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INTRODUCTION

1. This paper deals with ex-ante data-driven optimal
design of (micro) policies

2. Itis embedded within the optimal policy learning (OPL)
literature

3. It contributes by stressing the policymaker perspective

4. 1t suggests a menu strategy to deal with optimal
solution’s monotonicity
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OPTIMAL POLICY LEARNING - 1

Optimal policy learning
Frontier of the "econometrics of program evaluation’

Changing policy perspective

From policy “ex-post” evaluation to “ex-ante” optimal policy
design

Prediction based

Compared to ex-post evaluation (based on inference), OPL
targets optimal “prediction”, entailing a central role of
“machine learning”



DEFINITION OF OPL

What is policy learning?
Process of improving program welfare achievements by re-iterating similar
policies over time

Optimal treatment assignment

Policymakers can optimally fine-tune the treatment assignment of a
prospective policy using the results from an RCT or observational study.
Assignment rules depends on the class of policies considered (here we focus
on threshold-based and linear-combination policies)

Maximizing constrained welfare

The policymaker hardly manage to reach the best solution (unconstrained
maximum welfare) because of institutional/economic contains of various sort
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POLICY AS A SELECTION PROBLEM
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POLICY LEARNING WITHIN THE POLICY EVALUATION CYCLE

Policy learning

Step 1.
Unit eligibility

no

yes

Step 2.
Unit self-selection

Non-eligible units

no

yes

Step 3.
Agency’ unit /project
selection
( Ex-ante evaluation )

Non-applying units

no

yes

\

Step 7.

Using ex-post
evaluation to predict
future effect
(Learning)

Step 4.
Agency implementation and
control of the program
( In-itinere evaluation )

Vv

AN

Step 5.
Units’ behavior

{

Step 6.
Estimation of the policy effect
by a treatment model

( Ex-post evaluation)

Non-supported
applying units

~

Counterfactual |

...........................
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POLICY DIRECT AND INDIRECT EFFECT

Total
Policy effect S = Selection process operated by

l . ~ a specific treatment rule

1(8) = o+ B(S) *

| Empirical Welfare Maximization aims

] I at maximizing the indirect effect

- . via optimal assignment to treatment within
Direct Indirect specific classes of policies
effect effect

_ This is the effect obtained if the
‘assignment to treatment” was run at

random
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OPTIMAL TREATMENT ASSIGNMENT -1

Let X be an individual’s vector of characteristics, Y an outcome of interest, 7" = {0, 1}
a binary treatment. A policy assignment rule G is a function mapping X to T,

specifying which individuals are or are not to be treated:

G: X—=T

Define the (population) policy conditional average treatment effect as:

7(X) = E(V1]X) — E(Yo|X)

where Y; and Y) represent the two potential outcomes of the policy, and Ex[7(X)] =7
the average treatment effect.




OPTIMAL TREATMENT ASSIGNMENT - 2

Under selection-on-observables, we know that:

ECYIX,T=1)-EYX,T=0)

These two conditional expectations are identified by data. Whatever

ML algorithm can be used for estimation (Boosting, Random forests,
Neural networks, Nearest neighbor, etc.)

Extension to selection-on-unobservables straightforward
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OPTIMAL TREATMENT ASSIGNMENT -3

The estimated policy actual total effect (or welfare)

L N
= T;-#(X
1=1

and the estimated policy unconstrained optimal total effect (or unconstrained mazi-

mum welfare) as:

where:

= 1[7(X;) > 0]

is the estimated optimal unconstrained policy assignment.
The difference between the estimated (unconstrained) maximum achievable wel-
fare and the estimated welfare associated to the policy actually run is called regret,

and it 1s defined as:

regret — W* — W .




EXAMPLE

Example of an optimal policy assignment rule
The regret of this policy is equal to 16 =26 - 10

ID T 7(X) T -7(X) T T - 7(X)
1 1 9 9 1 9
2 1 —4 —4 0 0
3 1 5 5 1 5
4 0 6 0 1 6
5 0 —2 0 0 0
6 0 6 0 1 6
10 26

Actual Maximum

welfare welfare

reached feasible

regret —> 26-10=16



NAIVE OPTIMAL SELECTION

Given {X,Y,T} from an already-implemented policy: estimate the
idiosyncratic effect ¢(X). This means we have learnt the

mapping:

T o ESEAP o ECONNAC S STANAE GFOWTH

X = 1(X) (learning from experience)

Consider a prospective second policy round with a new eligible
set {X'}, and compute the learnt {t(X")} over X..

Rank individuals so that: 7(X,") > t(X,") > t(X5") > ... > 0.

Given a monetary budget C and a unit cost ¢;, find Ny

N1

ZCi=C

=1 N
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OPTIMAL CONSTRAINED ASSIGNMENT

dEligibility, budget, ethical, or institutional constrains make
policymakers unable to implement the optimal unconstrained
policy assignment

dThey are obliged to rely on a constrained assignment rule
selecting treated units according to their characteristics

W The welfare thus obtained may drop down

[ Policymakers can however produce the largest feasible
constrained welfare
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EXAMPLE OF CONSTRAINED ASSIGNMENT:
UNIVARIATE THRESHOLD-BASED POLICY

* The policymaker wants to treat only “young” people

* |n theory, he can continue to use the naive approach, by
excluding from treatment all the individuals with age smaller
than a certain age A”™

 The problem is that different A* can induce different level
of welfare

* The problem becomes that of choosing A* to maximize the
effect/welfare



@ consgio Nozonge cele Rerche

@
|
r
STITUTO 6 RICERCA sulls CRESCITA ECONOMICA SOSTENBILE
INSTITUTE of RESEARCH on ECONOMIC SUSTANABLE GROWTH

POLICY CLASSES

There exist however several classes of policies
used by policymakers to select in a constrained
decision context. The most popular are:

dThreshold-based

dLinear combination

JdFixed-depth decision trees
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POLICY CLASSES (pecisioN BOUNDARIES)

Threshold-based Linear combination Fixed-depth tree
X2
C1 X1 X1
X, <t
Legend: 2-depth tree ——

Decision boundary

B Sclection area




Threshold-based slell[aY

OPTIMAL CONSTRAINED
TREATMENT RULE
Unit
L selection
ng;ttt&?g function
: I
Ti(x,c.) = 7‘} - 1|x >= ¢,
j%i* _ 1[7A_(XZ) ~ O] Threshold

value
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OPTIMAL CONSTRAINED WELFARE

> The corresponding welfare is a function of c,;

ZTJCQ;: -IC:):' z)

IIMZ

We define the optimal choice of the threshold ¢, as the one maximizing /W(x ) over

Co:

= argmax, [W(:):, Cz)]

If ¢ exists, the estimated optimal constrained welfare will thus be equal to W(Cg)



OPTIMAL CONSTRAINED TREATMENT RULE
(MULTIVARIATE CASE)
Policymakers rely on
Evevl(;ci;’o?ci);(célicators Splitting Splitting
feature x feature z

| | |

Ti(ce,c.) =TF -1z >= ¢, - 1[z >= ¢.]

| | |

Optimal Threshold Threshold
unconstrained Value for x Value for z
policy



ESTIMATION

Procedure. Threshold-based optimal policy assignment

1.

Suppose to have data from an RCT or from an observational study consisting of

the information triple (Y, X, T') available for every unit involved in the program.

Run a quasi—experimental method with observable heterogeneity, estimate

7(X), and compute the (estimated) actual total welfare of the policy w.

. Identify the estimated optimal unconstrained policy T*, and compute /V[?*, 1.e

the estimated maximum total welfare achievable by the policy, and estimate the

——

regret as W* —W.

. Consider an estimated constrained selection rule T(a:, c) based on a given set

of selection variables, z, and related thresholds, ¢, and define the estimated

maximum constrained welfare as W(z, c).

. Build a greed of K possible values for ¢ € {cy,...,cx}, compute the optimal

vector of thresholds cp- and the corresponding maximum estimated welfare
W (z, ck-) thus achieved.
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LINEAR COMBINATION POLICY ivariate cas)

Generates a score to compare with a threshold

A

Ti(c1,c2,c3) = TA@* - 1lc1x1 + cax2 > c3
| [ -

‘ score threshold

Optimal
unconstrained
policy
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APPLICATION

DATA: National Supported Work Demonstration (NSWD), an
RCT by LalLonde (1986).

TARGET: Effect of a 19/6 job training program on people real
earnings in 19/8

CONTROLS: age, race, educational attainment, previous
employment condition, real earnings in /4 and /5




ESTIMATION OF ATE(X) AND ATET(X)

STITUTO 6 RICERCA sulls CRESCITA ECONOMICA SOSTENBILE

Figure 1: Distribution of 7(X) and 7¢(X). Program: National Supported Work Demonstration
(NSWD). Data: LalLonde (1986). Target variable: Real earnings in 1978. Estimation technique:
Regression—adjustment (with observable heterogeneity).

Distribution of t(X)

Conditional Average

Treatment o -
Effect

Distribution of t,(X)
|

Conditional Average
Treatment
Effect on Treated

a
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CONSTRAINED WELFARE MAXIMIZATION (UNIVARIATE)

Figure 2: Computation of the policy optimal selection threshold in univariate cases.

Program:

National Supported Work Demonstration (NSWD). Data: LaLonde (1986). Target variable: real

earnings in 1978. Univariate selection variables: real earnings in 1974, age, and educational attain-

ment.
1
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CONSTRAINED WELFARE MAXIMIZATION
(BIVARIATE)

Figure 3: Computation of the policy optimal decision boundary in the bivariate case. Program:
National Supported Work Demonstration (NSWD). Data: LaLonde (1986). Target variable: real

earnings in 1978. Bivariate selection variables: real earnings in 1975 and age.
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EMPIRICAL WELFARE MAXIMIZATION:
RELEVANT ISSUES

— 1. Monotonicity

Welfare increases monotonically with a feature
=> too few to treat or too many to treat

2. Sparseness

X' comes from a different joint distribution than X

Trade-offs arising in this case, so the best to
» do is offering the policymaker a “menu” of possible
treatment choices given, for example, a pre-fixed budget
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SPARSENESS
THE DISTRIBUTION OF X AND X’ HAVE LOW OVERLAP

High sparseness Low sparseness

P(X) # P(X") P(X) = P(X")




Data sparseness weakens policy prediction

Low sparseness High sparseness
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A SOLUTION TO MONOTONICITY
TRADE-OFFS AND THE “MENU-STRATEGY”

EXAMPLE

Computation of policy optimal decision boundaries in the bivariate case, when one of
the two selection variables (age) is fixed at its optimal threshold, and the threshold of the other
variable (education) is varying. Program: National Supported Work Demonstration (NSWD). Data:
LaLonde (1986). Target variable: real earnings in 1978. Bivariate selection variables: age and
educational attainment.

AGE - --—————————- > set at its optimal level

EDUCATION —-——-——- > free to vary
I

Feature plagued by monotonicity
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TRADE-OFFS AND THE “MENU-STRATEGY”
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SOFTWARE

We formed a research group for OPL software implementation. We will develop a
Policy Making Platform within the PNNR FOSSR project

Policy Making Platform

Ok FOSSR

Fostering Open Sdona in Soclol Sdon:o Rﬂwdh

Insowative too s and wervices

v

Stata

Cerulli (CNR), opl package
R

Guardabascio (Perugia University) and Brogi (Istat)
Python

De Fausti (Istat)




THE STATA PACKAGE “OPL” (cerutii2029)

The commands of the Stata package OPL

Optimal policy learning with a threshold-based policy
opl tb
Threshold-based optimal policy learning
opl tb c
Threshold-based policy learning at specific threshold values

Optimal policy learning with a linear-combination policy
opl 1lc
Linear-combination optimal policy learning
opl lc c
Linear-combination policy learning at specific parameters' values

Optimal policy learning with a decision-tree policy
opl dt
Decision-tree optimal policy learning
Opl dt c
Decision-tree policy learning at specific splitting variables and threshold values
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THRESHOLD-BASED POLICY

opl_tb — Threshold-based optimal policy learning
Syntax

opl_tb , xlist(varl var2) cate(varname)

————J Description |

opl_tb is a command implementing optimal ex-ante treatment assignment using as policy class a threshold-based (or quadrant) approach.

opl_tb_c —
Threshold-based policy learning at specific threshold values

Syntax

opl_tb_c , xlist(varl var2) cate(varname) cl(number) c2(number) [graphl

————J Description |

opl_tb_c is a command implementing ex-ante treatment assignment using as policy class a threshold-based (or quadrant) approach at specific
threshold values cl1 and c2 for respectively the selection variables varl and var2.
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opl_lc — Linear-combination optimal policy learning

Syntax

opl_1lc , xlist(varl var2) cate(varname)

————J Description |

opl_1lc is a command implementing optimal ex-ante treatment assignment using as policy class a linear—-combination of variables varl and var2
clkxvarl+c2xvar2=c3.

opl_lc_c —

Linear-combination policy learning at specific parameters' values

Syntax

opl_lc_c , xlist(varl var2) cate(varname) cl(number) c2(number) I[graphl]

————J Description

opl_1lc_c is a command implementing ex—-ante treatment assignment using as policy class a linear-combination approach at specific parameters
values c1, c2, and c3 for the linear-combination of variables varl and var2: clxvarl+c2xvar2=c3.




@ Consiglio Nazi ono\e delle Ricerche

DECISION-TREE POLICY

INSTTIUTE of RESEARCH an ECONDNAC SUSTANABLE GROWTH

opl_dt — Decision-tree optimal policy learning

Syntax

opl_dt , xlist(varl var2) cate(varname)

————J Description |

opl_dt is a command implementing optimal ex-ante treatment assignment using as policy class a fixed-depth (1-layer) decision-tree based on
selection variables varl and var2.

opl_dt_c —
Decision-tree policy learning at specific splitting variables and threshold values

Syntax

opl_dt_c , xlist(varl var2) cate(varname) cl(number) c2(number) [graph]

————J Description |

opl_dt_c is a command implementing ex-ante treatment assignment using as policy class a fixed-depth (1-layer) decision-tree at specific
splitting variables and threshold values.
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THE “MAKE CATE” COMMAND

LT o ESEA o ECNER

make_cate —

Predicting conditional average treatment effect (CATE) on a new policy based on the training over an old policy

Syntax

make_cate outcome features , treatment(varname) model(model_type) new_cate(name) train_cate(name) new_data(name)

————J Description

make_cate is a command generating conditional average treatment effect (CATE) for both a training dataset and a testing (or new) dataset
related to a binary (treated vs. untreated) policy program. It provides the main input for runni b opl_tb} (optimal policy learning of a
threshold-based policy), opl_tb_c (optimal policy learning of a threshold-based policy at specific thresholds), opl_lc (optimal policy learning
of a linear-combination policy), {helpb opl_1lc imal policy learning of a linear-combination policy at specific parameters), opl_dt (optimal
policy learning of a decision-tree policy), opl_dt_c (optimal policy learning of a decision-tree policy at specific thresholds and select
ables). Based on Kitagawa and Tetenov (2018), the main econometrics supported by these commands can be found in Cerulli (2022).
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APPLICATION 1 - “OPL_TB_C"

Load initial dataset
sysuse JTRAIN2, clear
Split the original data into a "old" (training) and "new" (testing) dataset
get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)
Use the "old" dataset (i.e. policy) for training
use jtrain_train , clear
Set the outcome
global y "re78"
Set the features
global x "re74 re75 age agesq nodegree"
Set the treatment variable
global w "train"
Set the selection variables
global z "age mostrn"
Run "make_cate" and generate training (old policy) and testing (new policy) CATE predictions
make_cate $y $x , treatment($w) model("ra") new_cate("my_cate_new") train_cate("my_cate_train") new_data("jtrain_test")
Generate a global macro containing the name of the variable "cate_new"
global T “e(cate_new)'
Select only the "new data"
keep if _train_new_index=="new"
Drop "my_cate_train" as in the new dataset treatment assignment and outcome performance are unknown
drop my_cate_train $w $y
Run "opl_tb" to find the optimal thresholds
opl_tb , xlist($z) cate($T)
Save the optimal threshold values into two global macros
global c1_opt=e(best_c1)
global c2_opt=e(best_c2)
Run "opl_tb_c" at optimal thresholds and generate the graph
opl_tb_c , xlist($z) cate($T) cl($cl_opt) c2($c2_opt) graph
Tabulate the variable "_units_to_be_treated"
tab _units_to_be_treated , mis
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Policy class: Threshold-based

Main results

Learner = Regression adjustment Target variable =

N. of units = 178 Selection variables = age mostrn
Threshold value cl = .60000002 Threshold value c2 = .79999999

Average unconstrained welfare = 2.0673337 Average constrained welfare = 2.885844
Percentage of treated = 1.1 N. of treated = 2

N. of untreated = 176

. tab _units_to_be_treated , mis

1 = unit to

treat; 0 =
unit not to
treat Freq. Percent Cum.
0 176 98.88 98.88
1 2 1.12 100.00

Total 178 100.00
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Expected unconstrained average welfare = 2.07
Expected constrained average welfare = 2.89
Percentage of treated units = 1.1%

Optimal policy assignment
Policy class: threshold-based
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APPLICATION 2 - “OPL_LC_C”

Load initial dataset
sysuse JTRAIN2, clear
Split the original data into a "old" (training) and "new" (testing) dataset
get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)
Use the "old" dataset (i.e. policy) for training
use jtrain_train , clear
Set the outcome
global y "re78"
Set the features
global x "re74 re75 age agesq nodegree"
Set the treatment variable
global w "train"
Set the selection variables
global z "age mostrn"
Run "make_cate" and generate training (old policy) and testing (new policy) CATE predictions
make_cate $y $x , treatment($w) model("ra") new_cate("my_cate_new") train_cate("my_cate_train") new_data("jtrain_test")
Generate a global macro containing the name of the variable "cate_new"
global T “e(cate_new)'
Select only the "new data"
keep if _train_new_index=="new"
Drop "my_cate_train" as in the new dataset treatment assignment and outcome performance are unknown
drop my_cate_train $w $y
Run "opl_1lc" to find the optimal linear-combination parameters
opl_1lc , xlist($z) cate($T)
Save the optimal linear-combination parameters into three global macros
global cl_opt=e(best_c1)
global c2_opt=e(best_c2)
global c3_opt=e(best_c3)
Run "opl_1lc_c" at optimal linear—-combination parameters and generate the graph
opl_lc_c , xlist($z) cate($T) c1l($cl_opt) c2($c2_opt) c3($c3_opt) graph
Tabulate the variable "_units_to_be_treated"
tab _units_to_be_treated , mis
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Policy class: Linear-combination

Main results

Learner = Regression adjustment Target variable =

N. of units = 178 Selection variables = age mostrn

Lin. comb.parameter cl = .59999999 Lin. comb.parameter c2 = .45000001

Lin. comb.parameter c3 = .8 Average unconstrained welfare = 2.0673337

Average constrained welfare = 2.885844
N. of treated =

Percentage of treated = 1.1
N. of untreated = 176

. tab _units_to_be_treated , mis

1 = unit to
treat; 0 =
unit not to
treat Freq. Percent Cum.
0 176 98.88 98.88
1 2 1.12 100.00
Total 178 100.00




Optimal policy assignment
Policy class: linear combination
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Expected unconstrained average welfare = 2.07
Expected constrained average welfare = 2.89
Percentage of treated units = 1.1%
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APPLICATION 3 - “OPL_DT_C”" T

Load initial dataset

sysuse JTRAIN2, clear

Split the original data into a "old" (training) and "new" (testing) dataset

Use

Set

Set

Set

Set

Run

get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

the "old" dataset (i.e. policy) for training

use jtrain_train , clear

the outcome

global y "re78"

the features

global x "re74 re75 age agesq nodegree"

the treatment variable

global w "train"

the selection variables

global z "age mostrn"

"make_cate" and generate training (old policy) and testing (new policy) CATE predictions
make_cate $y $x , treatment($w) model("ra") new_cate("my_cate_new") train_cate("my_cate_train") new_data("jtrain_test")

Generate a global macro containing the name of the variable "cate_new"

global T “e(cate_new)'

Select only the "new data"

keep if _train_new_index=="new"

Drop "my_cate_train" as in the new dataset treatment assignment and outcome performance are unknown

Run

drop my_cate_train $w $y
"opl_dt" to find the optimal linear-combination parameters
opl_dt , xlist($z) cate($T)

Save the optimal splitting variables into three global macros

global x1_opt ‘e(best_x1)'
global x2_opt ‘e(best_x2)'
global x3_opt ‘e(best_x3)'

Save the optimal splitting thresholds into three global macros

global cl_opt=e(best_cl)
global c2_opt=e(best_c2)
global c3_opt=e(best_c3)

Run "opl_dt_c" at optimal splitting variables and corresponding thresholds and generate the graph

Tabulate the variable "_units_to_be_treated"

opl_dt_c , xlist($z) cate($T) cl($cl_opt) c2($c2_opt) c3($c3_opt) x1($x1_opt) x2($x2_opt) x3($x3_opt) graph .

tab _units_to_be_treated , mis
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Policy class: Fixed-depth decision-tree

Main results

Learner = Regression adjustment

Target variable =

N. of units = 178 Selection variables =
Threshold first splitting var. = .69999999 Threshold second splitting var. = .89999998
Threshold third splitting var. = = .60000002 Average unconstrained welfare = 2.0673337
Average constrained welfare = 4.2417823 Percentage of treated = 1.7
N. of treated = 3 N. of untreated = 175
First splitting variable x1 = age Second splitting variable x2 = age
Third splitting variable x3 = age
. tab _units_to_be_treated , mis
1 = unit to
treat; 0 =
unit not to
treat Freq. Percent Cum.
0 175 98.31 98.31
1 3 1.69 100.00
Total 178 100.00 .

che
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Optimal policy assignment
Policy class: fixed-depth decision-tree
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Expected unconstrained average welfare = 2.07
Expected constrained average welfare = 4.24
Percentage of treated units = 1.7%
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CONCLUSIONS AND FUTURE AVENUES

dPolicy Learning: new frontier of econometrics of prog evaluation
d Theory-driven and data-driven approaches can complement
dExtensions to unobservable selection quite straightforward
dWelfare monotonicity and data sparseness major problems
dMonotonicity solved by “menu strategy”

A Generalization to other policy classes

L OPL with multiple treatments

L OPL with continuous treatments
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