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18 
 

Design & Implementation of 

Service and Queuing Systems 
 

"If you think you have reservations, you're at the wrong place." 

-Sign in Ed Debevec's Restaurant 

18.1 Introduction 
The distinctive feature of a service system is that it cannot stock its product in anticipation of impending 

demand. An organization whose main product is a service can prepare for increased demand only by 

increasing its capacity. A major question in planning a service system is capacity sizing. How many 

cashiers, ticket takers, staffers at a toll plaza, phone lines, computers at an internet service provider, 

runways at an airport, tables at a restaurant, fire stations, beds in a hospital, police cars in a region, 

restroom facilities, elevators, or machine maintenance personnel are needed so as to provide acceptable 

service? 

 Capacity planning for a service facility involves three steps: 

1. Data collection. Assemble all relevant historical data or set up a system for the on-going 

collection of demand data. 

2. Data analysis. Forecast demand; ascertain the probabilistic components of the demand; 

determine the minimum acceptable capacity for each demand period. 

3. Requirements recommendation. Taking into account such factors as the probabilistic 

nature of demand, cost of poorly served demand, capacity change costs and standard work 

shift patterns, recommend a capacity plan that minimizes all relevant expected costs. 

18.2 Forecasting Demand for Services 
Standard forecasting methods apply as well to demand for services as to the demand for goods. 

Long-range forecasting of demand for services must incorporate the fact that demand for services does 

not react to changes in the health of the economy in the same way as demand for goods. For example, 

demand for goods such as food is relatively unaffected by the health of the economy; whereas, demand 

for luxury services such as restaurant dining tends to be diminished by economic recessions. Demand 

for fast food dining service has been increased by the advent of the working mother. 
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 Shorter range forecasting of the demand for services is concerned in large part with the measurement 

of the cyclical components of demand. In particular, one wants to identify (say for a service that 

processes phone calls) the: 

 - hour of the day effect, 

 - day of the week effect (e.g., the number of calls per day to the 911 emergency number in 

New York City has been found to vary somewhat predictably almost by a factor of two 

based on the day of the week), 

 - week of year effect, 

 - moveable feast effect (e.g., Mother's Day, Labor Day, Easter, etc), 

 - advertising promotions. 

18.3 Waiting Line or Queuing Theory 
Queuing theory is a well-developed branch of probability theory that has long been used in the telephone 

industry to aid capacity planning. A. K. Erlang performed the first serious analysis of waiting lines or 

queues for the Copenhagen telephone system in the early 20th century. Erlang's methods are still widely 

used today in the telephone industry for setting various capacities such as operator staffing levels. For 

application at the mail order firm, L.L. Bean, see Andrews and Parsons (1993). Gaballa and Pearce 

(1979) describe applications at Qantas Airline. An important recent application of queuing models is in 

telephone call centers. There are two kinds of call centers: 1) In-bound call centers that handle incoming 

calls, such as orders for a catalog company, or customer support for a product; and 2) Out-bound call 

centers where telephones place calls to prospective customers to solicit business, or perhaps to remind 

current customers to pay their bills. 

 It is useful to note that a waiting line or queue is usually the negative of an inventory. Stock carried 

in inventory allows an arriving customer to be immediately satisfied. When the inventory is depleted, 

customers must wait until units of product arrive. The backlogged or waiting customers constitute a 

negative inventory, but they can also be thought of as a queue. A more explicit example is a taxi stand. 

Sometimes taxi cabs will be in line at the stand waiting for customers. At other times, customers may be 

in line waiting for cabs. What you consider a queue and what you consider an inventory depends upon 

whether you are a cab driver or a cab customer. 

 In queuing theory, a service system has three components: 

1) an arrival process,  

2) a queue discipline, and  

3) a service process.  

The figure below illustrates: 

Arrival Process → Queue discipline → Service Process 

(e.g., One 

arrival every 7 

minutes on 

average.) 

 (e.g., First-come 

first-serve), but 

if 10 are waiting, 

then arrivals are 

lost. 

 (e.g., 3 identical 

servers). Mean 

service time is 9 

minutes. 

A good introduction to queuing theory can be found in Gross and Harris (1998). 
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18.3.1 Arrival Process 
We distinguish between two types of arrival process: i) finite source and ii) infinite source. An example 

of finite source is 10 machines being watched over by a single repair person. When a machine breaks 

down, it corresponds to the arrival of a customer. The number of broken down machines awaiting repair 

is the number of waiting customers. We would say this system has a finite source of size ten. With a 

finite population, the arrival rate is reduced as more customers enter the system. When there are already 

8 of 10 machines waiting for repairs or being repaired, then the arrival rate of further customers (broken 

machines) is only 2/10 of the arrival rate if all the machines were up and running and thus eligible to 

breakdown. 

 An airline telephone reservation system, on the other hand, would typically be considered as having 

an infinite calling population. With an infinite population, the arrival rate is unaffected by the number 

of customers already in the system. 

 In addition to the type of arrival process, a second piece of information we need to supply is the 

mean time between calls. If the calling population is infinite, then this is a single number independent 

of the service process. However, for a finite population, there is a possibility for ambiguity because the 

arrival rate at any moment depends upon the number waiting. The ambiguity is resolved by concentrating 

on only one of the supposedly identical customers. It is sufficient to specify the mean time until a given 

customer generates another call, given that he just completed service. We call this the mean time between 

failures or MTBF for short.  

 A fine point that we are glossing over is the question of the distribution (as opposed to the mean) of 

the time between calls. Two situations may have the same mean time between calls, but radically 

different distributions. For example, suppose that in situation 1 every interval between calls is exactly 

10 minutes, while, in situation 2, 10% of the intervals are 1 minute long and 90% of the intervals are 11 

minutes. Both have the same mean, but it seems plausible that system 2 will be more erratic and will 

incur more waiting time. The standard assumption is that the distribution of the time between calls is the 

so-called exponential. Happily, it appears that this assumption is not far off the mark for most real 

situations. 

 The exponential distribution plays a key role in the models we will consider. For the infinite source 

case, we assume that the times between successive arrivals are distributed according to the exponential 

distribution. An exponential density function is graphed in the figure 18.1: 

 
Figure 18.1. An exponential distribution with mean 2. 
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 If r is the arrival rate, x is a value of the random variable, and e is the number 2.718284, then the 

frequency or density function plotted in Figure 18.1, is given by f(x) = re-rx. The mean and standard 

deviation are both 1/r. The key assumption underlying the exponential distribution is that the probability 

that the event of interest (e.g., the arrival of a customer or the breakdown of a specified machine) is a 

constant is independent of when the previous event occurred. Another way of stating this feature is via 

the “memoryless property”. That is, regardless of how long it has been since the previous arrival, the 

distribution of the time until the next arrival has the exponential distribution with mean 1/r. 

18.3.2 Queue Discipline 
All the models we consider use a first-come first-serve queue discipline. The only other piece of 

information required is the waiting capacity of the system. Calls or customers that arrive while there is 

waiting space join the system and, if necessary, wait for service. A demand or customer that finds all 

waiting spaces filled is lost. Examples are: a reservation office that has 10 incoming phone lines, but 

only four reservationists. A reservationist puts an incoming call on "hold" if all reservationists are 

already occupied. If all 10 lines are occupied, a caller will get a "busy" signal. An analogous system is 

a gasoline station with 4 pumps and room for 6 cars to wait behind the 4 cars being served. A prospective 

customer is said to balk if s/he refuses to join the queue. A somewhat similar action, reneging, is said to 

occur if a customer decides to leave the queue while waiting. 

18.3.3 Service Process 
The service process is characterized by two attributes: 

a) the number of servers (assumed identical). 

b) the service time distribution. 

The most common assumption is that service times follow the exponential distribution. 

 An implication of this distribution is that the mean service time equals the standard deviation. 

Therefore, comparing the mean with the standard deviation is a simple data check. 

 In contrast to arrival processes, there is little a priori justification for expecting any particular type 

of service time distribution. One must examine the data closely to select the appropriate approximate 

distribution. If the standard deviation in service time is much smaller than the mean service time, then a 

constant service time is a reasonable approximation. If the standard deviation approximately equals the 

mean, then the exponential assumption is reasonable. 

 The exponential distribution fits surprisingly well in many situations. Coffman and Wood (1969), 

for example, found that job compute times on a computer had a standard deviation somewhat higher 

than the mean. Nevertheless, the shape of the distribution was essentially exponential-like with the peak 

close to zero and a long tail to the right. 

18.3.4 Performance Measures for Service Systems 
There is a variety of measures of performance of a service system. The three measures we will consider 

are: 

 1) Probability of immediate service. 

 2) Average waiting time. 

 3) Average number waiting. 
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18.3.5 Stationarity 
In general, queuing models assume that demand is stationary (i.e., stable over time) or that the system 

has reached steady state. Obviously, this cannot be true if demand is spread over a sufficiently long 

period of time (e.g., an entire day). For example, it is usually obvious that the mean time between phone 

calls at 11:00 a.m. on any given day is not the same as the mean time at 11:00 p.m. of that same day. We 

define the load on a service system as the product of the mean arrival rate times the means service time 

per customer. Load is a unit-less quantity, which is a lower bound on the number of servers one would 

need to process the arriving work without having the queue grow without bound. We should probably 

be careful about using a steady-state-based queuing model if load is not constant for a reasonably long 

interval. What constitutes a “reasonable long interval”? To answer that question, let us define a notation 

we will use henceforth: 

R = mean arrival rate, 

T = mean or expected service time, 

S = number of servers. 

 The quantity T/(S – R*T) is a simple definition of “a reasonably long interval”. Notice that it 

becomes unbounded as the load approaches S. 

18.3.6 A Handy Little Formula 
There is a very simple yet general relationship between the average number in system and the average 

time in system. In inventory circles, this relationship is known as the inventory turns equation. In the 

service or queuing world, it is known as Little's Flow Equation, see Little (1961). In words, Little's 

equation is: 

(average number in systems) = (arrival rate) * (average time-in-system) 

Reworded in inventory terminology, it is: 

(average inventory level) = (sales rate) * (average time-in-system) 

Inventory managers frequently measure performance in "inventory turns", where: 

(inventory turns) = 1/(average time-in-system). 

Rearranging the Little's Flow equation: 

(average inventory level) = (sales rate)/(inventory turns) 

or 

(inventory turns) = (sales rate)/(average inventory level) 

 Little's Equation is very general. The only essential requirement is that the system to which it is 

applied cannot be drifting off to infinity. No particular probabilistic assumptions are required. 

18.3.7 Example 
Customers arrive at a rate of 25 per hour on average. Time-in-system averages out to 12 minutes. What 

is the average number of customers in system? 

Ans. (Average number in system) = (25/hour) * 12 minutes * 1 hour/60 minutes) 

= 25 * (1/5) = 5 
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18.4 Solved Queuing Models 
There are five situations or models that we will consider. They are summarized in Table 1. The key 

feature of these situations is that there are fairly simple formulae describing the performance of these 

systems. 

Table 1: 

Solved Service System Models 
Model 

Feature 

 

I 

 

II 

 

III 

 

IV 

 

V 
Queue 

Notation 

(M/G/c/c) (M/M/c) (M/G/) (F/M/c) (M/G/1) 

Population 

Size 

Infinite Infinite Infinite Finite Infinite 

Arrival 

Process 

Poisson Poisson Poisson General Poisson 

Waiting Space None Infinite Infinite Infinite Infinite 

Number  

of Servers 

Arbitrary Arbitrary Infinite Arbitrary 1 

Service 

distribution 

Arbitrary 

/General 

Exponential Arbitrary 

/General 

Exponential Arbitrary 

/General 

Solve  

with 

@PEL or B(s,a) @PEB or C(s,a) @PPS or  

Poisson 

@PFS Formula 

 The five models are labeled by the notation typically used for them in queuing literature. The 

notation is of the form (arrival process/service distribution/number of servers [/number spaces 

available] where: 

M = exponential (or Markovian) distributed, 

G = general or arbitrary,  

D = deterministic or fixed, and 

F = finite source. 

 The two “workhorse” models of this set of five are a) the M/G/c/c, also know as the Erlang loss or 

Erlang-B model, and b) the M/M/c, also known as the Erlang C model. LINGO has two built-in 

functions, @PEL() and @PEB() that “solve” these two cases. Their use is illustrated below. 

18.4.1 Number of Outbound WATS lines via Erlang Loss Model 
Some companies buy a certain number of outbound WATS (Wide Area Telephone Service) lines in 

order to reduce their long distance charges. An outbound WATS line allows you to make an unlimited 

number of long distance calls for a fixed fee. The fixed fee is low enough, so that, if you make a lot of 

calls, the cost per call is much lower than if you paid the standard cost/minute rate. Suppose that our 

company makes an average of 5 long distance calls per minute during the business day. The average 

duration of a call is 4 minutes. The system can be set up, so that, if one of our employees dials a long 

distance number, the call will be assigned to a WATS line if one of our WATS lines is available, else 

the call will use a regular line at regular rates for the duration of the call. Suppose we acquire 20 WATS 



Queuing Systems  Chapter 18    559  

lines. What fraction of the calls would find all WATS lines busy and thus use a regular line? An 

appropriate model is: 

   ! Erlang Loss Model; 

   ! Any demands that find all servers busy, 

      are lost; 

 DATA: 

   ! Arrival rate; 

     R = 5; 

   ! Average service time; 

     T = 4; 

   ! Number of servers; 

     S = 20; 

 ENDDATA 

   LOAD = R * T; 

 !  Compute fraction lost; 

   FLOST = @PEL( LOAD, S); 

The solution is: 

Variable           Value 

       R        5.000000 

       T        4.000000 

       S       20.000000 

    LOAD       20.000000 

   FLOST       0.1588920 

 Thus, even though we have enough WATS line capacity to handle the average demand, nevertheless 

because of randomness, almost 16% of the demand is lost (i.e., overflows into the regular lines). 

 There is a statistical economy of scale in service demand (i.e., twice the demand does not require us to 

have twice the capacity). To illustrate, suppose we forecast great growth next year and expect the outbound 

call rate to be 50 calls per minute rather than 5. If again we acquire just enough WATS lines to handle the 

average demand, 50*4 = 200, what fraction of the demand will overflow? If we substitute R = 50 into the 

model, we get the solution: 

 
Variable           Value 

       R        50.00000 

       T        4.000000 

       S        200.0000 

    LOAD        200.0000 

   FLOST      0.05435242 

 

 The fraction overflow has dropped to approximately, 5%, even though we are still setting capacity equal 

to the average demand. 

18.4.2 Evaluating Service Centralization via the Erlang C Model 
The Ukallus Company takes phone orders at two independent offices and is considering combining the 

two into a single office, which can be reached via an "800" number. Both offices have similar volumes 

of 50 phone calls per hour (= .83333/minute) handled by 4 order takers in each office. Each office has 

sufficient incoming lines that automatically queue calls until an order taker is available. The time to 

process a call is exponentially distributed with mean 4 minutes. 
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 How much would service improve if it were centralized to an office with 8 order takers? The results 

are: 

 Two-Office 
System 

One Central 
Office 

Fraction of calls finding 
All servers busy 

.6577 .533 

Expected waiting time 
for calls that wait 

6 minutes 3 minutes 

Expected waiting 
overall (including calls 
that do not wait) 

3.95 minutes 1.60 minutes 

 Thus, the centralized office provides noticeably better (almost twice as good depending upon your 

measure), service with the same total resources. Alternatively, the same service level could be achieved 

with somewhat fewer resources. 

 The above statistics can be computed using the following LINGO model. Note that throughout, we 

define a customer’s wait as the customer’s time in system until her service starts. The waiting time does 

not include the service time. 

 ! Compute statistics for a multi-server system with(QMMC) 
   Poisson arrivals, exponential service time distribution. 

   Get the system parameters; 

 DATA: 

   R = .8333333; 

   T = 4; 

   S = 4; 

 ENDDATA 

! The model; 

! Average no. of busy servers; 

   LOAD = R * T; 

! Probability a given call must wait; 

   PWAIT = @PEB( LOAD, S); 

! Conditional expected wait, i.e., given must wait; 

   WAITCND = T/( S - LOAD); 

! Unconditional expected wait; 

   WAITUNC = PWAIT * WAITCND; 

The solution is: 

Variable     Value 

       R       .833333 

       T      4.000000 

       S      4.000000 

    LOAD      3.333333 

      PB      .6577216 

      CW     6.0000000 

      UW      3.946329 
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18.4.3 A Mixed Service/Inventory System via the M/G/ Model 
Suppose that it takes us 6 minutes to make a certain product (e.g., a hamburger). Demand for the product 

arrives at the rate of 2 per minute. In order to give good service, we decide that we will carry 10 units in 

stock at all times. Thus, whenever a customer arrives and takes one of our in-stock units, we immediately 

place an order for another one. We have plenty of capacity, so that, even if we have lots of units in 

process, we can still make a given one in an average time of 6 minutes. Customers who find us out of 

stock will wait for a new one to be made. This is called a base stock policy with backlogging: 

 Analysis: The number of units on order will have a Poisson 

distribution with mean = 2*6 = 12. Thus, if a customer arrives and 

there are 2 or less on order, it means there is at least one in stock. 

The following model will compute the fraction of customers who have to 

wait. 

! The M/G/infinity or Base stock Model; 

DATA: 

  ! Arrival rate; 

   R = 2; 

  ! Average service time; 

   T = 6; 

  ! Number units in stock; 

   S = 10; 

ENDDATA 

  LOAD = R * T; 

! Compute fraction who have to wait; 

  FWAIT = 1 - @PPS( LOAD, S - 1);  

! Note, @PPS( LOAD, X) =  

    Prob{ a Poisson random variable with mean = LOAD 

         has a value less-than-or-equal-to X};    

The solution is: 

 Variable           Value 

        R        2.000000 

        T        6.000000 

        S        10.00000 

     LOAD        12.00000 

    FWAIT       0.7576077 

Thus, more than 75% will have to wait. 

18.4.4 Optimal Number of Repairmen via the Finite Source Model.  
A textile firm has 10 semiautomatic machines, which occasionally need the services of a repairman, 

(e.g., if a thread breaks) in order to put the machine back in service. The repair time has an exponential 

distribution with a mean of 1 hour. Physical reasons imply that only one repairman work on a machine 

at a time (i.e., a helper does not help). Once repaired, the mean time until the machine jams again is 5 

hours. The cost of a fully equipped repairman is $30 per hour. The opportunity cost of a jammed machine 

is $350 per hour. How many repairmen should be assigned to these 10 machines? 
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 Using the @PFS function in LINGO, we can construct the following table of expected number of 

inoperative machines as a function of the number of repairmen: 

 
 

No. of 
Repairmen 

Expected 
No. of 

Inoperative 
Machines 

Expected 
cost/hour of 
Inoperative 
Machines 

 
 

Cost/hour of 
Repairmen 

 
Total 

expected 
cost/hour 

0 10.0 $3500.00 $0 $3500.00 

1 5.092 $1782.17 $30.00 $1812.17 

2 2.404 $841.30 $60.00 $901.30 

3 1.804 $631.50 $90.00 $721.50 

4 1.689 $591.28 $120.00 $711.28 

5 1.670 $584.38 $150.00 $734.38 

Thus, it appears that optimum number of repairmen is 4. 

 An example LINGO model for computing this table is as follows: 

  ! Machine repair 

   SETS: 

    NREP/1..5/:       ! Consider 5 possible no. of repair persons; 

            NDOWN, ! Expected no. of down machines; 

           CPERHR, ! Expected cost/hour of down machines; 

            TCOST;  ! Total expected cost/hour; 

   ENDSETS 

   ! For each configuration, compute the performance- 

    @FOR( NREP( I): 

       NDOWN( I) = @PFS( NMACH * RTIME / UPTIME, I, NMACH); 

       CPERHR( I) = CM * NDOWN( I); 

       TCOST( I) = CPERHR( I) + CR * I; 

       ); 

     ! The input data; 

    NMACH = 10; 

    RTIME = 1; 

   UPTIME = 5; 

   CR = 30; 

   CM = 350; 

END 

Part of the solution is: 

 Variable         Value 

TCOST( 1)      1812.173 

TCOST( 2)      901.3025 

TCOST( 3)      721.5043 

TCOST( 4)      711.2829 

TCOST( 5)      734.3842 

 A model similar to the machine repairman has been used by Samuelson (1999) to analyze predictive 

dialing methods in an outbound call center. In a predictive dialing system, an automatic dialer may start 

dialing the next client to be contacted even before there is an agent available to talk to the client. It takes 

anywhere from 10 to 30 seconds to dial a number and have the person dialed answer the phone. So, the 
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automatic dialing is done in the anticipation that an agent will become available by the time that a called 

party answers the phone. An automatic dialer can detect a busy signal or a call that is not answered, and 

can move on to dial the next number. Samuelson (1999) indicates that a good predictive dialer can 

increase the agent talk time (i.e., utilization) to 95% from less than 80%. The manager of a predictive 

dialer has at least two decision variables in controlling the predictive dialer: a) how many additional 

lines to use, beyond the number of agents, for dialing, and b) the delay time before starting dialing on a 

line once it becomes available. These two decisions can be fit into the machine repairman as follows. 

The number of agents equals the number of repairmen. The number of lines total is the population size. 

The up time is the delay time before initiating dialing + the dialing time + time to answer.  

18.4.5 Selection of a Processor Type via the M/G/1 Model 
You are about to install an ATM (Automated Teller Machine) at a new location. You have a choice 

between two machines. The type A is a highly automated machine with a mean time to process a 

transaction of 3 minutes with a standard deviation of 4.5 minutes. The type M machine is less automated. 

It has a mean processing time of 4 minutes with a standard deviation of 1 minute. The expected arrival 

rate is 10 customers/hour at the location in question. Which machine has a lower expected waiting time? 

Which machine has a lower expected time in system?  

 There is a simple expression for the expected waiting time in a system with a single server for which 

arrivals occur in a Poisson fashion and service times have a general distribution. If:  

R = mean arrival rate, 

T = mean service time, 

SD = the standard deviation in service times, and 

EW = expected waiting time,  

then: 

EW = R*( T*T + SD*SD)/[2*(1- R*T)]. 

The following LINGO model illustrates: 

! Single server queue with Poisson(Markovian) arrivals 

  and General service distribution, so-called M/G/1 queue; 

DATA: 

 R = .1666667;  ! Arrival rate in minutes(10/hour); 

 T = 3;         ! Mean service time in minutes; 

SD = 4.5;       ! Standard deviation in service time; 

ENDDATA 

! Compute load( = Prob{ wait > 0}); 

  RHO = R*T; 

! Expected waiting time; 

  EW = R*( SD * SD + T * T)/(2*(1-RHO)); 

! Expected time in system; 

  ET = EW + T; 

! Expected number waiting; 

  EN = R * EW; 

! Expected number in system; 

  ES = R * ET; 
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The solution is: 

Variable           Value 

       R       0.1666667 

       T        3.000000 

      SD        4.500000 

     RHO       0.5000001 

      EW        4.875002 

      ET        7.875002 

      EN       0.8125005 

      ES        1.312501 

To evaluate the slower, but less variable server, we change the data section to: 

DATA: 

 R = .1666667;  ! Arrival rate in minutes(10/hour); 

 T = 4;         ! Mean service time in minutes; 

SD = 1;         ! Standard deviation in service time; 

ENDDATA 

Now, the solution is: 

Variable           Value 

       R       0.1666667 

       T        4.000000 

      SD        1.000000 

     RHO       0.6666668 

      EW        4.250003 

      ET        8.250003 

      EN       0.7083339 

      ES        1.375001 

 This is interesting. Due to the lower variability of the second server, the expected wait time is lower 

with it. The first server, however, because it is faster, has a lower total time in system, ET. There are 

some situations in which customers would prefer the longer expected time in system if it results in a 

lower expected waiting time. One such setting might be a good restaurant. A typical patron would like 

a low expected wait time, but might actually prefer a long leisurely service. 

18.4.6 Multiple Server Systems with General Distribution, M/G/c & G/G/c 
There is no simple, “closed form” solution for a system with multiple servers, a service time distribution 

that is non-exponential, and positive queue space. Whitt (1993), however, gives a simple approximation. 

He gives evidence that the approximation is usefully accurate. Define: 

 SCVA = squared coefficient of variation of the interarrival time distribution 

 = (variance in interarrival times)/ (mean interarrival time squared) 

 = (variance in interarrival times)*R*R, 

SCVT = squared coefficient of variation of the service time distribution 

 = (variance in service times)/(mean service time squared) 

 = (variance in service times/( T*T). 

EWM(R,T,S) = expected waiting time in an M/M/c system with arrival rate R, 

  expected service time T, and S servers. 
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The approximation for the expected waiting time is then: 

EWG(R,T,S,SCVA, SCVT) 

= EWM(R,T,S)*(SCVA + SCVT)/2. 

 Note that for the exponential distribution, the coefficient of variation is one. It is fairly easy to show 

that this approximation is in fact exact for M/G/1, M/M/c, M/G/, and when the system becomes heavily 

loaded. 

Example 

Suppose arrivals occur in a Poisson fashion at the rate of 50/hour (i.e., .8333333 per minute), there are 

three servers, and the service time for each customer is exactly three minutes. A constant service time 

implies that the service time squared coefficient of variation (SCVT) equals 0. Poisson arrivals implies 

that the squared coefficient of variation of interarrival times (SCVA) equals 1. The model is: 

! Compute approximate statistics for a (QGGC) 

   multi-server system with general arrivals,  

   and general service time distribution; 

DATA: 

   R = .8333333; ! Mean arrival rate; 

   T = 3;      ! Mean service time; 

   S = 3;      ! Number of servers; 

 SCVA = 1;      ! Squared coefficient of variation 

                    of interarrival times; 

 SCVT = 0;       ! Squared coefficient of variation 

                    of service times; 

 ENDDATA 

! The model; 

! Average no. of busy servers; 

   LOAD = R * T; 

! Probability a given call must wait; 

   PWAIT = @PEB( LOAD, S); 

! Conditional expected wait, i.e., given must wait; 

   WAITCND = T/( S - LOAD); 

! Unconditional expected wait; 

   WAITUNC = PWAIT * WAITCND; 

! Unconditional approximate expected wait for 

    general distribution; 

   WAITG = WAITUNC * (SCVA + SCVT)/2; 

The solution is: 

Variable           Value 

       R       0.8333333 

       T        3.000000 

       S        3.000000 

    SCVA        1.000000 

    SCVT       0.0000000 

    LOAD        2.500000 

   PWAIT       0.7022471 

 WAITCND        5.999999 

 WAITUNC        4.213482 

   WAITG        2.106741 
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 Thus, the approximate expected wait time is about 2.1067. Later we will show that the expected 

wait time can in fact be calculated exactly as 2.15. So, the approximation is not bad. 

18.5 Critical Assumptions and Their Validity 
The critical assumptions implicit in the models discussed can be classified into three categories: 

1) Steady state or stationarity assumptions. 

2) Poisson arrivals assumption. 

3) Service time assumptions. 

 The steady state assumption is that the system is not changing systematically over time (e.g., the 

arrival rate is not changing over time in a cyclical fashion). Further, we are interested in performance 

only after the system has been operating sufficiently long, so that the starting state has little effect on the 

long run average. No real system strictly satisfies the steady state assumption. All systems start up at 

some instant and terminate after some finite time. Arrival rates fluctuate in a predictable way over the course 

of a day, week, month, etc. Nevertheless, the models discussed seemed to fit reality quite well in many 

situations in spite of the lack of true stationarity in the real world. A very rough rule of thumb is that if the 

system processing capacity is b customers/minute and the arrival rate is c customers/minute, then the steady 

state formulae apply approximately after 1/(b - c) minutes. This corresponds roughly to one "busy period." 

 The models discussed have assumed that service times are either constant or exponential distributed. 

Performance tends to be relatively insensitive to the service time distribution (though still dependent 

upon the mean service time) if either the system is lightly loaded or the available waiting space is very 

limited. In fact, if there is no waiting space, then to compute the distribution of number in system the 

only information needed about the service time distribution is its mean. 

18.6 Networks of Queues 
Many systems, ranging from an office that does paperwork to a manufacturing plant, can be thought of 

as a network of queues. As a job progresses through the system, it successively visits various service or 

processing centers. The main additional piece of information one needs in order to analyze such a system 

is the routing transition matrix, that is, a matrix of the form:  

P(i,j) = Prob{ a job next visits processing center j | given that it just finished at center i}.  

 Jackson (1963) proved a remarkable result, essentially that if service times have an exponential 

distribution and arrivals from the outside arrive according to a Poisson process, then each of the 

individual queues in a network of queues can be analyzed by itself. The major additional piece of 

information that one needs to analyze a given work center or station is the arrival rate to the station. If 

we define REXT(j) = arrival rate to station j from the outside (or external) world, and R(j) = the arrival 

rate at station j both from inside and outside, then it is fairly easy to show and also intuitive that the R(j) 

should satisfy: 

R(j) = REXT(j) + i R(i)* P(i,j). 
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 The following LINGO model illustrates how to solve this set of equations and then solve the queuing 

problem at each station: 

! Jackson queuing network model(qjacknet); 

SETS: 

  CENTER: S, T, REXT, R, NQ, LOAD; 

  CXC( CENTER, CENTER): P; 

ENDSETS 

DATA: 

! Get center name, number of servers, 

  mean service time and external arrival rate; 

 CENTER,  S,   T,  REXT = 

  C1      2   .1    4 

  C2      1   .1    1 

  C3      1   .1    3; 

! P(i,j) = Prob{ job next goes to i| given just 

                  finished at j}; 

  P  = 0  .6   .4 

      .1   0   .4 

      .3  .3   0;   

ENDDATA 

! Solve for total arrival rate at each center; 

 @FOR( CENTER( I): 

   R( I) = REXT( I) + @SUM( CENTER( J): R( J) * P( I, J)); 

     ); 

! Now solve the queuing problem at each center; 

 @FOR( CENTER( I): 

!  LOAD( I) = load on center I; 

   LOAD( I) = R( I) * T( I); 

! Expected number at I = expected number waiting 

     + expected number in service; 

   NQ(I) = ( LOAD( I)/( S( I) - LOAD( I))) 

                *@PEB( LOAD( I), S( I)) + LOAD( I); 

!  @PEB() = Prob{ all servers are busy at I}; 

    ); 

! Expected time in system over all customers; 

   WTOT = @SUM( CENTER: NQ)/@SUM( CENTER: REXT); 

Part of the solution is: 

 Variable           Value 

     WTOT       0.6666667 

   R( C1)        10.00000 

   R( C2)        5.000000 

   R( C3)        7.500000 

  NQ( C1)        1.333333 

  NQ( C2)        1.000000 

  NQ( C3)        3.000000 

LOAD( C1)        1.000000 

LOAD( C2)       0.5000000 

LOAD( C3)       0.7500000 
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18.7 Designer Queues 
In preceding sections, we gave some “canned” queuing models for the most common waiting line 

situations. In this section, we present details on the calculations behind the queuing models. Thus, if you 

want to design your own queuing system that does not quite match any of the standard situations, you 

may be able to model your situation using the methods here.  

18.7.1 Example: Positive but Finite Waiting Space System 
A common mode of operation for an inbound call center is to have, say 20 agents, but say, 30 phone 

lines. Thus, a caller who finds a free phone line but all 20 agents busy, will be able to listen to soothing 

music while waiting for an agent. A caller who finds 30 callers in the system will get a busy signal and 

will have to give up. 

First, define some general parameters: 

r = arrival rate parameter. For the infinite source case, 1/r = mean time between successive 

arrivals. For the finite source case, 1/r = mean time from when a given customer 

finishes a service until it next requires service again (i.e., 1/r = mean up time), 

T = mean service time, 

S = number of servers, 

    M    = number of servers plus number of available waiting spaces. 

We want to determine: 

              Pk = Prob {number customers waiting and being served = k} 

 If there are S servers, and M total lines or spaces, then the distribution of the number in system, the 

Pk , satisfy the set of equations: 

Pk = (rT/k)Pk-1 for k = 1, 2, ..., S 

 = (rT/S)Pk-1 for k = S + 1, S + 2, ..., M 

and   

P0 + P1 + ... + PM = 1. 
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Here is a model that solves the above set of equations: 

! M/M/c  queue with limited space (qmmcf); 

DATA: 

!  Number of servers; 

    S = 9; 

!  Total number of spaces; 

    M = 12; 

!  Arrival rate; 

    R = 4; 

!  Mean service time; 

    T = 2; 

ENDDATA 

SETS:          

 STATE/1..500/: P; 

ENDSETS 

! The basic equation for a Markovian(i.e., the time 

   til next transition has an exponential distribution) system, 

   says:(expected transitions into state k per unit time)  

      = (expected transitions out of state k per unit time); 

! For state 1( P0 = prob{system is empty}); 

  P0* R + P( 2)*2/T = ( R + 1/T) * P( 1); 

! Remaining states with idle servers; 

@FOR( STATE( K) | K #GT# 1 #AND# K #LT# S: 

  P( K - 1)* R + P( K+1)*(K+1)/T = ( R + K/T) * P( K) 

    ); 

! States with all servers busy; 

@FOR( STATE( K) | K #GE# S #AND# K #LT# M: 

  P( K - 1)* R + P( K+1)*S/T = ( R + S/T) * P( K) 

    ); 

! All-full state is special; 

  P( M - 1)* R = (S/T)* P( M); 

! The P(k)'s are probabilities; 

  P0 + @SUM( STATE( K)| K #LE# M: P( K)) = 1; 

! Compute summary performance measures; 

!  Fraction lost; 

   FLOST = P( M); 

! Expected number in system; 

    EN = @SUM( STATE( K)| K #LE# M: K * P( K)); 

! Expected time in system for those who enter; 

    ET = EN/( R *(1-FLOST)); 

! Expected wait time for those who enter; 

    EW = ET - T; 
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The solution is: 

Variable           Value 

       N        9.000000 

       M        12.00000 

       R        4.000000 

       T        2.000000 

      P0       0.3314540E-03 

   FLOST       0.8610186E-01 

      EN        7.872193 

      ET        2.153466 

      EW        0.153466 

   P( 1)       0.2651632E-02 

   P( 2)       0.1060653E-01 

   P( 3)       0.2828407E-01 

   P( 4)       0.5656815E-01 

   P( 5)       0.9050903E-01 

   P( 6)       0.1206787 

   P( 7)       0.1379185 

   P( 8)       0.1379185 

   P( 9)       0.1225942 

  P( 10)       0.1089727 

  P( 11)       0.9686459E-01 

  P( 12)       0.8610186E-01 

 This model has three extra waiting spaces or lines beyond the nine servers. The fraction demand 

lost is 0.08610186. By comparison, if there were no extra lines, the fraction lost would be more than 

twice as much, 0.1731408. 

 The above model is an example of balking. A prospective customer is said to balk if the customer 

decides to not join the queue because the queue is too long. It is a common problem in systems where 

the queue is visible (e.g., automotive fuel filling stations). More generalized forms of balking can be 

modeled using methods of this chapter. One such form might be that an arriving customer balks with a 

probability that is increasing in the length of the queue. 

 A phenomenon similar to balking is reneging. A customer in the waiting queue is said to renege if 

she departs the waiting queue before having received service. For example, at internet websites it is not 

uncommon for more than 50% of customers to abandon their “shopping carts” before getting to the 

checkout step. Again, reneging behavior can be easily modeled using the methods of this section by 

having a reneging rate that is, say proportional to the number waiting. 
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18.7.2 Constant Service Time. Infinite Source. No Limit on Line Length 
The special case when the service time is a constant can be solved numerically. If the service time is a 

constant T, then we can exploit the fact that over any interval of time of length T: a) all customers in 

service at the beginning of the interval will have finished at the end, and b) the number of arrivals during 

the interval has a Poisson distribution. Define the Poisson probabilities: 

ak = e-(rT)(rT)k/k!    for k = 0, 1, 2, .. 

    =   ak-1 (rT)/k. 

The Pk satisfy the equations: 

1k

k=0

  = P



  

and if S is the number of servers: 

0 1 2
S k+S

k j jk k- j+S

j=0 j=S+1

 =   +     for  k = , , , ...a aP P P   

18.7.3 Example Effect of Service Time Distribution 
A firm uses 3 servers in parallel to process tasks that arrive at the mean rate of 50 per hour. The mean 

time to service a task is 3 minutes (.05 hours). The service time distribution is exponential. 

 The firm is considering switching to a more systemized processing approach in which there is no 

variability in the service time (i.e., every task takes exactly 3 minutes). Will this switch substantially 

reduce the average number in system? 
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 The following is a LINGO model for solving these equations: 

! Queue with constant service time (qmdc); 

DATA: 

 ! Arrival rate per minute; 

    R = .833333; 

 ! Service time in minutes; 

    T = 3; 

 ! Number of servers; 

    S =  3; 

ENDDATA 

SETS: 

 STATE/1..35/: A, P; 

ENDSETS 

 ! Probabilities must sum to 1; 

@SUM( STATE: P) = 1; 

  RHO = R * T; 

! J and K will correspond to a state-1; 

! Calculate probability of K-1 arrivals during a service time; 

  A(1) = @EXP( - RHO); 

@FOR( STATE(K)| K #GT# 1: 

  A(K) = A(K-1) * RHO/(K-1); 

    ); 

 NLAST = @SIZE( STATE); 

 @WARN(" S too large for approximation", A(NLAST) #GT# .1); 

! Transition equations: 

   Probability of having K-1 in system T minutes from now 

 = Prob{ all in system finished and K-1 arrived} + Prob{ S finished and 

just the proper number arrived to bring number in system back up to K-

1}; 

@FOR( STATE( K)| K #LT# @SIZE(STATE): 

  P( K) = @SUM( STATE( J)| J #LE# S: A( K) * P( J)) 

        + @SUM( STATE( J)| J #GT# S #AND# J #LE# K + S: P(J)*A(K-

J+S+1)); 

    ); 

! Because of the extra normalizing equation,  we can drop 

  one transition equation above; 

! Compute average number in system; 

  AVGNSYS = @SUM( STATE( K): (K-1)* P(K)); 

! By Little's equation, average time in system; 

  AVGTSYS = AVGNSYS/ R; 

! Average number waiting; 

         AVGNWTN = AVGNSYS - RHO; 
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Part of the solution is: 

Variable           Value 

     RHO        2.499999 

   NLAST        35.00000 

 AVGNSYS        4.291565 

 AVGTSYS        5.149880 

 AVGNWTN        1.791566 

   P( 1)       0.3936355E-01 

   P( 2)       0.1102164 

   P( 3)       0.1615349 

   P( 4)       0.1684308 

   P( 5)       0.1438250 

   P( 6)       0.1097549 

   P( 7)       0.7924944E-01 

   P( 8)       0.5598532E-01 

   P( 9)       0.3930554E-01 

  P( 10)       0.2757040E-01 

  P( 11)       0.1934223E-01 

  P( 12)       0.1357152E-01 

  P( 13)       0.9522611E-02 

It is of interest to compare this result with the case of exponentially distributed service times: 

 Exponential 
Service Distribution 

 
Constant 

Average No. in System 6.01 4.29 

Average No. Waiting 3.51 1.79 

 Thus, there is a noticeable improvement associated with reducing the variability in service time. In 

fact, in a heavily loaded system, reducing the variability as above will reduce the expected waiting time 

by a factor of almost 2. 
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18.8 Problems 
1. The Jefferson Mint is a Philadelphia based company that sells various kinds of candy by mail. It has 

recently acquired the Toute-de-Suite Candy Company of New Orleans and the Amber Dextrose 

Candy Company of Cleveland. The telephone has been an important source of orders for all three 

firms. In fact, during the busiest three hours of the day (1 pm to 4 pm), Jefferson has been taking 

calls at the rate of .98 per minute, Toute-de-Suite at the rate of .65 calls per minute, and Dextrose at 

the rate of .79 calls per minute. All three find that on average it takes about three minutes to process 

a call. 

 Jefferson would like to examine the wisdom of combining one or more of the three phone order 

taking centers into a single order taking center in Philadelphia. This would require a phone line from 

New Orleans to Philadelphia at a cost of $170 per day and/or a phone line from Cleveland to 

Philadelphia at a cost of $140 per day. A phone order taker costs $75 per day. Regardless of the 

configuration chosen, the desired service level is 95%. That is, at least 95% of the calls should be 

answered immediately, else it is considered lost. This requirement is applicable to the busiest time 

of the day in particular. This is considered reasonable for the kind of semi-impulse buying involved. 

Note that only one phone line is needed to connect two cities. This dedicated line can handle several 

dozen conversations simultaneously. 

a) The New Orleans office could be converted first. What are the expected savings per day 

of combining it with the Philadelphia office? 

b) What is your complete recommendation? 

c) The Cleveland office has been operating with four order takers. How might you wish to 

question and possibly adjust the Cleveland call data? 

2. Reliability is very important to a communications firm. The Exocom firm has a number of its large 

digital communication switches installed around the country. It is concerned with how many spares 

it should keep in inventory to quickly replace failed switches in the field. It estimates that failures 

will occur in the field at the rate of about 1.5 per month. It is unattractive to keep a lot of spares 

because the cost of each switch is $800,000. On the other hand, it is estimated that, if a customer is 

without his switch, the cost is approximately $8,000 for each day out, including weekends. This 

cost is borne largely by Exocom in the form of penalties and lost good will. Even though a faulty 

switch can be replaced in about one hour, (once the replacement switch is on site), it takes about 

one half month to diagnose and repair a faulty switch. Once repaired, a switch joins the spares to 

hold. Exocom is anxious to get your advice because, if no more money need be invested in spares, 

then there are about four other investment projects waiting in the wings, which pass the company's 

1.5% per month cost of capital threshold. What is your recommendation? 



Queuing Systems  Chapter 18    575  

3. Below is a record of long-distance phone calls made from one phone over an interval of time. 

 DESTINATION NUMBER  DESTINATION NUMBER 

DATE CITY STATE MINUTES DATE CITY STATE MINUTES 

03/04 MICHIGANCY IN 0.4 03/21 NEW YORK NY 12.6 

03/07 PHILA PA 3.1 03/21 PRINCETON NJ 2.0 

03/07 LAFAYETTE IN 3.9 03/21 PRINCETON NJ 0.2 

03/07 OSSINING NY 1.4 03/21 PRINCETON NJ 0.3 

03/07 LAFAYETTE IN 2.8 03/21 PRINCETON NJ 0.3 

03/08 LAFAYETTE IN 2.8 03/25 SANTA CRUZ CA 1.4 

03/08 SOSAN FRAN CA 2.0 03/25 FORT WAYNE IN 0.9 

03/08 PHILA PA 0.9 03/27 SANTA CRUZ CA 0.9 

03/11 BOSTON MA 5.1 03/27 SANTA CRUZ CA 8.1 

03/11 NEW YORK NY 3.1 03/27 SOSAN FRAN CA 8.2 

03/15 MADISON WI 0.3 03/27 CHARLOTSVL VA 0.7 

03/19 PHILA PA 3.6 03/28 CHARLOTSVL VA 8.4 

03/20 PALO ALTO CA 4.7 03/28 NEW YORK NY 0.8 

03/20 PALO ALTO CA 9.2 03/29 NEW YORK NY 1.7 

 
 DESTINATION NUMBER  DESTINATION NUMBER 

DATE CITY STATE MINUTES DATE CITY STATE MINUTES 

03/29 BOSTON MA 0.6 04/16 CAMBRIDGE MA 0.9 

04/01 HOUSTON TX 1.1 04/18 ROCHESTER NY 1.3 

04/01 BOSTON MA 10.6 04/19 PALO ALTO CA 16.1 

04/01 BRYAN TX 1.4 04/22 ROCHESTER NY 1.7 

04/01 PEORIA IL 1.0 04/23 CHARLSTON IL 0.7 

04/02 SANTA CRUZ CA 5.5 04/24 CHARLSTON IL 6.4 

04/03 HOUSTON TX 1.4 04/24 WLOSANGLS CA 3.0 

04/03 PEORIA IL 2.3 04/24 NEW YORK NY 5.1 

04/09 NEW YORK NY 1.1 04/24 FORT WAYNE IN 0.9 

04/11 LOS ALTOS CA 5.5 04/24 PORTAGE IN 2.2 

 
a) How well does a Poisson distribution (perhaps appropriately modified) describe the call 

per day behavior? 

b) How well does an exponential distribution describe the number of minutes per call? 

c) In what year were the calls made? 
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