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What’s this talk about?

Two-part models, hurdle models, and zero-inflated models are
frequently used in applied research

This talk shows that they all have a surprising robustness
property

The are robust to endogeneity

Robustness makes estimation much easier

No instrument needed

1 / 27



What’s this talk about?

Two-part models, hurdle models, and zero-inflated models are
frequently used in applied research

This talk shows that they all have a surprising robustness
property

The are robust to endogeneity

Robustness makes estimation much easier

No instrument needed

1 / 27



What’s this talk about?

Two-part models, hurdle models, and zero-inflated models are
frequently used in applied research

This talk shows that they all have a surprising robustness
property

The are robust to endogeneity

Robustness makes estimation much easier

No instrument needed

1 / 27



Many outcomes of interest have mass points on a boundary and
are smoothly distributed over a large interior set

Hours worked has a mass point at zero and is smoothly
distributed over strictly positive values
Expenditures on health care, Deb and Norton (2018)

Three models (or approaches) arose to account for the apparent
difference between the distribution of the outcome at the
boundary and over the interior

Two-part models: Duan, Manning, Morris, and Newhouse
(1983), Duan, Manning, Morris, and Newhouse (1984)
Hurdle models: Cragg (1971) and Mullahy (1986)
Zero-inflated (With-Zeros) models:Mullahy (1986) and Lambert
(1992)
Standard tools: see Cameron and Trivedi (2005), Winkelmann
(2008), and Wooldridge (2010)
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Zero-lower-limit models

The cannonical case is the zero-lower-limit model, y ≥ 0

y = s(x, ε)G (x, η)

where

x are observed covariates
ε and η are random disturbances
s(x, ε) ∈ {0, 1} is the selection process,
G (x, η) is the the main process

When G (x, η) > 0 we have two-part model or a hurdle model

When G (x, η) ≥ 0 we have zero-inflated (or with zeros) model

3 / 27



Two-part models and Hurdle models

y = s(x, ε)G (x, η)

The two-part model was motivated as a flexible model for E[y |x]

It allowed the zeros to come from a different process than the
one that generates the outcome over the interior values

Hurdle models were motivated by the idea of observing a zero
until a hurdle was crossed
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Zero-inflated/With-zeros models

y = s(x, ε)G (x, η)

Zero-inflated and with-zeros models were motivated by a
mixture process

G (x, η) ≥ 0 contributes some of the zeros
But there are too many zeros in the data to be explained by the
distribution assumed for G (x, η)
So we observe either a zero or G (x, η) ≥ 0 with probability
determined by s(x, ε)
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Value table

Table: y = s(x, ε)G (x, η) value table

G (x, η) = 0 G (x, η) > 0
s(x, ε) = 0 0 0
s(x, ε) = 1 0 G (x, η)

TPMs and HMs only include the right-hand column in which
G (x, η) > 0

ZIMs include both columns, because G (x, η) ≥ 0
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Endogeneity?

y = s(x, ε)G (x, η)

If ε and η are correlated, there is an endogeneity problem

The original proposers of the TPM claimed that the TPM was
robust to endogeneity, but this was rejected by most
econometricians

The claim of robustness led to the cake debates (Hay and Olsen
(1984), Duan et al. (1984))
This debate went nowhere, because the debate was over
whether one log-likelihood was a special case of another
Wrong way to settle an identification debate
Section 17.6 of Wooldridge (2010) is representative of the
modern position
He assumes that exogeneity is required and derives an estimator
for the case of endogeneity
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TPMs and HMs are robust

Both TPMs and HMs restrict G (x, η) > 0, so only the
right-hand column of values for y is possible.

Drukker (2017) used iterated expectations to show that E[y |x] is
identified when s() and G () are not mean independent, after
conditioning on x.

E[y |x] = E[s(x, ε)G (x, η)|x]

= E[s(x, ε)G (x, η)|x, s(x, ε) = 0]Pr[s(x, ε) = 0|x]

+ E[s(x, ε)G (x, η)|x, s(x, ε) = 1]Pr[s(x, ε) = 1|x]

= E[0 G (x, η)|x, s(x, ε) = 0]Pr[s(x, ε) = 0|x]

+ E[1 G (x, η)|x, s(x, ε) = 1]Pr[s(x, ε) = 1|x]

= E[G (x, η)|x, s(x, ε) = 1]Pr[s(x, ε) = 1|x] (1)
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Estimable robust TPMs and HMs

E[y |x] = E[G (x, η)|x, s(x, ε) = 1] Pr[s(x, ε) = 1|x]

The data on y nonparametrically identify Pr[s(x, ε) = 1] and
E[G (x, η)|x, s(x, ε) = 1]

Pr[s(x, ε) = 1]:
When y = 0, s(x, ε) = 0
When y > 0, s(x, ε) = 1
E[G (x, η)|x, s(x, ε) = 1]:
When y > 0, s(x, ε) = 1 and y = G (x, η),
E[y |x, s = 1] = E[G (x, η)|x, s(x, ε) = 1]
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Estimable robust TPMs and HMs

E[y |x] = E[G (x, η)|x, s(x, ε) = 1]Pr[s(x, ε) = 1|x]

No exclusion restriction is required to identify E[y |x].

Can recover DGP parameters in s(x, ε)

Cannot recover DGP parameters in G (x, η), estimate parameters
of misspecified model

Trade off:
Estimate E[y |x] without an exclusion restriction in exchange for
not estimating DGP parameters in G (x, η)

Inference about E[y |x] is causal
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Why is it robust?

The feature of the derivation that is essential to this robustness
result is that E[G (x, η)|x, s(x, ε) = 0] is not needed to compute
E[y |x]

This result is analogous to the robustness result for estimating
the averge treatment effect conditional on the treated

E[y1i |ti = 1]− E[y0i |ti = 1]
Only need conditional mean independence for E[y0i |ti = 1]

The data on y do not nonparametrically identify
E[G (x, η)|x, s(x, ε) = 0]

If E[G (x, η)|x, s(x, ε) = 0] was required, we would need to
impose functional form assumptions to identify it
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Why is it robust? (Continued)

E[G (x, η)|x, s(x, ε) = 0] is not needed because the boundary
values are actual outcome values and not just indicators for
censoring

If the observations indicated censoring instead of being actual
outcome values, we could not model y as the product of s(x, ε)
and G (x, η) as

y = s(x, ε)G (x, η)

This discussion formally justifies the assertation of Duan,
Manning, Morris, and Newhouse (1983) and Duan, Manning,
Morris, and Newhouse (1984) that the TPM is robust because it
models the observed data

Essentialy, Drukker (2017) ended the “cake debate” by showing
that the TPM is robust.
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More identification results

I have formal identification results for

Zero-lower-limit ZIMs under endogneity
Two-limit TPMs/HMs under endogneity
Two-limit ZIMs under endogneity

For time, concentrate on cake-debate version of zero-lower-limit
TPM.
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Cake-debate model

The cake-debate model disccussed in Duan et al. (1984), Hay and
Olsen (1984), and section 17.6.3 of Wooldridge (2010) is

s(x, ε) =

{
1 if xγ + ε > 0

0 otherwise
(2)

G (x, η) = exp(xβ + η) (3)

y = s(x, ε)G (x, η) (4)(
ε
η

)
∼ N

((
0
0

)
,

(
1 ρση
ρση σ2

η

))
(5)
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A robust TPM estimator for cake-debate model

A TPM estimator for the parameters of the cake-debate model
proceeds by

1 Estimating γ from a probit model of s on x

This functional form is justified by the normality of ε

2 Estimating β̃ by a quasi maximum likelihood estimator of a
poisson model of y on x conditional on s = 1

This functional form takes more work, but I justify it below
Note that β̃ differs from β
The endogeneity causes the estimable parameters to differ from
the data-generating process parameters
The estimable parameters are exactly the parameters that we
need to estimate E[y |x]

3 Estimating E[y |x] by Φ(xγ̂) exp(x̂̃β + (xγ̂)2α̂1 + (xγ̂)3α̂2)
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Justifying the cake-debate functional form

Recall that we need to estimate E[G (x, η)|x s(x, ε) = 1] which is
the same as E[y |x s(x, ε) = 1], because y = G () when s() = 1

Given the exponential mean model for G () in the cake-debate
model, the TPM is going to use an exponential mean for G ()
conditional on s() = 1
Given the structure of the model, do there exist β̃ for which
E[G (x, η)|x s(x, ε) = 1] = exp(xβ̃) ?
Yes, sort of
In an appendix, I show that

E[exp(xβ + η)|x, ε > −xγ] = exp(xβ + q̃)

where

q̃ = σ2
ν/2 + ln

{
Φ[(ρσν + xγ)]

[1− Φ(−xγ)]

}
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Plots of

ln

{
Φ[(ρσν + x)]

[1− Φ(−x)]

}
for values of ρ and σν
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Plots of correction terms and predicted values from third-order
polynomial in x
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Example : cakep

. cakep expend ages phealth
Iteration 0: GMM criterion Q(b) = 2.381e-21
Iteration 1: GMM criterion Q(b) = 1.290e-32
Cake model Number of obs = 2,000
Selection model: Probit Equal to zero = 946
Interior model: Poisson Greater than zero = 1,054

Robust
expend Coef. Std. Err. z P>|z| [95% Conf. Interval]

select
ages .4843445 .0616662 7.85 0.000 .363481 .6052081

phealth -.32653 .0483122 -6.76 0.000 -.4212202 -.2318399
_cons .0537728 .035187 1.53 0.126 -.0151923 .122738

interior
ages .5183393 .1932158 2.68 0.007 .1396432 .8970354

phealth .7858247 .1460173 5.38 0.000 .4996361 1.072013
_cons .4459145 .0919501 4.85 0.000 .2656957 .6261333

poly2
_cons 1.071851 .7394328 1.45 0.147 -.3774107 2.521113

poly3
_cons -1.413192 1.905859 -0.74 0.458 -5.148607 2.322222
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Example : cakep

. cakep expend ages phealth, polyorder(2)
Iteration 0: GMM criterion Q(b) = 2.228e-21
Iteration 1: GMM criterion Q(b) = 3.444e-33
Cake model Number of obs = 2,000
Selection model: Probit Equal to zero = 946
Interior model: Poisson Greater than zero = 1,054

Robust
expend Coef. Std. Err. z P>|z| [95% Conf. Interval]

select
ages .4843445 .0616662 7.85 0.000 .363481 .6052081

phealth -.32653 .0483122 -6.76 0.000 -.4212202 -.2318399
_cons .0537728 .035187 1.53 0.126 -.0151923 .122738

interior
ages .3901893 .1167197 3.34 0.001 .1614229 .6189557

phealth .8792678 .1028623 8.55 0.000 .6776613 1.080874
_cons .4476793 .0915416 4.89 0.000 .2682611 .6270974

poly2
_cons .8301923 .5688684 1.46 0.144 -.2847693 1.945154
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Monte Carlo with discrete covariates

A Monte Carlo simulation evaluates the estimation and inference
properties of an estimator in finite samples

In parametric models, this usually involves comparing point
estimates against DGP parameters
The object of interest in a TPM is E[y |x], or counter-factual
changes in E[y |x]
So the place to start evaluating a TPM estimator is its
performance for E[y |x]
The trick to doing this evaluation is to generate the data using
discrete covariates and compare the TPM estimator’s estimates
of E[y |x] with the nonparametric cell-mean estimates (NP
estimates)
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MC for cakep with discrete

. use cake_simd_v2

. summarize cm_1* cm_2* cm_3*, sep(4)

Variable Obs Mean Std. Dev. Min Max

cm_1_t 2,000 .6099153 0 .6099153 .6099153
cm_1_b 2,000 .6070482 .0726858 .3848774 .8592353

cm_1_se 2,000 .0709065 .0128669 .0428758 .2142889
cm_1_r 2,000 .0645 .2457029 0 1

cm_2_t 2,000 .8341332 0 .8341332 .8341332
cm_2_b 2,000 .8331135 .0825487 .5642096 1.168678

cm_2_se 2,000 .0794897 .0129875 .0498566 .1683961
cm_2_r 2,000 .0635 .2439211 0 1

cm_3_t 2,000 1.119697 0 1.119697 1.119697
cm_3_b 2,000 1.116043 .1235469 .7047904 1.58126

cm_3_se 2,000 .1219146 .0236314 .0673789 .2991421
cm_3_r 2,000 .067 .2500845 0 1
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MC for cakep with discrete

. summarize cm_4* cm_5* cm_6*, sep(4)

Variable Obs Mean Std. Dev. Min Max

cm_4_t 2,000 .977028 0 .977028 .977028
cm_4_b 2,000 .9748809 .084304 .6899576 1.343455

cm_4_se 2,000 .084854 .012212 .0552322 .1796997
cm_4_r 2,000 .0505 .2190291 0 1

cm_5_t 2,000 1.382903 0 1.382903 1.382903
cm_5_b 2,000 1.385858 .0805017 1.170033 1.704497

cm_5_se 2,000 .0792886 .0096752 .0607276 .1607804
cm_5_r 2,000 .062 .2412159 0 1

cm_6_t 2,000 1.923175 0 1.923175 1.923175
cm_6_b 2,000 1.939031 .1599157 1.449924 2.505669

cm_6_se 2,000 .1559157 .0278615 .0955437 .3776995
cm_6_r 2,000 .055 .2280373 0 1
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MC for cakep with discrete

. summarize cm_7* cm_8* cm_9*, sep(4)

Variable Obs Mean Std. Dev. Min Max

cm_7_t 2,000 1.257671 0 1.257671 1.257671
cm_7_b 2,000 1.255832 .1074974 .9523147 1.693319

cm_7_se 2,000 .1073283 .0195462 .0692952 .2948076
cm_7_r 2,000 .057 .2319006 0 1

cm_8_t 2,000 1.810889 0 1.810889 1.810889
cm_8_b 2,000 1.810946 .124859 1.447053 2.279219

cm_8_se 2,000 .1228508 .0170666 .0881146 .2383234
cm_8_r 2,000 .0555 .2290109 0 1

cm_9_t 2,000 2.568117 0 2.568117 2.568117
cm_9_b 2,000 2.577586 .195092 1.954408 3.511249

cm_9_se 2,000 .1890343 .0292786 .1280508 .4601372
cm_9_r 2,000 .0565 .2309425 0 1
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DGP details

1 The two discrete covariates were generated from two correlated
normal random variables

2 The selection process is generated from

s = x1γ1 + x2γ2 + ε > 0

where ε is a standard normal.
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DGP details

1 The main process G is generated as a Gamma random variable
with parameters

a = exp(x1βa1 + x2βa2 + βa0 + .5η)

b = exp(x1βb1 + x2βb2 + βb0 + .5η)

η is a normal random variable that is correlated with ε
The mean of G conditional on x1, x2, and η is

exp[x1(βa1 + βb1) + x2(βa2 + βb2) + (βa0 + βb0) + η]

The mean of G () has a functional form covered the cake-debate
TPM, but it is not Poisson
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What coming up?

Extend cakep to handle other TPMs and HMs

Rename it when it does more that cake models

Extend command that currently does TPM version of fractional
models

Extend command that currently does zero-inflated poisson
models to other ZIMs

Write command that for fractional ZIMs
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