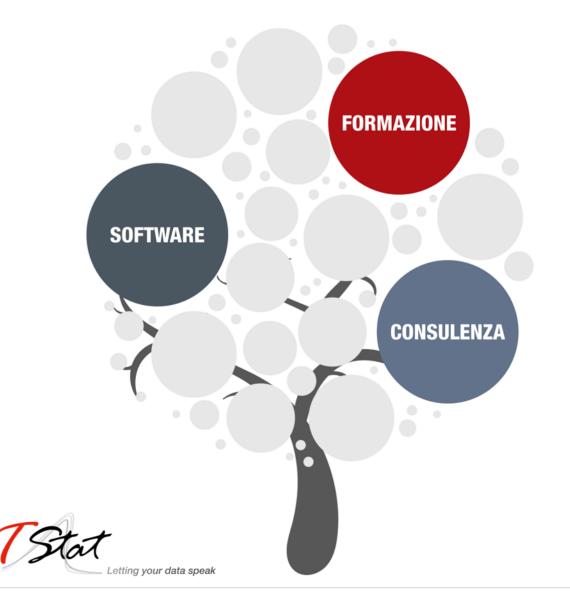
Estimation of a latent network via LASSO regression using Stata

Giovanni Cerulli IRCrES-CNR, Rome

XVI Italian Stata Users Group Meeting Firenze, 26-27 September 2019

10.45 - 12.00 SESSION II COMMUNITY CONTRIBUTED, I



XVI Convegno Italiano degli Utenti di Stata Firenze, 26 Settembre 2019

Estimation of a latent network via LASSO regression using Stata

Giovanni Cerulli IRCrES-CNR

- Estimating a (latent) network among N units characterized by p covariates without any prior knowledge about units' links
- This problem is high-dimensional, that is p>>N ==> the LASSO approach (*penalized regression*) is suitable for this purpose
- We implement a Stata routine to easily estimate the network using the **LASSOPACK** package in Stata

Setting the stage (with an example)

- Units ===> N Banks
- Features ===> set of *p* bank riskiness indicators
- No prior knowledge of the linkages
- Standard regression unsuited for high-dimensional data
- Lasso regression suitable
- Stata implementation

			Risk1	Risk2	Risk3
Starting dataset	H im -	Bank1	24	34	23
		Bank2	45	76	76
	3561	Bank3	76	37	12
		Bank4	25	87	87

		Bank1	Bank2	Bank3	Bank4	Bank5
Transposed	Risk1	24	45	76	25	24
dataset	Risk2	34	76	37	87	34
ualasel	Risk3	23	76	12	87	23

Naïve vs. LASSO networks

	Bank1	Bank2	Bank3	Bank4	Bank5
Risk1	24	45	76	25	24
Risk2	34	76	37	87	34
Risk3	23	76	12	87	23

Naïve network =====> BANKS' CORRELATION MATRIX

- 1. Univariate relationship (no interdependences)
- 2. All cells are full (no netweok sparsness)

To overcome 1. and 2.

LASSO network =====> BANKS' HIGH-DIMENSIONAL REGRESSION MATRIX

- 1. Multivariate relationship (yes to «interdependences»)
- 2. Some network relationships (yes to «network sparsness»)

Number of rows N << Number of columns p

The LASSO regression

Motivation for LASSO regression

Consider the standard linear model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_p x_{pi} + \varepsilon_i$$

- $\circ\,$ The true specification is unknown
- Which regressors are "really" important?

 \circ Including too many regressors leads to **overfitting**: good in-sample fit (high R^2), but bad *out-of-sample* prediction

 \circ Including too few regressors leads to **omitted variable bias**

How to find the **correct model specification**?

Model selection is a general econometric issue, but becomes even more challenging when the data are **high-dimensional**:

Data are **high-dimensional** if *p* is close to or larger than *n*

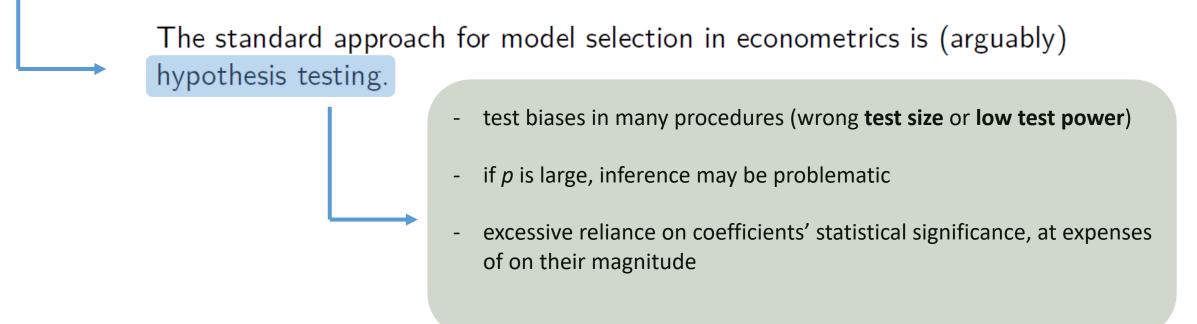
 \circ If p > n, the linear model is not identified

 \circ If p = n, perfect fit. The model is meaningless

 \circ If p < n but large, overfitting is likely

Model selection (II)

Model selection



Example: Cross-country regressions, where we have only small number of countries, but thousands of macro variables.

Model selection (III)

Consider again the linear model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_p x_{pi} + \varepsilon_i$$

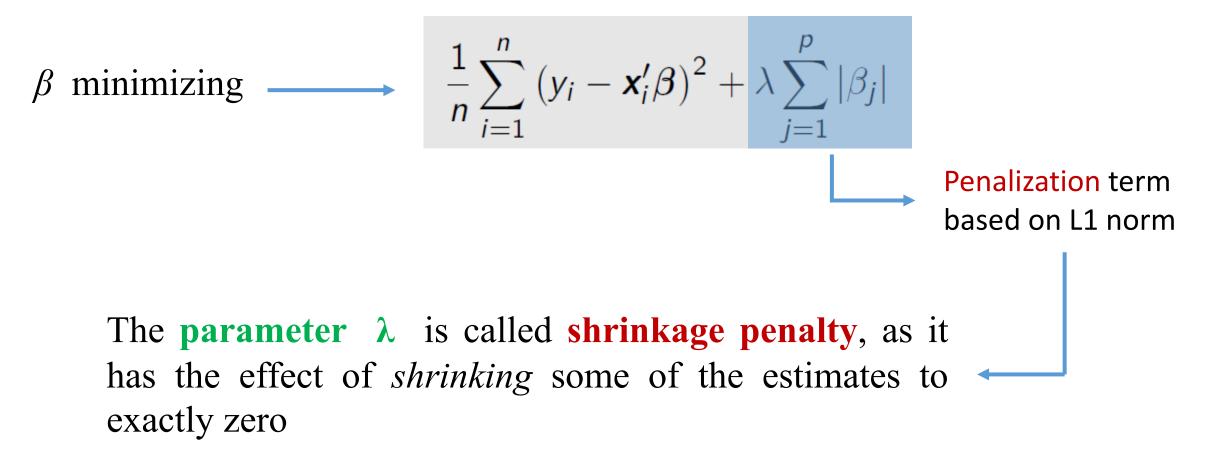
Only *s* out of *p* regressors belong to the model, i.e.:

$$s := \sum_{j=1}^{p} \mathbb{1}\{\beta_j \neq 0\} \ll n$$

In other words: most of the true coefficients β_j are actually zero. But we don't know which ones are zeros and which ones aren't.

The LASSO solution (I)

The **LASSO** (Least Absolute Shrinkage and Selection Operator), minimizes this objective function:



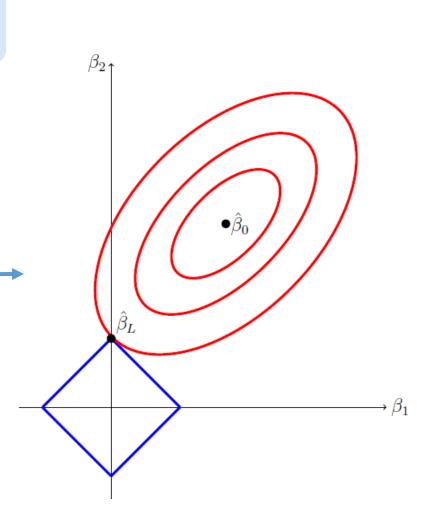
The LASSO solution (II)

The LASSO estimator can also be written as

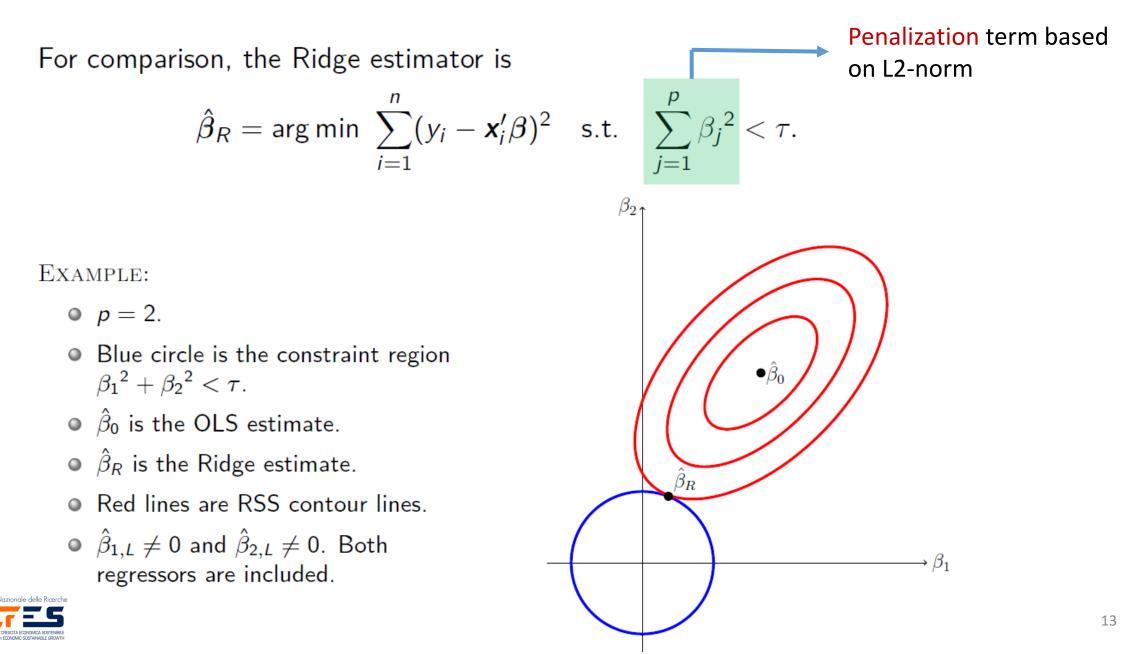
$$\hat{\boldsymbol{\beta}}_L = \arg\min \sum_{i=1}^n (y_i - \boldsymbol{x}_i' \boldsymbol{\beta})^2 \quad \text{s.t.} \quad \sum_{j=1}^p |\beta_j| < \tau.$$

EXAMPLE:

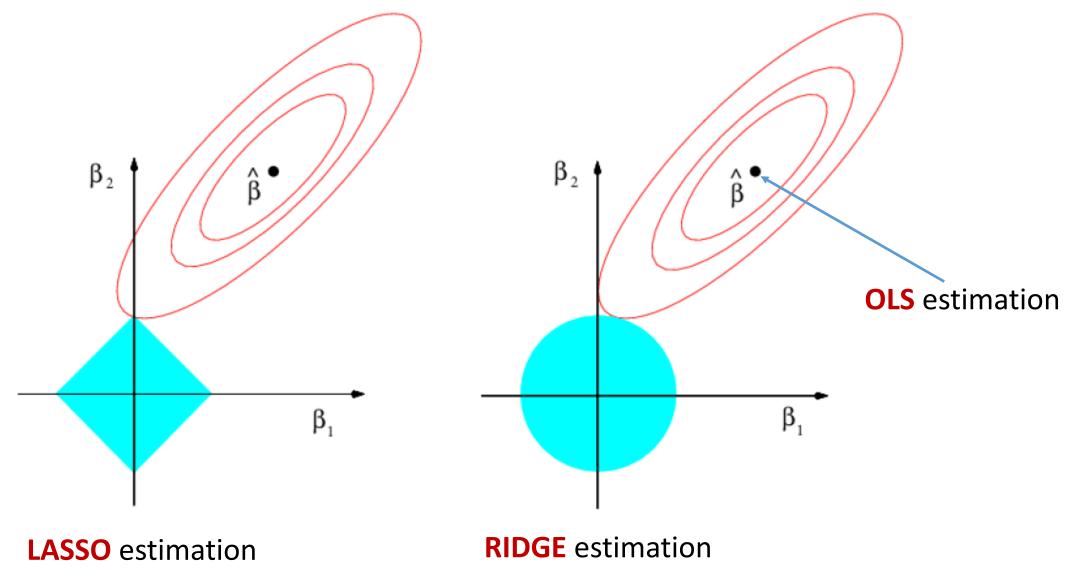
- *p* = 2.
- Blue diamond is the constraint region |β₁| + |β₂| < τ.
- $\hat{\beta}_0$ is the OLS estimate.
- $\hat{\beta}_L$ is the LASSO estimate.
- Red lines are RSS contour lines.
- $\hat{\beta}_{1,L} = 0$ implying that the LASSO omits regressor 1 from the model.



The **RIDGE** estimator



Comparison among OLS, LASSO, RIDGE estimates



Generalized Shrinkage Regression

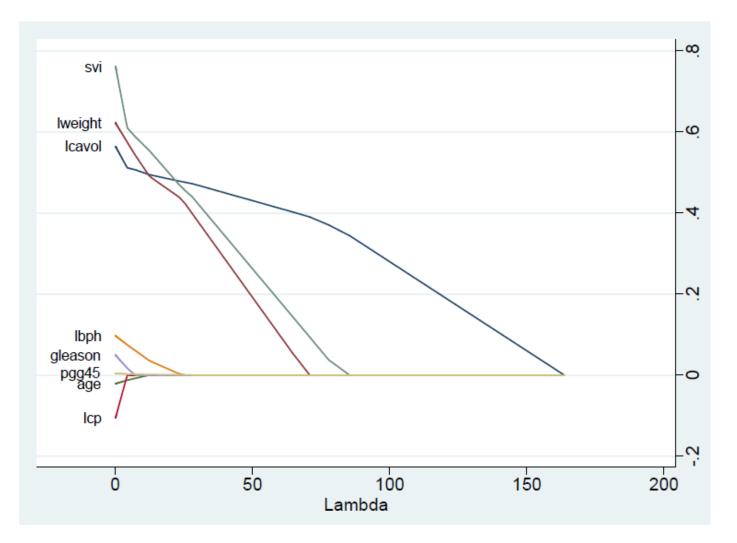
The Lasso and Ridge regression are specific cases of the **Generalized Shrinkage Regression** we obtain by varying *q* into this equation (thus obtaining **different coefficients contours**):

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}_q \ge 0$$

$$q = 4 \qquad q = 2 \qquad q = 1 \qquad q = 0.5 \qquad q = 0.1$$

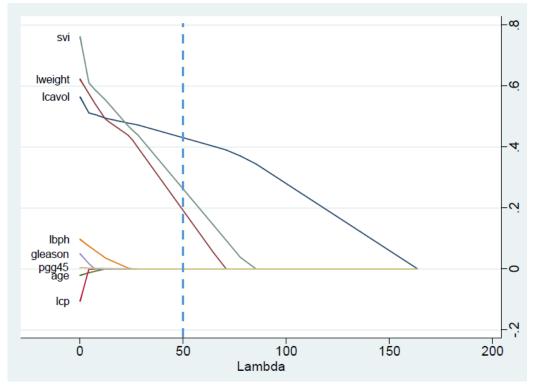
$$(q = 4) \qquad (q = 2) \qquad (q = 1) \qquad (q = 0.5) \qquad (q = 0.1) \qquad (q = 0.5) \qquad (q = 0.5) \qquad (q = 0.1) \qquad (q = 0.5) \qquad (q = 0$$

The LASSO solution path

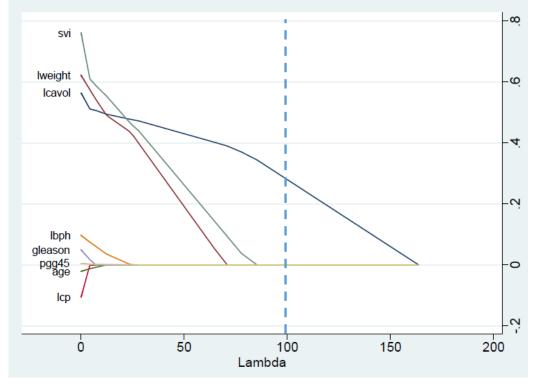


The LASSO coefficient path is a continuous and piecewise linear function of λ , with changes in slope where variables enter/leave the active set

The LASSO solution via different values of λ



For $\lambda = 50$, 3 out of 8 covariates are left



For $\lambda = 100$, 1 out of 8 covariates are left

NOTE:

• If $\lambda = 0$, all 8 covariates are left in the model == > **OLS** solution

 \circ If *λ* → ∞, no variables are left in the model

How do we select λ ?

The optimal λ minimizes the **out-of-sample** (or **test**) **mean prediction error**

Three methods for doing this:

o Data-driven

Based on **cross-validation**, i.e. re-sample the data and find λ that optimizes out-of-sample prediction. Implemented in Stata via **cvlasso**

o Rigorous penalization

Belloni *et al.* (2012, *Econometrica*) develop theory and feasible algorithms for finding the optimal λ under heteroskedastic and non-Gaussian errors. Implemented in Stata via **rlasso**.

• Information criteria

Select the value of λ that minimizes information criterion (AIC, AICc, BIC or EBIC). Implemented in Stata via lasso2

Network estimation via LASSO

 A_{21}

 A_{31}

$$Bank_{1} = A_{12} \cdot Bank_{2} + A_{13} \cdot Bank_{3} + A_{14} \cdot Bank_{4} + e_{1}$$

$$Bank_{2} = A_{21} \cdot Bank_{1} + A_{23} \cdot Bank_{3} + A_{24} \cdot Bank_{4} + e_{2}$$

$$Bank_{3} = A_{31} \cdot Bank_{1} + A_{33} \cdot Bank_{3} + A_{34} \cdot Bank_{4} + e_{3}$$

$$Bank_{4} = A_{41} \cdot Bank_{1} + A_{42} \cdot Bank_{2} + A_{43} \cdot Bank_{3} + e_{4}$$

3 Risk indicators

 A_{14}

LASSO NETWORK

$$\begin{array}{cccc} A_{12} & A_{13} & A_{14} \\ A_{22} & A_{23} & A_{24} \\ A_{32} & - & A_{34} \\ A_{42} & A_{43} & - \end{array} \right)$$

Simulating a network estimation via lassonet

```
* Simulation of a network estimation
preserve
global N nodes=15 // number of nodes
global p_features=3 // number of geatures by node
* Estimate the network
lassonet , nodes($N_nodes) features($p_features) seed(1010)
save network , replace
restore
use network , clear
```


Simulating a network estimation via lassonet

lassonet ouptut

	names	x1	x2	х3	x4	x5	x6	x7	x8	x9	×10	x11	x12	x13	x14	x15
1	×1	0	.07	0	0	13	42	.25	0	0	27	0	0	0	.45	0
2	x2	.13	0	0	.48	0	12	.35	0	0	0	0	.31	0	0	0
3	х3	0	0	0	0	.02	0	0	0	0	.16	29	0	.1	06	36
4	x4	.04	.15	0	0	0	07	.11	0	0	0	0	.08	0	0	0
5	x5	36	0	.08	0	0	.33	0	0	0	.81	0	0	0	9	0
6	x6	08	13	0	0	.11	0	22	0	0	.04	0	0	0	1	0
7	x7	.03	.14	0	.52	0	14	0	0	0	0	0	.13	0	0	0
8	x8	0	0	.11	0	0	0	0	0	3.85	0	0	.17	2.25	0	0
9	x9	0	0	.13	.02	0	0	0	.1	0	0	11	.04	.12	0	09
10	x10	03	0	.26	0	.07	0	0	0	0	0	34	0	0	2	27
11	x11	0	0	15	0	0	0	0	0	0	22	0	0	0	.02	.16
12	x12	0	.38	0	1.31	0	19	.49	.04	.04	0	0	0	0	0	0
13	x13	0	0	.04	0	0	0	0	.1	.62	0	15	.01	0	0	03
14	x14	.12	0	05	0	09	12	0	0	0	29	.12	0	0	0	.06
15	x15	0	0	24	0	0	0	0	0	0	07	.31	0	02	.19	0

Conclusions

- Machine Learning is revolutionizing statistical applications
- The possibility to estimate a network without knowing nodes' linkages was unimaginable just few years ago
- We proposed a model and Stata implementation to this purpose via the lassonet command
- We foresee to shortly provide the community with a Stata command to use with any possible dataset

