
 

1 

1 
 

What Is Optimization?  
 
 

1.1 Introduction 
Optimization, or constrained optimization, or mathematical programming, is a mathematical procedure 

for determining optimal allocation of scarce resources. Optimization, and its most popular special form, 

Linear Programming (LP), has found practical application in almost all facets of business, from 

advertising to production planning. Transportation and aggregate production planning problems are the 

most typical objects of LP analysis. The petroleum industry was an early intensive user of LP for solving 

fuel blending problems.  

 It is important for the reader to appreciate at the outset that the “programming” in Mathematical 

Programming is of a different flavor than the “programming” in Computer Programming. In the former 

case, it means to plan and organize (as in “Get with the program!”). In the latter case, it means to write 

instructions for performing calculations. Although aptitude in one suggests aptitude in the other, training 

in the one kind of programming has very little direct relevance to the other. 

 For most optimization problems, one can think of there being two important classes of objects. The 

first of these is limited resources, such as land, plant capacity, and sales force size. The second is 

activities, such as “produce low carbon steel,” “produce stainless steel,” and “produce high carbon steel.” 

Each activity consumes or possibly contributes additional amounts of the resources. The problem is to 

determine the best combination of activity levels that does not use more resources than are actually 

available. We can best gain the flavor of LP by using a simple example. 

1.2 A Simple Product Mix Problem 
The Enginola Television Company produces two types of TV sets, the “Astro” and the “Cosmo”. There 

are two production lines, one for each set. The Astro production line has a capacity of 60 sets per day, 

whereas the capacity for the Cosmo production line is only 50 sets per day. The labor requirements for 

the Astro set is 1 person-hour, whereas the Cosmo requires a full 2 person-hours of labor. Presently, 

there is a maximum of 120 man-hours of labor per day that can be assigned to production of the two 

types of sets. If the profit contributions are $20 and $30 for each Astro and Cosmo set, respectively, 

what should be the daily production? 
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A structured, but verbal, description of what we want to do is: 

Maximize Profit contribution 

subject to Astro production less-than-or-equal-to Astro capacity, 

 Cosmo production less-than-or-equal-to Cosmo capacity, 

 Labor used less-than-or-equal-to labor availability. 

 Until there is a significant improvement in artificial intelligence/expert system software, we will 

need to be more precise if we wish to get some help in solving our problem. We can be more precise if 

we define: 

A = units of Astros to be produced per day, 

C = units of Cosmos to be produced per day. 

Further, we decide to measure: 

Profit contribution in dollars, 

Astro usage in units of Astros produced,  

Cosmo usage in units of Cosmos produced, and 

Labor in person-hours. 

Then, a precise statement of our problem is: 

Maximize 20A + 30C                  (Dollars) 

subject to     A                60        (Astro capacity) 

                C     50        (Cosmo capacity) 

     A   +  2C   120        (Labor in person-hours) 

 The first line, “Maximize 20A+30C”, is known as the objective function. The remaining three lines 

are known as constraints. Most optimization programs, sometimes called “solvers”, assume all variables 

are constrained to be nonnegative, so stating the constraints A  0 and C  0 is unnecessary. 

 Using the terminology of resources and activities, there are three resources: Astro capacity, Cosmo 

capacity, and labor capacity. The activities are Astro and Cosmo production. It is generally true that, 

with each constraint in an optimization model, one can associate some resource. For each decision 

variable, there is frequently a corresponding physical activity. 

1.2.1 Graphical Analysis 
The Enginola problem is represented graphically in Figure 1.1. The feasible production combinations 

are the points in the lower left enclosed by the five solid lines. We want to find the point in the feasible 

region that gives the highest profit. 

 To gain some idea of where the maximum profit point lies, let’s consider some possibilities. The 

point A = C = 0 is feasible, but it does not help us out much with respect to profits. If we spoke with the 

manager of the Cosmo line, the response might be: “The Cosmo is our more profitable product. 

Therefore, we should make as many of it as possible, namely 50, and be satisfied with the profit 

contribution of 30  50 = $1500.”  
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Figure 1.1 Feasible Region for Enginola Figure  1.1  Feasible Region for Enginola
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 You, the thoughtful reader, might observe there are many combinations of A and C, other than just 

A = 0 and C = 50, that achieve $1500 of profit. Indeed, if you plot the line 20A + 30C = 1500 and add it 

to the graph, then you get Figure 1.2. Any point on the dotted line segment achieves a profit of $1500. 

Any line of constant profit such as that is called an iso-profit line (or iso-cost in the case of a cost 

minimization problem). 

 If we next talk with the manager of the Astro line, the response might be: “If you produce 50 

Cosmos, you still have enough labor to produce 20 Astros. This would give a profit of 

30  50 + 20  20 = $1900. That is certainly a respectable profit. Why don’t we call it a day and go 

home?” 

Figure 1.2 Enginola With "Profit = 1500" 

Figure  1.2  Enginola with "Profit = 1500"
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 Our ever-alert reader might again observe that there are many ways of making $1900 of profit. If 

you plot the line 20A + 30C = 1900 and add it to the graph, then you get Figure 1.3. Any point on the 

higher rightmost dotted line segment achieves a profit of $1900. 

Figure 1.3 Enginola with "Profit = 1900" 
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 Now, our ever-perceptive reader makes a leap of insight. As we increase our profit aspirations, the 

dotted line representing all points that achieve a given profit simply shifts in a parallel fashion. Why not 

shift it as far as possible for as long as the line contains a feasible point? This last and best feasible point 

is A = 60, C = 30. It lies on the line 20A + 30C = 2100. This is illustrated in Figure 1.4. Notice, even 

though the profit contribution per unit is higher for Cosmo, we did not make as many (30) as we feasibly 

could have made (50). Intuitively, this is an optimal solution and, in fact, it is. The graphical analysis of 

this small problem helps understand what is going on when we analyze larger problems. 

Figure 1.4 Enginola with "Profit = 2100" 
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1.3 Linearity 
We have now seen one example. We will return to it regularly. This is an example of a linear 

mathematical program, or LP for short. Solving linear programs tends to be substantially easier than 

solving more general mathematical programs. Therefore, it is worthwhile to dwell for a bit on the 

linearity feature.  

 Linear programming applies directly only to situations in which the effects of the different activities 

in which we can engage are linear. For practical purposes, we can think of the linearity requirement as 

consisting of three features: 

1. Proportionality. The effects of a single variable or activity by itself are proportional 

(e.g., doubling the amount of steel purchased will double the dollar cost of steel 

purchased). 

2. Additivity. The interactions among variables must be additive (e.g., the dollar amount of 

sales is the sum of the steel dollar sales, the aluminum dollar sales, etc.; whereas the amount 

of electricity used is the sum of that used to produce steel, aluminum, etc). 

3. Continuity. The variables must be continuous (i.e., fractional values for the decision 

variables, such as 6.38, must be allowed). If both 2 and 3 are feasible values for a variable, 

then so is 2.51. 

 A model that includes the two decision variables “price per unit sold” and “quantity of units sold” 

is probably not linear. The proportionality requirement is satisfied. However, the interaction between 

the two decision variables is multiplicative rather than additive (i.e., dollar sales = price  quantity, 

not price + quantity). 

 If a supplier gives you quantity discounts on your purchases, then the cost of purchases will not 

satisfy the proportionality requirement (e.g., the total cost of the stainless steel purchased may be less 

than proportional to the amount purchased). 

 A model that includes the decision variable “number of floors to build” might satisfy the 

proportionality and additivity requirements, but violate the continuity conditions. The recommendation 

to build 6.38 floors might be difficult to implement unless one had a designer who was ingenious with 

split level designs. Nevertheless, the solution of an LP might recommend such fractional answers.  

 The possible formulations to which LP is applicable are substantially more general than that 

suggested by the example. The objective function may be minimized rather than maximized; the 

direction of the constraints may be  rather than , or even =; and any or all of the parameters (e.g., the 

20, 30, 60, 50, 120, 2, or 1) may be negative instead of positive. The principal restriction on the class of 

problems that can be analyzed results from the linearity restriction. 

 Fortunately, as we will see later in the chapters on integer programming and quadratic programming, 

there are other ways of accommodating these violations of linearity. 
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 Figure 1.5 illustrates some nonlinear functions. For example, the expression X  Y satisfies the 

proportionality requirement, but the effects of X and Y are not additive. In the expression X 2 + Y 2, the 

effects of X and Y are additive, but the effects of each individual variable are not proportional. 

Figure 1.5: Nonlinear Relations 

 

1.4 Analysis of LP Solutions 
When you direct the computer to solve a math program, the possible outcomes are indicated in 

Figure 1.6. 

 For a properly formulated LP, the leftmost path will be taken. The solution procedure will first 

attempt to find a feasible solution (i.e., a solution that simultaneously satisfies all constraints, but does 

not necessarily maximize the objective function). The rightmost, “No Feasible Solution”, path will be 

taken if the formulator has been too demanding. That is, two or more constraints are specified that cannot 

be simultaneously satisfied. A simple example is the pair of constraints x  2 and x  3. The nonexistence 

of a feasible solution does not depend upon the objective function. It depends solely upon the constraints. 

In practice, the “No Feasible Solution” outcome might occur in a large complicated problem in which 

an upper limit was specified on the number of productive hours available and an unrealistically high 

demand was placed on the number of units to be produced. An alternative message to “No Feasible 

Solution” is “You Can’t Have Your Cake and Eat It Too”. 
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Figure 1.6 Solution Outcomes 

 

 If a feasible solution has been found, then the procedure attempts to find an optimal solution. If the 

“Unbounded Solution” termination occurs, it implies the formulation admits the unrealistic result that 

an infinite amount of profit can be made. A more realistic conclusion is that an important constraint has 

been omitted or the formulation contains a critical typographical error. 

 We can solve the Enginola problem in LINGO by typing the following: 

 MODEL: 

  MAX = 20*A + 30*C; 

           A        <=  60; 

                  C <=  50; 

           A  + 2*C <= 120; 

 END 

 We can solve the problem in the Windows version of LINGO by clicking on the red “bullseye” 

icon.  We can get the following solution report by clicking on the “X=” icon”: 

Objective value: 2100.000 

Variable           Value        Reduced Cost 

       A        60.00000           0.00000 

       C        30.00000           0.00000 

     Row    Slack or Surplus      Dual Price 

       1      2100.00000           1.00000 

       2         0.00000           5.00000 

       3        20.00000           0.00000 

       4         0.00000          15.00000 

 The output has three sections, an informative section, a “variables” section, and a “rows” section. 

The second two sections are straightforward. The maximum profit solution is to produce 60 Astros and 

30 Cosmos for a profit contribution of $2,100. This solution will leave zero slack in row 2 (the constraint 

A  60), a slack of 20 in row 3 (the constraint C  50), and no slack in row 4 (the constraint 

A + 2C  120). Note 60 + 2  30 = 120. 

 The third column contains a number of opportunity or marginal cost figures. These are useful 

by-products of the computations. The interpretation of these “reduced costs” and “dual prices” is 

discussed in the next section.  The reduced cost/dual price section is optional and can be turned on or 

off by clicking on LINGO | Options | General Solver | Dual Computations | Prices. 
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1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices 
Realistic LPs require large amounts of data. Accurate data are expensive to collect, so we will generally 

be forced to use data in which we have less than complete confidence. A time-honored adage in data 

processing circles is “garbage in, garbage out”. A user of a model should be concerned with how the 

recommendations of the model are altered by changes in the input data. Sensitivity analysis is the term 

applied to the process of answering this question. Fortunately, an LP solution report provides 

supplemental information that is useful in sensitivity analysis. This information falls under two headings, 

reduced costs and dual prices. 

 Sensitivity analysis can reveal which pieces of information should be estimated most carefully. For 

example, if it is blatantly obvious that a certain product is unprofitable, then little effort need be expended 

in accurately estimating its costs. The first law of modeling is "do not waste time accurately estimating 

a parameter if a modest error in the parameter has little effect on the recommended decision". 

1.5.1 Reduced Costs 
Associated with each variable in any solution is a quantity known as the reduced cost. If the units of the 

objective function are dollars and the units of the variable are gallons, then the units of the reduced cost 

are dollars per gallon. The reduced cost of a variable is the amount by which the profit contribution of 

the variable must be improved (e.g., by reducing its cost) before the variable in question would have a 

positive value in an optimal solution. Obviously, a variable that already appears in the optimal solution 

will have a zero reduced cost. 

 It follows that a second, correct interpretation of the reduced cost is that it is the rate at which the 

objective function value will deteriorate if a variable, currently at zero, is arbitrarily forced to increase a 

small amount. Suppose the reduced cost of x is $2/gallon. This means, if the profitability of x were 

increased by $2/gallon, then 1 unit of x (if 1 unit is a “small change”) could be brought into the solution 

without affecting the total profit. Clearly, the total profit would be reduced by $2 if x were increased by 

1.0 without altering its original profit contribution. 

1.5.2 Dual Prices 
Associated with each constraint is a quantity known as the dual price. If the units of the objective 

function are cruzeiros and the units of the constraint in question are kilograms, then the units of the dual 

price are cruzeiros per kilogram. The dual price of a constraint is the rate at which the objective function 

value will improve as the right-hand side or constant term of the constraint is increased a small amount. 

 Different optimization programs may use different sign conventions with regard to the dual prices. 

The LINGO computer program uses the convention that a positive dual price means increasing the 

right-hand side in question will improve the objective function value. On the other hand, a negative dual 

price means an increase in the right-hand side will cause the objective function value to deteriorate. A 

zero dual price means changing the right-hand side a small amount will have no effect on the solution 

value. 

 It follows that, under this convention,  constraints will have nonnegative dual prices,  constraints 

will have nonpositive dual prices, and = constraints can have dual prices of any sign. Why? 

 Understanding Dual Prices. It is instructive to analyze the dual prices in the solution to the Enginola 

problem. The dual price on the constraint A  60 is $5/unit. At first, one might suspect this quantity 

should be $20/unit because, if one more Astro is produced, the simple profit contribution of this unit is 

$20. An additional Astro unit will require sacrifices elsewhere, however. Since all of the labor supply is 

being used, producing more Astros would require the production of Cosmos to be reduced in order to 

free up labor. The labor tradeoff rate for Astros and Cosmos is ½.. That is, producing one more Astro 
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implies reducing Cosmo production by ½ of a unit. The net increase in profits is $20 − (1/2)* $30 = $5, 

because Cosmos have a profit contribution of $30 per unit. 

 Now, consider the dual price of $15/hour on the labor constraint. If we have 1 more hour of labor, 

it will be used solely to produce more Cosmos. One Cosmo has a profit contribution of $30/unit. Since 

1 hour of labor is only sufficient for one half of a Cosmo, the value of the additional hour of labor is 

$15. 

1.6 Unbounded Formulations 
If we forget to include the labor constraint and the constraint on the production of Cosmos, then an 

unlimited amount of profit is possible by producing a large number of Cosmos. This is illustrated here: 

MAX = 20 * A + 30 * C; 

A <= 60; 

This generates an error window with the message: 

UNBOUNDED SOLUTION 

 There is nothing to prevent C from being infinitely large. The feasible region is illustrated in 

Figure 1.7. In larger problems, there are typically several unbounded variables and it is not as easy to 

identify the manner in which the unboundedness arises. 

Figure 1.7 Graph of Unbounded Formulation 
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1.7 Infeasible Formulations 
An example of an infeasible formulation is obtained if the right-hand side of the labor constraint is made 

190 and its direction is inadvertently reversed. In this case, the most labor that can be used is to produce 

60 Astros and 50 Cosmos for a total labor consumption of 60 + 2  50 = 160 hours. The formulation and 

attempted solution are: 

MAX = (20 * A) + (30 * C); 

A <= 60; 

C <= 50; 

A + 2 * C >= 190; 

A window with the error message: 

NO FEASIBLE SOLUTION.   

will print. The reports window will generate the following: 

Variable           Value        Reduced Cost 

       A        60.00000           0.0000000 

       C        50.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        2700.000           0.0000000 

       2       0.0000000            1.000000 

       3       0.0000000            2.000000 

       4       -30.00000           -1.000000 

 This “solution” is infeasible for the labor constraint by the amount of 30 person-hours 

(190 - (1  60 + 2  50)). The dual prices in this case give information helpful in determining how the 

infeasibility arose. For example, the +1 associated with row 2 indicates that increasing its right-hand 

side by one will decrease the infeasibility by 1. The +2 with row 3 means, if we allowed 1 more unit of 

Cosmo production, the infeasibility would decrease by 2 units because each Cosmo uses 2 hours of labor. 

The -1 associated with row 4 means that decreasing the right-hand side of the labor constraint by 1 would 

reduce the infeasibility by 1. 
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 Figure 1.8 illustrates the constraints for this formulation. 

Figure 1.8 Graph of Infeasible Formulation 
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1.8 Multiple Optimal Solutions and Degeneracy 
For a given formulation that has a bounded optimal solution, there will be a unique optimum objective 

function value. However, there may be several different combinations of decision variable values (and 

associated dual prices) that produce this unique optimal value. Such solutions are said to be degenerate 

in some sense. In the Enginola problem, for example, suppose the profit contribution of A happened to 

be $15 rather than $20. The problem and a solution are: 

MAX = 15 * A + 30 * C; 

A <= 60; 

C <= 50; 

A + 2 * C <= 120; 

Optimal solution found at step:          1 

Objective value:                  1800.000 

Variable           Value        Reduced Cost 

       A        20.00000           0.0000000 

       C        50.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        1800.000            1.000000 

       2        40.00000           0.0000000 

       3       0.0000000           0.0000000 

       4       0.0000000            15.00000 
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Figure 1.9 Model with Alternative Optima 
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 The feasible region, as well as a “profit = 1500” line, are shown in Figure 1.9. Notice the lines 

A + 2C = 120 and 15A + 30C = 1500 are parallel. It should be apparent that any feasible point on the 

line A + 2C = 120 is optimal. 

 The particularly observant may have noted in the solution report that the constraint, C  50 (i.e., row 

3), has both zero slack and a zero dual price. This suggests the production of Cosmos could be decreased 

a small amount without any effect on total profits. Of course, there would have to be a compensatory 

increase in the production of Astros. We conclude that there must be an alternate optimum solution that 

produces more Astros, but fewer Cosmos. We can discover this solution by increasing the profitability 

of Astros ever so slightly. Observe: 

MAX = 15.0001 * A + 30 * C; 

A <= 60; 

C <= 50; 

A + 2 * C <= 120; 

Optimal solution found at step:         1 

Objective value:                 1800.006 

Variable          Value        Reduced Cost 

       A       60.00000           0.0000000 

       C       30.00000           0.0000000 

     Row   Slack or Surplus      Dual Price 

       1       1800.006             1.00000 

       2      0.0000000           0.1000000E-03 

       3       20.00000           0.0000000 

       4      0.0000000            15.00000 

 As predicted, the profit is still about $1800. However, the production of Cosmos has been decreased 

to 30 from 50, whereas there has been an increase in the production of Astros to 60 from 20. 
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1.8.1 The “Snake Eyes” Condition 
Alternate optima may exist only if some row in the solution report has zeroes in both the second and 

third columns of the report, a configuration that some applied statisticians call “snake eyes”. That is, 

alternate optima may exist only if some variable has both zero value and zero reduced cost, or some 

constraint has both zero slack and zero dual price. Mathematicians, with no intent of moral judgment, 

refer to such solutions as degenerate. 

 If there are alternate optima, you may find your computer gives a different solution from that in the 

text. However, you should always get the same objective function value. 

 There are, in fact, two ways in which multiple optimal solutions can occur. For the example in 

Figure 1.9, the two optimal solution reports differ only in the values of the so-called primal variables 

(i.e., our original decision variables A, C) and the slack variables in the constraint. There can also be 

situations where there are multiple optimal solutions in which only the dual variables differ. Consider 

this variation of the Enginola problem in which the capacity of the Cosmo line has been reduced to 30.  

 The formulation is: 

MAX = 20 * A + 30 * C; 

A < 60; 

!note that < and <= are equivalent; 

!in LINGO; 

C < 30; 

A + 2 * C < 120; 

The corresponding graph of this problem appears in Figure 1.10. An optimal solution is: 

Optimal solution found at step:         0 

Objective value:                 2100.000 

Variable             Value        Reduced Cost 

       A          60.00000           0.0000000 

       C          30.00000           0.0000000 

     Row      Slack or Surplus      Dual Price 

       1          2100.000            1.000000 

       2         0.0000000            20.00000 

       3         0.0000000            30.00000 

       4         0.0000000           0.0000000 

 Again, notice the “snake eyes” in the solution (i.e., the pair of zeroes in a row of the solution report). 

This suggests the capacity of the Cosmo line (the RHS of row 3) could be changed without changing the 

objective value. Figure 1.10 illustrates the situation. Three constraints pass through the point A = 60, 

C = 30. Any two of the constraints determine the point. In fact, the constraint A + 2C  120 is 

mathematically redundant (i.e., it could be dropped without changing the feasible region). 



14     Chapter 1  What is Optimization? 
 

 

Figure 1.10 Alternate Solutions in Dual Variables 
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If you decrease the RHS of row 3 very slightly, you will get essentially the following solution: 

Optimal solution found at step:         0 

Objective value:                 2100.000 

Variable             Value        Reduced Cost 

       A          60.00000           0.0000000 

       C          30.00000           0.0000000 

     Row      Slack or Surplus      Dual Price 

       1          2100.000            1.000000 

       2         0.0000000            5.000000 

       3         0.0000000           0.0000000 

       4         0.0000000            15.00000 

Notice this solution differs from the previous one only in the dual values. 

 We can now state the following rule: If a solution report has the “snake eyes” feature (i.e., a pair of 

zeroes in any row of the report), then there may be an alternate optimal solution that differs either in the 

primal variables, the dual variables, or in both.  

 If a solution report exhibits the “snake eyes” configuration, a natural question to ask is: can we 

determine from the solution report alone whether the alternate optima are in the primal variables or the 

dual variables? The answer is “no”, as the following two related problems illustrate. 

Problem D Problem P 
MAX = X +     Y; MAX = X + Y; 

      X +     Y + Z <= 1;       X + Y +     Z <= 1; 

      X + 2 * Y     <= 1;       X +     2 * Z <= 1; 
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 Both problems possess multiple optimal solutions. The ones that can be identified by the standard 

simplex solution methods are: 

Solution 1 

         Problem D                                          Problem P 

 OBJECTIVE VALUE               OBJECTIVE VALUE 

 1) 1.00000000   1) 1.00000000  

Variable  Value Reduced Cost Variable  Value Reduced Cost 

 X   1.000000     0 000000  X   1.000000     0.000000 

 Y   0.000000     0.000000  Y   0.000000     0.000000 

 Z   0.000000     1.000000  Z   0.000000     1.000000 

 

Row 

 

Slack or 

Surplus 

 

 Dual Prices 

 

Row 

 

Slack or 

Surplus 

 

 Dual Prices 

 2)   0.000000     1.000000  2)   0.000000     1.000000 

 3)   0.000000     0.000000  3)   0.000000     0.000000 

Solution 2 

            Problem D                                           Problem P 

 OBJECTIVE VALUE               OBJECTIVE VALUE 

 1) 1.00000000   1) 1.00000000  

Variable  Value Reduced Cost Variable  Value Reduced Cost 

 X   1.000000     0.000000  X   0.000000     0.000000 

 Y   0.000000     1.000000  Y   1.000000     0.000000 

 Z   0.000000     0.000000  Z   0.000000     1.000000 

 

 

Row 

 

Slack or 

Surplus 

 

 

Dual Prices 

 

 

Row 

 

Slack or 

Surplus 

 

 

Dual Prices 

 2)   0.000000     0.000000  2)   0.000000     1.000000 

 3)   0.000000     1.000000  3)   1.000000     0.000000 

Notice that: 

• Solution 1 is exactly the same for both problems; 

• Problem D has multiple optimal solutions in the dual variables (only); while 

• Problem P has multiple optimal solutions in the primal variables (only). 

 Thus, one cannot determine from the solution report alone the kind of alternate optima that might 

exist. You can generate Solution 1 by setting the RHS of row 3 and the coefficient of X in the objective 

to slightly larger than 1 (e.g., 1.001). Likewise, Solution 2 is generated by setting the RHS of row 3 and 

the coefficient of X in the objective to slightly less than 1 (e.g., 0.9999). 

 Some authors refer to a problem that has multiple solutions to the primal variables as dual 

degenerate and a problem with multiple solutions in the dual variables as primal degenerate. Other 

authors say a problem has multiple optima only if there are multiple optimal solutions for the primal 

variables. 

1.8.2 Degeneracy and Redundant Constraints 
In small examples, degeneracy usually means there are redundant constraints. In general, however, 

especially in large problems, degeneracy does not imply there are redundant constraints. The constraint 

set below and the corresponding Figure 1.11 illustrate: 

2x − y  1 
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2x − z  1 

2y − x  1 

2y − z  1 

2z − x  1 

2z − y  1 

Figure 1.11 Degeneracy but No Redundancy 
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 These constraints define a cone with apex or point at x = y = z = 1, having six sides. The point 

x = y = z = 1 is degenerate because it has more than three constraints passing through it. Nevertheless, 

none of the constraints are redundant. Notice the point x = 0.6, y = 0, z = 0.5 violates the first constraint, 

but satisfies all the others. Therefore, the first constraint is nonredundant. By trying all six permutations 

of 0.6, 0, 0.5, you can verify each of the six constraints are nonredundant. 

1.9 Nonlinear Models and Global Optimization 
Throughout this text the emphasis is on formulating linear programs.  Historically nonlinear models 

were to be avoided,  if possible,  for two reasons:  a) they take much longer to solve,  and b) once 

“solved”  traditional solvers could only guarantee that you had a locally optimal solution.  A solution is 

a local optimum if there is no  better solution nearby,  although there might be a much better solution 

some distance away.  Traditional nonlinear solvers are like myopic mountain climbers,  they can get you 

to the top of the nearest peak,  but they may not see and get you to the highest peak in the mountain 

range.  Versions of LINGO from LINGO 8 onward have a global solver option.  If you check the global 
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solver option,  then you are guaranteed to get a global optimum,  if you let the solver run long enough.  

To illustrate,  suppose our problem is: 
 

             Min = @sin(x) + .5*@abs(x-9.5);  

                        x <= 12; 

 

The graph of the function appears in Figure 1.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you apply a traditional nonlinear solver to this model you might get one of three solutions: either x = 

0,  or x = 5.235987, or x = 10.47197.  If you check the Global solver option in LINGO,  it will report the 

solution x = 10.47197 and label it as a global optimum.  Be forewarned that the global solver does not 

eliminate drawback (a),  namely,  nonlinear models may take a long time to solve to guaranteed 

optimality.  Nevertheless,  the global solver may give a very good,  even optimal, solution very quickly 

but then take a long time to prove that there is no other better solution. 
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Figure 1.12 A Nonconvex Function:         
sin(x)+.5*abs(x-9.5) 
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1.10 Problems 
1. Your firm produces two products, Thyristors (T) and Lozenges (L), that compete for the scarce 

resources of your distribution system. For the next planning period, your distribution system has 

available 6,000 person-hours. Proper distribution of each T requires 3 hours and each L requires 

2 hours. The profit contributions per unit are 40 and 30 for T and L, respectively. Product line 

considerations dictate that at least 1 T must be sold for each 2 L’s. 

(a) Draw the feasible region and draw the profit line that passes through the optimum point. 

(b) By simple common sense arguments, what is the optimal solution? 

2. Graph the following LP problem: 

Minimize 4X + 6Y 

subject to 5X + 2Y  12 

                3X + 7Y  13 

                X  0, Y  0. 

In addition, plot the line 4X + 6Y = 18 and indicate the optimum point. 

3. The Volkswagen Company produces two products, the Bug and the SuperBug, which share 

production facilities. Raw materials costs are $600 per car for the Bug and $750 per car for the 

SuperBug. The Bug requires 4 hours in the foundry/forge area per car; whereas, the SuperBug, 

because it uses newer more advanced dies, requires only 2 hours in the foundry/forge. The Bug 

requires 2 hours per car in the assembly plant; whereas, the SuperBug, because it is a more 

complicated car, requires 3 hours per car in the assembly plant. The available daily capacities in the 

two areas are 160 hours in the foundry/forge and 180 hours in the assembly plant. Note, if there are 

multiple machines, the total hours available per day may be greater than 24. The selling price of the 

Bug at the factory door is $4800. It is $5250 for the SuperBug. It is safe to assume whatever number 

of cars are produced by this factory can be sold. 

(a) Write the linear program formulation of this problem. 

(b) The above description implies the capacities of the two departments (foundry/forge and 

assembly) are sunk costs. Reformulate the LP under the conditions that each hour of 

foundry/forge time cost $90; whereas, each hour of assembly time cost $60. The capacities 

remain as before. Unused capacity has no charge. 

4. The Keyesport Quarry has two different pits from which it obtains rock. The rock is run through a 

crusher to produce two products: concrete grade stone and road surface chat. Each ton of rock from 

the South pit converts into 0.75 tons of stone and 0.25 tons of chat when crushed. Rock from the 

North pit is of different quality. When it is crushed, it produces a “50-50” split of stone and chat. 

The Quarry has contracts for 60 tons of stone and 40 tons of chat this planning period. The cost per 

ton of extracting and crushing rock from the South pit is 1.6 times as costly as from the North pit. 

(a) What are the decision variables in the problem? 

(b) There are two constraints for this problem. State them in words. 

(c) Graph the feasible region for this problem. 

(d) Draw an appropriate objective function line on the graph and indicate graphically and 

numerically the optimal solution. 

(e) Suppose all the information given in the problem description is accurate. What additional 

information might you wish to know before having confidence in this model? 
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5. A problem faced by railroads is of assembling engine sets for particular trains. There are three 

important characteristics associated with each engine type, namely, operating cost per hour, 

horsepower, and tractive power. Associated with each train (e.g., the Super Chief run from Chicago 

to Los Angeles) is a required horsepower and a required tractive power. The horsepower required 

depends largely upon the speed required by the run; whereas, the tractive power required depends 

largely upon the weight of the train and the steepness of the grades encountered on the run. For a 

particular train, the problem is to find that combination of engines that satisfies the horsepower and 

tractive power requirements at lowest cost. 

 In particular, consider the Cimarron Special, the train that runs from Omaha to Santa Fe. This 

train requires 12,000 horsepower and 50,000 tractive power units. Two engine types, the GM-I and 

the GM-II, are available for pulling this train. The GM-I has 2,000 horsepower, 10,000 tractive 

power units, and its variable operating costs are $150 per hour. The GM-II has 3,000 horsepower, 

10,000 tractive power units, and its variable operating costs are $180 per hour. The engine set may 

be mixed (e.g., use two GM-I's and three GM-II's). 

 Write the linear program formulation of this problem. 

6. Graph the constraint lines and the objective function line passing through the optimum point and 

indicate the feasible region for the Enginola problem when: 

(a) All parameters are as given except labor supply is 70 rather than 120. 

(b) All parameters are as given originally except the variable profit contribution of a Cosmo 

is $40 instead of $30. 

7. Consider the problem: 

Minimize        4x1 + 3x2 

Subject to       2x1 +  x2  10 

                    −3x1 + 2x2  6 

                        x1 +   x2  6                     

                       x1  0, x2  0 

Solve the problem graphically. 

8. The surgical unit of a small hospital is becoming more concerned about finances. The hospital 

cannot control or set many of the important factors that determine its financial health. For example, 

the length of stay in the hospital for a given type of surgery is determined in large part by 

government regulation. The amount that can be charged for a given type of surgical procedure is 

controlled largely by the combination of the market and government regulation. Most of the 

hospital’s surgical procedures are elective, so the hospital has considerable control over which 

patients and associated procedures are attracted and admitted to the hospital. The surgical unit has 

effectively two scarce resources, the hospital beds available to it (70 in a typical week), and the 

surgical suite hours available (165 hours in a typical week). Patients admitted to this surgical unit 

can be classified into the following three categories: 

 
Patient Type 

 
Days of Stay 

Surgical 
Suite Hours  

Needed 

 
Financial 

Contribution 

A 3 2 $240 

B 5 1.5 $225 

C 6 3 $425 
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 For example, each type B patient admitted will use (i) 5 days of the 7  70 = 490 bed-days 

available each week, and (ii) 1.5 hours of the 165 surgical suite hours available each week. One 

doctor has argued that the surgical unit should try to admit more type A patients. Her argument is 

that, “in terms of $/days of stay, type A is clearly the best, while in terms of $/(surgical suite hour), 

it is not much worse than B and C.” 

 Suppose the surgical unit can in fact control the number of each type of patient admitted each 

week (i.e., they are decision variables). How many of each type should be admitted each week? 

 Can you formulate it as an LP?
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