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Introduction

@ mkern is a Stata routine for estimating a local multivariate
kernel regression.

@ Non-parametric regression is becoming a popular methodology
in many disciplines and research contexts.

@ However, a multivariate version of such an approach was not
available in Stata yet, neither as built-in, nor as user-written
command.

@ Stata Corp and users have so far implemented only bivariate
versions of local kernel regressions (as, in particular, the popular
command Ipoly).

2/16



The method

@ mkern employs a radial local weighted mean approach, by
using as weighting scheme various Kernel functions (at user's
choice).

o By default, mkern provides also the optimal bandwidth by
means of a (computational) cross-validation approach.

@ The user can however provide also his own choice of the band-
width, thus producing estimation for both over-smoothing and
under-smoothing cases.

o Finally, as option, mkern offers a graphical plot of the row data
against the predicted values, in order to assess also visually the
goodness-of-fit of the provided estimation.
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The intuition behind mkern

Consider the following regression of Y on the exogenous covariates
[X1,..., Xm):

Yi = m(Xui, ..., Xni) + € (1)

where i = 1,..., N, e is an error term that embodies all heterogeneity
across individuals. We thus have that:

E(Yi|X1i, .., Xmi) = m(Xui, ... Xmi) (2)

Here, the problem is that m(-) is unknown, thus we cannot use stan-
dard parametric estimation methods, such as OLS, ML, and GMM.

We have to rely on non-parametric approches, which generally
devided into global and local methods. mkern uses a local Kernel
approach.
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The intuition behind mkern

The local Kernel estimation adopts a pointwise imputation of
the unknown function m(-), using local weighted mean (or local
weighted polynomials). In the case of mean imputation at point
Xo = [Xlo, ...,XM()]:

N
m(X1,0, ..., Xm0) = Z Wi Yi (3)
i=1

where: w; o , is a weight depending on units / and unit 0 characteris-

N

tics with Y~ wj o, = 1, and on the bandwidth h. By using a specific
i=1

kernel function (i.e., kernel weights) K(-) we have:

K

(X0, Xm0) = ) =

= X;—X

i=1 Nih Z:lK( - 0)
=
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m(Xi,o ; Xz,o)
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Optimal bandwidth using Cross-Validation (CV)

In order to determine the optimal bandwidth, the routine mkern
uses a CV-approach. This is a computational method aimed at min-
imizing the following objective funcion over the bandwidth h:

N
CV(h) =Y [Yi — mi(x)]? (5)
i=1
that is:
N
h*= argminy, Z [Y;i — m_i(x;)]? (6)

i=1

where m_;(x;) is the leave-one-out estimate of m(x;).
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Stata implementation using
mkern



The syntax of mkern (1)

mkern dep_var indep_vars [if] [in] [pweights]
[, h(bandwidth) cvfile(file_name) graph]
k(kernel_function)

epan Epanechnikov weighting scheme
normal Normal weighting scheme
biweight Biweight (or Quartic) scheme
uniform Uniform weighting scheme
triangular Triangular weighting scheme
tricube Tricube weighting scheme

The fitted values of mkern are stored in the generated variable
“7kern"




The syntax of mkern (2)

mkern varlist [if] [in] [pweights]
[, h(bandwidth) cvfile(file_name) graph]
k(kernel_function)

h(bandwidth) : provides the user’s declared
bandwidth. By default -
mkern provides the CV bandwidth.
cvfile(file_name): is the name of the file where the
Cross-Validation results are stored.
graph: provides a joint plot of the outcome
and the model’s predictions
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Application 1 (1)

We consider first a univariate case, using the dataset “motorcycle” report-
ing data on ACCELERATION against TIME for N = 133 motorcycles, and
compare mkern with the Stata built-in command Ipoly.

set more off

webuse motorcycle , clear

global y accel // dependent variable
global x time // observed covariate

mkern Sy $x , k(uniform) cvfile(cv_res)

* Result using "mkern"

global h=round (e (opt_bandw),0.01)

tw (scatter $y $x ) (mspline _kern $x) , ///

legend(order (1 "row data"™ 2 "mkern")) xtitle(Time) ytitle(Acceleration) ///

note (Cross-validation optimal bandwidth $h) name (mk, replace) title (MKERN smoother)

* Result using "lpoly"
lpoly Sy $x , kernel (rectangle) degree(0) name (lpol,replace) title(LPOLY smoother)

* Combine "mkern" and "lpoly"
graph combine mk lpol
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Application 1 (2)

MKERN smoother
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Comments

@ mkern seems to perform rather well, especially if one consid-
ers that Ipoly uses an analytical formula to calculate the opti-
mal bandwidth, while mkern uses a computational one (Cross-
Validation).

@ The Cross-Validation approach has been proved to converge
to the right optimal bandwidth at a very slow rate of O(N~01).

@ This means that when N is small, the CV approach should be
instable. Fortunately, we saw that such instability is not too
strong in our example, although we rely on just 133 observations.
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Application 2 (1)

Now we consider a multivariate case using a simulated dataset pro-
duced by an “odd” data generating process.

kkk EXAMPLE 2 H*k k% kokkkokokkkkokok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K

clear

set more off
set seed 101
set obs 500

* Generate an odd function

drawnorm e

generate z=(uniform()-0.5)*10
generate x=z+invnorm(uniform()
generate x2=z+invnorm(uniform())
generate x3=z+invnorm(uniform/()
generate y=x+x2+x3+e

replace y:(lO*sin(abs(Z)))*(z<_pi)+ﬂ

* Use mkern for estimating it, with the "graph" option
mkern y x z , k(normal) cvfile(cv_res) graph

tw (scatter y z ) (mspline _kern z) , ///
legend (order (1 "row data™ 2 "mkern")) ///
title (MKERN smoothing for variable z) name (gz

tw (scatter y x ) (mspline _kern x) , ///
legend (order (1 "row data" 2 "mkern")) ///
title (MKERN smoothing for variable x) name (gx)

graph combine gz gx
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Application 2 (2)

MKERN smoothing for variable z MKERN smoothing for variable x
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Conclusions

@ mkern seems to behave rather well both in univariate and mul-
tivariate regressions.

@ A next step is to provide also local linear smoothing (rather
straightforward to do), and a correction for the (typical) asymp-
totic bias of local kernel regressions.

@ Unfortunately, Cross-Validation has slow rate of convergence by
increasing N. This provides imprecision of bandwidth estimates.

@ Cross-Validation is computationally intensive, thereby it takes a
lot of time to get results when N is large.
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