

XVIII Italian Stata Conference Florence, 9-10 May 2024

Non-Negative Least Squares in Stata

Giovanni Cerulli IRCrES-CNR Research Institute for Sustainable Economic Growth, National Research Council of Italy E-mail: giovanni.cerulli@ircres.cnr.it

Non-Negative Least Squares (NNLS)

Given a matrix X of size $m \times n$ where each row represents a data point and each column represents a feature, and a vector y of size $m \times 1$ representing the observed dependent variable, we want to find a parameter vector β of size $n \times 1$ that minimizes the sum of squared errors subject to the constraint that all elements of β are nonnegative:

$$\min_eta \|Xeta-y\|_2^2 \quad ext{subject to} \quad eta \geq 0$$

The solution $\hat{\beta}$ to this minimization problem can be found using various algorithms tailored for nonnegative optimization.

Some NNLS applications

Spectral Analysis

In spectroscopy, signals are often nonnegative, such as spectra representing the intensity of light at different wavelengths.

Chemometrics

NNLS is widely used in chemometrics for tasks like multivariate calibration in analytical chemistry.

Image Processing

In image processing, NNLS can be applied for tasks like image reconstruction from incomplete or noisy data.

Biomedical Signal Processing

NNLS has applications in processing various biomedical signals, such as electroencephalography (EEG) and positron emission tomography (PET) data.

Text Mining and Natural Language Processing

In topic modeling and document clustering, NNLS can be used to decompose document-term matrices into nonnegative components, facilitating the discovery of latent topics or themes in text collections.

Environmental Monitoring

NNLS can be applied in environmental monitoring for source apportionment and pollution source identification. By decomposing pollution data into nonnegative components, it becomes easier to identify and quantify the contributions of different pollution sources.

Financial Modeling

In finance, NNLS can be utilized for portfolio optimization, where the weights assigned to different assets need to be nonnegative. It can also be applied in risk management and asset pricing models.

NNLS in Stata: the nnls command

help nnls

<u>Title</u>

nnls — Non-negative least squares in Stata

<u>Syntax</u>

nnls depvar indepvars [if] [in], [graph graph_save(graphname) standardize]

options

Description

graph	generates the importance index bar graph
standardize	compute NNLS on z–standardized variables (zero mean and unit variance)

Example of nnls application

```
Example: Non-negative least squares applied to the Boston dataset
 Load initial dataset from ancillary file
     use boston, clear
 Set the outcome
     global y "medv"
 Set the features
     global X "crim zn indus age lstat black"
 Run "nnls" using unstandardized variables
     nnls $y $X , graph graph_save("my_graph")
Generate predictions
     predict PRED_ustd
 Clear all the Stata environment
     clear all
 Load again initial dataset from ancillary file
     use boston, clear
Run "nnls" using standardized variables
     nnls $y $X , graph graph_save("my_graph") standardize
Generate predictions
     predict PRED std
```

NNLS in Stata - results

Results using variables in levels (original variables)

ing up to 1	WEIGHTS: summi	WEIGHTS: not summing up to 1	
Unit_We~s		Weights	
0	crim	0	crim
.6270242	zn	.1386488	zn
0	indus	0	indus
.1406083	age	.0310916	age
0	lstat	0	lstat
.2323675	black	.0513815	black
.2323675	black	.0513815	black

	Unit_We~s
crim	0
zn	.6270242
indus	0
age	.1406083
lstat	0
black	.2323675

Feature importance indicators

Making NNLS predictions

- . predict PRED_ustd
- . kdensity PRED_ustd

Variables in levels

NNLS in Stata - results

Results using **standardized variables** (zero mean, unit variance)

WEIGHTS: not	summing up to 1
	Weights
z_crim	0
z_zn	.3115131
z_indus	0
z_age	0
z_lstat	0
z_black	.2787839

WEIGHTS: summing up to 1

	Unit_We~s
z_crim	0
z_zn	.5277226
z_indus	0
z_age	0
z_lstat	0
z_black	.4722774

Feature importance indicators

Making NNLS predictions

- . predict PRED_std
- . kdensity PRED_std

Standardized variables

Remark: Python installation needed

Remark 1: In order to execute this program, it is necessary to have both Stata 16 or newer versions and Python installed, starting from version 2.7 onwards. Detailed instructions for installing Python on your machine can be found at: https://www. rg/downloads. We highly recommend using the Anaconda distribution for Python, which can be installed from: https://docs.anaconda.com/free/anaconda/install/index.html#. Additionally, prior to running the command, it is essential to ensure that the "SciPy" package and its related dependencies, as well as the Stata Function Interface (sfi) APIs, are installed.

Conclusions

References

Bro, R. and De Jong, S. 1997. A fast non-negativity-constrained least squares algorithm. *Journal of Chemometrics*, 11, 393-401.

Cerulli, G. 2023. Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata, Springer.

Acknowledgment

The development of this software was supported by FOSSR (Fostering Open Science in Social Science Research), a project funded by the European Union – NextGenerationEU under the NPRR Grant agreement n. MURIR0000008.