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2 Motivations

� New a) tests of correlated e�ects and b) estimators for the (possibly)
unbalanced multiway ECM.

� New algebraic results, useful for computations.

3 Related literature

� Tests for correlated e�ects: Hausman (1978), Mundlak (1978), Haus-
man and Taylor (1982), Kang (1985), Arellano (1993), Ahn and Low
(1996), Wooldridge (2002), Krishnakumar (2006).

� Estimators: Kaptein and Wansbeek (1989), Davis (2002).

� Algebra for the multiway ECM: Davis (2002).
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4 The multiway ECM

4.1 Notation for column-wise partitioned matrices

Given a column-wise partitioned matrix A =
�
A1 A2 � � � Am

�
, de�ne

D (A) as the set of all column-wise partitioned matrices formed by any num-
ber 1 � k � m of distinct blocks of A, taken in the same order as in A.
For example, if A =

�
A1 A2 A3 A4

�
, then

�
A1 A3 A4

�
2 D (A).

A 2 D (A) and the size of D (A) is
Pm

g=1

�
m
g

�
.

4.2 Projection matrices

Given an arbitrary matrix A, A� denotes a generalized inverse of A. P[A] =

A (A0A)�A0 indicates the projection matrix onto the space spanned by the
columns of A. Q[A] = I � P[A]
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4.3 The Model

I focus on the general multi-way ECM with generic number of levels m+ 1

y = W� + �u (1)

where

W =
�
X �Z

�
� =

�
In �

�
and � =

�
�1 �2 � � � �m

�
� =

�
�0 �0

�0
u =

�
u00 u01 � � � u0m

�0
and

� �i denotes the (n� gi) matrix of dummy variables indicating the groups
at the level i = 1; :::m

� ui denotes the error component vector of dimension (gi � 1);

� u0 stands for the idiosyncratic error component vector of dimension
(n� 1)

The following identi�cation assumptions holds throughout.

A.1 Both X and �Z are of full-column rank (f.c.r.).

The following assumption characterises the columns ofX as the regressors
with idiosyncratic (observation speci�c) variation.

A.2 No linear combination of the columns of X lies in the subspace spanned
by the columns of �.

A.1 and A.2 together imply that the regressor matrix W is of f.c.r.

A.3 ECM variance-covariance matrix of the composite error �u (Kaptein
and Wansbeek, 1987; Davis, 2002)

� = �20In + �
2
1�1�

0
1 + :::+ �

2
m�m�

0
m (2)

Convenient nonsingular transformations of � and � are de�ned below.
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De�nition 1 Let e�i =
�i
�0
�i for all i = 1; :::;m. Then, let e� = � e�1 � � � e�m

�
and e� = � In e� �

.

It follows that

� = �20

�
In + e�1

e�0
1 + :::+

e�m
e�0
m

�
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5 Algebraic results

De�nition 2 Given a real matrix A; de�ne the operator V[A] as V[A] =

(AA0)�1.

The importance of V[�] hinges upon the following

V[e�] = �20��1: (3)

V[�] is well de�ned for any column-wise partitioned matrix A of the form
A =

�
I B

�
as AA0 = I +BB0 is positive de�nite.

The following Lemma (Davis, 2002) is useful to compute V[e�]
Lemma 3 Let C =

�
I D1 D2

�
: Then,

V[C] = V[I D2] � V[I D2]D1

�
I +D0

1V[I D2]D1

��1
D0
1V[I D2]

and
V[I D2] = I �D2 [I +D

0
2D2]

�1
D0
2:

The following extension to Davis (2002) (and to Wansbeek and Kapteyn
(1989)) expands the set of possible representations for V[e�].
Lemma 4 Given the column-wise partitioned real matrix B, let B1 2 D (B),
A =

�
I B

�
and r � rank (B1). Then, there exists a mapping m :

L (B1)!Mr de�ned as

m (B�1) =

�
(B�01 B

�
1)
�1B�01 B1B

0
1B

�
1 (B

�0
1 B

�
1)
�1 if B�1 has f.c.r.

Ir else

and such that

V[A] = V[AnB1] � V[AnB1]B�1
�
m�1 (B�1) +B

�0
1 V[AnB1]B

�
1

��1
B�01 V[AnB1] (4)

for all B�1 2 L (B1) ; where L (B1) is the set containing B1 and all the sub-
matrices of B1 having f.c.r. and Mr is the collection of all r � r symmetric
positive de�nite matrices:

Lemma 3 emerges as a corollary of Lemma 4.
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A convenient operator is de�ned.
Given a positive de�nite symmetric matrix 
 and any matrix A de�ne

P[
;A] as

P[
;A] = A (A
0
A)

�
A0
 (5)

and Q[
;A] as
Q[
;A] = I � P[
;A]

Speci�c properties of P[
;A] may emerge depending on A and 
. The
following results establishes two important properties for Ph

V[e�];�(k)
i.

Theorem 5 Ph
V[e�];�(k)

i = P"
V
[e�ne�(k)];�(k)

# for any �(k) 2 D (�).

Theorem 6 V[e�]QhV[e�];�(k)i = V[e�ne�(k)]Q"V
[e�ne�(k)];�(k)

# for any �(k) 2 D (�).
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6 Estimators and tests

6.1 E�cient GLS estimators

Under assumptionsA.1-A.3, if all e�ects are not correlated to the regressors,
that is if

E (ujW ) = 0;
then the Gauss-Marcov estimator for � and � is the Multi-way GLS

dGLS =

�
bGLS

lGLS

�
=
�
W 0V[e�]W

��1
W 0V[e�]y: (6)

The formula for bGLS is the following

bGLS =

�
X 0V[e�]QhV[e�];�ZiX

��1
X 0V[e�]QhV[e�];�Ziy (7)

The Multi-way Within estimator for � is the following

bwithin =
�
X 0Q[�]X

��1
X 0Q[�]y: (8)

It is a robust estimator in that it leaves the correlation between regressors and
all error components unrestricted. A more general class of e�cient estimators
encompassing dGLS and bwithin as particular cases is derived

Theorem 7 Assume A.1-A.3 and let �(k) 2 D (�) : Then, the e�cient
multi-way GLS estimator for � and � in the presence of (possibly) correlated
e�ects at the levels �(k), d

GLSj�(k), is

dGLSj�(k) =

�
bGLSj�(k)

lGLSj�(k)

�
(9)

=
�
W 0HQ[H;�(k)]W

��
W 0HQ[H;�(k)]y:

with
bGLSj�(k) = (X 0MX)

�1
X 0My; (10)

where H � V[e�ne�(k)] and M = H

0@Q[H;�(k)] � P"
H;Q
[H;�(k)]

�Z

#
1A :
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6.2 Between estimators

TheMulti-way Between estimator, considering the variation between all groups
in �, is de�ned as

edB = �W 0V[e�]P[�]W
��1

W 0V[e�]P[�]y. (11)

The following general formula for the between estimator of � is suggested,
which is useful in the context of speci�cation tests

ebB(�(k)) =
0B@X 0V[e�]P24V[e�];Q�V

[e�];�Z
��(k)

35X
1CA
�1

X 0V[e�]P24V[e�];Q�V
[e�];�Z

��(k)
35y:
(12)

It generalizes the extended between estimator derived in Krishnakumar
(2006) to an unbalanced multilevel setting with generic non-idiosyncratic
variables that do not lie necessarily onto the space spanned by the correlated

e�ects. One can think of ebB(�(k)) as an estimator that exploits only the
residual variation between the groups in �(k) once the variation in �Z has
been partialled out (in the metric V[e�]).
6.3 E�cient GLS estimators as weighted averages

Theorem 8 For all �(k) 2 D (�)

bGLS = FbGLSj�(K) + (I � F )ebB(�(k))
Theorem 9 Let �(�) 2 D (�) and �(k) 2 D

�
�j�(�)

�
then

bGLSj�(�) = FbGLSj�(K) +GebB(�(k)) �HebB(�(�))
with F +G+H = I

6.4 Tests for correlated e�ects

Borrowing the same terminology as Kang's (1985), the following de�nitions
hold.
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De�nition 10 For some level i = 1; :::;m, the unobserved e�ect ui is said
uncorrelated if E (uijW ) = 0:

De�nition 11 For some level i = 1; :::;m, the unobserved e�ect ui is said
(possibly) correlated if E (uijW ) is left unrestricted.

In a multi-level framework the number of possible speci�cations for the
unobserved e�ects, hm, increases rapidly with the number of error compo-
nents m. For example, Kang (1985) focussing on the two-level model con-
siders h2 = 1+

�
2
1

�
2 = 5 possible speci�cations for the error components and

consequently 5 speci�cation tests. These are reported in Table 1.

Table 1: Speci�cation tests in the two-level model
Test Ho Given:

1 u2 uncorrelated u1 correlated
2 u2 uncorrelated u1 uncorrelated
3 u1 uncorrelated u2 correlated
4 u1 uncorrelated u2 uncorrelated
5 u1 and u2 uncorrelated

If only m increases to 3, the number of speci�cation tests increases to
h3 = 19 (1 +

�
3
2

�
2 + 3

�
2 +

�
2
1

��
= 19). The speci�cation tests are spelled out

in Table 2
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Table 2: Speci�cation tests in the three-way model
Test Ho Given:

1 u3 uncorrelated u1 and u2 correlated
2 u2 uncorrelated u1 and u3 correlated
3 u1 uncorrelated u2 and u3 correlated
4 u3 and u2 uncorrelated u1 correlated
5 u3 and u1 uncorrelated u2 correlated
6 u1 and u2 uncorrelated u3 correlated
7 u3 uncorrelated u1 uncorrelated and u2 correlated
8 u3 uncorrelated u2 uncorrelated and u1 correlated
9 u2 uncorrelated u1 uncorrelated and u3 correlated
10 u2 uncorrelated u3 uncorrelated and u1 correlated
11 u1 uncorrelated u2 uncorrelated and u3 correlated
12 u1 uncorrelated u3 uncorrelated and u2 correlated
13 u3 uncorrelated u1 and u2 uncorrelated
14 u2 uncorrelated u1 and u3 uncorrelated
15 u1 uncorrelated u2 and u3 uncorrelated
16 u3 and u2 uncorrelated u1 uncorrelated
17 u3 and u1 uncorrelated u2 uncorrelated
18 u1 and u2 uncorrelated u3 uncorrelated
19 u1, u2 and u3 uncorrelated
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In general, with m error components the number hm of tests is

hm = 1 +

�
m

m� 1

�
2 + :::+

�
m

2

��
2 +

�
m� 2
m� 3

�
+

:::+

�
m� 2
2

�
+

�
m� 2
1

��
+m

�
2 +

�
m� 1
m� 2

�
+

:::+

�
m� 1
2

�
+

�
m� 1
1

��
= 1 +

�
m

m� 1

�
2 +

m�2X
g=1

�
m

m� 1� g

� 
2 +

gX
h=1

�
g + 1

h

�!

Fortunately, the notation used in this paper is general enough to deal with any
number of error components. Indeed, as large as hm may be, the speci�cation
tests can always be classi�ed according to the following four-type partition.

1. Test that the e�ects at the levels �(�) 2 D (�) are uncorrelated given
that the e�ects at all other levels �c

(�) are uncorrelated. There are
m�1P
g=1

�
m
m�g
�
Hausman tests based on the di�erences q1

�
�(�)

�
= bGLS �

bGLSj�(�) over all �(�) 2 D (�). If m = 2, these are Test 2 and Test 4 of
Table 1. If m = 3 these are Test 13 to 18 in Table 2.

2. Test that the e�ects at the levels �(�) 2 D (�) are uncorrelated, leav-
ing the e�ects at all other levels, �n�(�), possibly correlated. There are
m�1P
g=1

�
m
m�g
�
Hausman tests based on the di�erences q2

�
�(�)

�
= bGLSj�n�(�)�

bwithin over all �(�) 2 D (�). If m = 2 these are Test 1 and Test 3 of
Table 1. If m = 3, these are Test 1 to 6 of Table 2.

3. Test that the e�ects at the levels �(k) 2 D (�) are uncorrelated, main-
taining a mixed speci�cation for the e�ects at all other levels,�n�(k);
that is assume that the e�ects at the levels �(�) 2 D

�
�n�(k)

�
are

uncorrelated and leave the e�ects at the remaining levels �n�(k)n�(�)
possibly correlated, k = 1; :::;m� 2. There are

m�2X
g=1

�
m

m� 1� g

� gX
h=1

�
g + 1

h

�
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Hausman tests based on the di�erences q3
�
�(�);�(k)

�
= bGLSj�n�(k)n�(�)�

bGLSj�n�(�) over all �(�) 2 D
�
�n�(k)

�
. Ifm = 2, there are no such tests.

If m = 3 these are Test 7 to 12 of Table 2.

4. Test that the e�ects at all levels are uncorrelated. Regardless the num-
ber of levels in the data, there is 1 Hausman test based on the di�erence
q4 = b

GLS � bwithin. This is Test 5 in Table 1 and Tests 19 in Table 2.

Remark 12 Particular tests of type 4 have been examined in the ECM lit-
erature, notably Hausman and Taylor (1982), Arellano (1993) and Ahn and
Low (1996) for m = 1 and Kang (1987) for m = 2. Particular tests of type
1 and 2 have been examined by Kang (1987) for m = 2. Conversely, tests of
type 3 have never been considered, since they emerge only for m � 3. Given
that e�cient GLS can be obtained as weighted averages of other estimators,
identical tests can be derived using di�erences that involve the between esti-
mators.
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7 Conclusion

What's left to do?

� Mata implementation

� Regression based tests a la Mundlak
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