STATA DATA MANAGEMENT
REFERENCE MANUAL
RELEASE 19

A Stata Press Publication
StataCorp LLC
College Station, Texas

=~ ® Copyright © 1985-2025 StataCorp LLC
710 \%l All rights reserved
/| Version 19

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
ISBN-10: 1-59718-422-5
ISBN-13: 978-1-59718-422-9

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a
retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or other-
wise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of
a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements
and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD,
CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc.,
Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATA Stata Press, Mata, MATA and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
StataNow and NetCourseNow are trademarks of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2025. Stata 19. Statistical software. StataCorp LLC.
The suggested citation for this manual is

StataCorp. 2025. Stata 19 Data Management Reference Manual . College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents

Intro Introduction to data management reference manual 1
Datamanagement Introduction to data management commands 2
APPENA L. Append datasets 8
ASSCIT & v vttt e e e e e e e e e Verify truth of claim 16
ASSEItNeSted Verify variables nested 21
beal ... Business calendar file manipulation 25
DY Repeat Stata command on subsets of the data 31
CA Change directory 35
Cf Compare two datasets 39
changeeol i Convert end-of-line characters of text file 42
checksum Calculate checksum of file 44
Clear o Clear memory 47
ClOMEVAT ... Clone existing variable 50
CodeboOK ...t e Describe data contents 53
collapse ..o Make dataset of summary statistics 64
FeT0) 1010 1 Compare two variables 74
COMMIPTESS .+« ¢ v et et et et e e e e e e e e et ettt e e e Compress data in memory 76
eT0) 11 o] A Make dataset of frequencies and percentages 78
COPY + ettt e e e e e Copy file from disk or URL 82
corr2data Create dataset with specified correlation structure 85
COUNE + vttt et e e e Count observations satisfying specified conditions 90
CTOSS & vttt et ettt e Form every pairwise combination of two datasets 92
Data tyPes v vttt Quick reference for data types 94
datasignature Determine whether data have changed 96
Datetimeottt Date and time values and variables 104
Datetime business calendarsoiiiiiiniiiiia., Business calendars 123
Datetime business calendars creation Business calendars creation 130
Datetime CONVErSiOnuvvtvtnee e eeeannnn Converting strings to Stata dates 140
Datetime display formats Display formats for dates and times 151
Datetime durationsc..ciiiiiiiaon.. Obtaining and working with durations 157
Datetime relative dates Obtaining dates and date information from other dates 169
Datetime values from other software Date and time conversion from other software 177
describe Describe data in memory or in a file 183
destring Convert string variables to numeric variables and vice versa 191
AT o Display filenames 200
drawnorm, Draw sample from multivariate normal distribution 203
Arop o Drop variables or observations 208
ds Compactly list variables with specified properties 213
duplicatesiiiiiiiiii, Report, tag, or drop duplicate observations 219
dyngen Dynamically generate new values of variables 226
edit ..o Browse or edit data with Data Editor 230
7o) & Extensions to generate 236
CNCOAC .. vttt Encode string into numeric and vice versa 259

Contents ii

CTASE .« v ettt e et e e e e e e e e e e e e Erase a disk file
CXPANd . . e Duplicate observations
expandcl ... Duplicate clustered observations
CXPOIE ettt e Overview of exporting data from Stata
filefilter Convert ASCII or binary patterns in a file
LN L Rectangularize dataset
format Set variables’ output format
fralias Alias variables from linked frames
frames INtroot e Introduction to frames
TS . o .ot e Data frames
framechange Change identity of current (working) frame
frame COPY .« oottt e Make a copy of a frame
frame Createottt e Create a new frame
frame drop Drop frames from memory
frameprefix The frame prefix command
frameput Copy selected variables or observations to a new frame
framepwf Display name of current (working) frame
frame rename Rename existing frame
frames describe L il Describe frames in memory or in a file
framesdir Display names of all frames in memory
framesmodify Modify a set of frames on disk
frames reset i Drop all frames from memory
frames SaAVEot Save a set of frames on disk
frames USevtti Load a set of frames from disk
rget o Copy variables from linked frame
N . Link frames
frunalias Change storage type of alias variables
GENCTALE ..o e ettt e Create or change contents of variable
L0 4 P Ascending and descending sort
hexdump Display hexadecimal report on file
ICd L Introduction to ICD commands
1CAD o ICD-9-CM diagnosis codes
ICAD oot ICD-9-CM procedure codes
1Cd10 e ICD-10 diagnosis codes
icdl0em ... ICD-10-CM diagnosis codes
ICALOPCS vttt ICD-10-PCS procedure codes
TMPOTE ettt e et e e e e e e Overview of importing data into Stata
IMport dbaset Import and export dBase files
importdelimited Import and export delimited text data
mport eXcel Import and export Excel files
importfred L. Import data from Federal Reserve Economic Data
importhaver Import data from Haver Analytics databases
import haverdirect Import data from Haver Analytics cloud servers
TMPOTE SAS v v v et ettt et e e e e e e e e e e e e Import SAS files
import sasxportS Import and export data in SAS XPORT Version 5 format

import sasxport8 Import and export data in SAS XPORT Version 8 format

267
269
272
275

277
280
282
296
308
320
323
325
327
329
330
332
335
336
337
344
346
349
351
356
361
368
388

390
396

400

406
414
425
432
443
454
463
472
475
487
494
521
533
544
548
559

Contents iii

IMPOTE SPSS « v v ettt e et e e e e e e e Import and export SPSS files
infile (fixed format) Import text data in fixed format with a dictionary
infile (free format) Import unformatted text data
infix (fixed format) Import text data in fixed format
0 010 Enter data from keyboard
ISODS ottt e Add or insert observations
INSPECE .+ttt e e e Display simple summary of data’s attributes
ipolateot Linearly interpolate (extrapolate) values
ISIA o Check for unique identifiers
jdbe oo Load, write, or view data from a database with a Java API
JOINbY . Form all pairwise combinations within groups
label ..o Manipulate labels
label language Labels for variables and values in multiple languages
labelbook ... Label utilities
St List values of variables
lookforo Search for string in variable names and labels
00 1S1 00 1o Memory management
INCIEE . ettt e e Merge datasets
Missing valuescoiiiiiniii Quick reference for missing values
MKAIT o Create directory
mvencodeiiaa... Change missing values to numeric values and vice versa
TIOLES e et ettt e e e e e e e e e Place notes in data
ObS Increase the number of observations in a dataset
odbe ... Load, write, or view data from ODBC sources
T vttt e Reorder variables in dataset
outfile Export dataset in text format
petile ..o Create variable containing percentiles
PUtMAta ..ot e Put Stata variables into Mata and vice versa
TANZE © ot et et e et et e e e e e e e e e Generate numerical range
TECAST v v vt ittt e e Change storage type of variable
TECOUE v ittt e Recode categorical variables
S 1T 10 P Rename variable
TENAME GEOUDP &« e v vt et et ettt e e e et e et e e et e eeeanns Rename groups of variables
reshape, Convert data from wide to long form and vice versa
TIAIT .« e Remove directory
SAMPIE o e Draw random sample
SAVE & vttt et e e e e e e e e e e e Save Stata dataset
SCPATALE & v o v et ettt e e e e e Create separate variables
shell ..o Temporarily invoke operating system
SNAPShOt . ..o Save and restore data snapshots
SOOI ottt e e e e e e e Sort data
SPIIt o Split string variables into parts
splitsample Split data into random samples
SEACK .« Stack data

statsby Collect statistics for a command across a by list

563
568
586
596
604
612
614
618
621

624
636

641
651
657
668
681

683
689
714
715
717

721

726
728
742
746

753
765

777
780
783
792
794
805
824

826
831
837
841
847
850
859
864
873
879

Contents iv

SYSUSE + v v et et et e e e e e e e e e e e e e Use shipped dataset
14 01 PO Display contents of a file
UNICOAC .ttt e e e e e Unicode utilities
unicode collator Language-specific Unicode collators
unicode convertfile Low-level file conversion between encodings
unicode encodingii e Unicode encoding utilities
unicode locale Unicode locale utilities
unicode translate Translate files to Unicode
USE « vttt e ettt e e e e e e e e Load Stata dataset
VArMANAZE .« v vvveee e Manage variable labels, formats, and other properties
Ve Manage variable lists
vlicreate Create and modify user-defined variable lists
vidrop ... Drop variable lists or variables from variable lists
VISt o List contents of variable lists
virebuild Rebuild variable lists
VSOt e Set system-defined variable lists
WEDUSE .ottt e Use dataset from Stata website
XPOSE + vttt e e e e e e Interchange observations and variables
zipfile Compress and uncompress files and directories in zip archive format
GlOSSAIY . vt vttt et e e e

Subject and author INdeXt

888
891

894
895
897
900
902
905
921

925
926
943
947
950
957
961

966
969
972
975

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example
is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second
is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the
reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[H20OML] Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual
[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual

Intro — Introduction to data management reference manual

Description

This manual documents most of Stata’s data management features and is referred to as the [D] manual.
Some specialized data management features are documented in such subject-specific reference manuals
as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation Modeling Refer-
ence Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata Survival Analysis Reference Manual,
and [XT] Stata Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] Data management provides an overview of data management in Stata and
of Stata’s data management commands. The other parts of this manual are arranged alphabetically. If
you are new to Stata’s data management features, we recommend that you read the following first:

[D] Data management — Introduction to data management commands
[U] 12 Data

[U] 13 Functions and expressions

[U] 11.5 by varlist: construct

[U] 22 Entering and importing data

[U] 23 Combining datasets

[U] 24 Working with strings

[U] 26 Working with categorical data and factor variables

[U] 25 Working with dates and times

[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of most
Stata features, whereas this is a reference manual and provides details on the usage of specific commands.
You will get an overview of features for combining data from [U] 23 Combining datasets, but the details
of performing a match-merge (merging the records of two files by matching the records on a common
variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure that
you have the latest features, you should install the most recent official update; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual

Data management — Introduction to data management commands

Description References Also see

Description

This manual, called [D], documents Stata’s data management features. See Mitchell (2020) for addi-
tional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,
merging, appending, and the like—but also to data reorganization because the statistical routines you
will use assume that the data are organized in a certain way. For example, statistical commands that
analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide
form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

D] frames intro

Introduction to frames

[D] use Load Stata dataset

[D] sysuse Use shipped dataset

[D] webuse Use dataset from Stata website

[D] save Save Stata dataset

[D] describe Describe data in memory or in a file

[D] codebook Describe data contents

[D] inspect Display simple summary of data’s attributes

[D] count Count observations satisfying specified conditions
[D] Data types Quick reference for data types

[D] Missing values Quick reference for missing values

[D] Datetime Date and time values and variables

[D] list List values of variables

[D] edit Browse or edit data with Data Editor

[D] varmanage Manage variable labels, formats, and other properties
[D] rename Rename variable

[D] format Set variables’ output format

[D] label Manipulate labels

[D]

Data management — Introduction to data management commands 3

To work with multiple datasets in memory, see

[D] frames intro Introduction to frames

[D] frames Data frames

[D] frame change Change identity of current (working) frame
[D] frame copy Make a copy of a frame

[D] frame create Create a new frame

[D] frame drop Drop frames from memory

[D] frame prefix The frame prefix command

[D] frame put Copy selected variables or observations to a new frame
[D] frame pwf Display name of current (working) frame
[D] frame rename Rename existing frame

[D] frames dir Display names of all frames in memory

[D] frames reset Drop all frames from memory

[D] frames save Save a set of frames on disk

[D] frames modify Modify a set of frames on disk

[D] frames use Load a set of frames from disk

[D] frames describe Describe frames in memory or in a file

[D] frget Copy variables from linked frame

[D] frlink Link frames

You will need to create and drop variables, and here is how:

[D] generate Create or change contents of variable
[D] egen Extensions to generate

[D] drop Drop variables or observations

[D] clear Clear memory

Data management — Introduction to data management commands 4

For inputting or importing data, see

[D] use
[D] sysuse
[D] webuse

]

]

[D] input

[D] import

[D] import dbase

[D] import delimited

[D] import excel

[D] import fred

[D] import haver

[D] import haverdirect

[D] import sas

[D] import sasxportS

[D] import sasxport8

[D] import spss

[D] infile (fixed format)

[D] infile (free format)

[D] infix (fixed format)
]
]
]
]
]
]
]
]

[D] jdbe
[D] odbce

[D] hexdump

[D] icd9
[D] icd9p
[D] icd10
[D] icd10cm
[D] icd10pcs

and for exporting data, see

[D] save

[D] export

[D] outfile

[D] import dbase

[D] import delimited
[D] import excel

[D] import sasxport5
[D] import sasxport8
[D] import spss
[D] jdbe
[D] odbe

Load Stata dataset
Use shipped dataset
Use dataset from Stata website

Enter data from keyboard

Overview of importing data into Stata

Import and export dBase files

Import and export delimited text data

Import and export Excel files

Import data from Federal Reserve Economic Data
Import data from Haver Analytics databases

Import data from Haver Analytics cloud servers
Import SAS files

Import and export data in SAS XPORT Version 5 format
Import and export data in SAS XPORT Version 8 format
Import and export SPSS files

Import text data in fixed format with a dictionary
Import unformatted text data

Import text data in fixed format

Load, write, or view data from a database with a Java API
Load, write, or view data from ODBC sources

Display hexadecimal report on file

ICD-9-CM diagnosis codes
ICD-9-CM procedure codes
ICD-10 diagnosis codes
ICD-10-CM diagnosis codes
ICD-10-PCS procedure codes

Save Stata dataset

Overview of exporting data from Stata

Export dataset in text format

Import and export dBase files

Import and export delimited text data

Import and export Excel files

Import and export data in SAS XPORT Version 5 format
Import and export data in SAS XPORT Version 8 format
Import and export SPSS files

Load, write, or view data from a database with a Java API
Load, write, or view data from ODBC sources

Data management — Introduction to data management commands 5

The ordering of variables and observations (sort order) can be important; see

[D] order
[D] sort
[D] gsort

To reorganize or combine data, see

[D] append
[D] merge
[D] frlink
[D] frget
[D] reshape
[D] collapse
[D] contract
[D] fillin

[D] expand
[D] expandecl
[D] stack

[D] joinby
[D] xpose
[D] cross

Reorder variables in dataset
Sort data
Ascending and descending sort

Append datasets

Merge datasets

Link frames

Copy variables from linked frame

Convert data from wide to long form and vice versa
Make dataset of summary statistics

Make dataset of frequencies and percentages
Rectangularize dataset

Duplicate observations

Duplicate clustered observations

Stack data

Form all pairwise combinations within groups
Interchange observations and variables

Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that

beginners often overlook.

For random sampling, see

[D] sample
[D] splitsample
[D] drawnorm

For file manipulation, see

[D] type
[D] erase

]

[D] copy

[D] ed

[D] dir

[D] mkdir

[D] rmdir

[D] ef

[D] changeeol

[D] filefilter

[D] checksum
]

[D] zipfile

Draw random sample
Split data into random samples
Draw sample from multivariate normal distribution

Display contents of a file
Erase a disk file
Copy file from disk or URL

Change directory
Display filenames
Create directory

Remove directory

Compare two datasets

Convert end-of-line characters of text file
Convert ASCII or binary patterns in a file
Calculate checksum of file

Compress and uncompress files and directories in zip archive
format

Data management — Introduction to data management commands 6

For handling Unicode strings, see

[D] unicode Unicode utilities

[D] unicode translate Translate files to Unicode

[D] unicode encoding Unicode encoding utilities

[D] unicode locale Unicode locale utilities

[D] unicode collator Language-specific Unicode collators

[D] unicode convertfile Low-level file conversion between encoding

The entries above are important. The rest are useful when you need them:

[D] datasignature Determine whether data have changed

[D] type Display contents of a file

[D] notes Place notes in data

[D] label language Labels for variables and values in multiple languages

[D] labelbook Label utilities

[D] encode Encode string into numeric and vice versa

[D] recode Recode categorical variables

[D] ipolate Linearly interpolate (extrapolate) values

[D] destring Convert string variables to numeric variables and vice versa

[D] mvencode Change missing values to numeric values and vice versa

[D] pctile Create variable containing percentiles

[D] range Generate numerical range

[D] b Repeat Stata command on subsets of the data

[D] statsby Collect statistics for a command across a by list

[D] dyngen Dynamically generate new values of variables

[D] compress Compress data in memory

[D] recast Change storage type of variable

[D] Datetime display formats Display formats for dates and times

[D] Datetime conversion String to numeric date conversion functions

[D] Datetime durations Obtaining and working with durations

[D] Datetime relative dates Datetime relative dates

[D] Datetime values from other Date and time conversion from other software
software

[D] beal Business calendar file manipulation

[D] Datetime business calendars Business calendars

[D] Datetime business calendars Business calendars creation
creation

Data management — Introduction to data management commands 7

[D] assert

[D] assertnested
[D] clonevar

[D] compare
[D] corr2data

[D] duplicates
[D msobs

1
1
]
]
]
1
1
]
Ji
[D] lookfor
[D] memory
[D] putmata
[D] obs
[D] rename group
[D] separate
[D] shell
[D] snapshot
[D] split
]
]
]
]
1
1

[D] vl create
[D] vl drop
[D] vl list

[D] vl rebuild
[D] vl set

Verify truth of claim

Verify variables nested

Clone existing variable

Compare two variables

Create dataset with specified correlation structure
Compactly list variables with specified properties
Report, tag, or drop duplicate observations

Add or insert observations

Check for unique identifiers

Search for string in variable names and labels
Memory management

Put Stata variables into Mata and vice versa
Increase the number of observations in a dataset
Rename groups of variables

Create separate variables

Temporarily invoke operating system

Save and restore data snapshots

Split string variables into parts

Manage variable lists

Create and modify user-defined variable lists
Drop variable lists or variables from variable lists
List contents of variable lists

Rebuild variable lists

Set system-defined variable lists

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you will

find particularly useful.

References

Hoffmann, J. P. 2017. Principles of Data Management and Presentation. Oakland, CA: University of California Press.
Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Also see

[D] Intro — Introduction to data management reference manual

[R] Intro — Introduction to base reference manual

https://www.stata.com/bookstore/principles-of-data-management-and-presentation/
https://www.stata-press.com/books/data-management-using-stata/

append — Append datasets

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description

append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any
filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 23 Combining
datasets for a comparison of append, merge, and joinby.

Quick start

Append mydata2.dta to mydatal.dta with no data in memory
append using mydatal mydata?2

Same as above, but with mydatal.dta in memory
append using mydataZ2

Same as above, and generate newv to indicate source dataset

append using mydata2, generate (newv)

Same as above, but do not copy value labels or notes from mydata2.dta

append using mydata2, generate(newv) nolabel nonotes

Only keep v1, v2, and v3 from mydata2.dta
append using mydata2, keep(vl v2 v3)

Menu

Data > Combine datasets > Append datasets

append — Append datasets 9

Syntax

append using filename [filename [...]] [, options]

You may enclose filename in double quotes and must do so if filename contains blanks or other special
characters.

options Description

generate(newvar) newvar marks source of resulting observations

keep (varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error
Options

generate (newvar) specifies the name of a variable to be created that will mark the source of observa-
tions. Observations from the master dataset (the data in memory before the append command) will
contain 0 for this variable. Observations from the first using dataset will contain 1 for this variable;
observations from the second using dataset will contain 2 for this variable; and so on.

keep (varlist) specifies the variables to be kept from the using dataset. If keep() is not specified, all
variables are kept.

The varlist in keep (varlist) differs from standard Stata varlists in two ways: variable names in varlist
may not be abbreviated, except by the use of wildcard characters, and you may not refer to a range of
variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset in
memory. Even if you do not specify this option, label definitions from the disk dataset never replace
definitions already in memory.

nonotes prevents notes in the using dataset from being incorporated into the result. The default is to
incorporate notes from the using dataset that do not already appear in the master data.

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append issues
a warning message.

Remarks and examples
The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see
[D] save).
b Example 1

We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,
contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are

append — Append datasets 10

. use even
(6th through 8th even numbers)

. list

number even

1. 6 12
2. 7 14
3. 8 16

. use odd
(First five odd numbers)

. list

number odd

[S2 I =V SR
O WN -
© N O Ww

We will append the even data to the end of the odd data. Because the odd data are already in memory
(we just used them above), we type append using even. The result is

. append using even

. list
number odd even
1 1 1
2 2 3
3 3 5
4 4 7
5 5 9
6. 6 12
7. 7 14
8. 8 . 16

Because the number variable is in both datasets, the variable was extended with the new data from
the file even.dta. Because there is no variable called odd in the new data, the additional observations
on odd were forward-filled with missing (.). Because there is no variable called even in the original
data, the first observations on even were back-filled with missing.

d

append — Append datasets 11

b Example 2

The order of variables in the two datasets is irrelevant. Stata always appends variables by name:
. use https://www.stata-press.com/data/r19/o0dd1
(First five odd numbers)
. describe

Contains data from https://www.stata-press.com/data/r19/o0ddl.dta

Observations: 5 First five odd numbers
Variables: 2 9 Jan 2024 08:41
Variable Storage Display Value
name type format label Variable label
odd float %9.0g 0dd numbers
number float %9.0g

Sorted by: number

. describe using https://www.stata-press.com/data/r19/even

Contains data 6th through 8th even numbers
Observations: 3 9 Jan 2024 08:43
Variables: 2
Variable Storage Display Value
name type format label Variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. append using https://www.stata-press.com/data/r19/even

. list
odd number even
1 1 1
2 3 2
3 5 3
4 7 4
5 9 5
6. . 6 12
7. 7 14
8 8 16

The results are the same as those in the first example.
N
When Stata appends two datasets, the definitions of the dataset in memory, called the master dataset,
override the definitions of the dataset on disk, called the using dataset. This extends to value labels,
variable labels, characteristics, and date—time stamps. If there are conflicts in numeric storage types, the
more precise storage type will be used regardless of whether this storage type was in the master dataset
or the using dataset. If a variable is stored as a string in one dataset that is longer than in the other, the
longer str# storage type will prevail. If a variable is stored as a strL in one dataset and a str# in
another dataset, the strL storage type will prevail.

append — Append datasets 12

Q Technical note

If a variable is a string in one dataset and numeric in the other, Stata issues an error message unless the
force option is specified. If force is specified, Stata issues a warning message before appending the
data. If the using dataset contains the string variable, the combined dataset will have numeric missing
values for the appended data on this variable; the contents of the string variable in the using dataset
are ignored. If the using dataset contains the numeric variable, the combined dataset will have empty
strings for the appended data on this variable; the contents of the numeric variable in the using dataset
are ignored.

a

b Example 3

Because Stata has five numeric variable types—byte, int, long, float, and double—you may
attempt to append datasets containing variables with the same name but of different numeric types; see
[U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:

. describe using https://www.stata-press.com/data/r19/odd

Contains data

First five odd numbers

Observations: 5 9 Jan 2024 08:50
Variables: 2
Variable Storage Display Value
name type format label Variable label
number float %9.0g
odd float %9.0g 0dd numbers
Sorted by:

. describe using https://www.stata-press

Contains data

.com/data/r19/even

6th through 8th even numbers

Observations: 3 9 Jan 2024 08:43
Variables: 2
Variable Storage Display Value
name type format label Variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number

. describe using https://www.stata-press

Contains data

.com/data/r19/oddeven

First five odd numbers

Observations: 8 9 Jan 2024 08:53
Variables: 3
Variable Storage Display Value
name type format label Variable label
number float %9.0g
odd float %9.0g 0dd numbers
even float %9.0g Even numbers

Sorted by:

append — Append datasets 13

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because float
is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as a float.
Had we instead appended odd.dta to even.dta, number would still have been stored as a float:

. use https://www.stata-press.com/data/r19/even, clear
(6th through 8th even numbers)

. append using https://www.stata-press.com/data/r19/o0dd
(variable number was byte, now float to accommodate using data’s values)

. describe

Contains data from https://www.stata-press.com/data/r19/even.dta

Observations: 8 6th through 8th even numbers

Variables: 3 9 Jan 2024 08:43

Variable Storage Display Value
name type format label Variable label

number float %9.0g

even float %9.0g Even numbers

odd float %9.0g 0dd numbers

Sorted by:

Note: Dataset has changed since last saved.

b Example 4

Suppose that we have a dataset in memory containing the variable educ, and we have previously given
alabel variable educ "Education Level" command so that the variable label associated with educ
is “Education Level”. We now append a dataset called newdata.dta, which also contains a variable
named educ, except that its variable label is “Ed. Lev”. After appending the two datasets, the educ
variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

N

b Example 5

Assume that the values of the educ variable are labeled with a value label named educlbl. Further
assume that in newdata. dta, the values of educ are also labeled by a value label named educlbl. Thus
there is one definition of educlbl in memory and another (although perhaps equivalent) definition in
newdata.dta. When you append the new data, you will see the following:

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem and
sticks with the definition currently in memory, ignoring the definition in the disk file.

d

append — Append datasets 14

Q Technical note

When you append two datasets that both contain definitions of the same value label, the codings may
not be equivalent. That is why Stata warns you with a message like “label educlbl already defined”. If
you do not know that the two value labels are equivalent, you should convert the value-labeled variables
into string variables, append the data, and then construct a new coding. decode and encode make this
easy:

. use newdata, clear

. decode educ, gen(edstr)
. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)
. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in the
incoming file, whether or not there is a conflict. In practice, you will probably never want to do this.
a

b Example 6

Suppose that we have several datasets containing the populations of counties in various states. We
can use append to combine these datasets all at once and use the generate () option to create a variable
identifying from which dataset each observation originally came.

. use https://www.stata-press.com/data/r19/capop
. list

county pop

1. Los Angeles 9878554
2. Orange 2997033
3. Ventura 798364

. append using https://www.stata-press.com/data/r19/ilpop
> https://www.stata-press.com/data/r19/txpop, generate(state)

. label define statelab 0 "CA" 1 "IL" 2 "TX"

. label values state statelab

append — Append datasets 15

. list

county pop state
1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL
6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Video example

How to append files into a single dataset

Reference
Chatfield, M. D. 2015. precombine: A command to examine n > 2 datasets before combining. Stata Journal 15: 607—-626.

Also see

D] cross — Form every pairwise combination of two datasets

]
D] joinby — Form all pairwise combinations within groups
D] merge — Merge datasets

]

[
[
[
[D] save — Save Stata dataset
[D] use — Load Stata dataset
[U] 23 Combining datasets

https://www.youtube.com/watch?v=AZGW8tohiqw
https://www.stata-journal.com/article.html?article=dm0081

assert — Verify truth of claim

Description Quick start Syntax Options Remarks and examples
Reference Also see
Description

assert verifies that exp is true. If it is true, the command produces no output. Ifit is not true, assert
informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error messages and
return codes.

Quick start

Confirm that v1 only takes values 0 or 1

assert vi==0 | vi==

Verify that v2 is between 100 and 200 and never missing
assert inrange(v2,100,200)

Verify that v2 is between 100 and 200 for all nonmissing values
assert inrange(v2,100,200) if !missing(v2)

Verify that v2 is between 100 and 200 and never missing when catvar equals 2 or 3

assert inrange(v2,100,200) if (catvar==2 | catvar==3)

Verify that there are 5 observations per cluster identified by cvar

by cvar: assert _N==b

Same as above, but stop checking after the first cluster has fewer than or more than 5 observations

by cvar: assert _N==5, fast

16

assert — Verify truth of claim 17

Syntax

assert exp [lf] [in] [, rcOnull jast]

by is allowed; see [D] by.

Options
rcO forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions. A null assertion occurs when an if condition excludes
all observations from being checked by assert. By default, the return code is 0 for null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples

assert verifies that the expression provided is true. It is useful because it tells Stata not only what to
do but also what you can expect to find. Groups of assertions are often combined in a do-file to certify
data. If the do-file runs all the way through without complaining, every assertion in the file is true.
Otherwise, assert will provide a count of the contradictions when an assertion is false. It will also issue
an error message along with a return code of 9; see [U] 8 Error messages and return codes.

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate to
look for evidence of errors in the dataset. These commands, however, require you to review the output
to spot the error.

b Example 1: Observation-level assertions

You and a colleague are analyzing union membership among women. Your colleague imported data
from the National Longitudinal Survey of young women for the years 1968 to 1988. You plan to include
the woman’s age, total work experience, and whether or not she graduated from college in your model.

Your colleague tells you that the cleaned dataset is called nlswork and that the following things
are true: that the variables recording union membership, age, total experience, and education level are
not missing for any of the observations; that observations taken before a woman turned 18 have been
removed; that total experience is always greater than or equal to 0; and that all college graduates have
at least 14 years of education. Before you begin your analysis, you should verify the accuracy of these
data. To test that the statements above are true, you create a do-file named check.do:

begin check.do, example 1
assert age>=18 & !missing(age)

assert !missing(union)

assert ttl_exp>=0 & 'missing(ttl_exp)

assert grade>=14 & !'missing(grade) if collgrad==

end check.do, example 1

You save the above file, read in the data, and then issue the do command to check the assertions:

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. do check

assert — Verify truth of claim 18

The output is as follows:

. assert age>=18 & !missing(age)

159 contradictions in 28,534 observations
assertion is false

r(9);

end of do-file
r(9);

The do-file did not run to completion because it encountered a false assertion—that age is never
missing and always at least 18 years.

You should resolve this and any other discrepancies before analyzing the data. You run the do-file
again, this time with the nostop option, which tells Stata to continue executing the do-file despite any
errors.

. do check, nostop

Once it runs in its entirety, you will have a list of all the data discrepancies to discuss with your colleague.
The output is as follows:

. assert age>=18 & !missing(age)

159 contradictions in 28,534 observations

assertion is false
r(9);

. assert !missing(union)

9,296 contradictions in 28,534 observations
assertion is false

r(9);

. assert ttl_exp>=0 & !'missing(ttl_exp)

. assert grade>=14 & !missing(grade) if collgrad==
42 contradictions in 4,795 observations

assertion is false

r(9);

end of do-file

The output from the false assertions above is helpful. First, the number of contradictions can serve as
a clue; a few contradictions may suggest data entry errors, whereas a large number may motivate further
investigation. Second, you get a straightforward message that the assertion is false. Finally, you get a
return code of 9, which makes it easy to write code based on whether or not an assertion is true.

d

b Example 2: Speeding up assert

In example 1, we obtained a count of the number of observations where each assertion was false.
However, if all you wanted to know was whether or not an assertion was true, you could reduce the
amount of time required to check that assertion by specifying the fast option, as shown below:

. assert age>=18 & !missing(age), fast

assertion is false
r(9);

The fast option tells Stata to stop checking the assertion when it encounters the first case where it is
false, which is why you do not get a count of the contradictions.

d

assert — Verify truth of claim 19

b Example 3: Assertions by groups

Your assertions in the previous examples were tested in each observation. You spoke with your col-
league regarding those assertions, and she has sent you a revised version of the dataset. The next goal is
to make sure that age has been recorded correctly over time. Women in the study were observed once per
year, and in some years, they were not observed at all. Therefore, you know that age must be increasing
with every time period.

Thus, now you want to assess the characteristics of each woman over time, and you can do so with
the by: prefix. You include the sort option with the by prefix because the data have not been sorted
by woman (idcode) and year already; see [U] 11.5 by varlist: construct. Now you can assert that for
each woman, the value of age is greater than it was in the previous year for all years except the first.

You add the following line to check.do:

begin check.do, example 3
by idcode (year), sort: assert age>=agel[_n-1]+1 if _n>1

end check.do, example 3

Upon reissuing the the do check, nostop command, the following output is shown:

. by idcode (year), sort: assert age>=age[_n-1]+1 if _n>1
171 contradictions in 23,823 observations

assertion is false

r(9);

end of do-file

Again, we have found a few errors in the dataset. We might want to check the source of the dataset for
any notes on data discrepancies.

d

Q Technical note

assert is smart in how it evaluates expressions. When you type something like assert _N==522
or assert work [_N] >0, assert knows that the expression needs to be evaluated only once. When you
type assert female==1 | female==0, assert knows that the expression needs to be evaluated once
for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is eval-
uated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to assert
work>0.
a

assert — Verify truth of claim 20

Reference
Gould, W. W. 2001. Statistical software certification. Stata Journal 1: 29-50.

Also see

[D] assertnested — Verify variables nested
[P] capture — Capture return code

[P] confirm — Argument verification

[U] 16 Do-files

https://www.stata-journal.com/article.html?article=pr0001

assertnested — Verify variables nested

Description Quick start Syntax Options Remarks and examples Also see

Description

assertnested verifies that the values of variables are nested within the values of other variables. If
they are nested, the command produces no output. If they are not nested, assertnested informs you
that they are not and issues an error return code of 459; see [U] 8 Error messages and return codes.

Quick start

Confirm that the values of psu are nested within stratum

assertnested stratum psu

Confirm that the values of IDs in student are nested within school, which is nested within district

assertnested district school student

For panel data, where panels are individuals with IDs stored in panelid, check that values of age and
income are the same for all observations in each panel

assertnested panelid, within(age income)

Same as above, but treat any missing values the same as nonmissing values

assertnested panelid, within(age income) missing

Syntax
assertnested varlist [if] [in] |, within(withinvars) missing]|

The variables in varlist are given in the order of biggest grouping to smallest grouping.

by is allowed; see [D] by.

Options

within (withinvars) asserts that the values of var/ist are nested within each of the variables in withinvars.
That is, assertnested varlist, within(w/ w2 ...) will issue an error if any of assertnested w/
varlist, assertnested w2 varlist, . . . issue an error.

missing specifies that missing values in varlist and withinvars are to be treated the same as nonmissing
values.

21

assertnested — Verify variables nested 22

Remarks and examples

assertnested is a convenience command for checking whether variables are nested. We say that
v2 is nested within v1 if for all observations that have the same value of v2, the observations also have
the same value of v1.

Here are data that are nested.

. list vl v2, sepby(vl)

vl v2
1 0 1
2 0 1
3 0 2
4 0 2
5. 1 3
6. 1 3
T. 1 4
8. 1 4

. assertnested vl v2

assertnested succeeds.
Here are data that are not nested.

. list v1 v3, sepby(vl)

vl v3
1. 0 1
2. 0 2
3. 0 3
4. 0 4
5. 1 1
6. 1 2
7. 1 3
8. 1 4

. assertnested vl v3
v3 not nested within vi
r(459);

assertnested fails.
Running
assertnested vl v2 v3

is the same as running

assertnested vl v2
assertnested v2 v3

Variables must be specified with the biggest nested grouping first, then the second biggest nested group-
ing, and so on, to the smallest nested grouping.

assertnested — Verify variables nested 23

b Example 1: Nested variables

We have a dataset consisting of two school districts in Texas: the district for the city of College Station
and the district for the city of Richardson. The dataset contains the actual names of all the public schools
in the variable school in these districts, given by variable district. The dataset contains fictitious
student IDs in the variable student.

We want to assert that student is nested within school and that school is nested within district.

. use https://www.stata-press.com/data/r19/schools

. assertnested district school student
school not nested within district
r(459);

Schools are not nested within district! Are some schools in both districts? That is impossible. But it is
possible that both districts have one or more schools with the same name. Let’s find them.

We use egen’s tag() function to tag one observation for each distinct value of district for each
school. Then we sum up the number of tags in each school. If the schools were nested within district,
there would be only one tag per school. We list the districts and schools with more than one tag.

. egen tag_district = tag(school district)
. bysort school: egen ndistrict = sum(tag_district)

. list district school if tag_district == 1 & ndistrict > 1, noobs

district school

Richardson Spring Creek Elementary School
College Station Spring Creek Elementary School

Both College Station and Richardson have schools named Spring Creek Elementary School. If we want
to check that students are nested within schools, we need to do the check separately by district.

. bysort district: assertnested school student

Or else Texans need to get more creative about naming their schools.

b Example 2: Variables constant within panels

Commands that work with panel data in Stata require the data to be in long form. That is, multiple
Stata observations for each panel. Saying a variable is constant within each panel is the same as saying
the panels are nested within that variable. assertnested allows you to assert that variables are constant
within each panel.

We illustrate this with choice model data. Choice model data are stored like panel data in that each
individual has multiple observations, one for each possible choice. Characteristics of the individual
should be constant across observations for an individual.

We load a dataset with consumer choices for purchasing a new car (see [CM] Intro 2 for a description
of these data). Then we check that gender and income are constant for the observations with the same
consumerid by using the within () option.

assertnested — Verify variables nested 24

. use https://www.stata-press.com/data/r19/carchoice, clear
(Car choice data)

. assertnested consumerid, within(gender income)

The within () option is a convenient way to do multiple assertions. The above is the same as running
. assertnested gender consumerid
. assertnested income consumerid

The option missing can be specified to treat missing values the same as any other value.

. assertnested consumerid, within(gender income) missing
consumerid not nested within gender
r(459);

We see that gender is not constant for some consumers when we treat missing values like any other
value. Let’s list one person who has missing values for gender:

. list consumerid gender if consumerid == 142, abbrev(10)

consumerid gender

509. 142 .
510. 142 Male
511. 142 Male
512. 142 Male

This person has a missing value for gender for one observation and nonmissing values for other obser-
vations. For the data to pass assertnested with the option missing, the variable would have to be
either all missing or all nonmissing (and the same value) for each individual.

N
Also see

D] assert — Verify truth of claim
CM] Intro 2 — Data layout

[

[

[P] capture — Capture return code

[SVY] Survey — Introduction to survey commands
[

XT] xt — Introduction to xt commands
[U] 16 Do-files

bcal — Business calendar file manipulation

Description Quick start Menu Syntax
Option for bcal check Options for bcal create Remarks and examples Stored results
Reference Also see

Description

See [D] Datetime business calendars for an introduction to business calendars and dates.
bcal check lists the business calendars used by the data in memory, if any.

beal dir pattern lists filenames and directories of all available business calendars matching pattern,
or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically
when needed, and thus use of bcal load is never required. bcal load is used by programmers writing
their own business calendars. bcal load calname forces immediate loading of a business calendar and
displays output, including any error messages due to improper calendar construction.

bcal create filename, from(varname) creates a business calendar file based on dates in varname.
Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option
excludemissing(), can also be used to exclude dates from the new business calendar.

Quick start

Create business calendar file mycal.stbcal from date variable tvar in the dataset in memory

bcal create mycal, from(tvar)

Same as above, and generate business date variable newt formatted as %tbmycal

bcal create mycal, from(tvar) generate(newt)

List directories and filenames of available business calendars
bcal dir

Describe range, center date, and number of omitted days in business calendar mycal .stbcal

bcal describe mycal

Report any %tb formats applied to the variables in memory
bcal check

Menu

Data > Other utilities > Create a business calendar
Data > Other utilities > Manage business calendars

Data > Variables Manager

25

bcal — Business calendar file manipulation 26

Syntax
List business calendars used by the data in memory

beal check [varlist] [, rcO|

List filenames and directories of available business calendars

beal dir [pattern |

Describe the specified business calendar

bcal describe calname

Load the specitied business calendar

bcal load calname

Create a business calendar from the current dataset

bcal create filename [if | [in], from(varname) | bcal_create_options |

where

varlist is a list of variable names to be checked for whether they use business calendars. If not speci-
fied, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and 7. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,
calname could be simple or) tbsimple.

filename is the name of the business calendar file created by bcal create.

bcal_create_options Description
Main
* from(varname) specify date variable for calendar
generate (newvar) generate newvar containing business dates
excludemissing(varlist [, any|) exclude observations with missing values in varlist
personal save calendar file in your PERSONAL directory
replace replace file if it already exists
Advanced
purpose (text) describe purpose of calendar
dateformat (ymd | ydm | myd |mdy | dym |dmy) specify date format in calendar file
range (fromdate todate) specify range of calendar
centerdate (date) specify center date of calendar
maxgap (#) specify maximum gap allowed; default is 10 days

*from(varname) is required.

collect is allowed with all bcal commands; see [U] 11.1.10 Prefix commands.

bcal — Business calendar file manipulation 27

Option for bcal check

Main

rcO specifies that bcal check is to exit without error (return 0) even if some calendars do not exist or
have errors. Programmers can then access the results bcal check stores in r() to get even more
details about the problems. If you wish to suppress bcal dir, precede the bcal check command
with capture and specify the rcO option if you wish to access the r () results.

Options for bcal create

Main

r

from(varname) specifies the date variable used to create the business calendar. Gaps between dates in
varname define business holidays. The longest gap allowed can be set with the maxgap() option.
from() is required.

generate (newvar) specifies that newvar be created. newvar is a date variable in %tbcalname format,
where calname is the name of the business calendar derived from filename.

excludemissing(varlist [, any|) specifies that the dates of observations with missing values in varfist
are business holidays. By default, the dates of observations with missing values in all variables in
varlist are holidays. The any suboption specifies that the dates of observations with missing values
in any variable in varlist are holidays.

personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be used
if filename contains the pathname of the directory where the file is to be saved.

replace specifies that the business calendar file be replaced if it already exists.

Advanced

purpose (text) specifies the purpose of the business calendar being created. fext cannot exceed 63 char-
acters.

dateformat (ymd | ydm | myd |mdy | dym | dmy) specifies the date format in the new business calendar.
The default is dateformat (ymd). dateformat () has nothing to do with how dates will look when
variables are formatted with %tbcalname; it specifies how dates are typed in the calendar file.

range (fromdate todate) defines the date range of the calendar being created. fromdate and todate should
be in the format specified by the dateformat () option; if not specified, the default ymd format is
assumed.

centerdate (date) defines the center date of the new business calendar. If not specified, the earliest
date in the calendar is assumed. date should be in the format specified by the dateformat () option;
if not specified, the default ymd format is assumed.

maxgap (#) specifies the maximum number of consecutive business holidays allowed by bcal create.
The default is maxgap (10).

bcal — Business calendar file manipulation 28

Remarks and examples

bcal check reports on any %tb formats used by the data in memory:

. bcal check

%tbsimple: defined, used by variable
mydate

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:
simple: C:\Program Files\Statal9\ado\base\s\simple.stbcal

bcal describe reports on an individual calendar.

. bcal describe simple
Business calendar simple (format Ytbsimple):
purpose: Example for manual
range: Olnov2011 30nov2011

18932 18961 in %td units
0 19 in %tbsimple units
center: 0lnov2011
18932 in %td units
0 in %tbsimple units
omitted: 10 days
121.8 approx. days/year
included: 20 days
243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] Datetime business calendars
creation.

bcal create creates a business calendar file from the current dataset and describes the new calendar.

For example, sp500.dta is a dataset installed with Stata that has daily records on the S&P 500 stock
market index in 2001. The dataset has observations only for days when trading took place. A business
calendar for stock trading in 2001 can be automatically created from this dataset as follows:

. sysuse sp500

(S&P 500)

. bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)

Business calendar sp500 (format 7%tbsp500) :
purpose: S&P 500 for 2001
range: 02jan2001 31dec2001

14977 15340 in %td units
0 247 in Y%tbsp500 units
center: 02jan2001
14977 in %td units
0 in %tbsp500 units
omitted: 116 days
116.4 approx. days/year
included: 248 days
248.9 approx. days/year

Notes:
business calendar file spb500.stbcal saved

variable bizdate created; it contains business dates in %tbsp500 format

bcal — Business calendar file manipulation 29

The business calendar file created:

begin sp500.stbcal
* Business calendar "sp500" created by -bcal create-
* Created/replaced on 02 Apr 2021

version 19
purpose "S&P 500 for 2001"
dateformat ymd

range 2001jan02 2001dec31
centerdate 2001jan02

omit dayofweek (Sa Su)
omit date 2001jani1b
omit date 2001feb19
omit date 200lapril3
omit date 2001may28
omit date 2001jul04
omit date 2001sep03
omit date 2001sepll
omit date 2001sepl2
omit date 2001sepl3
omit date 2001sepl4
omit date 2001nov22
omit date 2001dec25

end sp500.stbcal

bcal create filename, from() can save the calendar file anywhere in your directory system by
specifying a path in filename. It is assumed that the directory where the file is to be saved already exists.
The pattern of filename should be | path |calname| . stbcal |. Here calname should be without the %tb
prefix; calname has to be a valid Stata name but limited to 10 characters. If path is not specified, the file
is saved in the current working directory. If the . stbcal extension is not specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files in the
same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official Stata directo-
ries, your site’s directory (SITE), your current working directory, your personal directory (PERSONAL),
and your directory for materials written by other users (PLUS). The option personal specifies that the
calendar file be saved in your PERSONAL directory, which ensures that the created calendar can be easily
found in future work.

Stored results

bcal check stores the following in r ():

Macros
r(defined) business calendars used, stbcal-file exists, and file contains no errors
r(undefined) business calendars used, but no stbcal-files exist for them
r (varlist_calname) list of variable names that use business calendar calname

Warning to programmers: Specify the rcO option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has
errors; in such cases, the results are not stored.

bcal dir stores the following in r):

Macros
r(calendars) business calendars available
r (fn_calname) stbcal-file for business calendar calname

bcal — Business calendar file manipulation 30

bcal describe and becal create store the following in r ():

Scalars

r(min_date_td) calendar’s minimum date in %td units

r (max_date_td) calendar’s maximum date in %td units

r(ctr_date_td) calendar’s zero date in %td units

r(min_date_tb) calendar’s minimum date in %tb units

r(max_date_tb) calendar’s maximum date in %tb units

r(omitted) total number of days omitted from calendar

r(included) total number of days included in calendar

r(omitted_year) approximate number of days omitted per year from calendar

r(included_year) approximate number of days included per year in calendar
Macros

r (name) pure calendar name (for example, nyse)

r (purpose) short description of calendar’s purpose

r(fn) name of stbcal-file

bcal load stores the same results in r() as bcal describe, except it does not store r (omitted),
r(included), r(omitted_year) and r (included_year).

Reference

Rajbhandari, A. 2016. Handling gaps in time series using business calendars. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/.

Also see

[D] Datetime — Date and time values and variables
[D] Datetime business calendars — Business calendars

[D] Datetime business calendars creation — Business calendars creation

https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/

by — Repeat Stata command on subsets of the data

Description Quick start Syntax Options
Remarks and examples References Also see

Description

Most Stata commands allow the by prefix, which repeats the command for each group of observations
for which the values of the variables in varlist are the same. by without the sort option requires that the
data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax dia-
gram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed; see
[U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.

The varlist; (varlist,) syntax is of special use to programmers. It verifies that the data are sorted by
varlist; varlist, and then performs a by as if only varlist, were specified. For instance,

by pid (time): generate growth = (bp - bp[_n-1]) /bp

performs the generate by values of pid but first verifies that the data are sorted by pid and time within
pid.

Quick start

Generate newv as an observation number within each level of catvar

by catvar: generate newv=_n

Same as above, but sort data by catvar first

by catvar, sort: generate newv=_n

Same as above

bysort catvar: generate newv=_n

Same as above, but sort by v within values of catvar

bysort catvar (v): generate newv = _n

Generate newv as an observation number for each observation in levels of catvar and v

bysort catvar v: generate newv=_n

Note: Any command that accepts the by prefix may be substituted for generate above.

31

by — Repeat Stata command on subsets of the data 32

Syntax

by varlist : stata_cmd

bysort varlist : stata_cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist; [(varlz’stg)] [, sort rcO} . stata_cmd

bysort varlist, [(varlisty)] [, rc0] : stata_cmd

Options
sort specifies that if the data are not already sorted by var/ist, by should sort them.

rcO specifies that even if the stata_cmd produces an error in one of the by-groups, then by is still to run
the stata_cmd on the remaining by-groups. The default action is to stop when an error occurs. rcO
is especially useful when stata_cmd is an estimation command and some by-groups have insufficient
observations.

Remarks and examples

b Example 1
. use https://www.stata-press.com/data/r19/autornd
(1978 automobile data)

. keep in 1/20
(54 observations deleted)

. by mpg: egen mean_w = mean(weight)
not sorted
r(5);

. sort mpg

. by mpg: egen mean_w = mean(weight)

by — Repeat Stata command on subsets of the data 33

. list
make weight mpg mean_w
1 Cad. Eldorado 4000 15 3916.667
2. AMC Pacer 3500 15 3916.667
3. Chev. Impala 3500 15 3916.667
4 Buick Electra 4000 15 3916.667
5 Buick Riviera 4000 15 3916.667
6 Cad. Deville 4500 15 3916.667
7. AMC Spirit 2500 20 3350
8. Chev. Monte Carlo 3000 20 3350
9 Chev. Malibu 3000 20 3350
10 Buick Skylark 3500 20 3350
11. Buick Regal 3500 20 3350
12. Buick LeSabre 3500 20 3350
13. AMC Concord 3000 20 3350
14. Chev. Nova 3500 20 3350
15. Cad. Seville 4500 20 3350
16. Buick Century 3500 20 3350
17. Buick Opel 2000 25 2500
18. Chev. Monza 3000 25 2500
19. Dodge Colt 2000 30 2000
20. Chev. Chevette 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort:
egen mean_w = mean(weight) or bysort mpg: egen mean_w = mean(weight) rather than the sepa-
rate sort; all would yield the same results.
N
For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 13.7 Explicit
subscripting. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2020,
chap. 8).

Q Technical note

by repeats the stata_cmd for each group defined by varlist. 1f stata_cmd stores results, only the
results from the last group on which stata_cmd executes will be stored.
a

References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86—102.

. 2020. Speaking Stata: Concatenating values over observations. Stata Journal 20: 236-243.

. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884—-896.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.
stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

https://www.stata-journal.com/article.html?article=pr0004
https://doi.org/10.1177/1536867X20909698
https://doi.org/10.1177/1536867X231196519
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-press.com/books/data-management-using-stata/

by — Repeat Stata command on subsets of the data 34

Also see

[D] sort — Sort data

[D] statsby — Collect statistics for a command across a by list
[P] byable — Make programs byable

[P] foreach — Loop over items

[P] forvalues — Loop over consecutive values

[P] while — Looping

[U] 11.1.2 by varlist:

[U] 11.1.10 Prefix commands

[U] 11.4 varname and varlists

[U] 11.5 by varlist: construct

cd — Change directory

Description Quick start Syntax Remarks and examples Also see

Description

Stata for Windows: cd changes the current working directory to the specified drive and directory.
pwd is equivalent to typing cd without arguments; both display the name of the current working direc-
tory. Note: You can shell out to a Windows command prompt; see [D] shell. However, typing !cd
directory_name does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to
directory_name or, if directory_name is not specified, the home directory. pwd displays the path of the
current working directory.

Quick start

Change working directory in Stata for Windows to C: \mydir\myfolder
cd c:\mydir\myfolder

Change working directory in Stata for Windows to C: \my dir\my folder
cd "c:\my dir\my folder"

Change working directory in Stata for Mac or Unix to mydir/myfolder
cd mydir/myfolder

Move up one level in the directory structure
cd ..

Move to myfolder from mydir
cd myfolder

View current working directory
pwd

Go to home directory in Stata for Mac or Unix
cd

35

cd — Change directory 36

Syntax
Stata for Windows

cd

cd ["]directory_name|"|

[
["]drive:["]
[

cd
cd ["]drive:directory_name|"]
pwd

Stata for Mac and Stata for Unix

cd
cd ["]directory_name|"|

pwd

If your directory_name contains embedded spaces, remember to enclose it in double quotes.

Remarks and examples

Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix

Stata for Windows

When you start Stata for Windows, your current working directory is set to the Start in directory
specified in Properties. If you want to change this, see [GSW] B.1 The Windows Properties Sheet.
You can always see what your working directory is by looking at the status bar at the bottom of the Stata
window.

Once you are in Stata, you can change your directory with the cd command.
. cd

c:\data

. cd city

c:\data\city

. cd d:

D:\

. cd kande

D:\kande

. cd "additional detail"
D:\kande\additional detail
. cd c:

C:\

. cd data\city
C:\data\city

cd — Change directory 37

. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g

.cd ..
C:\a\b\c\d\e\f

.cd ...
C:\a\b\c\d

.cd ...,
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our
way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then cd
"additional detail". The double quotes around “additional detail” are necessary because of
the space in the directory name. We could have changed to this directory in one command: cd
"d:\kande\additional detail".

Notice the last three cd commands in the example above. You are probably familiar with the cd . .
syntax to move up one directory from where you are. The last two cd commands above let you move
up more than one directory: cd ... is shorthand for “cd ..\..” and cd is shorthand for “cd
..\..\..”. These shorthand cd commands are not limited to Stata; they will work in your Command
window under Windows as well.

You can see the current directory (where Stata saves files and looks for files) by typing pwd. You can
change the current directory by using cd or by selecting File > Change working directory.... Stata’s
cd command understands “~” as an abbreviation for the home directory, so you can type things like cd
~\data.

. pwd
C:\Users\bill\proj

. cd "~\data\city"
C:\Users\bill\data\city

If you now wanted to change to "C:\Users\bill\data\city\ny", you could type cd ny. If you
wanted instead to change to "C:\Users\bill\data", you could type “cd ..”.

Stata for Mac

Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command
language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is
foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current folder
(where Stata saves files and looks for files) by typing pwd. You can change the current folder by using
cd or by selecting File > Change working directory.... Stata’s cd command understands “~” as an
abbreviation for the home directory, so you can type things like cd ~/data.

. pwd
/Users/bill/proj

. cd "~/data/city"
/Users/bill/data/city

If you now wanted to change to " /Users/bill/data/city/ny", you could type cd ny. If you wanted
instead to change to "/Users/bill/data", you could type “cd ..”.

cd — Change directory 38

Stata for Unix

[T

cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands “~” as
an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see [U] 11.6 File-
naming conventions.

. pwd
/usr/bill/proj

. cd ~/data/city
/usr/bill/data/city

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted
instead to change to /usr/bill/data, you could type “cd ..”.

Also see

[D] copy — Copy file from disk or URL
[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

cf — Compare two datasets

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgment Also see
Description

cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables
in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.
Variable labels, value labels, notes, characteristics, etc., are not compared.

Quick start

Compare values of v1 and v2 from mydatal.dta in memory to mydata2.dta
cf vl v2 using mydata2

Same as above, but give a detailed listing of the differences

cf vl v2 using mydata2, verbose

Same as above, but for all variables in memory

cf _all using mydata2, verbose

Menu

Data > Data utilities > Compare two datasets

39

cf — Compare two datasets 40

Syntax

cf varlist using filename [,all yerbose]

Options

all displays the result of the comparison for each variable in varlist. Unless all is specified, only the
results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks and examples
cf produces messages having the following form:

varname: does not exist in using
varname: ___ in master but __ in using
varname: ____ mismatches

varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

b Example 1

We think the dataset in memory is identical to mydata.dta, but we are unsure. We want to understand
any differences before continuing:

. cf _all using mydata

All the variables in the master dataset are in mydata.dta, and these variables are the same in both
datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches
headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using
r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear_ratio vari-
ables do not exist in mydata.dta.

cf — Compare two datasets 41

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all

make: match
price: match
mpg: 2 mismatches

rep78: match
headroom: does not exist in using

trunk: match

weight: match

length: match

turn: match
displacement: does not exist in using
gear_ratio: does not exist in using

foreign: match

r(9);

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose

mpg: 2 mismatches
obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using
headroom: does not exist in using
displacement: does not exist in using

gear_ratio:

r(9);

does not exist in using

This example shows us exactly which two observations for mpg differ, as well as the value stored in
each dataset.

N

b Example 2

We want to compare a group of variables in the dataset in memory against the same group of variables
inmydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches
headroom: does not exist in using
r(9);

Stored results

cf stores the following in r ():

Macros
r (Nsum) number of differences
Acknowledgment

Speed improvements in cf were based on code written by David Kantor.

Also see

[D] compare — Compare two variables

changeeol — Convert end-of-line characters of text file

Description Quick start Syntax Options Remarks and examples Also see

Description

changeeol converts text file filenamel to text file filename2 with the specified Win-
dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line characters
from one type of file to another.

Quick start

Create mytext2. txt with Windows end-of-line characters from mytext1.txt
changeeol mytextl.txt mytext2.txt, eol(windows)

Same as above, but convert to Mac-style end-of-line characters
changeeol mytextl.txt mytext2.txt, eol(mac)

Same as above, but convert to Unix-style end-of-line characters
changeeol mytextl.txt mytext2.txt, eol(unix)

Syntax

changeeol filenamel filename2, eol(platform) |options |

filenamel and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename
contains embedded blanks.

options Description
*eol(windows) convert to Windows-style end-of-line characters (\r\n)
*eol(dos) synonym for eol (windows)
*eol (unix) convert to Unix-style end-of-line characters (\n)
*eol(mac) convert to Mac-style end-of-line characters (\n)
*eol(classicmac) convert to classic Mac-style end-of-line characters (\r)

replace overwrite filename?2

force force to convert filenamel to filename? if filenamel is a binary file

*e0l() is required.

Options

eol (windows | dos |unix |mac | classicmac) specifies to which platform style filename? is to be con-
verted. eol () is required.
replace specifies that filename?2 be replaced if it already exists.

force specifies that filenamel be converted if it is a binary file.

42

changeeol — Convert end-of-line characters of text file 43

Remarks and examples

changeeol uses hexdump to determine whether filenamel is text or binary. Ifit is binary, changeeol
will refuse to convert it unless the force option is specified.

Examples

Windows:

. changeeol orig.txt newcopy.txt, eol(windows)
Unix:

. changeeol orig.txt newcopy.txt, eol(unix)
Mac:

. changeeol orig.txt newcopy.txt, eol(mac)
Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see

[D] filefilter — Convert ASCII or binary patterns in a file

[D] hexdump — Display hexadecimal report on file

checksum — Calculate checksum of file

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

checksunm creates filename . sum files for later use by Stata when it reads files over a network. These
optional files are used to reduce the chances of corrupted files going undetected. Whenever Stata reads
file filename . suffix over a network, whether by use, net, update, etc., it also looks for filename . sum.
If Stata finds that file, Stata reads it and uses its contents to verify that the first file was received without
error. If there are errors, Stata informs the user that the file could not be read.

Quick start

Calculate checksum of mydata.dta

checksum mydata.dta

Same as above, and save results to mydata. sum

checksum mydata.dta, save

Same as above, but save results to mycheck. sum

checksum mydata.dta, saving(mycheck.sum)

Same as above, but replace mycheck. sum if it exists

checksum mydata.dta, saving(mycheck.sum, replace)

Syntax
checksun filename [, options |
options Description
save save output to filename . sum; default is to display a report
replace may overwrite filename . sum; use with save
saving(filename2 [, replace]) save output to filename2; alternative to save

44

checksum — Calculate checksum of file 45

Q Technical note

checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the file
size in bytes. checksum produces the same results as the Unix cksum command. Comparing the check-
sum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and cksum
commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used by Unix’s
sum. In some Unix operating systems, there is no cksum command, and the more robust algorithm is
obtained by specifying an option with sum.

a

Options
save saves the output of the checksum command to the text file filename . sum. The default is to display
a report but not create a file.
replace is for use with save; it permits Stata to overwrite an existing filename . sum file.

saving(filename2 |, replace]) is an alternative to save. It saves the output in the specified filename.
You must supply a file extension if you want one, because none is assumed.

Remarks and examples

b Example 1

Say that you wish to put a dataset on your homepage so that colleagues can use it over the internet by
typing

. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by the
internet are small, you wish to guard against that. The solution is to create the checksum file named
mydata.sum and place that on your homepage. Your colleagues need type nothing different, but now
Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

or

. use http://www.myuni.edu/department/~joe/mydata

file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved

checksum — Calculate checksum of file 46

b Example 2

Let’s use checksum on auto.dta that is shipped with Stata. We will load the dataset and save it to
our current directory.
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. save auto
file auto.dta saved

. checksum auto.dta
Checksum for auto.dta = 108935638, size = 12765

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 12765 108935638

The first number is the version number (possibly used for future releases). The second number is the
file’s size in bytes, which can be used with the checksum value to ensure that the file transferred without
corruption. The third number is the checksum value. Although two different files can have the same
checksum value, two files with the same checksum value almost certainly could not have the same file
size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file trans-
mission error occurred during a web download. If you want to verify that your own data are unchanged,
using datasignature is better; see [D] datasignature.

d

Stored results

checksum stores the following in r ():

Scalars
r(version) checksum version number
r(filelen) length of file in bytes
r(checksum) checksum value

Also see
[R] net — Install and manage community-contributed additions from the internet

[D] use — Load Stata dataset

[D] datasignature — Determine whether data have changed

clear — Clear memory

Description Quick start Syntax Remarks and examples Also see
Description
clear, by itself, removes data and value labels from memory and is equivalent to typing
. drop _all (see [D] drop)
. label drop _all (see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. mata: mata clear (see [M-3] mata clear)

clear results eliminates stored results from memory and is equivalent to typing

. return clear (see [P] return)
. ereturn clear (see [P] return)
. sreturn clear (see [P] return)
. _return drop _all (see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does not
eliminate Mata matrices from memory. clear matrix is equivalent to typing

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

. matrix drop _all (see [P] matrix utility)
. estimates drop _all (see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. program drop _all (see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs
defined interactively or by do-files). It is equivalent to typing

. program drop _allado (see [P] program)

clear rngstream eliminates from memory stored random-number states for all mt64s streams (in-
cluding the current stream). It resets the mt64s generator to the beginning of every stream, based on the
current mt64s seed. clear rngstream does not change the current mt64s seed and stream. The mt64s
seed and stream can be set with set seed and set rngstreamn, respectively.

clear frames eliminates from memory all frames and restores Stata to its initial state of having a
single, empty frame named default.

clear collect removes all collections from memory and is equivalent to typing

. collect clear (see [TABLES] collect clear)

47

clear — Clear memory 48

clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars, con-
straints, clusters, stored results, frames, sersets, and Mata functions and objects from memory. They
also close all open files and postfiles, clear the class system, close any open Graph windows and dialog
boxes, drop all programs from memory, and reset all timers to zero. However, they do not call clear
rngstream. They are equivalent to typing

. drop _all (see [D] drop)
. frames reset (see [D] frames reset)
. collect clear (see [TABLES] collect clear)
. label drop _all (see [D] label)
. matrix drop _all (see [P] matrix utility)
. scalar drop _all (see [P] scalar)
. constraint drop _all (see [R] constraint)
. cluster drop _all (see [MV] cluster utility)
. file close _all (see [P] file)
. postutil clear (see [P] postfile)
_return drop _all (see [P] _return)
. discard (see [P] discard)
. program drop _all (see [P] program)
. timer clear (see [P] timer)
. putdocx clear (see [RPT] putdocx begin)
. putpdf clear (see [RPT] putpdf begin)
. mata: mata clear (see [M-3] mata clear)
. python clear (see [P] PyStata integration)
. java clear (see [P] Java integration)

Quick start

Remove data and value labels from memory

clear

Remove Stata matrices from memory

clear matrix

Remove Mata matrices, Mata objects, and Mata functions from memory

clear mata

Remove all programs from memory

clear programs

Same as above, but only programs automatically loaded by ado-files

clear ado

Remove results stored in r (), e(), and s () from memory
clear results
Remove all the above and constraints, clusters, and sersets; reset timers to 0; clear the class system; and
close all open files, graph windows, and dialog boxes

clear all

Same as above

clear *

clear — Clear memory 49

Syntax

clear
clear [mata|results|matrix|programs|ado|rngstream|frames|collect]

clear [all|*]|

Remarks and examples

You can clear the entire dataset without affecting macros and programs by typing clear. You can also
type clear all. This command has the same result as clear by itself but also clears matrices, scalars,
constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and programs;
closes all open files and postfiles; closes all open Graph windows and dialog boxes; and resets all timers
to zero.

b Example 1

We load the bpwide dataset to correct a mistake in the data.

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)

. list in 1/5

patient sex agegrp bp_bef~e bp_after

1. 1 Male 30-45 143 153
2. 2 Male 30-45 163 170
3. 3 Male 30-45 153 168
4. 4 Male 30-45 153 142
5. 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp_after in observation 4. It is easiest to
begin again.

. clear

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)

Also see

[D] drop — Drop variables or observations
[P] discard — Drop automatically loaded programs
[U] 11 Language syntax

[U] 13 Functions and expressions

clonevar — Clone existing variable

Description Quick start Menu Syntax
Remarks and examples Acknowledgments Also see
Description

clonevar generates newvar as an exact copy of an existing variable, varname, with the same storage
type, values, and display format as varname. varname’s variable label, value labels, notes, and charac-
teristics will also be copied.

Quick start

Copy contents, label, and value label of v1 to newv1

clonevar newvl = vl

Copy observations from v2 to newv2 where v2 is less than 30

clonevar newv2 =v2 if v2 < 30

Copy the first 20 observations of v3 to newv3

clonevar newv3 =v3 in £/20

Same as above

clonevar newv3 =v3 in 1/20

Menu

Data > Create or change data > Other variable-creation commands > Clone existing variable

Syntax

clonevar newvar = varname [z/} [in]

Remarks and examples

clonevar has various possible uses. Programmers may desire that a temporary variable appear to
the user exactly like an existing variable. Interactively, you might want a slightly modified copy of an
original variable, so the natural starting point is a clone of the original.

50

clonevar — Clone existing variable 51

b Example 1

We have a dataset containing information on modes of travel. These data contain a variable named
mode that identifies each observation as a specific mode of travel: air, train, bus, or car.
. use https://www.stata-press.com/data/r19/travel
(Modes of travel)

. describe mode

Variable Storage Display Value
name type format label Variable label
mode byte %8.0g travel Travel mode alternatives
. label list travel
travel:
1 Air
2 Train
3 Bus
4 Car

To create an identical variable identifying only observations that contain air or train, we could use
clonevar with an if qualifier.

. clonevar airtrain = mode if mode == | mode ==

(420 missing values generated)

. describe mode airtrain

Variable Storage Display Value

name type format label Variable label
mode byte %8.0g travel Travel mode alternatives
airtrain byte %8.0g travel Travel mode alternatives

. list mode airtrain in 1/5

mode airtrain

1. Air Air
2. Train Train
3. Bus

4. Car .
5. Air Air

The new airtrain variable has the same storage type, display format, value label, and variable label
as mode. If mode had any characteristics or notes attached to it, they would have been applied to the new
airtrain variable, too. The only differences in the two variables are their names and values for bus and
car.

N
Q Technical note

The if qualifier used with the clonevar command in example 1 referred to the values of mode as 1
and 2. Had we wanted to refer to the values by their associated value labels, we could have typed

. clonevar airtrain = mode if mode == "air":travel | mode == "train":travel

For more details, see [U] 13.11 Label values.

clonevar — Clone existing variable 52

Acknowledgments

clonevar was written by Nicholas J. Cox of the Department of Geography at Durham University, UK,
who is coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Michael
Blasnik of Nest Labs and Ken Higbee of StataCorp for very helpful comments on a precursor of this
command.

Also see

[D] generate — Create or change contents of variable

[D] separate — Create separate variables

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/

codebook — Describe data contents

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see
Description

codebook examines the variable names, labels, and data to produce a codebook describing the dataset.

Quick start

Codebook of all variables in the dataset

codebook

Codebook of variables v1, v2, and v3
codebook vl v2 v3

Codebook of all variables starting with code

codebook codex*

Include dataset name, last saved date, and variable notes in the codebook

codebook, header notes

Report problems with labels, constant-valued variables, embedded spaces and binary 0 in string variables,
and noninteger date variables

codebook, problems

Codebook for dataset with English and Spanish variable and value labels using label languages en and
es

codebook, languages (en es)

Menu

Data > Describe data > Describe data contents (codebook)

53

codebook — Describe data contents 54

Syntax
codebook [varlist] [if | [in] [, options]
options Description
Options
all print complete report without missing values
header print dataset name and last saved date
notes print any notes attached to variables
mv report pattern of missing values
tabulate (#) set tables/summary statistics threshold; default is tabulate (9)
problems report potential problems in dataset
detail display detailed report on the variables; only with problems
compact display compact report on the variables
dots display a dot for each variable processed; only with compact
Languages

languages|(namelist)] use with multilingual datasets; see [D] label language for details

collect is allowed; see [U] 11.1.10 Prefix commands.
Options

all is equivalent to specifying the header and notes options. It provides a complete report, which
excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset was last
saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a CPU-
intensive task.

tabulate (#) specifies the number of unique values of the variables to use to determine whether a
variable is categorical or continuous. Missing values are not included in this count. The default is
9; when there are more than nine unique values, the variable is classified as continuous. Extended
missing values will be included in the tabulation.

problems specifies that a summary report is produced describing potential problems that have been
diagnosed:

e Variables that are labeled with an undefined value label
e Incompletely value-labeled variables

e Variables that are constant, including always missing

Leading, trailing, and embedded spaces in string variables

Embedded binary 0 (\0) in string variables

Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5.

codebook — Describe data contents 55

detail may be specified only with the problems option. It specifies that the detailed report on the
variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

Languages

languages|(namelist)] is for use with multilingual datasets; see [D] label language. It indicates that the
codebook pertains to the languages in namelist or to all defined languages if no such list is specified
as an argument to languages (). The output of codebook lists the data label and variable labels in
these languages and which value labels are attached to variables in these languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide details
in which language problems occur. We advise you to rerun codebook for problematic variables;
specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages (), all output, including the problem
report, is shown in the “active” language.

Remarks and examples

codebook, without arguments, is most usefully combined with 1og to produce a printed listing for
enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—Ilog files.
codebook is, however, also useful interactively, because you can specify one or a few variables.

b Example 1

codebook examines the data in producing its results. For variables that codebook thinks are continu-
ous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th percentiles. For
variables that it thinks are categorical, it presents a tabulation. In part, codebook makes this determina-
tion by counting the number of unique values of the variable. If the number is nine or fewer, codebook
reports a tabulation; otherwise, it reports summary statistics.

codebook distinguishes the standard missing values (.) and the extended missing values (. a through
.z, denoted by .*). If extended missing values are found, codebook reports the number of distinct
missing value codes that occurred in that variable. Missing values are ignored with the tabulate option
when determining whether a variable is treated as continuous or categorical.

codebook — Describe data contents 56

. use https://www.stata-press.com/data/r19/educ3

(ccdb46, 52-54)

. codebook fips division, all

Dataset:
Last saved:

Label:

Number of variables:
Number of observations:
Size:

_dta:

https://www.stata-press.com/data/r19/educ3.dta
6 Mar 2024 22:20

ccdb46, 52-54

42

956

145,312 bytes ignoring labels, etc.

1. confirmed data with steve on 7/22

fips

state/place code

Type:
Range:
Unique values:

Mean:
Std. dev.:

Percentiles:

Numeric (long)
[10060,560050] Units: 1
956 Missing .: 0/956
256495
156998
10% 25% 50% 75% 90%
61462 120426 252848 391360 482530

division

Census Division

Type:

Label:

Range:

Unique values:
Unique mv codes:

Tabulation:

Numeric (int)

division

[1,9] Units: 1

9 Missing .: 4/956
2 Missing .*: 2/956

Freq. Numeric Label
69
97
202
78
115
46
89
59
195

4 .

2 .a

©0O~NOOOd WN -

Pacific

Because division has nine unique nonmissing values, codebook reported a tabulation. Ifdivision
had contained one more unique nonmissing value, codebook would have switched to reporting summary
statistics, unless we had included the tabulate (#) option.

d

codebook — Describe data contents 57

b Example 2

The mv option is useful. It instructs codebook to search the data to determine patterns of missing
values. Different kinds of missing values are not distinguished in the patterns.
. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. codebook cooldd heatdd tempjan tempjuly, mv

cooldd Cooling degree days

Type: Numeric (int)
Range: [0,4389] Units: 1
Unique values: 438 Missing .: 3/956

Mean: 1240.41
Std. dev.: 937.668

Percentiles: 10% 257, 50% 75% 90%
411 615 940 1566 2761
Missing values: heatdd==mv <-> cooldd==mv

tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv

heatdd Heating degree days

Type: Numeric (int)
Range: [0,10816] Units: 1
Unique values: 471 Missing .: 3/956

Mean: 4425.53
Std. dev.: 2199.6

Percentiles: 10% 25% 50% 75% 90%
1510 2460 4950 6232 6919
Missing values: cooldd==mv <-> heatdd==mv

tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv

tempjan Average January temperature

Type: Numeric (float)

Range: [2.2,72.6] Units: .1
Unique values: 310 Missing .: 2/956

Mean: 35.749
Std. dev.: 14.1881

Percentiles: 10% 25% 50% 75% 90%
20.2 25.1 31.3 47.8 55.1

Missing values: tempjuly==mv <-> tempjan==mv

codebook — Describe data contents 58

tempjuly Average July temperature

Type: Numeric (float)
Range: [58.1,93.6] Units: .1
Unique values: 196 Missing .: 2/956

Mean: 75.0538
Std. dev.: 5.49504

Percentiles: 10% 257, 50% 75% 90%
68.8 71.8 74.25 78.7 82.3
Missing values: tempjan==mv <-> tempjuly==mv

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for cooldd
and heatdd. In both cases, the correspondence is indicated with “<->".

For cooldd, codebook also states that “tempjan==mv -> cooldd==mv”. The one-way arrow means
that a missing tempjan value implies a missing cooldd value but that a missing cooldd value does not
necessarily imply a missing tempjan value.

N

Another feature of codebook—this one for numeric variables—is that it can determine the units of
the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1, meaning
that temperature is recorded to tenths of a degree. codebook handles precision considerations in making
this determination (tempjan and tempjuly are floats; see [U] 13.12 Precision and problems therein).
If we had a variable in our dataset recorded in 100s (for example, 21,500 or 36,800), codebook would
have reported the units as 100. If we had a variable that took on only values divisible by 5 (5, 10, 15,
etc.), codebook would have reported the units as 5.

b Example 3

We can use the 1abel language command (see [D] label language) and the 1abel command (see
[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. label language en, rename
(language default renamed en)

. label language de, new
(language de now current language)

. label data "1978 Automobile Daten"
. label variable foreign "Art Auto"
. label values foreign origin_de

. label define origin_de O "Innen" 1 "Ausl&ndisch"

codebook — Describe data contents 59

. codebook foreign

foreign Art Auto
Type: Numeric (byte)
Label: origin_de
Range: [0,1] Units: 1
Unique values: 2 Missing .: 0/74
Tabulation: Freq. Numeric Label
52 0 Innen
22 1 Ausléndisch
. codebook foreign, languages(en de)
foreign in en: Car origin
in de: Art Auto
Type: Numeric (byte)
Label in en: origin
Label in de: origin_de
Range: [0,1] Units: 1
Unique values: 2 Missing .: 0/74
Tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen
22 1 Foreign Ausléndisch

With the 1anguages () option, the value labels are shown in the specified active and available lan-
guages.

d

b Example 4

codebook, compact summarizes the variables in your dataset, including variable labels. It is an
alternative to the summarize command.
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)

. codebook, compact

Variable Obs Unique Mean Min Max Label

make 74 74 . . . Make and model

price 74 74 6165.257 3291 15906 Price

mpg 74 21 21.2973 12 41 Mileage (mpg)

rep78 69 5 3.405797 1 5 Repair record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)

trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (1lbs.)

length 74 47 187.9324 142 233 Length (in.)

turn 74 18 39.64865 31 51 Turn circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear ratio

foreign 74 2 .2972973 0 1 Car origin

codebook — Describe data contents 60

. summarize

Variable Obs Mean Std. dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906
mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5
headroom 74 2.993243 .8459948 1.5 5
trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425
gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

N
b Example 5

When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,
for instance, for a string variable or for a numeric variable taking on many labeled values, it reports a
few examples instead.

. use https://www.stata-press.com/data/r19/funnyvar

. codebook name

name (unlabeled)

Type: String (str5), but longest is str3

Unique values: 10 Missing "": 0/10
Examples: "1 0"
ngn
Il5||
Il7||

Warning: Variable has embedded blanks.

codebook is also on the lookout for common problems that might cause you to make errors when
dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and
embedded binary 0 (\0). In the output above, codebook informed us that name includes embedded
blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname
is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined
incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2 to
“female”) or that the variable was defined incorrectly (for example, a variable gender with three values).
codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each variable
but reports only the potential problems in the data.

codebook — Describe data contents 61

. codebook, problems

Potential problems in dataset https://www.stata-press.com/data/r19/

> funnyvar.dta

Potential problem

Variables

constant (or all missing) vars
vars with nonexisting label
incompletely labeled vars

str# vars that may be compressed
string vars with leading blanks

human planet

educ

gender

name address city country planet
city country

string vars with trailing blanks planet
string vars with embedded blanks name address
string vars with embedded \0 mugshot

noninteger-valued date vars birthdate

d

In the example above, codebook, problems reported various potential problems with the dataset.
These problems include

o Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always
missing, are often superfluous. Such variables, however, may also indicate problems. For
instance, variables that are always missing may occur when importing data with an incor-
rect input specification. Such variables may also occur if you generate a new variable for
a subset of the data, selected with an expression that is false for all observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant
variable, be sure to compress the variable to use minimal storage.

e Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.
A problem may arise if variables are linked to value labels that are not yet defined or if an
incorrect value label name was used.

Advice: Attach the correct value label, or 1abel define the value label. See [D] label.
e Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no
mapping is provided for some values of the variable. An example is a variable with values
0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an error, either
in the data or in the value label.

Advice: Change either the data or the value label.
e String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] Data
types. For instance, the storage type str20 indicates that 20 bytes are used per observation.
If the declared storage type exceeds your requirements, memory and disk space is wasted.

Advice: Use compress to store the data as compactly as possible.

codebook — Describe data contents 62

e String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables
but are probably side effects from importing the data or from data manipulation. Spurious
leading and trailing spaces force Stata to use more memory than required. In addition,
manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing
replace s = strtrim(s)
See [FN] String functions.
e String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they
indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.
e String variables with embedded binary 0 (\0)

String variables with embedded binary 0 (\0) are allowed; however, caution should be
used when working with them as some commands and functions may only work with the
plain text portion of a binary string, ignoring anything after the first binary 0.

Advice: Be aware of binary strings in your data and whether you are manipulating them
in a way that is only appropriate with plain text values.

e Noninteger-valued date variables

Stata’s date and time formats were designed for use with integer values but will work with
noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a
variable are the consequence of roundoff error, you may want to round the variable to the
nearest integer.

replace time = round(time)
Of course, more problems not reported by codebook are possible. These might include
e Numerical data stored as strings

After importing data into Stata, you may discover that some string variables can actually be
interpreted as numbers. Stata can do much more with numerical data than with string data.
Moreover, string representation usually makes less efficient use of computer resources.
destring will convert string variables to numeric.

A string variable may contain a “field” with numeric information. An example is an address
variable that contains the street name followed by the house number. The Stata string
functions can extract the relevant substring.

o Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that
take only a limited number of distinct values are an inefficient storage method. Use value-
labeled numeric values instead. These are easily created with encode.

e Duplicate observations

See [D] duplicates.

codebook — Describe data contents 63

e Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss ()
egen function:

egen nobs = rownonmiss (varlist)
drop if nobs==

Specify _all for varlist if only observations that are always missing should be dropped.

Stored results

codebook stores the following lists of variables with potential problems in r ():

Macros
r(cons) constant (or missing)
r(labelnotfound) undefined value labeled
r(notlabeled) value labeled but with unlabeled categories
r(str_type) compressible
r(str_leading) leading blanks
r(str_trailing) trailing blanks
r(str_embedded) embedded blanks
r(str_embedded0) embedded binary 0 (\0)
r(realdate) noninteger dates
References

Bjarkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and
cleaning. Stata Journal 20: 892-915.

. 2023. iefieldkit: Commands for primary data collection and cleaning (update). Stata Journal 23: 875-883.
Cox, N. J. 2012. Software Updates: Speaking Stata: Distinct observations. Stata Journal 12: 352.

Cox, N. J., and G. M. Longton. 2008. Speaking Stata: Distinct observations. Stata Journal 8: 557-568.

Long, J. S. 2009. The Worktflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties
[D] inspect — Display simple summary of data’s attributes
[D] labelbook — Label utilities

[D] notes — Place notes in data

[D] split — Split string variables into parts

[U] 15 Saving and printing output—Ilog files

https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X231196496
https://www.stata-journal.com/article.html?article=up0036
https://www.stata-journal.com/article.html?article=dm0042
https://www.stata-press.com/books/wdaus.html

collapse — Make dataset of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see
Description

collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must
refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Quick start

Replace dataset in memory with means of v1 and v2

collapse vl v2

Same as above, but calculate statistics separately by each level of catvar
collapse vl v2, by(catvar)

Dataset of mean, standard deviation, and standard error of the mean of v1

collapse (mean) meanl=vl (sd) sdi=v1l (semean) seml=v1l

Mean and standard error of the mean for binomial v2

collapse (mean) mean2=v2 (sebinomial) sem2=v2

Frequency, median, and interquartile range of v1
collapse (count) freq=vl (p50) p50=v1 (iqr) iqr=vil

Weighted and unweighted sum of v2 using frequency weight wvar
collapse (sum) weighted=v2 (rawsum) unweighted=v2 [fweight=wvar]

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians,
etc.

64

collapse — Make dataset of summary statistics 65

Syntax
collapse clist [if'] [in] [weight] |, options]
where clist is either

[(stat) | varlist | [(stat)] ...]

[(stat)] target_var=varname [target_var=varname ...| [[(stat)] ...]

or any combination of the varlist and target_var forms, and stat is one of

mean means; the default

median medians

pl Ist percentile

p2 2nd percentile

. 3rd—49th percentiles

p50 50th percentile (same as median)
e 51st—97th percentiles

p98 98th percentile

P99 99th percentile

sd standard deviations

semean standard error of the mean (sd/sqrt(n))

sebinomial standard error of the mean, binomial (sqrt (p(1-p)/n))
sepoisson standard error of the mean, Poisson (sqrt (mean/n))

sum sums
rawsum sums, ignoring optionally specified weight except observations with a weight of zero are excluded
count number of nonmissing observations
percent percentage of nonmissing observations in the by group
(100 x (#nonmissing in by group)/(total # nonmissing))
max maximums
min minimums
iqr interquartile range
first first value
last last value
firstnm first nonmissing value
lastnm last nonmissing value
options Description
Options
by (varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations
fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights may
not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean, sebinomial, or
sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:

. collapse age educ income, by(state)
. collapse (mean) age educ (median) income, by(state)
. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number]l, by(year)

collapse — Make dataset of summary statistics 66

Options
_ [options |

by (varlist) specifies the groups over which the means, etc., are to be calculated. If this option is not
specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer to either
string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each calculated
statistic.

The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is in-
tended for use by programmers.

Remarks and examples

collapse takes the dataset in memory and creates a new dataset containing summary statistics of the
original data. collapse adds meaningful variable labels to the variables in this new dataset. Because
the syntax diagram for collapse makes using it appear more complicated than it is, collapse is best
explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights

A final example

Introductory examples

b Example 1

Consider the following artificial data on the grade-point average (gpa) of college students:
. use https://www.stata-press.com/data/r19/college
. describe

Contains data from https://www.stata-press.com/data/r19/college.dta

Observations: 12
Variables: 4 3 Jan 2024 12:05
Variable Storage Display Value
name type format label Variable label
gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3 =
junior, 4 = senior
number int %9.0g number of students

Sorted by: year

collapse — Make dataset of summary statistics 67

. list, sep(4)

gpa hour year number
1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type

. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not have
to type (mean) to specify that we want the mean because the mean is reported by default.

. use https://www.stata-press.com/data/r19/college, clear
. collapse gpa hour [fw=number], by(year)

. list
year gpa hour
1 1 2.788889 29.44444
2 2 2.991667 31.83333
3 3 3.233333 32.11111
4 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want the
median of gpa and hour to be stored as variables medgpa and medhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list
year gpa hour medgpa medhour
1 1 2.788889 29.44444 2.8 29
2 2 2.991667 31.83333 2.9 30
3 3 3.233333 32.11111 3.3 33
4 4 3.257143 31.71428 3.4 32

collapse — Make dataset of summary statistics 68

Here we want to create a dataset containing a count of gpa and hour and the minimums of gpa and
hour. The minimums of gpa and hour will be stored as variables mingpa and minhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list
year gpa hour mingpa minhour
1. 1 18 18 2.1 28
2. 2 12 12 2.5 29
3. 3 9 9 2.2 30
4. 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2

(3 real changes made, 3 to missing)

. list, sep(4)

/4

gpa hour year number
1. 3.2 30 1 3
2. 34 1 2
3. 28 1 9
4. 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse uses
all observations on hour for year = 1, even though gpa is missing for observations 1-3.

. collapse gpa hour [fw=num], by(year)

. list
year gpa hour
1. 1 3.2 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

collapse — Make dataset of summary statistics 69

If we repeat this process but specify the cw option, collapse ignores all observations that have
missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. collapse (mean) gpa hour [fw=num], by(year) cw

. list
year gpa hour
1. 1 3.2 30
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428
d
b Example 2

We have individual-level data from a census in which each observation is a person. Among other
variables, the dataset contains the numeric variables age, educ, and income and the string variable
state. We want to create a 50-observation dataset containing the means of age, education, and income
for each state.

. collapse age educ income, by(state)

The resulting dataset contains means because collapse assumes that we want means if we do not specify
otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed

. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we could
have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one vari-
able containing the median of income—medinc. Because we typed (median) medinc=income, Stata
knew to find the median for income and to store those in a variable named medinc. This renaming con-
vention is necessary in this example because a variable named income containing the mean is also being
created.

d

collapse — Make dataset of summary statistics 70

Variablewise or casewise deletion

b Example 3

Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only
15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we want
summary statistics for age and income, collapse will, by default, use all 25,000 observations when
calculating the summary statistics for age. If we prefer that collapse use only the 15,000 observations
for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights

collapse allows all four weight types; the default is aweights. Weight normalization affects only
the sum, count, sd, semean, and sebinomial statistics.

Let j index observations and ¢ index by-groups. Here are the definitions for count and sum with
weights:

count:
unweighted: N, the number of observations in group %
aweight: N, the number of observations in group ¢
fweight, iweight, pweight:) wj, the sum of the weights over observations in

group 1

sum:
unweighted: >, the sum of x; over observations in group 4
aweight: > v;x; over observations in group i; v; = weights

normalized to sum to NV,
fweight, iweight, pweight:) w,x; over observations in group i

When the by () option is not specified, the entire dataset is treated as one group.

The sd statistic with weights returns the square root of the bias-corrected variance, which is based on
the factor \/ N, /(N, — 1), where N, is the number of observations. Statistics sd, semean, sebinomial,
and sepoisson are not allowed with pweighted data. Otherwise, the statistic is changed by the weights
through the computation of the weighted count, as outlined above.

For instance, consider a case in which there are 25 observations in the dataset and a weighting variable
that sums to 57. In the unweighted case, the weight is not specified, and the count is 25. In the analytically
weighted case, the count is still 25; the scale of the weight is irrelevant. In the frequency-weighted case,
however, the count is 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with zero
weight will not be included in the sum.

collapse — Make dataset of summary statistics 71

b Example 4

Using our same census data, suppose that instead of starting with individual-level data and aggregating
to the state level, we started with state-level data and wanted to aggregate to the region level. Also assume
that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total popula-
tion, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

To obtain weighted means and medians of age and income, by region, along with the total population
and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=pop], by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-weighted
sum of pop. Specifying (count) age would have worked as well as (count) pop because count merely
counts the number of nonmissing observations. The counts here, however, are frequency-weighted and
equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores the
weights and sums only the specified variable, with one exception: observations with zero weight will
not be included in the sum. rawsum would have worked as the solution to all three cases.

d

collapse — Make dataset of summary statistics 72

A final example

b Example 5

We have census data containing information on each state’s median age, marriage rate, and divorce
rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

. use https://www.stata-press.com/data/r19/censusb, clear
(1980 Census data by state)

. describe

Contains data from https://www.stata-press.com/data/r19/census5.dta

Observations: 50 1980 Census data by state

Variables: 7 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state stri4 %l14s State

state2 str2 %-2s Two-letter state abbreviation

region int %8.0g cenreg Census region

pop long %10.0g Population

median_age float %9.2f Median age

marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region

. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop]l, by(region)

. list
region median~e marria~e divorc~e avgmrate avgdrate
1. NE 31.90 .0080657 .0035295 .0081472 .0035359
2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961
3. South 29.60 .0112609 .0065792 .0117082 .0059439
4. West 29.90 .0089093 .0056423 .0125199 .0063464
. describe

Contains data

Observations: 4 1980 Census data by state
Variables: 6
Variable Storage Display Value
name type format label Variable label
region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate

Sorted by: region
Note: Dataset has changed since last saved.

collapse — Make dataset of summary statistics 73

Acknowledgment

We thank David Roodman of the Open Philanthropy Project for writing collapse2, which inspired
several features in collapse.

Also see

D] contract — Make dataset of frequencies and percentages

(D]

[D] egen — Extensions to generate

[D] statsby — Collect statistics for a command across a by list
[R]

R] summarize — Summary statistics

compare — Compare two variables

Description Quick start Menu Syntax Remarks and examples
Also see

Description

compare reports the differences and similarities between varname; and varname,.

Quick start

Describe differences in missing and defined values of v1 and v2

compare vl v2

Same as above, but only for observations where catvar is equal to 3

compare vl v2 if catvar==3

Same as above, but for each level of catvar

by catvar: compare vl v2

Menu

Data > Data utilities > Compare two variables

Syntax

compare varname, varnamesy |if | [in]

by is allowed; see [D] by.
Remarks and examples

b Example 1

One of the more useful accountings made by compare is the pattern of missing values:

. use https://www.stata-press.com/data/r19/fullauto
(Automobile models)

. compare rep77 rep78

Difference

Count Minimum Average Maximum
rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1
Jointly defined 66 -3 -.2121212 1
rep77 missing only 3
Jointly missing 5
Total 74

74

compare — Compare two variables 75

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in 3
more observations.

N

Q Technical note

compare may be used with numeric variables, string variables, or both. When used with string vari-
ables, the summary of the differences (minimum, average, maximum) is not reported. When used with

string and numeric variables, the breakdown by <, =, and > is also suppressed.
a

Also see

[D] ef — Compare two datasets
[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

compress — Compress data in memory

Description Quick start Menu Syntax Option Remarks and examples
Also see
Description

compress attempts to reduce the amount of memory used by your data.

Quick start

Reduce the amount of memory used by the current dataset

compress

Same as above, but only reduce memory used by v1 and v2

compress vl v2

Speed up compress for large datasets with strL-type variables, but possibly reduce the amount of mem-
ory saved

compress, nocoalesce

Menu

Data > Data utilities > Optimize variable storage

Syntax

compress [varlist] [, nocoalesce |

Option

nocoalesce specifies that compress not try to find duplicate values within strL variables in an attempt
to save memory. If nocoalesce is not specified, compress must sort the data by each strL variable,
which can be time consuming in large datasets.

Remarks and examples
compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles to longs, ints, or bytes
floats to intsorbytes

longs to intsor bytes
ints to bytes
stri#s to shorter str#s

strLs to stri#s

See [D] Data types for an explanation of these storage types.

76

compress — Compress data in memory 77

Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable takes
on the same value in multiple observations, compress can link those values to a single memory location
to save memory. To check for this, compress must sort the data on each strL variable. You can use the
nocoalesce option to tell compress not to take the time to perform this check. If compress does check
whether it can coalesce strL values, it will do whichever saves more memory—coalescing strL values
or demoting a strL to a str#—or it will do nothing if it cannot save memory by changing a strL.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress never
makes a mistake, results in loss of precision, or hacks off strings.

b Example 1

If you do not specify varlist, compress considers demoting all the variables in your dataset, so typing
compress by itself is usually enough:
. use https://www.stata-press.com/data/r19/compxmp2
(1978 automobile data)

. compress
variable mpg was float now byte
variable price was long now int
variable yemprice was double now long
variable weight was double now int
variable make was str26 now stri7
(1,776 bytes saved)

If there are no compression possibilities, compress does nothing. For instance, typing compress again
results in

. compress
(0 bytes saved)

Video example

How to optimize the storage of variables

Also see

[D] Data types — Quick reference for data types

[D] recast — Change storage type of variable

https://www.youtube.com/watch?v=PIV9ugn6XL8

contract — Make dataset of frequencies and percentages

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgments Reference Also see
Description

contract replaces the dataset in memory with a new dataset consisting of all combinations of varlist
that exist in the data and a new variable that contains the frequency of each combination.

Quick start

Frequency of each combination of v1 and v2 saved in _freq

contract vl v2

Same as above, but name new frequency variable newf

contract vl v2, freq(newf)

Add percentage of total in newp

contract vl v2, freq(newf) percent (newp)

Add cumulative frequency newcf and cumulative percentage newcp

contract vl v2, freq(newf) percent (newp) cfreq(newct) ///
cpercent (newcp)

Frequency of combinations excluding missing values

contract vl v2, nomiss

Add combinations with zero observations

contract vl v2, nomiss zero

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies

78

contract — Make dataset of frequencies and percentages 79

Syntax
contract varlist [if] [in] [weight] [, options]

options Description

Options
freq(newvar) name of frequency variable; default is _freq
cfreq(newvar) create cumulative frequency variable
percent (newvar) create percentage variable
cpercent (newvar) create cumulative percentage variable
float generate percentage variables as type float
format (format) display format for new percentage variables; default is format (%8.2f)
zero include combinations with frequency zero
nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Options

freq(newvar) specifies a name for the frequency variable. If not specified, _freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent (newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent (newvar) specifies a name for the cumulative percentage variable. If not specified, no cumu-
lative percentage variable is created.

float specifies that the percentage variables specified by percent () and cpercent () will be generated
as variables of type float. If float is not specified, these variables will be generated as variables
of type double. All generated variables are compressed to the smallest storage type possible without
loss of precision; see [D] compress.

format (format) specifies a display format for the generated percentage variables specified by
percent () and cpercent (). If format() is not specified, these variables will have the display
format %8. 2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in var/ist be dropped. If nomiss
is not specified, all observations possible are used.

contract — Make dataset of frequencies and percentages 80

Remarks and examples

contract takes the dataset in memory and creates a new dataset containing all combinations of varlist
that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have
identical values on one or more variables will be replaced by one such observation, together with the
frequency of the corresponding set of values. For example, in certain generalized linear models, the
frequency of some combination of values is the response variable, so you would need to produce that
response variable. The set of covariate values associated with each frequency is sometimes called a
covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because
the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

b Example 1

Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which
takes values labeled “Poor”, “Fair”, “Average”, “Good”, and “Excellent”, and foreign, which takes
values labeled “Domestic” and “Foreign”.

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)

. contract rep78 foreign

. list
rep78 foreign _freq
1. Poor Domestic 2
2. Fair Domestic 8
3. Average Domestic 27
4. Average Foreign 3
5. Good Domestic 9
6. Good Foreign 9
7. Excellent Domestic 2
8. Excellent Foreign 9
9. Domestic 4
10. Foreign 1

By default, contract uses the variable name _freq for the new variable that contains the frequencies.
If _freq is in use, you will be reminded to specify a new variable name via the freq() option.

contract — Make dataset of frequencies and percentages 81

Specifying the zero option requests that combinations with frequency zero also be listed.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)

. contract rep78 foreign, zero

. list
rep78 foreign _freq
1. Poor Domestic 2
2. Poor Foreign 0
3. Fair Domestic 8
4. Fair Foreign 0
5. Average Domestic 27
6. Average Foreign 3
7. Good Domestic 9
8. Good Foreign 9
9. Excellent Domestic 2
10. Excellent Foreign 9
11. . Domestic 4
12. . Foreign 1

d
Acknowledgments

contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham Uni-
versity, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics. The cfreq(),
percent (), cpercent (), float, and format () options were written by Roger Newson of the Imperial
College London.

Reference

Cox, N.J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2-3. Reprinted in Stata Technical
Bulletin Reprints, vol. 8, pp. 20-21. College Station, TX: Stata Press.

Also see

[D] expand — Duplicate observations
[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata.com/products/stb/journals/stb44.pdf

copy — Copy file from disk or URL

Description Quick start Syntax Options
Also see

Description

copy copies an existing file to a file with a new name.

Quick start

Copy mydata.dta from C:\myfolder to C:\otherfolder
copy c:\myfolder\mydata.dta c:\otherfolder\

Same as above, but change dataset name to newdata.dta

Remarks and examples

copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta

Same as above, but replace newdata.dta if it exists

copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta, replace

Copy web-based Stata example dataset fullauto.dta to the current working directory

copy https://www.stata-press.com/data/r19/fullauto.dta myauto.dta

Syntax

copy filename, filename, [, options |

filename, may be a filename or a URL. filename, may be the name of a file or a directory. If filename,
is a directory name, filename, will be copied to that directory. filename, may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename

contains embedded blanks.

options Description

public make filename, readable by all

text interpret filename, as text file and translate to native text format
replace may overwrite filename,

replace does not appear in the dialog box.

82

copy — Copy file from disk or URL 83

Options

public specifies that filename, be readable by everyone; otherwise, the file will be created according
to the default permissions of your operating system.

text specifies that filename, be interpreted as a text file and be translated to the native form of text files
on your computer. Computers differ on how end-of-line is recorded: Unix systems record one line-
feed character, Windows computers record a carriage-return/line-feed combination, and Mac comput-
ers record just a carriage return. text specifies that filename, be examined to determine how it has
end-of-line recorded and that the line-end characters be switched to whatever is appropriate for your
computer when the copy is made.

There is no reason to specify text when copying a file already on your computer to a different location
because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you specify
text, the copy will be useless. Most word processors produce binary files, not text files. The term
text, as it is used here, specifies a particular way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no
reason to translate end-of-line characters on that score. You specify text because you may want to
look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filename, be replaced if it already exists.

Remarks and examples

Examples:
Windows:

. copy orig.dta newcopy.dta

. copy mydir\orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ..\mydir\doc.txt document\doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy orig.dta newcopy.dta

. copy mydir/orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ../mydir/doc.txt document/doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

copy — Copy file from disk or URL 84

Also see

[D] ed — Change directory
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

corr2data — Create dataset with specified correlation structure

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

corr2data adds new variables with specified covariance (correlation) structure to the existing dataset
or creates a new dataset with a specified covariance (correlation) structure. Singular covariance (corre-
lation) structures are permitted. The purpose of this is to allow you to perform analyses from summary
statistics (correlations/covariances and maybe the means) when these summary statistics are all you know
and summary statistics are sufficient to obtain results. For example, these summary statistics are suffi-
cient for performing analysis of ¢ tests, variance, principal components, regression, and factor analysis.
The recommended process is

. clear (clear memory)
. corr2data ..., n(#) cov(...) ... (create artificial data)
. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

The data created by corr2data are artificial; they are not the original data, and it is not a sample
from an underlying population with the summary statistics specified. See [D] drawnorm if you want to
generate a random sample. In a sample, the summary statistics will differ from the population values and
will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all that
is known are summary statistics and those summary statistics are sufficient for the analysis at hand. The
artificial data tricks the analysis command into producing the desired result. The analysis command, be-
ing by assumption only a function of the summary statistics, extracts from the artificial data the summary
statistics, which are the same summary statistics you specified, and then makes its calculation based on
those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can generate
different artificial datasets by using different seeds of the random-number generator (see the seed ()
option below) and compare the results, which should be the same within rounding error.

Quick start

Create dataset with 1,000 observations, v1 with mean of 3.4 and std. dev. of 1, v2 with mean of 3 and
std. dev. of 0.5, and no correlation between v1 and v2
corr2data vl v2, n(1000) means (3.4 3) sds(1 .5)

Same as above, but with correlation between v1 and v2 specified in matrix mymat
corr2data vl v2, n(1000) means (3.4 3) sds(1 .5) corr(mymat)

Menu

Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation

85

corr2data — Create dataset with specified correlation structure 86

Syntax
corr2data newvarlist | , options |
options Description
Main

clear replace the current dataset
double generate variable type as double; default is float
n(#) generate # observations; default is current number
sds (vector) standard deviations of generated variables
corr (matrix | vector) correlation matrix
cov (matrix | vector) covariance matrix
cstorage (full) store correlation/covariance structure as a symmetric kX k matrix
cstorage (lower) store correlation/covariance structure as a lower triangular matrix
cstorage (upper) store correlation/covariance structure as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite
means (vector) means of generated variables; default is means (0)

Options
seed (#) seed for random-number generator

Options

Main

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has not
been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as f1oats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated; the default is the current number of observa-
tions. If n(#) is not specified or is the same as the current number of observations, corr2data adds
the new variables to the existing dataset; otherwise, corr2data replaces the dataset in memory.

sds (vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr (matrix | vector) specifies the correlation matrix. If neither corr () nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither corr () nor cov() is specified, the de-
fault is orthogonal data.

corr2data — Create dataset with specified correlation structure 87

cstorage (full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr () or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kxk
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

Cll C21 C22 CSI C32 C33 ce Ckl Ck2 ce Ckk

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

Ci1CipCyg oo Gy Gy Cog .. Cypp C(kfllcfl) C(Icflk) Cir

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or
cstorage (upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks and examples

corr2data is designed to enable analyses of correlation (covariance) matrices by commands that
expect variables rather than a correlation (covariance) matrix. corr2data creates variables with exactly
the correlation (covariance) that you want to analyze. Apart from means and covariances, all aspects of
the data are meaningless. Only analyses that depend on the correlations (covariances) and means produce
meaningful results. Thus you may perform a paired ¢ test ([R] ttest) or an ordinary regression analysis
([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and not on
other aspects of the data, you can generate different datasets, each having the same summary statistics
but other different aspects, by specifying the seed () option. If the statistical results differ beyond what
is attributable to roundoff error, then using corr2data is inappropriate.

corr2data — Create dataset with specified correlation structure 88

b Example 1

We first run a regression using the auto dataset.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774 .4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094178.4 73 604029.841 Root MSE = 254.85
weight | Coefficient Std. err. t P>t [95% conf. intervall
length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means and
covariance matrices of weight, length, and trunk, and we want to do the same regression again. The
matrix of means is

. matrix list M

M[1,3]
weight length trunk
_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. matrix list V

symmetric V[3,3]
weight length trunk
weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation
structure.

. corr2data x y z, n(74) cov(V) means(M)

. regress x y z

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482773.3 2 19741386.6 Prob > F = 0.0000
Residual 4611402.75 71 64949.3345 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094176 73 604029.809 Root MSE = 254.85

x | Coefficient Std. err. t P>|t] [95% conf. intervall]

y 33.83435 1.949751 17.35 0.000 29.94666 37.72204

z -5.835155 10.14957 -0.57 0.567 -26.07282 14.40251

_cons -3258.84 283.3546 -11.50 0.000 -3823.833 -2693.847

corr2data — Create dataset with specified correlation structure 89

The results from the regression based on the generated data are the same as those based on the real data.

d

Methods and formulas

Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,
zero-correlated dataset. The second step is to apply the desired correlation structure and the means to the
zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix A and any
vector of variables X, Var(A’X) = A’ Var(X)A.

Reference

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156—189.

Also see

[D] Data types — Quick reference for data types

[D] drawnorm — Draw sample from multivariate normal distribution

https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=st0101

count — Count observations satisfying specified conditions

Description Quick start Menu Syntax
Remarks and examples Stored results References Also see

Description

count counts the number of observations that satisfy the specified conditions. If no conditions are
specified, count displays the number of observations in the data.

Quick start

Count the number of observations

count

Same as above, but where catvar equals 3

count if catvar==3

Count observations for each value of catvar

by catvar: count

Menu

Data > Data utilities > Count observations satisfying condition

Syntax

count [if]| [in]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

count may strike you as an almost useless command, but it can be one of Stata’s handiest.

b Example 1

How many times have you obtained a statistical result and then asked yourself how it was possible?
You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?” or
“Is sex ever equal to 3?” count can quickly answer those questions:

90

count — Count observations satisfying specified conditions 91

. use https://www.stata-press.com/data/r19/countxmpl
(1980 Census data by state)

. count
641

. count if income<O
0

. count if sex==
1

. by division: count if sex==

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

We have 641 observations. income is never negative. sex, however, takes on the value 3 once. When
we decompose the count by division, we see that it takes on that odd value in the Pacific division.

d

Stored results

count stores the following in r () :

Scalars
r(N) number of observations

References

Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571-581.
. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117-130.
.2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440-443.

Also see

[R] tabulate oneway — One-way table of frequencies

https://www.stata-journal.com/article.html?article=dm0033
https://www.stata-journal.com/article.html?article=pr0029
https://www.stata-journal.com/article.html?article=pr0033

cross — Form every pairwise combination of two datasets

Description Quick start Menu Syntax
Remarks and examples References Also see

Description

cross forms every pairwise combination of the data in memory with the data in filename. If filename
is specified without a suffix, .dta is assumed.

Quick start

Form every pairwise combination of observations frommydatal . dta in memory with observations from
mydata2.dta

cross using mydata?2

Menu

Data > Combine datasets > Form every pairwise combination of two datasets

Syntax

cross using filename

cross does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Remarks and examples

This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the
data in memory is merged with every observation of filename, followed by the second, and so on. Thus
the result will have IV; N, observations, where V; and NN, are the number of observations in memory
and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only
the values of the data in memory.

b Example 1

We wish to form a dataset containing all combinations of three age categories and two sexes to serve
as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

92

cross — Form every pairwise combination of two datasets 93

. input str6 sex

sex

1. male
2. female
3. end

. Save sex

file sex.dta saved

. drop _all
. input agecat
agecat
1. 20
2. 30
3. 40
4. end
. cross using sex
. list
agecat sex
1. 20 male
2. 30 male
3. 40 male
4. 20 female
5. 30 female
6. 40 female
References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147-148.

Also see

D
D

(D]
(D]
(D]
(D]
(D]
(D]

D] append — Append datasets

D] fillin — Rectangularize dataset

D] merge — Merge datasets

D] save — Save Stata dataset

frunalias — Change storage type of alias variables

joinby — Form all pairwise combinations within groups

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0020

Data types — Quick reference for data types

Description Remarks and examples Also see

Description

This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

Remarks and examples

Closest to 0

Storage type Minimum Maximum without being 0 Bytes
byte —127 100 +1 1
int —32,767 32,740 +1 2
long —2,147,483,647 2,147,483,620 +1 4
float —1.70141173319 x 10®® 1.70141173319 x 10*® +10738 4
double —8.9884656743 x 10307 8.9884656743 x 10307 +1073% 8

Precision for float is 3.795 x 1072,
Precision for double is 1.414 x 10716,

String Maximum

storage type length Bytes

stri 1 1

str2 2 2

str2045 2045 2045

strL 2000000000 2000000000

Each element of data is said to be either type numeric or type string. The word “real” is sometimes
used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte, int,
and long are said to be of integer type in that they can hold only integers.

Strings are stored as str#, for instance, stri, str2, str3, ..., str2045, or as strL. The number
after the str indicates the maximum length of the string. A str5 could hold the word “male”, but not
the word “female” because “female” has six characters. A strL can hold strings of arbitrary lengths, up
to 2000000000 characters, and can even hold binary data containing embedded \0 characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If you
have a string variable that has maximum length 6, it would waste memory to store it as a str20. Similarly,
if you have an integer variable, it would be a waste to store it as a double.

94

Data types — Quick reference for data types 95

Precision of humeric storage types

floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus, 1234567
can be stored perfectly as a float, as can 1234567¢+20. The number 123456789, however, would be
rounded to 123456792. In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers are
integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles have
16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has no
perfect binary representation just as 1/11 has no perfect decimal representation. In float, .1 is stored
as .10000000149011612. Note that there are 7 digits of accuracy, just as with numbers larger than 1.
Stata, however, performs all calculations in double precision. If you were to store 0.1 in a float called
x and then ask, say, 1list if x==.1, there would be nothing in the list. The .1 that you just typed was
converted to double, with 16 digits of accuracy (.100000000000000014. . .), and that number is never
equal to 0.1 stored with float accuracy.

One solution is to type 1ist if x==float(.1). The float () function rounds its argument to float
accuracy; see [FN] Programming functions. The other alternative would be store your data as double,
but this is probably a waste of memory. Few people have data that is accurate to 1 part in 10 to the
7th. Among the exceptions are banks, who keep records accurate to the penny on amounts of billions of
dollars. If you are dealing with such financial data, store your dollar amounts as doubles.

Also see

D] compress — Compress data in memory

D] destring — Convert string variables to numeric variables and vice versa
D] encode — Encode string into numeric and vice versa

[
[
[
[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings

[U] 12.5 Formats: Controlling how data are displayed

[U] 13.12 Precision and problems therein

datasignature — Determine whether data have changed

Description Quick start Menu

Syntax Options Remarks and examples
Stored results Methods and formulas Reference

Also see

Description

These commands calculate, display, save, and verify checksums of the data, which taken together
form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597. That
signature is a function of the values of the variables and their names, and thus the signature can be used
later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset. You
should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirmdisplays an error message and returns a nonzero return
code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also be
stored in a separate, small file.

datasignature set, saving(filename) calculates and displays the signature and, in addition to
storing it as a characteristic in the dataset, also saves the signature in filename.

datasignature confirm using filename verifies that the current signature matches the one stored
in filename.

datasignature report using filename displays a full report comparing the current signature with
the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in mem-
ory.

Quick start

Calculate and display the signature of the dataset in memory

datasignature

Same as above, and store the signature as a characteristic of the data

datasignature set

Same as above, but also save the signature in datasig.txt

datasignature set, saving(datasig.txt)

96

datasignature — Determine whether data have changed 97

Confirm that the data are currently exactly the same as they were when signed

datasignature confirm

Confirm that the data in memory have the same signature saved in datasig.txt

datasignature confirm using datasig.txt

Menu

Data > Other utilities > Manage data signature

Syntax

datasignature
datasignature set [, reset]

datasignature confirm [, strict]

datasignature report

datasignature set, saving(filename[, replace]) [reset |
datasignature confirm using filename [, strict]

datasignature report using filename

datasignature clear

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

reset is used with datasignature set. It specifies that even though you have previously set a signa-
ture, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the
signatures match, you also wish to require that the variables be in the same order and that no new
variables have been added to the dataset. (If any variables were dropped, the signatures would not
match.)

saving(filename[, replace) is used with datasignature set. It specifies that, in addition to stor-
ing the signature in the dataset, you want a copy of the signature saved in a separate file. If filename
is specified without a suffix, .dtasig is assumed. The replace suboption allows filename to be
replaced if it already exists.

datasignature — Determine whether data have changed 98

Remarks and examples

Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files

Interpreting data signatures

The logic of data signatures

Using datasignature interactively

datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the same
dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish to
guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish to
verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that others
have not changed it.

Example 1: Verification at a distance
You load the data and type

. datasignature
74:12(71728) :3831085005: 1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself
You load the data and type

. datasignature set
74:12(71728) :3831085005: 1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2025 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2025 14:24, except 2 variables have been added)

datasignature — Determine whether data have changed 99

You can find out more by typing

. datasignature report
(data signature set on Monday 19feb2025 14:24)

Data signature summary
1. Previous data signature 74:12(71728) :3831085005:1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)

dropped variables 0

resulting # of variables 14

(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

. datasignature set

data signature already set -- specify option reset
r(110)
. datasignature set, reset
74:14(113906) : 1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the
signature that would be calculated today on the basis of the same variables in their original order, and
3) the signature that would be calculated today on the basis of all the variables and in their current order.

datasignature confirmknew that new variables had been added because signature 1 was equal to
signature 2. If some variables had been dropped, however, datasignature confirm would not be able
to determine whether the remaining variables had changed.

Example 3: Working with assistants

You give your dataset to an assistant to have variable labels and the like added. You wish to verify
that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could
change both your data and the signature and might even do that in a desire to be helpful. The solution is
to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep filemycopy .dtasig. When your assistant returns the dataset to you, you use it and compare
the current signature to what you have stored in mycopy.dtasig:

. datasignature confirm using mycopy
(data unchanged since 19feb2025 15:05)

By the way, the signature is a function of the following:
e The number of observations and number of variables in the data

o The values of the variables

datasignature — Determine whether data have changed 100

e The names of the variables
e The order in which the variables occur in the dataset
e The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data

You work on a dataset served on a network drive, which means that others could change the data. You
wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate, private
file on your computer,

. datasignature set, saving(private)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file private.dtasig saved)

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2025 11:22)

Using datasignature in do-files

datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2025 15:05
r(9);

This means that, if you use datasignature confirmin a do-file, execution of the do-file will be stopped
if the data have changed.

You may want to specify the strict option. strict adds two more requirements: that the variables
be in the same order and that no new variables have been added. Without strict, these are not considered
erTors:

. datasignature confirm
(data unchanged since 19feb2025 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:05, but order of variables has changed)
r(9);

and

. datasignature confirm
(data unchanged since 19feb2025 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:22, except 1 variable has been added)
r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirmimmediately
after loading each dataset is a good idea. This way, you have a permanent record that you can use for
comparison.

datasignature — Determine whether data have changed 101

Interpreting data signatures

An example signature is 74:12(71728) : 3831085005:1395876116. The components are
1. 74, the number of observations;
2. 12, the number of variables;
3. 71728, a checksum function of the variable names and the order in which they occur; and
4

. 3831085005 and 1395876116, checksum functions of the values of the variables, calculated
two different ways.

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that
datasets containing similar values will have equal signatures. There are two data checksums, but do
not read too much into that. If either data checksum changes, even just a little, the data have changed.
Whether the change in the checksum is large or small—or in one, the other, or both—signifies nothing.

The logic of data signatures

The components of a data signature are known as checksums. The checksums are many-to-one map-
pings of the data onto the integers. Let’s consider the checksums of auto . dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 2565184 such datasets or, equiva-
lently, 2395472 The first checksum has 2% possible values, and it can be proven that those values are
equally distributed over the 2395472 datasets. Thus there are 2507472 /248 _ 1 = 2305424 _ 1 {atasets that
have the same first checksum value as auto.dta. The same can be said for the second checksum. It
would be difficult to prove, but we believe that the two checksums are conditionally independent, being
based on different bit shifts and bit shuffles of the same data. Of the 2°°°424 — 1 datasets that have the
same first checksum as auto.dta, the second checksum should be equally distributed over them. Thus
there are about 23°°370 — 1 datasets with the same first and second checksums as auto.dta.

Now let’s consider those 2395376 — | other datasets. Most of them look nothing like auto.dta. The

checksum formulas guarantee that a change of one variable in 1 observation will lead to a change in
the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee it in
other cases. When it is not guaranteed, the change cannot be subtle—“Chevrolet” will have to change
to binary junk, or a double-precision 1 to —6.476678983751e+301, and so on. The change will be easily
detected if you summarize your data and just glance at the minimums and maximums. If the data look
at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one variable
in 1 observation and make an offsetting change in another observation so that, taken together, they will
go undetected? You can fool one of the checksums, but fooling both of them simultaneously will prove
difficult. The basic rule is that the more changes you make, the easier it is to create a dataset with the same
checksums as auto.dta, but by the time you have done that, the data will look nothing like auto.dta.

datasignature — Determine whether data have changed 102

Stored results

datasignature without arguments and datasignature set store the following in r ():

Macros
r(datasignature) the signature

datasignature confirm stores the following in r O):

Scalars

r(k_added) number of variables added
Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report stores the following in r ():

Scalars
r(datetime) %tc date—time when set
r(changed) . if r (k—dropped) # 0, otherwise
0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, O if not reordered,
. if r(k_added) # 0| r(k_dropped) # 0
r(k_original) number of original variables
r(k_added) number of added variables
r (k_dropped) number of dropped variables
Macros
r(origdatasignature) original signature
r(curdatasignature) current signature on same variables, if it can be calculated
r(fulldatasignature) current full-data signature
r(varsadded) variable names added
r (varsdropped) variable names dropped

datasignature clear stores nothing in r () but does clear it.
datasignature set stores the signature in the following characteristics:

Characteristic

_dtal[datasignature_si] signature

_dta[datasignature_dt] %tc date—time when set in %21x format
_dtal[datasignature_v11] part 1, original variables
_dta[datasignature_v12] part 2, original variables, if necessary
etc.

To access the original variables stored in _dta[datasignature_v11], etc., from an ado-file, code

mata: ado_fromlchar("vars", "_dta", "datasignature_v1")

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas

datasignature is implemented using _datasignature; see [P] _datasignature.

datasignature — Determine whether data have changed 103

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

Also see

[P] _datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

https://www.stata-journal.com/article.html?article=dm0024

Datetime — Date and time values and variables

Description Quick start Syntax Remarks and examples References Also see

Description

This entry provides a complete overview of Stata’s date and time values. We discuss functions used
to obtain Stata dates, including string-to-numeric conversions and conversions among different types of
dates and times.

Stata’s date and time values need to be formatted so they look like the dates and times we are familiar
with. We show basic formatting options here, but more details can be found in [D] Datetime display
formats.

[D] Datetime conversion has more details on converting dates and times stored as strings to numeri-
cally encoded Stata dates and times.

[D] Datetime values from other software discusses getting Stata dates from dates created by other
software.

[D] Datetime durations describes functions designed to get durations (for example, ages) from two
Stata dates or to express a duration in different units.

[D] Datetime relative dates describes functions that return dates based on other dates, for example,
the date of a birthday in another year.

[D] Datetime business calendars describes business calendars—using dates with nonbusiness days
(for example, weekends and holidays) removed. You can use existing calendars or create your own; see
[D] Datetime business calendars creation.

For an alphabetical listing of all the datetime functions, see [FN] Date and time functions.

Quick start

Convert the string variable strdate, with dates such as "January 1, 2020", to a numerically encoded
Stata date

generate numdate = date(strdate, "MDY")

Format numdate to make it readable when displayed
format numdate %td

Convert the string variable strtime, with dates and times such as "January 1,2020 10:30 am", to a
numerically encoded Stata datetime variable

generate double numtime = clock(strtime, "MDYhm")

Format numtime to make it readable when displayed

format numtime %tc

104

Datetime — Date and time values and variables 105

Convert the string variable strmonthly, with monthly dates such as "2012-04", to a Stata date, and
format it to make it readable when displayed
generate nummonth = monthly(strmonthly, "YM")
format nummonth %tm

List observations for which numdate is prior to February 15, 2013
list if numdate < td(15/2/2013)

Create a monthly date variable from numeric variables year and month
generate monthly = ym(year ,month)

Create a daily date variable from the datetimes stored in numtime
generate dateoftime = dofc(numtime)

Create a monthly date variable from the daily dates stored in numdate
generate monthlyofdate = mofd(numdate)

Create a new variable with the month of the daily dates stored in numdate
generate monthnum = month (numdate)

Syntax

Syntax is presented under the following headings:

Types of dates and how they are displayed

How Stata dates are stored

Converting dates stored as strings to Stata dates
Formatting Stata dates for display

Creating dates from components

Converting among units

Extracting time-of-day components from datetimes
Extracting date components from daily dates
Typing dates into expressions

Types of dates and how they are displayed

Dates and times can take many forms; below, we list the types of dates that are supported in Stata.
Note that throughout our documentation, we use the term “datetime” to refer to variables that record time
or date and time.

Date type Examples

datetime 20jan2010 09:15:22.120
date 20jan2010, 20/01/2010, ...
weekly date 2010w3

monthly date 2010m1

quarterly date 2010q1

half-yearly date 2010h1

yearly date 2010

The styles of the dates in the table above are merely examples; dates can be displayed in a number of
ways. Perhaps you prefer 2010.01.20; Jan. 20, 2010; 2010-1; etc.

Datetime — Date and time values and variables 106

How Stata dates are stored

Stata dates are numeric values that record durations (positive or negative) from 01jan1960. Below,
we list the numeric values corresponding to the dates displayed in the table in the previous section.

Stata date type Examples Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)

weekly date 2,601 weeks since 1960w1

monthly date 600 months since 1960m1

quarterly date 200 quarters since 1960q1

half-yearly date 100 half-years since 1960h1

yearly date 2010 years since 0000

* Datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two datetime encodings in [D] Datetime conversion.

Stata dates are stored as regular Stata numeric variables.

You can convert dates stored as strings to Stata dates by using the string-to-numeric conversion func-
tions; see Converting dates stored as strings to Stata dates.

You can make Stata dates readable by placing the appropriate J%fn¢ on the numeric variable; see For-
matting Stata dates for display.

You can convert from one Stata date type to another by using conversion functions; see Converting
among units.

Storing dates as numeric values is convenient because you can subtract them to obtain time between
dates, for example,

datetime2 — datetimel = milliseconds between datetimel and datetime2
(divide by 1,000 to obtain seconds)

date2 — datel = days between datel and date2
week2 — weekl = weeks between week1 and week2
month2 — monthl = months between month1 and month2
half2 — halfl = half-years between halfl and half2
year2 — yearl = years between yearl and year2

For time differences in other units, for example, the number of years between datel and date2, see
[D] Datetime durations.

Datetime — Date and time values and variables 107

Converting dates stored as strings to Stata dates

To convert dates and times stored as strings to Stata dates and times, use one of the functions listed
below.

Stata date type Function Required variable precision
datetime/c clock(str, mask) double

datetime/C Clock (str, mask) double

date date (str, mask) float or long

weekly date weekly (str, mask)* float or int

monthly date monthly (str, mask)* float or int

quarterly date quarterly (str, mask)* float or int

half-yearly date halfyearly(str, mask)* float or int

yearly date yearly(str, mask) float or int

*stris a string variable or a literal string enclosed in quotes.

Within each function, you need to specify the string you want to convert and the order in which the
date and time components appear in that string.

The string to be converted with clock(), Clock(), and date() may contain dates and times that
are run together or include punctuation marks between the components. However, the functions marked
with an asterisk require that the string date contain a space or punctuation between the year and the other
component if the string consists only of numbers. For more information on how punctuation is handled
and other details related to these conversion functions, see [D] Datetime conversion.

The order of the components is specified within quotes, such as "YMD", and is referred to as a mask.
The mask may contain the following elements:

Mask element Component

day

week

month

quarter

half-year

year

19Y two-digit year in the 1900s
20Y two-digit year in the 2000s
hour

minute

second

placeholder for something to be ignored

< meo = =09

*+ n B &

Datetime — Date and time values and variables 108

Examples:

1.

You have datetimes stored in the string variable mystr, an example being 2010.07.12 14:32.
To convert this to a Stata datetime/c variable, you type

. generate double eventtime = clock(mystr, "YMDhm")

The string contains the year, month, and day followed by the hour and minute, so you specify
the mask "YMDhm".

You have datetimes stored in mystr, an example being 2010.07.12 14:32:12. You type

. generate double eventtime = clock(mystr, "YMDhms")

Mask element s specifies seconds. In example 1, there were no seconds; in this example, there
are.

. You have datetimes stored in mystr, an example being 2010 Jul 12 14:32. You type

. generate double eventtime = clock(mystr, "YMDhm")

This is the same command that you typed in example 1. In the mask, you specify the order of
the components; Stata figures out the style for itself. In example 1, months were numeric. In
this example, they are spelled out (and happen to be abbreviated).

You have datetimes stored in mystr, an example being July 12, 2010 2:32 PM. You type

. generate double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without periods.

You have datetimes stored in mystr, an example being 7-12-10 14.32. The 2-digit year is to
be interpreted as being prefixed with 20. You type

. generate double eventtime = clock(mystr, "MD20Yhm")

You have datetimes stored in mystr, an example being 14:32 on 7/12/2010. You type
. generate double eventtime = clock(mystr, "hm#MDY")
The # sign between m and M means “ignore one thing between minute and month”, which in

this case is the word “on”. Had you omitted the # from the mask, the new variable eventtime
would have contained missing values.

You have a date stored in mystr, an example being 22/7/2010. In this case, you want to create
a Stata date instead of a datetime. You type

. generate eventdate = date(mystr, "DMY")

Typing

. generate double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

Datetime — Date and time values and variables 109

Formatting Stata dates for display

While Stata dates are stored as regular Stata numeric variables, they are formatted so they look like
the dates and times we are familiar with. Each type of date has a corresponding display format, and we
list them below:

Stata date type Display format
datetime/c htc
datetime/C #tC
date %td
weekly date htw
monthly date %tm
quarterly date wtq
half-yearly date %th
yearly date hty

The display formats above are the simplest forms of each of the Stata dates. You can control how
each type of Stata date is displayed; see [D] Datetime display formats.

Examples:
1. You have datetimes stored in string variable mystr, an example being 2010.07.12 14:32. To
convert this to a Stata datetime/c variable and make the new variable readable when displayed,

you type

. generate double eventtime = clock(mystr, "YMDhm")
. format eventtime Ytc

2. You have a date stored in mystr, an example being 22/7/2010. To convert this to a Stata date
variable and make the new variable readable when displayed, you type

. generate eventdate = date(mystr, "DMY")
. format eventdate %td

Datetime — Date and time values and variables 110

Creating dates from components

If you have components of your date stored separately, you can use the following functions to create
a single date variable. Note that each component used in this function must be numeric; you can specify
numeric variables or simply digits.

Stata date type Function to build from components

datetime/c mdyhms (M, D, Y, h, m, $)*

dhms (ey, b, m, s)*
hms (4, m, s)*

datetime/C Cmdyhms (M, D, Y, h, m, s)*

Cdhms(ey, h, m, s)*!
Chms (h, m, s)*

date mdy(M, D, Y)

dmy (D, M, Y)
weekly date yw (Y, W)
monthly date ym(Y, M)
quarterly date ya(Y, O)
half-yearly date yh(Y, H)
yearly date y(¥)

* Stata datetime variables must be stored as doubles.
T e, is a Stata date with a month, day, and year component.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date component

in numeric form. To create a date variable from these components, you type

. generate eventdate = mdy(mo, da, yr)
. format eventdate %td

If you prefer the ordering day, month, and year, you can use dmy () instead of mdy ():

. generate eventdate = dmy(da, mo, yr)
. format eventdate Ytd

. Your dataset has two numeric variables, mo and yr. To create a date variable corresponding to

the first day of the month, you type

. generate eventdate = mdy(mo, 1, yr)
. format eventdate %td

. Your dataset has two numeric variables, da and yr, and one string variable, month, containing

the spelled-out month. In this case, do not use the building-from-component functions. Instead,
construct a new string variable with these components, and then convert the string to a Stata
date using the conversion functions:

. generate str work = month + " " + string(da) + " " + string(yr)

. generate eventdate = date(work, "MDY")
. format eventdate %td

Datetime — Date and time values and variables 111

Converting among units

The table below lists the functions for converting one type of date and time to another. Because there
are not official functions for every possible conversion, we have also included the functions you can nest
instead to obtain those conversions. Similarly, for any other conversion not listed here, you can use two
functions, going through date or datetime as appropriate. For example, to obtain a monthly date from a
datetime/c variable, you would use mofd (dofc (varname)).

To:
From: datetime/c datetime/C date
datetime/c Cofc() dofc()
datetime/C cofC() dofC()
date cofd() Cofd()
To:
From: date weekly monthly quarterly
date wofd () mofd () qofd ()
weekly dofw() mofd(dofw()) gofd(dofw())
monthly dofm() wofd(dofm()) gofd(dofm())
quarterly dofq() wofd(dofq()) mofd(dofq())
To:
From: date half-yearly yearly
date hofd() yofd O
half-yearly dofh()
yearly dofy()

Note that if you are converting to a date type for which you do not have all the components, those
missing elements will be set to their defaults. For example, converting a yearly date to a weekly date
would give you the first week of each year. Converting a quarterly date to a monthly date would give
you the first month of each quarter, along with the year, of course. Below, we list the defaults for the
date and time components:

Date component Default
year 1960
half-year 1
quarter 1
month 1

week 1

day 01
hour 00
minute 00
second 00

Datetime — Date and time values and variables 112

Examples:

1. You have the Stata datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. generate eventdate = dofc(eventtime)
. format eventdate Ytd

2. You have the daily date eventdate and wish to create the new datetime/c variable eventtime
from it. For this unusual case, you can even type

. generate double eventtime = cofd(eventdate)
. format eventtime Ytc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the Stata quarterly variable eventqtr and wish to create the new Stata date variable
eventdate from it. You type

. generate eventdate = dofq(eventqtr)
. format eventdate Ytq

The new variable, eventdate, will contain 01jan dates for quarter 1, O1apr dates for quarter 2,
01jul dates for quarter 3, and Oloct dates for quarter 4.

4. You have the datetime/c variable admittime and wish to create the quarterly variable
admitqtr from it. You type

. generate admitqtr = qofd(dofc(admittime))
. format admitqtr %tq

Because there is no gofc () function, you use qofd(dofc()).

Datetime — Date and time values and variables 113

Extracting time-of-day components from datetimes

In the table below, we list the functions used to extract time-of-day components from datetimes. If
you are working with standard datetimes, use the functions in the datetime/c column. If you are working
with leap second—adjusted times, use the functions in the datetime/C column.

Function
Desired component datetime/c datetime/C Example
hour of day hh(e,.) hhC(e,) 14
minutes of day mm(e,.) mmC (e,) 42
seconds of day ss(e,.) ssC(e,) 57.123
year, month, day, clockpart(e,.,s,) Clockpart (e,s,s,,) 2020

hour, minute, second,
or millisecond

e,. is a Stata datetime/c value.

e, 18 a Stata datetime/C value (UTC time with leap seconds).

s,, 1s a string specifying the time unit. s,, can be string "year" or "y" for year;
"month" or "mon" for month; "day" or "d" for day; "hour" or "h" for hour;
"minute" or "min" for minute; "second", "sec", or "s" for second; and
"millisecond" or "ms" for millisecond (case insensitive).

Notes:

0 <hh(e,.) <23, 0<hhC(er) <23
0 <mm(e;.) <59, 0<mmC(e;) <359
0 <ss(e.) <60, 0<ssCler) <61 (sic)

Example:

1. You have the Stata datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600

2. You have the Stata datetime/C variable admitTime. You wish to create the new variable
admityear to record the year of admission. You type

. generate admityear = Clockpart(admitTime, "year")

See [D] Datetime durations for other functions that can be used to calculate durations.

Datetime — Date and time values and variables 114

Extracting date components from daily dates

You might be working with dates that have more information than you need. For example, daily dates
refer to dates that have a month, day, and year component. If you want to refer only to the month, or
year, of a daily date, you can use the extraction functions below.

Desired component Function* Examplef

calendar year year(e,) 2013
datepart(e;, "year") 2013

calendar month month (ey) 7
datepart(e;, "month") 7

calendar day day(ey) 5
datepart(ey, "day") 5

day of week dow(e,) 2

(0=Sunday)

Julian day of year doy(ey) 186

(1=first day)

week within year week(ey) 27

(1=first week)

quarter within year quarter(e,) 3

(1=first quarter)

half within year halfyear(e,) 2

(1=first half)

* g4 18 a Stata date with a month, day, and year component.

T All examples are with e, = mdy(7,5,2013).

All functions require a numeric Stata daily date as an argument. A string variable cannot be specified
as the date. To extract components from other Stata date types, use the appropriate conversion function
to convert to a daily date. For example, quarter (dofq(qvar)) would return the quarter of the quarterly

date values stored in gvar.

Datetime — Date and time values and variables 115

Examples:

1. You wish to obtain the day of week Sunday, Monday, . .. corresponding to the daily date variable
eventdate. You type

. generate day_of_week = dow(eventdate)

The new variable, day_of _week, contains 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

2. You wish to obtain the day of week Sunday, Monday, ... corresponding to the datetime/c vari-
able eventtime. You type

. generate day_of_week = dow(dofc(eventtime))

3. You have the daily date variable evdate and wish to create the new date variable evdate_r
from it. evdate_r will contain the same date as evdate but rounded back to the first of the
month. You type

. generate evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month () and year ()
and used the build-from-components function mdy ().

Typing dates into expressions

You can type date values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. generate before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)
. drop if admittedon < 1402920000000

Easier to type is

. generate before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)
. drop if admittedon < tc(15jun2004 12:00:00)

You can type Stata date values by typing the date inside td (), as in td(15jun2004).

You can type Stata datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td () and tc () are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The pseudofunctions and their expected component order are

Desired date type Pseudofunction

datetime/c tc([day-month-year | hh:mm|[:ss[.sss]])
datetime/C tC([day-month-year | hh:mm|[:ss[.sss]])
date td (day-month-year)

weekly date tw (year-week)

monthly date tm (year-month)

quarterly date tq (year-quarter)

half-yearly date th (year-half’)

yearly date none necessary; years are numeric and can be typed directly

Datetime — Date and time values and variables 116

Note that the day-month-year in tc () and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. generate six_hrs_later = eventtime + tc(6:00)

Note that string-to-date functions can be used in expressions with literal strings. For example,
date("15jun2004","DMY") gives the same result as td (15jun2004).

Remarks and examples

Remarks are presented under the following headings:

Introduction

Example 1: Converting string datetimes to Stata datetimes
Example 2: Extracting date components

Example 3: Building dates from components

Example 4: Converting among date types

Example 5: Using dates in expressions

Introduction

To use dates in Stata, you must first convert what you have to a Stata date. Stata dates are numbers,
so they can easily be translated from, say, daily dates to monthly dates. Even so, they can be formatted
so that they look like the dates you are familiar with. If you have dates stored as strings, you must first
convert them to Stata dates.

Converting a string date to a Stata date is as simple as telling Stata the string date and the order of the
components. For example, we have a fictional dataset on patients who visited a local hospital. We have
their birthdates, the dates of their visits, the reasons for their visits, and the dates they were discharged.
All dates and times are stored as strings.

. use https://www.stata-press.com/data/r19/visits
(Fictional hospital visit data)
. describe

Contains data from https://www.stata-press.com/data/r19/visits.dta

Observations: 5 Fictional hospital visit data
Variables: 7 27 Aug 2024 22:56
Variable Storage Display Value
name type format label Variable label
patid byte %9.0g Patient ID
dateofbirth str9 %9s Date of birth
reason stris %15s Reason for visit
admit_d str8 %9s Admission date
admit_t stril7 %17s Admission date and time
discharge_d str9 %9s Discharge date
discharge_t stri4 %l14s Discharge date and time

Sorted by:

Datetime — Date and time values and variables 117

. list admit_d dateofbirth

admit_d dateofb~h
1. 20110625 May152001
2. 20110313 Apr011999
3. 20110409 Nov151975
4. 20120211 Aug261960
5. 20120801 Dec161987

If we wanted to sort our data by birthdates or use these dates to compute a patient’s age, we would
need these variables to be numeric, not strings. So let’s create numeric Stata dates from the birthdates

and dates of admission:

. generate admit = date(admit_d, "YMD")
. generate dob = date(dateofbirth, "MDY")

. list admit_d admit dateofbirth dob

admit_d admit dateofb~h dob
1. 20110625 18803 May152001 15110
2. 20110313 18699 Apr011999 14335
3. 20110409 18726 Nov151975 5797
4. 20120211 19034 Aug261960 238
5. 20120801 19206 Dec161987 10211

For dates of admission, we told Stata that the string date was stored in admit_d and that the date was
stored in the following order: year, month, day (YMD). Similarly, for birthdates we specify the string date
and the order of the components: month, day, and year (MDY). It does not matter whether the month is
written as a number, spelled out completely, or abbreviated to three letters.

You might be surprised by the values listed. The numbers represent the days elapsed since January 1,
1960, Stata’s base date. Most software store dates and times in this manner, but they differ in the date
they choose as a base. For us to understand the dates that these values represent, we apply a display
format. All datetime display formats begin with a %t and contain a second letter representing the type of
date: %td for daily dates, %tw for weekly dates, and so on. In our case, we have daily dates, so we use

the %td format.

. format admit dob %td

. list admit dob

admit dob
1. 25jun2011 15may2001
2. 13mar2011 01apr1999
3. 09apr2011 15n0v1975
4. 11feb2012 26augl960
5. 0laug2012 16dec1987

If we instead had weekly dates, monthly dates, or quarterly dates, we would use the appropriate string-
to-numeric conversion function to create the numeric variable and the appropriate display format. For
more ways to format the dates above, see [D] Datetime display formats.

Datetime — Date and time values and variables 118

This is a simple example to get us started. The key points are that we want our dates to be stored
numerically and formatted so that they look like the dates we are familiar with.

Below, we will discuss how to work with other types of dates. We will explore dates that have a time
component, dates with components stored in multiple variables, and dates that have more components
than we wish to work with. So whether you need to build, extract, or convert among different types of
dates, you will learn how to do so with the examples that follow.

Example 1: Converting string datetimes to Stata datetimes

In this dataset, we also have string variables that record the date and time of admission and discharge:
. codebook admit_t discharge_t

admit_t Admission date and time

Type: String (stril7)
Unique values: 5 Missing "": 0/5

Tabulation: Freq. Value

"20110313 8:30:45"

"20110409 10:17:08"
"20110625 5:15:06"

"20120211 10:30:12"
1 "20120801 6:45:59"

Warning: Variable has embedded blanks.

o e e

discharge_t Discharge date and time

Type: String (stri4)
Unique values: 5 Missing "": 0/5

Tabulation: Freq. Value

"20110326 2:15"
"20110409 19:35"
"20110629 10:27"
"20120216 2:15"
1 "20120802 11:59"

Warning: Variable has embedded blanks.

O

Let’s convert these to Stata dates. Regardless if we are working with simple dates or dates and times,
the process is the same. We are going to specify the string we want to convert and the order of the
components. The only difference between this example and the previous example is the function; because
these variables record the date and time, we will now use the clock() function, and the variables we
generate will be referred to as datetime variables.

Datetime — Date and time values and variables 119

. generate double admit_time = clock(admit_t, "YMDhms")
. generate double disch_time = clock(discharge_t, "YMDhm")
. format admit_time disch_time %tc

. list admit_time disch_time

admit_time disch_time

25jun2011 05:15:06 29jun2011 10:27:00
13mar2011 08:30:45 26mar2011 02:15:00
09apr2011 10:17:08 09apr2011 19:35:00
11feb2012 10:30:12 16feb2012 02:15:00
0laug2012 06:45:59 02aug2012 11:59:00

O W N

Note that the string variable admit_t contained the hour, minutes, and seconds, whereas the string
variable discharge_t contained only the hour and minutes. This is why we did not specify an s in the
list of components for discharge_t, and it is also why the seconds are set to zero for disch_time.

These variables now record the milliseconds since 01jan1960 00:00:00.000, assuming 86,400 seconds
per day. You might have guessed that these values will be quite large, which is why we need to use the
most precise storage type in Stata, double.

We have a lot of information in these variables, but we can choose to view just the portion in which we
are interested by modifying the display format. For example, below we specify that we want to display
only the hour and minute for the time of discharge, and we list the newly formatted time alongside the
original string variable.

. format disch_time %tcHH:MM

. list discharge_t disch_time

discharge_t disch_~e

1. 20110629 10:27 10:27
2. 20110326 2:15 02:15
3. 20110409 19:35 19:35
4. 20120216 2:15 02:15
5. 20120802 11:59 11:59

We created the datetime variables above assuming there are 86,400 seconds in a day. This is one way
to record time; another way would be to use UTC. UTC times are adjusted for leap seconds and can be
obtained by modifying our commands just slightly, as follows:

. generate double admit_Time = Clock(admit_t, "YMDhms")
. format admit_Time %tC

Notice that the Clock () function and the %tC display format both contain a capital C. When you are
working with standard datetimes, you will use functions with a lowercase ¢, and for UTC times, you will
use functions with an uppercase C.

Datetime — Date and time values and variables 120

Example 2: Extracting date components

Suppose we want to work with just the month or year of admission. We can extract these components
from our Stata date variable:
. generate admonth = month(admit)
. generate adyear = year(admit)
. list admit admonth adyear

admit admonth adyear

1. 25jun2011 6 2011
2. 13mar2011 3 2011
3. 09apr2011 4 2011
4. 11feb2012 2 2012
5. O0laug2012 8 2012

Now, for each year, we can look at the patients that were admitted in the first three months and the
reason for their visit:

. bysort adyear: list patid reason if admonth < 4

-> adyear = 2011

patid reason

2. 2 chest pain

-> adyear = 2012

patid reason

1. 4 abdominal pain

Example 3: Building dates from components

If we are concerned only with the month and year of admission, we can also create a monthly date
with the two newly created variables above:
. generate monthly = ym(adyear,admonth)
. format monthly %tm
. list admit monthly

admit monthly

25jun2011 2011m6
13mar2011 2011m3
09apr2011 2011m4
11feb2012 2012m2
0laug2012 2012m8

[S2 OV SR

Because we now have monthly dates, we apply the %tm display format.

Datetime — Date and time values and variables 121

The ym () function shown above is useful when you have components of a date stored separately. In
fact, we could have created this monthly date variable by nesting functions:

. generate monthly2 = ym(year(admit), month(admit))
. format monthly2 %tm

Instead of generating those intermediary variables to extract the month and year of the daily date, we
simply used the extraction functions year () and month () within the ym() function. Either of the two
methods shown above will give you the same result, but if your goal is to convert a daily date variable
to a monthly date, you can use the mofd () conversion function, as demonstrated in the next example.

Example 4: Converting among date types

Often, we need to modify the data from its raw form for our purposes. For example, suppose our
dataset included only the datetime variable admit_time but we were interested only in the date. We
could type

. generate dateoftime = dofc(admit_time)
. format dateoftime %td
. list admit_time dateoftime

admit_time dateoft~e

25jun2011 05:15:06 25jun2011
13mar2011 08:30:45 13mar2011
09apr2011 10:17:08 09apr2011
11feb2012 10:30:12 11feb2012
0laug2012 06:45:59 0Olaug2012

[S2 VI SR

Or we might want to create a monthly date from the date of admission:

. generate monthofdate = mofd(admit)
. format monthofdate %tm

. list admit monthofdate

admit montho~e

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. O0laug2012 2012m8

Several functions are available for converting from one type of date and time to another. But, if one is
not available for what you need, you can nest functions to obtain the conversion you want. For example,
suppose we would like to convert a monthly date to a quarterly date. There is no direct function for this
conversion, so instead we type

Datetime — Date and time values and variables 122

. generate quarterly = qofd(dofm(monthofdate))
. format quarterly Jtq
. list monthofdate quarterly

montho~e quarte-~y

1. 2011m6 2011q2
2. 2011m3 2011q1
3. 2011m4 201192
4. 2012m2 2012q1
5. 2012m8 201293

We use the dofm() function to convert the monthly date to a daily date. This daily date will contain the
month and year from the monthly date, and the day will be set to 1. This is the general rule with datetime
functions; if you are converting from one type of date to another that has more elements, those elements
are set to their defaults. The qofd () function then converts the resulting daily date to a quarterly date.

Example 5: Using dates in expressions

Besides generating date and time variables, you might use dates in expressions. For example, suppose
we wanted to look only at observations after a certain date. Let’s list visit information for any patients
who were admitted after February 20, 2012:

. list admit patid reason if admit > td(20feb2012)

admit patid reason

5. 0laug2012 5 rapid breathing

This td () function will convert February 20, 2012, to its numeric form. Our expression is then evaluated
by comparing this numeric value with the numeric values stored in admit.

If you would like to see that underlying numeric value, you can type

. display td(20feb2012)

References

Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682—685.
.2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565-569.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

Also see

D] Datetime business calendars — Business calendars

D] Datetime conversion — Converting strings to Stata dates

D] Datetime durations — Obtaining and working with durations

(D]

(D]

[D] Datetime display formats — Display formats for dates and times

[D]

[D] Datetime relative dates — Obtaining dates and date information from other dates
(D]

D] Datetime values from other software — Date and time conversion from other software

https://www.stata-journal.com/article.html?article=dm0052
https://doi.org/10.1177/1536867X1201200316
https://www.stata-journal.com/article.html?article=dm0098

Datetime business calendars — Business calendars

Description Syntax Remarks and examples Also see

Description

Stata provides user-definable business calendars.

Syntax
Apply business calendar format

format varlist %tbcalname

Apply detailed date format with business calendar format

format varlist fitbcalname| : datetime-specifiers |

Convert between business dates and regular dates
enerate | replace ate = bo calname" , regulardate
g pl bd, bofd("cal ", regulardate)

{ generate | replace } regulardate = dofb (bdate, "calname")
File calname . stbcal contains the business calendar definition.
Details of the syntax follow:

1. Definition.
Business calendars are regular calendars with some dates crossed out:

November 2011
Su Mo Tu We Th Fr
1 2 3 4

X 7 8 9 10 11
X 14 15 16 17 18
X
X

S

21 22 23 X X
28 29 30

A date that appears on the business calendar is called a business date. 11nov2011 is a business date.
12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18nov2011 + 1 = 21nov2011
28n0v2011 — 1 = 23nov2011

Stata’s lead and lag operators work the same way.

123

Datetime business calendars — Business calendars 124

. Business calendars are named.
Assume that the above business calendar is named simple.

. Business calendars are defined in files named calname. stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the SSC,
or written yourself. Calendars can also be created automatically from the current dataset with the
bcal create command; see [D] beal. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir; see
[D] beal.

. Datetime format.
The date format associated with the business calendar named simple is %tbsimple, which is to say
%+t + b+ calname.

% it is a format
t it is a datetime
b it is based on a business calendar

calname the calendar’s name

. Format variables the usual way.
You format variables to have business calendar formats just as you format any variable, using the
format command.

. format mydate Ytbsimple

specifies that existing variable mydate contains values according to the business calendar named
simple. See [D] format.

You may format variables % tbcalname regardless of whether the corresponding stbcal-file exists. If
it does not exist, the underlying numeric values will be displayed in a %g format.

. Detailed date formats.
You may include detailed datetime format specifiers by placing a colon and the detail specifiers after
the calendar’s name.

. format mydate %tbsimple:CCYY.NN.DD

would display 21nov2011 as 2011.11.21. See [D] Datetime display formats for detailed datetime
format specifiers.

. Reading business dates.

To read files containing business dates, ignore the business date aspect and read the files as if they
contained regular dates. Convert and format those dates as %td; see Converting dates stored as strings
to Stata dates in [D] Datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd("simple", regulardate)
. format mydate Ytbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the % tbsimple date format to the new variable mydate so that it will
display correctly.

Datetime business calendars — Business calendars 125

10.

The third statement verifies that all dates recorded in regulardate fit onto the business calendar.
For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on the
regular calendar. If the data contained 12nov2011, that would be an error. Function bofd () returns
missing when the date does not appear on the specified calendar.

. More on conversion.

There are only two functions specific to business dates, bofd () and dofb (). Their definitions are

bdate = bofd ("calname”, regulardate)
dofb(bdate, "calname")

regulardate

bofd () returns missing if regulardate is missing or does not appear on the specified business calendar.
dofb () returns missing if bdate contains missing.

. Obtaining day of week, etc.

You obtain day of week, etc., by converting business dates to regular dates and then using the standard
functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, "calname"))
See Extracting date components from daily dates in [D] Datetime for the other extraction functions.

Stbcal-files.
The stbcal-file for simple, the calendar shown below,

November 2011
Su Mo Tu We Th Fr Sa
1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 X
X 21 22 23 X X X
X 28 29 30
is
begin simple.stbcal
*! version 1.0.0
* simple.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

purpose "Example for manual"
dateformat dmy

range 01nov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25n0ov2011

end simple.stbcal

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates to
be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25n0ov2011

to read

omit dowinmonth +4 Th of Nov and +1

Datetime business calendars — Business calendars 126

which says to omit the fourth (+4) Thursday of November in every year, and omit the day after that
(+1), too. See [D] Datetime business calendars creation.

Remarks and examples

See [D] Datetime for an introduction to Stata’s date and time features.
Below we work through an example from start to finish.

Remarks are presented under the following headings:

Step 1: Read the data, date as string

Step 2: Convert date variable to %td date

Step 3: Convert %td date to %tb date

Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted

Key feature: Extracting components from %tb dates

Key feature: Merging on dates

Step 1: Read the data, date as string

File bcal_simple.raw on our website provides data, including a date variable, that is to be inter-
preted according to the business calendar simple shown under Syntax above.

. type https://www.stata-press.com/data/r19/bcal_simple.raw
11/4/11 51

11/7/11 9

11/18/11 12

11/21/11 4

11/23/11 17

11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string variable:

. infile str10 sdate float x using https://www.stata-press.com/data/r19/bcal_simple
(6 observations read)

. list

sdate X
1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17
6. 11/28/11 22

Step 2: Convert date variable to %td date

Now we create a numeric date variable from the string date and format it as a date (%td):

. generate rdate = date(sdate, "MD20Y")
. format rdate %td

See Converting dates stored as strings to Stata dates in [D] Datetime. We verify that the conversion
went well and drop the string variable of the date:

Datetime business calendars — Business calendars 127

. list
sdate X rdate
1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011
6. 11/28/11 22 28nov2011
. drop sdate

Step 3: Convert %td date to %tb date

We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax above.
. generate mydate = bofd("simple", rdate)
. format mydate Ytbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assert would have responded, “assertion is false”. Nonetheless, we will list the data to show you that the
conversion went well. We would usually drop the %td encoding of the date, but we want it to demonstrate
a feature below.

. list

b4 rdate mydate
1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011
6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding

In the listing above, rdate and mydate appear to be equal. They are not:

. format rdate mydate %9.0g // remove date formats
. list
X rdate mydate
1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16
6. 22 18959 17

Datetime business calendars — Business calendars 128

%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern
yourself with the encoding. If you were curious, you could learn more about the encoding used by
%tbsimple by typing bcal describe simple; see [D] beal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate
. format mydate Ytbsimple

Key feature: Omitted dates really are omitted

In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011
28nov2011 — 1 = 23n0ov2011

That is true:
. generate tomorrow = mydate + 1
. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

X mydate tomorrow yesterday
1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011
6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L. varname and F . varname work similarly.

Key feature: Extracting components from %tb dates

You extract components such as day of week, month, day, and year from business dates using the
same extraction functions you use with Stata’s regular %td dates, namely, dow (), month (), day (), and
year (), and you use function dofb () to convert business dates to regular dates. Below we add day of
week to our data, list the data, and then drop the new variable:

Datetime business calendars — Business calendars 129

. generate dow = dow(dofb(mydate, "simple"))

. list
X mydate dow
1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21nov2011 1
5. 17 23nov2011 3
6. 22 28nov2011 1
. drop dow

See Extracting date components from daily dates in [D] Datetime.

Key feature: Merging on dates

It may happen that you have one dataset containing business dates and a second dataset containing
regular dates, say, on economic conditions, and you want to merge them. To do that, you create a regular
date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, "simple")
. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see

[D] beal — Business calendar file manipulation
[D] Datetime business calendars creation — Business calendars creation

[D] Datetime — Date and time values and variables

Datetime business calendars creation — Business calendars creation

Description Syntax Remarks and examples Also see

Description

Stata provides user-definable business calendars. Business calendars are provided by StataCorp and
by other users, and you can write your own. You can also create a business calendar automatically from
the current dataset with the bcal create command; see [D] beal. This entry concerns writing your own
business calendars.

See [D] Datetime business calendars for an introduction to business calendars.

Syntax

Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname . stbcal, which contains the following:

* comments

version version_of_stata
purpose "text"

dateformat { ymd | ydm|myd | mdy | dym | dmy }

range date date

centerdate date

[from {date| . } to {date|.}:] omit ... [if]

where
omit ... may be
omit date pdate [and pmlist |
omit dayofweek dowlist
omit dowinmonth pm# dow |of monthlist] [and pmlist
[if | may be
if restriction [& restriction . . .]
restriction is one of

dow (dowlist)
month (monthlist)
year (yearlist)

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.

130

Datetime business calendars creation — Business calendars creation 131

pdate is a date or it is a date with character * substituted where the year would usually appear.
If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013; or it can be
12apr*, 12-4-%, or 12.4.*. 12apr* means the 12th of April across all years.

dow is a day of the week, in English. It may be abbreviated to as few as 2 characters, and
capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.
Examples: Sa, (Sa), (Sa Su).

month is a month of the year, in English, or it is a month number. It may be abbreviated to the
minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap, may,
6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in parenthe-
ses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

vear is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.
Examples: 2013, (2013), (2013 2014).

pm#is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm# appears
in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow in the month.
omit dowinmonth +1 Th means the first Thursday of the month. omit dowinmonth -1 Th
means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.
Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist al-
lowed at the end of omit date and omit dowinmonth, and it specifies additional dates to be
omitted. and +1 means and the day after. and -1 means and the day before.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Concepts

The preliminary commands

The omit commands: from/to and if
The omit commands: and

The omit commands: omit date

The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files

How to debug stbcal-files

Ideas for calendars that may not occur to you

Datetime business calendars creation — Business calendars creation 132

Introduction

A business calendar is a regular calendar with some dates crossed out, such as

November 2011
Su Mo Tu We Th Fr
1 2 3 4

7 &8 9 10 11
14 15 16 17 18
21 22 23 X X
28 29 30

TS
M x|

The purpose of the stbcal-file is to
1. Specify the range of dates covered by the calendar.
2. Specify the particular date that will be encoded as date 0.
3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

begin example_1.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01lnov2011 30nov2011

centerdate 0lnov2011

omit date b5nov2011

omit date 6nov2011

omit date 12nov2011

omit date 13nov2011

omit date 19nov2011

omit date 20nov2011

omit date 24nov2011

omit date 25n0ov2011

omit date 26nov2011

omit date 27nov2011

end example_1.stbcal

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays and
Sundays:

begin example_2.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

range 0lnov2011 30nov2011

centerdate 0lnov2011

omit dayofweek (Sa Su)

omit date 24nov2011

omit date 25nov2011

end example_2.stbcal

In this particular calendar, we are omitting 24nov2011 and 25n0v2011 because of the American
Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many busi-
nesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:

Datetime business calendars creation — Business calendars creation 133

begin example_3.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

range 01lnov2011 30nov2011

centerdate Olnov2011

omit dayofweek (Sa Su)

omit dowinmonth +4 Th of Nov and +1

end example_3.stbcal

Understand that this calendar is an artificial example, and it is made all the more artificial because it
covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

Concepts

You are required to specify four things in an stbcal-file:
1. the version of Stata being used,
2. the range of the calendar,
3. the center date of the calendar, and
4. the dates to be omitted.

Version.
You specify the version of Stata to ensure forward compatibility with future versions of Stata. If your
calendar starts with the line version 19.5 or, if you do not have StataNow, version 19.0, future
versions of Stata will know how to interpret the file even if the definition of the stbcal-file language
has greatly changed.

Range.
A calendar is defined over a specific range of dates, and you must explicitly state what that range
is. When you or others use your calendar, dates outside the range will be considered invalid, which
usually means that they will be treated as missing values.

Center date.
Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then
57 — 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous
statement works just as well if we substitute —12,739 for 57, and thus the particular values do not
matter except that we must agree upon what values we wish to standardize because we will be storing
these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to
the middle of your calendar. It means the date that corresponds to the center of integers, which is
to say, 0. You must choose a date within the range as the standard. The particular date you choose
does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar uses
01jan1960, but that date will probably not be available to you because the center date must be a date
on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future. Today,
you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes. Later,
you need to expand the range, say back to 1970 or forward to 2030, or both. When you update your
calendar, do not change the center date. This way, your new calendar will be backward compatible
with your previous one.

Datetime business calendars creation — Business calendars creation 134

Omitted dates.
Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be
omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.
Rules change, so learn about the from/to prefix that can be used in front of omit commands. You
can code things like

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit ...

When specifying from/to, . for the first date is synonymous with the opening date of the range. .
for the second date is synonymous with the closing date.

The preliminary commands

Stbcal-files should begin with these commands:

version version_of_stata

purpose "fext"

dateformat { ymd|ydm|myd | mdy | dym | dmy }
range date date

centerdate date

version version_of_stata
You could specify version 19.5 or, if you do not have StataNow, version 19.0. Better still, type
command version in Stata to discover the version of Stata you are currently using. Specify that
version, and be sure to look at the documentation so that you use the modern syntax correctly.

purpose "fext"
This command is optional. The purpose of purpose is not to make comments in your file. If you want
comments, include those with a * in front. The purpose sets the text that bcal describe calname
will display.

dateformat { ymd |ydm|myd | mdy | dym | dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has nothing
to do with how dates will look when variables are formatted with %tbcalname. This command speci-
fies how you are typing dates in this stbcal-file on the subsequent commands. Specify the format that
you find convenient.

range date date
The date range was discussed in Concepts. You must specify it.

centerdate date
The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if
An stbcal-file usually contains multiple omit commands. The omit commands have the syntax
[from {date| . } to {date| . }:] omit ... [if]

That is, an omit command may optionally be preceded by from/to and may optionally contain an if
at the end.

Datetime business calendars creation — Business calendars creation 135

When you do not specify from/to, results are the same as if you specified

from . to .: omit ...

That is, the omit command applies to all dates from the beginning to the end of the range. In Intro-
duction, we showed the command

omit dowinmonth +4 Th of Nov and +1

Our sample calendar covered only the month of November, but imagine that it covered a longer period
and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving
holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars
multiple times and for multiple reasons, and the result is still the same as if the dates were omitted only
once.

The optional if also determines when the omit statement is operational. Let’s think about the Christ-
mas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be coded

omit date 24dec*
omit date 25dec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24dec*
from . to .: omit date 25dec*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and
25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December
if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the
holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays are
Monday and Tuesday. The rule could be coded

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25decx* is one of the
specified days of the week. If 25decx* is not one of those days, the omit statement is ignored for that
year. Our focus here is on the if clause. We will explain about the and clause in the next section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is conve-
nient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and 2012. You
could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

Datetime business calendars creation — Business calendars creation 136

or

omit date 25decx and +1 if dow(Mo) & year (2007 2008 2009 2010)
omit date ... if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year().

The omit commands: and

The other common piece of syntax that shows up on omit commands is and pmlist. We used it above
in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The extra
days are specified as how many days they are from the date being referred to. Please excuse the inelegant
“date being referred to”, but sometimes the date being referred to is implied rather than stated explicitly.
For this problem, however, the date being referred to is 25dec across a number of years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line

omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line
omit date 25decx and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 26dec is Sunday. The line

omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.
Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if the
year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last Wednesday
of November and December.

The omit commands: omit date

The full syntax of omit date is

[from {date| . } to {date| . }:] omit date pdate | and pmlist] [if |
You may omit specific dates,

omit date 25dec2010

or you may omit the same date across years:
omit date 25decx*

Datetime business calendars creation — Business calendars creation 137

The omit commands: omit dayofweek

The full syntax of omit dayofweek is
[from {date| . } to {date| . }:] omit dayofweek dowlist [if |
The specified days of week (Monday, Tuesday, ...) are omitted.

The omit commands: omit dowinmonth

The full syntax of omit dowinmonth is
[from {date| . } to {date| . }:] omit pm# dow [of monthlist] |and pmlist] [if |

dowinmonth stands for day of week in month and refers to days such as the first Monday, second
Monday, ..., next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo, ..., -2
Mo, and -1 Mo.

Creating stbcal-files with bcal create

Business calendars can be obtained from your Stata installation or from other Stata users. You can
also write your own business calendar files or use the bcal create command to automatically create
a business calendar from the current dataset. With bcal create, business holidays are automatically
inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in quali-
fiers, as well as the excludemissing () option. You can also edit business calendars created with bcal
create or obtained from other sources. It is advisable to use bcal load or bcal describe to verify
that a business calendar is well constructed and remains so after editing.

See [D] beal for more information on bcal create.

Where to place stbcal-files

Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks
for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written by
other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Statal9\
BASE: C:\Program Files\Statal2\ado\base\
SITE: C:\Program Files\Statal9\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using
net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files

Stbcal-files are loaded automatically as they are needed, and because this can happen anytime, even
at inopportune moments, no output is produced. If there are errors in the file, no mention is made of the
problem, and thereafter Stata simply acts as if it had never found the file, which is to say, variables with
%tbcalname formats are displayed in %g format.

Datetime business calendars creation — Business calendars creation 138

You can tell Stata to load a calendar file right now and to show you the output, including error mes-
sages. Type

. bcal load calname

It does not matter where calname.stbcal is stored, Stata will find it. It does not matter whether
Stata has already loaded calname . stbcal, either secretly or because you previously instructed the file
be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

Ideas for calendars that may not occur to you

Business calendars obviously are not restricted to businesses, and neither do they have to be restricted
to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could code

begin mondays. stbcal
version 19.5 // (or version 19 if you do not have StataNow)

purpose "Mondays only"
range 04jan1960 06jan2020
centerdate 04jan1960

omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal

Say you have semimonthly data and want to include the Ist and 15th of every month. You could code

begin smnth.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

purpose "Semimonthly"
range 01jan1960 15dec2020
centerdate 01jan1960

omit date 2jan*
omit date 3jan*

omit date 14janx*
omit date 16janx*

omit date 31jan*
omit date 2feb*

end smnth.stbcal

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on
01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

Purpose "/td centered on 01jan1970"
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal

Datetime business calendars creation — Business calendars creation 139

Also see

[D] beal — Business calendar file manipulation
[D] Datetime business calendars — Business calendars

[D] Datetime — Date and time values and variables

Datetime conversion — Converting strings to Stata dates

Description Quick start Syntax Remarks and examples
Reference Also see

Description

These functions convert dates and times recorded as strings to Stata dates. Stata dates are numbers
that can be formatted so that they look like the dates you are familiar with. See [D] Datetime for an
introduction to Stata’s date and time features.

Quick start

Convert strdatel, with dates such as "Tue January 25, 2013", to a numerically encoded Stata date
variable, ignoring the day of the week from the string

generate numvarl = date(strdatel, "#MDY")

Convert strdate2, with dates in the 2000s such as "01-25-13", to a Stata date variable
generate numvar?2 = date(strdate2, "MD20Y")

Convert strdate3, with dates such as "15Jan05", to a Stata date variable; expand the two-digit years
to the largest year that does not exceed 2006

generate numvar3 = date(strdate3, "DMY", 2006)

Convert strtime, with times such as "11:15 am", to a numerically encoded Stata datetime/c variable
generate double numvar4 = clock(strtime, "hm")

140

Datetime conversion — Converting strings to Stata dates 141

Syntax
The string-to-numeric date and time conversion functions are
Desired Stata date type String-to-numeric conversion function
datetime/c clock(str, mask [, topyear])
datetime/C Clock(str, mask [, topyear])
date date(str, mask [, topyear])
weekly date weekly (str, mask [, topyear])
monthly date monthly (str, mask [, topyear])
quarterly date quarterly(str, mask [, topyear])
half-yearly date halfyearly (str, mask |, topyear])
yearly date yearly (str, mask [, topyear])

str is the string value to be converted.

mask specifies the order of the date and time components and is a string composed of a sequence of codes (see the next table).

topyear is described in Working with two-digit years, below.

Code Meaning

M month

D day within month

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx
W week (weekly () only)

Q quarter (quarterly () only)

H half-year (halfyearly () only)

h hour of day

m minutes within hour

s seconds within minute

ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have no

significance.

Examples of masks include the following:

n MDY n
"MD19Y"

"MDYhms"
"MDY hms"
"MDY#hms"

str contains month, day, and year, in that order.

means the same as "MDY", except that st may contain two-digit years, and when it
does, they are to be treated as if they are 4-digit years beginning with 19.

str contains month, day, year, hour, minute, and second, in that order.
means the same as "MDYhms"; the blank has no meaning.

means that one element between the year and the hour is to be ignored. For exam-
ple, str contains values like "1-1-2010 at 15:23:17" or values like "1-1-2010
at 3:23:17 PM".

Datetime conversion — Converting strings to Stata dates 142

Remarks and examples

Remarks are presented under the following headings:

Introduction

Specifying the mask

How the conversion functions interpret the mask
Working with two-digit years

Working with incomplete dates and times
Converting run-together dates, such as 20060125
Valid times

The clock() and Clock() functions

Why there are two datetime encodings

Advice on using datetime/c and datetime/C
Determining when leap seconds occurred

The date() function

The other conversion functions

Introduction

The conversion functions are used to convert string dates, such as 08/12/06, 12-8-2006, 12 Aug 06,
12aug2006 14:23, and 12 aug06 2:23 pm, to Stata dates. The conversion functions are typically used after
importing or reading data. You read the date information into string variables and then these functions
convert the string into something Stata can use, namely, a numeric Stata date variable.

You use generate to create the Stata date variables. The conversion functions are used in the expres-
sions, such as

. generate double time_admitted = clock(time_admitted_str, "DMYhms")
. format time_admitted %tc

. generate date_hired = date(date_hired_str, "MDY")
. format date_hired %td

Every conversion function—such as clock () and date () above—requires these two arguments:
1. str specifying the string to be converted; and
2. mask specifying the order in which the date and time components appear in str.

Notes:

1. You choose the conversion function clock(), Clock (), date(), etc., according to the type of
Stata date you want returned.

2. You specify the mask according to the contents of str.

Usually, you will want to convert st containing 2006.08.13 14:23 to a Stata datetime/c or datetime/C
value and convert s# containing 2006.08.13 to a Stata date. If you wish, however, it can be the other way
around. In that case, the detailed string would convert to a Stata date corresponding to just the date part,
13aug2006, and the less detailed string would convert to a Stata datetime corresponding to 13aug2006
00:00:00.000.

Datetime conversion — Converting strings to Stata dates 143

Specifying the mask

An argument mask is a string specifying the order of the date and time components in str. Examples
of string dates and the mask required to convert them include the following:

str

Corresponding mask

01dec2006 14:22
01-12-2006 14.22

1dec2006 14:22
1-12-2006 14:22

01dec06 14:22
01-12-06 14.22

December 1, 2006 14:22

2006 Dec 01 14:22
2006-12-01 14:22

2006-12-01 14:22:43
2006-12-01 14:22:43.2
2006-12-01 14:22:43.21
2006-12-01 14:22:43.213

2006-12-01 2:22:43.213 pm

2006-12-01 2:22:43.213 pm.
2006-12-01 2:22:43.213 p.m.
2006-12-01 2:22:43.213 PM.

20061201 1422

14:22
2006-12-01

Fri Dec 01 14:22:43 CST 2006

"DMYhm"
IIDMY'hInll

IIDMlel
"DMYhm"

"DM20Yhm"
"DM20Yhm"

"MDYhm"

IIYMDIHH"
IIYMDmll

"YMDhms"
"YMDhms"
"YMDhms"
"YMDhms"

"YMDhms" (see note 1)
"YMDhms"
"YMDhms"
"YMDhms"

"YMDhm"

"hm" (see note 2)
IIYMD n

"#MDhms#Y"

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you
include code h, the conversion functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in str. If that is a subset of what
the selected Stata date type could record, the remaining elements are set to their defaults.
clock("14:22", "hm") produces 01jan1960 14:22:00 and clock("2006-12-01", "YMD")
produces 01dec2006 00:00:00. date ("jan 2006", "MY") produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus, you can type

. generate double admit = clock(admitstr, "#MDhms#Y")

or type

. generate double admit = clock(admitstr, "# MD hms # Y")

and which one you use makes no difference.

Datetime conversion — Converting strings to Stata dates 144

How the conversion functions interpret the mask

The conversion functions apply the following rules when interpreting str:

1. For each string date to be converted, remove all punctuation except for the period separating
seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation
with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.
3. Interpret the resulting elements according to mask.
For instance, consider the string
01dec2006 14:22
Under rule 1, the string becomes
01dec2006 14 22
Under rule 2, the string becomes
01 dec 2006 14 22

Finally, the conversion functions apply rule 3. If the mask is "DMYhm", then the functions interpret “01”
as the day, “dec” as the month, and so on.

Or consider the string
Wed Dec 01 14:22:43 CST 2006
Under rule 1, the string becomes
Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is "#MDhms#Y", the
conversion function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest of
string is to be ignored. Consider converting the string

Wed Dec 01 14 22 43 CST 2006 patient 42

The mask code that previously worked when patient 42 was not part of the string, "#MDhms#Y", will
result in a missing value in this case. The functions are careful in the conversion, and if the whole string
is not used, they return missing. If you end the mask in #, however, the functions ignore the rest of the
string. Changing the mask from "#MDhms#Y" to "#MDhms#Y#" will produce the desired result.

Working with two-digit years

Consider converting the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00, to
a Stata datetime value. The conversion functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read by
specifying the mask "DM20Yhm". If we instead wanted to interpret the year as 1906, we would specify
the mask "DM19Yhm". We could even interpret the year as 1806 by specifying "DM18Yhm".

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the first
year as being in 2006 and the second year as being in 1998. That is the purpose of the optional argument
topyear:

clock(string, mask | , topyear])

Datetime conversion — Converting strings to Stata dates 145

When you specify topyear, you are stating that when years in string are two digits, the full year is to
be obtained by finding the largest year that does not exceed topyear. Thus, you could code

. generate double timestamp = clock(timestr, "DMYhm", 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The two-digit
year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times

The conversion functions do not require that every component of the date and time be specified.
Converting 2006-12-01 with mask "YMD" results in 01dec2006 00:00:00.
Converting 14:22 with mask "hm" results in 01jan1960 14:22:00.
Converting 11-2006 with mask "MY" results in 01nov2006 00:00:00.
The default for a component, if not specified in the mask, is
Code Default (if not specified)

M 01
D 01
Y 1960
h
m
s

00
00
00

Thus, if you have data recording 14:22, meaning a duration of 14 hours and 22 minutes or the time
14:22 each day, you can convert it with clock (str, "hm").

Converting run-together dates, such as 20060125

The clock (), Clock(), and date () conversion functions will convert dates and times that are run
together, such as 20060125, 060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not
have to do anything special to convert them:

. display %d date("20060125", "YMD")
25;jan2006

. display %td date("060125", "20YMD")
25jan2006

. display %tc clock("20060125110215", "YMDhms")
25jan2006 11:02:15

However, the weekly (), monthly (), quarterly (), and halfyearly () functions will convert only
dates that are run together if there is a combination of letters and numbers. For example,
. display %tm monthly("2020m1", "YM")
2020m1

. display %tq quarterly("2020q2", "YQ")
2020q1

If your string consists of numbers only, such as 202001, you will need to insert a space or punctuation
between the year and the other component before using one of these functions.

Datetime conversion — Converting strings to Stata dates 146

In a data context, you could type
. generate startdate = date(startdatestr, "YMD")

. generate double starttime = clock(starttimestr, "YMDhms")

Remember to read the original date into a string. If you mistakenly read the date as numeric, the best
advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be rounded unless
they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur, you
can convert the variable from numeric to string by using the string() function, which comes in one-
and two-argument forms. You will need the two-argument form:

. generate str startdatestr = string(startdatedouble, "%10.0g")

. generate str starttimestr = string(starttimedouble, "%16.0g")

If you omitted the format, string() would produce 2.01e4-07 for 20060125 and 2.01e+13 for
20060125110215. The format we used had a width that was two characters larger than the length of
the integer number, although using a too-wide format does no harm.

Valid times
An invalid time is 27:62:90. If you try to convert 27:62:90 to a datetime value, you will obtain a
missing value.
Another invalid time is 24:00:00. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 < ik < 24,0 < mm < 60,and 0 < 55 < 60, although sometimes
60 is allowed. The encoding 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. The
encoding 31dec2005 23:59:60 includes an inserted leap second.

Invalid in both datetime encodings is 30dec2005 23:59:60. Not including a leap second as in
30dec2005 23:59:60 would also be an invalid encoding. A correct datetime would be 31dec2005
00:00:00.

The clock() and Clock() functions

Stata provides two separate datetime encodings that we call datetime/c and datetime/C and that others
would call “times assuming 86,400 seconds per day” and “times adjusted for leap seconds” or, equiva-
lently, Coordinated Universal Time (UTC).

The syntax of the two functions is the same:
clock(str, mask [, topyear])
Clock(str, mask [, topyear|)

Function Clock () is nearly identical to function clock (), except that Clock () returns a datetime/C
value rather than a datetime/c value. For instance,

Noon of 23n0v2010 = 1,606,132,800,000 in datetime/c
= 1,606,132,824,000 in datetime/C

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23n0v2010.
Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997
23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

Datetime conversion — Converting strings to Stata dates 147

Why there are two datetime encodings

Stata provides two different datetime encodings, datetime/c and datetime/C.

The datetime/c encoding assumes that there are 24 x 60 x 60 x 1000 ms per day, just as an atomic
clock does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus
provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a fancy
way of saying that the measurements are based on looking at the sun. The sun should be at its highest
point at noon, right? So however you might have kept track of time—by falling grains of sand or a
wound-up spring—you would have periodically reset your clock and then gone about your business. In
olden times, it was understood that the 60 seconds per minute, 60 minutes per hour, and 24 hours per
day were theoretical goals that no mechanical device could reproduce accurately. These days, we have
more formal definitions for measurements of time. One second is 9,192,631,770 periods of the radiation
corresponding to the transition between two levels of the ground state of cesium 133. Obviously, we
have better equipment than the ancients, so problem solved, right? Wrong. There are two problems: the
formal definition of a second is just a little too short to use for accurately calculating the length of a day,
and the Earth’s rotation is slowing down.

Thus, since 1972, leap seconds have been added to atomic clocks once or twice a year to keep time
measurements in synchronization with Earth’s rotation. Unlike leap years, however, there is no formula
for predicting when leap seconds will occur. Earth may be on average slowing down, but there is a large
random component to that. Therefore, leap seconds are determined by committee and announced six
months before they are inserted. Leap seconds are added, if necessary, on the end of the day on June 30
and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand
that leap seconds are every bit as real as every other second of the year. Once a leap second is inserted,
it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as Greenwich Mean Time (GMT) and UTC.
GMT, based on astronomical observation, has been replaced by UTC.

UTC is measured by atomic clocks and is occasionally corrected for leap seconds. UTC is derived
from two other times, Universal Time 1 (UT1) and International Atomic Time (TAI). UT1 is the mean
solar time with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic
time on which UTC is based. TAI is a statistical combination of various atomic chronometers, and even it
has not ticked uniformly over its history; see http://www.ucolick.org/~sla/leapsecs/timescales.html and
especially http://www.ucolick.org/~sla/leapsecs/dutc.htmI#TAL.

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing. UNK
is based on a recent time observation, probably UTC, and it just assumes that there are 86,400 seconds
per day after that.

The UNK standard is adequate for many purposes, and when using it you will want to use datetime/c
rather than the leap second—adjusted datetime/C encoding. If you are using computer-timestamped data,
however, you need to find out whether the timestamping system accounted for leap-second adjustment.
Problems can arise even if you do not care about losing or gaining a second here and there.

For instance, you may import from other systems timestamp values recorded in the number of mil-
liseconds that have passed since some agreed-upon date. You may do this, but if you choose the wrong
encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more recent
times will be off by 24 seconds.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI

Datetime conversion — Converting strings to Stata dates 148

To avoid such problems, you may decide to import and export data as strings, such as Fri Aug 18
14:05:36 cDT 2010. This method has advantages, but for datetime/C (UTC) encoding, times such as
23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it with
datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th second,
Clock() verifies that the time is one of the official leap seconds. Thus, when converting from printable
forms, try assuming datetime/c, and check the result for missing values. If there are none, then you can
assume your use of datetime/c was valid. However, if there are missing values and they are due to leap
seconds and not some other error, you must use datetime/C Clock () to convert the string value. After
that, if you still want to work in datetime/c units, use function cofC() to convert datetime/C values to
datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way. The
inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the duration
between dates, you must subtract the two time values involved. The other difficulty has to do with dealing
with dates in the future. Under the datetime/C (UTC) encoding, there is no set value for any date more
than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C

Stata provides two datetime encodings:
1. datetime/C, also known as UTC, which accounts for leap seconds; and
2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day).

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them. Stata
handles either situation. Here is our advice:

o Ifyou obtain data from a system that accounts for leap seconds, import using Stata’s datetime/C
encoding.

a. Ifyou later need to export data to a system that does not account for leap seconds, use
Stata’s cofC() function to convert time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if
necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the
second level (minute, hour, etc.), create a datetime/c variable from the datetime/C
variable (generate double tctime = cofC(tCtime)) and tsset that, specifying the
appropriate delta () if necessary. You must do that because in a datetime/C variable,
there are not necessarily 60 seconds in a minute; some minutes have 61 seconds.

e If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use
Stata’s Cofc () function to convert time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate
delta().

Datetime conversion — Converting strings to Stata dates 149

Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work with.
You can always use datetime/c if

e you do not mind having up to 1 second of error; and

e you do not import or export numerical values (clock ticks) from other systems that are using
leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five days
from one date is not simply a matter of adding 5 x 24 x 60 x 60 x 1000 ms. You might need to
add another 1,000 ms. Three hundred sixty-five days from now might require adding 1,000 or
2,000 ms. The longer the span, the more you might have to add. The best way to add durations
to datetime/C variables is to extract the components, add to them, and then reconstruct from
the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not know
what the datetime/C value of 25dec2026 00:00:00 will be, because every year along the way,
the International Earth Rotation Reference Systems Service (IERS) will twice announce whether
a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be transitory
only if the rocks land back on Earth, so you need to throw them really hard. We know what you are
thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred

Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file is
updated periodically (see [R] update; the file is updated when you update all), and Stata’s datetime/C
functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function
The syntax of the date () function is
date (string, mask [, topyear|)

The date () function is identical to clock(), except that date () returns a Stata date value rather
than a Stata datetime value. The date () function is the same as dofc(clock()).

daily() is a synonym for date ().

Datetime conversion — Converting strings to Stata dates 150

The other conversion functions

The other conversion functions are

Stata date type Conversion function

weekly date weekly (str, mask [, topyear])
monthly date monthly (str, mask [, topyear])
quarterly date quarterly(str, mask [, topyear])
half-yearly date halfyearly (str, mask [, topyear])

str is the value to be converted.
mask specifies the order of the components.

topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions converts a pair of numbers: weekly() converts a year and a week number
(1-52); monthly () converts a year and a month number (1-12); quarterly() converts a year and a
quarter number (1—4); and halfyearly () translates a year and a half number (1-2).

The masks allowed are far more limited than the masks for clock (), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx

W week number (weekly () only)

M month number (monthly () only)

Q quarter number (quarterly () only)

H half-year number (halfyearly() only)

The pair of numbers to be converted must be separated by a space or punctuation. No extra characters are allowed.

Reference

Rajbhandari, A. 2015. A tour of datetime in Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2015/
12/17/a-tour-of-datetime-in-stata-i/.

Also see

D] Datetime — Date and time values and variables

[
[D] Datetime business calendars — Business calendars
[D] Datetime display formats — Display formats for dates and times
[D] Datetime durations — Obtaining and working with durations

[
[

D] Datetime relative dates — Obtaining dates and date information from other dates

[t e e i W R |

D] Datetime values from other software — Date and time conversion from other software

https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/
https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/

Datetime display formats — Display formats for dates and times

Description Quick start Syntax Remarks and examples Also see

Description

Stata stores dates and times numerically in one of eight units. The value of a Stata date might be
18,282 or even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as
20jan2010 (%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than
20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010
15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20 15:15:30

2010.

See [D] Datetime for an introduction to Stata’s dates and times.

Quick start

Format daily dates stored in datevar to display as 15mar2005
format datevar %td

Format daily dates stored in datevar to display as 3/15/05
format datevar %tdnn/DD/YY

Format daily dates stored in datevar to display as Tue Mar. 15
format datevar %tdDay_Mon._DD

Format dates and times stored in timevar to display as 15mar2005 14:30:00

format timevar %tc

Format dates and times stored in timevar to display as 14:30

format timevar %tcHH:MM

Format dates and times stored in timevar to display as 2:30 PM

format timevar %tchh:mm_AM

151

Datetime display formats — Display formats for dates and times 152

Syntax
The formats for displaying Stata dates and times are

Stata date type Display format
datetime/c tc|details |
datetime/C %tC| details |
date %td[details |
weekly date it | details |
monthly date tm[details |
quarterly date tq| details |
half-yearly date th[details |

[]

yearly date %ty | details

The optional details allows you to control how results appear and is composed of a sequence of the

following codes:

Code Meaning Output

cC century-1 01-99

cc century-1 1-99

YY 2-digit year 00-99

vy 2-digit year 0-99

JJJ day within year 001-366

i day within year 1-366

Mon month Jan, Feb, ..., Dec

Month month January, February, ..., December
mon month jan, feb, ..., dec

month month january, february, ..., december
NN month 01-12

nn month 1-12

DD day within month 01-31

dd day within month 1-31

DAYNAME day of week Sunday, Monday, ... (aligned)
Dayname day of week Sunday, Monday, ... (unaligned)
Day day of week Sun, Mon, ...

Da day of week Su, Mo, ...

day day of week sun, mon, ...

da day of week su, mo, ...

Datetime display formats — Display formats for dates and times 153

Ww
wW

HH
Hh
hH
hh

MM

SS
ss

.88
.SSS

a.m.
AM
AM.

half
quarter
week
week

hour
hour
hour
hour

minute
minute

second
second
tenths
hundredths
thousandths

show am or pm
show a.m. or p.m.
show AM or PM

show A.M. or PM.

display period
display comma
display colon
display hyphen
display space
display slash
display backslash
display character

separator (see note)

1-2
1-4
01-52
1-52

00-23
00-12
0-23
0-12

00-59
0-59

00-60 (sic, due to leap seconds)
0—60 (sic, due to leap seconds)

.0-.9
.00—.99
.000-.999
am or pm
a.m. or p.m.
AM or PM
A.M. or PM.
/

\

c

Note: + displays nothing; it may be used to separate one code from the next to make the
format more readable. + is never necessary. For instance, %tchh:MM+am and %tchh : MMam
have the same meaning, as does %tc+hh+: +MM+am.

Datetime display formats — Display formats for dates and times 154

When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format
%tC %tCDDmonCCYY_HH:MM: SS

yAde %tcDDmonCCYY_HH:MM: SS

%td %tdDDmonCCYY

%tw %twCCYY 'www

%tm %tmCCYY 'mnn

ntq %tqCCYY!qq

%th %thCCYY!hh

Wty %htyCCYY

That is, typing
. format mytimevar Jtc
has the same effect as typing

. format mytimevar %tcDDmonCCYY_HH:MM:SS

Format %tcDDmonCCYY_HH:MM: SS is interpreted as

) t c DDmonCCYY_HH:MM: SS
| | | |
all formats itisa variable formatting codes
start with % datetime format coded in specify how to
milliseconds display value

Remarks and examples

Remarks are presented under the following headings:

Specifying display formats
Times are truncated, not rounded, when displayed

Specifying display formats

Rather than using the default format 20jan2010, you could display the daily date in one of these
formats:

2010.01.20
January 20, 2010
1/20/10

Likewise, rather than displaying the datetime/c variable in the default format 20jan2010 15:15:30,
you could display it in one of these formats:

2010.01.20 15:15
January 20, 2010 3:15 pm
Wed Jan 20 15:15:30 2010

Datetime display formats — Display formats for dates and times 155

Here is how to do it:

1.

2010.01.20
format mytdvar %tdCCYY.NN.DD

January 20, 2010
format mytdvar J;tdMonth_dd, _CCYY

1/20/10
format mytdvar Ytdnn/dd/YY

2010.01.20 15:15
format mytcvar ,tcCCYY .NN.DD_HH: MM

January 20,2010 3:15 pm
format mytcvar fytcMonth_dd, _CCYY_hh:MM_am
Code am at the end indicates that am or pm should be displayed, as appropriate.

Wed Jan 20 15:15:30 2010
format mytcvar %tcDay_Mon_DD_HH:MM:SS_CCYY

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin with
%tc. It is important that you specify the opening correctly—namely, as % + t + third_character. The
third character indicates the particular encoding type, which is to say, how the numeric value is to be
interpreted. You specify %tc... for datetime/c variables, %tC... for datetime/C, %td... for date, and so

on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds; 15:15:30.000
is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

or

%tcDDmonCCYY_HH:MM:SS.sss

%tCDDmonCCYY_HH:MM:SS.sss

as appropriate.

Times are truncated, not rounded, when displayed

Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99
11:32:59.9
11:32:59
11:32

That is, when you suppress the display of more-detailed components of the time, the parts that are
displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32 right up
until the instant that it becomes 11:33.

Datetime display formats — Display formats for dates and times 156

Also see

[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars
[D] Datetime conversion — Converting strings to Stata dates
[D] Datetime durations — Obtaining and working with durations
[D] Datetime relative dates — Obtaining dates and date information from other dates

Datetime values from other software — Date and time conversion from other software

—_ = = = = =

[D

Datetime durations — Obtaining and working with durations

Description Quick start Syntax Remarks and examples Reference Also see

Description

This entry describes functions that calculate durations, such as the number of years between two dates
(for example, a person’s age). These functions account for leap years and leap days and produce results
that are more consistent than simply taking arithmetic differences of numerical dates and converting to
another unit.

This entry also describes functions that convert durations from one unit (for example, milliseconds)
to another (for example, hours).

Quick start

Calculate age of a subject in integer years on the date of a survey based on a numerically encoded Stata
date dob that gives the subject’s date of birth and a numerically encoded Stata date date_of _survey

generate subject_age = age(dob, date_of_survey)

Same as above, but calculate the age as a noninteger; that is, include the fractional part
generate subject_fage = age_frac(dob, date_of_survey)
Calculate age on date d for persons born on 29feb as having their birthday on 28feb in nonleap years
(rather than the default of O1mar)
generate celebrate = age(dob, d, "28feb")
Calculate the difference in number of months, rounded down to an integer, between two Stata dates, d1
and d2
generate diff_months = datediff (dl, d2, "month")

Same as above, but include the fractional part of the difference
generate diff_fmonths = datediff_frac(di, 42, "month")
Calculate the difference in number of hours, rounded down to an integer, between two Stata datetime/c
variables, t1 and t2
generate diff_hours = clockdiff (t1, t2, "hour")

Same as above, but include the fractional part of the difference
generate diff_fhours = clockdiff_frac(tl, t2, "hour")

Same as above, but use a conversion function to calculate hours with a fractional part
generate diff_fhours2 = hours(t2 - t1)

Calculate the difference in number of minutes, rounded down to an integer, between two Stata datetime/C
variables, tvar1 and tvar2

generate diff_minutes = Clockdiff (tvarl, tvar2, "minute")

Calculate the number of days since the previous Monday relative to Stata date d

generate ndays = dayssinceweekday(d, "Monday")

157

Datetime durations — Obtaining and working with durations 158

Syntax

Syntax is presented under the following headings:

Functions for calculating durations
Functions for converting units of a duration

Functions for calculating durations

Description

Function

Value returned

age
age with fraction

datetime/C difference
datetime/c difference

datetime/C difference
with fraction

datetime/c difference
with fraction

date difference

date difference with
fraction

days since previous
day of week

days until next
day of week

age (€gpon»€q| »Sn)
age_frac(eynos,€4] 50])
Clockdiff (e;q, €095 St)
clockdiff (e, .1, €095 5:,)

Clockdiff_frac(e,ci,€i005Sm,)
clockdiff_frac(e,.;,€;.9,5.,)

datediff (e41,€40, 54, »Sn])
datediff_frac(ey,€405Saul >S5 |)

dayssinceweekday (e, ,d)
or dayssincedow(e,,d)

daysuntilweekday(e;,d)
or daysuntildow(e,,d)

years rounded down to an integer
years with fractional part

integer (rounded down)

integer (rounded down)

floating point

floating point

integer (rounded down)
floating point

integers 1to 7

integers 1to 7

€4 €dpons €d1» and €4, are Stata dates.
e;c and e, are Stata datetime/C values.
e,.1 and e, are Stata datetime/c values.
s,,; 1s a string specifying nonleap-year birthdays or anniversaries of 29feb and may be
"Olmar", "imar", "mar01", or "marl" (the default); or
"28feb" or "feb28" (case insensitive).
Sy, 18 a string specifying time units:
"day" or "d" for day;
"hour" or "h" for hour;
"minute", "min", or "m" for minute;
"second", "sec", or "s" for second; or

"millisecond" or "ms" for millisecond (case insensitive).

S4, 18 @ string specifying date units:
"day" or "d" for day;
"month", "mon", or "m" for month; or
"year" or "y" for year (case insensitive).

d is a numeric day of week (0=Sunday, 1=Monday, .

.., 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).

Datetime durations — Obtaining and working with durations 159

Notes:

1. The string s,,; specifying nonleap-year birthdays or anniversaries is an optional
argument. It rarely needs to be specified. See example 3 below.

2. When ey < egp05, a8 (€gpop»€q[»Sny |) and age_frac(e o, »€q] » 5, |) return
missing (.).

3. Clockdiff (eyoq,€s09554,) = —Clockdiff (e oo ,€i01s54)-
clockdiff (), Clockdiff_frac(), clockdiff_frac(), datediff (), and
datediff_frac() have the same anticommutative property.

Functions for converting units of a duration

Desired conversion Function Value returned
milliseconds to hours hours (ms) ms /(60 x 60 x 1000)
milliseconds to minutes ~ minutes (ms) ms /(60 x 1000)
milliseconds to seconds ~ seconds (ms) ms /1000

hours to milliseconds msofhours (4) * h x 60 x 60 x 1000
minutes to milliseconds msofminutes (m)* m x 60 x 1000
seconds to milliseconds msofseconds (s) * s x 1000

* Stata datetime values are in milliseconds and must be stored as doubles. When using millisecond
results to add to or subtract from a Stata datetime, store the results as doubles.

Remarks and examples

Remarks are presented under the following headings:

Calculating ages and differences of dates
Calculating differences of datetimes

We assume you have read [D] Datetime and are familiar with how Stata stores dates and datetimes.
String dates and times must be converted into numeric values to become Stata dates and datetimes.
Stata date and time values are durations (positive or negative) from 01jan1960. Stata date values record
the number of days from 01jan1960. Stata datetime/c values record the number of milliseconds from
01jan1960 00:00:00. Stata datetime/C is the same as datetime/c, except that it accounts for leap seconds
and encodes Coordinated Universal Time (UTC).

There are other types of Stata date and time values, ones for weeks, months, quarters, half years, and
years, but the functions described here are intended for use with daily dates or datetimes.

Calculating ages and differences of dates

The age () function calculates age just as one would expect. Typing

. generate subject_age = age(date_of_birth, current_date)

produces integers that are a person’s age in years on current_date given birthdate date_of_birth.
The variables date_of_birth and current_date must be Stata dates.

Datetime durations — Obtaining and working with durations 160

The arguments of age () need not be variables, but they must be Stata date values, which are numeric.
To get Stata date values for literal dates, we can use the date pseudofunction td () and use its results as
arguments to age (). For example,

. display age(td(05feb1927), td(24may2006))
79

shows that an individual born on 05feb1927 was 79 years old on 24may2006.

age_frac() returns age including the fractional part. For example, let’s use age_frac() with the
dates we specified above:

. display age_frac(td(05feb1927), td(24may2006))
79.29589

The datediff () and datediff_frac() functions produce results in units of years, months, or days.
For example, to determine the number of months between 05feb1927 and 24may2006, first as an integer
(rounded down) and as a number including the fractional part, we type

. display datediff (td(05feb1927), td(24may2006), "month")
951

. display datediff_frac(td(05feb1927), td(24may2006), "month")
951.6129

The optional last argument, s,,;, for age (), age_frac(), datediff (), and datediff_frac() was
not specified in any of the above examples. It applies only to a date of birth (or starting date) on 29feb
when the ending date is not in a leap year. The argument controls whether to use O1mar (the default) or
28feb as the birthday (or anniversary) in nonleap years. Setting this argument is important only when the
data you are using have a set rule for determining the age of persons born on 29feb. For example, you
might have data on the dates when people first get their driver’s licenses. You would want the argument
to match the legal rule for the data. See example 3.

The functions age() and age_frac() are based on datediff() and datediff_frac(),
respectively,
age(egpo»€q»5n;) = datediff (e,,,,,e4,"year",s,;)

and
age_frac(ey,op,€455,) = datediff_frac(ey .4, "year",s,;)

when e; > €;,,,- When e; < e, age) and age_frac () return missing (.).

datediff(...,"year",...) and datediff_frac(...,"year",...) calculate the number of years
between two dates just as one would expect. The only wrinkles are leap days and leap years. See Methods
and formulas in [FN] Date and time functions for details.

The usefulness of these functions is solely in the way they handle leap days and leap years. Sup-
pose, for example, you are doing an analysis of age of onset of some disorder. If you use values from
age_frac() astime in a survival model, these times will match up perfectly with recorded ages (or ages
from age () of course). If instead you used

. generate time_years = (onset_date - date_of_birth)/365.25

as your time variable, there would be minor discrepancies between this time and ages at birthdays. See
examples below.

Datetime durations — Obtaining and working with durations 161

datediff(...,"month",...) and datediff_frac(...,"month",...) calculate the number of
months between two dates as one would expect for starting days 1-28. For example, a starting date
on the 28th of the month will have month anniversaries on the 28th of all other months. When the day
of the starting date is 29, 30, or 31, other months may not have this day of the month. The last day of
February will be 28 or 29. When the starting date is on the 31st, the months ending on the 30th obviously
do not have a 31st. In these cases, the first day of the next month is considered the month anniversary.
(This is consistent with the default handling of 29feb start dates when calculating year anniversaries in
nonleap years; the nonleap year anniversaries are on 0lmar.)

Fractional months are also a bit tricky because lengths of months vary. There is an example below,
and see Methods and formulas in [FN] Date and time functions for how they are calculated.

Note that datediff(...,"year",...), datediff_frac(...,"year",...), datediff (...,
"month",...), and datediff_frac(...,"month",...) all match up. That is, on an ending
date on which datediff(...,"year",...) increases by one from the previous day, the value of
datediff_frac(...,"year",...) is exactly an integer and equal to datediff(...,"year",...). On
this ending date, datediff_frac(...,"month",...) is also an integer and equal to 12 times the year
difference.

datediff(ey; ,e49,"day",s,,;) anddatediff_frac(ey; ,ey49,"day",s,,;) have no complications
in how they are calculated. Both are equal to e, — e,4; and are always integers. The optional argument
s,,; has no bearing on the calculation and is ignored if specified.

b Example 1: Ages
Calculating ages is straightforward, but we do need to show how age_frac () calculates the fractional
part of age. Here is an example.

We have a dataset with string dates. Date of birth is recorded in the variable str_dob, and the end
date for calculating age is in str_end_date.

. use https://www.stata-press.com/data/r19/ages
(Fictional data for calculating ages)

. describe
Contains data from https://www.stata-press.com/data/r19/ages.dta
Observations: 5 Fictional data for calculating
ages
Variables: 2 30 Oct 2024 17:35
Variable Storage Display Value
name type format label Variable label
str_dob str9 %9s Date of birth
str_end_date str9 %9s End date
Sorted by:

. list, abbreviate(12)

str_dob str_end_date

1. | 28/8/1967 27/8/2019
2. | 28/8/1967 28/8/2019
3. | 28/8/1967 29/8/2019
4. | 28/8/1967 28/8/2020
5. | 28/8/1967 29/8/2020

Datetime durations — Obtaining and working with durations 162

We must convert the strings to numeric Stata dates, which we do using the date () function with
a mask of "DMY" because the date components are in the order day, month, year. We format the new

encoded date variables using format %td, the simplest format specification for daily dates.

. generate dob = date(str_dob, "DMY")
. generate end_date = date(str_end_date, "DMY")
. format dob end_date %td

. list str_dob dob str_end_date end_date, abbreviate(12)

str_dob dob str_end_date end_date
1. 28/8/1967 28augl967 27/8/2019 27aug2019
2. 28/8/1967 28augl967 28/8/2019 28aug2019
3. 28/8/1967 28augl967 29/8/2019 29aug2019
4. 28/8/1967 28augl967 28/8/2020 28aug2020
5. 28/8/1967 28augl967 29/8/2020 29aug2020

This person was born on 28aug1967, and we compute his or her age and age with the fractional part

on the dates in end_date.

. generate age = age(dob, end_date)

. generate double fage = age_frac(dob, end_date)

. format fage %12.0g

. list dob end_date age fage

dob end_date age fage
1. 28augl967 27aug2019 51 51.99726027
2. 28augl967 28aug2019 52 52
3. 28augl967 29aug2019 52 52.00273224
4. 28augl967 28aug2020 53 53
5. 28augl967 29aug2020 53 53.00273973

Note that the fractional parts on end dates of 29aug2019 and 29aug2020 differ. There are 366 days
between 28aug2019 and 28aug2020 because 2020 is a leap year. So the fractional part for 29aug2019 is
1/366 = 0.00273224. There are 365 days between 28aug2020 and 28aug2021, so the fractional part for
29aug2020 is 1/365 = 0.00273973.

b Example 2: Differences in months

d

Here we show an example of how datediff () and datediff_frac() calculate date differences in

units of months.

We load a dataset with Stata date variables start and end. First, we generate months using
datediff (start, end, "month") to get the integer difference (rounded down) in months. Then, we
generate fmonths using datediff_frac(start, end, "month") to get the difference including the
fractional part. We also put datediff (start, end, "day") into a variable to get differences in days
to help us see how the fractional parts are calculated.

. use https://www.stata-press.com/data/r19/month_differences, clear

(Fictional data for calculating date differences)

. generate months = datediff(start, end, "month")

. generate double fmonths =

datediff_frac(start, end, "month")

Datetime durations — Obtaining and working with durations 163

. generate days = datediff(start, end, "day")
. format fmonths %12.0g
. list start end months fmonths days, sepby(start)

start end months fmonths days
1. 156jan2019 15jan2019 0 0 0
2. 15jan2019 16jan2019 0 .0322580645 1
3. 15jan2019 15feb2019 1 1 31
4. 156jan2019 16£feb2019 1 1.035714286 32
5. 15jan2019 15mar2019 2 2 59
6. 15jan2019 16mar2019 2 2.032258065 60
7. 15jan2019 15apr2019 3 3 90
8. 15jan2019 16apr2019 3 3.033333333 91
9. 31jan2019 01feb2019 0 .0344827586 1
10. 31jan2019 28feb2019 0 .9655172414 28
11. 31jan2019 01mar2019 1 1 29
12. 31jan2019 02mar2019 1 1.033333333 30
13. 31jan2019 31mar2019 2 2 59
14. 31jan2019 01apr2019 2 2.032258065 60
15. 31jan2019 30apr2019 2 2.967741935 89
16. 31jan2019 01may2019 3 3 90

Let’s first look at the start date 15jan2019. months increases by one on 15feb2019 and then again on
15mar2019 and 15apr2019. On these days, datediff_frac(..., "month") is an integer.

The fractional month difference between 15jan2019 and 16jan2019 is 1/31 = 0.032258. The de-
nominator is 31 because the next month anniversary is 15feb2019, which is 31 days from 15jan2019.
The fractional part of the difference between 15jan2019 and 16feb2019 is 1/28 = 0.035714 because
there are 28 days between the month anniversaries 15feb2019 and 15mar2019. The fractional part of the
difference between 15jan2019 and 16apr2019 is 1/30 = 0.033333 because there are 30 days between
the month anniversaries 15apr2019 and 15may2019.

For the start date 31jan2019, monthly anniversaries are 01mar2019, 31mar2019, and 01may2019.
Fractional differences are calculated based on the number of days between the monthly anniversaries.
For example, there are 29 days between 31jan2019 and 01mar2019, so the fractional difference between
31jan2019 and 01feb2019 is 1/29 = 0.034483.

The optional fourth argument, s,,;, of datediff (ey; , €49, "month", s, ;) applies only when the start
date, e, falls on 29feb. See the next example for what this option does with ages in years. It works

similarly when units are months.

d

b Example 3: Born on a leap day

If you are a “leapling”—Dborn on 29feb—when do you have a birthday in nonleap years? On 28feb
or 01lmar? Or do you not have a birthday at all in nonleap years (Sullivan 1923)?

In the United Kingdom, a leapling legally becomes 18 on 01mar. In Taiwan, it is 28feb. In the United
States, there is no legal statute concerning leap-day birthdates.

The functions age (), age_frac(), datediff (), and datediff_frac() all have an optional last
argument that sets the day of the birthday (or anniversary) in nonleap years. Here is an example using
age() and age_frac().

Datetime durations — Obtaining and working with durations 164

We load a dataset with Stata date variables dob (containing date of birth) and end_date. We generate
agel using age () with the "0O1mar" argument (which is the default if it is not specified). The age?2 vari-
able is generated using "28feb". We also generate the variables fagel and fage2 using age_frac()
with different last arguments.

. use https://www.stata-press.com/data/r19/leap_day, clear
(Fictional leapling data)

. generate agel = age(dob, end_date, "Olmar")

. generate double fagel = age_frac(dob, end_date, "Olmar")
. generate age2 = age(dob, end_date, "28feb")

. generate double fage2 = age_frac(dob, end_date, "28feb")
. generate year = year(end_date)

. format fagel fage2 %12.0g

. list dob end_date agel age2 fagel fage2, sepby(year)

dob end_date agel age2 fagel fage2
1. 29feb2004 27feb2019 14 14 14.99452055 14.99726027
2. 29feb2004 28feb2019 14 15 14.99726027 15
3. 29feb2004 01mar2019 15 15 15 15.00273224
4. 29feb2004 28feb2020 15 16 15.99726027 15.99726776
5. 29feb2004 29feb2020 16 16 16 16
6. 29feb2004 01mar2020 16 16 16.00273224 16.00273973

Changes in agel and age?2 (that is, birthdays) in nonleap years occur on the day specified by the
last argument to age (). Note that birthdays in leap years are, of course, on 29feb regardless of the
last argument. Fractional parts from age_frac () differ because they are based on the number of days
between birthdays on either side of end_date, which will be 365 or 366. So fractional parts are multiples
of 1/365 or 1/366.

It is worth mentioning again that age (), age_frac(), datediff (), and datediff_frac() all
match up sensibly, but if there are leaplings, the last argument must be the same (or not be specified)
for them to match up. See Methods and formulas in [FN] Date and time functions.

d

Calculating differences of datetimes

The clockdiff () function calculates differences of datetime/c values in units of days, hours, min-
utes, seconds, or milliseconds, with the result rounded down to an integer. The Clockdiff () function
does the same, except it calculates differences for datetime/C values (UTC times with leap seconds).

The clockdiff_frac() and Clockdiff_frac() functions calculate the corresponding differences
for datetime/c and datetime/C values, respectively, but the fractional part of the difference is also in-
cluded.

b Example 4: Differences of datetime/c values

We have a dataset with string datetimes. A start datetime is recorded in the variable str_start, and
an end datetime is in str_end.

Datetime durations — Obtaining and working with durations 165

. use https://www.stata-press.com/data/r19/time_differences, clear
(Fictional data for calculating time differences)

. list, abbreviate(9)

str_start str_end

2015-06-30 00:00:00 2015-06-30 23:59:59
2015-06-30 00:00:00 2015-06-30 23:59:60
2015-06-30 00:00:00 2015-07-01 00:00:00
2015-06-30 00:00:00 2015-07-01 23:59:59
2015-06-30 00:00:00 2015-07-02 00:00:00

(2 VI SR

We must convert the strings to numeric Stata datetimes, which we do using the clock() function
with a mask of "YMDhms". We format the new encoded datetime variables using format %tc, the simplest
format specification for datetime/c.

. generate double cstart = clock(str_start, "YMDhms")

. generate double cend = clock(str_end, "YMDhms")
(1 missing value generated)

. format cstart cend %tc

. list str_end cend

str_end cend

2015-06-30 23:59:59 30jun2015 23:59:59
2015-06-30 23:59:60 .
2015-07-01 00:00:00 01jul2015 00:00:00
2015-07-01 23:59:59 01jul2015 23:59:59
2015-07-02 00:00:00 02jul2015 00:00:00

[S2 I =V SR

One of the string values became missing when it was encoded. It was the value "2015-06-30
23:59:60". This is a leap second, which was added to the end of the day on 30jun2015. There is
no encoding for leap seconds in datetime/c. That is why it is missing. We snuck in this leap second to
illustrate a point later about datetime/C.

We now use clockdiff () to calculate differences in seconds and hours between the datetime/c vari-
ables cstart and cend.
. generate csecs = clockdiff(cstart, cend, "second")
(1 missing value generated)

. generate chours = clockdiff(cstart, cend, "hour")
(1 missing value generated)

. list cstart cend csecs chours

cstart cend csecs chours
1. 30jun2015 00:00:00 30jun2015 23:59:59 86399 23
2. 30jun2015 00:00:00 . . .
3. 30jun2015 00:00:00 01jul2015 00:00:00 86400 24
4. 30jun2015 00:00:00 01jul2015 23:59:59 172799 47
5. 30jun2015 00:00:00 02jul2015 00:00:00 172800 48

Datetime durations — Obtaining and working with durations 166

clockdiff () calculates values rounded down to integers, and the results are what we expect. Integer
hours starting at 30jun2015 00:00:00 are 23 hours at 30jun2015 23:59:59. Integer hours become 24 hours
one second later at 01jul2015 00:00:00.

Rather than use clockdiff (), we could take the difference between the datetime/c variables cstart
and cend and use the conversion functions seconds () and hours().
. generate double csecs2 = seconds(cend - cstart)
(1 missing value generated)

. generate double chours2 = hours(cend - cstart)
(1 missing value generated)

. format %12.0g chours2

. list csecs csecs2 chours chours2

csecs csecs2 chours chours2
1. 86399 86399 23 23.99972222
2.
3. 86400 86400 24 24
4. 172799 172799 47 47.99972222
5. 172800 172800 48 48

The results are consistent with our earlier results. The number of seconds are exactly the same in
csecs and csecs2 because they are integers. Hours in chours?2 are not integers, but rounded down to
integers, they agree with hours produced by clockdiff ().

If we want to calculate the difference between cstart and cend in hours with the fractional part, we
canuse clockdiff_frac() as follows:
. generate double fchours = clockdiff_frac(cstart, cend, "hour")
(1 missing value generated)
. format %12.0g fchours

. list chours chours2 fchours

chours chours2 fchours
1. 23 23.99972222 23.99972222
2. . . .
3. 24 24 24
4. a7 47.99972222 47.99972222
5. 48 48 48

As expected, fchours is the same as chours?2.

> Example 5: Differences of datetime/C values

What if we are using datetime/C values, that is, datetimes with leap seconds? Let’s redo
the previous example encoding the strings using Clock() to produce Cstart and Cend as date-
time/C. Then, we generate a variable Csecs using Clockdiff (Cstart, Cend, "second"), Chours
using clockdiff (Cstart, Cend, "hour"), and fChours using Clockdiff_frac(Cstart, Cend,
"hour").

. generate double Cstart = Clock(str_start, "YMDhms")
. generate double Cend = Clock(str_end, "YMDhms")

Datetime durations — Obtaining and working with durations 167

. format Cstart Cend %tC

. generate Csecs = Clockdiff(Cstart, Cend, "second")

. generate Chours = Clockdiff(Cstart, Cend, "hour")

. generate double fChours = Clockdiff_frac(Cstart, Cend, "hour")
. format %12.0g fChours

. list Cstart Cend Csecs Chours fChours

1. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:59 86399 23
fChours
23.9994446
2. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:60 86400 23
fChours
23.9997223
3. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 00:00:00 86401 24
fChours
24
4. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 23:59:59 172800 47
fChours
47.99972222
5. Cstart Cend Csecs Chours
30jun2015 00:00:00 02jul2015 00:00:00 172801 48
fChours
48

In the previous example, the difference between the times of the first observation was 23.99972222 hours;
now it is 23.99944460 hours. The difference for the first observation in this example is further from 24
hours because there are now two seconds between Cend and 24 hours from Cstart, whereas before there
was only one second because the leap second was treated as if it did not exist.

The other difference is the denominator of the fractional part. From the earlier example using date-
time/c values and clockdiff_frac(), we note that 1 — 0.99972222 = 0.00027778 = 1/3600,
where 3,600 is the number of seconds in an hour. In this example using datetime/C values and
Clockdiff_frac(), we see that 1 — 0.99944460 = 0.00055540 = 2/3601, where 3,601 is the number
of seconds in the hour containing the leap second.

Datetime durations — Obtaining and working with durations 168

For the second-to-last observation, the fractional part of the difference is 0.99972222, the same as the
fractional part in the previous example. So in this example, the hour differences with the fractional part
are not evenly spaced, and this would be true even without the second observation with the leap second
in the data. If the lack of uniform spacing is a problem and there are no leap seconds in your data, you
may want to consider converting your datetime/C data to datetime/c.

d

Reference
Sullivan, A. 1923. The Pirates of Penzance or the Slave of Duty, libretto by W. S. Gilbert. New York: G. Schirmer.

Also see

[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates
[D] Datetime display formats — Display formats for dates and times

[D] Datetime relative dates — Obtaining dates and date information from other dates
[

]
]
]
]
]
]

D] Datetime values from other software — Date and time conversion from other software

Datetime relative dates — Obtaining dates and date information from other dates

Description Quick start Syntax Remarks and examples Also see

Description

This entry describes functions that calculate dates from other dates, such as the date of a birthday in
another year or the next leap year after a given year. It also describes functions that return the current
date and current datetime.

Quick start
Display today’s date
display %td today ()
Save the current date and time in a scalar

scalar ctime = now()

Calculate the date of a birthday in the year given by numeric variable y based on a numerically encoded
Stata date variable dob that gives date of birth

generate bday_future = birthday(dob, y)

Same as above, but for persons born on 29feb have their birthdays on 28feb in nonleap years (rather than
the default of 01mar)

generate bday_future = birthday(dob, y, "28feb")

Calculate the date of the first birthday after Stata date date_today based on date of birth dob
generate next_bday = nextbirthday(dob, date_today)

Calculate the number of days in the year y
generate ndays = cond(isleapyear(y), 366, 365)

Calculate the year of the leap year immediately before the year y

generate yleap = previousleapyear (y)

Calculate the number of days in the month on which the values of Stata date variable 4 fall

generate ndays = daysinmonth(d)

Calculate the date of the first Friday of month m and year y
generate firstfriday = firstweekdayofmonth(m, y, "Friday")

Calculate the date of the previous Saturday relative to Stata date d

generate previous = previousweekday(d, "sat")

169

Datetime relative dates — Obtaining dates and date information from other dates 170

Syntax

Description Function Value returned

today today () Stata date

current date and time now () Stata datetime/c

birthday in year birthday (egp05, Y] 580]) Stata date

previous birthday previousbirthday (e poy,€q] » S |) Stata date

next birthday nextbirthday (€g 0, ,€4[> Sn]) Stata date

days in month daysinmonth(e,) 28-31

first day of month firstdayofmonth(e,) Stata date

last day of month lastdayofmonth(ey) Stata date

leap year indicator isleapyear (Y) Oorl

previous leap year previousleapyear (Y) year

next leap year nextleapyear (Y) year

leap second indicator isleapsecond(e,-) Oorl

first day of week of month firstweekdayofmonth(M,Y,d) Stata date
or firstdowofmonth(M,Y,d)

last day of week of month ~ lastweekdayofmonth(M,Y,d) Stata date
or lastdowofmonth(M,Y,d)

previous day of week previousweekday (e, ,d) Stata date
or previousdow(e,,d)

next day of week nextweekday (e, d) Stata date

or nextdow (e, ,d)

ey and e, are Stata dates.
e, 18 a Stata datetime/C value (UTC time with leap seconds).
s,,; 1s a string specifying nonleap-year birthdays of 29feb and may be
"Olmar", "imar", "mar01", or "mar1" (the default); or
"28feb" or "feb28" (case insensitive).
Y'is a numeric year.
d is a numeric day of week (0=Sunday, 1=Monday, ..., 6=Saturday); alternatively,
it is a string specifying the first two or more letters of the day of week (case insensitive).

Note: The string s,,; specifying nonleap-year birthdays is an optional argument. It rarely needs to be
specified. See example 3 in [D] Datetime durations.

Datetime relative dates — Obtaining dates and date information from other dates 171

Remarks and examples

Remarks are presented under the following headings:

Current date and time

Birthdays and anniversaries

Months: Number of days, first day, and last day
Determining leap years

Determining leap seconds

Dates of days of week

We assume you have read [D] Datetime and are familiar with how Stata stores and formats dates.

Current date and time

today () and now () return date and datetime/c values for today’s date and the current datetime, re-
spectively. Note that the datetime value returned by now () is not adjusted for leap seconds.

Birthdays and anniversaries

The birthday () function returns a Stata date giving the birthday in a specified year. For example,
suppose date_of _birth is a variable containing Stata dates and yvar is a numeric variable containing

years; typing
. generate bday = birthday(date_of_birth, yvar)
produces a Stata date variable bday containing birthdays in those years. However, it will not be formatted

as a date variable. If you list bday, you will see numbers, not dates. To see dates, you must give it a date
format, such as

. format bday %td

We used the format %td, the simplest format specification for daily dates.

Of course, birthday () can be used for more than just birthdays. It can be used to give anniversary
dates of any date in different years.

The previousbirthday () and nextbirthday () functions do what their names suggest. Typing

. generate pbday = previousbirthday(date_of_birth, current_date)
. format pbday %td

gives birthdays immediately before current_date. Typing

. generate nbday = nextbirthday(date_of_birth, current_date)
. format nbday %td

gives birthdays immediately after current_date. Note that if current_date is a birthday,
previousbirthday() returns the previous birthday, not the value of current_date. Similarly,
nextbirthday () returns the next birthday when the argument is a birthday.

The optional last argument, s,,;, for birthday(), previousbirthday(), and nextbirthday ()
applies only to a date of birth on 29feb. The argument controls whether to use Olmar (the default) or
28feb as the birthday in nonleap years. See example 3 in [D] Datetime durations and the example below.

Datetime relative dates — Obtaining dates and date information from other dates 172

b Example 1: Birthdays in other years

Here we show how to use birthday () and nextbirthday () to calculate birthdays in other years.
We load a dataset with Stata date variables dob and date and a numeric variable year.
. use https://www.stata-press.com/data/r19/birthdays
(Fictional data for calculating birthdays)
. list, sepby(dob)

dob date year

1. Mon 28 Aug 1967 Thu 27 Aug 2020 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 2021
3. Mon 28 Aug 1967 Mon 29 Aug 2022 2022

4. Thu 29 Feb 1968 Tue 28 Feb 2023 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 2024
6. Thu 29 Feb 1968 Sat 01 Mar 2025 2025

To calculate the birthday in year based on date of birth dob, we type

. generate bday = birthday(dob, year)
. format bday %tdDay_DD_Mon_CCYY
. list dob year bday, sepby(dob)

dob year bday

1. Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Sat 01 Mar 2025

We see that for a date of birth of 28 Aug 1967, the birthday in 2020 is on 28 Aug 2020, which is a Friday.
For persons born on leap day 29 Feb 1968, their birthdays in nonleap years will be on 01 Mar. In leap
years, of course, they will be on 29 Feb.

Note that we used the fancy date format % tdDay_DD_Mon_CCYY. The %td at the beginning means it
is a format for daily dates. Day displays the day of the week abbreviated. The underscore (—) means put
in a space. DD displays the day with a leading zero. Mon displays the month abbreviated. CCYY displays
the year with the century. See [D] Datetime display formats for all the format variants.

For persons born on leap days (“leaplings”), we can change the day of their birthdays in nonleap years
from the default of 01 Mar to 28 Feb by specifying the optional argument "28feb". For example,

Datetime relative dates — Obtaining dates and date information from other dates 173

. generate abday = birthday(dob, year, "28feb")
. format abday %tdDay_DD_Mon_CCYY
. list dob year abday, sepby(dob)

dob year abday

e

Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. | Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Tue 28 Feb 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Fri 28 Feb 2025

Birthdays of leaplings are now on 28 Feb in nonleap years. Birthdays for nonleaplings are unaffected by
this argument.

Suppose we want a birthday relative to another date. Say we want the date of the first birthday after
date. We can do this by typing

. generate nbday = nextbirthday(dob, date)
. format nbday %tdDay_DD_Mon_CCYY
. list dob date nbday, sepby(dob)

dob date nbday

e

Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Sat 01 Mar 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sun 01 Mar 2026

We see that the first birthday after 27 Aug 2020 for someone born on 28 Aug is 28 Aug 2020. The first
birthday after 28 Aug 2021 (a birthday) for someone born on 28 Aug is the birthday in the next year,
28 Aug 2022.

The first birthday after 29 Feb 2024 for someone born on 29 Feb is 01 Mar 2025. Again, we can
specify the argument "28feb" to change the nonleap-year birthdays of leaplings to 28 Feb.

. generate anbday = nextbirthday(dob, date, "28feb")
. format anbday ’%tdDay_DD_Mon_CCYY
. list dob date anbday, sepby(dob)

dob date anbday

e

Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Thu 29 Feb 2024
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Fri 28 Feb 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sat 28 Feb 2026

Datetime relative dates — Obtaining dates and date information from other dates 174

Now the first birthday after 29 Feb 2024 for someone born on 29 Feb is 28 Feb 2025.

Months: Number of days, first day, and last day

daysinmonth(e,), firstdayofmonth(e,), and lastdayofmonth(e,;) each take a Stata date e,
as an argument and determine the month of that date. daysinmonth() returns the number of days in
that month. firstdayofmonth() returns the date of the first day of that month. lastdayofmonth()
returns the date of the last day of that month.

For example, for any day in the month of February of leap year 2020 (such as 15feb2020), these
functions return the following:

. display daysinmonth(mdy(2,15,2020))

29

. display %td firstdayofmonth(mdy(2,15,2020))
01£eb2020

. display %td lastdayofmonth(mdy(2,15,2020))
29feb2020

Determining leap years

isleapyear (Y), previousleapyear(Y), and nextleapyear (Y) are functions that make it easier
to handle leap years. Each takes a single argument that is a numeric year.

isleapyear(Y) returns 1 if Yis a leap year and 0 otherwise. The argument Y can be a numeric
variable or a literal value. Here are some examples with literal values:
. display isleapyear (2020)
1

. display isleapyear(2021)
0

. display isleapyear(2100)
0

. display isleapyear(2400)
1

The year 2020 is a leap year, and 2021 is not. The year 2100 is not because it is divisible by 100 and not
by 400. The year 2400 is divisible by 400, so it is a leap year.

previousleapyear (Y) returns the leap year immediately before year Y. nextleapyear (Y) returns
the first leap year after year Y. Here are examples:
. display previousleapyear (2023)
2020

. display nextleapyear(2023)
2024

. display previousleapyear(2024)
2020

. display nextleapyear (2024)
2028

As you can see, when the argument is a leap year, these functions return the next leap year or previous
leap year and not the leap year argument.

Datetime relative dates — Obtaining dates and date information from other dates 175

Determining leap seconds

isleapsecond() takes a datetime/C value (UTC time) as an argument and returns 1 (true) if that

datetime is one of the 1,000 milliseconds of a leap second and 0 (false) otherwise. For example, the
first leap second was introduced on 30jun1972, after the last millisecond of the day. Here is what
isleapsecond() returns at various points in time, including right before the leap second was added
on 30jun1972 (at 23:59.999) and right after the leap second was added on 01jul1972 (at 00:00.000). We
use tC() to create datetime/C values.

. display isleapsecond(tC(30jun1972 23:59:59.999))

0

. display isleapsecond(tC(30jun1972 23:59:60.000))
1

. display isleapsecond(tC(30jun1972 23:59:60.999))
1

. display isleapsecond(tC(01jul1972 00:00:0))
0

isleapsecond() is useful for determining whether datetime/C values can be converted to datetime/c
without any loss of information. Suppose we have a variable admitTime that contains times of patient
admissions as datetime/C values. We can type the following:

. generate anyleapsec = isleapsecond(admitTime)

. tabulate anyleapsec

anyleapsec Freq. Percent Cum.
0 1,064 100.00 100.00
Total 1,064 100.00

anyleapsec is all zero, so no patient was admitted on a leap second, and we can convert admitTime to
datetime/c without any times being altered.

. generate newTime = cofC(admitTime)

Had there been leap seconds in the data, cofC() would have converted the leap-second times to times
one second later. For example,

. display %tc cofC(tC(31dec2016 23:59:60))
01jan2017 00:00:00

Dates of days of week

firstweekdayofmonth(M,Y,d) and lastweekdayofmonth (M,Y,d) return the Stata date of the
first and last day-of-week d, respectively, in month M of year Y. For example, we can find the first
Monday of January 2000 with the command

. display %td firstweekdayofmonth(1l, 2000, "Monday")
03jan2000

previousweekday (e, ,d) returns the Stata date corresponding to the last day-of-week d before the
Stata date e;. nextweekday (e, ,d) returns the Stata date corresponding to the first day-of-week d after
the Stata date e;. For example, the date of the first Saturday after today can be found with the command

. display %td nextweekday(today(), "sat")
25mar2023

Datetime relative dates — Obtaining dates and date information from other dates 176

Note that day-of-week d can be specified as an integer (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
or as a string with the first two or more letters of the day of the week (case insensitive). For example,
Sunday can be specified as 0 or "Sunday", "Sun", "su", etc.

Also see

[D] Datetime — Date and time values and variables
[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

]
]
]
[D] Datetime display formats — Display formats for dates and times
[D] Datetime durations — Obtaining and working with durations

]

[D] Datetime values from other software — Date and time conversion from other software

Datetime values from other software — Date and time conversion from other software

Description Remarks and examples Reference Also see

Description

Most software packages store dates and times numerically as durations from some base date in spec-
ified units, but they differ on the base date and the units. In this entry, we discuss how to convert date
and time values that you have imported from other packages to Stata dates.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Converting SAS dates
Converting SPSS dates
Converting R dates
Converting Excel dates
Example 1: Converting Excel dates to Stata dates
Converting OpenOffice dates
Converting Unix time

Introduction

Different software packages use different base dates for storing dates and times numerically. If you
are using one of the specialized subcommands for importing data from another package, you do not need
to convert your numeric dates after importing them into Stata. import sas, import spss, and import
excel will properly convert those dates to Stata dates. However, if you store data from another package
into a more general format, like a text file, you will need to do one of two things.

1. If you bring the date variable into Stata as a string, you will have to convert it to a numeric
variable.

2. If you import the date variable as a numeric variable, with values representing the underlying
numeric values that the other package used, you will have to convert that value to the numeric
value for a Stata date.

Below, we discuss the date systems for different software packages and how to convert their date and
time values to Stata dates.

Converting SAS dates

If you have data in a SAS-format file, you may want to use the import sas command. If the SAS file
contains numerically encoded dates, import sas will read those dates and properly store them as Stata
dates. You do not need to perform any conversion after importing your data with import sas.

On the other hand, if you import data originally from SAS that have been saved into another format,
such as a text file, dates and datetimes may exist as the underlying numeric values that SAS used. The
discussion below concerns converting those numeric values to Stata dates.

SAS provides dates measured as the number of days since 01jan1960 (positive or negative). This is
the same coding as used by Stata:

177

Datetime values from other software — Date and time conversion from other software 178

. generate statadate = sasdate
. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming
86,400 seconds/day. SAS datetimes do not have leap seconds. To convert to a Stata datetime/c variable,
type

. generate double statatime = (sastime*1000)

. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported into Stata
as doubles.

Converting SPSS dates

If you have data in an SPSS-format file, you may want to use the import spss command. If the SPSS
file contains numerically encoded dates, import spss will read those dates and properly store them as
Stata dates. You do not need to perform any conversion after importing your data with import spss.

On the other hand, if you import data originally from SPSS that have been saved into another format,
such as a text file, dates and datetimes may exist as the underlying numeric values that SPSS used. The
discussion below concerns converting those numeric values to Stata dates.

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,
assuming 86,400 seconds/day. SPSS date