BAYESIAN ESTIMATION TOOLS
The Bayesian Estimation Tools package provides a suite of tools for estimation and analysis of a number of pre-packaged models. The internal GAUSS Bayesian models provide quickly accessible, full-stage modeling including data generation, estimation, and post-estimation analysis. Modeling flexibility is provided through control structures for setting modeling parameters, such as burn-in periods, total iterations and others.
DATA GENERATION TOOLS FOR BUILDING HYPOTHETICAL DATA SETS:
- Univariate and multivariate linear models
- Autoregressive error terms (AR)
- Hierarchical Bayes (HB)
- Probit and logit data
SUPPORTED MODELS FOR MARKOV CHAIN MONTE CARLO (MCMC) ESTIMATION:
- Univariate and multivariate linear models
- Autoregressive error terms (AR)
- Hierarchical Bayes (HB)
- Probit model
- Dynamic two-factor model
- Structural vector autoregressive (SVAR)
FLEXIBLE, USER DEFINED MCMC ESTIMATION PARAMETERS INCLUDING:
- Number of saved iterations
- Skipped iterations
- Burn-in iterations
- Total number of iterations
- Inclusion of intercept
- Optional graph and results output
- Elective maximum likelihood estimation (MLE) initialization
THOROUGH COMPUTATIONS INCLUDING:
- Draws for all parameters at each iteration
- Posterior mean of parameters
- Posterior standard deviation of parameters
- Predicted variable values and residuals
- Correlation matrix between observed and predicted data
- PDF values and corresponding PDF graphs
- Log-likelihood values (when applicable)
SAMPLE OUTPUT REPORT FOR PROBIT MODEL
Model Type: Probit regression model ************************************************************* Possible underlying (unobserved) choice generation: Agent selects one alternative: Y[ij] = X[j]*beta_i + epsilon[ij] epsilon[ij]~N(0,Sigma) ************************************************************* Y[ij] is mvar vector Y[ij] is utility from subject i, choice set j, alternative k where i = 1, ..., numSubjects j = 1, ..., numChoices k = 1, ..., numAlternatives - 1 ************************************************************* X[j] is numAlternative x rankX for choice j ************************************************************* Pick alternative k if: Y[ijk] > max( Y[ijl] ) for all k < mvar+1 and l not equal to k Select base alternative if max(Y)<0 ************************************************************* Observed model: ************************************************************* Choice vector C[ij] is a numAlternative vector of 0/1 beta_i = Theta'Z[i] + delta[i] delta[i]~N(0,Lambda) ************************************************************* Summary stats of independent data ***************************************** Summary stats for X variables ***************************************** Variable Mean STD MIN MAX X1 0.33333 0.47538 0 1 X2 0.33333 0.47538 0 1 X3 0.33333 0.47538 0 1 X4 0.28648 0.20641 -0.083584 0.71157 X5 0.083333 0.59065 -1 1 *****************************************
© 2024 Aptech Systems, Inc. All rights reserved.
Summary stats for Z variables ***************************************** Variable Mean STD MIN MAX Y1 -0.10328 1.1582 -6.1714 3.7266 Y2 -0.23821 1.1428 -6.1295 3.2853 Y3 -0.28473 1.2776 -5.4752 4.58 ***************************************** Summary stats for dependent variables ***************************************** Variable Mean STD MIN MAX Y1 -0.10328 1.1582 -6.1714 3.7266 Y2 -0.23821 1.1428 -6.1295 3.2853 Y3 -0.28473 1.2776 -5.4752 4.58 *********************************** MCMC Analysis Setup *********************************** Total number of iterations: 1100.0 Total number of saved iterations: 1000.0 Number of iterations in transition period: 100.00 Number of iterations between saved iterations: 0.0000 Number of obs: 60.000 Number of independent variables: 5.0000 (excluding deterministic terms) Number of dependent variables: 3.0000 ******************************** MCMC Analysis Results ******************************** *********************************** Error Standard Deviation *********************************** Variance-Covariance Means(Sigma) Equation Y1 Y2 Y3 Y1 0.20831 0.078641 -0.12772 Y2 0.078641 0.26217 -0.078051 Y3 -0.12772 -0.078051 1 *********************************** Error Standard Deviation *********************************** Variance-Covariance Means (Lambda) Equation Beta1 Beta2 Beta3 Beta4 Beta5 Beta1 0.038024 0.0084823 0.0050414 -0.010463 -0.0044786 Beta2 0.0084823 0.038058 0.0061952 -0.0098521 0.0017846 Beta3 0.0050414 0.0061952 0.080755 -0.0086755 0.016158 Beta4 -0.010463 -0.0098521 -0.0086755 0.10271 -0.010493 Beta5 -0.0044786 0.0017846 0.016158 -0.010493 0.046216 *********************************** Theta for Z Equation 1.0000 *********************************** Variable PostMean PostSTD Theta1 0.53176 0.43012 Theta2 0.43195 0.35411 Theta3 -0.011848 0.00015526 Theta4 -2.0511 -1.9772 Theta5 1.0605 1.1038 *********************************** Theta for Z Equation 2.0000 *********************************** Variable PostMean PostSTD Theta1 0.90016 0.79037 Theta2 0.37388 0.19278 Theta3 -0.32424 -0.37066 Theta4 0.69154 0.85307 Theta5 -0.26623 -0.19126 *********************************** Theta for Z Equation 3.0000 *********************************** Variable PostMean PostSTD Theta1 -0.24998 -0.2454 Theta2 -0.22883 -0.19728 Theta3 -0.043585 0.026509 Theta4 -0.29718 -0.30046 Theta5 0.52032 0.50741
- Platform: Windows, Mac, and Linux
- Requirements: GAUSS/GAUSS Engine/GAUSS Light v13.1 or higher