mkern: a Stata routine for estimating a local multivariate kernel regression

Giovanni Cerulli

IRCrES-CNR, Research Institute on Sustainable Economic Growth

Stata meeting 2016 Rome, Italy November 17-18

Introduction

- mkern is a Stata routine for estimating a local multivariate kernel regression.
- Non-parametric regression is becoming a popular methodology in many disciplines and research contexts.
- However, a multivariate version of such an approach was not available in Stata yet, neither as built-in, nor as user-written command.
- Stata Corp and users have so far implemented only bivariate versions of local kernel regressions (as, in particular, the popular command lpoly).

The method

- mkern employs a radial local weighted mean approach, by using as weighting scheme various Kernel functions (at user's choice).
- By default, mkern provides also the optimal bandwidth by means of a (computational) cross-validation approach.
- The user can however provide also his own choice of the bandwidth, thus producing estimation for both over-smoothing and under-smoothing cases.
- Finally, as option, mkern offers a graphical plot of the row data against the predicted values, in order to assess also visually the goodness-of-fit of the provided estimation.

The intuition behind mkern

Consider the following regression of Y on the exogenous covariates $[X_1,...,X_M]$:

$$Y_i = m(X_{1i}, ..., X_{Mi}) + e_i$$
 (1)

where i = 1, ..., N, e is an error term that embodies all heterogeneity across individuals. We thus have that:

$$E(Y_i|X_{1i},...,X_{Mi}) = m(X_{1i},...,X_{Mi})$$
 (2)

Here, the problem is that $m(\cdot)$ is **unknown**, thus we cannot use standard parametric estimation methods, such as OLS, ML, and GMM.

We have to rely on **non-parametric approches**, which generally devided into *global* and *local* methods. **mkern** uses a *local* Kernel approach.

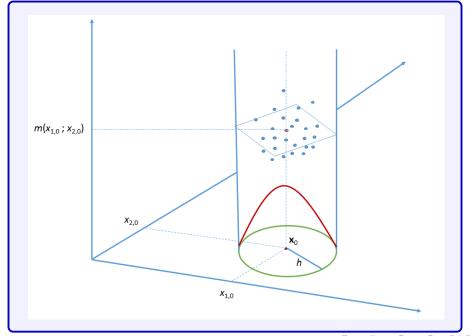
The intuition behind mkern

The *local* Kernel estimation adopts a **pointwise imputation** of the **unknown** function $m(\cdot)$, using local weighted mean (or local weighted polynomials). In the case of mean imputation at point $\mathbf{X}_0 = [X_{10}, ..., X_{M0}]$:

$$\hat{m}(X_{1,0},...,X_{M,0}) = \sum_{i=1}^{N} w_{i,0,h} \cdot Y_i$$
 (3)

where: $w_{i,0,h}$ is a weight depending on units i and unit 0 characteristics with $\sum_{i=1}^{N} w_{i,0,h} = 1$, and on the bandwidth h. By using a specific kernel function (i.e., kernel weights) $K(\cdot)$ we have:

$$\hat{m}(X_{1,0},...,X_{M,0}) = \sum_{i=1}^{N} \left| \frac{K\left(\frac{\mathbf{x}_{i}-\mathbf{x}_{0}}{h}\right)}{\frac{1}{N_{h}}\sum_{i=1}^{N}K\left(\frac{\mathbf{x}_{i}-\mathbf{x}_{0}}{h}\right)} \right| \cdot Y_{i}$$
(4)



Optimal bandwidth using Cross-Validation (CV)

In order to determine the **optimal bandwidth**, the routine **mkern** uses a CV-approach. This is a *computational* method aimed at *minimizing* the following **objective funcion** over the bandwidth *h*:

$$CV(h) = \sum_{i=1}^{N} [Y_i - \hat{m}_{-i}(\mathbf{x}_i)]^2$$
 (5)

that is:

$$h^* = \operatorname{argmin}_h \sum_{i=1}^N [Y_i - \hat{m}_{-i}(\mathbf{x}_i)]^2$$
 (6)

where $\hat{m}_{-i}(\mathbf{x}_i)$ is the **leave-one-out** estimate of $m(\mathbf{x}_i)$.

Stata implementation using mkern

The syntax of mkern (1)

```
mkern dep_var indep_vars [if] [in] [pweights]
       [, h(bandwidth) cvfile(file_name) graph]
       k(kernel_function)
```

kernel_function

epan Epanechnikov weighting scheme
normal Normal weighting scheme
biweight Biweight (or Quartic) scheme
uniform Uniform weighting scheme
triangular Triangular weighting scheme
tricube Tricube weighting scheme

The fitted values of **mkern** are stored in the generated variable "_kern"

_Keiii

The syntax of mkern (2)

```
mkern varlist [if] [in] [pweights]
      [, h(bandwidth) cvfile(file_name) graph]
      k(kernel_function)
h(bandwidth):
                   provides the user's declared
                   bandwidth. By default -
                   mkern provides the CV bandwidth.
cvfile(file name): is the name of the file where the
                   Cross-Validation results are stored.
graph:
                   provides a joint plot of the outcome
                   and the model's predictions
```

Application 1 (1)

We consider first a **univariate** case, using the dataset "motorcycle" reporting data on ACCELERATION against TIME for N=133 motorcycles, and compare **mkern** with the Stata built-in command **lpoly**.

```
set more off
webuse motorcycle , clear
global y accel // dependent variable
global x time // observed covariate

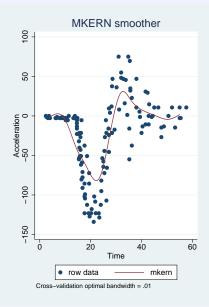
mkern $y $x , k(uniform) cvfile(cv_res)

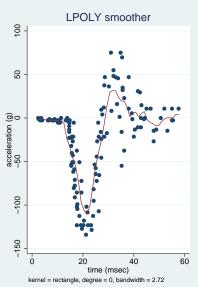
* Result using "mkern"
global h=round(e(opt bandw),0.01)
tw (scatter $y $x ) (mspline kern $x) , ///
legend(order(1 "row data" 2 "mkern")) xtitle(Time) ytitle(Acceleration) ///
note(Cross-validation optimal bandwidth = $h) name(mk, replace) title(MKERN smoother)

* Result using "lpoly"
lpoly $y $x , kernel(rectangle) degree(0) name(lpol,replace) title(LPOLY smoother)

* Combine "mkern" and "lpoly"
graph combine mk lpol
```

Application 1 (2)





Comments

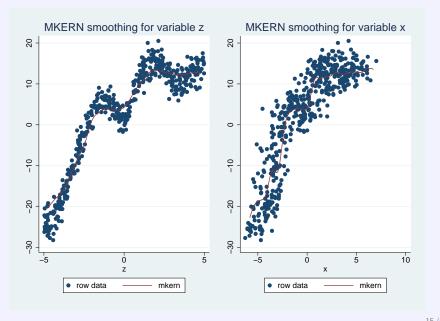
- mkern seems to perform rather well, especially if one considers that lpoly uses an analytical formula to calculate the optimal bandwidth, while mkern uses a computational one (Cross-Validation).
- The **Cross-Validation** approach has been proved to converge to the right optimal bandwidth at a very slow rate of $O(N^{-0.1})$.
- This means that when N is small, the CV approach should be instable. Fortunately, we saw that such instability is not too strong in our example, although we rely on just 133 observations.

Application 2 (1)

Now we consider a **multivariate** case using a simulated dataset produced by an "odd" data generating process.

```
*** EXAMPLE 2
clear
set more off
set seed 101
set obs 500
* Generate an odd function
drawnorm e
generate z=(uniform()-0.5)*10
generate x=z+invnorm(uniform())
generate x2=z+invnorm(uniform())
generate x3=z+invnorm(uniform())
generate y=x+x2+x3+e
replace y=(10*\sin(abs(z)))*(z< pi)+y
* Use mkern for estimating it, with the "graph" option
mkern v x z , k(normal) cvfile(cv res) graph
tw (scatter y z ) (mspline kern z) , ///
legend(order(1 "row data" 2 "mkern")) ///
title (MKERN smoothing for variable z) name (gz)
tw (scatter v x ) (mspline kern x) , ///
legend(order(1 "row data" 2 "mkern")) ///
title (MKERN smoothing for variable x) name (qx)
graph combine gz gx
```

Application 2 (2)



Conclusions

- mkern seems to behave rather well both in univariate and multivariate regressions.
- A next step is to provide also local linear smoothing (rather straightforward to do), and a correction for the (typical) asymptotic bias of local kernel regressions.
- Unfortunately, Cross-Validation has slow rate of convergence by increasing N. This provides imprecision of bandwidth estimates.

 Cross-Validation is computationally intensive, thereby it takes a lot of time to get results when N is large.