Estimators and tests for unbalanced multi-way error component models with correlated effects

Giovanni S.F. Bruno Department of Economics, Bocconi University

> "5° Incontro degli utenti di Stata" Milano, 20-21 ottobre 2008

1 Structure of the presentation

- Motivations
- Related literature
- The multiway Error Component Model (ECM)
- Results
- Conclusions

2 Motivations

- New a) tests of correlated effects and b) estimators for the (possibly) unbalanced multiway ECM.
- New algebraic results, useful for computations.

3 Related literature

- Tests for correlated effects: Hausman (1978), Mundlak (1978), Hausman and Taylor (1982), Kang (1985), Arellano (1993), Ahn and Low (1996), Wooldridge (2002), Krishnakumar (2006).
- Estimators: Kaptein and Wansbeek (1989), Davis (2002).
- Algebra for the multiway ECM: Davis (2002).

4 The multiway ECM

4.1 Notation for column-wise partitioned matrices

Given a column-wise partitioned matrix $A = \begin{pmatrix} A_1 & A_2 & \cdots & A_m \end{pmatrix}$, define $\mathfrak{D}(A)$ as the set of all column-wise partitioned matrices formed by any number $1 \leq k \leq m$ of distinct blocks of A, taken in the same order as in A. For example, if $A = \begin{pmatrix} A_1 & A_2 & A_3 & A_4 \end{pmatrix}$, then $\begin{pmatrix} A_1 & A_3 & A_4 \end{pmatrix} \in \mathfrak{D}(A)$. $A \in \mathfrak{D}(A)$ and the size of $\mathfrak{D}(A)$ is $\sum_{g=1}^m {m \choose g}$.

4.2 **Projection matrices**

Given an arbitrary matrix A, A^- denotes a generalized inverse of A. $P_{[A]} = A(A'A)^- A'$ indicates the projection matrix onto the space spanned by the columns of A. $Q_{[A]} = I - P_{[A]}$

4.3 The Model

I focus on the general multi-way ECM with generic number of levels m + 1

$$y = W\delta + \Gamma u \tag{1}$$

where

$$W = \begin{pmatrix} X & \Delta Z \end{pmatrix}$$

$$\Gamma = \begin{pmatrix} I_n & \Delta \end{pmatrix} \text{ and } \Delta = \begin{pmatrix} \Delta_1 & \Delta_2 & \cdots & \Delta_m \end{pmatrix}$$

$$\delta = \begin{pmatrix} \beta' & \lambda' \end{pmatrix}'$$

$$u = \begin{pmatrix} u'_0 & u'_1 & \cdots & u'_m \end{pmatrix}'$$

and

- Δ_i denotes the $(n \times g_i)$ matrix of dummy variables indicating the groups at the level i = 1, ..., m
- u_i denotes the error component vector of dimension $(g_i \times 1)$;
- u_0 stands for the idiosyncratic error component vector of dimension $(n \times 1)$

The following identification assumptions holds throughout.

A.1 Both X and ΔZ are of full-column rank (f.c.r.).

The following assumption characterises the columns of X as the regressors with idiosyncratic (observation specific) variation.

- **A.2** No linear combination of the columns of X lies in the subspace spanned by the columns of Δ .
 - A.1 and A.2 together imply that the regressor matrix W is of f.c.r.
- A.3 ECM variance-covariance matrix of the composite error Γu (Kaptein and Wansbeek, 1987; Davis, 2002)

$$\Sigma = \sigma_0^2 I_n + \sigma_1^2 \Delta_1 \Delta_1' + \dots + \sigma_m^2 \Delta_m \Delta_m'$$
⁽²⁾

Convenient nonsingular transformations of Δ and Γ are defined below.

Definition 1 Let $\widetilde{\Delta}_i = \frac{\sigma_i}{\sigma_0} \Delta_i$ for all i = 1, ..., m. Then, let $\widetilde{\Delta} = \begin{pmatrix} \widetilde{\Delta}_1 & \cdots & \widetilde{\Delta}_m \end{pmatrix}$ and $\widetilde{\Gamma} = \begin{pmatrix} I_n & \widetilde{\Delta} \end{pmatrix}$.

It follows that

$$\Sigma = \sigma_0^2 \left(I_n + \widetilde{\Delta}_1 \widetilde{\Delta}'_1 + \dots + \widetilde{\Delta}_m \widetilde{\Delta}'_m \right)$$

5 Algebraic results

Definition 2 Given a real matrix A, define the operator $V_{[A]}$ as $V_{[A]} = (AA')^{-1}$.

The importance of $V_{[\cdot]}$ hinges upon the following

$$V_{\left[\widetilde{\Gamma}\right]} = \sigma_0^2 \Sigma^{-1}.$$
(3)

 $V_{[\cdot]}$ is well defined for any column-wise partitioned matrix A of the form $A = \begin{pmatrix} I & B \end{pmatrix}$ as AA' = I + BB' is positive definite.

The following Lemma (Davis, 2002) is useful to compute $V_{[\widetilde{\Gamma}]}$

Lemma 3 Let $C = \begin{pmatrix} I & D_1 & D_2 \end{pmatrix}$. Then,

$$V_{[C]} = V_{[I \ D_2]} - V_{[I \ D_2]} D_1 \left[I + D'_1 V_{[I \ D_2]} D_1 \right]^{-1} D'_1 V_{[I \ D_2]}$$

and

$$V_{[I \ D_2]} = I - D_2 \left[I + D'_2 D_2 \right]^{-1} D'_2.$$

The following extension to Davis (2002) (and to Wansbeek and Kapteyn (1989)) expands the set of possible representations for $V_{[\tilde{\Gamma}]}$.

Lemma 4 Given the column-wise partitioned real matrix B, let $B_1 \in \mathfrak{D}(B)$, $A = (I \ B)$ and $r \equiv rank(B_1)$. Then, there exists a mapping $m : \mathfrak{L}(B_1) \to \mathfrak{M}_r$ defined as

$$m(B_1^*) = \begin{cases} (B_1^{*'}B_1^*)^{-1} B_1^{*'}B_1B_1'B_1^* (B_1^{*'}B_1^*)^{-1} & \text{if } B_1^* \text{ has f.c.r.}\\ I_r & \text{else} \end{cases}$$

and such that

$$V_{[A]} = V_{[A \setminus B_1]} - V_{[A \setminus B_1]} B_1^* \left[m^{-1} \left(B_1^* \right) + B_1^{*\prime} V_{[A \setminus B_1]} B_1^* \right]^{-1} B_1^{*\prime} V_{[A \setminus B_1]}$$
(4)

for all $B_1^* \in \mathfrak{L}(B_1)$; where $\mathfrak{L}(B_1)$ is the set containing B_1 and all the submatrices of B_1 having f.c.r. and \mathfrak{M}_r is the collection of all $r \times r$ symmetric positive definite matrices.

Lemma 3 emerges as a corollary of Lemma 4.

A convenient operator is defined.

Given a positive definite symmetric matrix Ω and any matrix A define $P_{[\Omega,A]}$ as

$$P_{[\Omega,A]} = A \left(A' \Omega A \right)^{-} A' \Omega \tag{5}$$

and $Q_{[\Omega,A]}$ as

$$Q_{[\Omega,A]} = I - P_{[\Omega,A]}$$

Specific properties of $P_{[\Omega,A]}$ may emerge depending on A and Ω . The following results establishes two important properties for $P_{\left[V_{\left[\bar{\Delta}\right]},\Delta_{\left(k\right)}\right]}$.

Theorem 5
$$P_{\left[V_{\left[\widetilde{\Gamma}\right]},\Delta_{(k)}\right]} = P_{\left[V_{\left[\widetilde{\Gamma}\setminus\widetilde{\Delta}_{(k)}\right]},\Delta_{(k)}\right]}$$
 for any $\Delta_{(k)} \in \mathfrak{D}(\Delta)$.

 $\textbf{Theorem 6} \ V_{\left[\widetilde{\Gamma}\right]}Q_{\left[V_{\left[\widetilde{\Gamma}\right]},\Delta_{(k)}\right]} = V_{\left[\widetilde{\Gamma}\setminus\widetilde{\Delta}_{(k)}\right]}Q_{\left[V_{\left[\widetilde{\Gamma}\setminus\widetilde{\Delta}_{(k)}\right]},\Delta_{(k)}\right]} \ for \ any \ \Delta_{(k)} \in \mathfrak{D} \ (\Delta).$

6 Estimators and tests

6.1 Efficient GLS estimators

Under assumptions A.1-A.3, if all effects are not correlated to the regressors, that is if

$$E\left(u|W\right) = 0,$$

then the Gauss-Marcov estimator for β and λ is the *Multi-way GLS*

$$d^{GLS} = \begin{pmatrix} b^{GLS} \\ l^{GLS} \end{pmatrix} = \left(W'V_{[\widetilde{\Gamma}]}W \right)^{-1} W'V_{[\widetilde{\Gamma}]}y.$$
(6)

The formula for b^{GLS} is the following

$$b^{GLS} = \left(X' V_{\left[\widetilde{\Gamma}\right]} Q_{\left[V_{\left[\widetilde{\Gamma}\right]}, \Delta Z\right]} X \right)^{-1} X' V_{\left[\widetilde{\Gamma}\right]} Q_{\left[V_{\left[\widetilde{\Gamma}\right]}, \Delta Z\right]} y \tag{7}$$

The Multi-way Within estimator for β is the following

$$b^{within} = \left(X'Q_{[\Delta]}X\right)^{-1}X'Q_{[\Delta]}y.$$
(8)

It is a robust estimator in that it leaves the correlation between regressors and all error components unrestricted. A more general class of efficient estimators encompassing d^{GLS} and b^{within} as particular cases is derived

Theorem 7 Assume **A.1-A.3** and let $\Delta_{(k)} \in \mathfrak{D}(\Delta)$. Then, the efficient multi-way GLS estimator for β and λ in the presence of (possibly) correlated effects at the levels $\Delta_{(k)}$, $d^{GLS|\Delta_{(k)}}$, is

$$d^{GLS|\Delta_{(k)}} = \begin{pmatrix} b^{GLS|\Delta_{(k)}} \\ l^{GLS|\Delta_{(k)}} \end{pmatrix}$$

$$= \left(W' H Q_{[H,\Delta_{(k)}]} W \right)^{-} W' H Q_{[H,\Delta_{(k)}]} y.$$
(9)

with

where $H \equiv V_{\left[\widetilde{\Gamma} \setminus \widetilde{\Delta}_{(k)}\right]}$

$$b^{GLS|\Delta_{(k)}} = (X'MX)^{-1} X'My, \qquad (10)$$

and $M = H\left(Q_{\left[H,\Delta_{(k)}\right]} - P_{\left[H,Q_{\left[H,\Delta_{(k)}\right]}\Delta Z\right]}\right).$

6.2 Between estimators

The Multi-way Between estimator, considering the variation between all groups in Δ , is defined as

$$\widetilde{d}^{B} = \left(W'V_{[\widetilde{\Gamma}]}P_{[\Delta]}W\right)^{-1}W'V_{[\widetilde{\Gamma}]}P_{[\Delta]}y.$$
(11)

The following general formula for the between estimator of β is suggested, which is useful in the context of specification tests

$$\widetilde{b}^{B(\Delta_{(k)})} = \left(X' V_{[\widetilde{\Gamma}]} P_{\left[V_{[\widetilde{\Gamma}]}, Q_{\left[V_{[\widetilde{\Gamma}]}, \Delta Z\right]} \Delta_{(k)}\right]} X \right)^{-1} X' V_{[\widetilde{\Gamma}]} P_{\left[V_{[\widetilde{\Gamma}]}, Q_{\left[V_{[\widetilde{\Gamma}]}, \Delta Z\right]} \Delta_{(k)}\right]} y.$$

$$(12)$$

It generalizes the extended between estimator derived in Krishnakumar (2006) to an unbalanced multilevel setting with generic non-idiosyncratic variables that do not lie necessarily onto the space spanned by the correlated effects. One can think of $\tilde{b}^{B(\Delta_{(k)})}$ as an estimator that exploits only the residual variation between the groups in $\Delta_{(k)}$ once the variation in ΔZ has been partialled out (in the metric $V_{[\tilde{\Delta}]}$).

6.3 Efficient GLS estimators as weighted averages

Theorem 8 For all $\Delta_{(k)} \in \mathfrak{D}(\Delta)$

$$b^{GLS} = Fb^{GLS|\Delta_{(K)}} + (I - F)\widetilde{b}^{B(\Delta_{(k)})}$$

Theorem 9 Let $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta)$ and $\Delta_{(k)} \in \mathfrak{D}(\Delta|\Delta_{(\cdot)})$ then

$$b^{GLS|\Delta_{(\cdot)}} = F b^{GLS|\Delta_{(K)}} + G \widetilde{b}^{B(\Delta_{(k)})} - H \widetilde{b}^{B(\Delta_{(\cdot)})}$$

with F + G + H = I

6.4 Tests for correlated effects

Borrowing the same terminology as Kang's (1985), the following definitions hold.

Definition 10 For some level i = 1, ..., m, the unobserved effect u_i is said uncorrelated if $E(u_i|W) = 0$.

Definition 11 For some level i = 1, ..., m, the unobserved effect u_i is said (possibly) correlated if $E(u_i|W)$ is left unrestricted.

In a multi-level framework the number of possible specifications for the unobserved effects, h_m , increases rapidly with the number of error components m. For example, Kang (1985) focussing on the two-level model considers $h_2 = 1 + \binom{2}{1}2 = 5$ possible specifications for the error components and consequently 5 specification tests. These are reported in Table 1.

Test	H _o	Given:
1	u_2 uncorrelated	u_1 correlated
2	u_2 uncorrelated	u_1 uncorrelated
3	u_1 uncorrelated	u_2 correlated
4	u_1 uncorrelated	u_2 uncorrelated
5	u_1 and u_2 uncorrelated	

Table 1: Specification tests in the two-level model

If only *m* increases to 3, the number of specification tests increases to $h_3 = 19 (1 + \binom{3}{2}2 + 3 [2 + \binom{2}{1}] = 19)$. The specification tests are spelled out in Table 2

Test	H _o	Given:
1	u_3 uncorrelated	u_1 and u_2 correlated
2	u_2 uncorrelated	u_1 and u_3 correlated
3	u_1 uncorrelated	u_2 and u_3 correlated
4	u_3 and u_2 uncorrelated	u_1 correlated
5	u_3 and u_1 uncorrelated	u_2 correlated
6	u_1 and u_2 uncorrelated	u_3 correlated
7	u_3 uncorrelated	u_1 uncorrelated and u_2 correlated
8	u_3 uncorrelated	u_2 uncorrelated and u_1 correlated
9	u_2 uncorrelated	u_1 uncorrelated and u_3 correlated
10	u_2 uncorrelated	u_3 uncorrelated and u_1 correlated
11	u_1 uncorrelated	u_2 uncorrelated and u_3 correlated
12	u_1 uncorrelated	u_3 uncorrelated and u_2 correlated
13	u_3 uncorrelated	u_1 and u_2 uncorrelated
14	u_2 uncorrelated	u_1 and u_3 uncorrelated
15	u_1 uncorrelated	u_2 and u_3 uncorrelated
16	u_3 and u_2 uncorrelated	u_1 uncorrelated
17	u_3 and u_1 uncorrelated	u_2 uncorrelated
18	u_1 and u_2 uncorrelated	u_3 uncorrelated
19	u_1, u_2 and u_3 uncorrelated	

 Table 2: Specification tests in the three-way model

In general, with m error components the number h_m of tests is

$$h_{m} = 1 + \binom{m}{m-1} 2 + \dots + \binom{m}{2} \left[2 + \binom{m-2}{m-3} + \dots + \binom{m-2}{2} + \binom{m-2}{1} \right] + m \left[2 + \binom{m-1}{m-2} + \dots + \binom{m-1}{2} + \binom{m-1}{1} \right]$$
$$= 1 + \binom{m}{m-1} 2 + \sum_{g=1}^{m-2} \binom{m}{m-1-g} \left(2 + \sum_{h=1}^{g} \binom{g+1}{h} \right)$$

Fortunately, the notation used in this paper is general enough to deal with any number of error components. Indeed, as large as h_m may be, the specification tests can always be classified according to the following four-type partition.

- 1. Test that the effects at the levels $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta)$ are uncorrelated given that the effects at all other levels $\Delta_{(\cdot)}^c$ are uncorrelated. There are $\sum_{g=1}^{m-1} \binom{m}{m-g}$ Hausman tests based on the differences $q_1(\Delta_{(\cdot)}) = b^{GLS} - b^{GLS|\Delta_{(\cdot)}}$ over all $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta)$. If m = 2, these are Test 2 and Test 4 of Table 1. If m = 3 these are Test 13 to 18 in Table 2.
- 2. Test that the effects at the levels $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta)$ are uncorrelated, leaving the effects at all other levels, $\Delta \setminus \Delta_{(\cdot)}$, possibly correlated. There are $\sum_{g=1}^{m-1} \binom{m}{m-g}$ Hausman tests based on the differences $q_2(\Delta_{(\cdot)}) = b^{GLS|\Delta \setminus \Delta_{(\cdot)}} b^{within}$ over all $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta)$. If m = 2 these are Test 1 and Test 3 of Table 1. If m = 3, these are Test 1 to 6 of Table 2.
- 3. Test that the effects at the levels $\Delta_{(k)} \in \mathfrak{D}(\Delta)$ are uncorrelated, maintaining a mixed specification for the effects at all other levels, $\Delta \setminus \Delta_{(k)}$; that is assume that the effects at the levels $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta \setminus \Delta_{(k)})$ are uncorrelated and leave the effects at the remaining levels $\Delta \setminus \Delta_{(k)} \setminus \Delta_{(\cdot)}$ possibly correlated, k = 1, ..., m - 2. There are

$$\sum_{g=1}^{m-2} \binom{m}{m-1-g} \sum_{h=1}^{g} \binom{g+1}{h}$$

Hausman tests based on the differences $q_3(\Delta_{(\cdot)}, \Delta_{(k)}) = b^{GLS|\Delta \setminus \Delta_{(k)} \setminus \Delta_{(\cdot)}} - b^{GLS|\Delta \setminus \Delta_{(\cdot)}}$ over all $\Delta_{(\cdot)} \in \mathfrak{D}(\Delta \setminus \Delta_{(k)})$. If m = 2, there are no such tests. If m = 3 these are Test 7 to 12 of Table 2.

4. Test that the effects at all levels are uncorrelated. Regardless the number of levels in the data, there is 1 Hausman test based on the difference $q_4 = b^{GLS} - b^{within}$. This is Test 5 in Table 1 and Tests 19 in Table 2.

Remark 12 Particular tests of type 4 have been examined in the ECM literature, notably Hausman and Taylor (1982), Arellano (1993) and Ahn and Low (1996) for m = 1 and Kang (1987) for m = 2. Particular tests of type 1 and 2 have been examined by Kang (1987) for m = 2. Conversely, tests of type 3 have never been considered, since they emerge only for $m \ge 3$. Given that efficient GLS can be obtained as weighted averages of other estimators, identical tests can be derived using differences that involve the between estimators.

7 Conclusion

What's left to do?

- Mata implementation
- Regression based tests a la Mundlak

(MAIN) REFERENCES

DAVIS, P. (2002) "Estimating multi-way error component models with unbalanced data structures" *Journal of Econometrics*, 106, 67-95.

KANG, S. (1985) "A note on the equivalence of specification tests in the two factor multivariate variance components model" *Journal of Econometrics*, 106, 67-95.

HAUSMAN, J.A. and W.E. TAYLOR, (1981) "Panel Data and Unobservable Individual Effects" *Econometrica*, 49, 1377-1398.

HUSSAIN, A. (1969) "A mixed model for regressions" *Biometrika*, 56, 327-336

MUNDLAK, Y. (1978) "On the Pooling of Time Series and Cross Section Data" *Econometrica*, 46, 69-85.

WANSBEEK, T. and A. KAPTEYN (1989) "Estimation of the error component model with incomplete panels", *Journal of Econometrics*, 41, 341-361.