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Multiple Criteria and Goal 
Programming 

 
 

14.1 Introduction 
Until now, we have assumed a single objective or criterion. In reality, however, there may be two or 

more measures of goodness. Our life becomes more difficult, or at least more interesting, if these 

multiple criteria are incommensurate (i.e., it is difficult to combine them into a single criterion). The 

overused phrase for lamenting the difficulty of such situations is “You can’t mix apples and oranges”. 

 Some examples of incommensurate criteria are: 

• risk vs. return on investment, 

• short-term profits vs. long-term growth of a firm, 

• cost vs. service by a government agency, 

• the treatment of different individuals under some policy of an administrative agency 

(e.g., rural vs. urban citizens, residents near an airport vs. travelers using an airport, and 

fishermen vs. water transportation companies vs. farmers using irrigation near a large 

lake). 

Multi-criteria situations can be classified into several categories: 

1. Criteria are intrinsically different (e.g., risk vs. return, cost vs. service). 

a) Weights or trade-off rates can be determined; 

b) Criteria can be strictly ordered by importance. We have so-called preemptive 

objectives. 

2. Criteria are intrinsically similar (i.e., in some sense they should have equal weight). 

 A rich source of multi-criteria problems is the design and operation of public works. A specific 

example is the huge “Three Gorges” dam on the Yangtze River in China. Interested parties include: (a) 

industrial users of electricity, who would like the average water level in the dam to be high, so as to 

maximize the amount of electricity that can be generated; (b) farmers downstream from the dam, who 

would like the water level in the dam to be maintained at a low level, so unexpected large rainfalls can 

be accommodated without overflow and flooding; (c) river shipping interests, who would like the lake 

level to be allowed to fluctuate as necessary, so as to maintain a steady flow rate out of the dam, thereby 
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allowing year round river travel by large ships below the dam; (d) lake fishermen and recreational 

interests, who would like the flow rate out of the dam to be allowed to fluctuate as necessary, so as to 

maintain a steady lake level; e) irrigation water users who would like the lake level to be high and to be 

allowed to use water for irrigation than for power generation, and (f) environmental interests, who did 

not want the dam built in the first place. For the Three Gorges dam in particular, flood control interests 

have argued for having the water level behind the dam held at 459 feet above sea level just before the 

rainy season, so as to accommodate storm runoff (see, for example, Fillon (1996)). Electricity generation 

interests, however, have argued for a water level of 574 feet above sea level to generate more electricity. 

14.1.1 Alternate Optima and Multicriteria 
If you have a model with alternate optimal solutions, this is nature’s way of telling you that you have 

multiple criteria. You should probably look at your objective function more closely and add more detail. 

Users do not like alternate optima. If there are alternate optima, the typical solution method will 

essentially choose among them randomly. If people’s jobs or salaries depend upon the “flip of a coin” 

in your analysis, they are going to be unhappy. Even if careers are not at stake, alternate optima are at 

least a nuisance. People find it disconcerting if they get different answers (albeit with the same objective 

value) when they solve the same problem on different computers. 

 One resolution of alternate optima that might occur to some readers is to take the average of all 

distinct alternate optima and use this average solution as the final, unique, well-defined answer. 

Unfortunately, this is usually not practical because: 

a) it may be difficult to enumerate all alternate optima, and 

b) the average solution may be unattractive or even infeasible if the model involves integer 

variables. 

14.2 Approaches to Multi-criteria Problems 
There is a variety of approaches to dealing with multiple criteria. Some of the more practical ones are 

described below. 

14.2.1 Pareto Optimal Solutions and Multiple Criteria 
A solution to a multi-criteria problem is said to be Pareto optimal if there is no other solution that is at 

least as good according to all criteria and strictly better according to at least one criterion. A Pareto 

optimal solution is not dominated by any other solution. Clearly, we want to consider only Pareto optimal 

solutions. If we do not choose our criteria carefully, we might find ourselves recommending solutions 

that are not Pareto optimal. There are computer programs for multi-criteria linear programming that will 

generate all the undominated extreme solutions. For a small problem, a decision maker could simply 

choose the most attractive extreme solution based on subjective criteria. For large problems, the number 

of undominated extreme solutions may easily exceed 100, so this approach may be overwhelming. 

14.2.2 Utility Function Approach 
A superficially attractive solution of the multi-criteria problem is the definition of a utility function. If 

the decision variables are x1, x2, …, xn, we “simply” construct the utility function u(x1, x2, …., xn) which 

computes the value or utility of any possible combination of values for the vector x1, x2, …., xn. This is 

a very useful approach for thinking about optimization. However, it has several practical limitations: (a) 

it may take a lot of work to construct it, and (b) it will probably be highly nonlinear. Feature (b) means 

we probably cannot use LP to solve the problem. 
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14.2.3 Trade-off Curves 
If we have only two or three criteria, then the trade-off curve approach has most of the attractive features 

of the utility function approach, but is also fairly practical. We simply construct a curve, the so-called 

“efficient frontier”, which shows how we can trade off one criterion for another. One of the most well 

known settings using a trade-off curve is to describe the relationship between two criteria in a financial 

portfolio. The two criteria are expected return on investment and risk. We want return to be high and 

risk to be low. Figure 14.1 shows the typical relationship between risk and return. Each point on the 

curve is Pareto optimal. That is, for any point on the curve, there is no other point with higher expected 

return and lower risk. 

 Even though a decision maker has not gone through the trouble of constructing his utility function, 

he may be able to look at this trade-off curve and perhaps say: “Gee, I am comfortable with an expected 

return of 8% with standard deviation of 3%.” 

Figure 14.1 Trade-off Curve for Risk and Expected Return 
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14.2.4 Example: Ad Lib Marketing 
Ad Lib is a freewheeling advertising agency that wants to solve a so-called media selection problem for 

one of its clients. It is considering placing ads in five media: late night TV (TVL), prime time TV (TVP), 

billboards (BLB), newspapers (NEW), and radio (RAD). These ads are intended to reach seven different 

demographic groups. 
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 The following table gives the number of exposures obtained in each of the seven markets per dollar 

of advertising in each of five media. The second to last row of the table lists the minimum required 

number of exposures in each of the seven markets. The feeling is that we must reach this minimum 

number of readers/viewers, regardless of the cost. The last row of numbers is the saturation level for 

each market. The feeling is that exposure beyond this level is of no value. Exposures between these two 

limits will be termed useful exposures. 

Exposure Statistics for Ad Lib Marketing 
 Exposure in 1000’s per $1000 Spent 

 Market Group 
 1 2 3 4 5 6 7 

TVL  10 4 50 5  2 

TVP  10 30 5 12   

BLB 20     5 3 

NEW 8     6 10 

RAD  6 5 10 11 4  

Minimum Number of Exposures 
Needed in 1,000’s 

25 40 60 120 40 11 15 

Saturation Level in 1,000’s of 
Exposures 

60 70 120 140 80 25 55 

 How much money should be spent on advertising in each medium? There are really two criteria: (a) 

cost (which we want to be low), and (b) useful exposures (which we want to be high). At the outset, we 

arbitrarily decided we would spend no more than $11,000. 

 A useful model can be formulated if we define: 

Decision variables: 

TVL, TVP, etc. = dollars spent in 1,000’s on advertising in TVL, TVP, etc.; 

UX1, UX2, etc. = number of useful excess exposures obtained in market 1, 2, etc., beyond the 

minimum (i.e., min {saturation level, actual exposures} − minimum 

required); 

COST  = total amount spent on advertising; 

USEFULX  = total useful exposures. 

There will be two main sets of constraints. One set that says: 

exposures in a market  minimum required + useful excess exposure beyond minimum. 

The other says: 

useful excess exposures in a market  saturation level − minimum required. 
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An explicit formulation is: 

[UEXP] MAX = USEFULX ;   ! Maximize useful exposures; 

[LIMCOST] COST <= 11; !Limit (in $1,000) on cost; 

[LIMEXP]   USEFULX >=   0;! Required exposures; 

[DEFCOST] TVL + TVP + BLB + NEW + RAD =  COST; 

[DEFEXP] UX1 + UX2 + UX3 + UX4 + UX5 + UX6 + UX7 =  

         USEFULX; 

[MKT1]          20 * BLB +  8 * NEW         - UX1 >= 25; 

[MKT2] 10 * TVL + 10 * TVP          + 6 * RAD - UX2>= 40; 

[MKT3]  4 * TVL + 30 * TVP          + 5 * RAD - UX3>= 60; 

[MKT4] 50 * TVL +  5 * TVP         + 10 * RAD - UX4>= 120; 

[MKT5]  5 * TVL + 12 * TVP         + 11 * RAD-  UX5>= 40; 

[MKT6]           5 * BLB +  6 * NEW + 4 * RAD - UX6>= 11; 

[MKT7] 2 * TVL + 3 * BLB + 10 * NEW           - UX7>= 15; 

[RANGE1]  UX1 <=  35; 

[RANGE2]  UX2 <=  30; 

[RANGE3]  UX3 <=  60; 

[RANGE4]  UX4 <=  20; 

[RANGE5]  UX5 <=  40; 

[RANGE6]  UX6 <=  14; 

[RANGE7]  UX7 <=  40; 

The following is part of the solution to this model: 

Optimal solution found at step:        15 

Objective value:                 196.7626 

Variable           Value        Reduced Cost 

 USEFULX        196.7626           0.0000000 

    COST        11.00000           0.0000000 

     TVL        1.997602           0.0000000 

     TVP        3.707434           0.0000000 

     BLB        2.908873           0.0000000 

     NEW       0.2278177           0.0000000 

     RAD        2.158273           0.0000000 

     UX1        35.00000           0.0000000 

     UX2        30.00000           0.0000000 

     UX3        60.00000           0.0000000 

     UX4        20.00000           0.0000000 

     UX5        38.21823           0.0000000 

     UX6        13.54436           0.0000000 

     UX7       0.0000000           0.7194281E-02 

     Row    Slack or Surplus      Dual Price 

    UEXP        196.7626            1.000000 

 LIMCOST       0.0000000            21.43885 

  LIMEXP        196.7626           0.0000000 

 DEFCOST       0.0000000            21.43885 

  DEFEXP       0.0000000           -1.000000 

 Notice we advertise up to the saturation level in markets 1 to 4. In market 7, we advertise just enough 

to achieve the minimum required. 
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 If you change the cost limit (initially at 11) to various values ranging from 6 to 14 and plot the 

maximum possible number of useful exposures, you get a trade-off curve, or efficient frontier, shown in 

the Figure 14.2: 

Figure 14.2 Trade-off Between Exposures and Advertising 
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14.2.5 Computing Trade-off Curves/Pareto Optimal Points: Pitfalls 
 

Suppose we have two criteria, obj1 and obj2, to be maximized. Two methods of attempting to compute 

trade-off curves, or Pareto optimal points are: 

   a) Objective parametrics:  For a range of values for 0 ≤ α ≤ 1, solve the problem:  
      max = alpha*obj1 + (1-alpha)*obj2, 

           subject to other relevant constraints, or 

   b) Right hand side parametrics:  For a range of values for k, solve the problem:  
max = obj2, 

subject to  

  obj1 ≥ k, and 

  other relevant constraints. 

 

 For many problems, these two approaches are essentially equivalent, although method (b) is 

slightly more general. The weaknesses of (a) are: 

      * when α = 0 or 1, it may produce solutions not Pareto optimal, i.e., perhaps dominated.  

      * it may be unable to identify certain solutions that are Pareto optimal if there are integer variables.  

      * when α is close to 0 or 1, there may be numerical/computational difficulties. 

 The weaknesses of (b) are: 

      * unless performed in “double-check” mode, it may produce solutions not Pareto optimal. We 

illustrate these problems with the following little model. 
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     alpha = 0.5; 

     max = alpha*obj1 + (1-alpha)*obj2; 

     @free(obj1); @free(obj2); 

     obj1 =  0*z1 +  1*z2 +  1.00001*z3 + 5*z4 + 10*z5; 

     obj2 = 10*z1 + 10*z2 +       10*z3 + 5*z4 +  1*z5; 

          z1   +  z2   +       z3   + z4   +  z5 = 1; 

     @bin( z1); @bin( z2); @bin( z3); @bin( z4); @bin( z5); 

 

  With a little bit of inspection you can verify that there are three Pareto optimal points corresponding to 

z3 = 1, or z4 = 1, or z5 = 1. Points z1 and z2 are dominated by z3.  

 To illustrate the first weakness of (a), observe that if alpha = 0, then each of the three solutions:  z1 

= 1, or z2 = 1, or  z3 = 1,   are alternate optima. The solver will arbitrarily/randomly choose one 

of them.  

 To illustrate the second weakness of (a), observe that there is no alpha that will produce z4 as a 

solution. If we choose alpha = 0.50001, we get the solution z5 = 1.  If we choose alpha = 

.49999, we get the solution z3 = 1. The difficulty arises because method (a) chooses only solution 

that are on the convex hull of the Pareto optimal points. Under method (a), point z4 is dominated by a 

pseudo point consisting of half of point z3 and half of point z5. If the real world allows fractional 

solutions, then excluding z4 may be OK, but if only discrete allocations are allowed in the real world, 

then one wants to include z4 as a Pareto optimal/efficient point.  

       Trying to avoid the first weakness of (a), introduces the third weakness. To make z3 slightly ( and 

rightfully) more attractive than z1 and z2, suppose we set alpha = 0.000001. If we write out the 

objective in simplest form, it is: 
  max= 9.99999*Z1 + 9.999991*Z2 + 9.99999100001*Z3 + 5*Z4 + 1.000009*Z5;  

The coefficients of z2 and z3 differ only in the 12th decimal place.  This is less that the default 

optimality tolerance of most solvers, so most solvers would not distinguish between z2 and z3, and so 

might suggest that z2 is Pareto optimal. 

 For method (b), to illustrate the first weakness suppose we set k = 0.5 and solve: 
     max = obj2;  

     obj1 >= 0.5; 

     obj1 =  0*z1 +  1*z2 +  1.00001*z3 + 5*z4 + 10*z5; 

     obj2 = 10*z1 + 10*z2 +       10*z3 + 5*z4 +  1*z5; 

          z1   +  z2   +       z3   + z4   +  z5 = 1; 

     @bin( z1); @bin( z2); @bin( z3); @bin( z4); @bin( z5); 

 

There are two alternate optima, z2 = 1 and z3 = 1. The solver might arbitrarily choose the 

dominated point z2 = 1.  This flaw can be avoided if at each step we “double check” the solution by 

solving the series of two problems, given k1, first solve:  
 

     1) max = obj2;  

        obj1 >= k1;  
  

We get the solution obj2 = 10; 
 

Now set k2 = 10, and solve: 
     2) max = obj1;  

        Obj2 >= k2; 

Giving the solution obj1 = 1.00001, so ( obj1, obj2) = ( 1.00001, 10) is an undominated 

point. 
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14.3 Goal Programming and Soft Constraints 
Goal Programming is closely related to the concept of multi-criteria as well as a simple idea that we dub 

“soft constraints”. Soft constraints and Goal Programming are a response to the following two “laws of 

the real world”. 

 In the real world: 

1) there is always a feasible solution; 

2) there are no alternate optima. 

 In practical terms, (1) means a good manager (or one wishing to at least keep a job) never throws 

up his or her hands in despair and says “no feasible solution”. Law (2) means a typical decision maker 

will never be indifferent between two proposed courses of action. There are always sufficient criteria to 

distinguish some course of action as better than all others. 

 From a model perspective, these two laws mean a well-formulated model (a) always has a feasible 

solution and (b) does not have alternate optima. 

14.3.1 Example: Secondary Criterion to Choose Among Alternate Optima 
Here is a standard, seven-day/week staffing problem similar to that discussed in Chapter 7. The 

variables: M, T, W, R, F, S, N, denote the number of people starting their five-day work week on Monday, 

Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, respectively: 

MIN = 9*M + 9*T + 9*W + 9*R + 9*F + 9*S + 9*N; 

   [MON]   M         + R + F + S + N =   3; 

   [TUE]   M + T         + F + S + N =   3; 

   [WED]   M + T + W         + S + N =   8; 

   [THU]   M + T + W + R         + N =   8; 

   [FRI]   M + T + W + R + F         =   8; 

   [SAT]       T + W + R + F + S     =   3; 

   [SUN]           W + R + F + S + N =   3; 
END 
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When solved, we get the following solution: 

Optimal solution found at step:         6 

Objective value:                 72.00000 

Variable           Value        Reduced Cost 

       M        5.000000           0.0000000 

       T       0.0000000           0.0000000 

       W        3.000000           0.0000000 

       R       0.0000000           0.0000000 

       F       0.0000000            9.000000 

       S       0.0000000            9.000000 

       N       0.0000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        72.00000            1.000000 

     MON        2.000000           0.0000000 

     TUE        2.000000           0.0000000 

     WED       0.0000000           0.0000000 

     THU       0.0000000           -9.000000 

     FRI       0.0000000           0.0000000 

     SAT       0.0000000           0.0000000 

     SUN       0.0000000           0.0000000 

 Notice there may be alternate optima (e.g., the slack and dual price in row “WED” are both zero). 

This solution puts all the surplus capacity on Saturday and Sunday. The different optima might distribute 

the surplus capacity in different ways over the days of the week. Saturday and Sunday have a lot of 

excess capacity while the very similar days, Monday and Tuesday, have no surplus capacity. 

 In terms of multiple criteria, we might say: 

a) our most important criterion is to minimize total staffing cost; 

b) our secondary criterion is to have a little extra capacity, specifically one unit, each day if 

it will not hurt criterion 1. 
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 To encourage more equitable distribution, we add some “excess” variables (XM, XT, etc.) that give 

a tiny credit of −1 for each surplus up to at most 1 on each day. The modified formulation is: 

MODEL: 

MIN = 9*M + 9*T + 9*W + 9*R + 9*F + 9*S + 9*N 

     - XM  - XT  - XW  - XR  - XF  - XS  - XN; 

[MON] M            +  R   + F   + S   + N  - XM  3; 

[TUE] M + T               + F   + S   + N  - XT  3; 

[WED] M + T   + W               + S   + N  - XW  8; 

[THU] M + T   + W  +  R               + N  - XR  8; 

[FRI] M + T   + W  +  R   + F              - XF  8; 

[SAT]     T   + W  +  R   + F   + S        - XS  3; 

[SUN]           W  +  R   + F   + S   + N  - XN  3; 

  [N9]   XM   1; 

 [N10]   XT   1; 

 [N11]   XW   1; 

 [N12]   XR   1; 

 [N13]   XF   1; 

 [N14]   XS   1; 

 [N15]   XN   1; 
END 

The solution now is: 

Optimal solution found at step:        19 

Objective value:                 68.00000 

Variable           Value        Reduced Cost 

       M        4.000000           0.0000000 

       T       0.0000000           0.0000000 

       W        4.000000           0.0000000 

       R       0.0000000            1.000000 

       F       0.0000000            8.000000 

       S       0.0000000            8.000000 

       N       0.0000000            1.000000 

      XM        1.000000           0.0000000 

      XT        1.000000           0.0000000 

      XW       0.0000000           0.0000000 

      XR       0.0000000            6.000000 

      XF       0.0000000           0.0000000 

      XS        1.000000           0.0000000 

      XN        1.000000           0.0000000 

 Notice, just as before, we still hire a total of eight people, but now the surplus is evenly distributed 

over the four days M, T, S, and N. This should be a more attractive solution. 
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14.3.2 Preemptive/Lexico Goal Programming 
The above approach required us to choose the proper relative weights for our two objectives, cost and 

service. In some situations, it may be clear that one objective is orders of magnitude more important 

than the other. One could choose weights to reflect this (e.g., 99999999 for the first and 0.0000001 for 

the second), but there are a variety of reasons for not using this approach. First of all, there would 

probably be numerical problems, especially if there are more than two objectives. A typical computer 

cannot accurately add numbers that differ by more than 15 orders of magnitude (e.g., 100,000,000 and 

.0000001). 

 More importantly, it just seems more straightforward simply to say: “This first objective is far more 

important than the remaining objectives, the second objective is far more important than the remaining 

objectives,” etc. This approach is sometimes called Preemptive or Lexico goal programming. The 

following illustrates for our previous staff-scheduling example. The first model solved places a weight 

of 1.0 on the more important objective, COST, and no weight on the secondary objective, EXTRA credit 

for useful overstaffing: 

!Example of Lexico-goal programming 

 MIN = 1 * COST - 0 * EXTRA; 

 [MON] M         + R + F + S + N - XM >= 3; 

 [TUE] M + T         + F + S + N - XT >= 3; 

 [WED] M + T + W         + S + N - XW >= 8; 

 [THU] M + T + W + R         + N - XR >= 8; 

 [FRI] M + T + W + R + F         - XF >= 8; 

 [SAT]     T + W + R + F + S     - XS >= 3; 

 [SUN]         W + R + F + S + N - XN >= 3; 

 ! Upper limit on creditable excess; 

  [EXM]  XM <= 1; 

  [EXT]  XT <= 1; 

  [EXW]  XW <= 1; 

  [EXR]  XR <= 1; 

  [EXF]  XF <= 1; 

  [EXS]  XS <= 1; 

  [EXN]  XN <= 1; 

 ! Define the two objectives; 

 [OBJCOST] COST = M + R + F + S + N + T + W; 

 [OBJXTRA] EXTRA = XM + XT + XW + XR + XF + XS + XN; 

 END 
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The solution is: 

Optimal solution found at step:        11 

Objective value:                 8.000000 

Variable           Value        Reduced Cost 

    COST        8.000000           0.0000000 

   EXTRA       0.0000000           0.0000000 

       M        3.000000           0.0000000 

       R       0.0000000           0.0000000 

       F       0.0000000           0.0000000 

       S       0.0000000            1.000000 

       N       0.0000000            1.000000 

      XM       0.0000000           0.0000000 

       T       0.0000000           0.0000000 

      XT       0.0000000           0.0000000 

       W        5.000000           0.0000000 

      XW       0.0000000           0.0000000 

      XR       0.0000000           0.0000000 

      XF       0.0000000            1.000000 

      XS       0.0000000           0.0000000 

      XN       0.0000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        8.000000            1.000000 

     MON       0.0000000           0.0000000 

     TUE       0.0000000           0.0000000 

     WED       0.0000000           0.0000000 

     THU       0.0000000           0.0000000 

     FRI       0.0000000           -1.000000 

     SAT        2.000000           0.0000000 

     SUN        2.000000           0.0000000 

     EXM        1.000000           0.0000000 

     EXT        1.000000           0.0000000 

     EXW        1.000000           0.0000000 

     EXR        1.000000           0.0000000 

     EXF        1.000000           0.0000000 

     EXS        1.000000           0.0000000 

     EXN        1.000000           0.0000000 

 OBJCOST       0.0000000           -1.000000 

 OBJXTRA       0.0000000           0.0000000 
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 Notice because there is zero weight in the objective, it does not claim any EXTRA credit for 

overstaffing by one unit. This solution starts 3 people on Monday, and 5 people on Wednesday. Thus, 

there is no overstaffing on Monday, Tuesday, Wednesday, Thursday, and Friday, but both Saturday and 

Sunday are overstaffed by two each. We can try to distribute the overstaffing more evenly by solving 

the following model. It fixes the COST at the minimum we have just learned, and now maximizes (or 

minimizes the negative of) the creditable extra staffing: 

MIN  = 0 * COST - 1 * EXTRA; 

  [MON] M         + R + F + S + N - XM >= 3; 

  [TUE] M + T         + F + S + N - XT >= 3; 

  [WED] M + T + W         + S + N - XW >= 8; 

  [THU] M + T + W + R         + N - XR >= 8; 

  [FRI] M + T + W + R + F         - XF >= 8; 

  [SAT]     T + W + R + F + S     - XS >= 3; 

  [SUN]         W + R + F + S + N - XN >= 3; 

  ! Upper limit on creditable excess; 

   [EXM]   XM <= 1; 

   [EXT]   XT <= 1; 

   [EXW]   XW <= 1; 

   [EXR]   XR <= 1; 

   [EXF]   XF <= 1; 

   [EXS]   XS <= 1; 

   [EXN]   XN <= 1; 

  ! Define the two objectives; 

 [OBJCOST] COST = M + R + F + S + N + T + W; 

 [OBJXTRA] EXTRA = XM + XT + XW + XR + XF + XS + XN; 

 ! Fix the cost at its minimum value; 

 [FXCOST] COST = 8; 

 END 

This gives the solution: 

Optimal solution found at step:         7 

Objective value:                -4.000000 

Variable           Value        Reduced Cost 

    COST        8.000000           0.0000000 

   EXTRA        4.000000           0.0000000 

       M        4.000000           0.0000000 

       R       0.0000000            1.000000 

       F       0.0000000            2.000000 

       S       0.0000000            2.000000 

       N       0.0000000            1.000000 

      XM        1.000000           0.0000000 

       T       0.0000000           0.0000000 

      XT        1.000000           0.0000000 

       W        4.000000           0.0000000 

      XW       0.0000000           0.0000000 

      XR       0.0000000           0.0000000 

      XF       0.0000000           0.0000000 

      XS        1.000000           0.0000000 

      XN        1.000000           0.0000000 
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     Row    Slack or Surplus      Dual Price 

       1       -4.000000           -1.000000 

     MON       0.0000000           0.0000000 

     TUE       0.0000000           0.0000000 

     WED       0.0000000           -1.000000 

     THU       0.0000000           -1.000000 

     FRI       0.0000000           -1.000000 

     SAT       0.0000000           0.0000000 

     SUN       0.0000000           0.0000000 

     EXM       0.0000000            1.000000 

     EXT       0.0000000            1.000000 

     EXW        1.000000           0.0000000 

     EXR        1.000000           0.0000000 

     EXF        1.000000           0.0000000 

     EXS       0.0000000            1.000000 

     EXN       0.0000000            1.000000 

 OBJCOST       0.0000000           -3.000000 

 OBJXTRA       0.0000000            1.000000 

  FXCOST       0.0000000            3.000000 

 Notice this is a different solution. Nevertheless, still with a cost of 8, but with now an EXTRA credit 

for slight overstaffing of 4. This solution starts 4 people on each of Monday and Wednesday. Thus, 

Wednesday, Thursday, and Friday have no overstaffing, but Monday, Tuesday, Saturday, and Sunday 

are overstaffed by one each. 

14.4 Minimizing the Maximum Hurt, or Unordered Lexico 
Minimization 

There are some situations in which there are a number of parties that, in some sense, are equal. There 

may be certain side conditions, however, that prevent us from treating them exactly equally. An example 

is representation in a House of Representatives. Ideally, we would like to have the number of 

representatives in a state be exactly proportional to the population of the state. Because the House of 

Representatives is typically limited to a fixed size and we cannot have fractional representatives 

(although some voters may feel they have encountered such an anomaly), we will find some states have 

more citizens per representative than others. 

 In more general settings, an obvious approach for minimizing such inequities is to choose things, so 

we minimize the maximum inequity or “hurt.” Once we have minimized the worst hurt, the obvious thing 

is to minimize the second greatest hurt, etc. We will refer to such a minimization as Unordered Lexico 

Minimization. For example, if there are four parties, and (10, 13, 8, 9) is the vector of taxes to be paid, then 

we would say the vector (13, 8, 9, 9) is better in the unordered Lexico-min sense. The highest tax is the 

same for both solutions, but the second highest tax is lower for the second solution. 

 Serafini (1996) uses this approach in scheduling jobs in a textile factory in northern Italy. Each job 

has a due-date. If demand and capacity are such that not all jobs can be completed by their due date, then 

a reasonable objective is to minimize the maximum lateness of any job. A reasonable sub-objective is to 

minimize the lateness of the second latest job, etc. 
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14.4.1 Example 
This example is based on one in Sankaran (1989). There are six parties and xi is the assessment to be 

paid by party i to satisfy a certain community building project. The xi must satisfy the set of constraints: 

A. X1 + 2 X2 + 4 X3 + 7 X4    16 

B. 2.5 X1 + 3.5 X2 + 5.2 X5    17.5 

C. 0.4 X2 + 1.3 X4 + 7.2 X6    12 

D. 2.5 X2 + 3.5 X3 + 5.2 X5    13.1 

E. 3.5 X1 + 3.5 X4 + 5.2 X6    18.2 

 We would like to minimize the highest assessment paid by anyone. Given that, we would like to 

minimize the second highest assessment paid by anyone. Given that, we would like to minimize the third 

highest, etc. The interested reader may try to improve upon the following set of assessments: 

 X1 = 1.5625 

 X2 = 1.5625 

 X3 = .305357 

 X4 = 1.463362 

 X5 = 1.5625 

 X6 = 1.463362 

There is no other solution in which: 

a) the highest assessment is less than 1.5625, and 

b) the second highest assessment is less than 1.5625, and 

c) the third highest assessment is less than 1.5625, and 

d) the fourth highest assessment is less than 1.463362, etc. 

14.4.2 Finding a Unique Solution Minimizing the Maximum 
A quite general approach to finding a unique unordered Lexico minimum exists when the feasible region 

is convex (i.e. any solution that is a positively weighted average of two feasible solutions is also feasible). 

Thus, problems with integer variables are not convex. Let the vector {x1, x2, …, xn} denote the cost 

allocated to each of n parties. 

 If the feasible region is convex, then there is a unique solution and the following algorithm will find 

it. Maschler, Peleg, and Shapley (1979) discuss this idea in the game theory setting, where the 

“nucleolus” is a closely related concept. If the feasible region is not convex (e.g., the problem has integer 

variables), then the following method is not guaranteed to find the solution. Let S be the original set of 

constraints on the x’s. 

1) Let J = {1, 2, . . . , n}, and k = 0; (Note: J is the set of parties for whom we do not yet know 

the final xi) 

2) Let k = k + 1; 

3) Solve the problem: 

Minimize Z 

subject to 

x feasible to S and, 

Z > xj for j in J 

(Note: this finds the minimum, maximum hurt among parties for which we have not yet 

fixed the xj’s.); 
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4) Set Zk = Z of (3), and add to S the constraints: 

xj < Zk for all j in J; 

5) Set L = {j in J for which xj = Zk in (3)}: 

For each j in L: 

Solve: 

Minimize xj 

subject to 

x feasible to S; 

If xj = Zk, then set J = J − j, and append to S the constraint xj = Zk 

6) If J is not empty, go to (2), else we are done. 

 To find the minimum maximum assessment for our example problem, we solve the following 

problem: 

MODEL: 

MIN = Z; 

 ! The physical constraints on the X's; 

   [A] X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

   [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

   [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

   [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

   [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

 ! Constraints to compute the max hurt  Z; 

   [H1] Z - X1 >= 0; 

   [H2] Z - X2 >= 0; 

   [H3] Z - X3 >= 0; 

   [H4] Z - X4 >= 0; 

   [H5] Z - X5 >= 0; 

   [H6] Z - X6 >= 0; 

END 

Its solution is: 

Objective value:                 1.5625000 

Variable           Value          Reduced Cost 

       Z        1.5625000           0.0000000 

      X1        1.5625000           0.0000000 

      X2        1.5625000           0.0000000 

      X3        1.5625000           0.0000000 

      X4        1.5625000           0.0000000 

      X5        1.5625000           0.0000000 

      X6        1.5625000           0.0000000 

Thus, at least one party will have a “hurt” of 1.5625. Which party or parties will it be? 
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 Because all six xi’s equal 1.5625, we solve a series of six problems such as the following: 

MODEL: 

MIN = X1; 

 ! The physical constraints on the X's; 

   [A] X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

   [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

   [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

   [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

   [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

! Constraints for finding the minmax hurt, Z; 

  [H1]     X1 <= 1.5625000; 

  [H2]     X2 <= 1.5625000; 

  [H3]     X3 <= 1.5625000; 

  [H4]     X4 <= 1.5625000; 

  [H5]     X5 <= 1.5625000; 

  [H6]     X6 <= 1.5625000; 

END 

The solution for the case of X1 is: 

Objective value:                 1.5625000 

Variable           Value         Reduced Cost 

      X1        1.5625000          0.0000000 

      X2        1.5625000          0.0000000 

      X3        0.3053573          0.0000000 

      X4        1.5625000          0.0000000 

      X5        1.5625000          0.0000000 

      X6        1.3966350          0.0000000 

 Thus, there is no solution with all the xi’s < 1.5625, but with X1 strictly less than 1.5625. So, we can 

fix X1 at 1.5625. Similar observations turn out to be true for X2 and X5. 

 So, now we wish to solve the following problem: 

MODEL: 

MIN  = Z; 

! The physical constraints on the  X's; 

       X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

   2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

   0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

   2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

   3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

 ! Constraints for finding the minmax hurt, Z; 

               X1 = 1.5625000; 

               X2 = 1.5625000; 

         - Z + X3 <= 0; 

         - Z + X4 <= 0; 

               X5 = 1.5625000; 

         - Z + X6 <= 0; 

END    
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Upon solution, we see the second highest “hurt” is 1.4633621: 

Objective value:                 1.4633621 

Variable           Value        Reduced Cost 

       Z        1.4633621         0.0000000 

      X1        1.5625000         0.0000000 

      X2        1.5625000         0.0000000 

      X3        1.4633621         0.0000000 

      X4        1.4633621         0.0000000 

      X5        1.5625000         0.0000000 

      X6        1.4633621         0.0000000 

 Any or all of X3, X4 or X6 could be at this value in the final solution. Which ones? To find out, we 

solve the following kind of problem for X3, X4 and X6: 

MODEL: 

MIN = X3; 

 ! The physical constraints on the  X's; 

       [A]   X1 + 2*X2 + 4*X3 + 7*X4  >=     16; 

       [B]   2.5*X1 + 3.5*X2 + 5.2*X5 >=     17.5; 

       [C]   0.4*X2 + 1.3*X4 + 7.2*X6 >=     12; 

       [D]   2.5*X2 + 3.5*X3 + 5.2*X5 >=     13.1; 

       [E]   3.5*X1 + 3.5*X4 + 5.2*X6 >=     18.2; 

 ! Constraints for finding the minmax hurt, Z; 

      [H1]   X1 =  1.5625000; 

      [H2]   X2 =  1.5625000; 

      [H3]   X3 <= 1.4633621; 

      [H4]   X4 <= 1.4633621; 

      [H5]   X5 =  1.5625000; 

      [H6]   X6 <= 1.4633621; 

END 

The solution, when we minimize X3, is: 

Objective value:                .3053571400 

Variable           Value        Reduced Cost 

      X3        .30535714         0.0000000 

      X1        1.5625000         0.0000000 

      X2        1.5625000         0.0000000 

      X4        1.4633621         0.0000000 

      X5        1.5625000         0.0000000 

      X6        1.4633621         0.0000000 

 Thus, X3 need not be as high as 1.4633621 in the final solution. We do find, however, that X4 and 

X6 can be no smaller than 1.4633621. 
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 So, the final problem we want to solve is: 

MODEL: 

MIN = Z; 

 ! The physical constraints on the X's; 

       [A] X1 + 2*X2 + 4*X3 + 7*X4  >= 16; 

       [B] 2.5*X1 + 3.5*X2 + 5.2*X5 >= 17.5; 

       [C] 0.4*X2 + 1.3*X4 + 7.2*X6 >= 12; 

       [D] 2.5*X2 + 3.5*X3 + 5.2*X5 >= 13.1; 

       [E] 3.5*X1 + 3.5*X4 + 5.2*X6 >= 18.2; 

 ! Constraints for finding the minmax hurt, Z; 

      [H1]       X1 = 1.5625000; 

      [H2]       X2 = 1.5625000; 

      [H3] - Z + X3 = 0; 

      [H4]       X4 = 1.4633621; 

      [H5]       X5 = 1.5625000; 

      [H6]     + X6 = 1.4633621; 

END 

We already know the solution will be: 

Objective value:                 .305357140 

Variable           Value        Reduced Cost 

       Z        .30535714         0.0000000 

      X1        1.5625000         0.0000000 

      X2        1.5625000         0.0000000 

      X3        .30535714         0.0000000 

      X4        1.4633621         0.0000000 

      X5        1.5625000         0.0000000 

      X6        1.4633621         0.0000000 

 The above solution minimizes the maximum X value, as well as the number of X’s at that value. 

Given that maximum value (of 1.5625), it minimizes the second highest X value, as well as the number 

at that value; etc. 

 The approach described requires us to solve a sequence of linear programs. It would be nice if we 

could formulate a single mathematical program for finding the unordered Lexico-min. There are a 

number of such formulations. Unfortunately, all of them suffer from numerical problems when 

implemented on real computers. The formulations assume arithmetic is done with infinite precision; 

whereas, most computers do arithmetic with at most 15 decimal digits of precision. 
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14.5 Identifying Points on the Efficient Frontier 
Until now, we have considered the problem of how to generate a solution on the efficient frontier. Now, 

let us take a slightly different perspective and consider the problem: Given a finite set of points, 

determine which ones are on the efficient frontier. When there are multiple criteria, it is usually 

impossible to find a single scoring formula to unambiguously rank all the points or players. The 

following table comparing on-time performance of two airlines (see Barnett, 1994) illustrates some of 

the issues: 

  
Alaska Airlines 

America West 
Airlines 

Destination % 
Arrivals 

 on 
Time 

No. of 
Arrivals 

% 
Arrivals 

 on 
Time 

No. of 
Arrivals 

Los Angeles 88.9 559 85.6 811 

Phoenix 94.8 233 92.1 5,255 

San Diego 91.4 232 85.5 448 

San Francisco 83.1 605 71.3 449 

Seattle 85.8 2,146 76.7 262 

Weighted 5-

Airport Average 
86.7 3,775 89.1 7,225 

 The weighted average at the bottom is computed by applying a weight to the performance at airport 

i proportional to the number of arrivals at that airport. For example, 

86.7 = (88.9  559 + … + 85.8  2146)/(559 + … + 2146).  

 According to this scoring, America West has a better on-time performance than Alaska Airlines. A 

traveler considering flying into San Francisco, however, would almost certainly prefer Alaska Airlines 

to America West with respect to on-time performance. In fact, the same argument applies to all five 

airports. Alaska Airlines dominates America West. How could America West have scored higher? The 

reason was a different scoring formula was used for each. Also, the airport receiving the most weight in 

America West’s formula, sunny Phoenix, had a better on-time performance by America West than 

Alaska Airline’s performance at its busiest airport, rainy Seattle. One should, in general, be suspicious 

when different scoring formulae are used for different candidates.  This paradox, whereby one 

conclusion is supported if we look at individual groups, but the opposite conclusion is supported if we 

aggregate all the groups into one big group, is sometimes called Simpson’s Paradox.  See for example, 

Wagner(1982). 

14.5.1 Efficient Points, More-is-Better Case 
The previous example was a case of multiple performance dimensions where, for each dimension, the 

higher the performance number, the better the performance. We will now illustrate a method for 

computing a single score or number, between 0 and 1, for each player. The interpretation of this number, 

or efficiency score, will be that a score of 1.0 means the player or organization being measured is on the 

efficient frontier. In particular, there is no other player better on all dimensions or even a weighted 

combination of players, so the weighted averages of their performances surpass the given player on 

every dimension. On the other hand, a score less than 1.0 means either there is some other player better 

on all dimensions or there is a weighted combination of players having a weighted average performance 

better on all dimensions. 
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Define: 

rij = the performance (or reward) of player i on the jth dimension (e.g., the on-time performance 

of Alaska Airlines in Seattle); 

vj = the weight or value to be applied to the jth dimension in evaluating overall efficiency. 

To evaluate the performance of player k, we will do the following in words: 

Choose the vj so as to maximize score (k) 

subject to 

For each player i (including k): 

score (i)  1. 

More precisely, we want to: 

Max j vj rkj 

subject to 

For every player i, including k: 

     j vj rij  1 

For every weight j: 

      vj  e, 

where e is a small positive number. 

 The reason for requiring every vj to be slightly positive is as follows. Suppose player k and some 

other player t are tied for best on one dimension, say j, but player k is worse than t on all other dimensions. 

Player k would like to place all the weight on dimension j, so player k will appear to be just as efficient 

as player t. Requiring a small positive weight on every dimension will reveal these slightly dominated 

players. Some care should be taken in the choice of the small “infinitesimal” constant e. If it is chosen 

too large, it may cause the problem to be infeasible. If it is chosen too small, it may be effectively 

disregarded by the optimization algorithm. From the above, you can observe that it should be bounded 

by:   

e  1/j rij.  

See Mehrabian, Jahanshahloo, Alirezaee, and Amin(2000) for a more detailed discussion. 

Example 

The performance of five high schools in the “three R’s” of “Reading, Writing and Arithmetic” are 

tabulated below (see Chicago Magazine, February 1995): 

School Reading Writing Mathematics 

Barrington 296 27 306 

Lisle 286 27.1 322 

Palatine 290 28.5 303 

Hersey 298 27.3 312 

Oak Park River Forest (OPRF) 294 28.1 301 

 Hersey, Palatine, and Lisle are clearly on the efficient frontier because they have the highest scores 

in reading, writing, and mathematics, respectively. Barrington is clearly not on the efficient frontier, 

because it is dominated by Hersey. What can we say about OPRF? 
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 We formulate OPRF’s problem as follows. Notice we have scaled both the reading and math scores, 

so all scores are less than 100. This is important if one requires the weight for each attribute to be at least 

some minimum positive value. 

MODEL: 

  MAX =  29.4*VR + 28.1*VW + 30.1*VM; 

  [BAR]  29.6*VR + 27  *VW + 30.6*VM <= 1; 

  [LIS]  28.6*VR + 27.1*VW + 32.2*VM <= 1; 

  [PAL]  29  *VR + 28.5*VW + 30.3*VM <= 1; 

  [HER]  29.8*VR + 27.3*VW + 31.2*VM <= 1; 

  [OPR]  29.4*VR + 28.1*VW + 30.1*VM <= 1; 

  [READ]      VR                     >= 0.0005; 

  [WRIT]                VW           >= 0.0005; 

  [MATH]                          VM >= 0.0005; 

END 

When solved: 

Optimal solution found at step:         2 

Objective value:                 1.000000 

Variable           Value        Reduced Cost 

      VR       0.1725174E-01       0.0000000 

      VW       0.1700174E-01       0.0000000 

      VM       0.5000000E-03       0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        1.000000            1.000000 

     BAR       0.1500157E-01       0.0000000 

     LIS       0.2975313E-01       0.0000000 

     PAL       0.0000000           0.0000000 

     HER       0.6150696E-02       0.0000000 

     OPR       0.0000000            1.000000 

    READ       0.1675174E-01       0.0000000 

    WRIT       0.1650174E-01       0.0000000 

    MATH       0.0000000           0.0000000 

 The value is 1.0, and thus, OPRF is on the efficient frontier. It should be no surprise OPRF puts the 

minimum possible weight on the mathematics score (where it is the lowest of the five). 

14.5.2 Efficient Points, Less-is-Better Case 
Some measures of performance, such as cost, are of the “less-is-better” nature. Again, we would like to 

have a measure of performance that gives a score of 1.0 for a player on the efficient frontier, less than 

1.0 for one that is not. 

 Define: 

cij = performance of player i on dimension j; 

wj = weight to be applied to the jth dimension. 

To evaluate the performance of player k, we want to solve a problem of the following form: 

Choose weights wj, so as to maximize the minimum weighted score, 

subject to 

the weighted score of player k = 1. 
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 If the objective function value from this problem is less than 1, then player k is inefficient, because 

there is no set of weights such that player k has the best score. More precisely, we want to solve: 

Max z 

subject to 

j wjckj = 1 

For each player i, including k: 

j wjcij  z. 

For every weight j: 

wj  e. 

Example 

The GBS Construction Materials Company provides steel structural materials to industrial contractors. 

GBS recently did a survey of price, delivery performance, and quality in order to get an assessment of 

how it compares with its four major competitors. The results of the survey, with the names of all 

companies disguised, appears in the following table: 

 
 
 

Company 

Quality (based on freedom 
from scale, straightness, 
etc., based on mean rank, 

where 1.0 is best) 

 
 

Delivery time 
(days) 

 
 

Price (in 
$/cwt) 

A 1.8 14 $21 

B 4.1 1 $26 

C 3.2 3 $25 

D 1.2 5 $23 

E 2.4 7 $22 

 For each of the three criteria, smaller is always better. Vendors A, B, and D are clearly competitive, 

based on price, delivery time, and quality, respectively. For example, a customer for whom quality is 

paramount will choose D. A customer for whom delivery time is important will choose B. Are C and E 

competitive? Imagine a customer who uses a linear weighting system to identify the best bid (e.g., score 

= WQ  Quality + WT  (delivery time) + WP  price). Is there a set of weights (all nonnegative), so 

Score (C) < Score (i), for i = A, B, D, E? Likewise, for E? 
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The model for Company C is: 

MODEL: 

MAX = Z; 

      [A] - Z + 1.8*WQ + 14*WT + 21*WP  0; 

      [B] - Z + 4.1*WQ +    WT + 26*WP  0; 

      [C] - Z + 3.2*WQ +  3*WT + 25*WP  0; 

      [D] - Z + 1.2*WQ +  5*WT + 23*WP  0; 

      [E] - Z + 2.4*WQ +  7*WT + 22*WP  0; 
  [CTARG]       3.2*WQ +  3*WT + 25*WP = 1; 

   [QUAL]   WQ   0.0005; 

   [TIME]   WT   0.0005; 

  [PRICE]   WP   0.0005; 
END 

The solution is: 

Optimal solution found at step:         4 

Objective value:                0.9814257 

Variable           Value        Reduced Cost 

       Z       0.9814257           0.0000000 

      WQ       0.5000000E-03       0.0000000 

      WT       0.2781147E-01       0.0000000 

      WP       0.3659862E-01       0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.9814257            1.000000 

       A       0.1774060           0.0000000 

       B       0.0000000          -0.5137615 

       C       0.1857431E-01       0.0000000 

       D       0.0000000          -0.4862385 

       E       0.1962431E-01       0.0000000 

   CTARG       0.0000000           0.9816514 

    QUAL       0.0000000          -0.4513761 

    TIME       0.2731147E-01       0.0000000 

   PRICE       0.3609862E-01       0.0000000 

 Company C has an efficiency rating of 0.981. Thus, it is not on the efficient frontier. With a similar 

model, you can show Company E is on the efficient frontier. 

14.5.3 Efficient Points, the Mixed Case 
In many situations, there may be some dimensions where less is better, such as risk; whereas, there are 

other dimensions where more is better, such as chocolate. 

 In this case, unless we make additional restrictions on the weights, we cannot get a simple score of 

efficiency between 0 and 1 for a company. We can nevertheless extend the previous approach to 

determine if a point is on the efficient frontier. 

 Define: 

cij = level of the jth “less is better” attribute for player i, e.g., a cost, 

rij = level of the jth “more is better” attribute for player i, e.g., a revenue or reward, 

wj = weight to be applied to the jth “less is better” attribute, 

vj = weight to be applied to the jth “more is better” attribute. 
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In words, to evaluate the efficiency of player or point k, we want to: 

Max score (k) − (best score of any other player) 

subject to 

sum of the weights = 1 

 If the objective value is nonnegative, then player k is efficient; whereas, if the objective is negative, 

then there is no set of weights such that player k scores at least as well as every other player. 

 If we denote the best score of any other player by z, then, more specifically, we want to solve: 

Max j vj rkj − j wj ckj − z 

subject to 

For each player i, i  k 

z  j vj rij − j wj ckj 

and 

j vj + j wj = 1,  

vj  e, wj  e, z unconstrained in sign, where e is a small positive number as introduced in the “more-is-

better” case. 

 The dual of this problem is to find a set of nonnegative weights, i, to apply to each of the other 

players to: 

Minimize g 

subject to 

i i = 1 

For each “more is better” attribute j: 

g + i k j rij  rkj , 

For each “less is better” attribute j : 

g − i k j cij  − ckj , 

g unconstrained in sign. 

 If g is nonnegative, it means no weighted combination of other points (or players) could be found, 

so their weighted performance surpasses k on every dimension. 

14.6 Comparing Performance with Data Envelopment Analysis 
Data Envelopment Analysis (DEA) is a method for identifying efficient points in the mixed case. That 

is, when there are both “less is better” and “more is better” measures. An attractive feature of DEA, 

relative to the previous method discussed, is it does produce an efficiency score between 0 and 1. It does 

this by making slightly stronger assumptions about how efficiency is measured. Specifically, DEA 

assumes each performance measure can be classified as either an input or an output. For outputs, more 

is better; whereas, for inputs, less is better. The “score” of a point or a decision-making unit is then the 

ratio of an output score divided by an input score. 

 DEA was originated by Charnes, Cooper, and Rhodes (1978) as a means of evaluating the 

performance of decision-making units. Examples of decision-making units might be hospitals, banks, 

airports, schools, and managers. For example, Bessent, Bessent, Kennington, and Reagan (1982) used 

the approach to evaluate the performance of 167 schools around Houston, Texas. Simple comparisons 

can be misleading because different units are probably operating in different environments. For example, 

a school operating in a wealthy neighborhood will probably have higher test scores than a school in a 
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poor neighborhood, even though the teachers in the poor school are working harder and require more 

skill than the teachers in the wealthy school. Also, different decision makers may have different skills. 

If the teachers in school (A) are well trained in science and those in school (B) are well trained in fine 

arts, then a scoring system that applies a lot of weight to science may make the teachers in (B) appear to 

be inferior, even though they are doing an outstanding job at what they do best. 

 DEA circumvents both difficulties in a clever fashion. If the arts teachers were choosing the 

performance measures, they would choose one that placed a lot of weight on arts. However, the science 

teachers would probably choose a different one. DEA follows the philosophy of a popular fast food 

chain, that is, “Have it your way.” DEA will derive an “efficiency” score between 0 and 1 for each unit 

by solving the following problem: 

For each unit k: 

Choose a scoring function 

so as to: 

maximize score of unit k 

subject to: 

For every unit j (including k): 

scorej < 1. 

 Thus, unit k may choose a scoring function making it look as good as possible, so long as no other 

unit gets a score greater than 1 when that same scoring function is applied to the other unit. If a unit k 

gets a score of 1.0, it means there is no other unit strictly dominating k. 

 In the version of DEA we consider, the allowed scoring functions are limited to ratios of weighted 

outputs to weighted inputs. For example: 

score = weighted sum of outputs 

weighted sum of inputs 

We can normalize weights, so: 

weighted sum of inputs = 1; 

then “score < 1” is equivalent to: 

weighted sum of outputs < weighted sum of inputs. 

Algebraically, the DEA model is: 

Given 

n  = decision-making units, 

m = number of inputs, 

s  = number of outputs. 

Observed data: 

cij  = level of jth input for unit i, 

rij  = level of jth output for unit i. 

Variables: 

wj  = weight applied to the jth input, 

vj  = weight (or value) applied to the jth output. 
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For unit k, the model to compute the best score is: 

Maximize 
 j

s

=


1
vj rkj  

subject to 

 
 j

m

=


1

wj ckj = 1 

For each unit i (including k): 

 j

s

=


1
vj rij < 

 j

m

=


1
wj cij 

 This model will tend to have more constraints than decision variables. Thus, if implementation 

efficiency is a major concern, one may wish to solve the dual of this model rather than the primal. 

 Sexton et al. (1994) describes the use of DEA to analyze the transportation efficiency of 100 county 

level school districts in North Carolina. Examples of inputs were number of buses used and expenses. 

The single output was the number of pupils transported per day. Various adjustments were made in the 

analysis to take into account the type of district (e.g., population density). A savings of about $50 million 

over a four-year period was claimed. 

 Sherman and Ladino (1995) describe the use of DEA to analyze and improve the efficiency of 

branches in a 33-unit branch banking system. They claimed annual savings of $6 million. Examples of 

inputs for a branch unit were: number of tellers, office square feet, and expenses excluding personnel. 

Examples of outputs were number of deposits, withdrawals, checks cashed, loans made, and new 

accounts. Of the 33 units, ten obtained an efficiency score of 100%. An automatic result of the DEA 

analysis for an inefficient unit is an identification of the one or two units that dominate the inefficient 

unit. This dominating unit was then used as a “benchmark or best practices case” to help identify how 

the inefficient unit could be improved. 

Example 

Below are four performance measures on six high schools: Bloom (BL), Homewood (HW), New Trier 

(NT), Oak Park (OP), York (YK), and Elgin (EL). Cost/pupil is the number of dollars spent per year per 

pupil by the school. Percent not-low-income is the fraction of the student body coming from homes not 

classified as low income. The writing and science scores are the averages over students in a school on a 

standard writing test and a standard science test. The first two measures are treated as inputs, over which 

teachers and administrators have no control. The test scores are treated as outputs. 

School Cost/pupil Percent not 
low income 

Writing 
score 

Science 
score 

BL 8939 64.3 25.2 223 

HW 8625 99 28.2 287 

NT 10813 99.6 29.4 317 

OP 10638 96 26.4 291 

YK 6240 96.2 27.2 295 

EL 4719 79.9 25.5 222 
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 Which schools would you consider “efficient”? New Trier has the highest score in both writing 

(29.4) and science (317). However, it also spends the most per pupil, $10,813, and has the highest 

fraction not-low-income. A DEA model for maximizing the score of New Trier appears below. Notice 

we have scaled each factor, so it lies in the range (1,1000). This is important if one requires a strictly 

positive minimum weight on each factor, as the last four constraints of the model imply. The motivation 

for the strictly positive weight on each factor was given in the description of the “more-is-better” case: 

MODEL: 

MAX = SCORENT; 

! Define the numerator for New Trier; 

 [DEFNUMNT] SCORENT - 317*WNTSCIN - 29.4*WNTWRIT =  0; 

! Fix the denominator for New Trier; 

 [FIXDNMNT]  99.6*WNTRICH + 108.13*WNTCOST =    1; 

! Numerator/ Denominator < 1 for every school,; 

!  or equivalently, Numerator < Denominator; 

[BLNT]223*WNTSCIN+25.2*WNTWRIT-64.3*WNTRICH-89.39*WNTCOST<=0; 

[HWNT]287*WNTSCIN+28.2*WNTWRIT-99*WNTRICH-86.25*WNTCOST <= 0; 

[NTNT]317*WNTSCIN+29.4*WNTWRIT-99.6*WNTRICH-108.13*WNTCOST<=0; 

[OPNT]291*WNTSCIN+26.4*WNTWRIT-96*WNTRICH-106.38*WNTCOST<=0; 

[YKNT]295*WNTSCIN+27.2*WNTWRIT-96.2*WNTRICH-62.40*WNTCOST<=0; 

[ELNT]222*WNTSCIN+25.5*WNTWRIT-79.9*WNTRICH-47.19*WNTCOST<=0; 

! Each measure must receive a little weight; 

 [SCINT]   WNTSCIN >=  0.0005; 

 [WRINT]   WNTWRIT >=  0.0005; 

 [RICNT]   WNTRICH >=  0.0005; 

 [COSNT]   WNTCOST >=  0.0005; 

END 

The solution is: 

Optimal solution found at step:         3 

Objective value:                0.9615803 

Variable           Value        Reduced Cost 

 SCORENT       0.9615803           0.0000000 

 WNTSCIN       0.2987004E-02       0.0000000 

 WNTWRIT       0.5000000E-03       0.0000000 

 WNTRICH       0.8204092E-02       0.0000000 

 WNTCOST       0.1691228E-02       0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.9615803            1.000000 

DEFNUMNT       0.0000000            1.000000 

FIXDNMNT       0.0000000           0.9635345 

    BLNT       0.0000000           0.8795257 

    HWNT       0.8670327E-01       0.0000000 

    NTNT       0.3841965E-01       0.0000000 

    OPNT       0.8508738E-01       0.0000000 

    YKNT       0.0000000           0.4097145 

    ELNT       0.5945104E-01       0.0000000 

   SCINT       0.2487004E-02       0.0000000 

   WRINT       0.0000000           -3.908281 

   RICNT       0.7704092E-02       0.0000000 

   COSNT       0.1191227E-02       0.0000000 
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 The score of New Trier is less than 1.0. Thus, according to DEA, New Trier is not efficient. Looking 

at the solution report, one can deduce that NT is, according to DEA, strictly less efficient than BL and 

YK. Notice their “score less-than-or-equal-to 1” constraints are binding. Thus, if NT wants to improve 

its efficiency by doing a benchmark study, it should perhaps study the practices of BL and YK for insight. 

 A sets-based model that evaluates all the schools in one model is given below: 

MODEL: 

! Data Envelopment Analysis of Decision Maker Efficiency ; 

SETS: 

  DMU:    !The decisionmaking units; 

    SCORE;! Each decision making unit has a 

              score to be computed; 

  FACTOR; 

! There is a set of factors, input & output; 

  DXF( DMU, FACTOR):  F, ! F( I, J) = Jth factor of DMU I; 

         W;  ! Weights used to compute DMU I's score; 

 ENDSETS 

 DATA: 

  DMU = BL HW NT OP YK EL; 

! Inputs are spending/pupil, % not low income; 

! Outputs are Writing score and Science score; 

  NINPUTS = 2;  ! The first NINPUTS factors are inputs; 

 FACTOR= COST RICH     WRIT SCIN; 

!      The inputs,    the outputs; 

  F  =  89.39  64.3     25.2   223 

        86.25  99       28.2   287 

       108.13  99.6     29.4   317 

       106.38  96       26.4   291 

        62.40  96.2     27.2   295 

        47.19  79.9     25.5   222; 

  WGTMIN = .0005;  ! Min weight applied to every factor; 

  BIGM = 999999; ! Biggest a weight can be; 

 ENDDATA 

!----------------------------------------------------------; 

! The Model; 

! Try to make everyone's score as high as possible; 

  MAX = @SUM( DMU: SCORE); 

! The LP for each DMU to get its score; 

  @FOR( DMU( I): 

   [CSCR] SCORE( I) = @SUM( FACTOR(J)|J #GT# NINPUTS: 

                          F(I, J)* W(I, J)); 

! Sum of inputs(denominator) = 1; 

   [SUM21] @SUM( FACTOR( J)| J #LE# NINPUTS:  

                     F( I, J)* W( I, J)) = 1; 

! Using DMU I's weights, no DMU can score better than 1, 

    Note Numer/Denom <= 1 implies Numer <= Denom; 

   @FOR( DMU( K): 

   [LE1] @SUM( FACTOR( J)| J #GT# NINPUTS: F( K, J) * W( I, J)) 

          <= @SUM( FACTOR( J)| J #LE# NINPUTS: F( K, J) * W( I, J)) 

       ) 

     ); 

! The weights must be greater than zero; 

  @FOR( DXF( I, J): @BND( WGTMIN, W, BIGM)); 
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END 

Part of the output is: 

  Variable           Value        Reduced Cost 

SCORE( BL)        1.000000           0.0000000 

SCORE( HW)       0.9095071           0.0000000 

SCORE( NT)       0.9615803           0.0000000 

SCORE( OP)       0.9121280           0.0000000 

SCORE( YK)        1.000000           0.0000000 

SCORE( EL)        1.000000           0.0000000 

We see that the only efficient schools are Bloom, Yorktown, and Elgin. 

14.7 Problems 
1. In the example staffing problem in this chapter, the primary criterion was minimizing the number 

of people hired. The secondary criterion was to spread out any excess capacity as much as possible. 

The primary criterion received a weight of 9; whereas, the secondary criterion received a weight of 

1. The minimum number of people required (primary criterion) was 8. How much could the weight 

on the secondary criterion be increased before the number of people hired increases to more than 8? 

2. Reconsider the advertising media selection problem of this chapter. 

a) Reformulate it, so we achieve at least 197 (in 1000’s) useful exposures at minimum cost. 

b) Predict the cost before looking at the solution. 

3. A description of a “project crashing” decision appears in Chapter 8. There were two criteria, project 

length and project cost. Trace out the efficient frontier describing the trade-off between length and 

cost. 

4. The various capacities of several popular sport utility vehicles, as reported by a popular consumer 

rating magazine, are listed below: 

 
Vehicle 

 
Seats 

Cargo Floor 
Length (in.) 

Rear Opening 
Height (in.) 

Cargo Volume 
(cubic ft) 

Blazer 6 75.5 31.5 42.5 

Cherokee 5 62.0 33.5 34.5 

Land Rover 7 49.5 42.0 42.0 

Land Cruiser 8 65.5 38.5 44.5 

Explorer 6 78.5 35.0 48.0 

Trooper 5 57.0 36.5 42.5 

 Assuming sport utility vehicle buyers sport a linear utility and more capacity is better, which 

of the above vehicles are on the efficient frontier according to these four capacity measures? 

5. The Rotorua Fruit Company sells various kinds of premium fruits (e.g., apples, peaches, and kiwi 

fruit) in small boxes. Each box contains a single kind of fruit. The outside of the box specifies:  

i) the kind of fruit,  

ii) the number of pieces of fruit, and  

iii) the approximate weight of the fruit in the box.  
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 Satisfying specification (iii) is nontrivial, because the per unit weight of fruit as it comes from 

the orchard is a random variable. Consider the case of apples. Each apple box contains 12 apples. 

The label on each apple box says the box contains 4.25 lbs. of apples. In fact, a typical apple weighs 

from 5 to 6.5 ounces. At 16 ounces/lb., a box of 5-ounce apples would weigh only 3.75 lbs., whereas, 

a box of 6.5-ounce apples would weigh 4.875 lbs. The approach Rotorua is considering is to have a 

set of 24 automated scales on the box loading line. The 24 scales will be loaded with 24 apples. 

Based on the weights of the apples, a set of 12 apples whose total weight comes close to 4.25 lbs., 

will be dropped into the current empty box. In the next cycle, the 12 empty scales will be reloaded 

with new apples, a new empty box will be moved into position, and the process repeated. Rotorua 

cannot always achieve the ideal of exactly 4.25 lbs. in a box. However, being underweight is worse 

than being overweight. Rotorua has characterized its feeling/utility for this under/over issue by 

stating that given the choice between loading a box one ounce under and one ounce over, it clearly 

prefers to load it one ounce over. However, it would be indifferent between loading a box one ounce 

under vs. five ounces over. 

Suppose the scales currently contain apples with the following weights in ounces: 

 5.6, 5.9, 6.0, 5.8, 5.9, 5.4, 5.0, 5.5, 6.3, 6.2, 5.1, 6.2, 

 6.1, 5.2, 6.4, 5.7, 5.6, 5.5, 5.3, 6.0, 5.4, 5.3, 5.8, 6.1. 

a) How would you load the next box? 

b) Discuss some of the issues in implementing your approach. 
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