Using margins to estimate partial effects

David M. Drukker

Director of Econometrics Stata

2010 Italian Stata Users Group meeting Bologna November 2010

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- This talk shows how to use the margins command to estimate the mean of the partial effects and the partial effects at the mean
- This talk highlights some important points about estimating partial effects
 - In nonlinear models, the partial effect at the mean can differ significantly from the mean of the partial effect
 - Standard parameter estimators; such maximum-likelihood, least squares, and generalized method of moments; only require a missing-at-random assumption, but estimating the mean of the partial effects requires a missing-completely-at-random assumption
- This talk will also illustrate some basic uses of Stata's factor variables

Factor variable syntax

- Stata supports operators for factor variables
- i. unary operator to specify indicators
- c. unary operator to treat as continuous
- # binary operator to specify interactions
- ## binary operator to specify factorial interactions

Earnings data

. use earn2b

. summarize age

Variable	01	bs Mean	n Std. 1	Dev. N	Min Max
age . tabulate edu	737 1c3 hourly	73 40.1968 v	3 13.226	541	15 80
		hour	Lv		
	educ3	nonhourly	hourly	Total	
No high school	diplom	192	766	958	
HIGH SCHOOL	DIPLOMA	616	1,641	2,257	
SOME COLLEGE 1	IO DEGRE	472	945	1,417	
ASSOCIATE OCCU	JPATIONA	122	244	366	
ASSOCIATE	ACADEMIC	110	133	243	
BACHELOR 'S	DEGREE	987	369	1,356	
MASTER 1	5 DEGREE	447	89	536	
PROFESSIONAL	DEGREE	110	18	128	
DOCTORATE	DEGREE	104	8	112	
	Total	3,160	4,213	7,373	

Factor variables in Stata

regress with factor variables

. regress lnea	ırn age c.age#	c.age i.ed	uc3 i.hou	rly		
Source	SS	df	MS		Number of obs	= 7352
Model Residual	1866.97842 3525.27413	11 169 7340 .48	.725311 0282579		F(11, 7340) Prob > F R-squared	= 353.39 = 0.0000 = 0.3462
Total	5392.25255	7351 .73	3540001		Adj R-squared Root MSE	= 0.3453 = .69302
lnearn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.1284447	.0034719	37.00	0.000	.1216388	.1352507
c.age#c.age	0013821	.0000405	-34.09	0.000	0014615	0013026
educ3						
3	.3663099	.0272751	13.43	0.000	.3128428	.419777
4	.3965967	.0293683	13.50	0.000	.3390264	.454167
5	.5247704	.0432303	12.14	0.000	.4400267	.6095141
6	.5574536	.0505165	11.04	0.000	.4584268	.6564805
7	.7062318	.0314011	22.49	0.000	.6446767	.767787
8	.7281191	.0398533	18.27	0.000	.6499951	.8062431
9	.9653706	.0666575	14.48	0.000	.8347028	1.096038
10	.8957075	.0708855	12.64	0.000	.7567514	1.034663
1.hourly	2135234	.0186841	-11.43	0.000	2501496	1768972
_cons	3.373212	.0719173	46.90	0.000	3.232233	3.514191

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● 今々で

Factor variables in Stata

Use coeflegend option to see parameter names

•	regress	lnearn	age	c.age#c.age	i.educ3	i.hourly,	coeflegend
---	---------	--------	-----	-------------	---------	-----------	------------

Source	SS	df	MS	1	Number of ob	s =	7352
Model Residual	1866.97842 3525.27413	11 7340	169.725311 .480282579	1 1 1	F(11, 7340 Prob > F R-squared) = = =	353.39 0.0000 0.3462
Total	5392.25255	7351	.733540001	1	Adj R-square Root MSE	d = =	0.3453 .69302
lnearn	Coef.	Legend					
age	.1284447	_b[age]				
c.age#c.age	0013821	_b[c.a	ge#c.age]				
educ3							
3	.3663099	Ъ[3.е	duc3]				
4	.3965967	_b[4.e	duc3]				
5	.5247704	_b[5.e	duc3]				
6	.5574536	_b[6.e	duc3]				
7	.7062318	_b[7.e	duc3]				
8	.7281191	_b[8.e	duc3]				
9	.9653706	_b[9.e	duc3]				
10	.8957075	_b[10.	educ3]				
1.hourly _cons	2135234 3.373212	_b[1.h _b[_co	ourly] ns]				

interaction syntax

. regress lnea	arn i.educ3 c.	age#c.age c	.age##i.h	nourly,	vsquish	
Source	SS	df	MS		Number of obs	= 7352
					F(12, 7339)	= 325.59
Model	1873.37108	12 156.	114257		Prob > F	= 0.0000
Residual	3518.88146	7339 .479	476967		R-squared	= 0.3474
					Adj R-squared	= 0.3464
Total	5392.25255	7351 .733	540001		Root MSE	= .69244
lnearn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ3						
3	.3672511	.0272535	13.48	0.000	.3138264	.4206757
4	.3954825	.0293452	13.48	0.000	.3379575	.4530076
5	.525017	.043194	12.15	0.000	.4403442	.6096897
6	.5596144	.0504776	11.09	0.000	.4606638	.6585649
7	.7089366	.0313835	22.59	0.000	.6474159	.7704572
8	.7212365	.0398645	18.09	0.000	.6430907	.7993824
9	.9621752	.0666073	14.45	0.000	.8316057	1.092745
10	.8775882	.0709997	12.36	0.000	.7384085	1.016768
c.age#c.age	0014171	.0000416	-34.04	0.000	0014987	0013355
age	.1345898	.0038557	34.91	0.000	.1270315	.1421481
1.hourly	0082572	.0592347	-0.14	0.889	1243743	.1078599
hourly#c.age						
1	0049327	.0013509	-3.65	0.000	0075809	0022845
_cons	3.178811	.0894314	35.54	0.000	3.0035	3.354122

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

A model for binary data

- The probit model for binary data is one of the most widely used nonlinear models
- The dependent variable y_i that we observe takes on values 0 and 1.
- One way to model this process is assume that there is a latent continuous variable y_i^* such that

$$y_i = \begin{cases} 1 & \text{if } y_i * = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i > 0\\ 0 & \text{otherwise} \end{cases}$$

• Specifying $Pr(y = 1 | \mathbf{x}) = F(\mathbf{x}\beta)$ to be the cumulative distribution for ϵ_i conditional on \mathbf{x} yields

$$Pr(y^* > 0|\mathbf{x}) = Pr(\epsilon > -\mathbf{x}\beta|\mathbf{x})$$

= $Pr(\epsilon < \mathbf{x}\beta|\mathbf{x})$ (if ϵ has a symmetric distribution)
= $F(\mathbf{x}\beta)$

・ □ ト 4 回 ト 4 国 ト 4 国 ト 国 の Q (0)

(日)

Estimation and inference in the probit model

- After choosing a distribution function, we have a fully specified parametric model
- Maximum-likelihood is the estimation framework most often applied
- Using the standard normal distribution for $F(\mathbf{x}\beta)$ yields the probit model

Accident data

- We have some (fictional) data on individuals and whether or not they have had an accident in the last year
 - crash is 1 if person has been the driver in an accident in the last year
 - cvalue is the value of the person's car
 - kids is the number of children (under 18) for which the person is a guardian
 - tickets is the number of tickets the individual has received in the last three years
 - male is 1 if the person is male

Probit example

use	accidents2

. probit crash tickets traffic i.male, nolog

sion		Number	of obs		948	
			LR chi	.2(3)	=	720.22
			Prob >	chi2	=	0.0000
d = -60.52294	9		Pseudo	R2	=	0.8561
Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
2.464657	.2768335	8.90	0.000	1.922	2073	3.00724
.159089	.0604682	2.63	0.009	.0405	735	.2776045
5.892127	.7758214	7.59	0.000	4.371	545	7.412709
-12.63666	1.529302	-8.26	0.000	-15.63	3403	-9.639279
	<pre>sion 1 = -60.522949 Coef. 2.464657 .159089 5.892127 -12.63666</pre>	<pre>sion 1 = -60.522949 Coef. Std. Err. 2.464657 .2768335 .159089 .0604682 5.892127 .7758214 -12.63666 1.529302</pre>	<pre>sion 1 = -60.522949 Coef. Std. Err. z 2.464657 .2768335 8.90 .159089 .0604682 2.63 5.892127 .7758214 7.59 -12.63666 1.529302 -8.26</pre>	<pre>sion Number LR chi Prob > 1 = -60.522949 Pseudo Coef. Std. Err. z P> z 2.464657 .2768335 8.90 0.000 .159089 .0604682 2.63 0.009 5.892127 .7758214 7.59 0.000 -12.63666 1.529302 -8.26 0.000</pre>	sion Number of obs LR chi2(3) Prob > chi2 Pseudo R2 Coef. Std. Err. z P> z [95% 2.464657 .2768335 8.90 0.000 1.922 .159089 .0604682 2.63 0.009 .0405 5.892127 .7758214 7.59 0.000 4.371 -12.63666 1.529302 -8.26 0.000 -15.63	$ \begin{array}{ccccc} \text{Number of obs} &= & & \\ & LR \ chi2(3) &= & \\ & Prob > chi2 &= & \\ Prob > chi2 &= & \\ \hline \\ & Prob > chi2 &= & \\ \hline \\ \hline \\ & Coef. \ Std. \ Err. & z \ P> z & [95\% \ Conf. \\ \hline \\ & 2.464657 & .2768335 & 8.90 & 0.000 & 1.922073 \\ & .159089 & .0604682 & 2.63 & 0.009 & .0405735 \\ & 5.892127 & .7758214 & 7.59 & 0.000 & 4.371545 \\ & -12.63666 & 1.529302 & -8.26 & 0.000 & -15.63403 \\ \hline \end{array} $

Note: 516 failures and 13 successes completely determined.

. estimates store probit1

Interpreting the estimated parameters

- The sign of the coefficient gives the direction of the effect, but not the marginal effect
- The estimated coefficients estimate $\frac{\beta}{\sigma}$, so their magnitudes are in units of the standard-deviation of the errors
- Marginal effect at a point $\tilde{\mathbf{x}}$ is $\frac{\partial E[y|\mathbf{x}]}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\tilde{\mathbf{x}}} = \frac{\partial F(\mathbf{x}\beta)}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\tilde{\mathbf{x}}} = f(\tilde{\mathbf{x}}\beta)\beta$
- The relative marginal effects do not depend x

$$\frac{\frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial x_j}}{\frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial x_k}} = \frac{f(\mathbf{x}\boldsymbol{\beta})\beta_j}{f(\mathbf{x}\boldsymbol{\beta})\beta_k} = \frac{\beta_j}{\beta_k}$$

• Use testnl to test hypotheses about the relative effects

Marginal effects

- The good thing about marginal effects at point $\tilde{\mathbf{x}}$ is that all the information we need for estimation and inference about the marginal effect is contained in the ML point estimates and estimated VCE
- The bad thing about marginal effects at point $\tilde{\mathbf{x}}$ is that we must choose $\tilde{\mathbf{x}}$
- Use margins to estimate marginal effects at a point $\tilde{\mathbf{x}}$
- Conventionally, $\tilde{\mathbf{x}} = \bar{\mathbf{x}}$ when the variables in \mathbf{x} are continuous
- See [Long and Freese(2006)] for more about interpreting the parameter estimates from cross-sectional binary-model regressions

Marginal effects at means via margins

. margins , d	ydx(tickets	traffic) atme	eans				
Conditional m Model VCE	arginal effe : OIM	cts		Numbe	r of o	bs =	948
Expression dy/dx w.r.t.	: Pr(crash), : tickets tra	predict() affic					
at	: tickets traffic 0.male 1.male	= 1 = 5 = .8 = .4	.436709 .201121 5327004 4672996	(mean) (mean) (mean) (mean)			
	dy/dx	Delta-method Std. Err.	l z	P> z	[95	% Conf.	Interval]
tickets traffic	2.45e-07 1.58e-08	8.06e-07 5.14e-08	0.30	0.762	-1.3 -8.4	4e-06 9e-08	1.82e-06 1.17e-07

۲ Note the small effect of tickets and traffic

Marginal effects at means by hand

. estat summarize

Estimation sam	nple probit	Number of obs = 948				
Variable	Mean	Std. Dev.	Min	Max		
crash tickets traffic 1.male	.1624473 1.436709 5.201121 .4672996	.3690553 1.849456 2.924058 .4991929	0 0 .005189 0	1 7 9.99823 1		

```
. matrix list r(stats)
```

```
r(stats)[4.4]
```

```
min
            mean
                         \mathbf{sd}
                                            max
 crash .16244726 .36905531
                                    0
                                              1
tickets 1.4367089 1.8494562
                                    0
                                              7
traffic 5.2011207 2.9240582 .00518857 9.9982338
1.male .46729958 .49919289
                                    0
                                              1
. matrix r = r(stats)
. scalar f1 = normalden(_b[tickets]*r[2,1]+_b[traffic]*r[3,1]
                                                                    111
         + b[1.male]*r[4.1] + b[cons])
>
. display f1*_b[tickets]
2.446e-07
. display f1*_b[traffic]
1.579e-08
```

Discrete effects at means via margins

. margins ,	dyo	dx(male) a	tmeans										
Conditional Model VCE	mai :	rginal eff OIM	ects				1	Number	of	obs	=		948
Expression dy/dx w.r.t.	:	Pr(crash) 1.male	, predic	t()									
at	:	tickets traffic	=		1.43	6709 1121	(mean) (mean))					
		0.male	=		.532	7004	(mean))					
		1.male	=		.467	2996	(mean))					
			Delta-	meth	nod								
		dy/d	x Std.	Erı		z	P>	z	[9	5% Co	nf.	Interv	/al]
1.male		.008748	5 .00	7247	7	1.21	0.2	227	0	05455	3	.0229	9523

Note: dy/dx for factor levels is the discrete change from the base level.

Discrete effects at means by hand

. estat summarize

Estimation sam	nple probit	Number of obs = 948				
Variable	Mean	Std. Dev.	Min	Max		
crash tickets traffic 1.male	.1624473 1.436709 5.201121 .4672996	.3690553 1.849456 2.924058 .4991929	0 0 .005189 0	1 7 9.99823 1		

```
. matrix list r(stats)
```

r(stats)[4,4]

	mean	sd	min	max				
crash	.16244726	.36905531	0	1				
tickets	1.4367089	1.8494562	0	7				
traffic	5.2011207	2.9240582	.00518857	9.9982338				
1.male	.46729958	.49919289	0	1				
. matrix	. matrix r = r(stats)							
	10 15.1	1 . 1 . 50	47. 1. 5. 66					

```
. local xb0 = _b[tickets]*r[2,1]+_b[traffic]*r[3,1] + _b[_cons]
. display normal(`xb0'+_b[1.male]) - normal(`xb0')
```

```
.00874852
```

Average partial effects

• Average partial effect of x_k is

$$\frac{\beta_k}{N} \sum_{i=1}^N f(\mathbf{x}_i \boldsymbol{\beta})$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

if x_k is continuous

• If x_k is discrete, the average partial effect is the average of the discrete differences in the predicted probabilities

Marginal effects at a point versus Average marginal effects

- A marginal effect at a point is an estimate of the marginal effect at chosen covariate values
 - The marginal effect for a given person
- An average marginal effect is an estimate of a population-averaged marginal effect
 - The mean marginal effect for a population
 - The distribution of the covariates must be representative to consistently estimate the population-averaged marginal effect
- Mean partial effects and marginal effects at the mean are different quantities and can produce different estimates

• Let
$$g(\mathbf{x}) = \frac{\partial F(\mathbf{x})}{\partial \mathbf{x}}$$

• g() is nonlinear implies that $g(\bar{\mathbf{x}}) \xrightarrow{p} g(E[\mathbf{x}]) \neq E[g(\mathbf{x})] \xleftarrow{p} N^{-1} \sum_{i=1}^{N} g(\mathbf{x}_i)$ A review of cross-sectional probit model

Partial effects

Average marginal effects via margins

.0055371

. margins , dy	/dx(tickets t	raffic)					
Average margin Model VCE	nal effects : OIM			Number	of obs	=	948
Expression dy/dx w.r.t.	Pr(crash), tickets tra	predict() ffic					
	dy/dx	Delta-method Std. Err.	z	P> z	[95%	Conf.	Interval]
tickets	.0857818	.0031049	27.63	0.000	.0796	963	.0918672

• Note that these values are much larger than marginal effects at means

2.71

0.007

.0015251

Note that these estimates are statistically significant

.0020469

.009549

traffic

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Average marginal effects by hand

- . predict double xb, xb
- . generate double me_tickets = normalden(xb)*_b[tickets]
- . generate double me_traffic = normalden(xb)*_b[traffic]
- . summarize me_tickets me_traffic if e(sample)

Variable	Obs	Mean	Std. Dev.	Min	Max
me_tickets	948	.0857818	.2090093	4.59e-35	.9818822
me_traffic	948	.0055371	.0134912	2.96e-36	.0633787

Average discrete effects via margins

. margins , dy	/dx(male)					
Average margin Model VCE	al effects OIM			Number	of obs =	948
Expression : dy/dx w.r.t. :	Pr(crash), 1.male	<pre>predict()</pre>				
	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf	. Interval]
1.male	.2092058	.0105149	19.90	0.000	.188597	.2298145

Note: dy/dx for factor levels is the discrete change from the base level.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● 今々で

Average discrete effects by hand

- . generate double xb0 = _b[tickets]*tickets + _b[traffic]*traffic + _b[_cons]
- . generate double de = normal(xb0 + _b[1.male]) normal(xb0)
- . summarize de

Variable	Obs	Mean	Std. Dev.	Min	Max
de	948	.2092058	.3605846	7.79e-12	.996267

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Treating tickets as discrete I

```
. estimates restore probit1
(results probit1 are active now)
. preserve
         replace tickets = _n-1 in 1/8
(7 real changes made)
         replace male
                            = .4672996 in 1/8
(8 real changes made)
         replace traffic = 5.2011 in 1/8
(8 real changes made)
         predict Fhat in 1/8
(option pr assumed; Pr(crash))
(940 missing values generated)
         graph twoway line Fhat tickets in 1/8, xline(1.4367)
. restore
```

Treating tickets as discrete II

- The mean of tickets is about 1.43, and the slope of the probability function is about zero when tickets is less than 3
- When tickets is greater than or equal to 3, the slope of the probability function is greater than 0

Treating tickets as discrete III

. margins , a	t(tickets = (0 1 2 3)) post	coeflege	nd								
Predictive ma	Predictive margins Number of obs = 9											
Model VCE	: OIM											
Expression	: Pr(crash),	<pre>predict()</pre>										
1at	: tickets	=	0									
2at	: tickets	=	1									
3at	: tickets	=	2									
4at	: tickets	=	3									
	Margin	Legend										
_at												
1	1.66e-09	_b[1bnat]										
2	.0001208	_b[2at]										
3	.0549183	_b[3at]										
4	.4052946	_b[4at]										

Treating tickets as discrete IV

- . lincom _b[2._at] _b[1bn._at]
- (1) 1bn._at + 2._at = 0

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.0001208	.0001671	0.72	0.470	0002067	.0004484

- . lincom _b[3._at] _b[2._at]
- $(1) 2._at + 3._at = 0$

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.0547975	.0177313	3.09	0.002	.0200448	.0895502

- . lincom _b[4._at] _b[3._at]
- $(1) 3._{at} + 4._{at} = 0$

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.3503763	.0225727	15.52	0.000	.3061346	.3946179

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

. estimates restore probit1 (results probit1 are active now)

Treating tickets as discrete V

•	generate	double	xb_b =	= _b[_cons]	+	_b[traffic]	*traffic	+ _b[1.mal	e]*male
	generate	double	pr0 =	normal(xb_	b +	0*_b[ticke	ts]) //	' prob	when	tickets=0
	generate	double	pr1 =	normal(xb_	b +	1*_b[ticke	ts]) //	' prob	when	tickets=1
	generate	double	pr2 =	normal(xb_	b +	2*_b[ticke	ts]) //	' prob	when	tickets=2
	generate	double	pr3 =	normal(xb_	b +	3*_b[ticke	ts]) //	' prob	when	tickets=3
	generate	pe_d01	= pr1-	-pr0						

. sum pe_d01

_	Variable	Obs	Mean	Std. Dev.	Min	Max
	pe_d01	948	.0001208	.0003387	2.52e-24	.0031395
	. generate pe	d12 = pr2-pr	1			
	. sum pe_d12					
	Variable	Obs	Mean	Std. Dev.	Min	Max
	pe_d12	948	.0547975	.0794281	1.05e-14	.3911403
	. generate pe	_d23 = pr3-pr	2			
	. sum pe_d23					
_	Variable	Obs	Mean	Std. Dev.	Min	Max
	pe_d23	948	.3503763	.3749537	1.11e-07	.7821735

Missing data and partial effects I

- ML estimators are consistent if some of the data is missing at random
 - Missing at random allows the mechanism that causes data to be missing to depend on the covariates **x** and a disturbance that is independent of everything else in the model
 - This is sometimes called selection on observables
 - See [Cameron and Trivedi(2005)] and [Wooldridge(2002)] for discussions and proofs
 - The sample distribution of the covariates need not be representative of the population distribution

Missing data and partial effects II

- Estimating population averaged partial effects requires the much stronger assumption that the sample distribution of the covariates is representative
 - Missing completely at random guarantees that the sample distribution of the covariates is representative
 - Missing completely at random requires the mechanism that causes data to be independent of everything else in the model

- In some cases, we can use weights to make the weighted sample covariate distribution representative
- We need a representative sample of covariates for $N^{-1}\sum_{i=1}^{N} w_i g(\mathbf{x}_i) \xrightarrow{p} E[g(\mathbf{x})]$

Missing data and partial effects III

- We also need a representative sample covariate distribution to estimate E[x]
- If we choose $\tilde{\mathbf{x}}$ in way that does not depend on our sample, we can perform estimation and inference for the partial effect at \tilde{x} because all the information we need is contained in the ML point estimates and estimated VCE, which only require missing at random

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Bibilography

- Cameron, A. Colin and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and applications*, Cambridge: Cambridge University Press.
- Long, J. Scott and Jeremy Freese. 2006. *Regression models for categorical dependent variables using Stata*, College Station, Texas: Stata Press.
- Wooldridge, Jeffrey. 2002. *Econometric Analysis of Cross Section and Panel Data*, Cambridge, Massachusetts: MIT Press.