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2 Motivations

e New a) tests of correlated effects and b) estimators for the (possibly)
unbalanced multiway ECM.

e New algebraic results, useful for computations.

3 Related literature

e Tests for correlated effects: Hausman (1978), Mundlak (1978), Haus-
man and Taylor (1982), Kang (1985), Arellano (1993), Ahn and Low
(1996), Wooldridge (2002), Krishnakumar (2006).

e Estimators: Kaptein and Wansbeek (1989), Davis (2002).

e Algebra for the multiway ECM: Davis (2002).



4 The multiway ECM

4.1 Notation for column-wise partitioned matrices

Given a column-wise partitioned matrix A = ( A Ay - A, ), define
D (A) as the set of all column-wise partitioned matrices formed by any num-
ber 1 < k < m of distinct blocks of A, taken in the same order as in A.
For example, if A = ( A Ay Ay Ay ), then ( Ay As Ay ) € D(A).
A €D (A) and the size of D (A4) is Y. (7;)

g9=1

4.2 Projection matrices

Given an arbitrary matrix A, A~ denotes a generalized inverse of A. Py =
A(A’A)” A’ indicates the projection matrix onto the space spanned by the
columns of A. Q4 = I — Py



4.3 The Model

I focus on the general multi-way ECM with generic number of levels m + 1

y=Wé+Tu (1)
where
W = (X AZ)
F—(]nA)andA:(Al Ay Am)
s = (B X))
u o= (uy v u’m),
and

e A, denotes the (n X g;) matrix of dummy variables indicating the groups
at the level e = 1,...m

e u; denotes the error component vector of dimension (g; x 1);

e 1y stands for the idiosyncratic error component vector of dimension
(nx1)

The following identification assumptions holds throughout.
A.1 Both X and AZ are of full-column rank (f.c.r.).

The following assumption characterises the columns of X as the regressors
with idiosyncratic (observation specific) variation.

A.2 No linear combination of the columns of X lies in the subspace spanned
by the columns of A.

A.1 and A.2 together imply that the regressor matrix W is of f.c.r.

A.3 ECM variance-covariance matrix of the composite error I'u (Kaptein
and Wansbeek, 1987; Davis, 2002)

Y =02, + AN+ .+ oE AN (2)

Convenient nonsingular transformations of A and I' are defined below.
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Definition 1 Let A; = ;‘—OAZ foralli =1,...,m. Then, let A = ( A,
and T = ( I, A )
It follows that

Y = o2 (In + AN+ L+ Zm&n)



5 Algebraic results

Definition 2 Given a real matriz A, define the operator Via as Via =
(AA)T.

The importance of V| hinges upon the following
Ve = 00> (3)
V] is well defined for any column-wise partitioned matrix A of the form

A= ( I B ) as AA’ = I + BB’ is positive definite.
The following Lemma (Davis, 2002) is useful to compute V[f]

Lemma 3 Let C' = ( I Dy D, ) . Then,
Vie) = Vit pa) — Vit o D1 [I + DiVig py D1] ™ DyVii

and
Vit po) = I — Dy [I + DyDy) ! Dy,

The following extension to Davis (2002) (and to Wansbeek and Kapteyn
(1989)) expands the set of possible representations for Vm

Lemma 4 Given the column-wise partitioned real matriz B, let By € © (B),
A = (I B) and v = rank (By). Then, there exists a mapping m :
£(B1) — M, defined as

i BYB) ' BYB,B' B (B'B*)"' if B* has f.c.r.
m(Bl):{<1 1) 1 }11(1 1) f 1elsef

and such that
* — * * x]—1 *
‘/[ ] — ‘/[A\Bl] — ‘/[A\Bl]Bl |:m 1 (Bl) + Bll‘/[A\Bl]Bl} qu/[A\Bl} (4>

for all By € £(By); where £(By) is the set containing By and all the sub-
matrices of By having f.c.r. and M, is the collection of all r X r symmetric
positive definite matrices.

Lemma 3 emerges as a corollary of Lemma 4.



A convenient operator is defined.
Given a positive definite symmetric matrix 2 and any matrix A define
Pio,a as
P =A(A'QA)” A'Q (5)

and Qq,4) as
Qro,a = I — P 4

Specific properties of Pjg 4 may emerge depending on A and Q. The
following results establishes two important properties for P, .
[Via )

Theorem 5 P[V[f]vA(k)] = P{V

for any Agy € D (A).
=R 7A k
[F\aa] 7O

Theorem 6 ‘/[f]Q[V[f]yA(k)] - ‘/[f\z(k)]Q[V

for any Agy € D (A).
[F\& )] ’Am]



6 Estimators and tests

6.1 Efficient GLS estimators

Under assumptions A.1-A.3, if all effects are not correlated to the regressors,
that is if
E (ulW) =0,

then the Gauss-Marcov estimator for 5 and A is the Multi-way GLS

JOLS _ < ll)gij ) _ (W’I/[f]W>_1W'V[f]y' (6)

bG’LS

The formula for is the following

~1
GLS __ AVAS "N/~
09 = (X9 X) XV e g
The Multi-way Within estimator for § is the following
bwithin — (X/Q[A}X)_l X/Q[A]y (8)

It is a robust estimator in that it leaves the correlation between regressors and
all error components unrestricted. A more general class of efficient estimators
encompassing d* and """ as particular cases is derived

Theorem 7 Assume A.1-A.3 and let Ayy € D (A). Then, the efficient
multi-way GLS estimator for B and X in the presence of (possibly) correlated
effects at the levels Ay, dCLSIAw | s

pGLSIA )
dCES1Aw)  — (ZGLsA(M) "

- (W,HQ[H’A(M]W) _ WIHQ[HA(k)]y'

with
bR = (X'MX) ™ X' My, (10)

where H = V[f‘\ﬁ(k)] and M = H Q[H,A(k)] - P

{H,Q[ AZ

H’%)]



6.2 Between estimators

The Multi-way Between estimator, considering the variation between all groups
in A, is defined as

C?B = <W"/[1:]P[A}W> - W/‘/Y[I:]P[A]y. (11)

The following general formula for the between estimator of 3 is suggested,
which is useful in the context of specification tests

-1

e

pBew) = [ X'V P
Y -

A(k)} X X’V[f]P[ ]A(k)} Y.

It generalizes the extended between estimator derived in Krishnakumar
(2006) to an unbalanced multilevel setting with generic non-idiosyncratic
variables that do not lie necessarily onto the space spanned by the correlated

V[I:] ,AZ] vm AZ

effects. One can think of 5%(2%) as an estimator that exploits only the
residual variation between the groups in Ay once the variation in AZ has
been partialled out (in the metric V[ﬁ])-

6.3 Efficient GLS estimators as weighted averages
Theorem 8 For all Ay € D (A)
pGLS — ppGLSIAG) 4 (I— F>gB(A(k))
Theorem 9 Let Ary € D (A) and Ay € D (A|A(,)) then
pGLSIAG — ppGLSIAG) 1 GpB(Aw) — gpB(Aw)
with P +G+H =1

6.4 Tests for correlated effects

Borrowing the same terminology as Kang’s (1985), the following definitions
hold.



Definition 10 For some level ©+ = 1,...,m, the unobserved effect u; is said
uncorrelated if E (u;|]W) = 0.

Definition 11 For some level i = 1,...,m, the unobserved effect u; is said
(possibly) correlated if E (u;|W) is left unrestricted.

In a multi-level framework the number of possible specifications for the
unobserved effects, h,,, increases rapidly with the number of error compo-
nents m. For example, Kang (1985) focussing on the two-level model con-
siders hy = 1+ (T)Q = b5 possible specifications for the error components and
consequently 5 specification tests. These are reported in Table 1.

Table 1: Specification tests in the two-level model

] Test \ H, \ Given: ‘
1 U uncorrelated uy correlated
2 Uy uncorrelated w1 uncorrelated
3 1 uncorrelated uy correlated
4 u; uncorrelated us uncorrelated
5 u; and us uncorrelated

If only m increases to 3, the number of specification tests increases to
hs =19 (1+ (3)2 +3[2+ (f)} = 19). The specification tests are spelled out
in Table 2
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Table 2: Specification tests in the three-way model

’ Test \ H, \ Given:
1 ug uncorrelated u; and us correlated
2 u9 uncorrelated u; and us correlated
3 u; uncorrelated up and us correlated
4 uz and uy uncorrelated uy correlated
5 uz and u; uncorrelated ug correlated
6 u; and uy uncorrelated ug correlated
7 ug uncorrelated u; uncorrelated and wus correlated
8 ug uncorrelated u9 uncorrelated and w; correlated
9 U uncorrelated u; uncorrelated and wus correlated
10 U uncorrelated uz uncorrelated and wu; correlated
11 u; uncorrelated ug uncorrelated and wus correlated
12 u; uncorrelated uz uncorrelated and wuy correlated
13 us uncorrelated u; and uy uncorrelated
14 u9 uncorrelated u; and us uncorrelated
15 u; uncorrelated ue and us uncorrelated
16 uz and uy uncorrelated u; uncorrelated
17 ug and u; uncorrelated U uncorrelated
18 u; and ug uncorrelated ug uncorrelated
19 u1, ug and uz uncorrelated
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In general, with m error components the number h,, of tests is

(s () ()

)T ()
()7 |
S (S ) )

Fortunately, the notation used in this paper is general enough to deal with any
number of error components. Indeed, as large as h,,, may be, the specification
tests can always be classified according to the following four-type partition.

1. Test that the effects at the levels Ary € © (A) are uncorrelated given
that the effects at all other levels A‘({) are uncorrelated. There are

m—1

Z_: (m"ig) Hausman tests based on the differences ¢; (A(.)) = p&LS —

bGESIAG over all Ary € D (A). If m = 2, these are Test 2 and Test 4 of
Table 1. If m = 3 these are Test 13 to 18 in Table 2.

2. Test that the effects at the levels Ay € © (A) are uncorrelated, leav-
ing the effects at all other levels, A\A., possibly correlated. There are

m—1

> (mrfg) Hausman tests based on the differences ¢ (A(‘)) = pOLSIANAG)

beithin over all Ay € D (A). If m = 2 these are Test 1 and Test 3 of
Table 1. If m = 3, these are Test 1 to 6 of Table 2.

3. Test that the effects at the levels Ay, € D (A) are uncorrelated, main-
taining a mixed specification for the effects at all other levels, A\A);
that is assume that the effects at the levels Ay € D (A\A()) are
uncorrelated and leave the effects at the remaining levels A\A ) \A(
possibly correlated, £ = 1,...,m — 2. There are

w2 m L fg+1
m—1—g — h

g=1

(]
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Hausman tests based on the differences g3 (A, Ag)) = b%E5AEw\A0 —

bELSIANAG over all AyeD (A\A(k)). If m = 2, there are no such tests.
If m = 3 these are Test 7 to 12 of Table 2.

4. Test that the effects at all levels are uncorrelated. Regardless the num-
ber of levels in the data, there is 1 Hausman test based on the difference
qq = b9 — pwithin  This is Test 5 in Table 1 and Tests 19 in Table 2.

Remark 12 Particular tests of type 4 have been examined in the ECM lit-
erature, notably Hausman and Taylor (1982), Arellano (1993) and Ahn and
Low (1996) for m =1 and Kang (1987) for m = 2. Particular tests of type
1 and 2 have been examined by Kang (1987) for m = 2. Conversely, tests of
type 3 have never been considered, since they emerge only for m > 3. Given
that efficient GLS can be obtained as weighted averages of other estimators,
identical tests can be derived using differences that involve the between esti-
mators.
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7 Conclusion

What’s left to do?

e Mata implementation

e Regression based tests a la Mundlak
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