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Abstract. This article presents a Stata program (sensatt) that implements
the sensitivity analysis for matching estimators proposed by Ichino, Mealli and
Nannicini (2007). The analysis simulates a potential confounder in order to as-
sess the robustness of the estimated treatment effects with respect to deviations
from the Conditional Independence Assumption (CIA). The program makes use
of the commands for propensity-score matching (att*) developed by Becker and
Ichino (2002). An example is given by using the National Supported Work (NSW)
demonstration, widely known in the program evaluation literature.
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1 Introduction

During last years, the utilization of matching estimators in evaluation studies of treat-
ment effects has skyrocketed. In particular, two factors have favored the diffusion of
these methods in empirical works. First, the findings by Dehejia and Wahba (1999,
2002) about the promising performance of propensity-score matching estimators in ob-
servational studies have triggered the attention of theoretical and empirical researchers
to these techniques.1 Even though Dehejia and Wahba make it clear that these esti-
mators do not represent a “magic bullet” and the later literature shows that they are
effective only in data contexts satisfying particular conditions, their utilization is now
widespread in applied studies. Secondly, a lot of free user-friendly software routines
have been made available in order to apply matching estimators. In Stata, Becker and
Ichino (2002) provide a suite of commands (attnd, attnw, atts, attr, and attk) that
carry out different propensity-score matching estimators of the Average Treatment ef-
fect on the Treated (ATT); Leuven and Sianesi (2003) develop a program (psmatch2)
that implements full Mahalanobis matching and a variety of propensity-score matching
methods; Abadie et al. (2004) develop a command (nnmatch) that implements nearest
neighbor matching estimators for average treatment effects.

1Using data from the influential study by LaLonde (1986), Dehejia and Wahba (1999) show that
propensity-score matching estimates are closer to the experimental benchmark than the ones produced
by traditional evaluation methods. This apparent “propensity score paradox” (i.e., the fact that these
estimators seem to perform better with respect to alternative non-experimental methods that rely on
the same identification assumptions) have contributed to the recent popularity of matching in empirical
studies, even though Smith and Todd (2005) have subsequently shown that matching estimators work
well only for a very specific subsample of the LaLonde data, casting doubts on the generalizability of
the results by Dehejia and Wahba. See also, among others, Heckman, Ichimura and Todd (1997, 1998),
Imbens (2004) and Michalopoulos, Bloom and Hill (2004).
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As a combined result of the above two factors, matching estimators are now widely
known and easy to use. And, perhaps, too many users adopt them without carefully dis-
cussing whether the conditions for their application are met, or how robust the derived
estimates are with respect to possible deviations from these conditions. In particular,
matching relies on the assumption of conditional independence of potential outcomes
and treatment assignment given observables, i.e., on the fact that selection into treat-
ment is only driven by factors that the researcher can observe. This is the so-called
Conditional Independence Assumption (CIA), also known as “unconfoundedness” or
“selection on observables” in the program evaluation literature.2 Moreover, Heckman,
Ichimura and Todd (1997) show that, in order for matching estimators to reduce bias
as conventionally measured, it is crucial that: 1) the same questionnaire be used for
both the treated and control units, 2) the non-experimental comparison group be drawn
from the same local labor market with respect to the treated.3. In data contexts where
the CIA appears plausible and the above conditions are met, matching may be a better
strategy to control for observables than regression modeling (assuming that there is no
credible source of exogenous variation), since it does not rely on linearity and allows
to check whether it exists a substantial overlap of the distributions of covariates in the
treatment and comparison groups. However, every evaluation strategy making use of
matching estimators should contain some of the following steps (possibly, all of them).

First step. To use data where the treated and control units come from the same local
market and are asked the same set of questions.

Second step. To discuss (carefully) why the CIA should be verified in the specific
context of the evaluation question at hand.

Third step. To test (indirectly) whether the available empirical evidence casts doubt
on the plausibility of the CIA.4

Fourth step. To inspect how the observations are distributed across the propensity-
score common support and how sensitive the estimates are with respect to the
utilization of observations in the tails of the common support.5

Fifth step. To assess whether (and to what extent) the estimated average treatment
effects are robust to possible deviations from the CIA (e.g., implementing some
type of sensitivity analysis).

The sensitivity analysis proposed by Ichino, Mealli and Nannicini (2007) allows
applied researchers who make use of matching estimators to tackle the fifth step.6 The
analysis builds on Rosenbaum and Rubin (1983a) and Rosenbaum (1987b), and it is
based on a simple idea. Suppose that the CIA is not satisfied given observables but would

2See Imbens (2004) for a review of nonparametric estimation methods under this assumption.
3The experimental evidence by Michalopoulos, Bloom and Hill (2004) reinforces this second point

by showing that in-state comparison groups produce less bias than out-of-state groups.
4For instance, multiple control groups could be used in this respect (Rosenbaum, 1987a).
5See Black and Smith (2004) for an excellent example.
6See Becker and Caliendo (2007) for the implementation of a different sensitivity analysis in Stata.
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be satisfied if one could observe an additional binary variable. This potential confounder
can be simulated in the data and used as an additional covariate in combination with
the preferred matching estimator. The comparison of the estimates obtained with and
without matching on the simulated confounder shows to what extent the baseline results
are robust to specific sources of failure of the CIA, since the distribution of the simulated
variable can be constructed to capture different hypotheses on the nature of potential
confounding factors. In this article, I give a short summary of this econometric tool and
present a program (sensatt) that implements it in Stata.

2 Propensity-score matching

Consider Rubin’s (1974) potential-outcome framework for causal inference, where Y1

represents the outcome if the unit is exposed to treatment T = 1, and Y0 is the outcome
if the unit is exposed to treatment T = 0. Assume also that the average treatment
effect of interest is the ATT, defined as:

E(Y1 − Y0|T = 1). (1)

In this case, one possible estimation strategy is to assume that, given a set of ob-
servable covariates W , the potential outcome in case of no treatment is independent of
treatment assignment:7

Y0 ⊥⊥ T |W. (2)

This condition is the CIA. The behavioral assumption behind it is that the potential
outcome in case of no treatment (Y0) does not influence treatment assignment, while
the possibility that the selection process depends on the treated outcome (Y1) does
not have to be ruled out. Although very strong, the plausibility of this assumption
heavily relies on the quality and amount of information contained in W . Note that the
CIA is an untestable assumption, since the data are completely uninformative about the
distribution of Y0 for treated subjects, but its credibility can be supported or rejected by
theoretical reasoning and additional evidence.8 Besides the CIA, a further requirement
for identification is the common support or overlap condition, which ensures that for
each treated unit there are control units with the same observables:9

Pr(T = 1|W ) < 1. (3)

Under assumptions (2) and (3), within each cell defined by W , treatment assignment
is random, and the outcome of control subjects can be used to estimate the counter-
factual outcome of the treated in the case of no treatment. However, with a high
dimensional vector W , this task may be problematic. To deal with the dimensionality
problem, one can use the results by Rosenbaum and Rubin (1983b) on the so-called

7If the effect of interest were the Average Treatment Effect (ATE) for the whole population, both
potential outcomes should be conditionally independent of treatment assignment: (Y1, Y0) ⊥⊥ T |W .

8See Imbens (2004) and Rosenbaum (1987a).
9To estimate the ATE, the overlap condition would require: 0 < Pr(T = 1|W ) < 1.
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propensity score. The propensity score is the individual probability of receiving the
treatment given the observed covariates: p(W ) = P (T = 1|W ). If the potential out-
come Y0 is independent of treatment assignment conditional on W , it is also independent
of treatment assignment conditional on p(W ). The propensity score can thus be used as
a univariate summary of all observable variables. As a consequence, if p(W ) is known,
the ATT can be consistently estimated as:

τATT ≡ E(Y1−Y0|T = 1) = E{p(W)|T=1}[E(Y1|p(W ), T = 1)−E(Y0|p(W ), T = 0)] (4)

In practice, p(W ) is usually unknown and has to be estimated through some proba-
bilistic model (e.g., probit or logit). Such a model should include all the pre-treatment
observable variables that influence both the selection into treatment and the outcome.
Higher-order or interaction terms should be included in the specification of the model
only if they served to make the estimated propensity score satisfy the balancing prop-
erty, i.e., to have that within each cell of the propensity score the treated and control
units have the same distribution of observable covariates.10 However, the estimation
of the propensity score is not enough to estimate the ATT using equation (4), since
the probability of finding two observations with exactly the same value of the score is
extremely low. Various methods have been proposed in the literature to overcome this
problem and match treated and control units on the basis of the estimated propensity
score. The program sensatt makes use of three different algorithms: nearest neighbor;
kernel; radius.11 These methods differ from each other with respect to the way they
select the control units that are matched to the treated, and with respect to the weights
they attribute to the selected controls when estimating the counterfactual outcome of
the treated: E(Y0|p(W ), T = 1). However, they all provide consistent estimates of the
ATT under the CIA and the overlap condition.

3 Sensitivity analysis

This section borrows from Ichino, Mealli and Nannicini (2007) and briefly sketches the
sensitivity analysis for propensity-score matching estimators that they propose. One of
the central assumptions of the analysis is that treatment assignment is not unconfounded
given the set of covariates W , i.e., that assumption (2) no longer holds. In addition, it
is assumed that the CIA holds given W and an unobserved binary variable U :

Y0 ⊥⊥ T | (W, U).12 (5)

As long as U is not observed, the outcome of the controls cannot be credibly used to
estimate the counterfactual outcome of the treated:

E(Y0|T = 1, W ) 6= E(Y0|T = 0, W ). (6)

10Usually, the balancing property is tested with reference to first moments.
11See Becker and Ichino (2002) for a description of these matching algorithms and the commands

that implement them in Stata. See also Caliendo and Kopeinig (2007) for a discussion of the different
properties of these and other propensity-score matching algorithms.

12Using Rosenbaum’s (1987a) terminology, we are moving from (Y0|W )-adjustable treatment assign-
ment in condition 2 to (Y0|W, U )-adjustable treatment assignment in condition 5.
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On the contrary, knowing U (together with the observable covariates W ) would be
enough to consistently estimate the ATT as discussed in Section 2, since:

E(Y0|T = 1, W, U) = E(Y0|T = 0, W, U). (7)

Note that assumption (5) is common to similar sensitivity analysis proposed in the
econometric and statistical literature,13 but the analysis discussed in this article is
the only one that assesses the robustness of point estimates without relying on any
parametric model for the outcome equation.

The subsequent step consists in characterizing the distribution of U , in order to
simulate this potential confounder in the data. As said, U is assumed to be binary. In
addition, it is assumed to be i.i.d. distributed in the cells represented by the Cartesian
product of the treatment and outcome values. For expositional simplicity, consider the
case of binary potential outcomes: Y0, Y1 ∈ {0, 1}.14 Also denote with Y = T · Y1 +
(1 − T ) · Y0 the observed outcome for a given unit, which is equal to one of the two
potential outcomes depending on treatment assignment. The distribution of the binary
confounding factor U is fully characterized by the choice of four parameters:

pij ≡ Pr(U = 1|T = i, Y = j) = Pr(U = 1|T = i, Y = j, W ) (8)

with i, j ∈ {0, 1}, which give the probability that U = 1 in each of the four groups
defined by the treatment status and the outcome value.15 Note that, in order to make
the simulation of the potential confounder feasible, two simplifying assumptions are
made: 1) binary U , 2) conditional independence of U with respect to W . Ichino, Mealli
and Nannicini (2007) present two Monte Carlo exercises showing that these simulation
assumptions do not critically affect the results of the sensitivity analysis.

As a final step, given arbitrary (but meaningful) values of the parameters pij, a
value of U is attributed to each unit, according to its belonging to one of the four
groups defined by the treatment status and the outcome value. The simulated U is
then treated as any other observed covariate and is included in the set of matching
variables used to estimate the propensity score and to compute the ATT according
to the chosen matching estimator (e.g., kernel). Using a given set of values of the
sensitivity parameters, the matching estimation is repeated many times (e.g., 1, 000)
and a simulated estimate of the ATT is retrieved as an average of the ATTs over the
distribution of U . Thus, for any given configuration of the parameters pij , the sensitivity
analysis retrieves a point estimate of the ATT which is robust to the failure of the CIA
implied by that particular configuration.16

13See Rosenbaum and Rubin (1983a), Rosenbaum (1987b, 2002), Gastwirth, Krieger and Rosenbaum
(1998), Imbens (2003), and Altonji, Elder and Taber (2005).

14This assumption will be removed at the end of the section.
15Using the parameters pij and the probabilities of having a positive outcome by treatment status,

Pr(Y = i|T = j), which are observed in the data, one can compute the fraction of subjects with U = 1

by treatment status only: pi. ≡ Pr(U = 1|T = i) =
∑

1

j=0
pij · Pr(Y = j|T = i), with i ∈ {0,1}.

16As a caveat, note that a high sensitivity of the baseline results could also come from a problem
of weak identification, should even small variations in the conditioning set cause large changes in the
estimates. However, this would reinforce the usefulness of the sensitivity analysis, since the harmful
effects of a potential confounder are even more severe in the presence of weak identification.
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Standard errors. In order to compute a standard error for the simulated ATT, the
imputation of U is considered as a normal problem of missing data, which can be solved
by repeatedly imputing the missing values of U . Let m be the number of imputations of
the missing U , and let ˆATT k and se2

k be the point estimate and the estimated variance
of the ATT estimator at the k-th imputed data set (with k = 1, 2, . . . , m). The simulated
ATT, ˆATT , is obtained by the average of the ˆATT k over the m replications. In this
setting, the within-imputation variance is equal to

se2
W =

1

m

m
∑

k=1

se2
k, (9)

while the between-imputation variance is given by

se2
B =

1

m− 1

m
∑

k=1

( ˆATT k − ˆATT )2. (10)

As a consequence, the total variance associated to ˆATT can be expressed as:

se2
T = se2

W + (1 +
1

m
)se2

B . (11)

For a large number of replications, the statistic ( ˆATT − ATT )/seT is approximately
normal. Alternatively, one could consider either the within-imputation or the between-
imputation standard error as the basis for inference. The program sensatt allows for the
utilization of all three types. The standard error in equation (11) leads to conservative
inferential conclusions, since it is always greater than the other two alternatives.

Extension to continuous outcomes. The above sensitivity analysis can be easily
extended to multi-valued or continuous outcomes. Indeed, in such cases, it is possible
to define the simulation parameters pij on the basis of T and a binary transformation
of Y (instead of the outcome itself). Define:

pij ≡ Pr(U = 1|T = i, I(Y > y∗) = j), (12)

with i, j ∈ {0, 1}, where I is the indicator function and y∗ is a chosen typical value of
the distribution of Y .17 Once the parameters pij are set in this way, one can implement
the sensitivity analysis as described above. Of course, the ATT is still estimated for the
multi-valued or continuous outcome Y .

4 Guidelines for the implementation of the simulations

In order to implement the sensitivity analysis described in Section 3, one must have
in mind which kind of potential confounding factors would be useful to simulate in
the data. In other words, one must answer the following question: which values of
the parameters pij should I choose in order to learn something useful from the effect

17The program sensatt allows for the utilization of four y∗ : mean, median, 25th or 75th centile.
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of a confounder U like the one associated to the chosen values? In this section, two
simulation exercises are proposed. In the first one, the pij are set so as to let U mimic
the behavior of some important covariates. In the second one, a grid of different pij is
built, in order to capture the characteristics of those potential confounders that would
drive the ATT estimates to zero or far away from the baseline result. Note, however,
that the above sensitivity analysis is a flexible tool and its application is not restricted
to the exercises suggested here.

Before discussing these two sensitivity exercises, it is important to understand which
kind of potential confounders would represent a real threat for the baseline estimates.
Since the treatment is binary, we can assume without loss of generality that the ATT
estimated according to the matching strategy outlined in Section 2 is positive and sig-
nificant. In a similar situation, before interpreting the baseline estimate as evidence of
a true causal effect of the treatment, we may want to investigate how sensitive this esti-
mate is with respect to the possible existence of an unobservable variable U that affects
both the potential outcome Y0 and the selection into treatment T (after controlling for
observable covariates W ). As a matter of fact, U would be a “dangerous” confounder
(i.e., a confounder whose existence might give rise to a positive and significant ATT
estimate even in the absence of a true causal effect) if we observed that:

Pr(Y0 = 1|T, W, U) 6= Pr(Y0 = 1|T, W ), (13)

Pr(T = 1|W, U) 6= Pr(T = 1|W ). (14)

Note that expressions (13) and (14) - unlike the parameters pij - both include W
and refer to the potential (not observed) outcome in the case of no treatment. Hence,
one may be worried that, by simply choosing the parameters pij , it is not possible to
simulate a “dangerous” confounder like the one captured by these expressions. However,
Ichino, Mealli and Nannicini (2007) demonstrate that the following implications hold:

p01 > p00 ⇒ Pr(Y0 = 1|T = 0, U = 1, W ) > Pr(Y0 = 1|T = 0, U = 0, W ),

p1. > p0. ⇒ Pr(T = 1|U = 1, W ) > Pr(T = 1|U = 0, W ).

As a consequence, by simply assuming that p01 > p00, one can simulate a confounding
factor that has a positive effect on the untreated outcome Y0 (conditioning on W ).
Similarly, by setting p1. > p0.,

18 one can simulate a confounding factor that has a
positive effect on treatment assignment (conditioning on W ).

There is a limitation, however, that must be addressed. Following the above reason-
ing, it would be tempting to interpret the difference d = p01 − p00 as a measure of the
effect of U on the untreated outcome, and the difference s = p1.−p0. as a measure of the
effect of U on the selection into treatment. But these two effects should be evaluated
after conditioning on W , while d and s do not account for the association between U
and W that shows up in the data. In other words, by setting the sensitivity parameters

18Note that, after the choice of p01 and p00, this condition can be imposed by setting p11 and p10

appropriately.
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pij , we can control the sign but not the magnitude of the conditional association of U
with Y0 and T . To sidestep this shortcoming, we can measure how each chosen config-
uration of the pij translates in terms of the effect of U on Y0 and T (conditioning on
W ). The program sensatt performs this task in the following way. At every iteration,
a logit model of Pr(Y = 1|T = 0, U, W ) is estimated and the average odds ratio of U is
reported as the “outcome effect” of the simulated confounder:

Γ ≡

Pr(Y =1|T=0,U=1,W)
Pr(Y =0|T=0,U=1,W)

Pr(Y =1|T=0,U=0,W)
Pr(Y =0|T=0,U=0,W)

.19

Similarly, the logit model of Pr(T = 1|U, W ) is estimated at every iteration and the
average odds ratio of U is reported as the “selection effect” of the simulated confounder:

Λ ≡

Pr(T=1|U=1,W)
Pr(T=0|U=1,W)

Pr(T=1|U=0,W)
Pr(T=0|U=0,W)

.

By simulating U under the assumptions that d > 0 and s > 0, we know from the above
arguments that both the outcome and selection effects must be positive (i.e., Γ > 1 and
Λ > 1). Moreover, by displaying the associated Γ and Λ as an additional output of the
sensitivity analysis, we can easily assess the magnitude of these two effects, which end
up characterizing the simulated confounder U .

A first simulation exercise: “calibrated” confounders. Keeping in mind the
above reasoning, one can pick the parameters pij (which in turn determine the param-
eters pi.) in order to make the distribution of U similar to the empirical distribution
of important binary covariates (or binary transformations of continuous covariates). In
this case, the simulation exercise reveals the extent to which the baseline estimates are
robust to deviations from the CIA induced by the impossibility of observing factors
similar to the ones used to calibrate the distribution of U . This is a different exer-
cise from the simple removal of an observed variable from the matching set W , since
in every sensitivity-analysis estimation we still control for all the relevant covariates
observed by the econometrician. Of course, this exercise is interesting only when the
chosen covariates display pij that satisfy the conditions d > 0 and s > 0.

A second simulation exercise: “killer” confounders. Since the results of the
previous exercise may be driven by the particular behavior of the chosen covariates,
another simulation exercise is even more instructive. One can search for the existence
of a set of parameters pij such that if U were observed the estimated ATT would
be driven to zero, and then assess the plausibility of this particular configuration of
parameters. If all the configurations leading to such result could be considered very
unlikely, the exercise would support the robustness of the estimates derived under the
CIA. In order to reduce the dimensionality problem of the characterization of these
“killer” confounding factors, one could fix at some predetermined values the probability
Pr(U = 1) and the difference d′ = p11 − p10. Since these quantities are not expected to

19With continuous outcomes, Γ is the odds ratio of U in the logit model Pr(Y > y∗ |T = 0, U, W ).
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represent a real threat for the baseline estimate, they can be held fixed and the simulated
confounder U can be fully described by the differences d and s.20 For instance, one could
build a table of simulated ATTs such that d increases by 0.1 along each column, and
s increases by 0.1 along each column, looking for those configurations of these two
parameters that drive the ATT to zero or far away from the baseline estimate (d = 0,
s = 0).21 Moreover, when displaying the results of the sensitivity analysis, the values
of d and s should be associated to the estimated values of Γ and Λ, respectively. In
this way, the estimated odds ratios would provide a measure of the observed effects of
U on the untreated outcome and the selection into treatment, allowing the researcher
to discuss the plausibility of the existence of a similar confounder. As already noted,
if only “implausible” confounders drove the ATT to zero or far away from the baseline
estimate, the sensitivity analysis would support the robustness of matching results.22

5 Syntax

sensatt outcome treatment
[

varlist
] [

weight
] [

if exp
] [

in range
] [

, alg(att*)

reps(#) p(varname) p11(#) p10(#) p01(#) p00(#) se(se type)

ycent(#) pscore(scorevar) logit index comsup bootstrap
]

The following remarks should be taken into account:

• The program makes use of the commands for the propensity-score matching esti-
mation of average treatment effects written by Becker and Ichino (2002): attnd,
attnw, attk, attr. Before using sensatt, you should install them and be familiar
with their utilization.

• The treatment must be binary.

• It is important to clean up the dataset before running the program, in particular
to delete observations with missing values.

6 Options

6.1 Options that are specific to sensatt

alg(att*) specifies the name of the command (i.e., of the matching algorithm) that is
used in the ATT estimation. One of the following commands can be specified: attnd,
attnw, attk, attr. The default is attnd.

20Note that, keeping Pr(U = 1) and d′ fixed, and substituting Pr(Y = i|T = j) and Pr(T = j) by
their sample analogues, the parameters d and s are enough to characterize the distribution of U .

21On the web site http://www.tommasonannicini.eu, there is an ancillary Matlab code that, once d′

and Pr(U = 1) are specified and the estimated Pr(Y = i|T = j) and Pr(T = j) are given, retrieves all
the pij parameters that can be used to simulate U with d and s varying from 0.1 to 0.6.

22See Ichino, Mealli and Nannicini (2007) for a concrete example.
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p(varname) indicates the binary variable which is used to simulate the confounder.
The parameters pij used to simulate U are set equal to the ones observed for varname.
Instead of selecting this option, the user can directly specify the parameters pij.

p11(#), p10(#), p01(#) and p00(#) jointly specify the parameters pij used to simulate
U in the data. Since they are probabilities, they must be between zero and one. For
each parameter, the default is zero.

reps(#) specifies the number of iterations, i.e., how many times the simulation of U
and the ATT estimation are replicated. The default is 1,000.

se(se type) allows the user to decide which standard error should be displayed with the
simulated ATT. Three se types are possible: tse uses the total variance in a multiple-
imputation setting; wse uses the within-imputation variance; bse uses the between-
imputation variance. The default is tse.

ycent(#) is relevant only with continuous outcomes. It means that U is simulated on
the basis of the binary transformation of the outcome: I(Y > y∗), where y∗ is the #th
centile of the distribution of Y . Three centiles are allowed: 25, 50, 75. If ycent(#) is
not specified by the user, but the outcome is continuous, U is simulated on the basis of
the transformation: I(Y > y∗), where y∗ is the mean of Y .

6.2 Options that are common to attnd, attnw, attk and attr

pscore(scorevar) specifies the name of the user-provided variable containing the esti-
mated propensity score. If this option is not selected, the propensity score is estimated
with the specification provided in varlist.

logit uses a logit model to estimate the propensity score instead of the default probit
model when the option pscore(scorevar) is not specified by the user.

comsup restricts the computation of the ATT to the region of common support.

bootstrap bootstraps the standard errors of the estimated ATTs.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

7 Saved results

The sensatt command saves in r():

Scalars
r(att) simulated ATT
r(se) default standard error
r(sew) within-imputation s.e.
r(seb) between-imputation s.e.
r(yodds) estimated outcome effect of the

confounder U (odds ratio)
r(todds) estimated selection effect of the

confounder U (odds ratio)



Tommaso Nannicini 11

8 An example

Following Becker and Ichino (2002), I use data from Dehejia and Wahba (1999), which
are publicly available at: http://www.nber.org/%7Erdehejia/nswdata.html. The
data come from LaLonde’s (1986) well known evaluation of non-experimental evalua-
tion methods, which combines the treated units from a randomized study of the Na-
tional Supported Work (NSW) training program with non-experimental comparison
groups drawn from public surveys. As mentioned in Section 1, Dehejia and Wahba
use this data set to show that propensity-score matching estimates are closer to the
experimental benchmark than those produced by traditional evaluation methods. I re-
strict my example to the comparison group drawn from the Panel Study of Income
Dynamics (PSID-1).23 The outcome of interest is continuous and is represented by
the post-intervention real earnings (RE78). The treatment indicator (T) coincides with
the participation to the NSW treated group. Control variables are: age (age), educa-
tion (educ), Black dummy (black), Hispanic dummy (hisp), marital status (marr), real
earnings in 1975 (RE75), real earnings in 1974 (RE74).24 At the end, there are 185
observations in the treated group and 2,490 in the control group. For this subsample of
the NSW treated group, the experimental estimate of the ATT is 1,794 (with a stan-
dard error equal to 633). I focus on the nearest neighbor matching estimate, which
is the default in sensatt. Assume that we want to calculate this estimate and assess
its robustness with respect to a potential confounder that behaves like an important
observed covariate: the probability of being non-employed in 1974 (U74). The following
three Stata outputs are produced by running sensatt with the above specification of
the propensity score and simulating U so as to mimic the variable U74:

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p(U74) r(100) comsup logit;

*** THIS IS THE BASELINE ATT ESTIMATION (WITH NO SIMULATED CONFOUNDER).

The program is searching the nearest neighbor of each treated unit.
This operation may take a while.

ATT estimation with Nearest Neighbor Matching method
(random draw version)
Analytical standard errors
---------------------------------------------------------
n. treat. n. contr. ATT Std. Err. t
---------------------------------------------------------

185 57 1667.644 2113.592 0.789

---------------------------------------------------------
Note: the numbers of treated and controls refer to actual
nearest neighbour matches

23See LaLonde (1986) and Dehejia and Wahba (1999, 2002) for more data details.
24Throughout this example, in order to replicate Becker and Ichino’s results, which in turn replicate

those by Dehejia and Wahba, the propensity-score specification includes also the following variables:
squared education (educ2), squared earnings in 1974 (RE742), squared earnings in 1975 (RE752), and
the interaction of the Black dummy with a dummy for non-employment in 1974 (blackU74).
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First of all, sensatt shows the ATT calculated by the command for propensity-score
matching that has been selected (attnd in this example). Correctly, the above estimate
is the same of the example by Becker and Ichino, and it is very close to the nearest
neighbor matching estimate in Dehejia and Wahba’s original paper, which is equal to
1,691 (with a standard error of 2,209). The baseline ATT point estimate is very close to
the experimental benchmark, even though the standard error is very high. The fact that
we can compare the non-experimental estimates with this unbiased benchmark makes
the sensitivity analysis useless. But let us assume that this is not the case, and we would
like to assess the robustness of the above matching estimate. After the simple step of
reproducing the output by attnd, the program moves on and simulates the confounder
U in order to retrieve the associated ATT:

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 0.78
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.70
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.02
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.15

The probability of having U=1 if T=1 (p1.) is equal to: 0.71
The probability of having U=1 if T=0 (p0.) is equal to: 0.09

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

The iteration step can be very time consuming, especially when, unlike in this ex-
ample, one selects the bootstrap option to calculate the standard error of the chosen
propensity-score matching estimator. At the end of the iteration step, sensatt displays
the simulated ATT, as well as the outcome and selection effects of U :

ATT estimation with simulated confounder
General multiple-imputation standard errors

-----------------------------------------------
ATT Std. Err. Out. Eff. Sel. Eff.

-----------------------------------------------

2122.280 3548.766 0.132 15.946

-----------------------------------------------
Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

As one would expect, the simulated ATT (2,122) is even greater that the baseline
estimate (1,668) since, even though the selection effect of the confounder is very large,
the outcome effect is negative (i.e., d < 0). One may want to test the robustness of the
baseline ATT with respect to a confounder that is more “dangerous” (i.e., a confounder
U such that both d > 0 and s > 0) but still behaves like other relevant observable
variables. Let us run sensatt with the confounder U calibrated in order to mimic the
constructed variable young (i.e., being below the 75th centile of the age distribution):
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. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p(young) comsup logit;

(output omitted)

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 1.00
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.97
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.75
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.72

The probability of having U=1 if T=1 (p1.) is equal to: 0.97
The probability of having U=1 if T=0 (p0.) is equal to: 0.73

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

ATT estimation with simulated confounder
General multiple-imputation standard errors

-----------------------------------------------
ATT Std. Err. Out. Eff. Sel. Eff.

-----------------------------------------------

1593.286 3006.708 1.149 19.643

-----------------------------------------------
Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

In this case, the simulated ATT is lower, but the potential confounder “kills” only by
a small amount the baseline estimate. In other terms, the sensitivity analysis is telling
us that the existence of a confounder U behaving like the young dummy might account
for nearly 5% of the baseline estimate: (1, 668−1, 593)/1, 668 = 0.05. Since the outcome
is continuous, one may want to check whether the sensitivity conclusions depend on the
fact that U is simulated on the basis of the binary transformation of Y that uses the
mean of the outcome (see Section 3). In the following Stata output, U is again simulated
in order to mimic young, but the parameters pij refer to the binary transformation of Y
that uses the median of the outcome. Moreover, the between-imputation standard error
is showed, in order to use only the variability of the simulated ATT across iterations.

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p(young) ycent(50) se(bse) comsup logit;

(output omitted)

ATT estimation with simulated confounder
Between-imputation standard errors

-----------------------------------------------
ATT Std. Err. Out. Eff. Sel. Eff.

-----------------------------------------------

1526.429 867.942 1.179 21.676

-----------------------------------------------
Note: Both the outcome and the selection effect
are odds ratios from logit estimations.
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Using the median instead of the mean of Y does not affect the results of the sensitivity
analysis, since the simulated ATT is very close to the previous one. On the contrary, the
between-imputation standard error is much lower than the default one. However, the
sensitivity conclusions should be drawn more in terms of the comparison of the point
estimates than in terms of the significance of the simulated ATT.

The above simulations convey an image of robustness of the nearest neighbor match-
ing estimate equal to 1, 668. This image, however, might be produced by the particular
characteristics of the covariates used to simulate U (U74 and young), rather than by
the fact that the baseline ATT is robust to possible deviations from the CIA. Similar
sensitivity conclusions, however, arise from the second simulation exercise proposed in
Section 4. For the sake of brevity, I do not calculate a table like the one suggested in
the discussion about the search for “killer” confounders. Two simple examples will be
enough to illustrate the point. Assume to simulate U according to the following param-
eters: p11 = 0.8, p10 = 0.8, p01 = 0.6, p00 = 0.3. We expect this potential confounder to
represent a real threat for the baseline estimate, and to be associated to large selection
and outcome effects (note that: s = 0.34 > 0 and d = 0.3 > 0).

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p11(0.8) p10(0.8) p01(0.6) p00(0.3) se(bse) comsup logit;

(output omitted)

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 0.80
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.80
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.60
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.30

The probability of having U=1 if T=1 (p1.) is equal to: 0.80
The probability of having U=1 if T=0 (p0.) is equal to: 0.46

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

ATT estimation with simulated confounder
General multiple-imputation standard errors

-----------------------------------------------
ATT Std. Err. Out. Eff. Sel. Eff.

-----------------------------------------------

1588.864 1093.235 3.502 9.757

-----------------------------------------------
Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

On the contrary, even though U is associated to very large selection and outcome
effects (Λ = 9.8 and Γ = 3.5), the simulated ATT is still very close to the baseline
estimate. Only when U is simulated so that it displays a very (and implausibly) large
outcome effect, the ATT is driven closer to zero:

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p11(0.8) p10(0.8) p01(0.6) p00(0.1) se(bse) comsup logit;
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(output omitted)

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 0.80
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.80
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.60
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.10

The probability of having U=1 if T=1 (p1.) is equal to: 0.80
The probability of having U=1 if T=0 (p0.) is equal to: 0.36

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

ATT estimation with simulated confounder
General multiple-imputation standard errors

-----------------------------------------------
ATT Std. Err. Out. Eff. Sel. Eff.

-----------------------------------------------

274.110 2640.772 13.220 31.413

-----------------------------------------------
Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

To let U explain about 84% of the baseline estimate ((1, 668− 274)/1, 668 = 0.84),
such a confounder must have a very large effect on both the outcome and selection into
treatment. More precisely, U must increase the relative probability of having Y above
the mean (T = 1) by a factor greater than 13 (31). The presence among unobservable
factors of a confounder with similar characteristics can be considered implausible in the
present setting (where the set of matching variables W is quite rich). At the end of the
day, these simple simulation exercises support the robustness of the matching estimate.
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