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5 
 

The Sets View of the World 
 

In Normal form, each attribute/field of an entity/record should depend on 

the entity key, the whole key, and nothing but the key, so help me Codd. 

-anonymous 

 
5.1 Introduction 
The most powerful feature of LINGO is its ability to model large systems. The key concept that provides 

this power is the idea of a set of similar objects. When you are modeling situations in real life, there will 

typically be one or more groups of similar objects. Examples of such groups might be factories, products, 

time periods, customers, vehicles, employees, etc. LINGO allows you to group similar objects together 

into sets. Once the objects in your model are grouped into sets, you can make single statements in LINGO 

that apply to all members of a set. 

 A LINGO model of a large system will typically have three sections:  1) a SETS section, 2) a DATA 

section, and 3) a model equations section. The SETS section describes the data structures to be used for 

solving a certain class of problems. The DATA section provides the data to “populate” the data 

structures. The model equations section describes the relationships between the various pieces of data 

and our decisions. 

5.1.1 Why Use Sets?  
In most large models, you will need to express a group of several very similar calculations or constraints. 

LINGO’s ability to handle sets allows you to express such formulae or constraints efficiently. 

 For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you 

had to write each constraint explicitly (e.g., “Warehouse 1 can ship no more than its present inventory, 

Warehouse 2 can ship no more than its present inventory, Warehouse 3 can ship no more than its present 

inventory…” and so on). You would prefer to make a single general statement of the form: “Each 

warehouse can ship no more than its present inventory”. 

5.1.2 What Are Sets?  
A set is a group of similar objects. A set might be a list of products, trucks, employees, etc. Each member 

in the set may have one or more characteristics associated with it (e.g., weight, price/unit, or income). 

We call these characteristics attributes. All members of the same set have the same set of attribute types. 

Attribute values can be known in advance or unknowns for which LINGO solves. For example, each 

product in a set of products might have an attribute listing its price. Each truck in a set of trucks might 

have a hauling capacity attribute. In addition, each employee in a set of employees might have an 

attribute specifying salary as well as an attribute listing birth date. 
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5.1.3 Types of Sets 
LINGO recognizes two kinds of sets: primitive and derived. A primitive set is a set composed only of 

objects that can’t be further reduced.  

 A derived set is defined from one or more other sets using two operations: a) selection (of a subset), 

and/or b) Cartesian product (sometimes called a “cross” or a “join”) of two or more other sets. The key 

concept is that a derived set derives its members from other pre-existing sets. For example, we might 

have the two primitive sets: WAREHOUSE and CUSTOMER. We might have the derived set called 

SHIPLINK, which consists of every possible combination of a warehouse and a customer. Although the 

set SHIPLINK is derived solely from primitive sets, it is also possible to build derived sets from other 

derived sets as well.  

5.2 The SETS Section of a Model 
In a set-based LINGO model, the first section in the model is usually the SETS section. A SETS section 

begins with the keyword SETS: (including the colon) and ends with the keyword ENDSETS. A model 

may have no SETS section, a single SETS section, or multiple SETS sections. A SETS section may 

appear almost anywhere in a model. The major restriction is that you must define a set and its attributes 

before they are referenced in the model's constraints. 

5.2.1 Defining Primitive Sets 
To define a primitive set in a SETS section, you specify: 

 the name of the set, and 

 any attributes the members of the set may have. 

A primitive set definition has the following syntax1: 

setname:[attribute_list]; 

 The setname is a name you choose. It should be a descriptive name that is easy to remember. The 

set name must conform to standard LINGO naming conventions: begin with an alphabetic character, 

followed by up to 31 alphanumeric characters or the underscore (_). LINGO does not distinguish 

between upper and lowercase characters in names. 

 An example sets declaration is: 

SETS: 

  WAREHOUSE: CAPACITY; 

ENDSETS 

 This means that we will be working with one or more warehouses. Each one of them has an attribute 

called CAPACITY. Set members may have zero or more attributes specified in the attribute_list of the 

set definition. An attribute is some property each member of the set possesses. Attribute names must 

follow standard naming conventions and be separated by commas. 

 For illustration, suppose our warehouses had additional attributes related to their location and the 

number of loading docks. These additional attributes could be added to the attribute list of the set 

declaration as: 

WAREHOUSE: CAPACITY, LOCATION, DOCKS; 

 
1The use of Square brackets indicates that a particular item is optional. In this particular case, a primitive 

set's member_list and attribute_list are optional. 
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5.2.2 Defining Derived Sets 
To define a derived set, you specify: 

 the name of the set, 

 its parent sets, 

 optionally, any attributes the set members may have. 

A derived set definition has the following syntax: 

set_name (parent_set_list) [membership_filter] [: attribute_list]; 

 The set_name is a standard LINGO name you choose to name the set. The optional 

membership_filter may place a general condition on membership in the set. 

 The parent_set_list is a list of previously defined sets, separated by commas. LINGO constructs all 

the combinations of members from each of the parent sets to create the members of the derived set. As 

an example, consider the following SETS section: 

SETS: 

   PRODUCT ; 

   MACHINE ; 

   WEEK; 

   ALLOWED( PRODUCT, MACHINE, WEEK): VOLUME; 

ENDSETS 

 Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from parent 

sets PRODUCT, MACHINE, and WEEK. Unless specified otherwise, the set ALLOWED will have one 

member for every combination of PRODUCT, MACHINE, and WEEK. The attribute VOLUME might 

be used to specify how much of each product is produced on each machine in each week. A derived set 

that contains all possible combinations of members is referred to as being a dense set. When a set 

declaration includes a membership_filter or if the members of the derived set are given explicitly in a 

DATA section, then we say the set is sparse. 

 Summarizing, a derived set's members may be constructed by either:  

 an explicit member list in a DATA section, 

 a membership filter, or 

 implicitly dense by saying nothing about the membership of the derived set.  

Specification of an explicit membership list for a derived set in a DATA section will be illustrated in the 

next section of the text. 

 If you have a large, sparse set, explicitly listing all members can become cumbersome. Fortunately, 

in many sparse sets, the members all satisfy some condition that differentiates them from the 

non-members. If you can specify this condition, you can save yourself a lot of typing. This is exactly 

how the membership filter method works. Using the membership filter method of defining a derived 

set's member_list involves specifying a logical condition that each potential set member must satisfy for 

inclusion in the set. You can look at the logical condition as a filter that filters out potential members 

who don't measure up to some criteria. 
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 As an example of a membership filter, suppose you have already defined a set called TRUCKS and 

each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that 

contains only those trucks capable of hauling big loads. You could use an explicit member list and 

explicitly enter each of the trucks that can carry heavy loads. However, why do all that work when you 

could use a membership filter as follows: 

HEAVY_DUTY( TRUCKS) | CAPACITY( &1) #GT# 50000; 

 We have named the set HEAVY_DUTY and have derived it from the parent set TRUCKS. The 

vertical bar character (|) is used to mark the beginning of a membership filter. The membership filter 

allows only those trucks that have a hauling capacity (CAPACITY( &1)) greater than (#GT#) 50,000 into 

the HEAVY_DUTY set. The &1 symbol in the filter is known as a set index placeholder. When building 

a derived set that uses a membership filter, LINGO generates all the combinations of parent set members. 

Each combination is then "plugged" into the membership condition to see if it passes the test. The first 

parent set's value is plugged into &1, the second into &2, and so on. In this example, we have only one 

parent set (TRUCKS), so &2 would not have made sense. The symbol #GT# is a logical operator and 

means "greater than". Other logical operators recognized by LINGO include: 

 #EQ# equal 

 #NE# not equal 

 #GE# greater-than-or-equal-to 

 #LT# less than 

 #LE# less-than-or-equal-to 

5.2.3 Summary 
LINGO recognizes two types of sets - primitive and derived. Primitive sets are the fundamental objects 

in a model and can't be broken down into smaller components. Derived sets, on the other hand, are 

created from other component sets. These component sets are referred to as the parents of the derived 

set and may be either primitive or derived.  

 A derived set can be either sparse or dense. Dense sets contain all combinations of the parent set 

members (sometimes this is also referred to as the Cartesian product or cross of the parent sets). Sparse 

sets contain only a subset of the cross of the parent sets. These may be defined by two methods - explicit 

listing or membership filter. The explicit listing method involves listing the members of the sparse set 

in a DATA section. The membership filter method allows you to specify the sparse set members 

compactly using a logical condition, which all members must satisfy. The relationships amongst the 

various set types are illustrated in Figure 5.1 below. 
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Figure 5.1 Types of Sets 

 

5.3 The DATA Section 
A SETS section describes the structure of the data for a particular class of problems. A DATA section 

provides the data to create a specific instance of this class of problems. The DATA section allows you 

to isolate things that are likely to change from week to week. This is a useful practice in that it leads to 

easier model maintenance and makes a model easier to scale up or down in dimension. 

 We find it useful to partition a LINGO model of a large system into three distinct sections: a) the 

SETS section, b) the DATA section, and c) the model equations section. The developer of a model has 

to understand all three sections. However, if the developer has done a good job of partitioning the model 

into the aforementioned sections, the day-to-day user may only need to be familiar with the DATA 

section. 

 Similar to the SETS section, the DATA section begins with the keyword DATA: (including the 

colon) and ends with the keyword ENDDATA. In the DATA section, you place statements to initialize 

either the attributes of the member of a set you defined in a SETS section or even the set members. These 

expressions have the syntax: 

attribute_list = value_list; 

or 

              set_name = member_list; 
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 The attribute_list contains the names of the attributes you want to initialize, optionally separated by 

commas. If there is more than one attribute name on the left-hand side of the statement, then all attributes 

must be associated with the same set. The value_list contains the values you want to assign to the 

attributes in the attribute_list, optionally separated by commas. Consider the following example: 

SETS: 

   SET1: X, Y; 

ENDSETS 

DATA: 

  SET1 = M1, M2, M3; 

     X =  1   2   3; 

     Y =  4   5   6; 

ENDDATA 

 We have two attributes, X and Y, defined on the set SET1. The three values of X are set to 1, 2, and 

3, while Y is set to 4, 5, and 6. We could have also used the following compound data statement to the 

same end: 

SETS: 

   SET1: X, Y; 

ENDSETS 

DATA: 

  SET1  X  Y = 

   M1   1  4 

   M2   2  5 

   M3   3  6; 

ENDDATA 

 Looking at this example, you might imagine X would be assigned the values 1, 4, and 2, since they 

are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data statement's 

value list, it assigns the first n values to the first position of each of the n attributes in the attribute list, 

the second n values to the second position of each of the n attributes, and so on. In other words, LINGO 

is expecting the input data in column form rather than row form.  

 The DATA section can also be used for specifying members of a derived set. The following 

illustrates both how to specify set membership in a DATA section and how to specify a sparse derived 

set. This example also specifies values for the VOLUME attribute, although that is not required: 

SETS: 

   PRODUCT ; 

   MACHINE ; 

   WEEK ; 

   ALLOWED( PRODUCT, MACHINE, WEEK): VOLUME; 

ENDSETS 

DATA: 

   PRODUCT = A  B; 

   MACHINE = M  N; 

   WEEK = 1..2; 

   ALLOWED, VOLUME = 

     A M 1   20.5 

     A N 2   31.3 

     B N 1   15.8; 

ENDDATA 
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The ALLOWED set does not have the full complement of eight members. Instead, ALLOWED is just the 

three member sparse set:  

(A,M,1), (A,N,2), and (B,N,1).  

LINGO recognizes a number of standard sets. For example, if you declare in a DATA section: 

  PRODUCT = 1..5; 

then the members of the PRODUCT set will in fact be 1, 2, 3, 4, and 5. If you declare: 

    PERIOD = Feb..May; 

then the members of the PERIOD set will in fact be Feb, Mar, Apr, and May. Other examples of inferred 

sets include mon..sun and thing1..thing12. 

 If an attribute is not referenced in a DATA section, then it is by default a decision variable. LINGO 

may set such an attribute to whatever value is consistent with the statements in the model equations 

section. 

 This section gave you a brief introduction to the use of the DATA section. Data do not have to 

actually reside in the DATA section as shown in these examples. In fact, a DATA section can have OLE 

links to Excel, ODBC links to databases, and connections to other spreadsheet and text based data files. 

Examples are given later in this chapter. 

 Note, when LINGO constructs the derived set, it is the right-most parent set that is incremented the 

fastest. 

5.4 Set Looping Functions 
In the model equations section of a model, we state the relationships among various attributes. Any 

statements not in a SETS or DATA section are by default in the model equations section. The power of 

set based modeling comes from the ability to apply an operation to all members of a set using a single 

statement. The functions in LINGO that allow you to do this are called set looping functions. If your 

models do not make use of one or more set looping functions, you are missing out on the power of set 

based modeling and, even worse, you're probably working too hard! 

 Set looping functions allow you to iterate through all the members of a set to perform some 

operation. There are four set looping functions in LINGO. The names of the functions and their uses are: 

Function Function's Use 

@FOR Used to generate constraints over members of a set. 

@SUM Computes the sum of an expression over all members of 

a set. 

@MIN Computes the minimum of an expression over all 

members of a set. 

@MAX Computes the maximum of an expression over all 

members of a set. 

The syntax for a set looping function is: 

@loop_function ( setname [ ( set_index_list) 

   [ | conditional_qualifier]] : expression_list); 

 The @loop_function symbol corresponds to one of the four set looping functions listed in the table 

above. The setname is the name of the set over which you want to loop. The set_index_list is optional 
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and is used to create a list of indices each of which correspond to one of the parent, primitive sets that 

form the set specified by setname. As LINGO loops through the members of the set setname, it will set 

the values of the indices in the set_index_list to correspond to the current member of the set setname. 

The conditional_qualifier is an optional filter and may be used to limit the scope of the set looping 

function. When LINGO is looping over each member of setname, it evaluates the conditional_qualifier. 

If the conditional_qualifier evaluates to true, then the expression_list of the @loop_function is 

performed for the set member. Otherwise, it is skipped. The expression_list is a list of expressions to be 

applied to each member of the set setname. When using the @FOR function, the expression list may 

contain multiple expressions that are separated by semicolons. These expressions will be added as 

constraints to the model. When using the remaining three set looping functions (@SUM, @MAX, and 

@MIN), the expression list must contain only one expression. If the set_index_list is omitted, all 

attributes referenced in the expression_list must be defined on the set setname.  

5.4.1 @SUM Set Looping Function 
In this example, we will construct several summation expressions using the @SUM function in order to 

illustrate the features of set looping functions in general and the @SUM function in particular.  

 Consider the model: 

SETS: 

   SET_A : X; 

ENDSETS 

DATA: 

   SET_A = A1 A2 A3 A4 A5; 

       X = 5  1  3  4  6; 

ENDDATA 

X_SUM = @SUM( SET_A( J): X( J)); 

 LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO 

then begins looping over the members in SET_A. You can think of J as a pronoun.  The index variable 

J is first set to the first member of SET_A (i.e., A1) and X( A1) is then added to the accumulator. Then J 

is set to the second element and this process continues until all values of X have been added to the 

accumulator. The value of the sum is then stored into the variable X_SUM. 

 Since all the attributes in our expression list (in this case, only X appears in the expression list) are 

defined on the index set (SET_A), we could have alternatively written our sum as: 

X_SUM = @SUM( SET_A: X); 

 In this case, we have dropped the superfluous index set list and the index on X. When an expression 

uses this shorthand, we say the index list is implied. Implied index lists are not allowed when attributes 

in the expression list have different parent sets.  

 Next, suppose we want to sum the first three elements of the attribute X. We can use a conditional 

qualifier on the set index to accomplish this as follows: 

X3_SUM = @SUM( SET_A( J) | J #LE# 3: X( J)); 

 The #LE# symbol is called a logical operator. This operator compares the operand on the left (J) 

with the one on the right (3) and returns true if the left operand is less-than-or-equal-to the one on the 

right. Otherwise, it returns false. Therefore, this time, when LINGO computes the sum, it plugs the set 

index variable J into the conditional qualifier J #LE# 3. If the conditional qualifier evaluates to true, 

X( J) will be added to the sum. The end result is that LINGO sums up the first three terms in X, omitting 

the fourth and fifth terms, for a total sum of 9. 
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 Before leaving this example, one subtle aspect to note in this last sum expression is the value that 

the set index J is returning. Note we are comparing the set index variable to the quantity 3 in the 

conditional qualifier J #LE# 3. In order for this to be meaningful, J must represent a numeric value. 

Since a set index is used to loop over set members, one might imagine a set index is merely a placeholder 

for the current set member. In a sense, this is true. However, what set indexes really return is the index 

of the current set member in its parent primitive set. The index returned is one-based. In other words, 

the value 1 is returned when indexing the first set member, 2 when indexing the second, and so on. Given 

that set indices return a numeric value, they may be used in arithmetic expressions along with other 

variables in your model. 

5.4.2 @MIN and @MAX Set Looping Functions 
The @MIN and @MAX functions are used to find the minimum and maximum of an expression over 

members of a set. Again, consider the model: 

SETS: 

   SET_A : X; 

ENDSETS 

DATA: 

  SET_A = A1 A2 A3 A4 A5; 

      X = 5  1  3  4  6; 

ENDDATA 

To find the minimum and maximum values of X, all one need do is add the two expressions: 

THE_MIN_OF_X = @MIN( SET_A( J): X( J)); 

THE_MAX_OF_X = @MAX( SET_A( J): X( J)); 

 As with the @SUM example above, we can use an implied index list since the attributes are defined 

on the index set. Using implied indexing, we can recast our expressions as: 

THE_MIN_OF_X = @MIN( SET_A: X); 

THE_MAX_OF_X = @MAX( SET_A: X); 

 In either case, when we solve this model, LINGO returns the expected minimum and maximum 

values of X: 

    Variable        Value 

THE_MIN_OF_X     1.000000 

THE_MAX_OF_X     6.000000 

 For illustration purposes, suppose we had just wanted to compute the minimum and maximum 

values of the first three elements of X. As with the @SUM example, all we need do is add the conditional 

qualifier J #LE# 3. We then have: 

THE_MIN_OF_X_3 = @MIN( SET_A( J) | J #LE# 3: X( J)); 

THE_MAX_OF_X_3 = @MAX( SET_A( J) | J #LE# 3: X( J)); 

with solution: 

      Variable       Value 

THE_MIN_OF_X_3    1.000000 

THE_MAX_OF_X_3    5.000000 
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5.4.3 @FOR Set Looping Function 
The @FOR function is used to generate constraints across members of a set. Whereas scalar based 

modeling languages require you to explicitly enter each constraint, the @FOR function allows you to 

enter a constraint just once and LINGO does the work of generating an occurrence of the constraint for 

each of the set members. As such, the @FOR statement provides the set based modeler with a very 

powerful tool. 

 To illustrate the use of @FOR, consider the following: 

SETS: 

   TRUCKS : HAUL; 

ENDSETS 

DATA: 

   TRUCKS = MAC, PETERBILT, FORD, DODGE; 

ENDDATA 

 Specifically, we have a primitive set of four trucks with a single attribute titled HAUL. If the attribute 

HAUL is used to denote the amount a truck hauls, then we can use the @FOR function to limit the 

amount hauled by each truck to 2,500 pounds with the following expression: 

@FOR( TRUCKS( T): HAUL( T) <= 2500); 

 In this case, it might be instructive to view the constraints that LINGO generates from our 

expression. You can do this by using the LINGO | Generate command under Windows or by using the 

GENERATE command on other platforms. Running this command, we find that LINGO generates the 

following four constraints: 

      HAUL( MAC) <=   2500; 

HAUL( PETERBILT) <=   2500; 

     HAUL( FORD) <=   2500; 

    HAUL( DODGE) <=   2500; 

 As we anticipated, LINGO generated one constraint for each truck in the set to limit them to a load 

of 2,500 pounds. 

 Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any five 

numbers placed into the GPM attribute: 

SETS: 

   OBJECT: GPM, MPG; 

ENDSETS 

DATA: 

   OBJECT =   A     B      C      D      E; 

      GPM = .0303 .03571 .04545 .07142 .10; 

ENDDATA 

   @FOR( OBJECT( I):  

      MPG( I) = 1 / GPM( I) 

       ); 
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Solving this model gives the following values for the reciprocals: 

Variable           Value 

 MPG( A)        33.00330 

 MPG( B)        28.00336 

 MPG( C)        22.00220 

 MPG( D)        14.00168 

 MPG( E)        10.00000 

 Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR 

statement that causes us to skip the reciprocal computation whenever a zero is encountered. The 

following @FOR statement accomplishes this: 

@FOR( OBJECT( I) | GPM( I) #NE# 0: 

   MPG( I) = 1 / GPM( I) 

); 

 The conditional qualifier (listed in bold) tests to determine if the GPM is not equal (#NE#) to zero. 

If so, the computation proceeds. 

 This was just a brief introduction to the use of the @FOR statement. There will be many additional 

examples in the sections to follow. 

5.4.4 Nested Set Looping Functions 
The simple models shown in the previous section use @FOR to loop over a single set. In larger models, 

you may need to loop over a set within another set looping function. When one set looping function is 

used within the scope of another, we call it nesting. LINGO allows nesting.  

 The following is an example of an @SUM loop nested within an @FOR: 

! The demand constraints; 

   @FOR( VENDORS( J):  

     @SUM( WAREHOUSES( I): VOLUME( I, J)) = DEMAND( J); 

       ); 

 Specifically, for each vendor, we sum up the shipments going from all the warehouses to that vendor 

and set the quantity equal to the vendor's demand.  

 @SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on 

the other hand, may only be nested within other @FOR functions. 

5.5 Set Based Modeling Examples 
Recall, four types of sets can be created in LINGO: 

 primitive, 

 dense derived, 

 sparse derived - explicit list, and 

 sparse derived - membership filter. 

 This section will help develop your talents for set based modeling by building and discussing four 

models. Each of these four models will introduce one of the set types listed above. 
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5.5.1 Primitive Set Example  
The following staff scheduling model illustrates the use of a primitive set. This model may be found in 

the SAMPLES subdirectory off the main LINGO directory under the name STAFFDEM.LNG. 

The Problem 

Suppose you run the popular Pluto Dog's hot dog stand that is open seven days a week. You hire 

employees to work a five-day workweek with two consecutive days off. Each employee receives the 

same weekly salary. Some days of the week are busier than others and, based on past experience, you 

know how many workers are required on a given day of the week. In particular, your forecast calls for 

these staffing requirements: 

Day Mon Tue Wed Thu Fri Sat Sun 

Staff Req'd 20 16 13 16 19 14 12 

 You need to determine how many employees to start on each day of the week in order to minimize 

the total number of required employees, while still meeting or exceeding staffing requirements each day 

of the week. 

The Formulation 

The first question to consider when building a set based model is, "What are the relevant sets and their 

attributes?". In this model, we have a single primitive set, the days of the week. We will be concerned 

with two attributes of the DAYS set. The first is the number of staff required on each day. The second is 

the decision variable of the number of staff to start on each day. If we call these attributes REQUIRED 

and START, then we might write the SETS section and DATA sections as: 

SETS: 

  DAYS : REQUIRED, START; 

ENDSETS 

DATA:  

      DAYS = MON TUE WED THU FRI SAT SUN; 

  REQUIRED = 20  16  13  16  19  14  12; 

ENDDATA 

 We are now at the point where we can begin entering the model's mathematical relations (i.e., the 

objective and constraints). Let's begin by writing the objective: minimize the total number of employees 

we start during the week. In standard mathematical notation, we might write: 

Minimize:  START i 

 The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and "@SUM( 

DAYS( I):" for i and we have: 

MIN = @SUM( DAYS( I): START( I)); 

 Now, all that's left is to deduce the constraints. There is only one set of constraints in this model. 

Namely, we must have enough staff on duty each day to meet or exceed staffing requirements. In words, 

what we want is: 

for each day: Staff on duty today  Staff required today,  

i


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 The right-hand side of this expression, Staff required today, is given. It is simply the quantity 

REQUIRED( I). The left-hand side, Staff on duty today takes a little thought. Given that all employees 

are on a five-day on/two day off schedule, the number of employees working today is: 

Number working today = Number starting today +  

Number starting 1 day ago + Number starting 2 days ago + 

Number starting 3 days ago + Number starting 4 days ago. 

 In other words, to compute the number of employees working today, we sum up the number of 

people starting today plus those starting over the previous four days. The employees starting five and 

six days back don't count because they are on their days off. Therefore, using mathematical notation, 

what one might consider doing is adding the constraint: 

i = j - 4, j

 STARTi  REQUIREDj, for j DAYS  

Translating into LINGO notation, we can write this as: 

@FOR( DAYS( J):  

   @SUM( DAYS( I) | I #LE# 5: START( J - I + 1)) 

    >= REQUIRED( J) 

); 

 In words, the LINGO statement says, for each day of the week, the sum of the employees starting 

over the five-day period beginning four days ago and ending today must be greater-than-or-equal-to the 

required number of staff for the day. This sounds correct, but there is a slight problem. If we try to solve 

our model with this constraint, we get the error message: 

 

 To see why we get this error message, consider what happens on Thursday. Thursday has an index 

of 4 in our set DAYS. As written, the staffing constraint for Thursday will be: 

START( 4 - 1 + 1) + START( 4 - 2 + 1) +  

START( 4 - 3 + 1) + START( 4 - 4 + 1) +  

START( 4 - 5 + 1) >= REQUIRED( 4); 

Simplifying, we get: 

START( 4) + START( 3) +  

START( 2) + START( 1) +  

START( 0) >= REQUIRED( 4); 
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 It is the START(0) term that is at the root of our problem. START is defined for days 1 through 7. 

START(0) does not exist. An index of 0 on START is considered "out of range".  

 What we would like to do is to have any indices less-than-or-equal-to 0, wrap around to the end of 

the week. Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a 

function that does just this, and it is called @WRAP.  

 The @WRAP function takes two arguments - call them INDEX and LIMIT. Formally speaking, 

@WRAP returns J such that J = INDEX - K  LIMIT, where K is an integer such that J is in the interval 

[1,LIMIT]. Informally speaking, @WRAP will subtract or add LIMIT to INDEX until it falls in the range 

1 to LIMIT, and, therefore, is just what we need to "wrap around" an index in multi-period planning 

models.  

 Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint: 

@FOR( DAYS( J):  

 @SUM( DAYS( I) | I #LE# 5:  

  START( @WRAP( J - I + 1, 7))) >= REQUIRED( J) 

); 

The Solution 

Below is our staffing model in its entirety: 

SETS: 

  DAYS : REQUIRED, START; 

ENDSETS 

DATA: 

      DAYS = MON TUE WED THU FRI SAT SUN; 

  REQUIRED = 20  16  13  16  19  14  12; 

ENDDATA 

MIN = @SUM( DAYS( I): START( I)); 

@FOR( DAYS( J):  

  @SUM( DAYS( I) | I #LE# 5:  

     START( @WRAP( J - I + 1, 7))) >= REQUIRED( J) 

     ); 

Solving this model, we get the solution report: 

Optimal solution found at step:         8 

Objective value:                 22.00000 

      Variable           Value        Reduced Cost 

REQUIRED( MON)        20.00000           0.0000000 

REQUIRED( TUE)        16.00000           0.0000000 

REQUIRED( WED)        13.00000           0.0000000 

REQUIRED( THU)        16.00000           0.0000000 

REQUIRED( FRI)        19.00000           0.0000000 

REQUIRED( SAT)        14.00000           0.0000000 

REQUIRED( SUN)        12.00000           0.0000000 

   START( MON)         8.00000           0.0000000 

   START( TUE)         2.00000           0.0000000 

   START( WED)         0.00000           0.0000000 

   START( THU)         6.00000           0.0000000 

   START( FRI)         3.00000           0.0000000 

   START( SAT)         3.00000           0.0000000 

   START( SUN)         0.00000           0.0000000 
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           Row    Slack or Surplus      Dual Price 

             1        22.00000            1.000000 

             2       0.0000000          -0.2000000 

             3       0.0000000          -0.2000000 

             4       0.0000000          -0.2000000 

             5       0.0000000          -0.2000000 

             6       0.0000000          -0.2000000 

             7       0.0000000          -0.2000000 

             8       0.0000000          -0.2000000 

The objective value of 22 means we need to hire 22 workers.  

 We start our workers according to the schedule: 

 Mon Tue Wed Thu Fri Sat Sun 

Start 8 2 0 6 3 3 0 

 If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see the slack values 

are 0 on all of the days. This means there are no extra workers on any day.  

5.5.2 Dense Derived Set Example  
The following model illustrates the use of a dense derived set in a blending model. This model may be 

found in the SAMPLES subdirectory off the main LINGO directory under the name CHESS.LNG. 

The Problem 

The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called the 

Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The table 

below lists the number of ounces of the two nuts contained in each pound of each brand and the price at 

which the company can sell a pound of each brand: 

 Pawn Knight Bishop King 

Peanuts (oz.) 15 10   6   2 

Cashews (oz.)   1   6 10 14 

Selling Price ($/lb.)   2   3   4   5 

 Chess has contracts with suppliers to receive per day: 750 pounds of peanuts and 250 pounds of 

cashews. Our problem is to determine the number of pounds of each brand to produce each day to 

maximize total revenue without exceeding the available supply of nuts. 

The Formulation 

 The primitive sets in this model are the nut types and the brands of mixed nuts. The NUTS set has 

the single attribute SUPPLY that is the daily supply of nuts in pounds. The BRANDS set has PRICE and 

PRODUCE attributes, where PRICE stores the selling price of the brands and PRODUCE represents the 

decision variables of how many pounds of each brand to produce each day. 
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 We need one more set, however, in order to input the brand formulas. We need a two dimensional 

table defined on the nut types and the brands. To do this, we will generate a derived set from the cross 

of the NUTS and BRANDS sets. Adding this derived set, we get the complete SETS section: 

SETS: 

   NUTS : SUPPLY; 

   BRANDS : PRICE, PRODUCE; 

   FORMULA( NUTS, BRANDS): OUNCES; 

ENDSETS  

 We have titled the derived set FORMULA, and it has the single attribute OUNCES, which will be 

used to store the ounces of nuts used per pound of each brand. Since we have not specified the members 

of this derived set, LINGO assumes we want the complete, dense set that includes all pairs of nuts and 

brands. 

 Now that our sets are defined, we can move on to building the DATA section. We initialize the 

three attributes SUPPLY, PRICE, and OUNCES in the DATA section as follows: 

DATA: 

    NUTS = PEANUTS, CASHEWS; 

  SUPPLY =   750      250; 

  BRANDS = PAWN, KNIGHT, BISHOP, KING; 

     PRICE =  2      3      4      5; 

    OUNCES = 15     10      6      2  !(Peanuts); 

              1      6     10     14; !(Cashews); 

ENDDATA 

 With the sets and data specified, we can enter our objective function and constraints. The objective 

function of maximizing total revenue is straightforward: 

MAX = @SUM( BRANDS( I): PRICE( I) * PRODUCE( I)); 

 Our model has only one class of constraints. Namely, we can't use more nuts than we are supplied 

with on a daily basis. In words, we would like to ensure that: 

For each nut type i, the number of pounds of nut i used must be less-than-or-equal-to the supply 

of nut i. 

We can express this in LINGO as: 

@FOR( NUTS( I):  

   @SUM( BRANDS( J):  

   OUNCES( I, J) * PRODUCE( J) / 16) <= SUPPLY( I) 

); 

We divide the sum on the left-hand side by 16 to convert from ounces to pounds. 
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The Solution 

Our completed nut-blending model is: 

SETS: 

   NUTS : SUPPLY; 

   BRANDS : PRICE, PRODUCE; 

   FORMULA( NUTS, BRANDS): OUNCES; 

ENDSETS 

DATA: 

    NUTS = PEANUTS, CASHEWS; 

  SUPPLY =   750      250; 

  BRANDS = PAWN, KNIGHT, BISHOP, KING; 

   PRICE =   2      3      4      5; 

   OUNCES = 15     10      6      2  !(Peanuts); 

             1      6     10     14; !(Cashews); 

ENDDATA 

MAX = @SUM( BRANDS( I):  

 PRICE( I) * PRODUCE( I)); 

 @FOR( NUTS( I):  

   @SUM( BRANDS( J):  

     OUNCES( I, J) * PRODUCE(J)/16) <= SUPPLY(I) 

     ); 

An abbreviated solution report to the model follows: 

Optimal solution found at step:         0 

Objective value:                 2692.308 

        Variable         Value   Reduced Cost 

  PRODUCE( PAWN)      769.2308     0.0000000 

PRODUCE( KNIGHT)     0.0000000     0.1538461 

PRODUCE( BISHOP)     0.0000000     0.7692297E-01 

  PRODUCE( KING)      230.7692     0.0000000 

           Row  Slack or Surplus  Dual Price 

             1        2692.308      1.000000 

             2       0.0000000      1.769231 

             3       0.0000000      5.461538 

 This solution tells us Chess should produce 769.2 pounds of the Pawn mix and 230.8 of the King 

for total revenue of $2692.30. The dual prices on the rows indicate Chess should be willing to pay up to 

$1.77 for an extra pound of peanuts and $5.46 for an extra pound of cashews. If, for marketing reasons, 

Chess decides it must produce at least some of the Knight and Bishop mixes, then the reduced cost 

figures tell us revenue will decrease by 15.4 cents with the first pound of Knight produced and revenue 

will decline by 76.9 cents with the first pound of Bishop produced. 

5.5.3 Sparse Derived Set Example - Explicit List 
In this example, we will introduce the use of a sparse derived set with an explicit listing. When using 

this method to define a sparse set, we must explicitly list all members of the set. This will usually be 

some small subset of the dense set resulting from the full Cartesian product of the parent sets. 

 For our example, we will set up a PERT (Program Evaluation and Review Technique) model to 

determine the critical path of tasks in a project involving the roll out of a new product. PERT is a simple, 

but powerful, technique developed in the 1950s to assist managers in tracking the progress of large 

projects. Its first official application was to the fleet submarine ballistic missile project, the so-called 
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Polaris project.  According to Craven(2001),  PERT was given its name by Vice Admiral William F. 

Raborn,  who played a key role in starting the Polaris project.  Raborn had a new bride whose nickname 

was Pert.  In her honor, Raborn directed that the management system that was to monitor the Polaris 

project be called PERT. The Polaris project was completed eighteen months ahead of schedule! Perhaps 

PERT played some role in this success. PERT is particularly useful at identifying the critical activities 

within a project, which, if delayed, will delay the project completion date. These time critical activities 

are referred to as the critical path of a project. Having such insight into the dynamics of a project goes a 

long way in guaranteeing it won't get sidetracked and become delayed. PERT, and a closely related 

technique called CPM (Critical Path Method), continues to be used successfully on a wide range of 

projects. The formulation for this model is included in the SAMPLES subdirectory off the main LINGO 

directory under the name PERTD.LNG. 

The Problem 

Wireless Widgets is about to launch a new product — the Solar Widget. In order to guarantee the launch 

will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the launch. Doing 

so will allow them to identify the critical path of tasks that must be completed on time in order to 

guarantee the Solar Widget's timely introduction. The tasks that must be accomplished before 

introduction and their anticipated times for completion are listed in the table below: 

Task Weeks 

Finalize Design 10 

Forecast Demand 14 

Survey Competition 3 

Set Prices  3 

Schedule Production Run 7 

Cost Out 4 

Train Salesmen 10 

 Certain tasks must be completed before others can commence. These precedence relations are 

shown in Figure 5.2: 

Figure 5.2 Product Launch Precedence Relations 

Forecast
Demand

Finalize
Design

Schedule
Production Run Cost Out

Train
Salesmen

Set
Prices

Survey
Competition

 

 For instance, the two arrows originating from the Forecast Demand node indicate the task must be 

completed before the Schedule Production Run and the Set Prices tasks may be started.  

 Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the 

tasks on the critical path. 

 

The Formulation 

 We will need a primitive set to represent the tasks of the project.  
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We have associated four attributes with the TASKS set. The definitions of the attributes are: 

TIME Time duration to complete the task, given 

ES Earliest possible start time for the task, to be computed, 

LS Latest possible start time for the task, to be computed 

SLACK Difference between LS and ES for the task, to be computed. 

 If a task has a 0 slack, it means the task must start on time or the whole project will be delayed. The 

collection of tasks with 0 slack time constitutes the critical path for the project. 

 In order to compute the start times for the tasks, we will need to examine the precedence relations. 

Thus, we will need to input the precedence relations into the model. The precedence relations can be 

viewed as a list of ordered pairs of tasks. For instance, the fact the DESIGN task must be completed 

before the FORECAST task could be represented as the ordered pair (DESIGN, FORECAST). Creating 

a two-dimensional derived set on the TASKS set will allow us to input the list of precedence relations. 

Therefore, our DATA section will look as follows: 

DATA: 

 TASKS : TIME, ES, LS, SLACK; 

 PRED( TASKS, TASKS); 

 Notice that the PRED set has no attributes. Its purpose is only to provide the information about the 

precedence relationships between tasks.  

 Next, we can input the task times and precedence pairs in the DATA section thus: 

DATA:  

 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN; 

 TIME =   10,      14,      3,      3,      7,       4,       10; 

 PRED = 

    DESIGN, FORECAST, 

    DESIGN, SURVEY, 

    FORECAST, PRICE, 

    FORECAST, SCHEDULE, 

    SURVEY, PRICE, 

    SCHEDULE, COSTOUT, 

    PRICE, TRAIN, 

    COSTOUT, TRAIN; 

ENDDATA 

 Keep in mind that the first member of the PRED set is the ordered pair (DESIGN, FORECAST) 

and not just the single task DESIGN. Therefore, this set has a total of 8 members. Each of which 

corresponds to an arc in the precedence relations diagram. 

 The feature to note from this example is that the set PRED is a sparse derived set with an explicit 

listing of members. The set is a subset derived from the cross of the TASKS set upon itself. The set is 

sparse because it contains only 8 out of a possible 49 members found in the complete cross of TASKS on 

TASKS. The set has an explicit listing because we have included a listing of the members we want 

included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where 

there are thousands of members to select from, but it does make sense whenever set membership 

conditions are not well-defined and the sparse set size is small relative to the dense alternative.  
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 Now, with our sets and data established, we can turn our attention to building the formulas of the 

model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time (SLACK). 

The trick is computing ES and LS. Once we have these times, SLACK is merely the difference of the 

two. Let's start by deriving a formula to compute ES. A task cannot begin until all its predecessor tasks 

are completed. Thus, if we find the latest finishing time of all predecessors to a task, then we have also 

found its earliest start time. Therefore, in words, the earliest start time for task t is equal to the maximum 

of the sum of the earliest start time of the predecessor plus its completion time over all predecessors of 

task t. The corresponding LINGO notation is: 

@FOR( TASKS( J)| J #GT# 1: 

   ES( J) = @MAX( PRED( I, J): ES( I) + TIME( I))); 

 Note, we skip the computation for task 1 by adding the conditional qualifier J #GT# 1. We do this 

because task 1 has no predecessors. We will give the first task an arbitrary start time of 0 below. 

 Computing LS is similar to ES, except we must think backwards. In words, the latest time for task t 

to start is the minimum, over all successor tasks j, of j's latest start minus the time to perform task t. If 

task t starts any later than this, it will force at least one successor to start later than its latest start time. 

Converting into LINGO syntax gives: 

@FOR( TASKS( I)| I #LT# LTASK: 

   LS( I) = @MIN( PRED( I, J): LS( J) - TIME( I))); 

Here, we omit the computation for the last task, since it has no successor tasks. 

 Computing slack time is just the difference between LS and ES and may be written as: 

@FOR( TASKS( I): SLACK( I) = LS( I) - ES( I)); 

 We can set the start time of task 1 to some arbitrary value. For our purposes, we will set it to 0 with 

the statement: 

ES( 1) = 0; 

 We have now input formulas for computing the values of all the variables with the exception of the 

latest start time for the last task. It turns out, if the last project were started any later than its earliest start 

time, the entire project would be delayed. So, by definition, the latest start time for the last project is 

equal to its earliest start time. We can express this in LINGO using the equation: 

LS( 7) = ES( 7); 

 This would work, but it is not a very general way to express the relation. Suppose you were to add 

some tasks to your model. You'd have to change the 7 in this equation to whatever the new number of 

tasks was. The whole idea behind LINGO's set based modeling language is the equations in the model 

should not need changing each time the data change. Expressing the equation in this form violates data 

independence. Here's a better way to do it: 

LTASK = @SIZE( TASKS); 

LS( LTASK) = ES( LTASK); 

 The @SIZE function returns the size of a set. In this case, it will return the value 7, as desired. 

However, if we changed the number of tasks, @SIZE would also return the new, correct value. Thus, we 

preserve the data independence of our model's structure. 
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The Solution 

The entire PERT formulation and portions of its solution appear below: 

SETS: 

   TASKS : TIME, ES, LS, SLACK; 

   PRED( TASKS, TASKS); 

ENDSETS    

DATA:  

 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN; 

 TIME =   10,      14,      3,      3,      7,       4,       10; 

 PRED = 

    DESIGN,FORECAST, 

    DESIGN,SURVEY, 

    FORECAST,PRICE, 

    FORECAST,SCHEDULE, 

    SURVEY,PRICE, 

    SCHEDULE,COSTOUT, 

    PRICE,TRAIN, 

    COSTOUT,TRAIN; 

ENDDATA 

@FOR( TASKS( J)| J #GT# 1: 

   ES( J) = @MAX( PRED( I, J): ES( I) + TIME( I)) 

    ); 

@FOR( TASKS( I)| I #LT# LTASK: 

   LS( I) = @MIN( PRED( I, J): LS( J) - TIME( I)); 

    ); 

@FOR( TASKS( I): SLACK( I) = LS( I) - ES( I)); 

ES( 1) = 0; 

LTASK = @SIZE( TASKS); 

LS( LTASK) = ES( LTASK); 

The interesting part of the solution is: 

        Variable           Value 

           LTASK         7.000000 

     ES( DESIGN)         0.000000 

   ES( FORECAST)        10.000000 

     ES( SURVEY)        10.000000 

      ES( PRICE)        24.000000 

   ES( SCHEDULE)        24.000000 

    ES( COSTOUT)        31.000000 

      ES( TRAIN)        35.000000 

     LS( DESIGN)         0.000000 

   LS( FORECAST)        10.000000 

     LS( SURVEY)        29.000000 

      LS( PRICE)        32.000000 

   LS( SCHEDULE)        24.000000 

    LS( COSTOUT)        31.000000 

      LS( TRAIN)        35.000000 

  SLACK( DESIGN)         0.000000 

SLACK( FORECAST)         0.000000 

  SLACK( SURVEY)        19.000000 

   SLACK( PRICE)         8.000000 

SLACK( SCHEDULE)         0.000000 
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 SLACK( COSTOUT)         0.000000 

   SLACK( TRAIN)         0.000000 

 The interesting values are the slacks for the tasks. SURVEY and PRICE have respective slacks of 19 

and 8. The start time of either SURVEY or PRICE (but not both) may be delayed by as much as these 

slack values without delaying the completion time of the entire project. The tasks DESIGN, FORECAST, 

SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack. These tasks constitute the critical 

path. If any of their start times are delayed, the entire project will be delayed. Management will want to 

pay close attention to these critical path activities to be sure they start on time and complete within the 

allotted time. Finally, the ES( TRAIN) value of 35 tells us the estimated time to the start of the roll out 

of the new Solar Widget will be 45 weeks: 35 weeks to get to the start of training, plus 10 weeks to 

complete training. 

5.5.4 A Sparse Derived Set Using a Membership Filter 
In this example, we introduce the use of a sparse derived set with a membership filter. Using a 

membership filter is the third method for defining a derived set. When you define a set using this method, 

you specify a logical condition each member of the set must satisfy. This condition is used to filter out 

members that don't satisfy the membership condition.  

 For our example, we will formulate a matching problem. In a matching problem, there are N objects 

we want to match into pairs at minimum cost. Sometimes this is known as the roommate selection 

problem. It is a problem faced by a university at the beginning of each school year as incoming first year 

students are assigned to rooms in dormitories. The pair (I,J) is indistinguishable from the pair (J,I). 

Therefore, we arbitrarily require I be less than J in the pair. Formally, we require I and J make a set of 

ordered pairs. In other words, we do not wish to generate redundant ordered pairs of I and J, but only 

those with I less than J. This requirement that I be less than J will form our membership filter.  

 The file containing this model may be found in the SAMPLES subdirectory off the main LINGO 

directory under the name MATCHD.LNG. 

The Problem 

Suppose you manage your company's strategic planning department. There are eight analysts in the 

department. Your department is about to move into a new suite of offices. There are four offices in the 

new suite and you need to match up your analysts into 4 pairs, so each pair can be assigned to one of 

the new offices. Based on past observations you know some of the analysts work better together than 

they do with others. In the interest of departmental peace, you would like to come up with a pairing of 

analysts that results in minimal potential conflicts. To this goal, you have come up with a rating system 

for pairing your analysts. The scale runs from 1 to 10, with a 1 rating for a pair meaning the two get 

along fantastically, whereas all sharp objects should be removed from the pair's office in anticipation 
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of mayhem for a rating of 10. The ratings appear in the following table: 

Analysts 1 2 3 4 5 6 7 8 

1 - 9 3 4 2 1 5 6 

2 - - 1 7 3 5 2 1 

3 - - - 4 4 2 9 2 

4 - - - - 1 5 5 2 

5 - - - - - 8 7 6 

6 - - - - - - 2 3 

7 - - - - - - - 4 

  Analysts' Incompatibility Ratings 

 Since the pairing of analyst I with analyst J is indistinguishable from the pairing of J with I, we have 

only included the above diagonal elements in the table. Our problem is to find the pairings of analysts 

that minimizes the sum of the incompatibility ratings of the paired analysts.  

The Formulation 

The first set of interest in this problem is the set of eight analysts. This primitive set can be written simply 

as:  

ANALYSTS; 

 The final set we want to construct is a set consisting of all the potential pairings. This will be a 

derived set we will build by taking the cross of the ANALYST set. As a first pass, we could build the 

dense derived set: 

PAIRS( ANALYSTS, ANALYSTS); 

 This set, however, would include both PAIRS( I, J) and PAIRS( J, I). Since only one of these pairs 

is required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the 

form PAIRS( I, I). As much as each of the analysts might like an office of their own, such a solution is 

not feasible. The solution is to put a membership filter on our derived set requiring each pair (I,J) in the 

final set to obey the condition J be greater than I. We do this with the set definition: 

PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1; 

 The start of the membership filter is denoted with the vertical bar character (|). The &1 and &2 

symbols in the filter are known as set index placeholders. Set index placeholders are valid only in 

membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross of 

the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if it 

passes the test. Specifically, for each pair (I,J) in the cross of set ANALYSTS on itself, I is substituted 

into the placeholder &1 and J into &2 and the filter is evaluated. If the filter evaluates to true, (I,J) is 

added to the pairs set. Viewed in tabular form, this leaves us with just the above diagonal elements of 

the (I,J) pairing table. 

 We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute that 

corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to indicate if 

analyst I is paired with analyst J. We will call these attributes RATING and MATCH. We append them 

to the PAIRS set definition as follows: 

PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1: RATING, MATCH; 
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 We will simply initialize the RATING attribute to the incompatibility ratings listed in the table above 

using the DATA section: 

DATA: 

  ANALYSTS = 1..8; 

   RATING =  

      9  3  4  2  1  5  6 

         1  7  3  5  2  1 

            4  4  2  9  2 

               1  5  5  2 

                  8  7  6 

                     2  3 

                        4; 

ENDDATA 

 We will use the convention of letting MATCH( I, J) be 1 if we pair analyst I with analyst J, otherwise 

0. As such, the MATCH attribute contains the decision variables for the model. 

 Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is 

just the inner product on the RATING and MATCH attributes and is written as: 

MIN = @SUM( PAIRS( I, J):  

   RATING( I, J) * MATCH( I, J)); 

There is just one class of constraints in the model. In words, what we want to do is: 

For each analyst, ensure the analyst is paired with exactly one other analyst. 

Putting the constraint into LINGO syntax, we get: 

@FOR( ANALYSTS( I): 

  @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: 

     MATCH( J, K)) = 1  

     ); 

 The feature of interest in this constraint is the conditional qualifier J #EQ# I #OR# K #EQ# I on the 

@SUM function. For each analyst I, we sum up all the MATCH variables that contain I and set them 

equal to 1. In so doing, we guarantee analyst I will be paired up with exactly one other analyst. The 

conditional qualifier guarantees we only sum up the MATCH variables that include I in its pairing. 

 One other feature is required in this model. We are letting MATCH( I, J) be 1 if we are pairing I 

with J. Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value from 

0 to infinity. Since we want MATCH to be restricted to being only 0 or 1, we need to add one other 

feature to our model. What we need is to apply the @BIN variable domain function to the MATCH 

attribute. Variable domain functions are used to restrict the values a variable can assume. Unlike 

constraints, variable domain functions do not add equations to a model. The @BIN function restricts a 

variable to being binary (i.e., 0 or 1). When you have a model that contains binary variables, it is said to 

be an integer programming (IP) model. IP models are much more difficult to solve than models that 

contain only continuous variables. Carelessly formulated IPs (with several hundred integer variables or 

more) can literally take forever to solve! Thus, you should limit the use of binary variables whenever 

possible. To apply @BIN to all the variables in the MATCH attribute, add the @FOR expression: 

@FOR( PAIRS( I, J): @BIN( MATCH( I, J))); 
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The Solution 

The entire formulation for our matching example and parts of its solution appears below: 

SETS: 

   ANALYSTS; 

   PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1: 

    RATING, MATCH; 

ENDSETS 

DATA: 

   ANALYSTS = 1..8; 

   RATING =  

      9  3  4  2  1  5  6 

         1  7  3  5  2  1 

            4  4  2  9  2 

               1  5  5  2 

                  8  7  6 

                     2  3 

                        4; 

ENDDATA 

MIN = @SUM( PAIRS( I, J):  

   RATING( I, J) * MATCH( I, J)); 

@FOR( ANALYSTS( I): 

  @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: 

                             MATCH( J, K)) = 1  

     ); 

@FOR( PAIRS( I, J): @BIN( MATCH( I, J))); 

A solution is: 

     Variable           Value         

 MATCH( 1, 2)       0.0000000         

 MATCH( 1, 3)       0.0000000            

 MATCH( 1, 4)       0.0000000            

 MATCH( 1, 5)       0.0000000            

 MATCH( 1, 6)        1.000000            

 MATCH( 1, 7)       0.0000000            

 MATCH( 1, 8)       0.0000000            

 MATCH( 2, 3)       0.0000000            

 MATCH( 2, 4)       0.0000000            

 MATCH( 2, 5)       0.0000000            

 MATCH( 2, 6)       0.0000000            

 MATCH( 2, 7)        1.000000            

 MATCH( 2, 8)       0.0000000            

 MATCH( 3, 4)       0.0000000            

 MATCH( 3, 5)       0.0000000            

 MATCH( 3, 6)       0.0000000            

 MATCH( 3, 7)       0.0000000            
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 MATCH( 3, 8)        1.000000            

 MATCH( 4, 5)        1.000000            

 MATCH( 4, 6)       0.0000000            

 MATCH( 4, 7)       0.0000000            

 MATCH( 4, 8)       0.0000000            

 MATCH( 5, 6)       0.0000000            

 MATCH( 5, 7)       0.0000000            

 MATCH( 5, 8)       0.0000000            

 MATCH( 6, 7)       0.0000000            

 MATCH( 6, 8)       0.0000000            

 MATCH( 7, 8)       0.0000000            

 Notice from the objective value, the total sum of incompatibility ratings for the optimal pairings is 

6. Scanning the Value column for 1’s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5). 

 

5.5.5 Disabling Sections of Code Temporarily 
 

If debugging a model or program it is useful to be able to disable or “comment out” a section of code 

temporarily, and re-enable it later. A special case of the @FOR command can be used for this.   Two 

steps are needed, the first, a setup step and a second step that can be used for any section of code you 

wish to disable.  The general structure is: 

 
    SETS: 

    ! Any other set declarations; 

 

      SYS/1..1/; ! Declare a set of size 1, call it SYS (or anything else); 

    ENDSETS 

 

    ! Other parts of model; 

 

    @FOR( SYS | 0:   ! 0 to disable,  1 to turn back on; 

    ! Section of code to be disabled, - or re-enabled; 

 

        ); ! End of @FOR( SYS loop; 

 

Realize that if the condition is “SYS | 0”, the loop will never be executed, whereas if the condition is 

“| 1”, then because the set SYS is of size 1, the loop will be executed exactly once.  The “!” character 

can used to disable a single statement, but it applies only to the next “ ; ”, not an arbitrary section. 

 

5.6 Domain Functions for Variables 
Variable domain functions were briefly introduced in this chapter when we used @BIN in the previous 

matching model. Variable domain functions allow one to put restrictions on the values allowed for 

decision variables. Examples of the four domain functions available are: 

  @BIN( Y); 
 @GIN( X); 

 @BND( 100, DELIVER, 250); 

 @FREE( PROFIT); 
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 The statement @BIN( Y)  restricts the variable Y to be a binary variable. That is, it can take on 

only the values 0 and 1. 

 The statement @GIN( X)restricts the variable Xto be a general integer variable. That is, it can take 

on only the values 0, 1, 2, … 

 The @BND() specification allows one to specify simple upper and lower bounds. The statement 

@BND( 100, DELIVER, 250) restricts the variable DELIVER to be in the interval [ 100, 250]. The 

same effect could be achieved by the slightly more verbose: 

DELIVER >= 100; 

DELIVER <= 250; 

 LINGO, by default, gives a lower bound of zero to every decision variable. The statement @FREE( 

PROFIT)  overrides this default lower bound for the variable PROFIT and says that (unfortunately) 

PROFIT can take on any value between minus infinity and plus infinity. Each of the domain functions 

can appear inside @FOR loops, just like any other constraint. 

5.7 Spreadsheets and LINGO 
In this chapter, we have seen how LINGO can be useful for modeling very large problems. The most 

widely used method for modeling of any sort is undoubtedly spreadsheet models. When is which 

approach more appropriate? 

 The major advantages of doing a model in a spreadsheet are: 

-  Excellent report formatting features available, 

-  Large audience of people who understand spreadsheets, and 

-  Good interface capability with other systems such as word processors. 

The major advantages of doing a model in LINGO are: 

-  Flexibility of various kinds. 

-  Scalability--It is easy to change the size of any set (e.g., add time periods, products, 

customers, suppliers, transportation modes, etc.) without having to worry about copying or 

editing formulae. There is no upper limit of 16,384(as in a spreadsheet) on the number of 

columns, or 1,048,576 on the number of rows.   

-  Sparse sets are easily represented. E.g., not every plant produces every product. 

-  Auditability and visibility--It is easy to see the formulae of a LINGO model in complete, 

comprehensive form. Truly understanding the model formulae underlying a complex 

spreadsheet is an exercise in detective work. 

-  Multiple dimensions are easily represented. A spreadsheet handles two dimensions very well, 

three dimensions somewhat well, and four or more dimensions not very well. 

-  Separation of model equations from the data. In a spreadsheet, a careless user, when 

modifying the data, may unintentionally modify a formula of the model. 
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 One can get most of the benefits of both by using LINGO in conjunction with spreadsheets. One 

can place "hooks" in a LINGO model, so it automatically retrieves and inserts data from/to spreadsheets, 

databases, and ordinary files. Under Microsoft Windows, the hooks used are the OLE (Object Linking 

and Embedding) and ODBC (Open Database Connectivity) interfaces provided as part of Windows. 

Using the OLE capability to connect an Excel spreadsheet to a LINGO model requires two steps: 

a)  In the spreadsheet, each data area that is to be either a supplier to or a receiver of data from 

the LINGO model must be given an appropriate range name. This is done in the 

spreadsheet by highlighting the area of interest with the mouse, and then using the Insert | 

Name | Define command. The most convenient name to give to a range is the same name 

by which the data are referenced in the LINGO model. 

b)  In the LINGO model, each attribute (vector) (e.g., plant capacities) that is to be retrieved 

from a spreadsheet, must appear in a LINGO DATA section in a statement of the form: 

CAPACITY = @OLE('C:\MYDATA.XLS'); 

 Each attribute (e.g., amount to ship) to be sent to a spreadsheet must appear in a LINGO DATA 

section in a statement of the form: 

@OLE('C:\MYDATA.XLS') = AMT_SHIPPED; 

If only one spreadsheet is open in Excel, this connection can be simplified. You need only write: 

CAPACITY = @OLE(); 

LINGO will look in the only open spreadsheet for the range called CAPACITY. This “unspecified 

spreadsheet” feature is very handy if you want to apply the same LINGO model to several different 

spreadsheet data sets. 
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 This spreadsheet connection can be pushed even further by embedding the LINGO model in the 

spreadsheet for which it has a data connection. This is handy because the associated LINGO model will 

always be obviously and immediately available when the spreadsheet is opened. The screen shot below 

shows a transportation model embedded in a spreadsheet. To the casual user, it looks like a standard 

spreadsheet with a special solve button. 
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The data and results are stored on the first tab/sheet of the spreadsheet file. Not so obvious is the LINGO 

model that is stored on another tab in the same spreadsheet (see below). Completely hidden is a small 

VBA program in the spreadsheet that causes the LINGO model on the second tab to be solved whenever 

the Solve button is clicked on the first tab. The complete example can be found in the file xlingtran.xls. 

 

Just as @OLE() is used to connect a LINGO model to a spreadsheet and @ODBC() is used to connect a 

LINGO model to most databases that support the SQL interface, the @TEXT() statement is available to 

connect a LINGO model to a simple text file. You can send the value(s) of attribute X to a file called 

"myfile.out" with: 

DATA: 

  @TEXT( 'MYFILE.OUT') = X; 

ENDDATA 

The following will send the value of X to the screen, along with an explanatory message: 

@TEXT() = 'The value of X=',  X; 

Still one more way that LINGO can be incorporated into an application is by way of a subroutine call. 

A regular computer program, say in C/C++ or Visual Basic, can make a regular call to the LINGO 

DLL(Dynamic Link Library). The model is passed as a string variable to the LINGO DLL. See the 

LINGO manual for more details. 
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5.8 Programming in LINGO 
LINGO also has a programming capability(in the sense of computer programming) or looping capability.  

The main benefits of this are the ability to a) do preprocessing of data to be used in the model, e.g. to do 

complicated calculations of profit contribution coefficients, b) do postprocessing of solutions to produce 

customized output rather than the standard LINGO solution report, c) solve 2 or more related models in 

a single run.   The ability to solve multiple models with “one click” makes it easier to do things like  i) 

parametric analysis to show how profit changes as a function of some critical parameter,  ii) solve goal 

programming problems where there is a hierarchy of goals,  and iii) build models incrementally by 

adding variables and/or constraints in an iterative, column-generation fashion. 

5.8.1 Building Blocks for Programming  
Executable statements are identified by a CALC section: 
 
          CALC: 

                    ! Executable statements; 
          ENDCALC 

 

Calculations occur sequentially, from top to bottom in a CALC section except when one of four different 

“flow control statements: @IFC, @FOR, @WHILE, or @BREAK are encountered.  The format of an 

“If Condition” statement is: 
 
          @IFC( condition: 

                       ! Executable Statements; 
                 @ELSE 

                      ! Executable Statements; 
               ); 

 

There are two loop control statements, @FOR for looping over a set of known size,  

 
        @FOR( set | condition: 

          ! Executable Statements; 
           ); 

 

   and @WHILE, for looping an arbitrary number of times: 

 
         @WHILE( condition: 

          ! Executable Statements; 
          ); 

 

One can break out of a loop with: 
 
     @BREAK; 

 

Another way of stopping a loop is by introducing a variable, say MORE, as follows: 

 
       MORE = 1: ! Do more iterations; 

       ITER = 0; ! Iteration counter; 

       @WHILE( MORE #AND# ITER #LT# 10: ! Do up to 10 iterations;  

         ITER = ITER + 1; 
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              ... 

          @IFC( condition: MORE = 0);  ! No more iterations if condition true; 

              ... 

          ); 

 

An output string can be written with a statement of the form: 
 

     @WRITE( output_list); 

 

where the output_list can be an explicit string, a variable, a variable in a specified format, @FORMAT(), 

or an end of line character, @NEWLINE(n). 

 

The syntax of the @FORMAT function is: 

 
         @FORMAT( math_expression, field_description), 

where  a field_description is something like  “6.2f” for numbers or “7s” for a name. 

 

A model that we want to reference and solve in a CALC section is indicated with the SUBMODEL 

declaration, e.g. 

 
      SUBMODEL mymodel: 

         ! Model Statements; 
      ENDSUBMODEL 

 

We can solve a previously defined submodel in a CALC section with an @SOLVE statement, e.g. : 

 
            @SOLVE( mymodel); 

 

We illustrate programming in LINGO with the computation of  an “efficient frontier” for the Astro-

Cosmo problem. 

 
! Model to compute efficient frontier; 

SUBMODEL ASTROCOSMO: 

 MAX = OBJ; 

  OBJ= 20*A + 30*C; 

          A        <= 60; 

                 C <= 50; 

          A  + 2*C <= LABORAV; 

ENDSUBMODEL 

 

       DATA: 

        ! Number of points to compute in efficient frontier; 

        NPTS = 11; 

        ! Upper limit on labor(lower limit is 0); 

        UPLIM = 200; 

       ENDDATA 

 

       CALC: 

        ! Set output level to super terse; 

        @SET( 'TERSEO', 2); 

        @WRITE('     Labor     Profit',@NEWLINE(1)); 
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        ! Loop over points on efficient frontier; 

        i = 0; !Standard 3 statement loop control construct; 

        @WHILE( i #LT# NPTS:  

          i = i + 1; 

          LABORAV = UPLIM*(i-1)/(NPTS-1); 

 

          ! Solve model with new labor availability; 

          @SOLVE(ASTROCOSMO); 

 

          ! Write the objective value, OBJ, in a field of 

           8 characters with 2 digits to the right of decimal point; 

          @WRITE("  ", @FORMAT(LABORAV, "8.0f"), 

            '   ', @FORMAT(OBJ,"8.2f"), @NEWLINE(1)); 

         ); ! End @WHILE loop; 

       ENDCALC 

 

This produces the output: 

 
     Labor     Profit 

         0       0.00 

        20     400.00 

        40     800.00 

        60    1200.00 

        80    1500.00 

       100    1800.00 

       120    2100.00 

       140    2400.00 

       160    2700.00 

       180    2700.00 

       200    2700.00 

 

5.8.2 Generating Graphs and Charts 
LINGO can generate about a dozen different chart or graph types such as histograms, pie charts, 

scatter plots, two dimensional curves, and surface charts.  The previous example can be modified to 

generate a two dimensional curve by adding a small SETS section and modifying the CALC  section 

as follows. 
   
      SETS: 

       ! Define a grid; 

       S /1..NPTS/: CX, CY; 

      ENDSETS 

 

       CALC: 

        ! Set output level to super terse; 

        @SET( 'TERSEO', 2); 

        ! Loop over points on efficient frontier; 

        i = 0; !Standard 3 statement loop control construct; 

        @WHILE( i #LT# NPTS:  

          i = i + 1; 

          LABORAV = UPLIM*(i-1)/(NPTS-1); 
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          ! Solve model with new labor availability; 

          @SOLVE(ASTROCOSMO); 

 

          ! Fill the grid with values at current point; 

         CX( i) = LABORAV ; 

         CY( i) = OBJ;  

             

         ); ! End @WHILE loop; 

 

    ! Generate the chart; 

       @CHART( 

        'CX CY',   ! Data series;  

        'CURVE',   ! Use CURVE chart type; 

        'Profit vs. Labor Available', ! Chart title; 

        'Y = Profit',     ! Label for Y axis; 

        'Labor Available' ! Label for X axis; 

             ); 

       ENDCALC 

 

 

The following graph results. 
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All the different chart types can be listed by clicking on: 
   Edit -> Paste Function -> Charting. 

 

For more details on programming in LINGO, see the online documentation or the LINGO manual. 
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5.9 Problems 
1. You wish to represent the status of an academic institution during a specific teaching term. The 

major features to be represented are that instructors teach courses and students are registered for 

courses. You want to keep track of who is teaching which course, who is registered for each course, 

and which courses a given student is taking. What sets would you recommend if each course is 

taught by exactly one instructor? 

2. Suppose we take into account the additional complication of team teaching. That is, two or more 

instructors teach some courses. How would you modify your answer to the previous question? 

3. In some schools there may be some people, e.g., graduate students, who are a student in one course 

and  an instructor for another course. How would you generalize your answer to the previous 

question? 
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