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Introduction and Motivation

Introduction

Growing Challenge: Explosion of unstructured textual data
Two Key Applications:

1 Text mining and clustering for policy monitoring
2 Financial forecasting with sentiment analysis

Tools: Integration of Stata, Python, and R
Goal: Demonstrate practical framework for researchers and policymakers
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Introduction and Motivation

Research Questions

Primary Questions
1 How can we effectively classify and organize large volumes of textual data for policy

analysis?
2 Can sentiment extracted from text contribute to financial time series forecasting?
3 What is the optimal integration of statistical software for complex analyses?

Applications
Real-time policy monitoring
Literature mapping in health economics
Stock market prediction with sentiment indicators
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Text Mining and Clustering Framework in Economics

Text Mining Pipeline

Raw Text Data

Preprocessing

Vectorization

Clustering

Interpretation
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Text Mining and Clustering Framework in Economics

Text Preprocessing Steps

Essential Steps
1 Tokenization
2 Lowercasing
3 Punctuation removal
4 Stop word removal
5 Stemming/Lemmatization

Python Implementation

1 def preprocess(text):
2 # Remove punctuation
3 text = re.sub(r"[^\w\s]", "", text)
4 # Tokenize and lowercase
5 tokens = word_tokenize(text.lower())
6 # Filter tokens
7 return " ".join(t for t in tokens
8 if t.isalpha () and
9 t not in stop_words)

See Manning et al. (2008)
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Text Mining and Clustering Framework in Economics

TF-IDF Vectorization

Term Frequency-Inverse Document Frequency

TF-IDF(t, d ,D) = TF(t, d)× IDF(t,D)

Where:
TF(t, d) = frequency of term t in document d

IDF(t,D) = log |D|
|{d∈D:t∈d}|

|D| = total number of documents

Key Advantage
Balances term frequency with term specificity across corpus

See Salton & Buckley (1988).
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Text Mining and Clustering Framework in Economics

Distance Metrics for Text

Cosine Distance

dcosine(x, y) = 1 − x · y
||x|| · ||y||

Why Cosine Distance?
Measures angular similarity
Invariant to document length
Range: [0, 2] (0 = identical, 2 = opposite)
Ideal for high-dimensional sparse vectors

See Srivastava & Sahami (2009).
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Hierarchical Clustering Implementation in Economics

Hierarchical Clustering Approach

Agglomerative Clustering
1 Start with each document as separate cluster
2 Compute pairwise distances
3 Merge closest clusters
4 Update distance matrix
5 Repeat until desired number of clusters

Linkage Methods
Single
Complete
Average (used)
Ward

Carlo Drago Università Niccolò Cusano Text Mining and Hierarchical Clustering in Stata
September 25, 2025[0.5em] 2025 Italian Stata Conference
9 / 66



Hierarchical Clustering Implementation in Economics

Stata-Python Integration

1 python:
2 # Thread safety configuration
3 import os
4 os.environ["OMP_NUM_THREADS"] = "1"
5
6 # Load data from Stata
7 texts = sfi.Data.get(var="text")
8
9 # Perform clustering

10 vectorizer = TfidfVectorizer ()
11 X = vectorizer.fit_transform(texts_clean)
12 D = cosine_distances(X)
13
14 model = AgglomerativeClustering(
15 n_clusters =100,
16 metric=’precomputed ’,
17 linkage=’average ’)
18 labels = model.fit_predict(D)
19
20 # Return to Stata
21 sfi.Data.store(var="cluster_100",
22 obs=range(n), val=cluster_ids)
23 end
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Hierarchical Clustering Implementation in Economics

Clustering Implementation Details

Key Parameters

Number of clusters: 100 (fixed)
Distance metric: Cosine distance
Linkage method: Average linkage
Vectorization: TF-IDF with sklearn

Technical Considerations
Thread safety configuration for Stata-Python integration
NLTK stopwords for preprocessing
Scalable to large document collections
Reproducible with random seed control
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Case Study 1: Economic Text Analysis

Case Study 1: Financial Headlines Analysis

Dataset Characteristics
Source: Financial news archives
Size: 6,363 headlines
Period: Multi-year coverage
Language: English
Fields: Date, headline, text

Research Questions
What are dominant themes?
How are topics distributed?
Can we identify trends?
What patterns emerge?

Challenge
Organizing massive financial text corpus for policy analysis
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Case Study 1: Economic Text Analysis

Economic Dataset: Clustering Results
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Key Finding
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Case Study 1: Economic Text Analysis

Economic Themes Identified

Rank Theme Docs %

1 Financial Markets 5,148 80.91%
2 Regional Economics 141 2.22%
3 Inflation/Monetary Policy 111 1.74%
4 Legal/Corporate 69 1.08%
5 Education Finance 63 0.99%
6 Labor Markets 60 0.94%
7 Defense/Government 57 0.90%
8 Interest Rates 49 0.77%
9 Politics/Elections 43 0.68%
10 International Trade 33 0.52%

Carlo Drago Università Niccolò Cusano Text Mining and Hierarchical Clustering in Stata
September 25, 2025[0.5em] 2025 Italian Stata Conference
14 / 66



Case Study 1: Economic Text Analysis

Deep Dive: Financial Markets Cluster

Top Keywords:
stocks
market
rates
dollar
economy
inflation
prices

Sub-themes Detected:
Equity markets
Currency trading
Bond yields
Economic indicators
Corporate earnings
Fed policy

Recommendation
Apply secondary clustering to decompose this mega-cluster
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Case Study 1: Economic Text Analysis

Specialized Economic Topics (Small Clusters)

Niche Topics Found:
Technology finance (4 docs)
Labor disputes (5 docs)
Income inequality (3 docs)
Media economics (4 docs)
Agricultural policy (2 docs)

Characteristics:
Highly specific content
Potential outliers
Emerging themes
Policy indicators

Insight
Small clusters capture emerging or specialized economic issues
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Case Study 1: Economic Text Analysis

Temporal Pattern Analysis: Economic News Coverage 1991-2013
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Case Study 1: Economic Text Analysis

Temporal Pattern Analysis: Economic News Coverage 1991-2013

Key Observations

Financial market coverage peaks during crisis periods: 2000-2002 (Dot-com bubble) and
2009-2013 (Post-financial crisis)
Regional economics and monetary policy coverage remains relatively stable (under 30
documents per period)
Coverage intensity increases by 150-170% during major economic disruptions
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Case Study 1: Economic Text Analysis

Economic Policy Applications

Macroeconomic Monitoring:
Track sentiment shifts
Identify crisis indicators
Monitor policy effectiveness
Forecast market trends

Regulatory Intelligence:
Compliance tracking
Risk identification
Market surveillance
Policy impact assessment

Real-World Impact
System deployed for central bank market intelligence unit

Carlo Drago Università Niccolò Cusano Text Mining and Hierarchical Clustering in Stata
September 25, 2025[0.5em] 2025 Italian Stata Conference
19 / 66



Case Study 2 S&P 500 Forecasting with Sentiment

S&P 500 Forecasting Framework

Sentiment
Data

S&P 500
Index

Interpolation
Data

Integration

NNETAR
Model

Forecast
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Case Study 2 S&P 500 Forecasting with Sentiment

NNETAR Model Specification

Neural Network AutoRegressive Model

yt = f (yt−1, yt−2, ..., yt−p, xt) + ϵt

Model Parameters
p = 15: Number of lagged observations
Hidden nodes = 5: Network complexity
Repeats = 5: Ensemble averaging
External regressor: Sentiment indicator (z-score normalized)
Frequency = 252: Trading days per year
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Case Study 2 S&P 500 Forecasting with Sentiment

Neural Network Architecture
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Case Study 2 S&P 500 Forecasting with Sentiment

Data Preparation and Scaling

Sentiment Interpolation
Original sentiment: Lower frequency data
Target: Daily trading frequency (252 days/year)
Method: Linear interpolation for alignment

Feature Scaling

xscaled =
x − µ

σ

Where:
µ = mean of sentiment values
σ = standard deviation
Z-score normalization for neural network optimization
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Case Study 2 S&P 500 Forecasting with Sentiment

R Implementation for NNETAR

1 # Fit NNETAR with external regressor
2 fit <- forecast :: nnetar(
3 y = y_train ,
4 xreg = as.matrix(xreg_train),
5 size = 5, # hidden nodes
6 repeats = 5, # ensemble size
7 p = 15 # AR lags
8 )
9

10 # Generate forecasts
11 fc <- forecast :: forecast(
12 fit ,
13 xreg = as.matrix(xreg_future_h),
14 h = 5 # forecast horizon
15 )

See Hyndman & Athanasopoulos (2021).
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Case Study 2 S&P 500 Forecasting with Sentiment

Train-Test Split Strategy

Time Series Cross-Validation
Training set: All observations except last 5
Test set: Last 5 trading days (December 18-24, 2014)
Validation: Out-of-sample performance assessment

Limitations of Current Approach

Small test set (n=5) limits statistical robustness
Single period evaluation may not be representative
Future work: Implement rolling window validation
Consider multiple test periods for reliability
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Case Study 2 S&P 500 Forecasting with Sentiment

Performance Metrics

Accuracy Measures Used
MAE: Mean Absolute Error

MAE =
1
n

n∑
i=1

|yi − ŷi |

RMSE: Root Mean Square Error

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi )2

MAPE: Mean Absolute Percentage Error

MAPE =
100
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
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Case Study 2 S&P 500 Forecasting with Sentiment

Actual Forecast Results: December 2014

Date Actual Forecast Error Error %

18/12/2014 2061.23 2007.03 -54.20 -2.63%
19/12/2014 2070.65 2004.03 -66.62 -3.22%
22/12/2014 2078.54 2002.40 -76.14 -3.66%
23/12/2014 2082.17 2003.69 -78.48 -3.77%
24/12/2014 2081.88 2001.64 -80.24 -3.85%

Observations
Possibility to improve forecasts
Limited variance in forecast values
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Case Study 2 S&P 500 Forecasting with Sentiment

Model Performance Analysis

Performance Metrics Summary

Metric Training Set Test Set

MAE 3.72 71.14
RMSE 7.79 71.79
MAPE 0.93% 3.43%
MASE 0.053 1.006

Performance in Context
Test MAPE of 3.43% falls within literature benchmarks (2-5% for S&P 500)
Need for calibration refinement
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Case Study 2 S&P 500 Forecasting with Sentiment

Policy Monitoring Applications

Text Mining for Policy Analysis
Central bank communications classification
Regulatory announcement categorization
Policy impact assessment through document clustering
Public sentiment tracking from text sources

Implementation Benefits
Automated document organization
Scalable to large document collections
Consistent classification methodology
Support for evidence-based policy decisions
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Case Study 2 S&P 500 Forecasting with Sentiment

Financial Market Applications

Current Capabilities
Daily S&P 500 forecasting
Sentiment integration framework
Multi-step ahead predictions
Systematic pattern detection

Future Enhancements
Bias correction methods
Dynamic sentiment weighting
Volatility forecasting
Portfolio optimization
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Case Study 2 S&P 500 Forecasting with Sentiment

Software Integration Strategy

Stata Python

R

Text Mining

Data ExchangeResults

Integration Benefits
Leverage platform-specific strengths
Stata: Data management, econometrics and time series analysis
Python: Machine learning and NLP libraries
R: time series forecasting packages like forecast (see Hyndman & Athanasopoulos) (2021).
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Case Study 2 S&P 500 Forecasting with Sentiment

Best Practices and Recommendations

Text Mining
Consistent preprocessing pipeline
Domain-specific stop words
Validate cluster coherence
Document parameter choices

Forecasting
Larger test sets when possible
Multiple validation periods
Monitor for overfitting
Consider ensemble methods

General Recommendations
Version control for reproducibility
Set random seeds consistently
Comprehensive documentation
Regular validation checks
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Case Study 2 S&P 500 Forecasting with Sentiment

Future Research Directions

Methodological Improvements
Implement rolling window cross-validation
Develop bias correction procedures
Optimize sentiment integration weights
Test alternative neural network architectures

Extended Applications
Multi-asset forecasting framework
Real-time sentiment extraction pipeline
Dynamic cluster number selection
Integration with high-frequency data
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Case Study 2 S&P 500 Forecasting with Sentiment

Case 2 Remarks

Key Contributions
Demonstrated integrated framework combining text mining and forecasting
Successful implementation across Stata, Python, and R
Achieved MAPE of 3.43% within literature benchmarks
Identified systematic patterns for improvement opportunities

Main Takeaways
1 Text mining provides structured insights from unstructured data
2 NNETAR with sentiment shows promise but requires calibration
3 Software integration maximizes analytical capabilities
4 Results demonstrate feasibility with room for refinement
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Case Study 2 S&P 500 Forecasting with Sentiment

Health Economics Literature Mapping

Document Clustering Applications
Literature organization by themes
Research gap identification
Systematic review automation
Policy recommendation support

Specific Use Cases
Telemedicine research categorization
Diabetes intervention studies mapping
Health technology assessment support
Clinical guideline development assistance
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Case Study 2 S&P 500 Forecasting with Sentiment

Executive Summary

Research Scope
Unified framework for text mining
Applications in economics and healthcare
Stata-Python integration approach
Real-world case studies with 6,363+
documents

Key Contributions
Scalable clustering methodology
Policy monitoring tools
Literature mapping techniques
Evidence-based decision support
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Case Study 2 S&P 500 Forecasting with Sentiment

The Information Challenge in Modern Research

Text Mining

Economic Data Healthcare Data

Policy Documents Scientific Literature

Challenge
Processing exponentially growing unstructured textual data for evidence-based decisions

Carlo Drago Università Niccolò Cusano Text Mining and Hierarchical Clustering in Stata
September 25, 2025[0.5em] 2025 Italian Stata Conference
37 / 66



Case Study 2 S&P 500 Forecasting with Sentiment

Motivation: Why Text Mining Matters

Data Explosion:
2.5 quintillion bytes daily
80% unstructured text
Doubling every 2 years
Multiple languages and formats

Decision Needs:
Real-time insights
Pattern recognition
Evidence synthesis
Predictive analytics

Core Question
How can we transform vast textual resources into actionable intelligence?

See Alexaq, 2022, Congruity360, 2023, and Michalowski, 2025
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Case Study 2 S&P 500 Forecasting with Sentiment

Research Objectives

1 Develop Unified Framework
Integrate Stata capabilities with Python
Create reproducible workflows

2 Demonstrate Applications
Economic text analysis (6,363 headlines)
Healthcare literature mapping (800+ articles)

3 Provide Practical Tools
Policy monitoring systems
Literature organization methods

4 Enable Evidence-Based Decisions
Real-time analysis capabilities
Forecasting support
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Case Study 2 S&P 500 Forecasting with Sentiment

Key Contributions of This Work

Methodological
TF-IDF implementation
Cosine distance metrics
Hierarchical clustering

Technical
Stata-Python bridge
Scalable algorithms
Memory optimization
Parallel processing

Applied
Economic forecasting
Health policy analysis
Literature mapping
Trend identification
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Theoretical Foundation of Text Mining in Health Economics

Text Mining: Core Concepts

Definition (Text Mining)

The process of deriving high-quality information from text through the discovery of patterns
and trends using statistical and machine learning techniques

Key Processes:
Information Retrieval
Natural Language Processing
Information Extraction
Data Mining

Output Types:
Categorization
Clustering
Concept Extraction
Sentiment Analysis
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Theoretical Foundation of Text Mining in Health Economics

Document Representation Models

Vector Space Model
Documents are represented as vectors in high-dimensional space where each dimension
corresponds to a term

Common Representations:
1 Bag of Words: Simple frequency counts
2 TF-IDF: Term importance weighting
3 Word Embeddings: Dense semantic vectors
4 Topic Models: Probabilistic distributions

Choice for This Work
TF-IDF chosen for interpretability and computational efficiency
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Theoretical Foundation of Text Mining in Health Economics

TF-IDF: Mathematical Foundation

Term Frequency-Inverse Document Frequency

TF-IDF(t, d ,D) = TF(t, d)× IDF(t,D)

Components:

Term Frequency: TF(t, d) = ft,d∑
t′∈d ft′,d

Inverse Document Frequency: IDF(t,D) = log |D|
|{d∈D:t∈d}|

Properties:
Higher weight for rare terms across corpus
Lower weight for common terms
Normalized by document length
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Theoretical Foundation of Text Mining in Health Economics

Distance Metrics for Text Clustering

Cosine Similarity:

cos(θ) =
a · b

||a|| · ||b||

Advantages:
Length invariant
Range: [0, 1]
Semantic similarity

Alternative Metrics:
Euclidean distance
Jaccard similarity
Manhattan distance
Hamming distance

Why Cosine? Best for high-dimensional sparse
text data
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Theoretical Foundation of Text Mining in Health Economics

Hierarchical Clustering: Theoretical Framework

Algorithm Types:
Agglomerative (Bottom-up):

Start with individual documents
Merge closest pairs iteratively
Stop at desired k clusters

Divisive (Top-down):
Start with all documents
Split recursively
Less common in practice

d1 d2 d3 d4 d5

H
ei

gh
t
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Theoretical Foundation of Text Mining in Health Economics

Linkage Methods in Hierarchical Clustering

Method Distance Calculation

Single d(Ci ,Cj) = minx∈Ci ,y∈Cj
d(x , y)

Complete d(Ci ,Cj) = maxx∈Ci ,y∈Cj
d(x , y)

Average d(Ci ,Cj) =
1

|Ci ||Cj |
∑

x∈Ci ,y∈Cj
d(x , y)

Ward Minimize within-cluster variance

Choice for This Work
Average linkage selected for balanced cluster formation and robustness to outliers
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Methodology and Implementation of Text Mining in Health Economics

Methodology Overview

Raw Text Data Preprocessing
Vectorization

(TF-IDF)

Distance Matrix
Hierarchical
ClusteringClusters

Key Innovation
Seamless integration of Stata data management with Python machine learning
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Methodology and Implementation of Text Mining in Health Economics

Data Preprocessing Pipeline

1 Text Normalization
Convert to lowercase
Remove special characters
Standardize whitespace

2 Tokenization
Split into words
Handle contractions
Preserve meaningful punctuation

3 Filtering
Remove stopwords
Filter by frequency
Domain-specific exclusions

4 Transformation
Stemming/Lemmatization
N-gram creation
Feature selection
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Methodology and Implementation of Text Mining in Health Economics

Stata Native Implementation

1 * Initialize environment
2 clear all
3 set more off
4
5 * Import data
6 import excel "data.xlsx", firstrow clear
7
8 * Text preprocessing
9 gen text_clean = lower(text)

10 replace text_clean = ustrregexra(text_clean , "[^a-z0 -9 ]", "")
11 replace text_clean = ustrregexra(text_clean , "\s+", " ")
12
13 * Install clustering package
14 ssc install strgroup
15
16 * Perform clustering
17 strgroup text_clean , gen(cluster) threshold (0.3)
18
19 * Analyze results
20 tab cluster
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Methodology and Implementation of Text Mining in Health Economics

Stata-Python Integration

1 python:
2 import os
3 os.environ["OMP_NUM_THREADS"] = "1"
4
5 from sklearn.feature_extraction.text import TfidfVectorizer
6 from sklearn.cluster import AgglomerativeClustering
7 from sklearn.metrics.pairwise import cosine_distances
8 import numpy as np
9

10 # Get data from Stata
11 texts = sfi.Data.get(var="text_clean")
12
13 # Vectorization
14 vectorizer = TfidfVectorizer(max_features =5000,
15 stop_words=’english ’)
16 X = vectorizer.fit_transform(texts)
17
18 # Distance matrix
19 D = cosine_distances(X)
20
21 # Clustering
22 model = AgglomerativeClustering(n_clusters =100,
23 metric=’precomputed ’,
24 linkage=’average ’)
25 labels = model.fit_predict(D)
26
27 # Return to Stata
28 sfi.Data.store(var="cluster_id", val=labels)
29 endCarlo Drago Università Niccolò Cusano Text Mining and Hierarchical Clustering in Stata
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Methodology and Implementation of Text Mining in Health Economics

Actual Implementation: String-Based Clustering Approach

Two-Stage Clustering Process
Stage 1: Fuzzy String Matching with strgroup

Uses Levenshtein distance for string similarity
Groups titles with similarity > threshold (0.3)
Creates initial variable-sized clusters

Stage 2: Forced Redistribution with egen cut()

Maps initial clusters to exactly 10 groups
Equal-frequency binning approach
Ignores semantic relationships

Implementation Code

1 * Stage 2: Force 10 clusters egen
clusterr aw = group(tempcluster)egenclusterf inal = cut(clusterr aw), ///group(10)

Method Characteristics
✓ Simple and fast
✓ No external dependencies
✓ Works in Stata/BE
× Not semantic-aware
× Arbitrary group boundaries
× No quality metrics

Key Limitation
This approach groups syntactically similar strings, not semantically related concepts. "Diabetes
management" and "Diabetes treatment" might cluster together, but "Glucose control" might
not, despite being conceptually related.
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String Similarity Clustering: Technical Details

800 Titles

Text Cleaning

strgroup

N clusters egen group() egen cut()

10 Clusters

reindex force 10

Levenshtein
distance

threshold=0.3

Equal-frequency

binning

How strgroup Works
Character-by-character
comparison

Counts insertions, deletions,
substitutions

Groups if distance < threshold

Threshold Impact
0.1 = Very similar only

0.3 = Moderate similarity

0.5 = Loose grouping

Final Distribution
80 docs per cluster

Arbitrary boundaries

Mixed semantics
Carlo Drago Università Niccolò Cusano Text Mining and Hierarchical Clustering in Stata

September 25, 2025[0.5em] 2025 Italian Stata Conference
52 / 66



Methodology and Implementation of Text Mining in Health Economics

Method Comparison: TF-IDF vs strgroup

Aspect TF-IDF strgroup

Algorithm Hierarchical clustering String matching
Distance Cosine similarity Levenshtein distance
Features Word frequencies Character sequences
Semantic awareness Yes No
Cluster quality Measurable Not assessed
Scalability O(n²) O(n²)
Python needed Yes No
Cluster count Optimized Forced to 10
Reproducibility High Moderate

When strgroup Works Well
Detecting duplicates
Grouping variants (e.g., "Type 2 DM" vs
"Type II diabetes")
Small datasets
Quick exploration

When strgroup Falls Short
Semantic clustering needed
Large vocabularies
Scientific literature
Quality metrics required
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Case Study 3: Healthcare Literature Analysis

Case Study 2: Telemedicine-Diabetes Literature

Dataset Details
Domain: Medical research
Focus: Telemedicine & Diabetes
Size: 800+ article titles
Source: OpenAlex
Period: 2015-2024

Clinical Relevance
Growing diabetic population
Telemedicine expansion
COVID-19 acceleration
Policy implications
Cost-effectiveness

Goal
Map research landscape for evidence-based health policy
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Case Study 3: Healthcare Literature Analysis

Case Study 2: Innovative Results from the Analysis

Key Findings
1 Digital platforms for diabetes management (e.g. apps and mobile health technologies)
2 The relevance of teleconsultation and remote health monitoring
3 The impact of the pandemic on telemedicine
4 The cost-effectiveness of the technologies and the policy frameworks
5 Digital apps/health in diabetes are becoming increasingly important
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Applications and Real-World Impact

Real-Time Policy Monitoring System

News Feeds

Reports

Social
Media

Collection Clustering Analysis

Alerts

Dashboard

Reports

Deployment: Central banks, health ministries, research institutions
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Forecasting and Trend Analysis

Economic Forecasting:
Market sentiment indicators
Crisis early warning
Policy impact prediction
Sector rotation signals

Health Trend Analysis:
Research focus shifts
Technology adoption curves
Treatment effectiveness
Emerging health threats

Forecasting and Health Trend Analysis: The Added Value of Clustering
Results of clustering can be used as new variables in economic forecasting and in health trend
analysis
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Literature Mapping: Performance Improvements

Efficiency Gains
Coverage: increase

Broader capture of relevant works
Reduced selection bias

Review Time: reduction
Automated screening/classification
Faster synthesis in growing domains

Quality & Cost Impact
Costs: reduction

Efficiency outweighs computational
expenses
Lower manual labor requirements

Accuracy: improvement
Structured literature organization
Discovery of hidden connections

Overall Impact
Literature mapping substantially enhances efficiency and comprehensiveness while offering
moderate reliability improvements, justifying integration into evidence-synthesis practices

See Marzi et al. 2025
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Future Research Directions

Methodological:
Dynamic clustering
Multi-lingual support
Cross-domain transfer
Causal inference

Applied:
Real-time streaming
Predictive modeling
Automated reporting
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Limitations and Open Challenges

1 Scalability Limits
Memory constraints

2 Interpretation Challenges
Cluster naming
Boundary cases

3 Domain Adaptation
Parameter tuning
Feature engineering

4 Validation Complexity
Ground truth absence
Subjective evaluation
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Key Takeaways

1 Unified Framework Success
Stata-Python (and R) integration proven effective
Applicable across diverse domains

2 Practical Impact Demonstrated
Time reduction in analysis
Improved coverage and accuracy

3 Domain Expertise Critical
One size doesn’t fit all
Expert validation essential

Bottom Line
Text mining transforms information overload into strategic advantage
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Conclusions

Text Mining and Hierarchical Clustering:
Bridging the Gap Between Data and Decisions
Robust methodology for text clustering
Successful applications in economics and healthcare
Practical implementation in Stata environment
Real-world impact on policy and research

Final Message
The future of evidence-based decision making lies in intelligent text analysis
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