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Multi-period Planning 
Problems 

 
 

9.1 Introduction 
One of the most important uses of optimization is in multi-period planning. Most of the problems we 

have considered thus far have been essentially one-period problems. The formulations acted as if 

decisions this period were decoupled from decisions in future periods. Typically, however, if we produce 

more of a certain product this period than required by a constraint, that extra production will not be 

worthless, but can probably be used next period. 

 These interactions between periods can be represented very easily within optimization models. In 

fact, most large linear programs encountered in practice are multi-period models. A common synonym 

for “multi-period” is “dynamic” (e.g., a multi-period LP may be referred to as a dynamic model). 

 In some applications, the need to represent the multi-period aspects is quite obvious. One setting in 

which multi-period LP has been used for a number of years is in the manufacture of cheese. Production 

decisions must be made monthly or even weekly. The production time for many cheeses, however, may 

be months. For example, Parmesan cheese may need to be stored in inventory for up to ten months. What 

Americans call Swiss cheese may take from two to four months. The various grades of cheddar obtained 

depend upon the number of weeks held in storage. Sharp cheddar may be aged up to a year in storage. 

Clearly, in such applications, the multi-period aspect of the model is the important feature. 

 Models for planning over time represent the real world by partitioning time into a number of periods. 

The portion of the model corresponding to a single period might be some combination of product mix, 

blending, and other models. These single-period or static models are linked by: 

1. A link or inventory variable for each commodity and period. The linking variable 

represents the amount of commodity transferred from one period to the next. 

2. A “material balance” or “sources = uses” constraint for each commodity and period. The 

simplest form of this constraint is “beginning inventory + production = ending inventory + 

goods sold”. 

 Multi-period models are usually used in a rolling or sliding format. In this format, the model is 

solved at the beginning of each period. The recommendations of the solution for the first period are 

implemented. As one period elapses and better data and forecasts become available, the model is slid 

forward one period. The period that had been number 2 becomes number 1, etc., and the whole process 
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is repeated. When using a model in this sliding fashion, a practical problem is that, as the new information 

becomes available, this period’s “optimal” solution may be drastically different from the previous 

period’s “optimal” solution. The people who have to implement the solution may find this disconcerting. 

The scheduling system is said to suffer from nervousness. An approach that has been used successfully 

in scheduling ships, scheduling plant closings/openings, and scheduling production of breakfast cereal, 

see Brown, Dell, and Wood (1997), is to specify a “reference” solution (e.g., the previous period’s 

solution). One then defines a secondary objective of minimizing the deviation of the current solution 

from the reference solution. If one puts zero weight on the secondary objective, then one gets the 

theoretically optimal solution. If one puts an extremely high weight on the secondary objective, then one 

simply gets the reference solution returned. If a modest weight is placed on the secondary objective, then 

one gets a solution that is a good compromise between low cost as measured by standard accounting, 

but is also close to the reference solution. 

 There is nothing sacred about having all periods of the same length. For example, when a petroleum 

company plans production for the coming year, it is sensible to have the periods correspond to the 

seasons of the year. One possible partition is to have the winter period extend from December 1 to March 

15, the spring period extend from March 16 to May 15, the summer period extend from May 16 to 

September 15, and the autumn period extend from September 16 to November 30. 

 Some companies, such as forest product or mineral resource based companies, plan as much as 50 

years into the future. In such a case, one might have the first two periods be one year each, the next 

period be two years, the next two periods three years each, the next two periods five years each, and the 

final three periods ten years each. 

 Inter-period interactions are usually accounted for in models by the introduction of inventory 

decision variables. These variables “link” adjacent periods. As an example, suppose we have a single 

explicit decision to make each period. Namely, how much to produce of a single product. Call this 

decision variable for period j, Pj. Further, suppose we have contracts to sell known amounts of this 

product, dj, in period j. Define the decision variable Ij as the amount of inventory left over at the end of 

period j. By this convention, the beginning inventory in period j is Ij-1. The LP formulation will then 

contain one “sources of product = uses of product” constraint for each period. For period 2, the sources 

of product are beginning inventory, I1, and production in the period, P2. The uses of product are demand, 

d2, and end of period inventory, I2. For example, if d2 = 60 and d3 = 40, then the constraint for period 2 

is: 

I1 + P2 = 60 + I2    or    I1 + P2 − I2 = 60. 

The constraint for period 3 is: 

I2 + P3 − I3 = 40. 

Notice how I2 “links” (i.e., appears in both the constraints for periods 2 and 3). 

 In some problems, the net outflow need not exactly equal the net inflow into the next period. For 

example, if the product is cash, then one of the linking variables may be short-term borrowing or lending. 

For each dollar carried over from period 2 by lending, we will enter period 3 with $1.05 if the interest 

rate is 5% per period. 

 On the other hand, if the “product” is workforce and there is a predictable attrition rate of 10% per 

period, then the above two constraints would be modified to: 

.90I1 + P2 − I2 = 60 

.90I2 + P3 − I3 = 40. 

In this case, Pi is the number hired in period i. 
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 The following example provides a simplified illustration of a single-product, multi-period planning 

situation. 

9.2 A Dynamic Production Problem 
A company produces one product for which the demand for the next four quarters is predicted to be: 

Spring Summer Autumn Winter 

20 30 50 60 

Assuming all the demand is to be met, there are two extreme policies that might be followed: 

1. “Track” demand with production and carry no inventory. 

2. Produce at a constant rate of 40 units per quarter and allow inventory to absorb the 

fluctuations in demand. 

 There are costs associated with carrying inventory and costs associated with varying the production 

level, so one would expect the least-cost policy is probably a combination of (1) and (2) (i.e., carry some 

inventory, but also vary the production level somewhat). 

 For costing purposes, the company estimates changing the production level from one period to the 

next costs $600 per unit. These costs are often called “hiring and firing” costs. It is estimated that 

charging $700 for each unit of inventory at the end of the period can accurately approximate inventory 

costs. The initial inventory is zero and the initial production level is 40 units per quarter. We require 

these same levels be achieved or returned to at the end of the winter quarter. 

 We can now calculate the production change costs associated with the no-inventory policy as: 

$600  (20 + 10 + 20 + 10 + 20) = $48,000. 

On the other hand, the inventory costs associated with the constant production policy is: 

$700  (20 + 30 + 20 + 0) = $49,000. 

 The least cost policy is probably a mix of these two pure policies. We can find the least-cost policy 

by formulating a linear program. 

9.2.1 Formulation 
The following definitions of variables will be useful: 

Pi  = number of units produced in period i, for i = 1, 2, 3, and 4; 

Ii  = units in inventory at the end of period i; 

Ui  = increase in production level between period i − 1 and i; 

Di  = decrease in production level between i − 1 and i. 

 The Pi variables are the obvious decision variables. It is useful to define the Ii, Ui, and Di variables, 

so we can conveniently compute the costs each period. 

 To minimize the cost per year, we want to minimize the sum of inventory costs: 

$700 I1 + $700 I2 + $700 I3 + $700 I4 

plus production change costs: 

  $600 U1 + $600 U2 + $600 U3 + $600 U4 + $600 U5 

+ $600 D1 + $600 D2 + $600 D3 + $600 D4 + $600 D5. 



208     Chapter 9  Multi-period Planning Problems 

 

 We have added a U5 and a D5 in order to charge for the production level change back to 40, if needed 

at the end of the 4th period. 

9.2.2 Constraints 
Every multi-period problem will have a “material balance” or “sources = uses” constraint for each 

product per period. The usual form of these constraints in words is: 

beginning inventory + production − ending inventory = demand.  

Algebraically, these constraints for the problem at hand are: 

P1 − I1 = 20 

I1 + P2 − I2 = 30 

I2 + P3 − I3 = 50 

I3 + P4 = 60 

 Notice I4 and I0 do not appear in the first and last constraints, because initial and ending inventories 

are required to be zero. 

 If the formulation is solved as is, there is nothing to force U1, D1, etc., to be greater than zero. 

Therefore, the solution will be the pure production policy. Namely, P1 = 20, P2 = 30, P3 = 50, P4 = 60. 

This policy implies a production increase at the end of every period, except the last. This suggests a way 

of forcing U1, U2, U3, and U4 to take the proper values is to append the constraints: 

U1  P1 − 40 

U2  P2 − P1 

U3  P3 − P2 

U4  P4 − P3. 

 Production decreases are still not properly measured. An analogous set of four constraints should 

take care of this problem, specifically: 

D1  40 − P1 

D2  P1 − P2 

D3  P2 − P3 

D4  P3 − P4. 

 To incorporate the requirement that the production level be returned to 40 at the end of the winter 

quarter, we add the variables U5 and D5 to measure changes at the end of the last quarter. U5 and D5 are 

forced to take on the right values with the constraints: 

U5  40 − P4 

D5  P4 − 40. 

 Before moving on, we will note the production-change constraints can be reduced to 5 constraints 

from the 10 implied by the above form. The key observation is two constraints such as: 

U2  P2 − P1 

D2  P1 − P2 

can be replaced by the single constraint: 

U2 − D2 = P2 − P1. 
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 The argument is more economic than algebraic. The purpose with either formulation is to force 

U2 = P2 − P1 if P2 − P1  0 and D2 = P1 − P2 if P1 − P2  0. From economics, you can argue that, at the 

optimal solution, you will find at most one of U2 and D2 are greater than 0 under either formulation. If 

both U2 and D2 are greater than 0 under the second formulation, then both can be reduced by an equal 

amount. Thus, reducing costs without violating any constraints. 

 The complete formulation is: 

MODEL: 

!Minimize inventory + workforce change costs; 

MIN = 700 * I1 + 700 * I2 + 700 * I3 + 700 * I4 

    + 600 * U1 + 600 * U2 + 600 * U3 + 600 * U4 

    + 600 * D1 + 600 * D2 + 600 * D3 + 600 * D4  

    + 600 * U5 + 600 * D5; 

!Initial conditions on inventory & production; 

[CNDBI] I0 = 0; 

[CNDBP] P0 = 40; 

!Beginning inventory + production = demand + ending inventory; 

[INV1] I0 + P1 = 20 + I1; 

[INV2] I1 + P2 = 30 + I2; 

[INV3] I2 + P3 = 50 + I3; 

[INV4] I3 + P4 = 60 + I4;  

!Change up - change down = prod. this period - prod. prev. period; 

[CHG1] U1 - D1 = P1 - P0; 

[CHG2] U2 - D2 = P2 - P1; 

[CHG3] U3 - D3 = P3 - P2; 

[CHG4] U4 - D4 = P4 - P3; 

[CHG5] U5 - D5 = P5 - P4; 

!Ending conditions; 

[CNDEI] I4 = 0; 

[CNDEP] P5 = 40; 

END 

The solution is: 

Optimal solution found at step:         7 

Objective value:                 43000.00 

Variable           Value        Reduced Cost 

      I1        5.000000           0.0000000 

      I2       0.0000000            200.0000 

      I3        5.000000           0.0000000 

      I4       0.0000000           0.0000000 

      U1       0.0000000            1200.000 

      U2       0.0000000            250.0000 

      U3        30.00000           0.0000000 

      U4       0.0000000            250.0000 

      D1        15.00000           0.0000000 

      D2       0.0000000            950.0000 

      D3       0.0000000            1200.000 

      D4       0.0000000            950.0000 

      U5       0.0000000            1200.000 
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      D5        15.00000           0.0000000 

      I0       0.0000000           0.0000000 

      P0        40.00000           0.0000000 

      P1        25.00000           0.0000000 

      P2        25.00000           0.0000000 

      P3        55.00000           0.0000000 

      P4        55.00000           0.0000000 

      P5        40.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        43000.00           -1.000000 

   CNDBI       0.0000000           -950.0000 

   CNDBP       0.0000000           -600.0000 

    INV1       0.0000000            950.0000 

    INV2       0.0000000            250.0000 

    INV3       0.0000000           -250.0000 

    INV4       0.0000000           -950.0000 

    CHG1       0.0000000            600.0000 

    CHG2       0.0000000           -350.0000 

    CHG3       0.0000000           -600.0000 

    CHG4       0.0000000           -350.0000 

    CHG5       0.0000000            600.0000 

   CNDEI       0.0000000           -1650.000 

   CNDEP       0.0000000            600.0000 

We see the solution is a mixed policy: 

P1 = P2 = 25;         P3 = P4 = 55. 

The mixed policy found by LP is $5,000 cheaper than the best pure policy.  

9.2.3 Representing Absolute Values 
You may be tempted to represent the production-change costs in the above model by the expression: 

600 *( @ABS( P1 – P0) + @ABS( P2 – P1) + …+@ABS(P5 – P4)); 

 This is mathematically correct, but computationally unwise, because it converts a linear program 

into a nonlinear program. Nonlinear programs are always more time consuming to solve. We have 

exploited the following result to obtain a linear program from an apparently nonlinear program. Subject 

to a certain condition, any appearance in a model of a term of the form:  

@ABS ( expression) 

can be replaced by the term U + D, if we add the constraint: 

U – D = expression. 

 The “certain condition” is that the model must be such that a small value of @ABS (expression) is 

preferred to a large value for @ABS (expression). The result is, if expression is positive, then U will be 

equal to expression, whereas, if expression is negative, then D will equal the negative of expression. 

9.3 Multi-period Financial Models 
In most multi-period planning problems, the management of liquid or cash-like assets is an important 

consideration. If you are willing to consider cash holdings as an inventory just like an inventory of any 
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other commodity, then it is a small step to incorporate financial management decisions into a 

multi-period model. The key feature is, for every period, there is a constraint that effectively says, 

“sources of cash − uses of cash = 0”. The following simple, but realistic, example illustrates the major 

features of such models. 

9.3.1 Example: Cash Flow Matching 
Suppose, as a result of a careful planning exercise, you have concluded that you will need the following 

amounts of cash for the current plus next 14 years to meet certain commitments: 

Year: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Cash (in 
$1,000s) 

10 11 12 14 15 17 19 20 22 24 26 29 31 33 36 

 A common example where such a projection is made is in a personal injury lawsuit. Both parties 

may reach an agreement that the injured party should receive a stream of payments such as above or its 

equivalent. Other examples where the above approach has been used is in designing bond portfolios to 

satisfy cash needs for a pension fund, or for so-called balance sheet defeasance where one kind of debt 

is replaced by another having the same cash flow stream. 

 For administrative simplicity in the personal injury example, both parties prefer an immediate single 

lump sum payment that is “equivalent” to the above stream of 15 payments. The party receiving the 

lump sum will argue that the lump sum payment should equal the present value of the stream using a 

low interest rate such as that obtained in a very low risk investment (i.e., a government guaranteed 

savings account). For example, if an interest rate of 4% is used, the present value of the stream of 

payments is $230,437. The party that must pay the lump sum, however, would like to argue for a much 

higher interest rate. To be successful, such an argument must include evidence that such higher interest 

rate investments are available and are no riskier than savings accounts. The investments usually offered 

are government securities. Generally, a broad spectrum of such investments is available on a given day. 

For simplicity, assume there are just two such investments available with the following features: 

 
 

Security 

 
Current 

Cost 

 
Yearly 
Return 

 
Years to 
Maturity 

Principal 
Repayment at 

Maturity 

1 $980 $60    5 $1000 

2 $965 $65 12 $1000 

 The paying party will offer a lump sum now with a recommendation of how much should be invested 

in securities 1 and 2 and in savings accounts, such that the yearly cash requirements are met with the 

minimum lump sum payment. 

 The following decision variables are useful in solving this problem: 

B1 = amount invested now in security 1, measured in “face value amount”, 

B2 = amount invested now in security 2, measured in “face value amount”, 

S i = amount invested into a savings account in year i, and 

L = initial lump sum. 
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 The objective function will be to minimize the initial lump sum. There will be a constraint for each 

year that forces the cash flows to net to zero. If we assume idle cash is invested at 4 percent in a savings 

account and all amounts are measured in $1000’s, then the formulation is: 

MIN = L; 

L - 0.98 * B1 - 0.965 * B2 - S0 = 10; 

0.06 * B1 + 0.065 * B2 + 1.04 * S0 - S1 = 11; 

0.06 * B1 + 0.065 * B2 + 1.04 * S1 - S2 = 12; 

0.06 * B1 + 0.065 * B2 + 1.04 * S2 - S3 = 14; 

0.06 * B1 + 0.065 * B2 + 1.04 * S3 - S4 = 15; 

1.06 * B1 + 0.065 * B2 + 1.04 * S4 - S5 = 17; 

0.065 * B2 + 1.04 * S5 - S6 = 19; 

0.065 * B2 + 1.04 * S6 - S7 = 20; 

0.065 * B2 + 1.04 * S7 - S8 = 22; 

0.065 * B2 + 1.04 * S8 - S9 = 24; 

0.065 * B2 + 1.04 * S9 - S10 = 26; 

0.065 * B2 + 1.04 * S10 - S11 = 29; 

1.065 * B2 + 1.04 * S11 - S12 = 31; 

1.04 * S12 - S13 = 33; 

1.04 * S13 - S14 = 36; 

 The PICTURE of the constraint coefficients gives a better appreciation of the structure of the 

problem. An A represents numbers bigger than 1.0, but less than 10.0. Numbers 10 or larger, but less 

than 100.0, are represented by a B. Numbers less than 1.0, but at least 0.1, are represented by a T. 

Numbers less than 0.1, but at least 0.01, are represented by a U: 

                              S S S S S 

      B B S S S S S S S S S S 1 1 1 1 1 

    L 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 

 1: 1                                   MIN 

 2: 1-T-T-1                             = A 

 3:   U U A-1                           = B 

 4:   U U   A-1                         = B 

 5:   U U     A-1                       = B 

 6:   U U       A-1                     = B 

 7:   A U         A-1                   = B 

 8:     U           A-1                 = B 

 9:     U             A-1               = B 

10:     U               A-1             = B 

11:     U                 A-1           = B 

12:     U                   A-1         = B 

13:     U                     A-1       = B 

14:     A                       A-1     = B 

15:                               A-1   = B 

16:                                 A-1 = B 
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 Notice in row 7, B1 has a coefficient of 1.06. This represents the principal repayment of $1000 plus 

the interest payment of $60 measured in $1000’s. Variable S14 (investment of funds in a savings account 

after the final payment is made) appears in the problem even though at first you might think it useless to 

allow such an option. S14 is effectively a surplus cash variable in the final period. Nevertheless, it is not 

unusual for the solution that minimizes the lump sum payment to have cash left over at the end of the 

period. This is because a bond may be the most economical way of delivering funds to intermediate 

periods. This may cause the big principal repayment at the end of a bond’s life to “overpay” the most 

distant periods. The solution is: 

Optimal solution found at step:        14 

Objective value:                 195.6837 

Variable           Value        Reduced Cost 

       L        195.6837           0.0000000 

      B1        95.79577           0.0000000 

      B2        90.15474           0.0000000 

      S0        4.804497           0.0000000 

      S1        5.604481           0.0000000 

      S2        5.436464           0.0000000 

      S3        3.261727           0.0000000 

      S4       0.0000000           0.1069792 

      S5        90.40358           0.0000000 

      S6        80.87978           0.0000000 

      S7        69.97503           0.0000000 

      S8        56.63409           0.0000000 

      S9        40.75951           0.0000000 

     S10        22.24994           0.0000000 

     S11       0.0000000           0.1412458 

     S12        65.01479           0.0000000 

     S13        34.61538           0.0000000 

     S14       0.0000000           0.3796368 

 Of the $195,683.70 lump sum payment, $10,000 goes to immediate requirements, $4,804.50 goes 

into a savings account, and 0.98  95,795.77 + 0.965  90,154.74 = $180,879.20 goes into longer-term 

securities. Considering a wide range of investments rather than just savings accounts has reduced the 

amount of the lump sum payment by about $34,750, or 15%. 

 In actual solutions, one may find a major fraction of the lump sum is invested in a single security. 

For example, appending the following constraint limits the amount invested in security 1 to half the 

initial lump sum: 

0.98 B1 − 0.5 L  0. 

 An additional complication may arise due to integrality requirements on the B1 and B2 investments. 

For example, bonds can be bought only in $1000 increments. Generally, with a modest amount of 

judgment, the fractional values can be rounded to neighboring integer values with no great increase in 

lump sum payment. For example, if B1 and B2 are set to 96 and 90 in the previous example, the total cost 

increases to $195,726.50 from $195,683.70. When this is done, S14 becomes nonzero. Specifically, the 

last period is overpaid by about $40. 
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 A sets version that places an integrality requirement on the bond purchase variables is: 

MODEL: 

! Name= PBOND, Bond portfolio/ cash matching problem: Given cash needs 

in each future period, what collection of bonds should we buy to cover 

these needs?; 

SETS: 

BOND/1..2/ : MATAT, ! Matures at period; 

             PRICE, ! Purchase price; 

             CAMNT, ! Coupon payout each period; 

              BUY;  ! Amount to buy of each bond; 

PERIOD/1..15/: 

     NEED,    ! Cash needed each period; 

SINVEST; ! Short term investment each period; 

ENDSETS 

DATA: 

STRTE = .04;         ! Short term interest rate; 

MATAT = 6,   13;     ! Years to maturity; 

PRICE = .980, .965;! Purchase price in thousands; 

CAMNT = .060, .065; ! Coupon amount in thousands; 

NEED = 10, 11, 12, 14, 15, 17, 19, 20, 22, 24, 

       26, 29, 31, 33, 36; ! Cash needed in  

       thousands; 

ENDDATA 

!-----------------------------------------------; 

MIN = LUMP; 

! First period is slightly special; 

LUMP =  

NEED(1) + SINVEST( 1) + @SUM( BOND: PRICE * BUY); 

! For subsequent periods; 

@FOR( PERIOD( I)| I #GT# 1: 

 @SUM( BOND( J)| MATAT( J) #GE# I: 

     CAMNT( J) * BUY( J)) + 

  @SUM( BOND( J)| MATAT( J) #EQ# I:  BUY( J)) + 

   ( 1 + STRTE) * SINVEST( I - 1) = 

   NEED( I) + SINVEST( I); 

   ); 

! Can only buy integer bonds; 

@FOR( BOND( J): @GIN( BUY( J));); 

END 

Optimal solution found at step:        28 

Objective value:                 195.7265 

Branch count:                           3 

    Variable           Value        Reduced Cost 

       STRTE       0.4000000E-01       0.0000000 

        LUMP        195.7265           0.0000000 

   MATAT( 1)        6.000000           0.0000000 

   MATAT( 2)        13.00000           0.0000000 

   PRICE( 1)       0.9800000           0.0000000 

   PRICE( 2)       0.9650000           0.0000000 

   CAMNT( 1)       0.6000000E-01       0.0000000 

   CAMNT( 2)       0.6500000E-01       0.0000000 

     BUY( 1)        96.00000           0.7622063 
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     BUY( 2)        90.00000           0.7290568 

    NEED( 1)        10.00000           0.0000000 

    NEED( 2)        11.00000           0.0000000 

    NEED( 3)        12.00000           0.0000000 

    NEED( 4)        14.00000           0.0000000 

    NEED( 5)        15.00000           0.0000000 

    NEED( 6)        17.00000           0.0000000 

    NEED( 7)        19.00000           0.0000000 

    NEED( 8)        20.00000           0.0000000 

    NEED( 9)        22.00000           0.0000000 

   NEED( 10)        24.00000           0.0000000 

   NEED( 11)        26.00000           0.0000000 

   NEED( 12)        29.00000           0.0000000 

   NEED( 13)        31.00000           0.0000000 

   NEED( 14)        33.00000           0.0000000 

   NEED( 15)        36.00000           0.0000000 

 SINVEST( 1)        4.796526           0.0000000 

 SINVEST( 2)        5.598387           0.0000000 

 SINVEST( 3)        5.432322           0.0000000 

 SINVEST( 4)        3.259615           0.0000000 

 SINVEST( 5)       0.0000000           0.8548042 

 SINVEST( 6)        90.61000           0.0000000 

 SINVEST( 7)        81.08440           0.0000000 

 SINVEST( 8)        70.17778           0.0000000 

 SINVEST( 9)        56.83489           0.0000000 

SINVEST( 10)        40.95828           0.0000000 

SINVEST( 11)        22.44661           0.0000000 

SINVEST( 12)       0.1944784           0.0000000 

SINVEST( 13)        65.05226           0.0000000 

SINVEST( 14)        34.65435           0.0000000 

SINVEST( 15)       0.4052172E-01       0.0000000 

9.4 Financial Planning Models with Tax Considerations 
The next example treats a slightly more complicated version of the portfolio selection problem and then 

illustrates how to include and examine the effect of taxes. Winston-Salem Development Management 

(WSDM) is trying to complete its investment plans for the next three years. Currently, WSDM has two 

million dollars available for investment. At six-month intervals over the next three years, WSDM expects 

the following income stream from previous investments: $500,000 (six months from now); $400,000; 

$380,000; $360,000; $340,000; and $300,000 (at the end of third year). There are three development 

projects in which WSDM is considering participating. The Foster City Development would, if WSDM 

participated fully, have the following cash flow stream (projected) at six-month intervals over the next 

three years (negative numbers represent investments, positive numbers represent income): 

−$3,000,000; -$1,000,000; −$1,800,000; $400,000; $1,800,000; $1,800,000; $5,500,000. The last figure 

is its estimated value at the end of three years. A second project involves taking over the operation of 

some old lower-middle-income housing on the condition that certain initial repairs to it be made and that 

it be demolished at the end of three years. The cash flow stream for this project, if participated in fully, 

would be: −$2,000,000; −$500,000; $1,500,000; $1,500,000; $1,500,000; $200,000; -$1,000,000. 

 The third project, the Disney-Universe Hotel, would have the following cash flow stream (six-month 

intervals) if WSDM participated fully. Again, the last figure is the estimated value at the end of the three 

years: −$2,000,000; −$2,000,000; −$1,800,000; $1,000,000; $1,000,000; $1,000,000; $6,000,000. 
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WSDM can borrow money for half-year intervals at 3.5 percent interest per half year. At most, 2 million 

dollars can be borrowed at one time (i.e., the total outstanding principal can never exceed 2 million). 

WSDM can invest surplus funds at 3 percent per half year. 

 Initially, we will disregard taxes. We will formulate the problem of maximizing WSDM’s net worth 

at the end of three years as a linear program. If WSDM participates in a project at less than 100 percent, 

all the cash flows of that project are reduced proportionately. 

9.4.1 Formulation and Solution of the WSDM Problem 
Define: 

F  = fractional participation in the Foster City problem; 

M  = fractional participation in Lower-Middle; 

D  = participation in Disney; 

Bi  = amount borrowed in period i in 1000’s of dollars, i = 1, …, 6; 

Li  = amount lent in period i in 1000’s of dollars, i = 1, …, 6; 

Z  = net worth after the six periods in 1000’s of dollars. 

The problem formally is then (all numbers will be measured in units of 1000): 

MODEL: 

MAX = Z; ! Max worth at end of final period; 

! Uses - sources = supply of cash in each period; 

 3000 * F + 2000 * M + 2000 * D - B1 + L1 = 2000; 

 1000 * F +  500 * M + 2000 * D + 1.035 * B1 - 1.03 * L1 - B2 + L2=500; 

 1800 * F - 1500 * M + 1800 * D + 1.035 * B2 - 1.03 * L2 - B3 + L3=400; 

 -400 * F - 1500 * M - 1000 * D + 1.035 * B3 - 1.03 * L3 - B4 + L4=380; 

-1800 * F - 1500 * M - 1000 * D + 1.035 * B4 - 1.03 * L4 - B5 + L5=360; 

-1800 * F -  200 * M - 1000 * D + 1.035 * B5 - 1.03 * L5 - B6 + L6=340; 

Z - 5500 * F + 1000 * M - 6000 * D + 1.035 * B6 - 1.03 * L6=300; 

! Borrowing limits; 

B1 <= 2000; 

B2 <= 2000; 

B3 <= 2000; 

B4 <= 2000; 

B5 <= 2000; 

B6 <= 2000; 

! We can invest at most 100% in a project; 

F <= 1; 

M <= 1; 

D <= 1; 

END 

 Rows 4 through 17 are the cash flow constraints for each of the periods. They enforce the 

requirement that uses of cash − sources of cash = 0 for each period. In the initial period, for example, L1 

uses cash, whereas B1 is a source of cash. 
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 The solution is: 

Optimal solution found at step:        11 

Objective value:                 7665.179 

Variable           Value        Reduced Cost 

       Z        7665.179           0.0000000 

       F       0.7143414           0.0000000 

       M       0.6372096           0.0000000 

       D       0.0000000            452.3816 

      B1        1417.443           0.0000000 

      L1       0.0000000           0.8788487E-02 

      B2        2000.000           0.0000000 

      L2       0.0000000           0.3343139 

      B3        2000.000           0.0000000 

      L3       0.0000000           0.2509563 

      B4        448.4490           0.0000000 

      L4       0.0000000           0.5304549E-02 

      B5       0.0000000           0.5149997E-02 

      L5        2137.484           0.0000000 

      B6       0.0000000           0.5000029E-02 

      L6        3954.865           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        7665.179            1.000000 

       2       0.0000000            1.819220 

       3       0.0000000            1.757701 

       4       0.0000000            1.381929 

       5       0.0000000            1.098032 

       6       0.0000000            1.060900 

       7       0.0000000            1.030000 

       8       0.0000000            1.000000 

       9        582.5567           0.0000000 

      10       0.0000000           0.3274043 

      11       0.0000000           0.2454662 

      12        1551.551           0.0000000 

      13        2000.000           0.0000000 

      14        2000.000           0.0000000 

      15       0.2856586           0.0000000 

      16       0.3627904           0.0000000 

      17        1.000000           0.0000000 

 Thus, we should try to invest or buy 0.7143414 of the Foster City project, 0.6372096 of the 

Middle-income project, and invest nothing in the Disney Universe project. At the end of the planning 

horizon, our net worth should have grown to 7,665,179. 

9.4.2 Interpretation of the Dual Prices 
The dual price on each of the first seven constraints is the increase in net worth in the last period resulting 

from an extra dollar made available in the earliest period. For example, the 1.81922 indicates an extra 

dollar available at the start of period 1 would increase the net worth in the last period by about $1.82. 

 An extra dollar in period 5 is worth $1.0609 at the end, because all we will do with it is invest it for 

two periods at three percent. Thus, it will grow to 1.03  1.03 = 1.0609 at the end. 
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 An extra dollar in period 4 will save us from borrowing a dollar that period. Thus, we will be $1.035 

richer in period 5. We have already seen the value per extra dollar in period 5, so the value of an extra 

dollar in period 4 is $1.035  1.0609 = $1.09803. 

 The dual prices on the borrowing constraints can be reconciled with the rest of the dual prices as 

follows. Having an additional dollar in period 2 is worth $1.7577. If this dollar were borrowed, then we 

would have to pay out $1.035 in period 3, which would have an effective cost of 1.035  1.38193. Thus, 

the net value in the last period of borrowing an extra dollar in period 2 is 1.7577 − 1.035  1.38193 = 

0.3274, which agrees with the dual price on the borrowing constraint for period 2. 

 The effective interest rate or cost of capital, i, in any period t, can be found from the dual prices by 

deriving the rate at which one would be willing to borrow. Borrowing one dollar in period t would give 

us $1 more in period t, but would require us to pay out 1 + i dollars in period t + 1. We must balance 

these two considerations. Consider period 1. An extra dollar is worth $1.81922 at the end of period 6. 

Paying back 1 + i in period 2 would cost (1 + i) $1.7577 at the end of period 6. Balancing these two: 

1.81922 = (1 + i)1.7577. 

Solving: 

i = 0.035. 

 This is not surprising because we are already borrowing at that rate in period 1, but not to the limit. 

 Applying a similar analysis to the other periods, we get the following effective rates: 

Period i Period i 

1 0.03500 4 0.035 

2 0.27190 5 0.030 

3 0.25855 6 0.030 

9.5 Present Value vs. LP Analysis 
A standard method for evaluating the attractiveness of a project is by computing the present value of its 

cash flow stream. LP analysis, as we have just illustrated, is a generalization of present value (PV) 

analysis. The assumptions underlying PV analysis are that money can be: a) borrowed or lent at the same 

rate, b) without limit, c) at the same rate in every period. An LP model, such as that just considered, 

gives exactly the same recommendation as PV analysis if the same assumptions are made. LP analysis, 

however, allows one to have a borrowing rate different from a lending rate; a borrowing rate or lending 

rate that varies from period to period; a rate that depends upon the term of the loan(longer term usually 

means a higher rate/year); and/or an upper limit on the amount borrowed or lent at a given rate. 

 Like PV analysis, LP analysis avoids the ambiguity of multiple rates of return that can occur when 

the internal rate of return is used to evaluate a project. Consider a project that requires an initial 

investment of $1 million, pays back $2.5 million after one year, and incurs a termination cost after two 

years of $1.55 million. This project has two internal rates of return. One is about 13.82% per year. The 

other is about 36.18% per year. Is the project attractive if our cost of capital is 11% per year? Both PV 

and LP analysis will (correctly) reject this project if our cost of capital is 12% per year, accept the project 

if our cost of capital is 24% per year, and reject the project if our cost of capital is 38% per year. 

9.6 Accounting for Income Taxes 
Suppose we take taxes into account. Let us consider the following simplified situation. There is a tax 

rate of fifty percent on profit for any period. If there is a loss in a period, eighty percent can be carried 
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forward to the next period. (Typically, tax laws put a limit on how many years a loss can be carried 

forward, but eighty percent may be a good approximation.) 

 Taxable income for each of the prospective projects as well as all existing projects is given in the 

table below. Note that because of factors such as depreciation, actual net cash flow may be rather 

different from taxable income in a period: 

 Project 

 
Period 

Foster 
City 

Lower-Middle 
Housing 

Disney 
Universe 

 
Existing 

1 −100,000 −200,000 −150,000 0 

2 −300,000 −400,000 −200,000 100,000 

3 −600,000 −200,000 −300,000 80,000 

4 −100,000 500,000 −200,000 76,000 

5 500,000 1,000,000 500,000 72,000 

6 1,000,000 100,000 800,000 68,000 

7 4,000,000 −1,000,000 5,000,000 60,000 

To formulate a model, in this case, we need to additionally define: 

Pi = profit in period i, and 

Ci = loss in period i. 

 The formulation is affected in two ways. First, we must append some equations that force the Pi's 

and Ci's to be computed properly, and, secondly, terms must be added to the cash flow constraints to 

account for the cash expended in the payment of tax. 

 In words, one of the tax computation equations is: 

Profit − loss = revenue − expense − 0.8  (last period’s loss). 

Algebraically, this equation for period 2 is: 

P2 − C2 = 100 + 0.03L1 − 300F − 400M − 200D − 0.035B1 − 0.8C1, 

or in standard form: 

P2 − C2 − 0.03L1 + 300F + 400M + 200D + 0.035B1 + 0.8C1 = 100. 
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The entire formulation is: 

MAX = Z; 

!Cash flow constraints, uses-sources= 0, including the 50% tax usage; 

3000*F +2000*M + 2000*D - B1 + L1 + 0.5*P1=2000; 

1000*F + 500*M + 2000*D+1.035*B1-1.03*L1-B2+L2+0.5*P2= 500; 

1800*F -1500*M + 1800*D+1.035*B2-1.03*L2-B3+L3+0.5*P3= 400; 

-400*F -1500*M - 1000*D+1.035*B3-1.03*L3-B4+L4+0.5*P4= 380; 

-1800*F -1500*M - 1000*D+1.035*B4-1.03*L4-B5+L5+0.5*P5= 360; 

-1800*F - 200*M - 1000*D+1.035*B5-1.03*L5-B6+L6+0.5*P6= 340; 

Z-5500*F+1000*M - 6000*D+1.035*B6-1.03*L6 +0.5*P7= 300; 

! The borrowing limits; 

B1 <= 2000; 

B2 <= 2000; 

B3 <= 2000; 

B4 <= 2000; 

B5 <= 2000; 

B6 <= 2000; 

! The investing limits;  

F <= 1; 

M <= 1; 

D <= 1; 

! Taxable Profit-Loss for each period; 

100*F+ 200*M+ 150*D                 +P1    -C1   = 0; 

300*F+ 400*M+ 200*D+0.035*B1-0.03*L1+P2+0.8*C1-C2=100; 

600*F+ 200*M+ 300*D+0.035*B2-0.03*L2+P3+0.8*C2-C3= 80; 

100*F- 500*M+ 200*D+0.035*B3-0.03*L3+P4+0.8*C3-C4= 76; 

-500*F-1000*M- 500*D+0.035*B4-0.03*L4+P5+0.8*C4-C5= 72; 

-1000*F- 100*M- 800*D+0.035*B5-0.03*L5+P6+0.8*C5-C6= 68; 

-4000*F+1000*M-5000*D+0.035*B6-0.03*L6+P7+0.8*C6-C7= 60; 

The solution is: 

Objective value:                 5899.975 

Variable           Value        Reduced Cost 

       Z       5899.9750           0.0000000     

       F       0.4872107           0.0000000     

       M       1.0000000           0.0000000     

       D       0.0000000           945.00740 

      B1       1461.6320           0.0000000     

      L1       0.0000000           0.5111823E-02 

      P1       0.0000000           0.4499472 

      B2       2000.0000           0.0000000     

      L2       0.0000000           0.1960928 

      P2       0.0000000           0.3793084 

      B3       1046.9790           0.0000000     

      L3       0.0000000           0.3167932E-02 

      P3       0.0000000           0.2042549 

      B4       0.0000000           0.2575563E-02 

      L4       991.26070           0.0000000     

      P4       0.0000000           0.1107492 

      B5       0.0000000           0.2537532E-02 

      L5       3221.6490           0.0000000     

      P5       1072.6580           0.0000000     



Multi-period Planning Problems  Chapter 9     221 

      B6       0.0000000           0.2499981E-02 

      L6       4359.3480           0.0000000     

      P6       751.86020           0.0000000     

      P7       1139.6230           0.0000000     

      C1       248.72110           0.0000000     

      C2       696.29720           0.0000000     

      C3       1039.3640           0.0000000     

      C4       340.85670           0.0000000     

      C5       0.0000000           0.1091125 

      C6       0.0000000           0.1075000 

      C7       0.0000000           0.5000000 

     Row    Slack or Surplus      Dual Price 

       1       5899.9750           1.0000000 

       2       0.0000000           1.3218740 

       3       0.0000000           1.2860920 

       4       0.0000000           1.0678540 

       5       0.0000000           1.0456780 

       6       0.0000000           1.0302250 

       7       0.0000000           1.0150000 

       8       0.0000000           1.0000000 

       9       538.36780           0.0000000 

      10       0.0000000           0.1924019 

      11       953.02070           0.0000000 

      12       2000.0000           0.0000000 

      13       2000.0000           0.0000000 

      14       2000.0000           0.0000000 

      15       0.5127893           0.0000000 

      16       0.0000000           573.56060 

      17       1.0000000           0.0000000 

      18       0.0000000          -0.2109901 

      19       0.0000000          -0.2637376 

      20       0.0000000          -0.3296720 

      21       0.0000000          -0.4120900 

      22       0.0000000          -0.5151125 

      23       0.0000000          -0.5075000 

      24       0.0000000          -0.5000000 

 Notice tax considerations cause a substantial change in the solution. More funds are placed into the 

lower-middle income housing project, M, and fewer funds are invested in the Foster City project, F. 

Project M has cash flows, which help to smooth out the stream of yearly profits. 
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9.7 Dynamic or Multi-period Networks 
Thus far we have viewed network problems mainly as either a steady state or a one period problem.  For 

example, in a pipeline network model,  the solution can be interpreted as either the flow of material that 

occurs continuously day after day, or as a flow that occurs for one period and then stops.  In many real 

systems, however,  we are interested in a flow that varies from period to period,  i.e., we are interested 

in multi-period or dynamic solutions.  In these multi-period flows we also want to take into account that 

it may take several periods for flow to travel over an arc.  Example dynamic networks are: a) river 

systems with various dams where we are interested in the amount of water to be spilled over the dam 

each period so as to satisfy various criteria regarding lake and river levels, river flows, and hydroelectric 

generation needs.  A period might be a day,  an arc might be the river section from one dam to the next,  

and it may take several periods for water to flow from one dam to the next.  b) evacuation of a threatened 

facility or region as part of disaster planning, where we are interested in what routes people should take 

so that a large number of people escape in a short amount of time.  For a building evacuation, a period 

might be 10 seconds,  an arc may be a hallway,  or a stairwell from one door to the next.  Each arc may 

have a capacity limit of how many people can enter it per period,  c) fleet routing of airplanes or trucks,  

where each arc in the network is a movement that must be made by either a truck or an airplane.  The 

lead time of an arc is the length of time that it takes a vehicle to traverse the arc. 

To represent a dynamic network algebraically,  we need to define: 

Parameters: 

L(i,j) = lead time, in periods, for flow to travel from node i to node j in the arc  

              from i to j, 

Variables: 

xijt = flow entering arc ij at i in period t,  and therefore exiting at j in period t+L(i,j), 

Vjt = inventory remaining at node j at the end of period t, 

 

The basic node balance equation says that (inventory at node k at the end of period t ) = (ending inventory 

at k in the preceding period) + (arriving shipments) – (shipments out of k in t), or algebraically: 

Vkt = Vkt-1 + i xik(t-L(i,k)) - j xkjt 

 

Example: 

     We will illustrate the main ideas with an evacuation problem for a building.  Complete details can be 

found in the set based LINGO model: evacu8.lng in the Applications Library at www.lindo.com.   

Figure 9.1 gives the numeric details of a building for which we want to plan evacuation routes.  The 

nodes are places where people are or can congregate.  The arcs correspond to hallways, stairwells, etc.  

The number of people to be evacuated from each node in the network appears in italicized font below 

each node.  A period is a 10 second interval.  The italicized number appearing below each arc is the 

number of periods it takes to traverse the arc.  The number appearing above each arc is the upper limit 

on the number of people that can enter an arc per period.  The number appearing above each node is the 

upper limit on the number of people that can be waiting at a node. 

http://www.lindo.com/
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Node F corresponds to the outside world.  For example,  the fastest that one of the 50 people at node 

A can get to the safety of the outside world is in 2 periods by taking the path A, C, D, F.  Not all the 

people at A can make it this fast, however, because the arc from C to D can handle only 12 people per 

period.  Also,  people from B may also try to use arc C, D.  Arc (C,E) with its long lead time of three 

periods but relatively high capacity of 17 might correspond to a long, wide corridor,  whereas arc (A,C) 

with its short lead time but low capacity might correspond to a short narrow stairwell. 

What should be our objective?  An obvious one is to minimize the number of periods that it takes 

to evacuate all people.  An interesting challenge is to see if you can do it in at most 70 seconds for the 

above problem.  Perhaps a more refined objective is to maximize the number of people who get out 

quickly.  If  X_i_j_t is the number of people moving from i to j starting in period t, and realizing that 

node F is the outside world,  we would like  X_D_F_1 + X_E_F_1 to be large, and  X_D_F_9 + 

X_E_F_9 to be much smaller.  The objective that we will in fact use is: 

 

Max =  10*(X_D_F_1 + X_E_F_1) + 9*(X_D_F_2 + X_E_F_2)  

+8*(X_D_F_3 + X_E_F_3) 7*(X_D_F_4 + X_E_F_4)+ etc. 

 

That is, we attach a desirable weight of 10 to getting people out in period 1,  a weight of 9 to getting 

them out in period 2, etc.  The model evacu8.lng is written in very general SETS form.  If you want 

to see what the actual objective (as shown above) or constraints look like for the given data set,  click on  

LINGO | Generate | Display model.  
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    Suppose you allow 10 periods for our model.  We do not draw the corresponding multiperiod network,  

but you can think of drawing it as follows.  Get yourself a very wide sheet of paper and make 10 copies, 

side by side of the above network.  Then unhook the arrow end of each arc (i, j) and reconnect it L(i,j) 

subnetworks later. The main,  nontrivial constraints in this network model are the flow balance 

constraints at each node each period.  For example,  the constraint for node E in period 5 is: 

[BAL_E_5] - X_B_E_3 - X_C_E_2 + X_E_F_5 - V_E_4 + V_E_5 = 0 ; 

This is equivalent to: 

V_E_5 = V_E_4 + X_B_E_3 + X_C_E_2 - X_E_F_5; 

In words,  this says that at the end of period 5, the number of people at node E equals the number 

there at the end of period 4, plus people that left node B for E two periods ago, plus the number of people 

that left node C for E three periods ago,  minus the number of people that left node E in period 5 for 

node F. 

In general SETS form in  evacu8.lng, this constraint is written as:  
   ! For every node k and time period t; 

    @FOR( NXT( k,t)| t #GT# 1: 

     [BAL] V(k,t) = V(k,t-1) - @SUM(NXN(k,j): X(k,j,t)) 

                 +@SUM(NXN(i,k)|t-LT(i,k) #GT# 0: X(i,k,t-LT(i,k)));  

         ); 

where the set NXT(,) is the set of all node k, time period t combinations, and the set NXN(,) is 

the set of all from-to arcs k,j that exist in the network. 

The model is completed by adding the upper bound constraints on the number of people at each 

node each period,  and the upper bound constraints on the number of people traveling on each arc each 

period.  For example, the flow upper bound on the arc from B to E in period 4 is: 

[UFLO_B_E_4] X_B_E_4 <= 16 ; 

The upper bound on the number of people at node D at the end period 6 is: 

[USTOR_D_6] V_D_6 <= 10 ; 

If you solve evacu8.lng,  you will see that you can in fact evacuate the building in 70 seconds.  

For simplicity and ease of direction, e.g. in terms of placement of “Exit This Way” signs,  it might be 

desirable that the solution have all people at a given node evacuate over the same route.  You may wish 

to check whether the solution satisfies this additional “administrative” constraint.  Another example of 

a dynamic network,  this time for a hydroelectric river system can be found in the model 

dampoold.lng. For a production example,  see mrpcap.lng. 

9.8 End Effects 
Most multi-period planning models “chop” off the analysis at some finite time in the future. The manner 

in which this chopping off is done can be important. In general, we care about the state in which things 

are left at the end of a planning model (e.g., inventory levels and capital investment). If we arbitrarily 

terminate our planning model at year five in the future, then an optimal solution to our model may, in 

reality, be an optimal solution to how to go out of business in five years. Grinold (1983) provides a 

comprehensive discussion of various methods for mitigating end-of-horizon effects. Some of the options 

for handling the end effect are: 
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a) Truncation. Simply drop from the model all periods beyond a chosen cutoff point. 

b) Primal limits. Place reasonable limits on things such as inventory level at the end of the 

final period. 

c) Salvage values/ dual prices. Place reasonable salvage values on things such as inventory 

level at the end of the final period. 

d) Infinite final period. Let the final period of the model represent an infinite number of 

periods for which the same decisions are made in every period. So, for example, ending 

inventories = beginning inventories in this final period. Net present value discounting is 

used in the objective function to make the final period comparable to the earlier finite 

periods. This is the approach used by Carino et al. (1994) in their model of the Yasuda 

Kasai Company, Peiser and Andrus (1983) in their model of Texas real estate development, 

and by Eppen, Martin, and Schrage (1988) in their model of General Motors. 

9.8.1 Perishability/Shelf Life Constraints 
Many products, food products in particular, are perishable. It is important to take into account the fact 

the product can be stored in inventory for only a modest length of time. For example, blood for blood 

transfusions can be stored for at most 21 days. If there is a single level of production, then this 

consideration is easy to represent. Define: dt = demand in period t (given), and the variables: 

Pt = production in period t, and It = inventory at the end of period t. Then, the standard inventory balance 

constraint is: 

It-1 + Pt = dt +It    

 If product can be carried for one period before it is discarded, then it is clear that we should add the 

constraint: It  dt+1. In general, if product can be carried in inventory for at most k periods, then we add 

the constraint: It  dt+1 + dt+2 …+ dt+k . 

9.8.2 Startup and Shutdown Costs 
In the electric power generation industry, there is a decision problem known as the unit commitment 

problem. As the power demanded over the course of a day varies, the power generation company must 

decide which power units to start up as the demand increases and which to shutdown as demand 

decreases. A major concern is that there may be a significant cost to startup a generator, regardless of 

how long it runs. It is usually the case that the unit that is more efficient at producing power (e.g., a coal-

fired unit) may, however, cost more to startup than say a gas-fired unit. Thus, if an extra burst of power 

is needed for only a short interval of time, it may be more cost effective to start up and run the gas-fired 

unit. A similar cost structure was encountered by Eppen, Martin, and Schrage(1988) in planning startup 

and shutdown of automotive plants. The typical way of representing startup costs, as well as shutdown 

costs, is with the following three sets of variables: yit = 1 if unit i is operating in period t, else 0; zit = 1 if 

unit i is started in period t, else 0; qit = 1 if unit i is stops in period t, else 0. 

 The crucial constraints are then: 

zit - qit = yit - yit-1 . 

 Thus, if yit = 1, but yit-1 = 0, then zit is forced to be 1. If yit = 0, but yit-1 = 1, then qit is forced to be 1. 

For completeness, you may also need zit +  qit ≤ 1, and zit ,  qit restricted to 0 or 1. 
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9.9 Non-optimality of Cyclic Solutions to Cyclic Problems 
In some situations, such as when modeling the end of the planning horizon as above, it is reasonable to 

assume demand is cyclic (e.g., it repeats forever in a weekly cycle). A natural question to ask is whether 

an optimal policy will have the same cycle length. We shall see that the answer may be 'no'. That is, even 

though demand has the same pattern, week-in and week-out, the most profitable policy need not have a 

weekly cycle. It may be optimal to behave differently from week to week. 

 In order to illustrate, let us reconsider the fleet routing and assignment problem introduced in chapter 

8. We augment the original data with data on the profitability of two aircraft types for each flight: 

                                  Profit contribution($100) 

Flight  Origin Dest. Depart Arrive    MD90    B737 

 F221    ORD   DEN    800    934      115     111 

 F223    ORD   DEN    900   1039      109     128 

 F274    LAX   DEN    800   1116      129     104 

 F105    ORD   LAX   1100   1314      135     100 

 F228    DEN   ORD   1100   1423      125     102 

 F230    DEN   ORD   1200   1521      132     105 

 F259    ORD   LAX   1400   1609      112     129 

 F293    DEN   LAX   1400   1510      105     131 

 F412    LAX   ORD   1400   1959      103     135 

 F766    LAX   DEN   1600   1912      128     105 

 F238    DEN   ORD   1800   2121      128     101  

 For example, on flight pattern 221 an MD90 aircraft is more profitable than a B737 ($11,500 vs. 

$11,100), whereas a B737 is substantially more profitable ($12,900 vs. $11,200) on flight pattern 259. 

The above pattern of flights is to be covered every day. Suppose that we have seven MD90's available, 

but only one B737 available to cover these flights. As before, we assume no deadheading. First, we 

assume that we will use a solution with a cycle of one day. An appropriately modified model from 

chapter 8 is: 

MODEL: 

SETS:  ! Fleet routing and assignment (FLEETRAT); 

 CITY :;  ! The cities involved; 

 ACRFT:   ! Aircraft types; 

  FCOST,  !  Fixed cost per day of this type; 

  FSIZE;  !  Max fleet size of this type; 

 FLIGHT:;   

 FXCXC( FLIGHT, CITY, CITY) : 

  DEPAT,  ! Flight departure time; 

  ARVAT;  ! arrival time at dest.; 

 AXC( ACRFT, CITY):  

  OVNITE; ! Number staying overnight by type, city; 

 AXF( ACRFT, FXCXC):  

  X,      ! Number aircraft used by type, flight; 

  PC;     ! Profit contribution by type, flight; 

ENDSETS 

DATA: 

 CITY = ORD  DEN  LAX; 

 ACRFT, FCOST, FSIZE = 

  MD90   .01    7 

  B737   .01    1; 

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238; 
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 FXCXC, DEPAT, ARVAT =  

!     Flight  Origin Dest. Depart Arrive; 

         F221   ORD   DEN    800    934 

         F223   ORD   DEN    900   1039 

         F274   LAX   DEN    800   1116   

         F105   ORD   LAX   1100   1314 

         F228   DEN   ORD   1100   1423 

         F230   DEN   ORD   1200   1521 

         F259   ORD   LAX   1400   1609 

         F293   DEN   LAX   1400   1510 

         F412   LAX   ORD   1400   1959 

         F766   LAX   DEN   1600   1912 

         F238   DEN   ORD   1800   2121; 

 PC =   ! Profit contribution of each vehicle*flight combo; 

   115        109        129         135         125          132 

   112        105        103         128         128 

   111        128        104         100         102          105 

   129        131        135         105         101; 

ENDDATA 

!-------------------------------------------------------------------; 

! Maximize profit contribution from flights minus 

   overhead cost of aircraft in fleet; 

 MAX = @SUM( AXF( I, N, J, K): PC( I, N, J, K) * X( I, N, J, K)) 

     - @SUM( AXC( I, J): FCOST( I) * OVNITE( I, J)); 

! At any instant, departures in particular, the number of  

 cumulative arrivals must be >= number of cumulative departures;  

! For each flight of each aircraft type; 

 @FOR( ACRFT( I): 

  @FOR( FXCXC( N, J, K): 

! Aircraft on ground in morning + 

   number aircraft arrived thus far >= 

   number aircraft departed thus far; 

   OVNITE( I, J) +  

   @SUM( FXCXC( N1, J1, K1)| K1 #EQ# J #AND#  

                             ARVAT( N1, J1, K1) #LT# DEPAT( N, J, K): 

               X( I, N1, J1, J)) >=  

   @SUM( FXCXC( N1, J1, K1)| J1 #EQ# J #AND# 

                             DEPAT( N1, J1, K1) #LE# DEPAT( N, J, K): 

               X( I, N1, J, K1)); 

         );); 

! This model does not allow deadheading, so at the end of the day, 

   arrivals must equal departures; 

 @FOR( ACRFT( I): 

   @FOR( CITY( J): 

    @SUM( AXF( I, N, J1, J): X( I, N, J1, J)) = 

    @SUM( AXF( I, N, J, K): X( I, N, J, K)); 

       ); 

     ); 

!  Each flight must be covered; 

    @FOR( FXCXC( N, J, K): 

       @SUM( AXF( I, N, J, K): X( I, N, J, K)) = 1; 

        ); 
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! Fleet size limits; 

   @FOR( ACRFT( I):  

     @SUM( AXC( I, J): OVNITE( I, J)) <= FSIZE( I); 

       );  

! Fractional planes are not allowed; 

   @FOR( AXF: @GIN( X); ); 

END 

It has the solution: 

Global optimal solution found at step:           106 

Objective value:                            1323.940 

                     Variable           Value        

     X( MD90, F221, ORD, DEN)        1.000000       

     X( MD90, F223, ORD, DEN)        1.000000       

     X( MD90, F274, LAX, DEN)        1.000000       

     X( MD90, F105, ORD, LAX)        1.000000       

     X( MD90, F228, DEN, ORD)        1.000000       

     X( MD90, F230, DEN, ORD)        1.000000       

     X( MD90, F259, ORD, LAX)        1.000000       

     X( MD90, F412, LAX, ORD)        1.000000       

     X( MD90, F238, DEN, ORD)        1.000000       

     X( B737, F293, DEN, LAX)        1.000000       

     X( B737, F766, LAX, DEN)        1.000000       

 The daily profit contribution of this solution is 1323.94 * 100 = $132,394 per day. Notice that our 

single B737 flies from DEN at 2 pm to LAX as flight 293, and then departs LAX at 4 pm for DEN as 

flight 766. The above model requires that at the beginning of each day we must have the same number 

of MD90's and B737's at a given airport as on every other day. Just for reference, if you solve the above 

model with no B737's available, the profit contribution is $132,094. So, the B737 seems to be worth only 

$200 per day. 

 Can we do better if we allow a two-day cycle in the solution? We can try by changing the input to 

the model as in the model below. Effectively, we have given two days worth of demand, denoting the 

second day's flights by an S, vs. the F denoting the flights on the first day. Otherwise, the model is 

identical. The profit of this two day solution should be at least 2 * 132,394 = $264,788: 

MODEL: 

SETS:  ! Fleet routing and assignment (FLEETRAT); 

 CITY :;  ! The cities involved; 

 ACRFT:   ! Aircraft types; 

  FCOST,  !  Fixed cost per day of this type; 

  FSIZE;  !  Max fleet size of this type; 

 FLIGHT:;   

 FXCXC( FLIGHT, CITY, CITY) : 

  DEPAT,  ! Flight departure time; 

  ARVAT;  ! arrival time at dest.; 

 AXC( ACRFT, CITY):  

  OVNITE; ! Number staying overnight by type, city; 

 AXF( ACRFT, FXCXC):  

  X,      ! Number aircraft used by type, flight; 

  PC;     ! Profit contribution by type, flight; 

ENDSETS 
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DATA: 

 CITY = ORD  DEN  LAX; 

 ACRFT, FCOST, FSIZE = 

  MD90   .01    7 

  B737   .01    1; 

 FLIGHT = F221 F223 F274 F105 F228 F230 F259 F293 F412 F766 F238 

          S221 S223 S274 S105 S228 S230 S259 S293 S412 S766 S238; 

 FXCXC, DEPAT, ARVAT =  

!     Flight  Origin Dest. Depart Arrive; 

         F221   ORD   DEN    800    934 

         F223   ORD   DEN    900   1039 

         F274   LAX   DEN    800   1116   

         F105   ORD   LAX   1100   1314 

         F228   DEN   ORD   1100   1423 

         F230   DEN   ORD   1200   1521 

         F259   ORD   LAX   1400   1609 

         F293   DEN   LAX   1400   1510 

         F412   LAX   ORD   1400   1959 

         F766   LAX   DEN   1600   1912 

         F238   DEN   ORD   1800   2121 

         S221   ORD   DEN   3200   3334 

         S223   ORD   DEN   3300   3439 

         S274   LAX   DEN   3200   3516   

         S105   ORD   LAX   3500   3714 

         S228   DEN   ORD   3500   3823 

         S230   DEN   ORD   3600   3921 

         S259   ORD   LAX   3800   4009 

         S293   DEN   LAX   3800   3910 

         S412   LAX   ORD   3800   4359 

         S766   LAX   DEN   4000   4312 

         S238   DEN   ORD   4000   4521; 

 PC =   ! Profit contribution of each vehicle*flight combo; 

   115        109        129         135         125          132 

   112        105        103         128         128 

   115        109        129         135         125          132 

   112        105        103         128         128 

   111        128        104         100         102          105 

   129        131        135         105         101 

   111        128        104         100         102          105 

   129        131        135         105         101;    

ENDDATA 
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Now, the solution is: 

Global optimal solution found at step:           103 

Objective value:                            2718.930 

                     Variable           Value        

     X( MD90, F221, ORD, DEN)        1.000000            

     X( MD90, F223, ORD, DEN)        1.000000            

     X( MD90, F274, LAX, DEN)        1.000000            

     X( MD90, F105, ORD, LAX)        1.000000            

     X( MD90, F228, DEN, ORD)        1.000000            

     X( MD90, F230, DEN, ORD)        1.000000            

     X( MD90, F259, ORD, LAX)        1.000000            

     X( MD90, F293, DEN, LAX)        1.000000            

     X( MD90, F766, LAX, DEN)        1.000000            

     X( MD90, F238, DEN, ORD)        1.000000            

     X( MD90, S221, ORD, DEN)        1.000000            

     X( MD90, S274, LAX, DEN)        1.000000            

     X( MD90, S105, ORD, LAX)        1.000000            

     X( MD90, S228, DEN, ORD)        1.000000            

     X( MD90, S230, DEN, ORD)        1.000000            

     X( MD90, S259, ORD, LAX)        1.000000            

     X( MD90, S412, LAX, ORD)        1.000000            

     X( MD90, S766, LAX, DEN)        1.000000            

     X( MD90, S238, DEN, ORD)        1.000000            

     X( B737, F412, LAX, ORD)        1.000000            

     X( B737, S223, ORD, DEN)        1.000000            

     X( B737, S293, DEN, LAX)        1.000000            

 Notice that our profit, 2718.93 * 100 = $271,893 is more than twice the profit of the one day solution, 

2 * 132,394 = $264,788. How did we arrive at this happy situation? Notice how the B737 is used. On 

the first day, it flies from LAX to ORD via flight 412. On the second day, it flies from ORD to DEN via 

flight 223 and then from DEN back to LAX via flight 293. It is only on the second day that it is back 

where it started, LAX. All three flights are very profitable for the B737 relative to the MD90. By allowing 

a two-day cycle, the B737 is able to cover these very profitable flights at least half of the time. Thus, 

even though the demand pattern has a one day cycle, it is profitable to allow the solution to have a two 

day cycle. 

 A good discussion of how to avoid the temptation to restrict solutions can be found in the book on 

“conceptual blockbusting” by Adams (1986). Orlin (1982) gives a more detailed analysis of the cyclic 

vehicle routing problem. 
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9.10 Problems 
1. The Izza Steel Company of Tokyo has predicted delivery requirements of 3,000, 6,000, 5,000, and 

2,000 tons of steel in the next four periods. Current workforce is at the 4,000 tons per period level. 

At the moment, there is 500 tons of steel in stock. At the end of the four periods, Izza would like its 

inventory position to be back at 500 tons. Regular time workforce has a variable cost of $100 per 

ton. Overtime can be hired in any period at a cost of $140 per ton. Regular time workforce size can 

be increased from one period to the next at a cost of $300 per ton of change in capacity. It can be 

decreased at a cost of $80 per ton. There is a charge of $5 per ton for inventory at the end of each 

period. Izza would like the regular time workforce to be at the 3,000-ton level at the end of the four 

periods. 

a) Formulate Izza’s problem as a linear program. 

b) What assumption does your model make about idle workforce? 

2. An airline predicts the following pilot requirements for the next five quarters: 80, 90, 110, 120, 110. 

Current staff is 90 pilots. The question of major concern is the number of pilots to hire in each of 

the next five quarters. A pilot must spend the quarter in which she is hired in training. The line’s 

training facilities limit the number of pilots in training to at most 15. Further, the training of pilots 

requires the services of experienced pilots at the ratio of 5 to 1 (e.g., five pilots in training require 

one experienced pilot). An experienced pilot so assigned cannot be used to satisfy regular 

requirements. The cost of hiring and training a pilot is estimated at $20,000 exclusive of the 

experienced pilot time required. Experienced pilots cost $25,000 per quarter. Company policy does 

not include firing pilots. 

a) What are the variables? 

b) Formulate a model for determining how many pilots to hire in each period. 

3. The Toute de Suite Candy Company includes in its product line a number of different mixed nut 

products. The Chalet nut mix is required to have no more than 25 percent peanuts and no less than 

40 percent almonds. 

The nuts available, their prices, and their availabilities this month are as follows: 

Nut Price Availability 

Peanuts 20¢/lb. 400 lbs. 

Walnuts 35¢/lb. No limit 

Almonds 50¢/lb. 200 lbs. 

 The Chalet mix sells for 80 cents per pound. At most, 700 pounds can be mixed per month in 

questions (a), (b), and (c). 

a) Formulate the appropriate model for this problem. 

b) Toute de Suite would like to incorporate into the analysis its second major mixed nut line, 

the Hovel line. The Hovel mix can contain no more than 60 percent peanuts and no less 

than 20 percent almonds. Hovel sells for 40 cents per pound. Modify your model 

appropriately. 
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c) Toute de Suite would like to incorporate next month’s requirements into the analysis. The 

expected situation next month is: 

 
Nut 

 
Price 

Requirement  
(Availability) 

Peanuts 19¢/lb. 500 lbs 

Walnuts 36¢/lb. No limit 

Almonds 52¢/lb. 180 lbs. 

Chalet 81¢/lb.  

Hovel 39¢/lb.  

 It cost 2 cents per pound to store nuts (plain or mixed) for one month. Because of a contract 

commitment, at least 200 pounds of Chalet mix must be sold next month. Modify your model 

appropriately. 

4. If two parties to a financial agreement, A and B, want the agreement to be treated as a lease for tax 

purposes, the payment schedule typically must satisfy certain conditions specified by the taxing 

agency. Suppose Pi is the payment A is scheduled to make to B in year i of a seven-year agreement. 

Parties A and B want to choose at the outset a set of Pi’s to satisfy a tax regulation that no payment 

in any given period can be less than two-thirds of the payment in any later period. Show the 

constraints for period i to enforce this lower bound on Pi. Use as few constraints per period as 

possible. 

5. One of the options available to a natural gas utility is the renting of a storage facility, so it can buy 

gas at a cheap rate in the summer and store it until possibly needed in the winter. There is a yearly 

fee of $80,000 for each year the facility is rented. There is an additional requirement that, if the 

utility starts renting the facility in year t, it must also rent it for at least the next three years. The gas 

utility has a long range planning model with a variable xt = 1 if the utility rents the storage facility 

in year t, 0 otherwise; yt = 1 if the utility starts renting in period t; and zt = 1 if the utility stops renting 

after period t, for t = 1 to 25. It is not clear whether or not this facility should be rented. Show how 

to represent this fee structure in an LP/IP model. 

6. Below is the formulation of a cash flow matching problem, where the B variables represent 

investments in bonds and the S variables represent investment in savings for one period. The 

right-hand sides are the cash requirements for the various years. 

MIN = L; 

[P0]L -.98 * B1 - .965 * B2              - S0 = 10; 

[P01]  .06 * B1 + .065 * B2 + 1.04 * S0  - S1 = 11; 

[P02]  .06 * B1 + .065 * B2 + 1.04 * S1  - S2 = 12; 

[P03]  .06 * B1 + .065 * B2 + 1.04 * S2  - S3 = 14; 

[P04]  .06 * B1 + .065 * B2 + 1.04 * S3  - S4 = 15; 

[P05] 1.06 * B1 + .065 * B2 + 1.04 * S4  - S5 = 17; 

[P06]             .065 * B2 + 1.04 * S5  - S6 = 19; 

[P07]             .065 * B2 + 1.04 * S6  - S7 = 20; 

[P08]             .065 * B2 + 1.04 * S7  - S8 = 22; 

[P09]             .065 * B2 + 1.04 * S8  - S9 = 24; 

[P10]             .065 * B2 + 1.04 * S9  - S10 = 26; 

[P11]             .065 * B2 + 1.04 * S10 - S11 = 29; 

[P12]            1.065 * B2 + 1.04 * S11 - S12 = 31; 

END 
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a) The option to borrow at seven percent per period for a term of one period has become 

available in every period. Show the modification in the above model for the periods with 

right-hand sides of 15, 17, and 19. Denote the borrowing variables by M0, M1, etc. 

b) Would this option in fact be attractive in the above model in any period? 

c) Almost all the parties involved were happy with this model until the Internal Revenue 

Service (IRS) suddenly became interested. The IRS has made the judgment that the initial 

endowment in the very first period may be tax-free. However, thereafter, the regular tax 

laws apply. Upon further inquiry, the IRS responded that regular income is taxed at 37 

percent and capital gains at 15 percent.  

 We now want to find the initial lump sum such that, after taxes have been paid each period, we 

can still cover the right-hand side requirements. For simplicity, assume taxes are paid in the same 

period as the income being taxed. Show how rows P04 and P05 are altered by this unpleasant new 

reality (Disregard (a) and (b) above in answering.). 
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