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10 
 

Blending of Input Materials 
 
 

10.1 Introduction 
In a blending problem, there are: 

1) Two or more input raw material commodities; 

2) One or more qualities associated with each input commodity; 

3) One or more output products to be produced by blending the input commodities, so certain 

output quality requirements are satisfied. 

Blending models are used most frequently in three industries: 

1) Feed and food (e.g., the blending of cattle feed, hotdogs, etc.); 

2) Metals industry (e.g., the blending of specialty steels and nonferrous alloys, especially 

where recycled or scrap materials are used); 

3) Petroleum industry (e.g., the blending of gasolines of specified octanes and volatility). 

 The market price of a typical raw material commodity may change significantly over the period of 

a month or even a week. The smart buyer will want to buy corn, for example, from the cheapest supplier. 

The even smarter buyer will want to exploit the fact that, as the price of corn drops relative to soybeans, 

the buyer may be able to save some money by switching to a blend that uses more corn. 

 A first approximation is that the quality of the finished product is the weighted average of the 

qualities of the products going into the blend.  A listing of blending applications according important 

quality measures and typical input ingredients is given below: 
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Output 
Commodity 

 
Qualities 

 
Raw Materials 

Feed Moisture, density, fraction 

foreign material, fraction 

damaged. 

Various types of feeds, e.g., by 

source. 

Food Protein, carbohydrate, fat content. Corn, oats, soybeans, meat types. 

Gasoline Octane, volatility, vapor pressure. Types of crude oil refinery 

products. 

Metals Carbon, manganese, chrome 

content. 

Metal ore, scrap metals. 

Grain for 

export 

%Moisture, %foreign matter, 

%damaged. 

Grain from various suppliers. 

Coal for sale %Sulfur, %BTU, %ash, 

%moisture. 

Coal from Illinois, Wyoming, 

Pennsylvania. 

Wine Vintage, variety, region. Pure wines of various vintage, 

variety, region. 

Concrete %CaO, %SiO2, %Al2O3, 

%Fe2O3, %MgO, Strength, 

permeability to water, Cure time, 

workability, freeze resistance. 

Portland cement, Slag, Fly ash, 

sand, stone/rocks of various size, 

water. 

Natural gas Heat content, Density. Methane, Ethane, Propane, 

Nitrogen, Carbon dioxide. 

Bank balance 

sheet 

Proportion of loans of various 

types, average duration of loans 

and investment portfolios. 

 

 

Types of loans and investments 

available. 

   

 Fields and McGee (1978) describe a feed blending LP for constructing low cost rations for cattle in 

a feedlot. Feedlot managers used this particular model at the rate of over 1,000 times per month. Schuster 

and Allen (1998) discuss the blending of grape juice at Welch's, Inc. The qualities of concern in grape 

juice are sweetness, acidity, and color. A blending problem must be solved at least once each season 

based upon how much of each type of grape is harvested by Welch's suppliers. Long term contracts 

require Welch’s to take all of each supplier's harvest. 

 A recent success story in the steel industry has been the mini-mill. These small mills use mostly 

recyclable scrap steels to be charged into an electric furnace. The blending problem, in this case, is to 

decide what combination of scrap types to use to satisfy output quality requirements for specified 

products such as reinforcing bars, etc. 

 The first general LP to appear in print was a blending or diet problem formulated by George Stigler 

(1945). The problem was to construct a “recipe” from about 80 foods, so the mix satisfied about a dozen 

nutritional requirements. For example, percent protein greater than 5 percent, percent cellulose less than 

40 percent, etc. When Stigler formulated this problem, the Simplex method for solving LPs did not exist. 

Therefore, it was not widely realized that this “diet problem” was just a special case of this wider class 

of problems. Stigler, realizing its generality, stated: “...there does not appear to be any direct method of 

finding the minimum of a linear function subject to linear conditions.” The solution he obtained to his 
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specific problem by ingenious arguments was within a few cents of the least cost solution determined 

later when the Simplex method was invented. Both the least cost solution and Stigler’s solution were not 

exactly haute cuisine. Both consisted largely of cabbage, flour and dried navy beans with a touch of 

spinach for excitement. It is not clear that anyone would want to exist on this diet or even live with 

someone who was on it. These solutions illustrate the importance of explicitly including constraints that 

are so obvious they can be forgotten. In this case, they are palatability constraints. 

10.2 The Structure of Blending Problems 
Let us consider a simple feed blending problem. We must produce a batch of cattle feed having a protein 

content of at least 15%. Mixing corn (which is 6% protein) and soybean meal (which is 35% protein) 

produces this feed. 

 In words, the protein constraint is: 

bushels of protein in mix  

          bushels in mix
 

 

 0.15 

 If C is the number of bushels of corn in the mix and S is the number of bushels of soybean meal, 

then we have: 

0.06 C + 0.35 S 

          C + S
 

 

 0.15 

 At first glance, it looks like we have trouble. This constraint is not linear. If, however, we multiply 

both sides by C + S, we get: 

0.06 C + 0.35 S  0.15 (C + S) 

or, in standard form, finally: 

−0.09 C + 0.20 S  0. 

 Constraints on additional characteristics (i.e., fat, carbohydrates and even such slightly nonlinear 

things as color, taste, and texture) can be handled in similar fashion. 

 The distinctive feature of a blending problem is that the crucial constraints, when written in intuitive 

form, are ratios of linear expressions. They can be converted to linear form by multiplying through by 

the denominator. Ratio constraints may also be found in “balance sheet” financial planning models 

where a financial institution may have ratio constraints on the types of loans it makes or on the average 

duration of its investments. 

 The formulation is slightly more complicated if the blending aspect is just a small portion of a larger 

problem in which the batch size is a decision variable. The second example in this section will consider 

this complication. The first example will consider the situation where the batch size is specified 

beforehand. 
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10.2.1 Example: The Pittsburgh Steel Company Blending Problem 
The Pittsburgh Steel (PS) Co. has been contracted to produce a new type of very high carbon steel which 

has the following tight quality requirements: 

 At Least Not More Than 

Carbon Content 3.00% 3.50% 

Chrome Content 0.30% 0.45% 

Manganese Content 1.35% 1.65% 

Silicon Content 2.70% 3.00% 

PS has the following materials available for mixing up a batch: 

 Cost per 
Pound 

Percent 
Carbon 

Percent 
Chrome 

Percent 
Manganese 

Percent 
Silicon 

Amount 
Available 

Pig Iron 1 0.0300 4.0 0.0 0.9 2.25 unlimited 

Pig Iron 2 0.0645 0.0 10.0 4.5 15.00 unlimited 

Ferro-
Silicon 1 

0.0650 0.0 0.0 0.0 45.00 unlimited 

Ferro-
Silicon 2 

0.0610 0.0 0.0 0.0 42.00 unlimited 

Alloy 1 0.1000 0.0 0.0 60.0 18.00 unlimited 

Alloy 2 0.1300 0.0 20.0 9.0 30.00 unlimited 

Alloy 3 0.1190 0.0 8.0 33.0 25.00 unlimited 

Carbide 
(Silicon) 

0.0800 15.0 0.0 0.0 30.00 20 lb. 

Steel 1 0.0210 0.4 0.0 0.9 0.00 200 lb. 

Steel 2 0.0200 0.1 0.0 0.3 0.00 200 lb. 

Steel 3 0.0195 0.1 0.0 0.3 0.00 200 lb. 

 An one-ton (2000-lb.) batch must be blended, which satisfies the quality requirements stated earlier. 

The problem now is what amounts of each of the eleven materials should be blended together to 

minimize the cost, but satisfy the quality requirements. An experienced steel man claims the least cost 

mix will not use any more than nine of the eleven available raw materials. What is a good blend? Most 

of the eleven prices and four quality control requirements are negotiable. Which prices and requirements 

are worth negotiating? 

 Note the chemical content of a blend is simply the weighted average of the chemical content of its 

components. Thus, for example, if we make a blend of 40% Alloy 1 and 60% Alloy 2, the manganese 

content is (0.40) × 60 + (0.60) × 9 = 29.4. 

10.2.2 Formulation and Solution of the Pittsburgh Steel Blending Problem 
The PS blending problem can be formulated as an LP with 11 variables and 13 constraints. The 11 

variables correspond to the 11 raw materials from which we can choose. Four constraints are from the 

upper usage limits on silicon carbide and steels. Four of the constraints are from the lower quality limits. 

Another four constraints are from the upper quality limits. The thirteenth constraint is the requirement 

that the weight of all materials used must sum to 2000 pounds. 
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 If we let P1 be the number of pounds of Pig Iron 1 to be used and use similar notation for the 

remaining materials, the problem of minimizing the cost per ton can be stated as: 

MIN =    0.03 * P1 + 0.0645 * P2 + 0.065 * F1 + 0.061 * F2 + 0.1 * A1 

+ 0.13 * A2 + 0.119 * A3 + 0.08 * CB + 0.021 * S1 + 0.02 * S2 + 0.0195 

* S3; 

! Raw material availabilities; 

CB <= 20; 

S1 <= 200; 

S2 <= 200; 

S3 <= 200; 

! Quality requirements on; 

! Carbon content; 

.04 * P1 + 0.15 * CB + 0.004 * S1 + 0.001 * S2 + 0.001 * S3 >= 60; 

.04 * P1 + 0.15 * CB + 0.004 * S1 + 0.001 * S2 + 0.001 * S3 <= 70; 

! Chrome content; 

0.1 * P2 + 0.2 * A2 + 0.08 * A3 >=  6; 

0.1 * P2 + 0.2 * A2 + 0.08 * A3 <=  9; 

! Manganese content; 

0.009 * P1 + 0.045 * P2 + 0.6 * A1 + 0.09 * A2 + 0.33 * A3 + 0.009 * 

S1 + 0.003 * S2 + 0.003 * S3 >= 27; 

0.009 * P1 + 0.045 * P2 + 0.6 * A1 + 0.09 * A2 + 0.33 * A3 + 0.009 * 

S1 + 0.003 * S2 + 0.003 * S3 <= 33; 

! Silicon content; 

0.0225 * P1 + 0.15 * P2 + 0.45 * F1 + 0.42 * F2 + 0.18 * A1 + 0.3 * A2 

+ 0.25 * A3 + 0.3 * CB >=  54; 

0.0225 * P1 + 0.15 * P2 + 0.45 * F1 + 0.42 * F2 + 0.18 * A1 + 0.3 * A2 

+ 0.25 * A3 + 0.3 * CB <=  60; 

! Finish good requirements; 

P1 + P2 + F1 + F2 + A1 + A2 + A3 + CB + S1 + S2 + S3 = 2000; 

In words, the general form of this model is: 

Minimize cost of raw materials 

subject to 

(a) Raw material availabilities (rows 2-5) 

(b) Quality requirements (rows 6-13) 

(c) Finish good requirements (row 14) 

It is generally good practice to be consistent and group constraints in this fashion. 

 For this particular example, when writing the quality constraints, we have exploited the knowledge 

that the batch size is 2000. For example, 3% of 2000 is 60, 3.5% of 2000 is 70, etc.  
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 When solved, we get the solution: 

Optimal solution found at step:        11 

Objective value:                 59.55629 

Variable           Value        Reduced Cost 

      P1        1474.264           0.0000000 

      P2        60.00000           0.0000000 

      F1       0.0000000           0.1035937E-02 

      F2        22.06205           0.0000000 

      A1        14.23886           0.0000000 

      A2       0.0000000           0.2050311E-01 

      A3       0.0000000           0.1992597E-01 

      CB       0.0000000           0.3356920E-02 

      S1        200.0000           0.0000000 

      S2        29.43496           0.0000000 

      S3        200.0000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        59.55629            1.000000 

       2        20.00000           0.0000000 

       3       0.0000000           0.1771118E-03 

       4        170.5650           0.0000000 

       5       0.0000000           0.5000000E-03 

       6       0.0000000          -0.1833289 

       7        10.00000           0.0000000 

       8       0.0000000          -0.2547314 

       9        3.000000           0.0000000 

      10       0.0000000          -0.1045208 

      11        6.000000           0.0000000 

      12       0.0000000          -0.9880212E-01 

      13        6.000000           0.0000000 

      14       0.0000000          -0.1950311E-01 

Notice only 7 of the 11 raw materials were used. 

 In actual practice, this type of LP was solved on a twice-monthly basis by Pittsburgh Steel. The 

purchasing agent used the first solution, including the reduced cost and dual prices, as a guide in buying 

materials. The second solution later in the month was mainly for the metallurgist’s benefit in making up 

a blend from the raw materials actually on hand. 

 Suppose we can pump oxygen into the furnace. This oxygen combines completely with carbon to 

produce the gas CO2, which escapes. The oxygen will burn off carbon at the rate of 12 pounds of carbon 

burned off for each 32 pounds of oxygen. Oxygen costs two cents a pound. If you reformulated the 

problem to include this additional option, would it change the decisions? The oxygen injection option to 

burn off carbon is clearly uninteresting because, in the current solution, it is the lower bound constraint 

rather than the upper bound on carbon that is binding. Thus, burning off carbon by itself, even if it could 

be done at no expense, would increase the total cost of the solution. 

10.3 A Blending Problem within a Product Mix Problem 
One additional aspect of blending problem formulation will be illustrated with an example in which the 

batch size is a decision variable. In the previous example, the batch size was specified. In the following 

example, the amount of product to be blended depends upon how cheaply the product can be blended. 

Thus, it appears the blending decision and the batch size decision must be made simultaneously. 
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 This example is suggestive of gasoline blending problems faced in a petroleum refinery. We wish 

to blend gasoline from three ingredients: butane, heavy naphtha, and catalytic reformate. Four 

characteristics of the resultant gasoline and its inputs are important: cost, octane number, vapor pressure, 

and volatility. These characteristics are summarized in the following table: 

 Commodity   

 
 
Feature 

 
Butane 
(BUT) 

Catalytic 
Reformate 

(CAT) 

Heavy 
Naphtha 

(NAP) 

Regular 
Gasoline (REG) 

Premium 
Gasoline (PRM) 

Cost/Unit 7.3 18.2 12.5 -18.4 -22 

Octane 120.0 100.0 74.0  89  oct  110 94  oct  110 

Vapor Pressure 60.0 2.6 4.1 8  vp  11 8  vp  11 

Volatility 105.0 3.0 12.0  17  vo  25 17  vo  25 

Availability 1000.0 4000.0 5000.0 4000  sell 8000 2000  sell 6000 

 The cost per unit for REG and PRM are listed as negative, meaning we can sell them. That is, a 

negative cost is a revenue. 

 The octane rating is a measure of the gasoline’s resistance to “knocking” or “pinging”. Vapor 

pressure and volatility are closely related. Vapor pressure is a measure of susceptibility to stalling, 

particularly on an unusually warm spring day. Volatility is a measure of how easily the engine starts in 

cold weather. 

 From the table, we see in this planning period, for example, there are only 1,000 units of butane 

available. The profit contribution of regular gasoline is $18.40 per unit exclusive of the cost of its 

ingredients. 

 A slight simplification assumed in this example is that the interaction between ingredients is linear. 

For example, if a “fifty/fifty” mixture of BUT and CAT is made, then its octane will be 

0.5 × 120 + 0.5 × 100 = 110 and its volatility will be 0.5 × 105 + 0.5 × 3 = 54. In reality, this linearity 

is violated slightly, especially with regard to octane rating. 

10.3.1 Formulation 
The quality constraints require a bit of thought. The fractions of a batch of REG gasoline consisting of 

Butane, Catalytic Reformate, and Heavy Naphtha are BUT/REG, CAT/REG, and NAP/REG, 

respectively. Thus, if the god of linearity smiles upon us, the octane constraint of the blend for REG 

should be the expression: 

(BUT/REG) × 120 + (CAT/REG) × 100 + (NAP/REG) × 74  89. 

 Your expression, however, may be a frown because a ratio of variables like BUT/REG is definitely 

not linear. Multiplying through by REG, however, produces the linear constraint: 

120 BUT + 100 CAT + 74 NAP  89 REG 

or in standard form: 

120 BUT + 100 CAT + 74 NAP − 89 REG  0. 
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10.3.2 Representing Two-sided Quality Constraints  
All the quality requirements are two sided. That is, they have both an upper limit and a lower limit. The 

upper limit constraint on octane is clearly: 

120 BUT + 100 CAT + 74 NAP − 110 REG  0. 

We can write it in equality form by adding an explicit slack: 

120 BUT + 100 CAT + 74 NAP − 110 REG + SOCT = 0. 

 When SOCT = 0, the upper limit is binding. You can verify that, when SOCT = 110 REG – 89 REG 

= 21 REG, the lower limit is binding. Thus, a compact way of writing both the upper and lower limits is 

with the two constraints: 

1) 120 BUT + 100 CAT + 74 NAP − 110 REG + SOCT = 0, 

2) SOCT  21 REG. 

 Notice, even though there may be many ingredients, the second constraint involves only two 

variables. This is a compact way of representing two-sided constraints. 

 Similar arguments can be used to develop the vapor and volatility constraints. Finally, a constraint 

must be appended, which states the whole equals the sum of its raw material parts, specifically: 

REG = BUT + NAP + CAT. 

 When all constraints are converted to standard form and the expression for profit contribution is 

written, we obtain the formulation:  

MODEL: 

MAX = 22 * B_PRM + 18.4 * B_REG - 7.3 * XBUT_PRM - 7.3 * XBUT_REG  

 - 12.5 * XNAP_PRM - 12.5 * XNAP_REG 

 - 18.2 * XCAT_PRM - 18.2 * XCAT_REG; 

  ! Subject to raw material availabilities;  

[RMLIMBUT] XBUT_PRM + XBUT_REG <=  1000; 

[RMLIMCAT] XCAT_PRM + XCAT_REG <=  4000; 

[RMLIMNAP] XNAP_PRM + XNAP_REG <=  5000; 

!For each finished good, batch size computation; 

[BDEF_REG]B_REG - XNAP_REG - XCAT_REG - XBUT_REG=0; 

[BDEF_PRM]B_PRM - XNAP_PRM - XCAT_PRM - XBUT_PRM=0; 

  ! Batch size limits; 

[BLO_REG] B_REG >=  4000; 

[BHI_REG] B_REG <=  8000; 

[BLO_PRM] B_PRM >=  2000; 

[BHI_PRM] B_PRM <=  6000; 

  ! Upper(UP) and Lower(DN) quality restrictions for each product; 

[QUPREGOC] - 110 * B_REG  

   + SOCT_REG + 74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG = 0; 

[QDNREGOC] - 21 * B_REG + SOCT_REG <=  0; 

[QUPREGVA] - 11 * B_REG  

   + SVAP_REG + 4.1 * XNAP_REG + 2.6 * XCAT_REG + 60 * XBUT_REG = 0; 

[QDNREGVA] - 3 * B_REG + SVAP_REG <= 0; 

[QUPREGVO] - 25 * B_REG  

     + SVOL_REG + 12 * XNAP_REG + 3 * XCAT_REG + 105 * XBUT_REG = 0; 

[QDNREGVO] - 8 * B_REG + SVOL_REG <=  0; 
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[QUPPRMOC] - 110 * B_PRM  

   + SOCT_PRM + 74 * XNAP_PRM + 100 * XCAT_PRM + 120 * XBUT_PRM = 0; 

[QDNPRMOC] - 16 * B_PRM + SOCT_PRM <=  0; 

[QUPPRMVA] - 11 * B_PRM  

   + SVAP_PRM + 4.1 * XNAP_PRM + 2.6 * XCAT_PRM + 60 * XBUT_PRM = 0; 

[QDNPRMVA] - 3 * B_PRM + SVAP_PRM <=  0; 

[QUPPRMVO] - 25 * B_PRM  

     + SVOL_PRM + 12 * XNAP_PRM + 3 * XCAT_PRM + 105 * XBUT_PRM = 0; 

[QDNPRMVO] - 8 * B_PRM + SVOL_PRM <=  0; 

END 

The following is the same problem, set in a general, set-based blending formulation: 

MODEL: 

  ! General Blending Model(BLEND) in LINGO; 

 SETS: 

!Each raw material has availability & cost/unit; 

   RM/ BUT, CAT, NAP/: A, C; 

! Each f. g. has min & max sellable, profit 

contr./unit and batch size to be determined; 

   FG/ REG, PRM/: D, E, P, B; 

   ! There are a set of quality measures; 

   QM/ OCT, VAP, VOL/; 

!Each RM & QM combo has a quality level; 

   RQ( RM, QM): Q; 

 !For each combo QM, FG there are upper & 

lower limits on quality, slack on quality 

 to be determined; 

   QF( QM, FG): U, L, S; 

!Each combination of RM and FG has an amount 

    used, to be determined; 

   RF( RM, FG): X; 

 ENDSETS 

 DATA:  

  A=  1000, 4000, 5000;!Raw material availabilities; 

  C =  7.3, 18.2, 12.5;    ! R. M. costs; 

  Q =  120,   60, 105, !Quality parameters...; 

       100,  2.6,   3,    ! R. M. by quality; 

        74,  4.1,  12; 

  D = 4000, 2000; ! Min needed of each F.G.; 

  E = 8000, 6000; !Max sellable of each F.G; 

  P = 18.4,   22; !Selling price of each F.G.; 

  U =  110,  110, ! Upper limits on quality; 

        11,   11, ! Quality by F.G.; 

        25,   25; 

  L =   89,   94, !Lower limits on quality...; 

         8,    8,      ! Quality by F.G.; 

        17,   17; 

 ENDDATA 
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!------------------------------------------; 

! The model; 

! For each raw material, the availabilities; 

    @FOR( RM( I): 

    [RMLIM] @SUM( FG( K): X( I, K)) < A( I); 

        ); 

    @FOR( FG( K): 

!For each finished good, compute batch size; 

     [BDEF] B( K) = @SUM( RM( I): X( I, K)); 

     ! Batch size limits; 

          [BLO] B( K) > D( K); 

          [BHI] B( K) < E( K); 

   ! Quality restrictions for each quality; 

   @FOR( QM( J): 

[QUP]@SUM( RM(I): Q(I, J) * X(I, K)) + S( J,  

          K) = U( J, K) * B( K); 

[QDN] S(J, K) < (U(J, K) - L(J, K)) * B(K); 

           ); ); 

!We want to maximize profit contribution; 

[PROFIT] MAX = @SUM( FG: P * B)  

            - @SUM( RM( I): C( I) * @SUM( FG( K): X( I, K))); 

END 

 As with all of our set based models, the data are well separated from the model equations. Thus, 

when the data change, the user need not be concerned with the model equations when updating the 

model. 

 The interesting part of the solution is:  

Objective value:                 48750.00 

      Variable           Value        Reduced Cost 

       B( REG)        4000.000           0.0000000 

       B( PRM)        4500.000           0.0000000 

  S( OCT, REG)        84000.00           0.0000000 

  S( OCT, PRM)        72000.00           0.0000000 

  S( VAP, REG)        1350.424           0.0000000 

  S( VAP, PRM)        7399.576           0.0000000 

  S( VOL, REG)        17500.00           0.0000000 

  S( VOL, PRM)        36000.00           0.0000000 

  X( BUT, REG)        507.4153           0.0000000 

  X( BUT, PRM)        492.5847           0.0000000 

  X( CAT, REG)        1409.958           0.0000000 

  X( CAT, PRM)        2590.042           0.0000000 

  X( NAP, REG)        2082.627           0.0000000 

  X( NAP, PRM)        1417.373           0.0000000 

           Row    Slack or Surplus      Dual Price 

   RMLIM( BUT)       0.0000000            27.05000 

   RMLIM( CAT)       0.0000000            6.650000 

   RMLIM( NAP)        1500.000           0.0000000 

    BDEF( REG)       0.0000000           -22.65000 

     BLO( REG)       0.0000000           -1.225000 

     BHI( REG)        4000.000           0.0000000 

QUP( REG, OCT)       0.0000000          -0.4750000 

QDN( REG, OCT)       0.0000000           0.4750000 
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QUP( REG, VAP)       0.0000000           0.0000000 

QDN( REG, VAP)        10649.58           0.0000000 

QUP( REG, VOL)       0.0000000           0.0000000 

QDN( REG, VOL)        14500.00           0.0000000 

    BDEF( PRM)       0.0000000           -22.65000 

     BLO( PRM)        2500.000           0.0000000 

     BHI( PRM)        1500.000           0.0000000 

QUP( PRM, OCT)       0.0000000          -0.4750000 

QDN( PRM, OCT)       0.0000000           0.4750000 

QUP( PRM, VAP)       0.0000000           0.0000000 

QDN( PRM, VAP)        6100.424           0.0000000 

QUP( PRM, VOL)       0.0000000           0.0000000 

QDN( PRM, VOL)       0.0000000           0.0000000 

        PROFIT        48750.00            1.000000 

 The solution suggests that Premium is the more profitable product,  so we sell the minimum amount 

of Regular required and then sell as much Premium as scarce resources, BUT and CAT, allow. 

 LP blending models have been a standard operating tool in refineries for years. Recently, there have 

been some instances where these LP models have been replaced by more sophisticated nonlinear models, 

which more accurately approximate the nonlinearities in the blending process. See Rigby, Lasdon, and 

Waren (1995), for a discussion of how Texaco does it. For example, volatility may be represented by a 

logarithmic expression and octane may be represented with a polynomial like a1*x+ a2*x2+ a3*x3+ a4*x4, 

see Rardin(1998). 

 There is a variety of complications as gasoline blending models are made more detailed. For 

example, in high quality gasoline, the vendor may want the octane to be constant across volatility ranges 

in the ingredients. The reason is, if you “floor” the accelerator on a non-fuel injected automobile, a shot 

of raw gas is squirted into the intake. The highly volatile components of the blend will reach the 

combustion chamber first. If these components have low octane, you will have knocking, even though 

the “average” octane rating of the gasoline is high. This may be more important in a station selling gas 

for city driving than in a station on a cross country highway in Kansas where most driving is at a constant 

speed. 

 

10.3.3 Representing Soft Target Quality Constraints  
Recall that in the above gasoline blending problem we required the octane rating of Regular gasoline to 

be in the range:  89  octane  110.  Now suppose that ideally, the octane target is 91. If we required the 

octane of Regular to be exactly 91, we could write:   

 
    74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG = 91* B_REG; 

 

But if we allow deviations above and below, we could add deviation/slack/surplus variables:  

 
    74 * XNAP_REG + 100 * XCAT_REG + 120 * XBUT_REG  

        + SLOCT_REG – SUOCT_REG = 91* B_REG; 

    SLOCT_REG <= (91-89) * B_ REG; 

    SUOCT_REG <= (110-91) * B_REG; 

 

In the (maximize) objective we could add terms:  

 

          - ALPHAL * SLOCT_REG – ALPHAU * SUOCT_REG; 
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Setting constants ALPHAL, ALPHAU > 0 would encourage the blended octane to closely match the 

target of 91. Setting  ALPHAL, ALPHAU = 0 would only restrict octane to the interval [89, 110]. 

 

10.3.4 Discrete Blending/All-or-Nothing Usage  
Error! Bookmark not defined.There are some blending applications in which it makes sense to use 

only discrete quantities of certain ingredients. For example, if you are doing menu planning for a school 

or some other institution, you would not recommend that a meal consist of 0.75 apples and 1.2 bananas. 

You would recommend only a whole number. In the processing of scrap metal, the scrap tends come in 

compressed bundles. If you are melting scrap in a furnace, you would use all or nothing of a bundle, not 

a fraction. If you are blending coal at a port facility, you would tend to use either all or none of a barge 

of coal, or a railcar of coal. This all-or-nothing feature can be handled straightforwardly by introducing 

binary variables.  In our previous gasoline blending example, suppose there is a naptha supply of 4100, 

and it is of an all or nothing nature, i.e., if you use any of it you must use all of it.  This can be represented 

by introducing a binary variable: ZNAP = 1 if any (and all) or the naptha is used, = 0 if none is used.  

The additional constraints would be: 

 
   @BIN( ZNAP);  ! ZNAP is a 0/1, binary variable.; 

    

   [RMLIMNAP] XNAP_PRM + XNAP_REG = 4100 * ZNAP; ! Naptha used = 0 or 4100; 

 

When the model is solved with this constraint replacing: 
     [RMLIMNAP] XNAP_PRM + XNAP_REG = 5000; 

 

 we get a solution which in part is: 

 
     Global optimal solution found. 
  Objective value:    45810.00 

 

      Variable           Value 

         B_PRM        2700.000 

         B_REG        6400.000 

      XBUT_PRM        295.5508 

      XBUT_REG        704.4492 

      XNAP_PRM        850.4237 

      XNAP_REG        3249.576 

      XCAT_PRM        1554.025 

      XCAT_REG        2445.975 

          ZNAP        1.000000 

 

10.3.5 Treatments vs. Ingredients in Blending Problems  
Error! Bookmark not defined. In some blending problems, you can apply treatments that can 

significantly change the quality directly without having much effect on the volume of the blend. 

Examples are: a) in gasoline blending, the octane rating can be increased by adding small amounts of 

tetraethyl lead (TEL), methyl tertiary-butyl ether (MTBE), or ferrocene. Note, however, that regulatory 

authorities in many countries may have restrictions on the use of these additives because of pollution 
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issues.  b) in the manufacture of steel, one can remove  C (carbon)  and S (sulfur) by treating with O 

(oxygen) and CaO (lime). 

 

A simplified representation of (b) is that C can be removed by injecting O  to produce CO, which is 

easily separated out. Atomic weights of C and O are 12 and 16. So each ton of O injected might 

remove up to 12/16 = 0.75 tons of C. Another simplified representation is that S can be removed by 

adding CaO, which produces CaS + O, both of which are easily separated out, e.g. as slag floating on 

the top of the blending vessel. Atomic weights of Ca and S are 40 and 32. So each ton of CaO applied 

might remove up to 32/(40+16) = 0.57 tons of S. 

 

We can represent treatments as a generalization of raw material ingredients if we introduce an 

additional parameter vector: 

    vc(i) = volume contribution per unit of treatment i applied. 

 

We also use the notation: 

  Parameters: 

    q(i, j) = contribution of treatment i to quality j. 

    U( j)  = upper limit on quality j per volume, e.g., the fraction of sulfur allowed, 

  Variables: 

     B = batch size, to be determined, 

     x(i) = amount of treatment or raw material i to be used, 

      

For a typical ingredient, vc(i) = 1, e.g., if we add a ton of Wyoming coal to a batch of blends of various 

coals, the batch size increases by 1 ton.  Now consider in contrast that we add a ton of lime to a steel 

batch.  The purpose of the lime is, among other things, to remove sulfur. The lime combines with the 

sulfur which is then removed as slag from the top of the blending vessel.  Let us suppose that each ton 

of lime removes 0.57 tons of sulfur. In this case, we would set vc(lime) = -0.57, i.e., adding lime leads 

to a net decrease in the final batch size. Further,  q( lime, sulfur) = -0.57, i.e., each ton of lime added, 

decreases the amount of sulfur in the final batch by 0.57 tons. 

     The constraints in general are then: 

     B = Σi vc(i) * x(i);   Compute the batch size; 

 

  For each quality j: 

      ( Σi q(i,j) * x(i)) / B  ≤ U( j)  ;   Quality constraint in ratio form.  

 

 or in linear form: 

        Σi q(i, j) * x( i) ≤ U( j)* B; 

 

10.4 Choice of Alternate Interpretations of Quality Requirements 
Some quality features can be stated according to some measure of either goodness or, alternatively, 

undesirability. An example is the efficiency of an automobile. It could be stated in miles per gallon or 

alternatively in gallons per mile. In considering the quality of a blend of ingredients (e.g., the efficiency 

of a fleet of cars), it is important to identify whether it is the goodness or the badness measure which is 

additive over the components of the blend. The next example illustrates. 

 A federal regulation required the average of the miles per gallon computed over all automobiles 

sold by an automobile company in a specific year be at least 18 miles per gallon.  
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 Let us consider a hypothetical case for the Ford Motor Company. Assume Ford sold only the four 

car types: Mark V, Ford, Granada, and Fiesta. Various parameters of these cars are listed below: 

Car Miles per 
Gallon 

Marginal Prod. Cost Selling Price 

Fiesta 30 13,500 14,000 

Granada 18 14,100 15,700 

Ford 16 14,500 15,300 

Mark V 14 15,700 20,000 

 There is some flexibility in the production facilities, so capacities may apply to pairs of car types. 

These limitations are: 

Yearly Capacity in Units Car Types Limited 

250,000 Fiestas 

2,000,000 Granadas plus Fords 

1,500,000 Fords plus Mark V’s 

 There is a sale capacity limit of 3,000,000 on the total of all cars sold. How many of each car type 

should Ford plan to sell? 

 Interpreting the mileage constraint literally results in the following formulation: 

   MAX = 500*FIESTA + 1600*GRANADA + 4300*MARKV + 800*FORD; 

        12 * FIESTA                 - 4 * MARKV - 2 * FORD >= 0; 

      FIESTA                                        <= 250; 

                           GRANADA                  + FORD <= 2000; 

                                          MARKV     + FORD <= 1500; 

             FIESTA      + GRANADA      + MARKV     + FORD <= 3000; 

Automobiles and dollars are measured in 1000s. Note row 2 is equivalent to: 

30 Fiesta + 18 Granada + 16 Ford + 14 Mark V  

      Fiesta + Granada + Ford + Mark V
 

 

 18. 

The solution is: 

Optimal solution found at step:         1 

Objective value:                 6550000. 

Variable           Value        Reduced Cost 

  FIESTA        250.0000           0.0000000 

 GRANADA        2000.000           0.0000000 

   MARKV        750.0000           0.0000000 

    FORD       0.0000000            2950.000 

     Row    Slack or Surplus      Dual Price 

       1        6550000.            1.000000 

       2       0.0000000           -1075.000 

       3       0.0000000            13400.00 

       4       0.0000000            1600.000 

       5        750.0000           0.0000000 

       6       0.0000000           0.0000000 
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 Let’s look more closely at this solution. Suppose each car is driven the same number of miles per 

year regardless of type. An interesting question is whether the ratio of the total miles driven by the above 

fleet divided by the number of gallons of gasoline used is at least equal to 18. Without loss, suppose 

each car is driven one mile. The gasoline used by a car driven one mile is 1/(miles per gallon). Thus, if 

all the cars are driven the same distance, then the ratio of miles to gallons of fuel of the above fleet is 

(250 + 2000 + 750)/[(250/30) + (2000/18) + (750/14)] = 17.3 miles per gallon—which is considerably 

below the mpg we thought we were getting. 

 The first formulation is equivalent to allotting each automobile the same number of gallons and each 

automobile then being driven until it exhausts its allotment. Thus, the 18 mpg average is attained by 

having less efficient cars drive fewer miles. A more sensible way of phrasing things is in terms of gallons 

per mile. In this case, the mileage constraint is written: 

Fiesta/30 + Granada/18 + Ford/16 + MarkV/14  1/18 

Fiesta + Granada + Ford + MarkV  

Converted to standard form this becomes: 

−0.022222222 * FIESTA + 0.0069444444 * FORD + 0.015873016 * MARKV =0; 

When this problem is solved with this constraint, we get the solution: 

Optimal solution found at step:         0 

Objective value:                 4830000. 

Variable           Value        Reduced Cost 

  FIESTA        250.0000           0.0000000 

    FORD       0.0000000            2681.250 

   MARKV        350.0000           0.0000000 

 GRANADA        2000.000           0.0000000 

 Notice the profit contribution drops noticeably under this second interpretation. The federal 

regulations could very easily be interpreted to be consistent with the first formulation. Automotive 

companies, however, wisely implemented the second way of computing fleet mileage rather than leave 

themselves open to later criticism of having implemented what Uncle Sam said rather than what he 

meant. 

 For reference, in 2010, the U.S. "light truck" (so-called sport utility vehicles) fleet mileage 

requirement was 23.4 miles per gallon, and the passenger car fleet requirement was 27.5 miles per gallon. 

For each tenth of a mile per gallon that a fleet falls short of the requirement, the U.S. Federal government 

sets a fine of $5 per vehicle. The requirements are based on a "model year" basis. This gives a car 

manufacturer some flexibility if it looks like it might miss the target in a given year. For example, the 

manufacturer could "stop production" of a vehicle that has poor mileage, such as the big Chevy 

Suburban, and declare that all subsequent copies sold belong to the next model year. This may achieve 

the target in the current model year, but postpone the problem to the next model year. 
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10.5 How to Compute Blended Quality 
The general conclusion is one should think carefully when one needs to compute an average performance 

measure for some blend or collection of things. There are several ways of computing averages or means 

when one has a collection of N quantities, x1, x2, . . . .xN : 

 

                 Type                  Formula                                         Average of (5, 9) 

Arithmetic:     ( x1 + x2 . . . + xN )/N ,                                  7.000 

Logarithmic:   (x1 - x2)/ LN(x1 / x2),  for N = 2                   6.805 

Geometric:     (x1  x2 . . .  xN )^(1/N)                              6.708 

Harmonic:      1/[( 1/x1 + 1/x2 . . . + 1/xN )/N]                    6.429 

 

 The arithmetic mean is appropriate for computing the mean return of the assets in a portfolio. If, 

however, we are interested in the average growth of a portfolio over time, we would probably want to 

use the geometric mean of the yearly growths. Consider, for example, an investment that has a growth 

factor of 1.5 in the first year and 0.67 in the second year (e.g., a rate of return of 50% in the first year 

and −33% in the second year). Most people would not consider the average growth to be (1.5 + 0.67)/2 

= 1.085.  

      The harmonic mean tends to be appropriate when computing an average rate of something, as in 

average miles/gallon in the example above, or for computing the average density of blend of ingredients. 

Density is usually measured in weight per volume (e.g., grams per cubic centimeter). If the decision 

variables are measured in weight units rather than volume units, then the harmonic mean is appropriate. 

The harmonic mean is also appropriate for computing the average price earnings ratio for a collection of 

companies. 

     The logarithmic mean is used in computing the average temperature difference in a heat exchanger, 

based on the temperature difference at the two ends, e.g., as used in a petroleum refinery. 

10.5.1 Example  
We have two ingredients, one with a density of 0.7 g/cc and the other with a density of 0.9 g/cc. If we 

mix together one gram of each, what is the density of the mix? Clearly, the mix has a weight of 2 grams. 

Its volume in cc’s is 1/0.7 + 1/0.9. Thus, its density is 2/(1/0.7 + 1/0.9) = 0.7875 g/cc. This is less than 

the 0.8 we would predict if we took the arithmetic average. If we define: 

Xi = grams of ingredient i in the mix, 

 t = target lower limit on density desired. 

Then, we can write the density constraint for our little example as: 

( X1 + X2 )/( X1/0.7 + X2 /0.9) ≥ t, 

    or 

( X1 + X2)/t  ≥ X1/0.7 + X2/0.9, 
    or 

(1/t – 1/0.7) X1 + (1/t – 1/0.9) X2 ≥ 0, 

(i.e., a harmonic mean constraint). 
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10.5.2 Generalized Mean 
One can generalize the idea just discussed by introducing a transformation f (q). The interpretation is 

that the function f () “linearizes” the quality. The basic idea is that many of the quality measures used in 

practice were chosen somewhat arbitrarily (e.g., why is the freezing point of water 32 degrees on the 

Fahrenheit scale?). So, even though a standardly used quality measure does not “blend linearly”, perhaps 

we can find a transformation that does. Such linearizations are common in industry. Some examples 

follow: 

 

1. The American Petroleum Institute likes to measure the lightness of a material in “API 

gravity”, see Dantzig and Thapa (1997). Water has an API gravity of 10. API gravity does 

not blend linearly. However, the specific gravity, defined by: 

 sg = 141.5/(API gravity + 131.5) 

does blend linearly. Note, the specific gravity of a material is the weight in grams of one 

cubic centimeter of material. For example, if component 1 has an API gravity of 35, 

component 2 has a API gravity of 55, xi is the amount used of component i, and we want a 

blend with an API gravity of at most 45, the constraint could be written: 

          (141.5/(35 + 131.5)) x1 +  (141.5/(55 + 131.5)) x2   141.5/(45 + 131.5) (x1 + x2).  

       Note, if we want the API gravity to be low, then we want the specific gravity high. 

 

2. In the transmissivity of light through a glass fiber of length xi, or the financial growth of 

an investment over a period of length xi, or in the probability of no failures in a number of 

trials xi, one may have constraints of the form: a1
x1 a2

x2 …an
xn  a0. This can be linearized 

by taking logarithms (e.g., ln(a1) * x1 + ln(a2) * x2 +… ln(an) * xn  ln(a0)). 

  For example, if we expect stocks to have a long term growth rate of 10% per year, we 

expect less risky bonds to have a long term growth rate of 6% per year, we want an overall 

growth of 40% over five years, and x1 and x2 are the number of years we invest in stocks 

and bonds respectively over a five year period, then we want the constraint: 

 (1.10) x1(1.06) x2 1.40. 

 Linearizing, this becomes: 

 ln(1.10) x1 + ln(1.06) x2  ln(1.40), or 

 .09531 x1 + .05827 x2  .3364, 

             x1 + x2 = 5. 

3. Rigby, Lasdon, and Waren (1995) use this idea when approximating the Reid vapor 

pressure (RVP) of a blended gasoline at Texaco. Note, the RVP of a liquid is the pressure  

in a closed container having a small amount of the liquid at 100 degrees F.  If ri is the RVP 

of component i of the blend, they use the transformation: 

 f (ri) = ri 1.25 
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For example, if component 1 has an RVP of 80, component 2 has an RVP of 100, xi is the 

amount used of component i, and we want a blend with an RVP of at least 90, the constraint 

could be written: 

 80 1.25  x1 + 100 1.25  x2  90 1.25  (x1 + x2),  

 or 

 239.26  x1 + 316.23 x2  277.21 (x1 + x2). 

4. The flashpoint of a chemical is the lowest temperature at which it will catch fire. Typical 

jet fuel has a flashpoint of around 100 degrees F. Typical heating oil has a flashpoint of at 

least 130 degrees F. The jet fuel used in the supersonic SR-71 jet aircraft had a flashpoint 

of several hundred degrees F. If pi is the flashpoint of component i in degrees F, then the 

transformation, the so-called blending index is:  

 f (pi) = 51708*exp(((LOG(pi) - 2.6287)^2/(-0.91725)))  

where LOG is the natural logarithm, will approximately linearize the flashpoint. See Fahim 

et al. (2010) or Kaiser et al. (2020). For example, if component 1 has a flashpoint of 100, 

and component 2 has a flashpoint of 140, then f (100) = 731.073, and f ( 140) = 151.569. 

Notice that f (pi) is a decreasing function of pi, so a higher flashpoint means a lower 

blending index f (pi)  value. 

 Suppose we want a blend with a flashpoint of at least 130. Now  f (130) = 218.939, so 

the flash point constraint, were xj is the amount by weight of component j of  the above 

two components is:  

 731.073  x1 + 151.569  x2  218.939  (x1 + x2). 

5. The viscosity of a liquid is a measure, in units of centistokes, of the time it takes a standard 

cup volume of liquid, at 122 degrees Fahrenheit, to flow through a hole of a certain 

diameter. The higher the viscosity, the less quickly the liquid flows. If vi is the viscosity of 

component i, then the transformation: 

 f (vi) = ln (ln (vi + .08)) 

will approximately linearize the viscosity. 

 For example, if component 1 has a viscosity of 5, component 2 has a viscosity of 25, 

xi is the amount used of component i, and we want a blend with a viscosity of at most 20, 

the constraint would be written: 

 ln (ln (5 + .08))  x1 + ln (ln (25+ .08)) x2  
 ln (ln (20 + .08))  (x1 + x2), 

 or 

 .4857 x1 + 1.17 x2  1.0985(x1 + x2). 

 The preceding examples apply the transformation to each quality individually. One could extend 

the idea even further by allowing a “matrix” transformation to several qualities together. 
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10.6 Interpretation of Dual Prices for Blending Constraints 
The dual price for a blending constraint usually requires a slight reinterpretation in order to be useful. 

As an example, consider the minimum octane constraint for Premium gasoline in the model considered 

earlier.  The constraint was effectively: 

−94 B_PRM + 120 XBUT_PRM + 74 XNAP_PRM + 100 XCAT_PRM  0. 

 The dual price of this constraint is the rate of increase in profit if the right-hand side of this constraint 

is increased from 0 to 1. Unfortunately, this is not a change we would ordinarily consider. More typical 

changes that might be entertained would be changing the octane rating from 94 to either 93 or 95. A 

very approximate rule for estimating the effect of changing the coefficient in row i of variable B_PRM 

is to compute the product of the dual price in row i and the value of variable B_PRM. For variable 

B_PRM and the octane constraint, this value is  -.475*4500 = −2137.5. This suggests, if the octane 

requirement is reduced to 93 (or increased to 95) from 94, the total profit will increase by about 2137.5 

to 48750 + 2137.5 = $50887.5 (or decrease to 48750-2137.5= $46,612.5). If the LP is actually re-solved 

with an octane requirement of 93 (or 95), the actual profit contribution changes to $51,000 (or 

$46,714.29).  

 This approximation can be summarized generally as follows:  

If we wish to change a certain quality requirement of blend by a small amount , the effect on 

profit of this change is approximately of the magnitude   (dual price of the constraint)  
(batch size). For small changes, the approximation tends to understate profit after the change. 

For large changes, the approximation may err in either direction. 

 

10.7 Fractional or Hyperbolic Programming 
 In blending problems, we have seen ratio constraints of the form: 

j i j

j j

q X

X
q






0

 

can be converted to linear form, by rewriting: 

j qj Xj  q0  Xj    or     (qj − q0) xj  0 

 Can we handle a similar feature in the objective? That is, can a problem of the following form be 

converted to linear form? 

(1) Maximize       
o j j j

o j j j

u + u X

v + v X




 

(2) subject to:    j aij Xj = bi ,  for i = 1, 2, . . .    

 The ai,j, u0, uj, v0, and vj are given constants. For example, we might wish to maximize the fraction 

of protein in a blend subject to constraints on availability of materials and other quality specifications. 
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 We can make it linear with the following transformations: 

Define:    

 r = 1/(v0 + j vj Xj) 

and        

 yj = Xj r                                    

We assume r > 0. 

 Then our objective is: 

(1') Maximize        u0 r + juj yj 

     subject to: 

r = 1/(v0 + j vj X j ), or 

(1.1')   r v0 + j vj yj = 1 

Any other constraint i of the form: 

(2) j aij Xj = bi 

can be written as: 

j aij  Xj r = bi  r 

 

or linear in terms of the new variables, 

(2') j aij  yi − bi r = 0 

10.8 Multi-Level Blending: Pooling Problems 
A complicating factor in some blending problems is that not all raw ingredients can be stored separately. 

Such a situation can arise in a number of ways. Two ingredients may be produced at the same location, 

but for economic reasons, are transported together (e.g., in one tank car or via one pipeline). Another 

possibility is two ingredients are delivered separately, but only a single holding facility is available at 

the blending site. In general, many facilities that blend ingredients have only a modest number of storage 

facilities. For example, a grain storage facility may have only a half dozen bins. A petroleum refinery 

may have only a half dozen tanks. If there are more than a half dozen different sources of raw materials, 

then not all raw materials can be stored separately. In the petroleum industry, this leads to what is called 

a pooling problem. 

 This pooling of raw materials within a blending problem leads to a nonlinear program. The pooling 

problem discussed here is taken from Haverly (1978). A, B, and C are ingredients containing 3%, 1%, 

and 2% sulfur as an impurity, respectively. These chemicals are to be blended to provide two output 

products, X and Y, which must meet sulfur content upper limits of 2.5% and 1.5%, respectively. At the 

given prices of $9 per unit of X and $15 per unit of Y, customers will buy all of X and Y produced up to 

a maximum of 100 units of X and 200 units of Y. The costs per unit for ingredients A, B, and C are $6, 

$16, and $10, respectively. The problem is to operate the process in order to maximize profit. 

 A complicating factor in this blending process is the fact that products A and B must be stored in 

the same tank, or “pool”. So, until the amounts of A and B are determined, the pool sulfur content is 

unknown. Figure 10.1 illustrates. However, it is the pool sulfur content together with the amounts of 

pool material and of chemical C used in blending X and Y that determine the X and Y sulfur contents. 
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The sulfur constraints on X and Y affect the amounts of A and B needed, and it is this “circularity” that 

causes a nonlinearity. 

Figure 10.1 A Pooling Problem 

Pool

Y

X

C

A

B

 

 The constraint equations defining this system involve material balances and sulfur constraints for 

the output products. Consider the material balance equations first. 

 We have the following mass balance for the pool, assuming all of the pool material is to be used up: 

Amount A + Amount B = Pool to X + Pool to Y. 

For the output products, the balance equations are: 

Pool to X + C to X = Amount X 

and: 

Pool to Y + C to Y = Amount Y. 

For the total amount of C, the equation is: 

C to X + C to Y = Amount C. 

 Introducing the pool sulfur percent, Pool S, as a new variable, makes it easy to write the X and Y 

sulfur constraints. If we let Pool S have a value between 0 and 100 and express all other percentages on 

the same scale, these constraints are: 

Pool S  Pool to X + 2  C to X  2.5  Amount X 

Pool S  Pool to Y + 2  C to Y  1.5  Amount Y 

 The left-hand side of each inequality represents the actual sulfur content of the appropriate product 

and the right-hand side is the maximum amount of sulfur permitted in that product. The pool sulfur 

balance equation is: 

3  Amount A + 1 Amount B = Pool S  (Amount A + Amount B). 

 This defines Pool S as the amount of sulfur in the pool divided by the total amount of material in 

the pool. 
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 As mentioned earlier, product demand sets upper bounds on production as: 

Amount X  100 

Amount Y  200 

and physical considerations restrict all variables to be nonnegative quantities. Clearly, the pool sulfur 

can never be less than 1% or more than 3%. Thus: 

1  Pool S  3. 

 Finally, the profit function must be formulated. If Cost A, Cost B, Cost C, Cost X, and Cost Y are 

the appropriate cost coefficients, the profit can be written as: 

Cost X  Amount X + Cost Y  Amount Y − Cost A  Amount A 

− Cost B  Amount B − Cost C  Amount C 

A LINGO formulation follows: 

MODEL:  

   COSTA = 6; 

   COSTB = 16; 

   COSTC = 10; 

   COSTX = 9; 

   COSTY = 15; 

 MAX = COSTX * AMOUNTX + COSTY * AMOUNTY - COSTA * AMOUNTA - COSTB * 

AMOUNTB - COSTC * AMOUNTC; 

   ! Sources = uses for the pool; 

   AMOUNTA + AMOUNTB = POOLTOX + POOLTOY; 

   ! Sources for final products; 

   POOLTOX + CTOX = AMOUNTX; 

   POOLTOY + CTOY = AMOUNTY; 

   ! Uses of C; 

   AMOUNTC = CTOX + CTOY; 

   ! Blending constraints for final products; 

   POOLS * POOLTOX + 2 * CTOX <= 2.5 * AMOUNTX; 

   POOLS * POOLTOY + 2 * CTOY <= 1.5 * AMOUNTY; 

   ! Blending constraint for the pool product; 

   3*AMOUNTA + AMOUNTB=POOLS*(AMOUNTA + AMOUNTB); 

   ! Demand upper limits; 

   AMOUNTX <= 100; 

   AMOUNTY <= 200; 

END 
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 This problem is tricky in that it has (as we shall see) several local optima. LINGO, left to its own 

devices, may find the following solution: 

Optimal solution found at step:        16 

Objective value:                 400.0000 

Variable           Value        Reduced Cost 

   COSTA        6.000000           0.0000000 

   COSTB        16.00000           0.0000000 

   COSTC        10.00000           0.0000000 

   COSTX        9.000000           0.0000000 

   COSTY        15.00000           0.0000000 

 AMOUNTX       0.0000000           0.0000000 

 AMOUNTY        200.0000           0.0000000 

 AMOUNTA       0.0000000            2.000003 

 AMOUNTB        100.0000           0.0000000 

 AMOUNTC       100.00000           0.0000000 

 POOLTOX       0.0000000            4.000026 

 POOLTOY        100.0000           0.0000000 

    CTOX       0.0000000           0.0000000 

    CTOY       100.00000           0.0000000 

   POOLS       0.9999932           0.0000000 

 Examination of the solution shows the optimal operation produces only product Y using equal 

amounts of B and C. The cost per unit of output is $(16 + 10) / 2 = $13 and the sale price is $15, giving 

a profit of $2 per unit. Since all 200 units are produced and sold, the profit is $400. 

 Nonlinear problems, such as this pooling model, have the curious feature that the solution you get 

may depend upon where the solver starts its solution search. You can set the starting point by inserting 

an "INIT" initialization section in your model such as the following: 

 INIT: 

AMOUNTX = 0; 

AMOUNTY = 0; 

AMOUNTA = 0; 

AMOUNTB = 0; 

AMOUNTC = 0; 

POOLTOX = 0; 

POOLTOY = 0; 

   CTOX = 0; 

   CTOY = 0; 

  POOLS = 3; 

 ENDINIT 
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 The INIT section allows you to provide the solver with an initial guess at the solution. Starting at 

the point provided in the INIT section, LINGO may find the solution: 

Optimal solution found at step:         4 

Objective value:                 100.0000 

Variable           Value        Reduced Cost 

 AMOUNTX        100.0000           0.0000000 

 AMOUNTY       0.0000000           0.0000000 

 AMOUNTA        50.00000           0.0000000 

 AMOUNTB       0.0000000            2.000005 

 AMOUNTC        50.00000           0.0000000 

 POOLTOX        50.00000           0.0000000 

 POOLTOY       0.0000000            6.000000 

    CTOX        50.00000           0.0000000 

    CTOY       0.0000000           0.0000000 

   POOLS        3.000000           0.0000000 

   COSTA        6.000000           0.0000000 

   COSTB        16.00000           0.0000000 

   COSTC        10.00000           0.0000000 

   COSTX        9.000000           0.0000000 

   COSTY        15.00000           0.0000000 

 In this solution, only product X is produced and sold. It is made using an equal blend of chemicals 

A and C. The net cost of production is $8 per unit, yielding a profit of $1 per unit of X sold. Since only 

100 units are called for, the final profit is $100. This solution is locally optimal. That is, small changes 

from this operating point reduce the profit. There are no feasible operating conditions close to this one 

that yield a better solution. 

 Our earlier solution, yielding a profit of $400, is also a local optimum. However, there is no other 

feasible point with a larger profit, so we call the $400 solution a global optimum. The reader is invited 

to find other local optima, for example, by increasing the use of A and decreasing B and C. 

 Generally speaking, an initial guess should not set variable values to zero. Since zero multiplied by 

any quantity is still zero, such values can lead to unusual behavior of the optimization algorithm. For 

example, if we take our previous initial guess, except set POOLS = 2, the solver may get stuck at this 

point and gives the solution:  

Optimal solution found at step:         1 

Objective value:                0.0000000E+00 

Variable           Value        Reduced Cost 

 AMOUNTX       0.0000000           0.0000000 

 AMOUNTY       0.0000000           0.0000000 

 AMOUNTA       0.0000000            6.000000 

 AMOUNTB       0.0000000            16.00000 

 AMOUNTC       0.0000000           0.0000000 

 POOLTOX       0.0000000           -10.00000 

 POOLTOY       0.0000000           -10.00000 

    CTOX       0.0000000           0.0000000 

    CTOY       0.0000000           0.0000000 

   POOLS        2.000000           0.0000000 

   COSTA        6.000000           0.0000000 

   COSTB        16.00000           0.0000000 

   COSTC        10.00000           0.0000000 

   COSTX        9.000000           0.0000000 
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   COSTY        15.00000           0.0000000 

 As this output shows, LINGO finds the starting point to be optimal. Actually, this point is not even 

a local optimum, but rather a stationary point (i.e., very small changes do not provide any significant 

improvement, within the tolerances used in the algorithm, in the objective). The point satisfies the 

so-called first-order necessary conditions for an optimum. If, however, the starting point is perturbed by 

some small amount, the solver should find an actual local optimum and perhaps the global one. In fact, 

setting all variables previously at zero to 0.1 does lead to the global maximum solution with profit of 

$400.  

 This model is an example of where a global solver is helpful.  If the “Global solver” option is 

selected in LINGO, then the global optimal solution with value 400 is found without fail. For this 

problem, all solutions obtained have the property that many constraints are active. In other words, they 

hold as equalities. Of course, the five equality constraints (rows 2 through 5 and row 8) are always active. 

In addition, in the globally optimal solution, the sulfur content of Y is at its upper limit, and six variables 

are either at lower or upper limits (POOLS, CTOX, POOLTOX, AMOUNTA, AMOUNTY, and 

AMOUNTX). Hence, there are twelve active constraints, but only ten variables. When there are at least 

as many active constraints as there are variables, this is called a vertex solution. In linear programming, 

any LP having an optimal solution has a vertex solution. This is not true in NLP, but vertex optima are 

not uncommon and seem to occur frequently in models involving blending and processing. 

 When there are more active constraints than variables, the vertex is called degenerate. In the global 

solution to this problem, there are two “extra” active constraints. One could be removed by dropping the 

upper and lower limits on POOLS. These are redundant because they are implied by constraint 8 and the 

nonnegativity of the variables. The lower limits on AMOUNTX and AMOUNTY could also be dropped, 

since they are implied by rows 3 and 4 and the lower limits on CTOX, CTOY, POOLTOX, and 

POOLTOY. Doing this would lead to the same vertex solution, but with exactly as many active 

constraints as variables. Some other constraints are redundant too. The reader is invited to find them. 

10.9 Problems 
1. The Exxoff Company must decide upon the blends to be used for this week’s gasoline production. 

Two gasoline products must be blended and their characteristics are listed below: 

 
Gasoline 

Vapor 
Pressure 

Octane 
Number 

Selling Price (in 
$/barrel) 

Lo-lead  7   80 $ 9.80 

Premium  6  100 $12.00 

The characteristics of the components from which the gasoline can be blended are shown below: 

 
Component 

Vapor 
Pressure 

Octane 
Number 

Available this 
Week (in barrels) 

Cat-Cracked Gas 8 83 2700 

Isopentane 20 109 1350 

Straight Gas 4 74 4100 
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 The vapor pressure and octane number of a blend is simply the weighted average of the 

corresponding characteristics of its components. Components not used can be sold to 

“independents” for $9 per barrel. 

a) What are the decision variables? 

b) Give the LP formulation. 

c) How much Premium should be blended? 

2. The Blendex Oil Company blends a regular and a premium product from two ingredients, Heptane 

and Octane. Each liter of regular is composed of exactly 50% Heptane and 50% Octane. Each liter 

of premium is composed of exactly 40% Heptane and 60% Octane. During this planning period, 

there are exactly 200,000 liters of Heptane and 310,000 liters of Octane available. The profit 

contributions per liter of the regular and premium product this period are $0.03 and $0.04 per liter 

respectively. 

a) Formulate the problem of determining the amounts of the regular and premium products 

to produce as an LP. 

b) Determine the optimal amounts to produce without the use of a computer. 

3. Hackensack Blended Whiskey Company imports three grades of whiskey: Prime, Choice, and 

Premium. These unblended grades can be used to make up the following two brands of whiskey 

with associated characteristics: 

 
Brand 

 
Specifications 

Selling price per 
liter 

Scottish Club Not less than 60% Prime. 

Not more than 20% Premium. 

$6.80 

Johnny Gold Not more than 60% Premium. 

Not less than 15% Prime. 

$5.70 

The costs and availabilities of the three raw whiskeys are: 

 
Whiskey 

Available This Week (Number of 
Liters) 

Cost per 
Liter 

Prime 2,000 $7.00 

Choice 2,500 $5.00 

Premium 1,200 $4.00 

 Hackensack wishes to maximize this week’s profit contribution and feels it can use linear 

programming to do so. How much should be made of each of the two brands? How should the three 

raw whiskeys be blended into each of the two brands? 
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4. The Sebastopol Refinery processes two different kinds of crude oil, Venezuelan and Saudi, to 

produce two general classes of products, Light and Heavy. Either crude oil can be processed by 

either of two modes of processing, Short or Regular. The processing cost and amounts of Heavy 

and Light produced depend upon the mode of processing used and the type of crude oil used. Costs 

vary, both across crude oils and across processing modes. The relevant characteristics are 

summarized in the table below. For example, the short process converts each unit of Venezuelan 

crude to 0.45 units of Light product, 0.52 units of Heavy product, and 0.03 units of waste. 

 Short Process Regular Process 

 Venezuela
n 

Saud
i 

Venezuela
n 

Saud
i 

Light product fraction 0.45 0.60 0.49 0.68 

Heavy product fraction 0.52 0.36 0.50 0.32 

Unusable product fraction 0.03 0.04 0.01 0.00 

 Saudi crude costs $20 per unit, whereas Venezuelan crude is only $19 per unit. The short 

process costs $2.50 per unit processed, while the regular process costs $2.10 per unit. Sebastopol 

can process 10,000 units of crude per week at the regular rate. When the refinery is running the 

Short process for the full week, it can process 13,000 units per week. 

The refinery may run any combination of short and regular processes in a given week. 

 The respective market values of Light and Heavy products are $27 and $25 per unit. Formulate 

the problem of deciding how much of which crudes to buy and which processes to run as an LP. 

What are the optimal purchasing and operating decisions? 

5. There has been a lot of soul searching recently at your company, the Beansoul Coal Company 

(BCC). Some of its better coal mines have been exhausted and it is having more difficulty selling 

its coal from remaining mines. One of BCC’s most important customers is the electrical utility, 

Power to the People Company (PPC). BCC sells coal from its best mine, the Becky mine, to PPC. 

The Becky mine is currently running at capacity, selling all its 5000 tons/day of output to PPC. 

Delivered to PPC, the Becky coal costs BCC $81/ton and PPC pays BCC $86/ton. BCC has four 

other mines, but you have been unable to get PPC to buy coal from these mines. PPC says that coal 

from these mines does not satisfy its quality requirements. Upon pressing PPC for details, it has 

agreed it would consider buying a mix of coal as long as it satisfies the following quality 

requirements: sulfur < 0.6%; ash < 5.9%; BTU > 13000 per ton; and moisture < 7%. You note your 

Becky mine satisfies this in that its quality according to the above four measures is: 0.57%, 5.56%, 

13029 BTU, and 6.2%. Your four other mines have the following characteristics: 

 
 

Mine 

 
BTU Per 

Ton 

 
Sulfur 

Percent 

 
Ash 

Percent 

 
Moisture 
Percent 

Cost Per Ton 
Delivered to 

PPC 

Lex 14,201 0.88 6.76 5.1 73 

Casper 10,630 0.11 4.36 4.6 90 

Donora 13,200 0.71 6.66 7.6 74 

Rocky 11,990 0.39 4.41 4.5 89 
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 The daily capacities of your Lex, Casper, Donora, and Rocky mines are 4000, 3500, 3000, and 

7000 tons respectively. PPC uses an average of about 13,000 tons per day. 

 BCC’s director of sales was ecstatic upon hearing of your conversation with PPC. His response 

was “Great! Now, we will be able sell PPC all of the 13,000 tons per day it needs”. Your stock with 

BCC’s newly appointed director of productivity is similarly high. Her reaction to your discussion 

with PCC was: “Let’s see, right now we are making a profit contribution of only $5/ton of coal sold 

to PPC. I have figured out we can make a profit contribution of $7/ton if we can sell them a mix. 

Wow! You are an ingenious negotiator!” What do you recommend to BCC? 

6. The McClendon Company manufactures two products, bird food and dog food. The company has 

two departments, blending and packaging. The requirements in each department for manufacturing 

a ton of either product are as follows: 

 Time per Unit in Tons 

 Blending Packaging 

Bird food 0.25 0.10 

Dog food 0.15 0.30 

Each department has 8 hours available per day. 

 Dog food is made from the three ingredients: meat, fishmeal, and cereal. Bird food is made 

from the three ingredients: seeds, ground stones, and cereal. Descriptions of these five materials are 

as follows. 

 Descriptions of Materials in Percents 

  
Protein 

 
Carbohydrates 

Trace 
Minerals 

 
Abrasives 

Cost  
(in $/ton) 

Meat 12 10 1 0 600 

Fishmeal 20 8 2 2 900 

Cereal 3 30 0 0 200 

Seeds 10 10 2 1 700 

Stones 0 0 3 100 100 

The composition requirements of the two products are as follows: 

 Composition Requirements of the Products in Percents 

  
Protein 

 
Carbohydrates 

Trace 
Minerals 

 
Abrasive

s 

 
Seeds 

Bird food 5 18 1 2 10 

Dog food 11 15 1 0 0 

 Bird food sells for $750 per ton while dog food sells for $980 per ton. What should be the 

composition of bird food and dog food and how much of each should be manufactured each day? 
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7. Recent federal regulations strongly encourage the assignment of students to schools in a city, so the 

racial composition of any school approximates the racial composition of the entire city. Consider 

the case of the Greenville city schools. The city can be considered as composed of five areas with 

the following characteristics: 

Area Fraction Minority Number of students 

1 0.20 1,200 

2 0.10 900 

3 0.85 1,700 

4 0.60 2,000 

5 0.90 2,500 

 The ruling handed down for Greenville is that a school can have neither more than 75 percent 

nor less than 30 percent minority enrollment. There are three schools in Greenville with the 

following capacities: 

School Capacity 

Bond 3,900 

Pocahontas 3,100 

Pierron 2,100 

 The objective is to design an assignment of students to schools, so as to stay within the capacity 

of each school and satisfy the composition constraints while minimizing the distance traveled by 

students. The distances in kilometers between areas and schools are: 

 Area 

School 1 2 3 4 5 

Bond 2.7 1.4 2.4 1.1 0.5 

Pocahontas 0.5 0.7 2.9 0.8 1.9 

Pierron 1.6 2.0 0.1 1.3 2.2 

 There is an additional condition that no student can be transported more than 2.6 kilometers. 

Find the number of students that should be assigned to each school from each area. Assume any 

group of students from an area has the same ethnic mix as the whole area. 

8. A farmer is raising pigs for market and wishes to determine the quantity of the available types of 

feed that should be given to each pig to meet certain nutritional requirements at minimum cost. The 

units of each type of basic nutritional ingredient contained in a pound of each feed type is given in 

the following table along with the daily nutritional requirement and feed costs. 

Nutritional 
Ingredient 

Pound 
of Corn 

Pound of 
Tankage 

Pound of 
Alfalfa 

Units Required 
per day 

Carbohydrates 9 2 4 20 

Proteins 3 8 6 18 

Vitamins 1 2 6 15 

Cost (cents)/lb. 7 6 5  
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9. Rico-AG is a German fertilizer company, which has just received a contract to supply 10,000 tons 

of 3-12-12 fertilizer. The guaranteed composition of this fertilizer is (by weight) at least 3% 

nitrogen, 12% phosphorous, and 12% potash. This fertilizer can be mixed from any combination of 

the raw materials described in the table below. 

Raw Material 
% 

Nitrogen 
% 

Phosphorous 
% 

Potash 
Current World 

Price/Ton 

AN 50 0 0 190 Dm 

SP 1 40 5 180 Dm 

CP 2 4 35 196 Dm 

BG 1 15 17 215 Dm  

 Rico-AG has in stock 500 tons of SP that was bought earlier for 220 Dm/ton. Rico-AG has a 

long-term agreement with Fledermausguano, S.A. This agreement allows it to buy already mixed 

3-12-12 at 195 Dm/ton. 

a) Formulate a model for Rico-AG that will allow it to decide how much to buy and how to 

mix. State what assumptions you make with regard to goods in inventory. 

b) Can you conclude in advance that no CP and BG will be used because they cost more than 

195 Dm/ton? 

10. The Albers Milling Company buys corn and wheat and then grinds and blends them into two final 

products, Fast-Gro and Quick-Gro. Fast-Gro is required to have at least 2.5% protein while 

Quick-Gro must have at least 3.2% protein. Corn contains 1.9% protein while wheat contains 3.8% 

protein. The firm can do the buying and blending at either the Albers (A) plant or the Bartelso (B) 

plant. The blended products must then be shipped to the firm’s two warehouse outlets, one at Carlyle 

(C) and the other at Damiansville (D). Current costs per bushel at the two plants are: 

 A B 

Corn 10.0 14.0 

Wheat 12.0 11.0 

Transportation costs per bushel between the plants and warehouses are: 

Fast-Gro: To Quik-Gro: To 

  C D   C D 

 
From 

A 1.00 2.00 
 

  From 
A 3.00 3.50 

 B 3.00 0.75  B 4.00 1.90 

The firm must satisfy the following demands in bushels at the warehouse outlets: 

 Product 

Warehouse Fast-Gro Quik-Gro 

C 1,000 3,000 

D 4,000 6,000 

Formulate an LP useful in determining the purchasing, blending, and shipping decisions. 
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11. A high quality wine is typically identified by three attributes: (a) its vintage, (b) its variety, and (c) 

its region. For example, the Optima Winery of Santa Rosa, California produced a wine with a label 

that stated: 1984, Cabernet Sauvignon, Sonoma County. The wine in the bottle may be a blend of 

wines, not all of which need be of the vintage, variety, and region specified on the label. In this case, 

the state of California and the U.S. Department of Alcohol, Tobacco, and Firearms strictly enforce 

the following limits. To receive the label 1984, Cabernet Sauvignon, Sonoma County, at least 95% 

of the contents must be of 1984 vintage, at least 75% of the contents must be Cabernet Sauvignon, 

and at least 85% must be from Sonoma County. How small might be the fraction of the wine in the 

bottle that is of 1984 vintage and of the Cabernet Sauvignon variety and from grapes grown in 

Sonoma County? 

12. Rogers Foods of Turlock, California (see Rosenthal and Riefel (1994)) is a producer of high quality 

dried foods, such as dried onions, garlic, etc. It has regularly received “Supplier of the Year” awards 

from its customers, retail packaged food manufacturers such as Pillsbury. A reason for Rogers’ 

quality reputation is it tries to supply product to its customers with quality characteristics that closely 

match customer specifications. This is difficult to do because Rogers does not have complete control 

over its input. Each food is harvested once per year from a variety of farms, one “lot” per farm. The 

quality of the crop from each farm is somewhat of a random variable. At harvest time, the crop is 

dried and each lot placed in the warehouse. Orders throughout the year are then filled from product 

in the warehouse. 

 Two of the main quality features of product are its density and its moisture content. Different 

customers may have different requirements for each quality attribute. If a product is too dense, then 

a jar that contains five ounces may appear only half full. If a product is not sufficiently dense, it 

may be impossible to get five ounces into a jar labelled as a five-ounce jar. 

To illustrate the problem, suppose you have five lots of product with the following characteristics: 

Lot Fraction Moisture Density Kg. Available 

1 0.03 0.80 1000 

2 0.02 0.75 2500 

3 0.04 0.60 3100 

4 0.01 0.60 1500 

5 0.02 0.65 4500 

You currently have two prospective customers with the following requirements: 

 Fraction 
Moisture Density 

  

 
Customer 

 
Min 

 
Max 

 
Min 

 
Max 

Max Kg. 
Desired 

Selling Price 
per Kg. 

P 0.035 0.045 0.70 0.75 3,000 $5.25 

G 0.01 0.03 0.60 0.65 15,000 $4.25 

What should you do? 
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13. The Lexus automobile gets 26 miles per gallon (mpg), the Corolla gets 31 mpg, and the Tercel gets 

35 mpg. Let L, C, and T represent the number of automobiles of each type in some fleet. Let F 

represent the total number in the fleet. We require, in some sense, the mpg of the fleet to be at least 

32 mpg. Fleet mpg is measured by (total miles driven by the fleet)/(total gallons of fuel consumed 

by fleet). 

a) Suppose the sense in which mpg is measured is each auto is given one gallon of fuel, then 

driven until the fuel is exhausted. Write appropriate constraints to enforce the 32 mpg 

requirement. 

b) Suppose the sense in which mpg is measured is each auto is driven one mile and then 

stopped. Write appropriate constraints to enforce the 32 mpg requirement. 

14. In the financial industry, one is often concerned with the “duration” of one’s portfolio of various 

financial instruments. The duration of a portfolio is simply the weighted average of the duration of 

the instruments in the portfolio, where the weight is simply the number of dollars invested in the 

instrument. Suppose the Second National Bank is considering revising its portfolio and has denoted 

by X1, X2, and X3, the number of dollars invested (in millions) in each of three different instruments. 

The durations of the three instruments are respectively: 2 years, 4 years, and 5 years. The following 

constraint appeared in their planning model: 

 + X1 − X2 − 2  X3  0 

In words, this constraint is: 

a) duration of the portfolio must be at most 10 years; 

b) duration of the portfolio must be at least 3 years; 

c) duration of the portfolio must be at least 2 years; 

d) duration of the portfolio must be at most 3 years; 

e) none of the above. 

15. You are manager of a team of ditch diggers, each member of the team is characterized by a 

productivity measure with units of cubic feet per hour. An average productivity measure for the 

entire team should be based on which of the following: 

a) the arithmetic mean; 

b) the geometric mean; 

c) the harmonic mean. 

16. Generic Foods has three different batches of cashews in its warehouse. The percentage moisture 

content for batches 1, 2, and 3 respectively are 8%, 11%, and 13%. In blending a batch of cashews 

for a particular customer, the following constraint appeared: 

+ 2  X1 − X2 − 3  X3  0 
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In words, this constraint is: 

a) percent moisture must be at most 10%; 

b) percent moisture must be at least 3%; 

c) percent moisture must be at least 10%; 

d) percent moisture must be at most 2%; 

e) none of the above. 

17. The Beanbody Company buys various types of raw coal on the open market and then pulverizes the 

coal and mixes it to satisfy customer specifications. Last week Beanbody bought 1500 tons of type 

M coal for $78 per ton that was intended for an order that was canceled at the last minute. Beanbody 

had to pay an additional $1 per ton to have the coal shipped to its processing facility. Beanbody has 

no other coal in stock. Type M coal has a BTU content of 13,000 BTU per ton. This week type M 

coal can be bought (or sold) on the open market for $74 per ton. Type W coal, which has a BTU 

content of 10,000 BTU/ton, can be bought this week for $68 per ton. Type K coal, which has a BTU 

content of 12,000 BTU/ton, can be bought this week for $71 per ton. All require an additional $1/ton 

to be shipped into Beanbody's facility. In fact, Beanbody occasionally sells raw coal on the open 

market and then Beanbody also has to pay $1/ton outbound shipping. Beanbody expects coal prices 

to continue to drop next week. Right now Beanbody has an order for 2700 tons of pulverized product 

having a BTU content of at least 11,000 BTU per ton. Clearly, some additional coal must be bought. 

The president of Beanbody sketched out the following incomplete model for deciding how much of 

what coal to purchase to just satisfy this order.; 

MODEL: 

! MH = tons of on-hand type M coal used; 

! MP = tons of type M coal purchased; 

! WP = tons of type W coal purchased; 

! KP = tons of type K coal purchased; 

 

 MIN = __ * MH  + __ * MP + __ * WP + __ * KP; 

 MH + MP + WP + KP = 2700; 

 MH <= 1500; 

 2000 * MH + ____ * MP - 1000 * WP + ____ * KP >= 0; 

END  

What numbers would you place in the ______ places? 

18. A local high school is considering using an outside supplier to provide meals. The big question is: 

How much will it cost to provide a nutritious meal to a student? Exhibit A reproduces the 

recommended daily minima for an adult as recommended by the noted dietitian, George Stigler 

(1945). Because our high school need provide only one meal per day, albeit the main one, it should 

be sufficient for our meal to satisfy one-half of the minimum daily requirements. 

 With regard to nutritive content of foods, Exhibit B displays the nutritional content of various 

foods available from one of the prospective vendors recommended by a student committee at the 

high school. See Bosch (1993) for a comprehensive discussion of these data. 
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 For preliminary analysis, it is adequate to consider only calories, protein, calcium, iron, 

vitamins A, B1, and B2. 

a) Using only the candidate foods and prices in Exhibit B, and allowing fractional portions, 

what is the minimum cost needed to give a satisfactory meal at our high school? 

b) Suppose we require only integer portions be served in a meal (e.g., .75 of a Big Mac is not 

allowed). How is the cost per meal affected? 

c) Suppose in addition to (b), for meal simplicity, we put a limit of at most three food items 

from Exhibit B in a meal. For example, a meal of hamburger, fries, chicken McNuggets, 

and a garden salad has one too many items. How is the cost per meal affected? 

d) Suppose instead of (c), we require at most one unit per serving of a particular food type be 

used. How is the cost per meal affected? 

e) Suppose we modify (a) with the condition that the number of grams of fat in the meal must 

be less-than-or-equal-to 1/20th of the total calories in the meal. How is the cost per meal 

affected? 

f) How is the answer to (a) affected if you use current prices from your neighborhood 

McDonald's? For reference, Stigler claimed to be able to feed an adult in 1944 for $59.88 

for a full year. 

Exhibit A 

Nutrient Allowance 

Calories 3,000 calories 

Protein 70 grams 

Calcium .8 grams 

Iron 12 milligrams 

Vitamin A 5,000 International Units 

Thiamine (B1) 1.8 milligrams 

Riboflavin (B2 or G) 2.7 milligrams 

Niacin (Nicotinic Acid) 18 milligrams 

Ascorbic Acid (C) 75 milligrams 
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Exhibit B 

Menu Item Price Cal. Protein Fat Sodium Vit A Vit 
C 

Vit 
B1 

Vit 
B2 

Niacin Calcium Iron 

Hamburger 0.59 255 12 9 490 4 4 20 10 20 10 15 

McLean 
Deluxe 

1.79 320 22 10 670 10 10 25 20 35 15 20 

Big Mac 1.65 500 25 26 890 6 2 30 25 35 25 20 

Small Fr. 
Fries 

0.68 220 3 12 110 0 15 10 0 10 0 2 

Ch. 
McNuggets 

1.56 270 20 15 580 0 0 8 8 40 0 6 

Chef Salad 2.69 170 17 9 400 100 35 20 15 20 15 8 

Garden 
Salad 

1.96 50 4 2 70 90 35 6 6 2 4 8 

Egg 
McMuffin 

1.36 280 18 11 710 10 0 30 20 20 25 15 

Wheaties 1.09 90 2 1 220 20 20 20 20 20 2 20 

Van. Cone 0.63 105 4 1 80 2 0 2 10 2 10 0 

Milk 0.56 110 9 2 130 10 4 8 30 0 30 0 

Orange Juice 0.88 80 1 0 0 0 120 10 0 0 0 0 

Grapefruit 
Juice 

0.68 80 1 0 0 0 100 4 2 2 0 0 

Apple Juice 0.68 90 0 0 5 0 2 2 0 0 0 4 

19. Your firm has just developed two new ingredients code named A and B. They seem to have great 

potential in the automotive aftermarket. These ingredients are blended in various combinations to 

produce a variety of products. For these products (and for the ingredients themselves), there are 

three qualities of interest: 1) opacity, 2) friction coefficient, and 3) adhesiveness. The research lab 

has provided the following table describing the qualities of various combinations of A and B: 

 Fraction of Quality of this Combination 

Combination A B Opacity Friction coef. Adhesiveness 

1 0.00 1.00 10.0 400.0 .100 

2 0.50 0.50 25.0 480.0 .430 

3 .75 .25 32.5 533.3 .522 

4 1.00 0.00 40.0 600.0 .600 

For example, the opacity of B by itself is 10, while the friction coefficient of A by itself is 600. 

a) For which qualities do the two ingredients appear to interact in a linear fashion? 

b) You wish to prepare a product that, among other considerations, has opacity of at least 17, 

a friction coefficient of at least 430, and adhesiveness of no more than .35. Denote by T, 

A, and B the amount of total product produced, amount of A used, and the amount of B 

used. Write the constraints relating T, A, and B to achieve these qualities. 
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20. Indiana Flange Inc. produces a wide variety of formed steel products it ships to customers all over 

the country. It uses several different shipping companies to ship these products. The products are 

shipped in standard size boxes. A shipping company has typically two constraints it has to worry 

about in assembling a load: a weight constraint and a volume constraint. One of the shippers, 

Amarillo Freight, handles this issue by putting a density constraint (kilograms/cubic meter) on all 

shipments it receives from Indiana Flange. If the shipment has a density greater than a certain 

threshold (110 kg/m3), Amarillo imposes a surcharge. Currently, Indiana Flange wants to ship the 

following products to Los Angeles: 

Product Long Tons Density 

A 100 130 

B 85 95 

Note, there are 1000 kilograms per long ton.  

 Let AY and BY be the number of tons shipped via Amarillo Freight. Although the densities of 

products A and B do not change from week to week, the number of tons Indiana Flange needs to 

ship varies considerably from week to week. Indiana Flange does not want to incur the surcharge. 

Write a constraint enforcing the Amarillo density constraint that is general (i.e., need not be changed 

from week to week). 

21.  The growth of the World Wide Web has dramatically increased the demand for glass fiber optic 

cable,  the main medium used for high capacity data transfer.  A major measure of quality of an 

optical fiber is its transmissivity, the fraction of the light transmitted into the fiber that is emitted 

out the other end.   Suppose you are a fiber optics vendor,  with an order in hand for a single 10 km 

strand of optic fiber,  with a required transmissivity of at least .9875 per kilometer at a certain 

specified wave length of light.   You have in stock two types of optic fiber,  a) a very expensive one 

with a transmissivity of  .992,  and  b) a relatively cheap one with a transmissivity of  .982.  It has 

occurred to you that you could sell more of your  fiber optic production if you could "blend" some 

of the lower quality fiber with the high quality.   This is in fact possible by splicing a segment of 

one to the other,  e.g., 8 km of the .992 fiber spliced onto 2 km of the .982 fiber.  Suppose these 

splices are very high quality, i.e., no transmission loss across the splice.  Let XH and XL be the 

length of high quality and low quality fiber you propose to use for the above request for 10 km of 

fiber.  Write a constraint to ensure satisfaction of the customer's transmissivity requirement. 
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