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The context The aim Syntax Examples

The context |

Panel data (longitudinal and time-series-cross-sections) and multilevel data are widely used, the
former in econometrics, the latter in psychometrics (psychology, sociology, education, criminology,
biostatistics, etc., Bou and Satorra, 2017).

Different methodological approaches and aims emerge, reflecting the peculiarities of each field.

Different language, or different interpretation of the same language: fixed effects, random effects,
multilevel models, mixed models.

We often deal with complex data and “social” structures, but these dataset can all be considered as
grouped data:
@ In econometrics, standard panel data have a structure with repeated observations over time
nested in individuals, companies, countries.
@ In psychometrics, multilevel models are used to analyse hierarchical data, such as individual
responses (level-1 students or trees/plots) collected within groups (level-2 schools and

background, species and ecological regions). Multilevel modelling also deals with
cross-classifications or supergroups.

o Clustering and cross-classified effects tend to create dependencies between observations and
imbalanced data structures: non-consecutive time periods or different number of units in each

group.
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The context |l

A preliminary and crucial step of any empirical research is to study the nature and relevance of the
components that influence the variability of the variables, particularly the dependent variable.

The study of variability at various levels is interesting in itself and can provide iindications on the
directions in which further investigation would be worthwhile.

Quantifying the unexplained variability with an unconditional (empty) model represents a
preliminary step in assessing what we still do not understand about the differences in the values of
the response variable between and within clusters.

Once explanatory variables have been introduced, we can obtain an indication of the progress make
in explaining the variability of the response variable and the variability that remains unexplained.

Furthermore, quantifying the different types of variabilities in the response variable and the possible
explanatory variables is a fundamental guide for the modelling and estimation strategies to be
employed (Gibbons et al., 2014).
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The context The aim

The context Il

Examples

@ The presence of a significant clustering excludes the possibility of implementing POLS:
— The assumption of independent replications is violated (McNeish and Kelley, 2019;
McNeish, 2023). Instead, the dependence of observations within clusters is of fundamental
interest because it reflects essential aspects of the social world, such as the effect of attending
the same school or living in the same area, working in the same company.
— Each nesting level is associated with a variability that has a distinct interpretation. For
example, the growth of trees is influenced by their individual characteristics but also by the
characteristics of the species and the ecological regions).
— Failure to distinguish between these different sources of variability would lead to incorrect
conclusions due to logical errors such as:

> The ecological fallacy (Robinson, 1950), which interprets associations at the higher level as pertaining
to the lower level: conclusions about individuals are drawn on the basis of group-level data analysis,
but the relationships observed at the group level are not necessarily valid at the individual level.

> The atomistic fallacy (Alker, 1969), which instead interprets associations at the individual level as
pertaining to the higher level.

> In the “panel” jargon, the fallacy consists of confusing aggregate effects with individual effects,
resulting from confounding the within-group (individuals) and between-group (higher level) effects.
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The context

The context IV

@ The absence of within-cluster variability excludes the possibility of implementing an FE
estimation, particularly if the interest is on measurable higher-level explanatory variables, such
as the role of education, race or gender on the wages of workers inside different companies.

o Considerably different between and within variabilities may suggest avoiding the weighted
average implementd by RE/GLS and instead estimating the between and within effects of
explanatory variables on the dependent variable separately, exploiting the Mundlak (1978)'s
approach (also useful for testing endogeneity because of heterogeneity).
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The aim of the new command |

The new command pantarei has a name that derives from the ancient Greek expression md&vta
pet (Heraclitus of Ephesus, c. 535 — c. 475 BCE, pre-Socratic Greek philosopher?) to indicate that
“everything flows”, in the sense that heterogeneity and variations are central and even the
methodologies for analysing panel data are constantly changing.

It breaks down the total variability into:

(1) The component due to level-2, individuals, cross-section or variability between clusters.
(2) The component due to level-1 observations nested in level-2, the variability within clusters.

The within variability is further decomposed into:

(2a) The residual variability once level-2 and level-1 heterogeneities have been taken into account,
called within level-2-level-1 variability.

(2b) The variability due to the level-1 effect, called between level-1 variability.
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The aim of the new command Il

Meb

It is suitable for longitudinal, cross-sectional time-series and multilevel data.

The standard panels investigated by the FE approach are the default ones; the re option
exploits the GLS/RE approach; the ml option uses the ML and mixed model (hierarchical and
with cross-effects).

Two levels are considered, but it is possible to replicate the command on the same dataset by
changing the levels considered, particularly in multilevel datasets.

The joint tests on the statistical significance of the heterogeneities at the levels considered are
reported.

In the default FE setting, the levels are considered including dummy variables, and the F tests
for the joint null hypothesis that all levels have the same mean are reported.

In the GLS/RE case, levels are considered random and their variance parameters are tested
using Breusch and Pagan’s Lagrange multiplier tests; a mixed model is also implemented for
level-1 effects which are estimated and tested as in the FE case.

In the ML multilevel models, the levels are again considered random and tested using
likelihood-ratio tests that compare the fitted models with and without random effects. A
mixed model is also implemented for level-1 effects, which are estimated and tested as in FE
case. In addition, a cross-effects specification is used whereby level-1 is not simply nested
within level-2 clusters, but a single artificail level-3 super-clusteris assumed within which both
level-2 and level-1 are nested (a trick from Rasbash and Goldstein, 1994; Goldstein, 1987).
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The aim of the new command IlI

Meb

The dataset can be investigated with the common option, which computes the decomposition of
variability for the subsample of non-missing observations of all variables.

The default FE model has the ur option, which implements. for each variable, the Elliott et al.
(1996) dfgls unit root test on the level-1 common factor that may drive all level-2 clusters.
This is a proxy of the common correlated effect, CCE, which is both estimated from the
residuals of each variable estimated against level-1 dummies and proxied by computing the
level-1 averages (Pesaran, 2006; Brown et al., 2021). The longer the time span, the more
relevant the stationarity feature of the common factor used to account for cross-sectional
dependence becomes.

A graph of the time series of the estimated and computed common factors for each variable is
saved in the researcher’s working directory as a file UR_varname. gph.

The ml option predicts, from the cross-effects model, the empirical Bayes estimates (i.e.
posterior, shrunken, or best linear unbiased predictions, BLUPSs) of the effects together with
their associated standard errors, and produces caterpillar plots of the effects, which are saved
for each variable as files pillaru@3levi_varname.gph (level-1 effects) and
pillaru@2lev2_varname.gph (level-2 effects).
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The aim of the new command IV

Meb

@ The new command is flexible and extends the existing commands xtsum, which only works for
datasets that can be sorted with tsset or xtset and does not consider the role of CCE inside
the within variability, and loneway, which allows only one level at a time.

o It also simplifies the use of post-regression results available after mixed. For example, a similar
reason led to the creation of pisamixed.ado, contained in the zipped file
PISA2022_Stata_ PublicCodes and available for download from the website
https://www.oecd.org/en/data/datasets/pisa-2022-database.html#data, which assists in
the use of mixed calibrated on PISA data.

@ The variance decomposition performed by the new command is consistent across different
approaches to data, as it calculates the percentages of variability for each level as the ratio of
partial sums of squares, rather than as VPCs and ICCs given by variance ratios (which are not
adequately comparable due to the different degrees of freedom used in the calculation of
variances).

pantarei
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The aim Models

Where we would like to go |

A model for standard panel:

K
Yie =0+ Y Brxuie + (0'Wi) + 4 + T + i
k=1
In the econometric literature, FE and RE denote two type of estimators of B in a model where the
unobserved random variable, ji;, varies across units. We select FE or RE depending on whether p;
is allowed to correlate or not (at unit level) with the time varying variables x;.

Very often we have endogeneity because of heterogenenity, E(x;;) # 0 and only FE provides
unbiased estimates of B. However, the unbiased within transformation cannot provide estimates of
0 for w;, the time-invariant/changing very little over time observables, when they are of prime
theoretical interest.

The useful extension is Mundlak (1978) and Chamberlain (1980) discussed in the tribute to the live
and work of Marc Nerlove (Baltagi and Matyas, 2025) and Bellemare and Millimet (2025) is:

Vie = B'xit + 0'W; + Te + T X + & + it

. < N 1T .
where the “between” equation & + y; = a; = 7T\ X; + e with %;, = T; L Y ¢Lq1 Xit, is used to
captures the sample variation across units.
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Where we would like to go |l

A multilevel hierarchical model (Goldstein, 2011; Bryk and Raudenbush, 2002; Hox and Roberts,
2011; Snijders and Bosker, 2012) with level-1 individuals i = 1, ..., n; nested within level-2 groups
j=1,...,Jis:

K T

yeij = Boj + Y Biixeijk + Y s Dst + €4
k=1 s=1

Boj = Boo + Borw; + to;
ﬁkj:ﬁko—FﬁL]_Wj—I—ukj fork:1,.,.,K

@ oo is the grand mean of y across all groups j; the mean of y for group j is Boo + up; so that
the distances between groups averages respect to the grand average Boo represent the
between-group variability.

@ Byo is the grand mean slope across all groups, and B + uy; is the role of group j on the
effect of xj. The target is understanding how effects vary.

o Different types of effects incorporated at different levels: wup; and uy; are considered as random
while s can be a fixed effect for Ds;, the dummy for period s, which is the best choice when
time is sparse and period effects are nuisance controls.

o By slope for variable k in group j; x¢j; = (xeij1, -~~,Xrin)/ vector of unit- and time-varying
covariates (usually centered).
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Where we would like to go Il

@ The w; vector of time-invariant group-level covariates (usually centered) can be included in Bo;
and By; so that By, and B, are the vectors of contextual effects induced by w; on intercept
and slope k, respectively.

o Multilevel models can also be integrated with the Mundlak (1978)’s approach.
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Examples

Where do we start |

Unconditional "empty" models are:
FE/LSDV

N-1 T-1
Yit = &+ 2 ]/lij,' + 2 TsOst +-€i¢
Jj=1 s=1

—_——
lev2 heterog.  levl heterog.

The y; term is “unobserved heterogeneity” or
unobserved "permanent/stable" effects specific to
each level-2 cluster i included in the sample and
nesting level-1 t.

Adding a dummy variable for each unit (minus
one baseline) is equivalent to within-transform
the data.

Within-transformation prevents the estimation of
w; time-invariant variables.

Unobserved “unstable” factors are in the error
term e, with E(e;;) = 0 and Var(e;) = 02
Time dummies capture the role of CCE as a
component of within-units variability, and it is
equivalent to compute temporal averages.
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RE/Random Intercept Model

T-1

Yie =0+ ) TsOs + i +€it

s=1 \,—/
Vit

The vj; two-way error term includes “unobserved
heterogeneity” which is condensed by variability
(7]3. The two components have
E(eir) = E(y;) = 0, Var(ejr) = 02 and
COV(S,'t, ;4,) =0.
The y; is the result of a random draw from a
distribution, with some units higher (lower) on y;
each draw, added to the grand mean of y, «,
gives the observed intercept of unit i. The
interest is on the population of clusters, beyond
the specific clusters in the sample.
In this “random effects” framework, the w;
time-invariant variables can be estimated.
Time effects can be considered as fixed or
random as well.
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Models

Where do we start 1l

Two-level hierarchical model (Goldstein, 2011;
Bryk and Raudenbush, 2002; Hox and Roberts,
2011; Snijders and Bosker, 2012) with level-1
units i = 1,..., n; nested within level-2 groups
j=1,..., 4

i = Poj +&j
Boj = Poo + uoj

The term Boo is the grand mean of yj; across all
groups j; the mean of y for group j is Boo + uoj
so that the distances between groups averages
respect to the grand average Bog represent the
between-group variability.

The distances between each observation y;; and
the group mean represents the within-group
between-individual variability.
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Two-way cross-classified model (Goldstein, 2011;
Rasbash and Goldstein, 1994; Rasbash and
Browne, 2001; Rasbash and Browne, 2008;
Beretvas, 2011) where level-1 units

i=1,..., N(j, jp) are clustered in more that one
level-2 classification and the classification units
are not nested within each other. The
cross-classified factors are j; =1,...,J; and
jo=1,..., ) at the same level-2; the pair or
combination (ji, j2) indexes the cells of the
cross-classification:

Yi(jj2) = ‘BO(ijz) + € )
Bo(jy.ja) = Pooo + tojy + toj, + tooj xj2
The term Booo is the overall mean of Yitir»)

across all level-2 ji, all level-2 jo and units i.



Models

Where do we start 11

The random effects (with covariances typically assumed to be zero) are:

ugj ~ /\/(0,050) with (730 between-group variance. ugoj, ~ N(0,02 ), with 02 between level-2 ji

ugoj; uo0j;
variance having adjusted for differences between
erj ~ N(0,02), with o2 within-group level-2 ja.
—uni i o 2 ; 2 ;
between-units variance. ugoj, ~ N'(0, 05, ), with 05, between level-2 jp
variance having adjusted for differences between
level-2 jj.

i) ~ N(0,02), with 6?2 level-1 variance
within the cells defined by level-2 j» j; pairings.

Ugoj; xj2 ~ N(O"7300j1 .;2) random interaction
effect between the two cross-classified factors;
without sufficiently large within-cell sample sizes,
it is hard to separate the additive variances from
the variance within the cells of the
cross-classification and thus this last random

effect is most typically set to zero.
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Where do we start IV

FE/RE models can be estimated with ji instead of it. Multilevel models can be estimated with ti
instead of ij.

FE/RE models are estimated by inverting the indices in ti, and multilevel models can be estimated
by inverting the indices in ji to capture the variability at each level and test the significance of the
effect of each level.

In multilevel models we can use a mixed specification in which i of jj and t of ti are considered
fixed effects captured by a set of dummy variables, i.e., by )::j:1 YunDni for units within each
cluster j and Z;l YmsDst for measurement occasions t within each cluster i, respectively.

Of course, there are a huge number of possible model specifications if each coefficient can be either
fixed or random. This number increases with the number of clusters (level-1, level-2, level-3, ...).
Strategies change if the panel structure is hierarchical or cross-classified.

The new pantarei command presents the possible specifications for two-level models and considers
the possibility that there are few units within groups or that temporal observations are few and
scattered, so that dummy variables are just controls for noise and panel imbalance in a mixed
framework.
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pantarei list of variables [,options]

@ options: the default is FE model; ur can be added to test for stationarity of CCE and obtain
the plot of CCE. re implements the RE/GLS model; ml implements the multilevel and
cross-classified models. common can be added to the default, re and ml to implement the
models on the sub-sample of non missing values.

o list of variables must follow the order level-2, level-1, variables that we want to investigate.

o It is a good idea to generate level-2 and level-1 indices as progressive numbers (e.g. egen
lev2=(group) level-2-index, label); this is not necessary for temporal level-1 index already
in the form e.g. 2005, .., 2025 or 2020491, .., 2025q4.

@ The command can be executed under conditions by using the sequence preserve hence if or
in condition hence pantarei hence restore.

o Time series operators (1. or d.) are not allowed, but lagged and first-differenced variables can
be generated before implementing the pantarei command.

pantarei
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A macro panel |

pantarei id year tint dlpc

Level 2 (i): id Level 1 (t): year = ————————mmmmmmmmmmm
Hypothetical full sample, N x T: 209

N: 11 T: 19
Variable | Mean Std.Dev. % SS | Observations | Test
tint Overall xit-x.. | .09459  .03436 INXT 209| id effects:
1-Between xi.-x.. | .02169  36.41 | N-min 11| F(1e, 180) = 41.89
2-Within xit-xi. | .02808 63.59 | N-bar 11.00]| Prob > F = 0.00
—————— of which: ------ | ----------------| N-max 11| year effects:
2a-res xit-xi.-x.t+x.. | .01461 15.64 | T-min 19] F(18, 180) = 30.65
2b-between x.t-x.. | .02439  47.95 | T-bar 19.00| Prob > F = 0.00
(2b in % of 2) | (75.40)| T-max 19| Balancedness = 100.00
dlpc Overall xit-x.. | .04837 .04363 INXT 198| id effects:
1-Between xi.-x.. | .02583  32.02 | N-min 11| FQ1e, 170) = 26.01
2-Within xit-xi. | .03693 67.98 | N-bar 11.00]| Prob > F = 0.00
—————— of which: ------ | —=———————--——---| N-max 11| year effects:
2a-res xit-xi.-x.t+x.. | .02149  20.93 | T-min 18| F(17, 170) = 22.49
2b-between x.t-x.. | .03072 47.06 | T-bar 18.00| Prob > F = 0.00
(2b in % of 2) | (69.22)| T-max 18| Balancedness = 94.74
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A macro panel Il

pantarei id year tint dlpc, common ur

Level 2 (i): id Level 1 (t): year =~ = ==========--——--———ooee
Hypothetical full sample, N x T: 209
N: 11 T: 19
Variable | Mean Std.Dev. % SS | Observations | Test
tint Overall xit-x.. | .09329 .03421 INXT 198| id effects:
1-Between xi.-x.. | .02137 35.66 | N-min 11| F(le, 170) = 37.83
2-Within xit-xi. | .02816  64.34 | N-bar 11.00]| Prob > F = 0.00
------ of which: ------ | mmmmmmeeeeeeeee=| N-max 11| year effects:
2a-res xit-xi.-x.t+x.. | .01474 16.03 | T-min 18] F(17, 170) = 30.15
2b-between x.t-x.. (CF) | .0244  48.32 | T-bar 18] Prob > F = 0.00
(2b in % of 2) | (75.09)| T-max 18.00| Balancedness = 94.74
Estimated CF x.t | | | HO: UR - pval = @.47
Computed CF x.t | | | HO: UR - pval = 0.47
dlpc Overall xit-x.. | .04837 .04363 | NXxT 198| id effects:
1-Between xi.-x.. | .02583  32.02 | N-min 11| F(1e, 170) = 26.01
2-Within xit-xi. | .03693 67.98 | N-bar 11.00| Prob > F = 0.00
—————— of which: ------ | —==——————————————| N-max 11| year effects:
2a-res xit-xi.-x.t+x.. | .02149  20.93 | T-min 18| FQ17, 170) = 22.49
2b-between x.t-x.. (CF) | .03072  47.06 | T-bar 18| Prob > F = 0.00
(2b in % of 2) | (69.22)| T-max 18.00| Balancedness = 94.74
Estimated CF x.t | | | Ho: UR - pval = 0.08
Computed CF x.t | | | HO: UR - pval = @.08




A macro panel I

g dtint=d.tint
g ddlpc=d.dlpc

pantarei id year dtint ddlpc, common ur

Level 2 (i): id

Hypothetical full sample, N x T: 209

Level 1 (t): year

Examples

N: 11 T: 19
Variable | Mean Std.Dev. % SS | Observations | Test
dtint Overall xit-x.. | -.e05 .01157 | NXxT 187| id effects:
1-Between xi.-x.. | .001859 2.36 | N-min 11| F(1e, 160) = 0.76
2-Within xit-xi. | .01175 97.64 | N-bar 11.00| Prob > F = 0.67
N - of which: - N | - N-max 11| year effects:
2a-res xit-xi.-x.t+x.. | .008803 49.83 | T-min 17| F(16, 160) = 9.59
2b-between x.t-x.. (CF) | .008222 47.81 | T-bar 17| Prob > F = 0.00
(2b in % of 2) | (48.97)| T-max 17.00| Balancedness = 89.47
Estimated CF x.t | | | H2: UR - pval = 0.01
Computed CF x.t | | | HO: UR - pval = 0.01
ddlpc Overall xit-x.. |-.00584  .01455 INXT 187| id effects:
1-Between xi.-x.. | .002577 2.87 | N-min 11| F(10, 160) = 0.82
2-Within xit-xi. | .01474  97.13 | N-bar 11.00]| Prob > F = 0.61
—————— of which: ------ | =======——=———===| N-max 11| year effects:
2a-res xit-xi.-x.t+x.. | .01175  56.10 | T-min 17| F(16, 160) = 7.31
2b-between x.t-x.. (CF) | .009583  41.03 | T-bar 17] Prob > F = 0.00
(2b in % of 2) | (42.24)| T-max 17.00| Balancedness = 89.47
Estimated CF x.t | | | HO: UR - pval = @.03
Computed CF x.t | | | Ho: UR - pval = 0.03




A macro panel IV

Examples

tint dtint
02
01
0
-01
-02

1980 1985 1990 1995 2000 1980 1985 1990 1995 2000
year year
—— Computed CF —— Estimated CF —— Computed CF —— Estimated CF

CCE for the levels of the interest rate

CCE for the first differences of the interest rate




A macro panel V

pantarei id year tint dlpc, common re

Level 2 (j): id Level 1 (i): year
Hypothetical full sample, Ni x Nj: 209

Examples

Nj: 11 Ni: 19
Variable | Mean Std.Dev. % SS | Observations | Test
tint Overall xij-x.. | .09329 .03421 | Ni x Nj 198| id effects:
1-Between Xxj-Xx.. | .02278  40.54 | Nj-min 111 Chi2(1) = 170.98
2-Within xij-xj | 02707  59.46 | Nj-bar 11.00| Prob > Chi2 = ©.00
------ of which: ------ | ==========-=———-=| Nj-max 11| year effects:
2a-res xij-xj-xi+x.. | 01474 16.03 | Ni-min 18] Chi2(1) .
2b-between xi-x.. | 02314  43.44 | Ni-bar 18.00| Prob > Chi2 = 0.00
(2b in % of 2) | (73.05)| Ni-max 18| Balancedness = 94.74
-- year as fixed effects: —- | | |
3-Between Xj-X.. | 02137 35.66 | | id effects:
4-Within xij-xj | 02816  64.34 | | Chi2(1) = 759.32
------ of which: ------ | e ————— | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | 01474 16.03 | | year effects:
4b-between xi-x.. | 0244  48.32 | | chi2(17) 54
(4b in % of 4) | (75.09) | | Prob > Chi2 = 0.00




A macro panel VI

pantarei id year tint dlpc, common ml

Level 2 (j): id Level 1 (i): year
Hypothetical full sample, Ni x Nj: 209

Examples

Nj: 11 Ni: 19

Variable | Mean Std.Dev. % SS | Observations | Test

tint Overall xij-x.. | .09329  .03421 | Ni x Nj 198| id effects:
1-Between xj-x.. | .02392  44.68 | Nj-min 11] Chi2(1) = 51.32
2-Within xij-xj | .02611  55.32 | Nj-bar 11.00| Prob > Chi2 = @.00
==-=--- of which: - | Nj-max 11] year effects:
2a-res xij-xj-xi+x.. | .01405 14.57 | Ni-min 18] Chi2(1) = 71.58
2b-between xi-x.. | .02241  40.75 | Ni-bar 18.00| Prob > Chi2 = 0.00
(2b in % of 2) | (73.66)| Ni-max 18| Balancedness = 94.74

-- year as fixed effects: -- | | |
3-Between Xxj-x.. | 02137 35.66 | | id effects:
4-Within xij-xj | 02816  64.34 | | chi2(1) = 180.57
—————— of which: ------ | e e | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | 01405 14.57 | | year effects:
4b-between xi-x.. | 02477  49.77 | | Chi2(17) = 563.80
(4b in % of 4) | (77.36) | | Prob > Chi2 = 0.00
-- year as crossed-effect: -- | | |

3-Between Xxj-x.. | 0205 34.81 | | id effects:
4-Within xij-xj | 02753  65.19 | | Chi2(1) = 163.35
—————— of which: ------ | et | | Prob > Chi2 = 0.00
4a-res xij-xj-xitx | 01474 16.99 | | year effects:
4b-between xi-x.. | 02367 48.19 | | Chi2(1) = 71.58
(4b in % of 4) | (73.93)| | Prob > Chi2 = 0.00




A macro panel VI
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Examples

One of the most widely used longitudinal panels |

In abdata (Arellano and Bond, 1991; Blundell and Bond, 1998) there are no missing values, so we
can skip the common option.
pantarei id year n w k

Level 2 (i): id Level 1 (t): year = —————=-—=———m—-mmmmmmm
Hypothetical full sample, N x T: 1260

N: 140 T: 9
Variable | Mean Std.Dev. % SS | Observations | Test
n Overall xit-x.. 1.056 1.342 | NxT 1031| id effects:
1-Between xi.-x.. 1.331  97.90 | N-min 35| F(139, 883) = 428.33
2-Within xit-xi. .2092 2.10 | N-bar 114.56| Prob > F = 0.00

N-max 140| year effects:
2a-res xit-xi.-x.t+x.. 1731 1.43 | T-min 71 F(8, 883) = 52.24
2b-between x.t-x.. L1169 0.68 | T-bar 7.36] Prob > F = 0.00
(2b in % of 2) (32.12)] T-max 9| Balancedness = 81.83
w Overall xit-x.. | 3.143 .263 | NXxT 1031| id effects:
1-Between xi | .2503  90.01 | N-min 35| F(139, 883) = 75.38
2-Within xit-x | .08939 9.99 | N-bar 114.56| Prob > F = 0.00
------ of which: ------ | e | N-max 140| year effects:
2a-res xit-xi.-x.t+x.. | .07837 7.61 | T-min 7] F(8, 883) = 34.51
2b-between x.t-x.. | .04302 2.38 | T-bar 7.36] Prob > F = 0.00
(2b in % of 2) | (23.82)| T-max 9| Balancedness = 81.83
k | -.4416  1.514 INXT 1031| id effects:
| 1.503  97.97 | N-min 35| F(139, 883) = 396.39
| .2322 2.03 | N-bar 114.56] Prob > F = 0.00
| e | N-max 140| year effects:
2a-res xit-xi.-x.t+x.. | .2037 1.55 | T-min 7| F(8, 883) = 34.39
2b-between x.t-x.. | L1116 0.48 | T-bar 7.36] Prob > F = 0.00
(2b in % of 2) | (23.76)| T-max 9| Balancedness = 81.83
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One of the most widely used longitudinal panels Il

Option ur gives the error message

The lenght of time series could be not enough to compute UR test (at least 9 periods
are required) Error code r(127) (or r(2000) or r(498)) maxlag() invalid - invalid
number, missing not allowed

Anyway, we can produce the pillar-plots with the option ml

pantarei id year n w k, ml
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One of the most widely used longitudinal panels Il

Level 2 (j): id Level 1 (i): year =~ -------------mooooooooo
Hypothetical full sample, Ni x Nj: 1260
Nj: 140 Ni: 9

Variable | Mean Std.Dev. % SS | Observations | Test
n Overall xij-x.. 1.056 1.342 | Ni x Nj 1031| id effects:
1-Between Xxj-X.. 1.327 97.20 | Nj-min 35| chi2(1) =3032.80
2-Within xij-xj L2412 2.80 | Nj-bar 114.56] Prob > Chi2 = 0.00
=-| Nj-max 140| year effects:

|
|
|
—————— of which: ------ |
|
|
|

2a-res xij-xj-xi+x.. L1724 1.42 | Ni-min 7] Chi2(1) = 2.50

2b-between xi-x.. L1671 1.38 | Ni-bar 7.36] Prob > Chi2 = 0.03

(2b in % of 2) (49.38)| Ni-max 9| Balancedness = 81.83
-- year as fixed effects: -- ]

3-Between Xj-X.. 1.331  97.90 | id effects:

4-Within xij-xj 2092 2.10 | Chi2(1) =3355.32

Prob > Chi2 = 0.00

1724 1.42 | year effects:
118 0.69 | Chi2(8) = 422.78
(32.73)| Prob > Chi2 = 0.00
-- year as crossed-effect: -- | ] |
3-Between xj-Xx.. | 1.329 97.72 | | id effects:
4-Within xij-xj | 2175 2.28 | | Chi2(1) =3335.63
------ of whic I - 1 | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | 1731 1.43 | | year effects:
4b-between xi-x.. | 1308 0.85 | | Chi2(1) = 2.50
(4b in % of 4) | (37.20)| | Prob > Chi2 = 0.03
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One of the most widely used longitudinal panels IV

w Overall xij-x.. | 3.143 .263 | Ni x Nj 1031| id effects:
1-Between xj-x.. | .2521  91.33 | Nj-min 35| Chi2(1) =1665.09
2-Within xij-xj | .08329 8.67 | Nj-bar 114.56] Prob > Chi2 = 0.00
------ of which: ------ | e | Nj-max 140| year effects:
2a-res xij-xj-xi+x.. | .e7801 7.54 | Ni-min 7] Chi2(1) = 4.25
2b-between xi-x.. | .02966 1.13 | Ni-bar 7.36] Prob > Chi2 = @.01
(2b in % of 2) | (13.05) | Ni-max 9| Balancedness = 81.83

-- year as fixed effects: -- ]

3-Between xj-x.. 2503 90.01 | id effects:
4-Within xij-xj 08938 9.99 | Chi2(1) =1883.55

------ of whic Prob > Chi2 = 0.00

4a-res xij-xj-xi+x.. 07801 7.54 | year effects:

4b-between xi-x.. 04362 2.45 | Chi2(8) = 276.27

(4b in % of 4) (24.50)| Prob > Chi2 = 0.00

-- year as crossed-effect: -- | ] |

3-Between xj-x.. | 2438 89.12 | | id effects:

4-Within xij-xj | 09128 10.88 | | chi2(1) =1863.04
| | Prob > Chi2 = 0.00
| 07838 7.95 | | year effects:

4b-between xi-x.. | 04672 2.93 | | Chi2(1) = 4.25

(4b in % of 4) | (26.94) | | Prob > Chi2 = .01
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One of the most widely used longitudinal panels V

k Overall xij-x.. | -.4416 1.514 | Ni x Nj 1031| id effects:
1-Between xj-x.. | 1.505 98.14 | Nj-min 35| Chi2(1) =3063.15
2-Within xij-xj | .2217 1.86 | Nj-bar 114.56] Prob > Chi2 = 0.00
------ of which: ------ | e | Nj-max 140| year effects:
2a-res xij-xj-xi+x.. | .2028 1.54 | Ni-min 7] Chi2(1) = 0.23
2b-between xi-x.. | .0905 0.32 | Ni-bar 7.36] Prob > Chi2 = 0.16
(2b in % of 2) | (17.14) | Ni-max 9| Balancedness = 81.83

-- year as fixed effects: -- ]

3-Between xj-x.. 1.503 97.97 | id effects:
4-Within xij-xj 2322 2.03 | Chi2(1) =3288.44

------ of whicl

Prob > Chi2 = 0.00

4a-res xij-xj-xi+x.. 2028 1.54 | year effects:
4b-between xi-x.. 1132 0.50 | Chi2(8) = 278.52
(4b in % of 4) (24.44)| Prob > Chi2 = 0.00
-- year as crossed-effect: -- | ] |
3-Between xj-x.. | 1.498 97.78 | | id effects:
4-Within xij-xj | 2422 2.22 | | chi2(1) =3267.04
| | Prob > Chi2 = 0.00
| 2037 1.56 | | year effects:
4b-between xi-x.. | 1306 0.67 | | Chi2(1) = 0.23
(4b in % of 4) | (29.91) | Prob > Chi2 = 0.16
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One of the most widely used longitudinal panels VI

Predicted year effect -n

it

Predicted year effect - w.

o 2 4 6 8 10

Level-3 (cross-effects) pillar-plot for

log(employees

Rank.

Predicted year effect -k

Predicted d effect - n

o 2 4 6 H 10

Level-3 (cross-effects) pillar-plot for log(capital)

Rank.

Level-2 pillar-plot for log(employees)
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Considerations |

Meb

Cross-classified multilevel models are applicable to macro panels, although the latter are
usually considered hierarchical structures with periods nested within individuals in a balanced
manner (all units measured over the same time span and all starting in the same period).

In fact, it may be appropriate to consider a cross-classification of measurement occasions
treated as random in order to capture events that can affect all units. This is an alternative
way of considering CCEs induced by shocks to the international business cycle and different
capacities to adapt to joint monetary policy choices (such as euro adoption).

In a balanced macro long T panel, fixed time effects or cross-time effects are relevant and
capable of capturing a broken trend that tends to be non-stationary for the interest rate (an
I(1) process).

Also, cross-classified models allow us to assess the effects of panel imbalance, in the form of
panel dropout or occasional non-measurement, as in abdata.

Multilevel models show that in this longitudianl short T unbalanced panel, time considered as
random is more relevant, particularly for variable wage w, capturing entries and exits of units
from the sample as well as the role of inflation.

Although the UR test requires at least 9 periods and cannot be implement on abdata, pillar
plots allow for some considerations, such as the tendency of employees n to decrease when

wages w increase in 1983-1984, the decline in wages w as a consequence of the second oil

shock in 1979-1980; a stable decrease of capital stock k over the period.

pantarei
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Very unbalanced micro panel |

Data from de Jong et al. (2011)

egen id=group(gvkey), label

tsset id yeara

Panel variable: id (unbalanced)

Time variable: yeara, 1986 to 2001, but with gaps
Delta: 1 unit

xtdes
id: 1, 2, ..., 5449 n= 5449
yeara: 1986, 1987, ..., 2001 T= 16
Delta(yeara) = 1 unit
Span(yeara) = 16 periods
(id*yeara uniquely identifies each observation)
Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 1 3 8 14 16
Freq. Percent Cum. | Pattern
384 7.05 7.05 |
176 3.23 10.28 |
167 3.06 13.34 |
149 2.73  16.08 |
136 2.50 18.57 |
132 2.42  20.99 |
131 2.40 23.40 |
113 2.07 25.47 |
98 1.80 27.27 |

3963 72.73 100.00 | (other patterns)

5449 100.00 | XXXXXXXXXXXXXXXX
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Very unbalanced micro panel Il

pantarei id yeara bdr mdr, common ur

Level 2 (i): id Level 1 (t): yeara =—==—==-===—=mmm=mmmmmom
Hypothetical full sample, N x T: 87184
N: 5449 T: 16

(2b in % of 2)
Estimated CF x.t
Computed CF x.t

HO: UR - pval = 0.00
HO: UR - pval = 0.04

Variable | Mean Std.Dev. % SS | Observations | Test
The lenght of time series could be not enough to compute UR test
(at least 9 periods are required)
Error code r(127) (or r(2000) or r(498))
bdr Overall xit-x.. | .2608 .2139 | NxT 27762| id effects:
1-Between xi.-x.. | .1826  72.9@ | N-min 1528| F(5448, 22298)= 11.21
2-Within xit-x: | .1242  27.10 | N-bar  1735.12] Prob > F = .00
=------ of which: | mmemmmmmemmmmeeeee | N-max 2056| yeara effects:
2a-res xit-xi.-x.t+x.. | .123  26.56 | T-min 11 F(15, 22298) = 30.50
2b-between x.t-x.. (CF) | 01631 0.54 | T-bar 5] Prob > F = 0.00
|
|
|

|
|
(2.01) | T-max 16.00| Balancedness = 31.84
|
|

The lenght of time series could be not enough to compute UR test
(at least 9 periods are required)
Error code r(127) (or r(2000) or r(498))

(2b in % of 2)
Estimated CF x.t
Computed CF x.t

HO: UR - pval = 0.13
HO: UR - pval = 0.09

mdr Overall xit-: | .2689 .2459 I NXxT 27762| id effects:
1-Between xi. | 2086  71.93 | N-min 1528| F(5448, 22298)= 11.12
2-Within xit-xi. | 1453  28.07 | N-bar 1735.12]| Prob > F = 0.00
| mmemmmmmemmmmeeeee | N-max 2056| yeara effects:
2a-res xit-xi.-x.t+x.. | 141 26.40 | T-min 11 F(15, 22298) = 93.99
2b-between x.t-x.. (CF) | .03282 1.67 | T-bar 5] Prob > F = 0.00
|
|
|

|
|
(5.95) | T-max 16.00| Balancedness = 31.84
|
|
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Very unbalanced micro panel Ill

pantarei id yeara bdr mdr, common ml
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Very unbalanced micro panel IV

bdr mdr
s .
~_ i ~
) - 3t IN N\
N— S
2
1
'
\ /_\/// ) M
1985 1990 1995 2000 1985 1990 1995 2000
il yoar fiacal yoar
Computed CF  — Estimated CF Computed CF —— Estmaled CF
CCE for debt-ratio, book value CCE for debt-ratio, market value
15
! g
. g3t g 88 I s g °
i g § § g 88§
‘z RER i S g # 1t !
: I H sg 8 ¢ ! -
3 rdd Pt b1 § g 8 8 8 RNER t
! T ! i
pid ) 1
. MIERERE
0 5 10 15 0 5 15
Rk Rank
Level-3 (crossed-effects) pillar-plot for Level-3 (crossed-effects) pillar-plot for debt-ratio,

debt-ratio, book value market value!

Meb




The aim y Examples

Very unbalanced micro panel V

The ur option provides a warming when the panel is unbalanced, but the test is implemented for
those companies with more than 9 periods.

The debt-to-market value ratio is non-stationary.

Some breaks occured: the oil shock (Iraq invaded Kuwait, causing an increase in the price of crude
oil, which sparked fears of inflation) and the credit crisis (bankruptcy of hundreds of US credit
insititutions, more restrictive lending by banks, restrictive policy by the FED to curb inflation) in
1990, which caused the S&P 500 to fall by about 14% from July to October 1990.

In 2000 the dot-com bubble burst, with technology stocks being overvalued (the Nasdaq grew by
almost 400% between 1995 and March 2000, driven largely by unprofitable internet companies),
between June 1999 and May 2000, the FED raised the federal funds rate from 4.75% to 6.5% to
cool the overheated economy, and companies overinvesting in IT systems before 2000, only to slow
down their investments afterward. This caused the Nasdaq Composite to fall by around 50% and
the S&P 500 to fall by 9%.
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Quarterly data & micro panel |

The pantarei command also works, e.g., with quarterly data. An example from COMPUSTAT
data over the 1975q1-2020q4 (Bontempi and Bottazzi, 2025), again for debt ratios at book and
market values.

pantarei id qtr TDAg TDMqg, ur

Level 2 (i): id Level 1 (t): gtr  ————=—mmmmmmmmmmmmemee
Hypothetical full sample, N x T: 2281140
N: 12673 T: 180

(2b in % of 2)
Estimated CF x.t
Computed CF x.t

(6.08) | T-max 180.00| Balancedness = 18.61
HO: UR - pval = 0.00
Ho: UR - pval = 0.28

Variable | Mean Std.Dev. % SS | Observations | Test
TDAq Overall xit-x.. | .2327 .21 | NxT 436256| id effects:
1-Between xi.-x.. | 1681  63.48 | N-min 483| F(12179, 423897)= 62.96
2-Within xit-xi. | 11293 36.52 | N-bar  2423.64| Prob > F =  0.00
------ of which: ------ | -=-=------------| N-max 3812| qtr effects:
2a-res xit-xi.-x.t+x.. | L1269 35.14 | T-min 11 F(179, 423897)= 93.59
2b-between x.t-x.. (CF) | .02493 1.39 | T-bar 36] Prob > F = 0.00
(2b in % of 2) | (3.80) | T-max 180.00| Balancedness = 19.12
Estimated CF x.t | | | HO: UR - pval = 0.81
Computed CF x.t | | | HO: UR - pval = 0.22
TDMq Overall xit-x.. | .2314 .2396 | NXxT 424603| id effects:
1-Between xi.-x.. | .1933  65.07 | N-min 479| F(12146, 412277)= 65.32
2-Within xit-xi. | .1437  34.93 | N-bar  2358.91| Prob > F = 0.00
- - of which: | N-max 3779| qtr effects:
2a-res xit-xi.-x.t+x.. | 1393 32.81 | T-min 1] F(179, 412277)= 149.00
2b-between x.t-x.. (CF) | .035 2.12 | T-bar 35] Prob > F = 0.00
|
|
|

pantarei id qtr TDAq TDMq, common ml
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Quarterly data & micro panel Il

TDAq TDMq
s "

J M
2 W/\\AMV /\/ 2 L \JVJ\‘\WM\/\ /}r\\\/ NV\/J\

El

1980q1 199091 200091 2010q1 202091 ) 1980q1 1990q1 200091 201091 202091
a a
—— Computed CF  — Estmated CF —— Compuied CF  —— Estmated CF
CCE for debt-ratio, book value quarterly CCE for debt-ratio, market value quarterly
15 :
£, £
- B
i H
- i
H H
05 t
13 EY 10 150
Rank Rank
Level-3 (cross-effects) pillar-plot for debt-ratio, Level-3 (cross-effects) pillar-plot for debt-ratio,

book value quarterly market value quarterly)



Examples

Another preliminar analysis |

Data taken from Bontempi and Kean (2025) Do efficient institutions discourage foreign direct
investment (FDI) in developing countries rich in natural resources?

One of the main findings is that the emerging of democracy stimulates FDI regardless of the level
of natural resources, provided that the host countries are already governed democratically to some
extent.

Conversely, countries characterised by the risk of expropriation or long-standing governments (often
associated with more autocratic regimes) do not discourage FDI aimed at exploiting natural
resources.

Meb pantarei
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Another preliminar analysis Il

CO2 FDI DEM | RISK | GOV FE ME
between i 92.69 | 58.39 | 65.37 | 44.86 | 18.51 | 81.75 | 79.00
between t 0.84 0.44 9.15 28.66 | 43.86 | 0.59 0.84
residual within 6.47 41.17 | 25.48 | 26.49 | 37.63 | 17.55 | 20.16
UR yes yes yes yes no no yes

Table: Managing pantarei results
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Another preliminar analysis IlI
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A classical multilevel dataset |

Data taken from Abrevaya (2006) studying the effect fo smoking on the weight (in grams) of single
newborns. Smoking status was determined by the answer to the question on the birth certificate
regarding tobacco consumption during pregnancy. Smoking may vary from one pregnancy to
another.

egen mom=group(momid)

pantarei mom idx birwt cigs smoke, common ml

Meb pantarei
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A classical multilevel dataset Il

Level 2 (j): mom Level 1 (i): idx = =—----=----m-mmmmommooo-
Hypothetical full sample, Ni x Nj: 11934
Nj: 3978 Ni: 3

Variable | Mean Std.Dev. % SS | Observations | Test

birwt Overall xij-x.. | 3470 527.1 | Ni x Nj 8604| mom effects:
1-Between xj-x.. | 448.4  72.35 | Nj-min 648| Chi2(1) =1315.66
2-Within xij-xj | 378 27.65 | Nj-bar 2868.00| Prob > Chi2 = 0.00
------ of which: ------ | eme—————— | Nj-max 3978| idx effects:
2a-res xij-xj-xi+x.. | 375.6  27.29 | Ni-min 2| Chi2(1) = 22.99
2b-between xi-x.. | 38.84 0.36 | Ni-bar 2.16] Prob > Chi2 = 0.00
(2b in % of 2) | (1.31) | Ni-max 3| Balancedness = 72.10

-- idx as fixed effects: -- |

3-Between Xj-X.. 448.6 72.40 | mom effects:

| |

| |
4-Within xij-xj | 377.7  27.60 | | chi2(1) =1336.67
------ of whicl I | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | 375.6  27.29 | | idx effects:
4b-between xi-x.. | 36.05 0.31 | | Chi2(2) = 55.14
(4b in % of 4) | (1.13) | | Prob > Chi2 = @.00

-- idx as crossed-effect: -- |

3-Between Xj-x.. 369 63.97 | mom effects:
4-Within xij-xj 377.7 36.03 | Chi2(1) =1336.68

Prob > Chi2 = 0.00

4a-res xij-xj-xi+x.. 375.7 35.63 | idx effects:
4b-between xi-x.. 35.57 0.40 | Chi2(1) = 22.99
(4b in % of 4) (1.10) | Prob > Chi2 = @.00
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A classical multilevel dataset Il

smoke Overall xij-x.. | .1399 .3469 | Ni x Nj 8604| mom effects:
1-Between Xxj-x | .3188  84.43 | Nj-min 648| Chi2(1) =3330.07
2-Within xij-xj | .1867  15.57 | Nj-bar 2868.00| Prob > Chi2 = 0.00
------ of which: ------ | | Nj-max 3978| idx effects:
2a-res xij-xj-xi+x.. | .1867  15.57 | Ni-min 2| Chi2(1) = 0.00
2b-between xi-x.. | 1.04e-09 0.00 | Ni-bar 2.16] Prob > Chi2 = @.50
(2b in % of 2) | (0.00) | Ni-max 3| Balancedness = 72.10

-- idx as fixed effects: -- |

3-Between Xj-X.. 3188 84.43 | mom effects:

4-Within xij-xj

Chi2(1) =3325.32
Prob > Chi2 = 0.00

4a-res xij-xj-xi+x.. .1867 15.57 | idx effects:
4b-between xi-x.. .003505 0.01 | chi2(2) = 0.74
(4b in % of 4) (0.04) | Prob > Chi2 = 0.69
-- idx as crossed-effect: -- | | |
3-Between xj-Xx.. | .2942  82.21 | | mom effects:
4-Within xij-xj | L1867 17.79 | | Chi2(1) =3330.07
------ of which: -----—- I - 1 | Prob > Chi2 = @.00
4a-res xij-xj-xi+x.. | L1867 17.79 | | idx effects:
4b-between xi-x.. | 2.32e-08 0.00 | | Chi2(1) =  0.00
(4b in % of 4) | (0.00) | | Prob > Chi2 = 0.50




Examples

A classical multilevel dataset IV

cigs Overall xij-x.. | 2.269 8.904 | Ni x Nj 8604| mom effects:
1-Between Xxj-x | 7.288 67.00 | Nj-min 648| Chi2(1) = 752.75
2-Within xij-xj | 6.976 33.00 | Nj-bar 2868.00| Prob > Chi2 = 0.00

------ of which: ------ | | Nj-max 3978| idx effects:
2a-res xij-xj-xi+x.. | 6.977  33.00 | Ni-min 2| Chi2(1) = 0.00
2b-between xi-x.. | 4.77e-07 0.00 | Ni-bar 2.16] Prob > Chi2 = @.50
(2b in % of 2) | (0.00) | Ni-max 3| Balancedness = 72.10

-- idx as fixed effects: -- |
3-Between xj-x.. 7.288 66.99 | mom effects:

chi2(1) = 750.21
Prob > Chi2 =  0.00

4-Within xij-xj

4a-res xij-xj-xi+x.. 6.977 33.00 | idx effects:
4b-between xi-x.. 1018 0.01 | chi2(2) = 0.15
(4b in % of 4) (0.03) | Prob > Chi2 = 0.93
-- idx as crossed-effect: -- | | |
3-Between xj-Xx.. | 5.587 54.40 | | mom effects:
4-Within xij-xj | 6.975 45.60 | | Chi2(1) = 752.75
------ of which: -----—- I - 1 | Prob > Chi2 = @.00
4a-res xij-xj-xi+x.. | 6.977 45.60 | | idx effects:
4b-between Xi-x.. | 0000403  0.00 | | Chi2(1) = 0.00
(4b in % of 4) | (0.00) | | Prob > Chi2 = 0.50
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A classical multilevel dataset V

Results similar to Rabe-Hesketh and Skrondal (2012). There is an average of 2.16 births per
mother.

The random intercept or level-2 residual (a mother-specific error component which remains
constant across births) represents the combined effects of omitted mother characteristics or
unobserved heterogeneity at the mother level and ranges from 64 to 72%. This also represents the
estimated intraclass correlation capturing the correlation (equal to 0.72) between the birth weights
of siblings or tells us that 72% of the variance in birth weight is shared between siblings.

Birth weight and smoking vary more between mothers (clusters of mothers as units of analysis)
than within mothers (level-1 newborns as units of analysis).

As the mother effect is shared by all responses by the same mother, it induces a within-mother
dependence of 28-36% in birth weight and 16-18% in smoking behaviour (among the residuals).
This indicates that birth weight and smoking behaviour are not stable across pregnancies and that
weight is less stable than smoking behaviour.

The between level-1 variability of weight is very low (0.4) (the between level-1 variability of
smoking is zero). This indicates that weight and smoking behaviour are not related to birth order
(firstborn, secondborn and thirdborn).
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A cross-classified multilevel dataset |

A typical cross-classified data structure is the conifer system investigated by Ols et al. (2020) and
Bontempi, Mairesse, et al. (2025), based on 10.643 trees sampled across the systematic grid of the
continuous French national forest inventory (NFI) over the 20062016 period.

A national 1 km X 1 km grid is used; every year, one tenth of the grid is inventoried and 5,442
plots classified as forests by the photo interpretation of aerial images are visited in the field in order
to deliver fully renewed information on forests. Sampling plots are temporary, specie-homogeneous
and consist in 25-m radius circles within which two dominants trees, chosen within the main tree
species encountered on the plot, are measured (241 plots, 4% of the total, have only one tree).
The panel is not a strict three-level hierarchy. Rather it is a cross-classified multilevel model where
trees are nested within the cells formed by the cross-classification of species-by-ecological regions.

Therefore, the growth of tree-plots (measured by radial increment or diameter in metres and logs)
can be influenced by both species and ecological regions, which are both sources of variation when
considering tree-plots nested in the cross-classification of both species and ecological regions.
Hence, there are two separate two-level hierarchies which cross one another:

(1) a tree-plot-within-specie hierarchy, and

(2) a tree-plot-within-ecological-region hierarchy.
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A cross-classified multilevel dataset Il

Table: Distribution of Tree Species by Ecological regions

1-Crystalline  2-Semi-Oceanic ~ 3-Semi-Continental ~ 4-Vosges 5-Oceanic 6-Massif ~ 7-Alps  8-Mediterranean Total

Oceanic West Central North East South West Central
Douglas fir 0 551 (A) 0 0 0 1,145 (A) 0 0 1,696
(48.7) (35.9) (15.9)
Norway spruce 0 0 337 (A) 303 0 730 (A) 279 0 1,649
(100) (47.8) (229)  (19.3) (15.5)
European larch 0 0 0 0 0 0 341 0 341
(23.6) (3.2)
Aleppo pine 0 0 0 0 0 0 0 455 455
(100)  (4.3)
Corsican pine 482 (A) 0 0 0 0 0 0 0 482
(44.5) (4.5)
Maritime pine 602 (A) 0 0 0 2366 (A) 0 0 0 2968
(55.5) (100) (27.9)
Scots pine 0 581 (A) 0 0 0 725 826 0 2,132
(51.3) (227)  (57.1) (20.0)
Silver fir 0 0 0 331 0 589 0 0 920
(52.2) (18.5) (8.6)
Total 1,084 1,132 337 634 2,366 3,189 1,446 455 10,643
(10.19) (10.64) (3.17) (5.96) (22.23) (29.96)  (13.59) (4.28)  (100)

Note: (A) for afforested trees.
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egen treespid=group(treesp), label
egen ecoregid=group(ecoreg), label
pantarei ecoregid treespid ril diameter13 1lri1 ldiam, ml
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Level 2 (j): ecoreg Level 1 (i): treesp
Hypothetical full sample, Ni x Nj: 9464952

Nj: 2968 Ni: 3189

Variable | Mean Std.Dev. % SS | Observations | Test

ri1 Overall xij-x.. | .00285 .002085 | Ni x Nj 10643| ecoreg effects:
1-Between xj-x.. | 0004631 4.31 | Nj-min 341] Chi2(1) =1393.53
2-Within xij-xj | .002041 95.69 | Nj-bar 1330.38] Prob > Chi2 = 0.00
------ of which: ------ | eme—————— | Nj-max 2968| treesp effects:
2a-res xij-xj-xi+x.. | .001851 78.67 | Ni-min 337] Chi2(1) =2232.66
2b-between xi-x.. | .0009197  17.02 | Ni-bar 1330.38| Prob > Chi2 = 0.00
(2b in % of 2) | (17.79) | Ni-max 3189| Balancedness = 0.11

-- treesp as fixed effects: --| | |
3-Between Xj-X.. | .0007936 12.67 | | ecoreg effects:
4-Within xij-xj | 001949  87.33 | | chi2(1) = 224.55
------ of whicl I | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | .001851  78.67 | | treesp effects:
4b-between xi-x.. | 000656 8.66 | | Chi2(7) =1191.27
(4b in % of 4) | (9.92) | | Prob > Chi2 = @.00
-- treesp as crossed-effect: --| | |

3-Between xj-X.. | .0004482 4.34 | | ecoreg effects:
4-Within xij-xj | .001969  95.66 | | Chi2(1) = 240.59
------ | | Prob > Chi2 = @.00
4a-res xij-xj-xi+x.. | .001851  84.49 | | treesp effects:
4b-between xi-x.. | .0007192  11.17 | | Chi2(1) =2232.66
(4b in % of 4) | (11.68)| | Prob > Chi2 = 0.00
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diame~13 Overall xij-x.. | .3329 .1364 | Ni x Nj 10643| ecoreg effects:
-- treesp as fixed effects: --| ] |
3-Between Xj-x.. | .03751 6.62 | | ecoreg effects:
4-Within xij-xj | 1319 93.38 | | chi2(1) = 223.72
- of whicl | | | Prob > Chi2 = 0.00
4a-res xij-xj-: | L1259 85.02 | | treesp effects:
4b-between xi-x.. | .04216 8.36 | | Chi2(7) =1042.74
(4b in % of 4) | (8.95) | | Prob > Chi2 = @.00
-- treesp as crossed-effect: --| ] |
3-Between Xj-X.. | .03676 5.81 | | ecoreg effects:
4-Within xij-xj | 11385 94.19 | | chi2(1) = 236.12
| e | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | 1259 77.78 | | treesp effects:
4b-between xi-x.. | .06179  16.42 | | Chi2(1) =1404.65
(4b in % of 4) | (17.43) | | Prob > Chi2 = @.00

Examples
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Level 2 (j): ecoreg Level 1 (i): treesp
Hypothetical full sample, Ni x Nj: 9464952
Nj: 2968 Ni: 3189

Variable | Mean Std.Dev. % SS | Observations |

Test

1ril Overall xij-x.. -6.151 .825 | Ni x Nj 10643]

1-Between xj-x.. .2522 8.18 | Nj-min 341)
2-Within xij-xj .7908  91.82 | Nj-bar 1330.38|
2a-res xij-xj-xi+x.. .6796 67.78 | Ni-min 337]|

2b-between xi-x..
(2b in % of 2)

.4324  24.04 | Ni-bar 1330.38|

|
|
|
- of which: ------ | emeemeceeeemeee- | Nj-max 2968
|
|
| (26.18)| Ni-max 3189]

ecoreg effects:
Chi2(1) =2414.64

Prob > Chi2 = 0.00
treesp effects:

Chi2(1) =3370.56
Prob > Chi2 = 0.00
Balancedness = 0.11

-- treesp as fixed effects: --| |

|
3-Between Xj-X.. | 4012 20.70 | | ecoreg effects:
4-Within xij-xj | 7349 79.30 | | chi2(1) = 660.74
------ of whicl I | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | .6796 67.78 | | treesp effects:
4b-between xi-x.. | 2994  11.52 | | Chi2(7) =1818.63
(4b in % of 4) | (14.53) | | Prob > Chi2 = @.00
-- treesp as crossed-effect: --| |
3-Between xj-X.. 2575 9.60 | ecoreg effects:
4-Within xij-xj 7393 90.40 | Chi2(1) = 680.28

4a-res xij-xj-xi+x.. 6798 76.38 |
4b-between xi-x.. 3112 14.02 |
(4b in % of 4) (15.51)|

Prob > Chi2 = 0.00
treesp effects:
Chi2(1) =3370.56

Prob > Chi2 = 0.00
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1diam Overall xij-x.. | -1.196 .4623 | Ni x Nj 10643| ecoreg effects:
-- treesp as fixed effects: --| ] |
3-Between Xj-x.. | L1261 6.51 | | ecoreg effects:
4-Within xij-xj | 4471 93.49 | | chi2(1) = 219.08
- of whicl | | | Prob > Chi2 = 0.00
4a-res xij-xj- | L4322 87.30 | | treesp effects:
4b-between xi-x.. | L1229 6.19 | | Chi2(7) = 750.28
(4b in % of 4) | (6.62) | | Prob > Chi2 = @.00
-- treesp as crossed-effect: --| ] |
3-Between Xj-X.. | L1181 5.30 | | ecoreg effects:
4-Within xij-xj | 4672 94.70 | | chi2(1) = 230.75
| e | | Prob > Chi2 = 0.00
4a-res xij-xj-xi+x.. | 4323 81.02 | | treesp effects:
4b-between xi-x.. | .1898  13.68 | | Chi2(1) =1130.98
(4b in % of 4) | (14.45) | | Prob > Chi2 = @.00

Examples
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A different picture emerges when we compare radial increment and diameter (in logs). Diameter
can be affected by measurement errors (inaccuracy) because the bark is also included, but this does
not grow in the same way as wood (rings).

We see that 14.02-13.68% of the variation in growth lies between species, while 9.60-5.30% lies
between ecological regions, and 76.38-81.02% lies between tree-plots. Thus, there are stronger
growth disparities across the 8 species than there are across the 8 ecoregs. This finding is surprising
given that the number of ecoregs in the data is equal to the number of species.

In terms of ICCs, we note that homogeneity or correlation in growth at the species level is greater
than at the ecological region level (here coincide with VPCs). The greatest homogeneity is found in
trees of the same species living in the same ecological region, computed as 23.62-18.98%.

These results guide the modelling of conditional models, in which adjusted ICCs are based on the
residuals of the conditional model rather that on the observations of the dependent variable alone,
allowing us to assess how the addition of explanatory variables can modify the unexplained
variability and similarity between and within the various clusters.
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