Text Mining and Hierarchical Clustering in Stata

An Applied Approach for Real-Time Policy Monitoring, Forecasting and Literature Mapping

Carlo Drago Università Niccolò Cusano

September 25, 2025 2025 Italian Stata Conference

Outline

- 1 Introduction and Motivation
- Text Mining and Clustering Framework in Economics
- 3 Hierarchical Clustering Implementation in Economics
- Case Study 1: Economic Text Analysis
- 5 Case Study 2 S&P 500 Forecasting with Sentiment
- Theoretical Foundation of Text Mining in Health Economics
- Methodology and Implementation of Text Mining in Health Economics
- 8 Case Study 3: Healthcare Literature Analysis
- Applications and Real-World Impact

Introduction

- Growing Challenge: Explosion of unstructured textual data
- Two Key Applications:
 - Text mining and clustering for policy monitoring
 - Financial forecasting with sentiment analysis
- Tools: Integration of Stata, Python, and R
- Goal: Demonstrate practical framework for researchers and policymakers

Research Questions

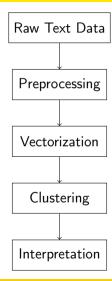
Primary Questions

- How can we effectively classify and organize large volumes of textual data for policy analysis?
- ② Can sentiment extracted from text contribute to financial time series forecasting?
- What is the optimal integration of statistical software for complex analyses?

Applications

- Real-time policy monitoring
- Literature mapping in health economics
- Stock market prediction with sentiment indicators

Text Mining Pipeline



Text Preprocessing Steps

Essential Steps

- Tokenization
- 2 Lowercasing
- Punctuation removal
- Stop word removal
- Stemming/Lemmatization

Python Implementation

```
def preprocess(text):
    # Remove punctuation
    text = re.sub(r"[^\w\s]", "", text)

# Tokenize and lowercase
tokens = word_tokenize(text.lower())
# Filter tokens
return " ".join(t for t in tokens
if t.isalpha() and
t not in stop_words)
```

See Manning et al. (2008)

TF-IDF Vectorization

Term Frequency-Inverse Document Frequency

$$\mathsf{TF}\mathsf{-}\mathsf{IDF}(t,d,D) = \mathsf{TF}(t,d) \times \mathsf{IDF}(t,D)$$

Where:

- TF(t, d) = frequency of term t in document d
- $\mathsf{IDF}(t,D) = \log \frac{|D|}{|\{d \in D: t \in d\}|}$
- |D| = total number of documents

Key Advantage

Balances term frequency with term specificity across corpus

See Salton & Buckley (1988).

Distance Metrics for Text

Cosine Distance

$$d_{\mathsf{cosine}}(\mathsf{x},\mathsf{y}) = 1 - \frac{\mathsf{x} \cdot \mathsf{y}}{||\mathsf{x}|| \cdot ||\mathsf{y}||}$$

Why Cosine Distance?

- Measures angular similarity
- Invariant to document length
- Range: [0, 2] (0 = identical, 2 = opposite)
- Ideal for high-dimensional sparse vectors

See Srivastava & Sahami (2009).

Hierarchical Clustering Approach

Agglomerative Clustering

- Start with each document as separate cluster
- 2 Compute pairwise distances
- Merge closest clusters
- Update distance matrix
- Seperat until desired number of clusters

Linkage Methods

- Single
- Complete
- Average (used)
- Ward

Stata-Python Integration

```
python:
# Thread safety configuration
import os
os.environ["OMP NUM THREADS"] = "1"
# Load data from Stata
texts = sfi.Data.get(var="text")
# Perform clustering
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(texts_clean)
D = cosine_distances(X)
model = AgglomerativeClustering(
    n_clusters=100.
    metric='precomputed'.
    linkage='average')
labels = model.fit_predict(D)
# Return to Stata
sfi.Data.store(var="cluster_100".
               obs=range(n), val=cluster_ids)
end
```

Clustering Implementation Details

Key Parameters

- Number of clusters: 100 (fixed)
- Distance metric: Cosine distance
- Linkage method: Average linkage
- Vectorization: TF-IDF with sklearn

Technical Considerations

- Thread safety configuration for Stata-Python integration
- NLTK stopwords for preprocessing
- Scalable to large document collections
- Reproducible with random seed control

Case Study 1: Financial Headlines Analysis

Dataset Characteristics

Source: Financial news archives

• Size: 6,363 headlines

Period: Multi-year coverage

Language: English

• Fields: Date, headline, text

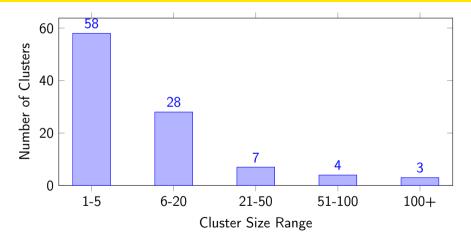
Research Questions

- What are dominant themes?
- How are topics distributed?
- Can we identify trends?
- What patterns emerge?

Challenge

Organizing massive financial text corpus for policy analysis

Economic Dataset: Clustering Results



Key Finding

Economic Themes Identified

Rank	Theme	Docs	%
1	Financial Markets	5,148	80.91%
2	Regional Economics	141	2.22%
3	Inflation/Monetary Policy	111	1.74%
4	Legal/Corporate	69	1.08%
5	Education Finance	63	0.99%
6	Labor Markets	60	0.94%
7	Defense/Government	57	0.90%
8	Interest Rates	49	0.77%
9	Politics/Elections	43	0.68%
10	International Trade	33	0.52%

Deep Dive: Financial Markets Cluster

Top Keywords:

- stocks
- market
- rates
- dollar
- economy
- inflation
- prices

Sub-themes Detected:

- Equity markets
- Currency trading
- Bond yields
- Economic indicators
- Corporate earnings
- Fed policy

Recommendation

Apply secondary clustering to decompose this mega-cluster

Specialized Economic Topics (Small Clusters)

Niche Topics Found:

- Technology finance (4 docs)
- Labor disputes (5 docs)
- Income inequality (3 docs)
- Media economics (4 docs)
- Agricultural policy (2 docs)

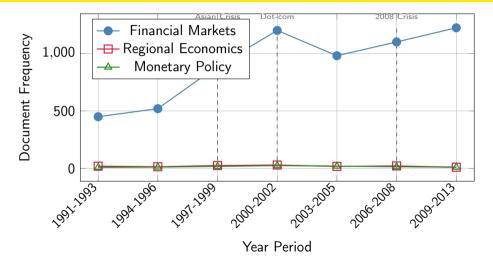
Characteristics:

- Highly specific content
- Potential outliers
- Emerging themes
- Policy indicators

Insight

Small clusters capture emerging or specialized economic issues

Temporal Pattern Analysis: Economic News Coverage 1991-2013



Temporal Pattern Analysis: Economic News Coverage 1991-2013

Key Observations

- Financial market coverage peaks during crisis periods: 2000-2002 (Dot-com bubble) and 2009-2013 (Post-financial crisis)
- Regional economics and monetary policy coverage remains relatively stable (under 30 documents per period)
- Coverage intensity increases by 150-170% during major economic disruptions

Economic Policy Applications

Macroeconomic Monitoring:

- Track sentiment shifts
- Identify crisis indicators
- Monitor policy effectiveness
- Forecast market trends

Regulatory Intelligence:

- Compliance tracking
- Risk identification
- Market surveillance
- Policy impact assessment

Real-World Impact

System deployed for central bank market intelligence unit

S&P 500 Forecasting Framework



NNETAR Model Specification

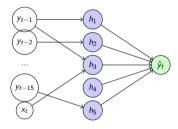
Neural Network AutoRegressive Model

$$y_t = f(y_{t-1}, y_{t-2}, ..., y_{t-p}, x_t) + \epsilon_t$$

Model Parameters

- p = 15: Number of lagged observations
- Hidden nodes = 5: Network complexity
- Repeats = 5: Ensemble averaging
- External regressor: Sentiment indicator (z-score normalized)
- Frequency = 252: Trading days per year

Neural Network Architecture



Data Preparation and Scaling

Sentiment Interpolation

- Original sentiment: Lower frequency data
- Target: Daily trading frequency (252 days/year)
- Method: Linear interpolation for alignment

Feature Scaling

$$x_{\text{scaled}} = \frac{x - \mu}{\sigma}$$

Where:

- \bullet $\mu =$ mean of sentiment values
- $\sigma = \text{standard deviation}$
- Z-score normalization for neural network optimization

R Implementation for NNETAR

```
# Fit NNETAR with external regressor
fit <- forecast::nnetar(
         = v_train,
 xreg = as.matrix(xreg_train),
 size = 5,
                   # hidden nodes
 repeats = 5, # ensemble size
         = 15
                   # AR lags
 р
# Generate forecasts
fc <- forecast::forecast(</pre>
 fit.
 xreg = as.matrix(xreg_future_h),
      = 5
                   # forecast horizon
 h
```

See Hyndman & Athanasopoulos (2021).

Train-Test Split Strategy

Time Series Cross-Validation

- Training set: All observations except last 5
- Test set: Last 5 trading days (December 18-24, 2014)
- Validation: Out-of-sample performance assessment

Limitations of Current Approach

- Small test set (n=5) limits statistical robustness
- Single period evaluation may not be representative
- Future work: Implement rolling window validation
- Consider multiple test periods for reliability

Performance Metrics

Accuracy Measures Used

MAE: Mean Absolute Error

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

• RMSE: Root Mean Square Error

$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

• MAPE: Mean Absolute Percentage Error

$$\mathsf{MAPE} = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Actual Forecast Results: December 2014

Date	Actual	Forecast	Error	Error %
18/12/2014	2061.23	2007.03	-54.20	-2.63%
19/12/2014	2070.65	2004.03	-66.62	-3.22%
22/12/2014	2078.54	2002.40	-76.14	-3.66%
23/12/2014	2082.17	2003.69	-78.48	-3.77%
24/12/2014	2081.88	2001.64	-80.24	-3.85%

Observations

- Possibility to improve forecasts
- Limited variance in forecast values

Model Performance Analysis

Performance Metrics Summary

Metric	Training Set	Test Set
MAE	3.72	71.14
RMSE	7.79	71.79
MAPE	0.93%	3.43%
MASE	0.053	1.006

Performance in Context

- Test MAPE of 3.43% falls within literature benchmarks (2-5% for S&P 500)
- Need for calibration refinement

Policy Monitoring Applications

Text Mining for Policy Analysis

- Central bank communications classification
- Regulatory announcement categorization
- Policy impact assessment through document clustering
- Public sentiment tracking from text sources

Implementation Benefits

- Automated document organization
- Scalable to large document collections
- Consistent classification methodology
- Support for evidence-based policy decisions

Financial Market Applications

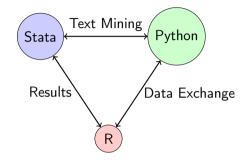
Current Capabilities

- Daily S&P 500 forecasting
- Sentiment integration framework
- Multi-step ahead predictions
- Systematic pattern detection

Future Enhancements

- Bias correction methods
- Dynamic sentiment weighting
- Volatility forecasting
- Portfolio optimization

Software Integration Strategy



Integration Benefits

- Leverage platform-specific strengths
- Stata: Data management, econometrics and time series analysis
- Python: Machine learning and NLP libraries
- R: time series forecasting packages like forecast (see Hyndman & Athanasopoulos) (2021)

Best Practices and Recommendations

Text Mining

- Consistent preprocessing pipeline
- Domain-specific stop words
- Validate cluster coherence
- Document parameter choices

General Recommendations

- Version control for reproducibility
- Set random seeds consistently
- Comprehensive documentation
- Regular validation checks

Forecasting

- Larger test sets when possible
- Multiple validation periods
- Monitor for overfitting
- Consider ensemble methods

Future Research Directions

Methodological Improvements

- Implement rolling window cross-validation
- Develop bias correction procedures
- Optimize sentiment integration weights
- Test alternative neural network architectures

Extended Applications

- Multi-asset forecasting framework
- Real-time sentiment extraction pipeline
- Dynamic cluster number selection
- Integration with high-frequency data

Case 2 Remarks

Key Contributions

- Demonstrated integrated framework combining text mining and forecasting
- Successful implementation across Stata, Python, and R
- Achieved MAPE of 3.43% within literature benchmarks
- Identified systematic patterns for improvement opportunities

Main Takeaways

- Text mining provides structured insights from unstructured data
- NNETAR with sentiment shows promise but requires calibration
- Software integration maximizes analytical capabilities
- Results demonstrate feasibility with room for refinement

Health Economics Literature Mapping

Document Clustering Applications

- Literature organization by themes
- Research gap identification
- Systematic review automation
- Policy recommendation support

Specific Use Cases

- Telemedicine research categorization
- Diabetes intervention studies mapping
- Health technology assessment support
- Clinical guideline development assistance

Executive Summary

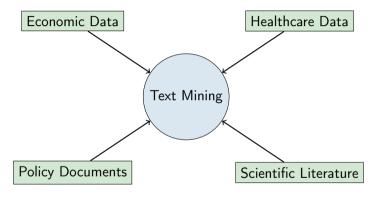
Research Scope

- Unified framework for text mining
- Applications in economics and healthcare
- Stata-Python integration approach
- Real-world case studies with 6,363+ documents

Key Contributions

- Scalable clustering methodology
- Policy monitoring tools
- Literature mapping techniques
- Evidence-based decision support

The Information Challenge in Modern Research



Challenge

Processing exponentially growing unstructured textual data for evidence-based decisions

Motivation: Why Text Mining Matters

Data Explosion:

- 2.5 quintillion bytes daily
- 80% unstructured text
- Doubling every 2 years
- Multiple languages and formats

Decision Needs:

- Real-time insights
- Pattern recognition
- Evidence synthesis
- Predictive analytics

Core Question

How can we transform vast textual resources into actionable intelligence?

See Alexag, 2022, Congruity360, 2023, and Michalowski, 2025

Research Objectives

- Develop Unified Framework
 - Integrate Stata capabilities with Python
 - Create reproducible workflows
- ② Demonstrate Applications
 - Economic text analysis (6,363 headlines)
 - Healthcare literature mapping (800+ articles)
- Provide Practical Tools
 - Policy monitoring systems
 - Literature organization methods
- Enable Evidence-Based Decisions
 - Real-time analysis capabilities
 - Forecasting support

Key Contributions of This Work

Methodological

- TF-IDF implementation
- Cosine distance metrics
- Hierarchical clustering

Technical

- Stata-Python bridge
- Scalable algorithms
- Memory optimization
- Parallel processing

Applied

- Economic forecasting
- Health policy analysis
- Literature mapping
- Trend identification

Text Mining: Core Concepts

Definition (Text Mining)

The process of deriving high-quality information from text through the discovery of patterns and trends using statistical and machine learning techniques

Key Processes:

- Information Retrieval
- Natural Language Processing
- Information Extraction
- Data Mining

Output Types:

- Categorization
- Clustering
- Concept Extraction
- Sentiment Analysis

Document Representation Models

Vector Space Model

Documents are represented as vectors in high-dimensional space where each dimension corresponds to a term

Common Representations:

- Bag of Words: Simple frequency counts
- TF-IDF: Term importance weighting
- Word Embeddings: Dense semantic vectors
- Topic Models: Probabilistic distributions

Choice for This Work

TF-IDF chosen for interpretability and computational efficiency

TF-IDF: Mathematical Foundation

Term Frequency-Inverse Document Frequency

$$\mathsf{TF}\mathsf{-}\mathsf{IDF}(t,d,D) = \mathsf{TF}(t,d) \times \mathsf{IDF}(t,D)$$

Components:

- Term Frequency: $\mathsf{TF}(t,d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}$
- Inverse Document Frequency: $IDF(t, D) = log \frac{|D|}{|\{d \in D: t \in d\}|}$

Properties:

- Higher weight for rare terms across corpus
- Lower weight for common terms
- Normalized by document length

Distance Metrics for Text Clustering

Cosine Similarity:

$$\cos(\theta) = \frac{\mathsf{a} \cdot \mathsf{b}}{||\mathsf{a}|| \cdot ||\mathsf{b}||}$$

Advantages:

- Length invariant
- Range: [0, 1]
- Semantic similarity

Alternative Metrics:

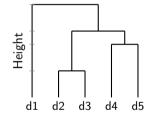
- Euclidean distance
- Jaccard similarity
- Manhattan distance
- Hamming distance

Why Cosine? Best for high-dimensional sparse text data

Hierarchical Clustering: Theoretical Framework

Algorithm Types:

- Agglomerative (Bottom-up):
 - Start with individual documents
 - Merge closest pairs iteratively
 - Stop at desired k clusters
- Divisive (Top-down):
 - Start with all documents
 - Split recursively
 - Less common in practice



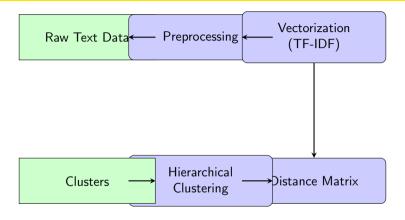
Linkage Methods in Hierarchical Clustering

Method	Distance Calculation
Single	$d(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y)$
Complete	$d(C_i, C_j) = \max_{x \in C_i, y \in C_i} d(x, y)$
Average	$d(C_i, C_j) = \frac{1}{ C_i C_j } \sum_{x \in C_i, y \in C_j} d(x, y)$
Ward	Minimize within-cluster variance

Choice for This Work

Average linkage selected for balanced cluster formation and robustness to outliers

Methodology Overview



Key Innovation

Data Preprocessing Pipeline

- Text Normalization
 - Convert to lowercase
 - Remove special characters
 - Standardize whitespace
- 2 Tokenization
 - Split into words
 - Handle contractions
 - Preserve meaningful punctuation
- Filtering
 - Remove stopwords
 - Filter by frequency
 - Domain-specific exclusions
- Transformation
 - Stemming/Lemmatization
 - N-gram creation
 - Feature selection

Stata Native Implementation

```
* Initialize environment
clear all
set more off
* Import data
import excel "data.xlsx", firstrow clear
* Text preprocessing
gen text clean = lower(text)
replace text_clean = ustrregexra(text_clean, "[^a-z0-9]", "")
replace text_clean = ustrregexra(text_clean. "\s+". " ")
* Install clustering package
ssc install strgroup
* Perform clustering
strgroup text_clean, gen(cluster) threshold(0.3)
* Analyze results
tab cluster
```

Stata-Python Integration

```
python:
import os
os.environ["OMP NUM THREADS"] = "1"
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_distances
import numpy as np
# Get data from Stata
texts = sfi.Data.get(var="text clean")
# Vectorization
vectorizer = TfidfVectorizer(max_features=5000,
                             stop words='english')
X = vectorizer.fit transform(texts)
# Distance matrix
D = cosine distances(X)
# Clustering
model = AgglomerativeClustering(n_clusters=100.
                                metric='precomputed',
                                linkage='average')
labels = model.fit predict(D)
# Return to Stata
sfi.Data.store(var="cluster id", val=labels)
                                                                                 September 25, 2025[0.5em] 2025 Italian Stata Co
 Carlo Drago Università Niccolò Cusano
                                                                                 50 / 66
```

Actual Implementation: String-Based Clustering Approach

Two-Stage Clustering Process

Stage 1: Fuzzy String Matching with strgroup

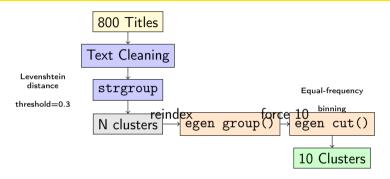
- Uses Levenshtein distance for string similarity
- Groups titles with similarity > threshold (0.3)
- Creates initial variable-sized clusters

Stage 2: Forced Redistribution with egen cut()

- Maps initial clusters to exactly 10 groups
- Equal-frequency binning approach
- Ignores semantic relationships

Meth

String Similarity Clustering: Technical Details



How strgroup Works

- Character-by-character comparison
- Counts insertions, deletions, substitutions

Threshold Impact

- 0.1 = Very similar only
- 0.3 = Moderate similarity
- 0.5 = Loose grouping

Final Distribution

- 80 docs per cluster
- Arbitrary boundaries

SeteMixest, Sense ntics 2025 Italian Stata Co

Carlo Drago Università Niccolò Cusano

Method Comparison: TF-IDF vs strgroup

Aspect	TF-IDF	strgroup
Algorithm	Hierarchical clustering	String matching
Distance	Cosine similarity	Levenshtein distance
Features	Word frequencies	Character sequences
Semantic awareness	Yes	No
Cluster quality	Measurable	Not assessed
Scalability	$O(n^2)$	$O(n^2)$
Python needed	Yes	No
Cluster count	Optimized	Forced to 10
Reproducibility	High	Moderate

When strgroup Works Well

- Detecting duplicates
- Grouping variants (e.g., "Type 2 DM" vs "Type II diabetee")

When strgroup Falls Short

- Semantic clustering needed
- Large vocabularies Large vocabularies Large vocabularies Co

Case Study 2: Telemedicine-Diabetes Literature

Dataset Details

• Domain: Medical research

• Focus: Telemedicine & Diabetes

• Size: 800+ article titles

Source: OpenAlex

Period: 2015-2024

Clinical Relevance

- Growing diabetic population
- Telemedicine expansion
- COVID-19 acceleration
- Policy implications
- Cost-effectiveness

Goal

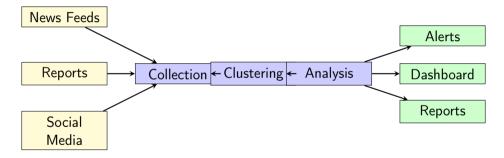
Map research landscape for evidence-based health policy

Case Study 2: Innovative Results from the Analysis

Key Findings

- Digital platforms for diabetes management (e.g. apps and mobile health technologies)
- 2 The relevance of teleconsultation and remote health monitoring
- The impact of the pandemic on telemedicine
- The cost-effectiveness of the technologies and the policy frameworks
- Oigital apps/health in diabetes are becoming increasingly important

Real-Time Policy Monitoring System



Deployment: Central banks, health ministries, research institutions

Forecasting and Trend Analysis

Economic Forecasting:

- Market sentiment indicators
- Crisis early warning
- Policy impact prediction
- Sector rotation signals

Health Trend Analysis:

- Research focus shifts
- Technology adoption curves
- Treatment effectiveness
- Emerging health threats

Forecasting and Health Trend Analysis: The Added Value of Clustering

Results of clustering can be used as new variables in economic forecasting and in health trend analysis

Literature Mapping: Performance Improvements

Efficiency Gains

- Coverage: increase
 - Broader capture of relevant works
 - Reduced selection bias
- Review Time: reduction
 - Automated screening/classification
 - Faster synthesis in growing domains

Quality & Cost Impact

- Costs: reduction
 - Efficiency outweighs computational expenses
 - Lower manual labor requirements
- Accuracy: improvement
 - Structured literature organization
 - Discovery of hidden connections

Overall Impact

Literature mapping substantially enhances efficiency and comprehensiveness while offering moderate reliability improvements, justifying integration into evidence-synthesis practices

See Marzi et al. 2025

Future Research Directions

Methodological:

- Dynamic clustering
- Multi-lingual support
- Cross-domain transfer
- Causal inference

Applied:

- Real-time streaming
- Predictive modeling
- Automated reporting

Limitations and Open Challenges

- Scalability Limits
 - Memory constraints
- Interpretation Challenges
 - Cluster naming
 - Boundary cases
- Omain Adaptation
 - Parameter tuning
 - Feature engineering
- Validation Complexity
 - Ground truth absence
 - Ground truth absence
 - Subjective evaluation

Key Takeaways

- Unified Framework Success
 - Stata-Python (and R) integration proven effective
 - Applicable across diverse domains
- Practical Impact Demonstrated
 - Time reduction in analysis
 - Improved coverage and accuracy
- Omain Expertise Critical
 - One size doesn't fit all
 - Expert validation essential

Bottom Line

Text mining transforms information overload into strategic advantage

Conclusions

Text Mining and Hierarchical Clustering:

- Bridging the Gap Between Data and Decisions
- Robust methodology for text clustering
- Successful applications in economics and healthcare
- Practical implementation in Stata environment
- Real-world impact on policy and research

Final Message

The future of evidence-based decision making lies in intelligent text analysis

- Alexaq. (2022, July 21). Data is expected to double every two years for the next decade. Quartz.
 - https://qz.com/472292/data-is-expected-to-double-every-two-years-for-the-next-decade
- 2 Congruity360. (2023, September 25). The future of data: Unstructured data statistics you should know. Congruity360 Blog. https://www.congruity360.com/blog/the-future-of-data-unstructured-data-statistics-you-should-know/
- Demner-Fushman, D., Chapman, W. W., & McDonald, C. J. (2009). What can natural language processing do for clinical decision support? *Journal of Biomedical Informatics*, 42(5), 760–772.
- Orago, C. (2024, May). Text mining in economics and health economics using Stata. In Italian Stata Users' Group Meetings 2024 (No. 10). Stata Users Group.
- Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. *Political Analysis*, 21(3), 267–297.
- Haghish, E. F. (2019). Seamless interactive language interfacing between R and Stata.

 The Stata Journal, 19(1), 61-82.

 September 25, 2025[0.5em] 2025 Italian Stata Co

- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning (2nd ed.). Springer.
- ② Huang, A. (2008). Similarity measures for text document clustering. In *Proceedings of the New Zealand Computer Science Research Student Conference*, 49–56.
- 4 Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts: Melbourne, Australia.
- 4 Johnson, S. C. (1967). Hierarchical clustering schemes. *Psychometrika*, 32(3), 241–254.
- Jurafsky, D., & Martin, J. H. (2025). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition with Language Models (3rd ed.). Online manuscript, Stanford University.
- Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
- Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. MIT Press.

- Marzi, G., Balzano, M., Caputo, A., & Pellegrini, M. M. (2025). Guidelines for bibliometric-systematic literature reviews: 10 steps to combine analysis, synthesis and theory development. *International Journal of Management Reviews*, 27(1), 81–103.
- Michalowski, M. (2025, July 10). How much data is generated every day in 2025? Spacelift Blog. https://spacelift.io/blog/how-much-data-is-generated-every-day
- Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata (3rd ed.). Stata Press.
- Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., Albertson, B., & Rand, D. G. (2014). Structural topic models for open-ended survey responses. *American Journal of Political Science*, 58(4), 1064–1082.
- Sosenberg, A., & Hirschberg, J. (2007). V-Measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 410–420.

- Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.
- Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11–21.
- 3 Srivastava, A. N., & Sahami, M. (Eds.). (2009). Text Mining: Classification, Clustering, and Applications. CRC Press. ISBN: 9781420059458.
- Strehl, A., Ghosh, J., & Mooney, R. (2000). Impact of similarity measures on web-page clustering. In Workshop on Artificial Intelligence for Web Search, 58–64. AAAI.
- Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168.
- Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. *Journal of the American Statistical Association*, *58*(301), 236–244.
- Vu, R., & Wunsch, D. (2008). Clustering. Wiley-IEEE Press.
- 3 Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. *Neurocomputing*, 50, 159–175.