
as the number of processors is increased, but not as much as linear regression. From table 1, we can
see that xtreg, re is 61% parallelized as compared with 97% for linear regression. From the graph,
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we see that with 2 processors xtreg run on a large dataset runs in just under 75% of the time of one
processor, and with 4 processors this falls to just under half the time.

Figure 7 from section 7 summarizes the information from all these graphs by placing the observed
performance for each command into one of the performance quartiles on the graph.

There are three or four graphs in what follows where the modeled line turns down, suggesting that
at some point, increasing the number of processors accelerates the improvements in run times and
would ultimately result in run times’ being negative. This is nothing more than poor model fit to few
observations.
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Figure A.3. adjust performance plot.
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Figure A.4. alpha performance plot.
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Figure A.5. ameans performance plot.
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Figure A.6. anova (oneway) performance
plot.
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Figure A.7. anova (twoway) performance
plot.
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Figure A.8. arch performance plot.
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Figure A.9. areg performance plot.
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Figure A.10. arima performance plot.
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Figure A.11. asmprobit performance plot.
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Figure A.12. binreg performance plot.
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Figure A.13. biplot performance plot.
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Figure A.14. biprobit performance plot.
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Figure A.15. biprobit (seemingly

unrelated) performance plot.
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Figure A.16. bitest performance plot.
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Figure A.17. blogit performance plot.
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Figure A.18. boxcox performance plot.
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Figure A.19. bprobit performance plot.
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Figure A.20. brier performance plot.
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Figure A.21. bsample performance plot.
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Figure A.22. by: generate performance
plot.
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Figure A.23. by: generate (small

groups) performance plot.
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Figure A.24. by: replace performance plot.
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Figure A.25. by: replace (small groups)

performance plot.
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Figure A.26. ca performance plot.
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Figure A.27. canon performance plot.
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Figure A.28. centile performance plot.
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Figure A.29. ci performance plot.
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Figure A.30. ci, binomial performance plot.
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Figure A.31. ci, poisson performance plot.
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Figure A.32. clogit (k1 to k2 matching)

performance plot.
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Figure A.33. clogit (1 to k matching)

performance plot.
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Figure A.34. cloglog performance plot.
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Figure A.35. cluster averagelinkage

performance plot.
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Figure A.36. cluster centroidlinkage

performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.37. cluster completelinkage

performance plot.
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Figure A.38. cluster generate performance
plot.
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Figure A.39. cluster kmeans performance
plot.
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Figure A.40. cluster kmedians performance
plot.
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Figure A.41. cluster medianlinkage

performance plot.
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Figure A.42. cluster singlelinkage

performance plot.
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Figure A.43. cluster wardslinkage

performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.44. cluster waveragelinkage

performance plot.
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Figure A.45. cnreg performance plot.
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Figure A.46. cnsreg performance plot.
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Figure A.47. collapse performance plot.
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Figure A.48. compare performance plot.
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Figure A.49. compress performance plot.
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Figure A.50. contract performance plot.
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Figure A.51. correlate performance plot.
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Figure A.52. corrgram performance plot.
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Figure A.53. count performance plot.
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Figure A.54. ctset performance plot.
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Figure A.55. cttost performance plot.
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Figure A.56. cumul performance plot.
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Figure A.57. cusum performance plot.
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Figure A.58. dfgls performance plot.
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Figure A.59. dfuller performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.60. dotplot performance plot.
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Figure A.61. dstdize performance plot.
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Figure A.62. eivreg performance plot.
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Figure A.63. factor performance plot.
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Figure A.64. fcast compute performance
plot.
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Figure A.65. fracpoly performance plot.
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Figure A.66. frontier performance plot.
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Figure A.67. gen (small expressions)

performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.68. generate performance plot.
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Figure A.69. glm, family(gamma)

performance plot.
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Figure A.70. glm, family(gaussian)

performance plot.
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Figure A.71. glm, family(igaussian)

performance plot.
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Figure A.72. glm, family(nbinomial)

performance plot.
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Figure A.73. glm, family(poisson)

performance plot.
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Figure A.74. glogit performance plot.
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Figure A.75. gprobit performance plot.
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Figure A.76. graph bar performance plot.
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Figure A.77. graph box performance plot.
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Figure A.78. graph pie performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (55)
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Figure A.79. grmeanby performance plot.
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Figure A.80. hausman performance plot.
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Figure A.81. heckman performance plot.
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Figure A.82. heckman, twostep performance
plot.
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Stata/MP Performance Report A: Performance assessment graphs (56)
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Figure A.83. heckprob performance plot.
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Figure A.84. hetprob performance plot.
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Figure A.85. histogram performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.86. hotelling performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (57)
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Figure A.87. impute performance plot.
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Figure A.88. intreg performance plot.
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Figure A.89. irf create performance plot.
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Figure A.90. ivprobit performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (58)
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Figure A.91. ivprobit, cluster()

performance plot.
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Figure A.92. ivprobit, robust performance
plot.
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Figure A.93. ivreg performance plot.
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Figure A.94. ivtobit performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (59)
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Figure A.95. kap performance plot.
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Figure A.96. kappa performance plot.
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Figure A.97. kdensity performance plot.
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Figure A.98. ksmirnov performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (60)
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Figure A.99. ksmirnov, by() performance
plot.
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Figure A.100. ktau performance plot.
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Figure A.101. kwallis performance plot.
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Figure A.102. ladder performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (61)
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Figure A.103. levelsof performance plot.
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Figure A.104. loadingplot performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.105. logistic performance plot.
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Figure A.106. logit performance plot.

Revision 1.0.0 30mar2006



Stata/MP Performance Report A: Performance assessment graphs (62)

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.107. loneway performance plot.
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Figure A.108. lowess performance plot.
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Figure A.109. ltable performance plot.
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Figure A.110. manova (oneway) performance
plot.
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Stata/MP Performance Report A: Performance assessment graphs (63)
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Figure A.111. manova (twoway) performance
plot.
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Figure A.112. markout performance plot.
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Figure A.113. marksample performance plot.
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Figure A.114. marksample if exp

performance plot.

Revision 1.0.0 30mar2006



Stata/MP Performance Report A: Performance assessment graphs (64)
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Figure A.115. matrix accum performance
plot.
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Figure A.116. matrix eigenvalues

performance plot.
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Figure A.117. matrix score performance
plot.
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Figure A.118. matrix svd performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (65)
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Figure A.119. matrix symeigen performance
plot.
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Figure A.120. matrix syminv performance
plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.121. mds performance plot.
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Figure A.122. mdslong performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (66)
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Figure A.123. mean performance plot.
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Figure A.124. median performance plot.
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Figure A.125. mfp performance plot.
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Figure A.126. mfx performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (67)
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Figure A.127. mkmat performance plot.
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Figure A.128. mkspline performance plot.
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Figure A.129. mleval performance plot.
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Figure A.130. mleval, nocons performance
plot.
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Stata/MP Performance Report A: Performance assessment graphs (68)
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Figure A.131. mlmatbysum performance plot.
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Figure A.132. mlmatsum performance plot.
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Figure A.133. mlogit performance plot.
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Figure A.134. mlsum performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (69)
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Figure A.135. mlvecsum performance plot.
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Figure A.136. mprobit performance plot.
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Figure A.137. mvreg performance plot.
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Figure A.138. nbreg performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (70)
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Figure A.139. newey performance plot.
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Figure A.140. nl performance plot.
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Figure A.141. nlogit performance plot.
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Figure A.142. nptrend performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (71)
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Figure A.143. ologit performance plot.
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Figure A.144. oneway performance plot.
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Figure A.145. oprobit performance plot.
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Figure A.146. orthog performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (72)
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Figure A.147. pca performance plot.
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Figure A.148. pcorr performance plot.
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Figure A.149. pctile performance plot.
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Figure A.150. pergram performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (73)
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Figure A.151. pkcollapse performance plot.
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Figure A.152. pkexamine performance plot.
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Figure A.153. pksumm performance plot.
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Figure A.154. poisson performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (74)
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Figure A.155. pperron performance plot.
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Figure A.156. prais performance plot.
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Figure A.157. predict, cooksd performance
plot.
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Figure A.158. predict, covratio

performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (75)
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Figure A.159. predict, dfbeta performance
plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.160. predict, dfits performance
plot.
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Figure A.161. predict, e performance plot.
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Figure A.162. predict, leverage

performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (76)
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Figure A.163. predict, pr performance plot.
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Figure A.164. predict, residuals

performance plot.
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Figure A.165. predict, rstandard

performance plot.
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Figure A.166. predict, rstudent

performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (77)
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Figure A.167. predict, stdf performance
plot.
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Figure A.168. predict, stdp performance
plot.
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Figure A.169. predict, stdr performance
plot.
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Figure A.170. predict, welsch performance
plot.
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Stata/MP Performance Report A: Performance assessment graphs (78)
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Figure A.171. predict, ystar performance
plot.
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Figure A.172. predictnl performance plot.
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Figure A.173. probit performance plot.
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Figure A.174. procrustes performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (79)
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Figure A.175. proportion performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.176. prtest1 performance plot.
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Figure A.177. prtest2 performance plot.
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Figure A.178. prtest, by() performance
plot.
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Stata/MP Performance Report A: Performance assessment graphs (80)
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Figure A.179. qreg performance plot.
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Figure A.180. ranksum performance plot.
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Figure A.181. ratio performance plot.
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Figure A.182. ratio (exp1) (exp2)

performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (81)
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Figure A.183. recode performance plot.
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Figure A.184. reg3 performance plot.
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Figure A.185. regress performance plot.
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Figure A.186. regress, cluster()

performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (82)
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Figure A.187. regress, robust performance
plot.
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Figure A.188. replace performance plot.
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Figure A.189. replace (small expression)

performance plot.
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Figure A.190. reshape long performance
plot.
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Stata/MP Performance Report A: Performance assessment graphs (83)
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Figure A.191. reshape wide performance
plot.
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Figure A.192. robvar performance plot.
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Figure A.193. rocfit performance plot.
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Figure A.194. roctab performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (84)
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Figure A.195. rotatemat performance plot.
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Figure A.196. rreg performance plot.
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Figure A.197. runtest performance plot.
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Figure A.198. scobit performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (85)
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Figure A.199. scoreplot performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.200. screeplot performance plot.
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Figure A.201. sdtest1 performance plot.
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Figure A.202. sdtest2 performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (86)
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Figure A.203. sdtest, by() performance
plot.
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Figure A.204. sfrancia performance plot.
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Figure A.205. signrank performance plot.
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Figure A.206. signtest performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (87)
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Figure A.207. sktest performance plot.
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Figure A.208. slogit performance plot.
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Figure A.209. sort performance plot.
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Figure A.210. spearman performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (88)
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Figure A.211. stack performance plot.
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Figure A.212. stbase performance plot.
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Figure A.213. stci performance plot.
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Figure A.214. stcox performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (89)
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Figure A.215. stcurve, hazard (after

stcox) performance plot.
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Figure A.216. stcurve, hazard (after

streg) performance plot.
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Figure A.217. stgen performance plot.
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Figure A.218. stir performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (90)
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Figure A.219. stptime performance plot.
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Figure A.220. strate performance plot.
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Figure A.221. streg,
distribution(exponential) performance
plot.
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Figure A.222. streg, dist(exp) cluster()

performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (91)
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Figure A.223. streg, dist(exp) frailty()

performance plot.
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Figure A.224. streg, dist(exp) frailty()

shared() performance plot.
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Figure A.225. streg, dist(exp) robust

performance plot.
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Figure A.226. streg, distribution(gamma)

performance plot.

Revision 1.0.0 30mar2006



Stata/MP Performance Report A: Performance assessment graphs (92)
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Figure A.227. streg,
distribution(lnormal) performance plot.
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Figure A.228. streg,
distribution(weibull) performance plot.
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Figure A.229. streg, dist(weibull)

frailty() performance plot.
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Figure A.230. streg, dist(weibull)

frailty() shared() performance plot.
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Stata/MP Performance Report A: Performance assessment graphs (93)
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Figure A.231. sts generate performance
plot.
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Figure A.232. sts graph performance plot.
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Figure A.233. sts list performance plot.
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Figure A.234. sts test performance plot.
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Figure A.235. stset performance plot.
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Figure A.236. stsplit performance plot.
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Figure A.237. stsum performance plot.
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Figure A.238. stvary performance plot.
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Figure A.239. summarize performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.240. sunflower performance plot.
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Figure A.241. sureg performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.242. svar performance plot.
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Figure A.243. svmat performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.244. svy: logit performance plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.245. svy: poisson performance
plot.
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Figure A.246. svy: regress performance
plot.
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Figure A.247. swilk performance plot.
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Figure A.248. symmetry performance plot.
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Figure A.249. table (oneway) performance
plot.
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Figure A.250. table (twoway) performance
plot.
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Figure A.251. tabstat performance plot.
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Figure A.252. tabstat, by() performance
plot.
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Figure A.253. tabulate (oneway)

performance plot.
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Figure A.254. tabulate (twoway)

performance plot.

Revision 1.0.0 30mar2006



Stata/MP Performance Report A: Performance assessment graphs (99)

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.255. tetrachoric performance plot.
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Figure A.256. tobit performance plot.
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Figure A.257. total performance plot.
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Figure A.258. treatreg performance plot.
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Figure A.259. treatreg, twostep

performance plot.
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Figure A.260. truncreg performance plot.
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Figure A.261. tsset performance plot.
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Figure A.262. tssmooth exp performance
plot.
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Figure A.263. tssmooth ma performance plot.
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Figure A.264. ttest1 performance plot.
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Figure A.265. ttest2 performance plot.
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Figure A.266. ttest, by() performance plot.
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Figure A.267. twoway fpfit performance
plot.
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Figure A.268. twoway lfitci performance
plot.
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Figure A.269. twoway mband performance
plot.
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Figure A.270. twoway mspline performance
plot.
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Figure A.271. var performance plot.
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Figure A.272. vargranger performance plot.
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Figure A.273. varlmar performance plot.
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Figure A.274. varnorm performance plot.
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Figure A.275. varsoc performance plot.
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Figure A.276. varstable performance plot.
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Figure A.277. vec performance plot.
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Figure A.278. veclmar performance plot.
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Figure A.279. vecnorm performance plot.
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Figure A.280. vecrank performance plot.
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Figure A.281. vecstable performance plot.
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Figure A.282. vwls performance plot.
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Figure A.283. wntestb performance plot.
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Figure A.284. wntestq performance plot.
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Figure A.285. xcorr performance plot.
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Figure A.286. xtabond performance plot.
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Figure A.287. xtabond, twostep

performance plot.
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Figure A.288. xtcloglog, re performance
plot.
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Figure A.289. xtdata, be performance plot.
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Figure A.290. xtdata, fe performance plot.
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Figure A.291. xtdata, re performance plot.
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Figure A.292. xtfrontier performance plot.
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Figure A.293. xtgee, family(gaussian)

corr(ar2) performance plot.
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Figure A.294. xtgee, fam(gauss)

corr(unstruct) performance plot.
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Figure A.295. xtcloglog, pa performance
plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.296. xtlogit, pa performance plot.
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Figure A.297. xtnbreg, pa performance plot.
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Figure A.298. xtpoisson, pa performance
plot.
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Figure A.299. xtprobit, pa performance
plot.
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Figure A.300. xtreg, pa performance plot.
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Figure A.301. xtgls performance plot.
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Figure A.302. xthtaylor performance plot.
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Figure A.303. xtintreg performance plot.
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Figure A.304. xtivreg, be performance plot.
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Figure A.305. xtivreg, re performance plot.
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Figure A.306. xtlogit, fe performance plot.
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Figure A.307. xtlogit, re performance plot.
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Figure A.308. xtmixed performance plot.
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Figure A.309. xtmixed (crossed effects)

performance plot.
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Figure A.310. xtnbreg, fe performance plot.
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Figure A.311. xtnbreg, re performance plot.
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Figure A.312. xtpcse performance plot.
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Figure A.313. xtpcse, corr(ar1)

performance plot.
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Figure A.314. xtpcse, corr(psar1)

performance plot.
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Figure A.315. xtpoisson, fe performance
plot.
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Figure A.316. xtpoisson, re performance
plot.

25

35

50

70

100

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

1 2 3 4
Number of processors

Observed
Modeled
Perfect scaling

Figure A.317. xtprobit, re performance
plot.
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Figure A.318. xtrc performance plot.
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Figure A.319. xtreg, be performance plot.
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Figure A.320. xtreg, fe performance plot.
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Figure A.321. xtreg, mle performance plot.
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Figure A.322. xtreg, re performance plot.
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Figure A.323. xtregar, fe performance plot.
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Figure A.324. xtregar, re performance plot.
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Figure A.325. xtsum performance plot.
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Figure A.326. xttab performance plot.
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Figure A.327. xttobit performance plot.
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Figure A.328. zinb performance plot.
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Figure A.329. zip performance plot.
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Figure A.330. ztnb performance plot.
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Figure A.331. ztp performance plot.
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Figure A.332. predict, xb performance
plot.
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Figure A.333. rmcoll performance plot.
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Figure A.334. robust performance plot.
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B Performance assessment graphs for 16 processors

Actual and projected performance graphs of all 332 commands are presented below. Of these com-
mands, 115 have been timed on a 16-processor computer and the remaining graphs show extrapolated
performance based on measurements from a 4-processor computer and equation 1. The close agreement
between the 4-processor and 16-processor computers when estimating the 115 equations common to
both suggest that these extrapolations will be reliable.

In all cases, observed timings are shown, and so it is easy to tell the extrapolated graphs from the
rest.

As with the performance table, a few of the results for cluster commands produced overly optimistic
projections for 8- and 16-processor performance. The graphs will be updated when the cluster commands
have been tested on 8- and 16-processor computers.

These graphs take the same form as those from appendix A.
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Figure B.1. Parallelization performance plots.
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Figure B.2. Parallelization performance plots.

Revision 1.0.0 30mar2006



Stata/MP Performance Report B: Performance assessment graphs for 16 processors (122)

6.25

12.5

25

50

100

6.25

12.5

25

50

100

6.25

12.5

25

50

100

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

bsample by: generate by: generate (small groups)

by: replace by: replace (small groups) ca

canon centile ci

Observed Modeled Perfect scaling

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

Number of processors

Figure B.3. Parallelization performance plots.

Revision 1.0.0 30mar2006



Stata/MP Performance Report B: Performance assessment graphs for 16 processors (123)

6.25

12.5

25

50

100

6.25

12.5

25

50

100

6.25

12.5

25

50

100

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

ci, binomial ci, poisson clogit (1 to k matching)

clogit (k1 to k2 matching) cloglog cluster averagelinkage

cluster centroidlinkage cluster completelinkage cluster generate

Observed Modeled Perfect scaling

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

Number of processors

Figure B.4. Parallelization performance plots.
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Figure B.5. Parallelization performance plots.
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Figure B.6. Parallelization performance plots.
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Figure B.7. Parallelization performance plots.
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Figure B.8. Parallelization performance plots.
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Figure B.9. Parallelization performance plots.
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Figure B.10. Parallelization performance plots.
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Figure B.11. Parallelization performance plots.
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Figure B.12. Parallelization performance plots.
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Figure B.13. Parallelization performance plots.
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Figure B.14. Parallelization performance plots.
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Figure B.15. Parallelization performance plots.
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Figure B.16. Parallelization performance plots.
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Figure B.17. Parallelization performance plots.
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Figure B.18. Parallelization performance plots.
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Figure B.19. Parallelization performance plots.
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Figure B.20. Parallelization performance plots.
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Figure B.21. Parallelization performance plots.
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Figure B.22. Parallelization performance plots.
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Figure B.23. Parallelization performance plots.
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Figure B.24. Parallelization performance plots.
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Figure B.25. Parallelization performance plots.
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Figure B.26. Parallelization performance plots.
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Figure B.27. Parallelization performance plots.
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Figure B.28. Parallelization performance plots.
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Figure B.29. Parallelization performance plots.
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Figure B.30. Parallelization performance plots.
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Figure B.31. Parallelization performance plots.
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Figure B.32. Parallelization performance plots.
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Figure B.33. Parallelization performance plots.

Revision 1.0.0 30mar2006



Stata/MP Performance Report B: Performance assessment graphs for 16 processors (153)

6.25

12.5

25

50

100

6.25

12.5

25

50

100

6.25

12.5

25

50

100

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

xtgls xthtaylor xtintreg

xtivreg, be xtivreg, re xtlogit, fe

xtlogit, re xtmixed xtreg, pa

Observed Modeled Perfect scaling

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

Number of processors

Figure B.34. Parallelization performance plots.
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Figure B.35. Parallelization performance plots.

Revision 1.0.0 30mar2006



Stata/MP Performance Report B: Performance assessment graphs for 16 processors (155)

6.25

12.5

25

50

100

6.25

12.5

25

50

100

6.25

12.5

25

50

100

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

xtrc xtreg, be xtreg, fe

xtreg, mle xtreg, re xtregar, fe

xtregar, re xtsum xttab

Observed Modeled Perfect scaling

Pe
rc

en
ta

ge
 o

f s
in

gl
e−

pr
oc

es
so

r t
im

e

Number of processors

Figure B.36. Parallelization performance plots.
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Figure B.37. Parallelization performance plots.
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C Command names and descriptions

Table 2. Command descriptions

command description

adjust Tables of adjusted means and proportions

alpha Cronbach’s alpha

ameans Arithmetic, geometric, and harmonic means

anova (oneway) Analysis of variance and covariance—one-way

anova (twoway) Analysis of variance and covariance—two-way

arch Autoregressive conditional heteroskedasticity (ARCH) family of estimators

areg Linear regression with a large dummy-variable set

arima ARIMA, ARMAX, and other dynamic regression models

asmprobit Maximum simulated-likelihood alternative-specific multinomial probit
models

binreg Generalized linear models: extensions to the binomial family

biplot Biplots

biprobit Bivariate probit regression

biprobit (seemingly

unrelated)

Seemingly unrelated probit regression

bitest Binomial probability test

blogit Logistic regression for grouped data

boxcox Box–Cox regression models

bprobit Probit regression for grouped data

brier Brier score decomposition

bsample Sampling with replacement

by: generate Create new variables over longitudinal/panel data

by: generate (small

groups)

Create new variables over longitudinal/panel data, small panels

by: replace Replace variable values over longitudinal/panel data

by: replace (small

groups)

Replace variable values over longitudinal/panel data, small panels

ca Simple correspondence analysis

canon Canonical correlations
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Table 2. Command descriptions

command description

centile Report centile and confidence interval

ci Normal-based confidence intervals

ci, binomial Binomial confidence intervals for proportions

ci, poisson Poisson confidence intervals for counts

clogit (k1 to k2

matching)

Conditional (fixed-effects) logistic regression, k1 to k2 matching

clogit (1 to k

matching)

Conditional (fixed-effects) logistic regression, 1 to k matching

cloglog Complementary log-log regression

cluster

averagelinkage

Hierarchical cluster analysis—average linkage

cluster

centroidlinkage

Hierarchical cluster analysis—centroid linkage

cluster

completelinkage

Hierarchical cluster analysis—complete linkage

cluster generate Generate summary and grouping variables from a cluster analysis

cluster kmeans Kmeans cluster analysis

cluster kmedians Kmedians cluster analysis

cluster

medianlinkage

Hierarchical cluster analysis—median linkage

cluster

singlelinkage

Hierarchical cluster analysis—single linkage

cluster wardslinkage Hierarchical cluster analysis—Ward’s linkage

cluster

waveragelinkage

Hierarchical cluster analysis—Ward’s average linkage

cnreg Censored-normal regression

cnsreg Constrained linear regression

collapse Make dataset of summary datasets

compare Compare two variables

compress Compress data in memory

contract Make dataset of frequencies and percentages

correlate Correlations (covariances) of variables or estimators

corrgram Tabulate and graph autocorrelations
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Table 2. Command descriptions

command description

count Count observations satisfying specified condition

ctset Declare data to be count-time data

cttost Convert count-time data to survival-time data

cumul Cumulative distribution

cusum Cusum plots and tests for binary variables

dfgls DF-GLS unit-root test

dfuller Augmented Dickey–Fuller unit-root test

dotplot Comparative scatterplots

dstdize Direct and indirect standardization

eivreg Errors-in-variables regression

factor Factor analysis

fcast compute Dynamic forecasts after VAR or VEC estimation

fracpoly Fractional polynomial regression

frontier Stochastic frontier models

gen (small

expressions)

Create or change contents of variable—small expressions

generate Create or change contents of variable

glm, family(gamma) Generalized linear models—gamma distribution

glm,

family(gaussian)

Generalized linear models—Gaussian distribution

glm,

family(igaussian)

Generalized linear models—inverse Gaussian distribution

glm,

family(nbinomial)

Generalized linear models—negative binomial distribution

glm, family(poisson) Generalized linear models—Poisson distribution

glogit Weighted least-squares logistic regression for grouped data

gprobit Weighted least-squares probit regression for grouped data

graph bar Bar charts

graph box Box plots
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Table 2. Command descriptions

command description

graph pie Pie charts

grmeanby Graph means and medians by categorical variables

hausman Hausman specification test

heckman Heckman selection model—maximum likelihood estimator

heckman, twostep Heckman selection model—two-step estimator

heckprob Probit model with selection

hetprob Heteroskedastic probit model

histogram Histograms for continuous and categorical variables

hotelling Hotelling’s T-squared generalized means test

impute Fill in missing values

intreg Interval regression

irf create Create IRFs and FEVDs after VAR and VEC estimation

ivprobit Probit model with endogenous regressors

ivprobit, cluster() Probit model with endogenous regressors, cluster-robust standard errors

ivprobit, robust Probit model with endogenous regressors, robust (Huber/White) standard
errors

ivreg Instrumental variables (two-stage least-squares) regression

ivtobit Tobit model with endogenous regressors

kap Interrater agreement

kappa Interrater agreement

kdensity Univariate kernel density estimation

ksmirnov Kolmogorov–Smirnov equality-of-distributions test

ksmirnov, by() Kolmogorov–Smirnov equality-of-distributions test over groups

ktau Kendall’s rank correlation coefficients

kwallis Kruskal–Wallis equality-of-populations rank test

ladder Ladder of powers

Revision 1.0.0 30mar2006



Stata/MP Performance Report C: Command names and descriptions (161)

Table 2. Command descriptions

command description

levelsof Levels of variable

loadingplot Score and loading plots after factor and pca

logistic Logistic regression, reporting odds ratios

logit Logistic regression, reporting coefficients

loneway Large one-way ANOVA, random effects, and reliability

lowess Lowess smoothing

ltable Life tables for survival data

manova (oneway) Multivariate analysis of variance and covariance, one-way

manova (twoway) Multivariate analysis of variance and covariance, two-way

markout Mark observations for exclusion

marksample Mark observations for inclusion

marksample if exp Mark observations for inclusion, with if qualifier

matrix accum Form cross-product matrices of variables over observations

matrix eigenvalues Eigenvalues of a matrix

matrix score Inner product of matrix with variables over observations

matrix svd Singular value decomposition

matrix symeigen Eigenvalues of a symmetric matrix

matrix syminv Inversion of a symmetric matrix

mds Multidimensional scaling for two-way data

mdslong Multidimensional scaling of proximity data in long format

mean Estimate means

median Equality tests on unmatched data

mfp Multivariable fractional polynomial models

mfx Obtain marginal effects or elasticities after estimation

mkmat Convert variables to matrix and vice versa
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Table 2. Command descriptions

command description

mkspline Linear spline construction

mleval Helper commands for user-programmed MLEs, evaluates likelihood of co-
efficient vector

mleval, nocons Helper commands for user-programmed MLEs, evaluates likelihood of co-
efficient vector without constant

mlmatbysum Helper commands for user-programmed MLEs, computes Hessians of
panel-data estimators

mlmatsum Helper commands for user-programmed MLEs, computes Hessians of coef-
ficient vector

mlogit Multinomial (polytomous) logistic regression

mlsum Helper commands for user-programmed MLEs, sums likelihood of coeffi-
cient vector

mlvecsum Helper commands for user-programmed MLEs, computes gradients of co-
efficient vector

mprobit Multinomial probit regression

mvreg Multivariate regression

nbreg Negative binomial regression

newey Regression with Newey–West standard errors

nl Nonlinear least-squares estimation

nlogit Nested logit regression

nptrend Test for trend across ordered groups

ologit Ordered logistic regression

oneway One-way analysis of variance

oprobit Ordered probit regression

orthog Orthogonalize variables and compute orthogonal polynomials

pca Principal component analysis

pcorr Partial correlation coefficients

pctile Create variable containing percentiles

pergram Periodogram

pkcollapse Generate pharmacokinetic measurement dataset

pkexamine Calculate pharmacokinetic measures
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Table 2. Command descriptions

command description

pksumm Summarize pharmacokinetic data

poisson Poisson regression

pperron Phillips–Perron unit-root test

prais Prais–Winsten and Cochrane–Orcutt regression

predict, cooksd Obtain Cook’s distance predictions after estimation

predict, covratio Obtain COVRATIO predictions after estimation

predict, dfbeta Obtain DFBETAs for a variable after estimation

predict, dfits Obtain DFITS predictions after estimation

predict, e Obtain predictions given upper and lower truncation after estimation

predict, leverage Obtain leverage of observations after estimation

predict, pr Obtain probability-in-range predictions after estimation

predict, residuals Obtain residuals after estimation

predict, rstandard Obtain standardized residuals after estimation

predict, rstudent Obtain studentized residuals after estimation

predict, stdf Obtain standard errors of predictions after estimation

predict, stdp Obtain standard errors of forecasts after estimation

predict, stdr Obtain standard errors of residuals after estimation

predict, welsch Obtain Welsch distances after estimation

predict, ystar Obtain truncated predictions in a range after estimation

predictnl Obtain nonlinear predictions, standard errors, etc., after estimation

probit Probit regression

procrustes Procrustes transformation

proportion Estimate proportions

prtest1 One-sample tests of proportions

prtest2 Two-sample tests of proportions
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Table 2. Command descriptions

command description

prtest, by() Tests of proportions computed over groups

qreg Quantile (including median) regression

ranksum Equality tests on unmatched data

ratio Estimate ratio with SE and CI

ratio (exp1) (exp2) Estimate two ratios with SE and CI

recode Recode categorical variables

reg3 Three-stage estimation for systems of simultaneous equations

regress Linear regression

regress, cluster() Linear regression, cluster-robust standard errors

regress, robust Linear regression, robust (Huber/White) standard errors

replace Create or change contents of variable

replace (small

expression)

Create or change contents of variable, simple expression

reshape long Convert data from wide to long

reshape wide Convert data from long to wide

robvar Robust tests for equality of variance

rocfit Fit ROC models

roctab Receiver-Operating-Characteristic (ROC) analysis

rotatemat Orthogonal and oblique rotations of a Stata matrix

rreg Robust regression

runtest Test for random order

scobit Skewed logistic regression

scoreplot Score and loading plots after cmd:factor and cmd:pca

screeplot Scree plot of eigenvalues

sdtest1 Variance-comparison test against constant

sdtest2 Variance-comparison test between variables
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Table 2. Command descriptions

command description

sdtest, by() Variance-comparison test over groups

sfrancia Shapiro–Francia test for normality

signrank Equality tests on matched data

signtest Equality tests on matched data

sktest Skewness and kurtosis test for normality

slogit Stereotype logistic regression

sort Sort data

spearman Spearman’s rank correlation coefficients

stack Stack data

stbase Form baseline dataset

stci Confidence intervals for means and percentiles of survival time

stcox Fit Cox proportional hazards model

stcurve, hazard

(after stcox)

Compute and plot hazard after Cox proportional hazards estimation

stcurve, hazard

(after streg)

Compute and plot hazard after survival estimation using exponential model

stgen Generate variables reflecting entire histories

stir Report incidence-rate comparison

stptime Calculate person-time, incidence rates, and SMR

strate Tabulate failure rates and rate ratios

streg,

distribution(exponential)

Fit parametric survival models, exponential distribution

streg, dist(exp)

cluster()

Fit parametric survival models, exponential distribution with cluster-
robust standard errors

streg, dist(exp)

frailty()

Fit parametric survival models, exponential distribution with individual
frailty

streg, dist(exp)

frailty() shared()

Fit parametric survival models, exponential distribution with shared frailty

streg, dist(exp)

robust

Fit parametric survival models, exponential distribution with robust stan-
dard errors

streg,

distribution(gamma)

Fit parametric survival models, gamma distribution

streg,

distribution(lnormal)

Fit parametric survival models, log-normal distribution
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Table 2. Command descriptions

command description

streg,

distribution(weibull)

Fit parametric survival models, Weibull distribution

streg, dist(weibull)

frailty()

Fit parametric survival models, Weibull distribution with individual frailty

streg, dist(weibull)

frailty() shared()

Fit parametric survival models, Weibull distribution with shared frailty

sts generate Create new variables containing survival, hazard, and related functions

sts graph Compute and graph survival, hazard, and related functions

sts list Compute and list survival and related functions

sts test Test the equality of the survival function across groups

stset Declare data to be survival-time data

stsplit Split time-span records

stsum Summarize survival-time data

stvary Report variables that vary over time

summarize Summary statistics

sunflower Density-distribution sunflower plots

sureg Zellner’s seemingly unrelated regression

svar Structural vector autoregression models

svmat Convert variables to matrix and vice versa

svy: logit Logistic/logit regression using survey data

svy: poisson Poisson regression using count survey data

svy: regress Linear regression using survey data

swilk Shapiro–Wilk test for normality

symmetry Symmetry and marginal homogeneity tests

table (oneway) Table of summary statistics, one-way

table (twoway) Table of summary statistics, two-way

tabstat Display table of summary statistics

tabstat, by() Display table of summary statistics over groups
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Table 2. Command descriptions

command description

tabulate (oneway) Tables of frequencies, one-way

tabulate (twoway) Tables of frequencies, two-way

tetrachoric Tetrachoric correlations for binary variables

tobit Tobit regression

total Estimate totals

treatreg Treatment-effects model, ML estimation

treatreg, twostep Treatment-effects model, two-step estimation

truncreg Truncated regression

tsset Declare a dataset to be time-series data

tssmooth exp Exponential smoothing of univariate time-series data

tssmooth ma Moving average smoothing of univariate time-series data

ttest1 Mean comparison test against constant null hypothesis

ttest2 Mean comparison test against between variables

ttest, by() Mean comparison test against over groups

twoway fpfit Compute and graph fractional-polynomial fit

twoway lfitci Compute and graph linear fit with confidence intervals

twoway mband Compute and graph median bands

twoway mspline Compute and graph spline smooth

var Vector autoregression models

vargranger Perform pairwise Granger causality tests after var or svar

varlmar Obtain LM statistics for residual autocorrelation after var or svar

varnorm Test for normally distributed disturbances after var or svar

varsoc Obtain lag-order selection statistics for VARs and VECMs

varstable Check the stability condition of VAR or SVAR estimates

vec Vector error-correction models
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Table 2. Command descriptions

command description

veclmar Obtain LM statistics for residual autocorrelation after vec

vecnorm Test for normally distributed disturbances after vec

vecrank Estimate the cointegrating rank using Johansen’s framework

vecstable Check the stability condition of VECM estimates

vwls Variance-weighted least squares

wntestb Bartlett’s periodogram-based test for white noise

wntestq Portmanteau (Q) test for white noise

xcorr Cross-correlogram for bivariate time series

xtabond Arellano–Bond linear, dynamic panel-data estimation

xtabond, twostep Arellano–Bond linear, dynamic panel-data estimation, two-step estimation

xtcloglog, re Random-effects cloglog models

xtdata, be Compute between transform of panel data

xtdata, fe Compute within (fixed-effects) transform of panel data

xtdata, re Compute random-effects transform of panel data

xtfrontier Stochastic frontier models for panel data

xtgee,

family(gaussian)

corr(ar2)

GEE estimation of Gaussian panel-data model with 2-period
autocorrelation

xtgee, fam(gauss)

corr(unstruct)

GEE estimation of Gaussian panel-data model with unstructured
correlation

xtcloglog, pa Population-averaged cloglog models

xtlogit, pa Population-averaged logit models

xtnbreg, pa Population-averaged negative binomial models

xtpoisson, pa Population-averaged Poisson models

xtprobit, pa Population-averaged probit models

xtreg, pa Population-averaged linear model

xtgls Fit panel-data models using GLS

xthtaylor Hausman–Taylor estimator for error-components models
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Table 2. Command descriptions

command description

xtintreg Random-effects interval data regression models

xtivreg, be Instrumental variables and two-stage least squares for panel-data models—
between effects

xtivreg, re Instrumental variables and two-stage least squares for panel-data models—
random effects

xtlogit, fe Fixed-effects logit models

xtlogit, re Random-effects logit models

xtmixed Multilevel mixed-effects linear regression

xtmixed (crossed

effects)

Multilevel mixed-effects linear regression—crossed effects

xtnbreg, fe Fixed-effects negative binomial models

xtnbreg, re Random-effects negative binomial models

xtpcse OLS or Prais–Winsten models with panel-corrected standard errors

xtpcse, corr(ar1) Prais–Winsten models with panel-corrected standard errors

xtpcse, corr(psar1) Prais–Winsten models with panel-corrected standard errors—panel-
specific autocorrelation

xtpoisson, fe Fixed-effects Poisson models

xtpoisson, re Random-effects Poisson models

xtprobit, re Random-effects probit models

xtrc Random-coefficients regression

xtreg, be Between-effects linear models

xtreg, fe Fixed-effects linear models

xtreg, mle Random-effects linear models, ML estimation

xtreg, re Random-effects linear models

xtregar, fe Fixed-effects linear models with an AR(1) disturbance

xtregar, re Random-effects linear models with an AR(1) disturbance

xtsum Summarize xt data

xttab Tabulate xt data

xttobit Random-effects tobit models
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Table 2. Command descriptions

command description

zinb Zero-inflated negative binomial regression

zip Zero-inflated Poisson regression

ztnb Zero-truncated negative binomial regression

ztp Zero-truncated Poisson regression

predict, xb Obtain predictions, residuals, etc., after estimation programming
command—option xb

rmcoll Remove collinear variables

robust Robust variance estimates
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D Problem sizes

The following table shows the size of the problems used to measure the performance gains reported in
table 1. As discussed in section 9, these are intentionally large problems requiring some time to run. If
a command was so fast that a sufficiently large problem would have required too much memory to be
run on a variety of computers, then a smaller problem was run, and the problem was run several times
(iterations) for the timing.

The second though fourth columns of the table record the number of observations for the problem,
either as a simple number of observations N or as a number of panels m and a number of time periods t
within panel. The latter provide more information on problem size for longitudinal panel-data problems,
and the number of observation is just the product of m and t. Some such problems are not really panel
data but merely grouped data, and the time periods should just be considered the number of observations
within group. Almost all the panel-data problems were created with balanced panels (equal number of
observations within panel). Rarely would unbalanced panels affect the performance gains of Stata/MP.

The column labeled k records the number of covariates in the problem, or, for matrix commands,
the row and column dimensions of the matrix.

The column labeled neq records the number of equations for problems that involve multiple equations.

The column niter records the number of times the command was run on the problem to generate a
single timing.
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Table 3. Problem sizes

Observations

command N m t k neq niter

adjust 20000 100 1

alpha 500000 20 1

ameans 300000 20 1

anova (oneway) 80000 500 1

anova (twoway) 300000 26 1

arch 20000 5 1

areg 30000 200 100 1

arima 2000 15 1

asmprobit 200 3 2 2 1

binreg 50000 100 1

biplot 4000 2 1

biprobit 20000 40 40 1

biprobit (seemingly

unrelated)

40000 40 40 1

bitest 3000000 1 2 10

blogit 10000 20 50 50

boxcox 30000 50 1

bprobit 10000 20 50 50

brier 150000 5

bsample 100000 100 20

by: generate 5000 500 6

by: generate (small

groups)

250000 10 6

by: replace 5000 500 6

by: replace (small

groups)

250000 10 6

ca 50000 250 1

canon 1000000 30 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

centile 10000 300 1

ci 500000 50 1

ci, binomial 500000 50 1

ci, poisson 100000 20 8

clogit (k1 to k2

matching)

20000 10 3 1

clogit (1 to k

matching)

15000 5 50 1

cloglog 40000 100 1

cluster

averagelinkage

1200 5 1

cluster

centroidlinkage

1200 5 1

cluster

completelinkage

1200 5 1

cluster generate 1000 5 1

cluster kmeans 10000 10 1

cluster kmedians 10000 5 1

cluster

medianlinkage

1200 5 1

cluster

singlelinkage

5000 5 1

cluster wardslinkage 1200 5 1

cluster

waveragelinkage

1200 5 1

cnreg 500000 20 1

cnsreg 500000 100 1

collapse 300000 50 3 1

compare 500000 2 10

compress 500000 50 50 1

contract 1000000 20 100 1

correlate 200000 200 1

corrgram 40000 1 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

count 5000000 1

ctset 1000000 50

cttost 500000 1

cumul 1000000 2 1

cusum 500000 1 1

dfgls 2000 1 40

dfuller 500000 1 10

dotplot 100000 10 1

dstdize 150 50 1000 1

eivreg 160000 200 1

factor 120000 200 1

fcast compute 30000 2 5 1

fracpoly 500000 10 1

frontier 30000 200 1

gen (small

expressions)

15000 4000 1

generate 50000 25

glm, family(gamma) 200000 50 1

glm,

family(gaussian)

400000 50 1

glm,

family(igaussian)

100000 100 1

glm,

family(nbinomial)

100000 50 1

glm, family(poisson) 100000 50 1

glogit 10000 20 50 100

gprobit 20000 40 50 50

graph bar 500000 10 3 1

graph box 200000 2 10 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

graph pie 2500000 10 10 1

grmeanby 300000 4 10 1

hausman 200 1

heckman 50000 100 50 1

heckman, twostep 100000 100 50 1

heckprob 20000 50 50 1

hetprob 40000 50 20 1

histogram 3000000 1 1

hotelling 150000 100 1

impute 400000 30 1

intreg 50000 50 1

irf create 100000 2 8 1

ivprobit 15000 30 20 1

ivprobit, cluster() 15000 30 20 1

ivprobit, robust 15000 30 20 1

ivreg 80000 200 100 1

ivtobit 10000 50 20 1

kap 500000 2 10 4

kappa 400000 10 20 1

kdensity 1000000 1

ksmirnov 1000000 1

ksmirnov, by() 2000000 1

ktau 5000 5 1

kwallis 800000 10 1

ladder 400000 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

levelsof 200000 500 10

loadingplot 400000 60 4

logistic 100000 100 1

logit 100000 100 1

loneway 500000 500 4

lowess 10000 1 1

ltable 50000 1 40

manova (oneway) 1000000 200 20 1

manova (twoway) 1000000 20 10 1

markout 100000 500 1

marksample 100000 500 1

marksample if exp 100000 500 1

matrix accum 100000 300 1

matrix eigenvalues 1000 1000 1

matrix score 100000 1000 1

matrix svd 400 400 1

matrix symeigen 800 800 1

matrix syminv 1300 1300 1

mds 400 400 1

mdslong 400 1 1

mean 100000 100 1

median 100000 5 40

mfp 30000 5 1

mfx 40000 200 1

mkmat 600 600 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

mkspline 4000000 1 1

mleval 200000 200 10

mleval, nocons 200000 200 10

mlmatbysum 200000 200 10 10

mlmatsum 60000 400 1

mlogit 10000 100 3 1

mlsum 1000000 1 100

mlvecsum 300000 200 10

mprobit 800 10 3 1

mvreg 400000 100 4 1

nbreg 60000 30 1

newey 500000 5 1

nl 300000 1

nlogit 1200 2 5 3 1

nptrend 300000 10 1

ologit 70000 100 3 1

oneway 1000000 300 30

oprobit 70000 100 3 1

orthog 200000 10 1

pca 300000 100 1

pcorr 150000 200 1

pctile 2000000 1 1

pergram 15000 1 1

pkcollapse 100 50 1

pkexamine 1 25 300

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

pksumm 200 10 1

poisson 80000 80 1

pperron 500000 1 1

prais 500000 5 1

predict, cooksd 30000 300 1

predict, covratio 30000 300 1

predict, dfbeta 30000 200 1

predict, dfits 30000 200 1

predict, e 20000 1000 1

predict, leverage 80000 200 1

predict, pr 20000 1000 1

predict, residuals 20000 1000 1

predict, rstandard 20000 400 1

predict, rstudent 20000 400 1

predict, stdf 20000 400 1

predict, stdp 20000 400 1

predict, stdr 20000 400 1

predict, welsch 20000 300 1

predict, ystar 20000 1000 1

predictnl 40000 30 1

probit 100000 100 1

procrustes 200000 20 20 1

proportion 100000 10 5 1

prtest1 1000000 1 2 20

prtest2 1000000 2 2 15

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

prtest, by() 1000000 2 2 15

qreg 100000 20 1

ranksum 2000000 2 1

ratio 1000000 8

ratio (exp1) (exp2) 1000000 5

recode 500000 5 5 1

reg3 30000 50 3 1

regress 40000 400 1

regress, cluster() 40000 400 1

regress, robust 40000 400 1

replace 50000 25

replace (small

expression)

10000 4000 1

reshape long 100000 20 1

reshape wide 100000 15 5 1

robvar 300000 2 1

rocfit 3000 1 5 8

roctab 500000 1 80 1

rotatemat 100 100 1

rreg 50000 100 1

runtest 1000000 1 2

scobit 80000 50 1

scoreplot 400000 20 1

screeplot 400000 20 20

sdtest1 1500000 30

sdtest2 1500000 2 15

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

sdtest, by() 1500000 8

sfrancia 300000 10 1

signrank 2000000 2 1

signtest 2000000 2 20

sktest 2000000 2 1

slogit 5000 50 5 1

sort 500000 100 50 1

spearman 200000 3 1

stack 4000 4000 1

stbase 100000 200 1

stci 20000 1 12

stcox 50000 10 10

stcurve, hazard

(after stcox)

100000 2 1

stcurve, hazard

(after streg)

100000 2 1

stgen 1000000 2 1

stir 1000000 1 2 5

stptime 50000 1 500 200

strate 1000000 1 20 1

streg,

distribution(exponential)

40000 100 1

streg, dist(exp)

cluster()

15000 100 30 1

streg, dist(exp)

frailty()

15000 100 1

streg, dist(exp)

frailty() shared()

15000 100 30 1

streg, dist(exp)

robust

40000 100 1

streg,

distribution(gamma)

10000 2 1

streg,

distribution(lnormal)

40000 30 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

streg,

distribution(weibull)

200000 30 1

streg, dist(weibull)

frailty()

20000 50 1

streg, dist(weibull)

frailty() shared()

10000 100 30 1

sts generate 1000000 1 1

sts graph 1000000 1 1

sts list 100000 1 10

sts test 1000000 1 2 1

stset 2000000 1

stsplit 1000000 50 1

stsum 500000 1 1

stvary 3000000 5 1

summarize 400000 100 1

sunflower 1000000 2 1

sureg 100000 50 2 1

svar 20000 2 10 1

svmat 3000 3000 1

svy: logit 500000 10 1

svy: poisson 200000 10 1

svy: regress 500000 10 1

swilk 150000 20 1

symmetry 800000 2 50 1

table (oneway) 2000000 20 2

table (twoway) 3000000 20 1

tabstat 1000000 1 50

tabstat, by() 200000 20 10

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.
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Table 3. Problem sizes

Observations

command N m t k neq niter

tabulate (oneway) 2000000 20 30

tabulate (twoway) 3000000 20 10

tetrachoric 200000 20 2 1

tobit 200000 50 1

total 400000 50 1

treatreg 30000 30 30 1

treatreg, twostep 150000 50 50 1

truncreg 30000 100 1

tsset 4000000 1

tssmooth exp 1000000 1 1

tssmooth ma 1000000 1 1

ttest1 1000000 1 50

ttest2 1000000 2 10

ttest, by() 1000000 10

twoway fpfit 200000 1 1

twoway lfitci 7500 1 1

twoway mband 1000000 1 1

twoway mspline 1000000 1 1

var 250000 2 5 1

vargranger 1000000 2 5 40

varlmar 80000 2 5 1

varnorm 300000 2 5 1

varsoc 150000 2 5 1

varstable 100000 2 10 15

vec 30000 2 10 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.

See appendix C for command descriptions Revision 1.0.0 30mar2006



Stata/MP Performance Report D: Problem sizes (183)

Table 3. Problem sizes

Observations

command N m t k neq niter

veclmar 50000 2 5 1

vecnorm 150000 2 5 1

vecrank 200000 2 5 1

vecstable 100000 2 10 120

vwls 1000000 40 1

wntestb 15000 1 1

wntestq 400000 1 1

xcorr 400000 1 1

xtabond 10000 10 2 1

xtabond, twostep 15000 10 2 1

xtcloglog, re 4000 5 5 1

xtdata, be 100000 10 5 1

xtdata, fe 200000 5 5 1

xtdata, re 200000 5 5 1

xtfrontier 2000 10 5 1

xtgee,

family(gaussian)

corr(ar2)

50000 5 10 1

xtgee, fam(gauss)

corr(unstruct)

50000 5 10 1

xtcloglog, pa 30000 5 5 1

xtlogit, pa 40000 5 5 1

xtnbreg, pa 15000 5 5 1

xtpoisson, pa 20000 10 5 1

xtprobit, pa 30000 10 5 1

xtreg, pa 50000 5 10 1

xtgls 5 100000 5 1

xthtaylor 40000 10 4 4 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 3. Problem sizes

Observations

command N m t k neq niter

xtintreg 1000 5 5 1

xtivreg, be 80000 5 5 5 1

xtivreg, re 30000 10 5 5 1

xtlogit, fe 6000 10 50 1

xtlogit, re 4000 10 5 1

xtmixed 500 10 5 5 1

xtmixed (crossed

effects)

10 1500 1

xtnbreg, fe 20000 5 5 1

xtnbreg, re 7500 5 5 1

xtpcse 5 100000 5 1

xtpcse, corr(ar1) 50 500 5 1

xtpcse, corr(psar1) 20 5000 5 1

xtpoisson, fe 75000 5 5 1

xtpoisson, re 40000 5 5 1

xtprobit, re 2000 5 5 1

xtrc 100 2000 5 1

xtreg, be 150000 10 5 1

xtreg, fe 80000 10 5 1

xtreg, mle 80000 10 5 1

xtreg, re 50000 10 5 1

xtregar, fe 10000 20 5 1

xtregar, re 10000 20 5 1

xtsum 50000 10 10 1

xttab 1500000 2 50 1

xttobit 5000 5 5 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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Table 3. Problem sizes

Observations

command N m t k neq niter

zinb 15000 50 50 1

zip 25000 50 50 1

ztnb 50000 10 1

ztp 150000 50 1

predict, xb 20000 1000 1

rmcoll 50000 400 1

robust 200000 200 1

N , number of observations; m, number of panels; t, number of time periods within each panel; k, number of

regressors; neq, number of equations; and niter, number of iterations.

See appendix C for command descriptions Revision 1.0.0 30mar2006
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E GLLAMM

The table below shows results for a few models fitted using gllamm. This is but a small subset of the
models that gllamm can fit. Each command is described briefly in the ensuing table.

The user-written command gllamm (generalized linear latent and mixed models) adds to Stata the
ability to fit multilevel, mixed, or hierarchical regression models that have continuous, count, binary,
or ordinal dependent variables, and it may have latent (unobserved) variables, endogenous covariates,
and random coefficients or intercepts at any level. Among the many models that gllamm can fit,
some important special cases include generalized linear mixed models, multilevel regression models,
factor models, item response models, structural equation models, latent-class models, generalized linear
models with covariate measurement error, endogenous switching and sample selection models, Rasch
models (including multidimensional marginally sufficient Rasch models). All these models can be fitted
with continuous, count, binary, or ordinal dependent variables or latent variables. gllamm’s authors,
Sophia Rabe-Hesketh with contributions from Anders Skrondal and Andrew Pickles, maintain a web
site—http://www.gllamm.org/—with complete documentation (140 pages), tutorials, worked examples,
wrapper commands to ease estimation of special models, dates of upcoming courses on gllamm, and
references (often with links) to more than 150 papers published on using gllamm to fit models.

gllamm uses full maximum likelihood to estimate the parameters of these models and Gauss–Hermite
quadrature or adaptive quadrature to evaluate the integrals of the likelihood. This common computation
engine is one reason gllamm is so flexible and can fit so many models. It is, however, exceedingly
computationally intensive, with the effect that gllamm can require substantial time to fit models. gllamm
users are interested in seeing it run faster.

gllamm uses many Stata commands that have been parallelized, and some of gllamm’s algorithms are
written in C, sections of which have been parallelized. Even so, gllamm incorporates many algorithms,
and these algorithms are triggered differently when fitting different models. It is difficult to say anything
definitive about performance gains for gllamm when run under Stata/MP. Some gllamm models are
highly parallelized, some not parallelized at all, and others are in between.
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Table 4. Stata/MP performance, command by command

Run time as percentage of
single processor timea

Number of processors Percentage

command 2 4 8 16 parallelizedb

MIMIC model 67 50 42 37 67

Random-effects logistic 55 36 27 22 81

RE regression 47 29 20 15 87

Random-coefficients regression 56 40 32 28 74

Two-level RE logistic 60 42 33 28 75

Random-coefficients Poisson 98 97 97 97 2

RE logistic with constant 62 44 35 30 74

All values are expressed as a percentage of the time required on a single processor. Slanted values are extrap-

olated from 4 processors.

a. Smaller is better; 50 is perfect for 2 processors, 25 is perfect for 4 processors, and 12.5 is perfect for 8

processors.

b. Bigger is better; 100 is perfect.

Table 5. Command descriptions

command description

MIMIC model Multiple-equation, multiple-cause (MIMIC) latent variables structural
equation model—ordered logistic

Random-effects

logistic

Random-effects (random-intercepts) logistic regresion—same as xtlogit,
re

RE regression Continuous (Gaussian distribution) model with random intercepts—same
as xtreg, re

Random-coefficients

regression

Continuous (Gaussian distribution) model with random coefficients and
intercepts

Two-level RE

logistic

Logistic regression with two levels of random intercepts

Random-coefficients

Poisson

Poisson count-data model with random intercepts and two random
coefficients

RE logistic with

constant

Logistic regression with random intercepts and fixed-effects constant

The graphs below show the observed performances from table 4 in graphical form. Those graphs are
followed by graphs projecting performance through 16 processors.
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Figure E.1. MIMIC model performance plot.
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Figure E.2. Random-effects logistic

performance plot.
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Figure E.3. RE regression performance plot.
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Figure E.4. Random-coefficients
regression performance plot.
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Figure E.5. Two-level RE logistic

performance plot.
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Figure E.6. Random-coefficients Poisson

performance plot.
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Figure E.7. RE logistic with constant

performance plot.
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Figure E.8. Parallelization performance plots.
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