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A General Method for Estimating a Linear Structural

Equation System

Karl G. J8reskog

Educational Testing Service

Abstract

A general method for estimating the unknown coefficients in a set

of linear structural equations is described. In its most general form the

method allows for both errors in equations (residuals, disturbances) and

errors in variables (errors of measurement, observational errors) and yields

estimates of the residual variance-covariance matrix and the measurement error

variances as well as estimates of the unknown coefficients in the structural

equations, provided all these parameters are identified. Two special

cases of this general method are discussed separately. One is when there

are errors in equations but no errors in variables. The other is when there

are errors in variables but no errors in equations. The methods are applied

and illustrated using artificial, economic and psychological data.
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A General Method for Estimating a Linear Structural

Equation System*

1. Introduction

We shall describe a general method for estimating the unknown coe~ficients

in a set of linear structural equations. In its most general form the method

will allow for both errors in equations (residuals, disturbances) and errors

in variables (errors of measurement, observational errors) and will yield

estimates of the residual variance-covariance matrix and the measurement error

variances as well as estimates of the unknown coefficients in the structural

equations, provided all .these parameters are identified. After giving

the results for this general case, two special cases will be considered.

The first is the case when there are errors in equations but no errors in

variables. This case has been studied extensively by econometricians (see

e.g., Goldberger, 1964, Chapter 7). The second case is when there are

errors in variables but no errors in equations. Models of this kind have

been studied under the name of path analysis by biometricians (see e.g.,

Turner & Stevens, 1959» ) sociologists (see e.g., Blalock, 1964) and psycholo-

gists (Werts & Linn, 1970).

It is assumed that the observed variables have a multinormal distribu-

tion and the unknmYn parameters ar~ estimated by the maximum likelihood method.

The estimates are computed numerically using a modi~ication of the Fletcher-

Powell minimization algorithm (Fletcher & Powell, 1963; Gruvaeus & JBreskog,

1970). Standard errors of the estimated parameters may be obtained by

computing the inverse of the information matrix. A computer program,

*This research has been supported in part by grant NSF-GB-12959 from the
National Science Foundation. The author wishes to thank Professor Arthur
Goldberger for his . comments on an earlier draft of the paper and Marielle
van Thillo, who wrote the computer programs, checked the mathematical
derivations and gave other valuable assistance throughout the work.
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LISREL, in FORTRAN IV, that performs all the necessary computations has been

written and tested out on the IBM 360/65; a write-up of this is under

preparation (J8reskog & van Thillo, 1970).

In the first special case referred to above, where there are no errors

of measurement in the observed variables the general method to be presented

is equivalent to the full information maximum likelihood (FIML) method of

Koopmans, Rubin and Leipnik (1950) also called full information least

generalized residual variance (FILGRV) method (Goldberger, 1964, Chapter 7),

provided that no constraints are imposed on the residual variance-covariance

matrix and the variance-covariance matrix of the independent variables.

However, with the general method described here, it is possible to assign

fixed values to some elements of these matrices and also to have equality

constraints among the remaining elements.

2. The General Model

Consider random vectors ~t ~ (~1'~2' •• ·'~) and S' ~ (Sl'S2' ••• 'Sn)

of true dependent and independent variables, respectively, and the following

system of linear structural relations

(1)

where B(m x m) and ~(m x n) are coefficient matrices and ~I ~ (~l' ~, ••• ,

Sm) is a random vector of residuals (errors in equations, random disturbance

terms). Without loss of generality it may be assumed that e(~) = e(~)~ Q

and e(~) ~ o. It is furthermore assumed that S is uncorrelated with

s and that ~ is nonsingular.
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-3-

The vectors ~ and e are not observed but instead vectors yl =

(Yl'Y2'·"'Ym) and Xl = (xl,x2, ... ,xn) are observed, such that

Y (2)

x=v+~+5

where I-l = ,e(y) v = e(~) and E and 5 are vectors of errors of measure-

ment in y and ~, respectively. It is convenient to refer to y and x

as the observed variables and ~ and s as the true variables. The errors

of measurement are assumed to be uncorrelated with the true variates and

among themselves.

Let p(n x n) and

and s} respectively,

be the variance-covariance matrices of

8
2 the diagonal matrices of error_5

variances for y and ~, respectively. Then it follows, from the above

assumptions, that the variance-covariance matrix E[(m + n) x (m + n)] of

z = (y"::5 r )' is

(4 )

~-l~~1~1-l
E =f -

\ ~::.~.-l

The elements of E are functions of the elements of B} r, ¢, ~,

and 8 .
~E

In applications some of these elements are fixed and equal

to assigned values. In particular this is so for elements in B- and I' '
but we shall allow for fixed values even in 'the other matrices. For the

remaining nonfixed elements of the six parameter matrices one or more subsets

may have identical but unknown values. Thus parameters in B, E', p,

0/ , and s
~E

are of three kinds: (i) fixed parameters that have been
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assigned given values, (ii) constrained parameters that are unknown but equal

to one or more other parameters and (iii) free parameters that are unknown and

not constrained to be equal to any other parameter.

Before an attempt is made to estimate a model of this kind, the identi-

fication problem must be examined. The identification problem depends on

the specification of fixed, constrained and free parameters. Under a given

specification, a given structure ~' r} ~, t, ~5} (3 generates
-€

one and only one ~ but there may be several structures generating the

same ~. If two or more structures generate the same ~, the structures

are said to be equivalent. If a parameter has the same value in all equiva-

lent structure~ the parameter is said to be identified. If all parameters

of the model are identified, the whole model is said to be identified. When

a model is identified one can usually find consistent estimates of all its

parameters. Some rules for investigating the identification problem when

there are no errors in variables are given by Goldberger (1964, pp. 306-318).

3. Estimation of the General Model

Let ~1'~2' ···}~N be N observations of z = (~t}~t)J • Since no

constraints are imposed on the mean vector (~t,yr)r the maximum likelihood

ti th · · t t z = (y-', x- t ) tes mate of 1S 1S he usual sample mean vec or •

1 N
§ = - ~ (z~ - ~)(~a - ~),

N a=l "'U

be the usual sample variance-covariance matrix, partitioned as

Let

~[(m + n) x (m + n)]
= [~yy(m x m)

S (n x m)
~xy

S (m x
~yx

S (n x
-xx

n)j
n)

(6)
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The logarithm of the likelihood function, omitting a function of the

observations, is given by

This is regarded as a function of the independent distinct parameters

in B, r , ~, \IF, e and e and is to be maximized with respect
-0 -e

to these, taking into account that some elements may be fixed and some

may be constrained to be equal to some others. Maximizing log L is equiva-

lent to minimizing

(8)

Such a minimization problem may be formalized as follows.

Let At ~ (~,~, ••• ,Ap) be a vector of all the elements of ~, r

~, \IF, e and 8 arranged in a prescribed order. Then F may be.- _0 -E

regarded as a function

continuous derivatives

F(~)

of/OAs

of ~,A2""'"\

and o~/O\o\

which is continuous and has

of first and second order,

except where ~ is singular. The totality of these derivatives is repre­

sented by a gradient vector OF/O~ and a symmetric matrix o2F/Of}J~t • Now

let some p - q of the A's be fixed and denote the remaining A's by ~l'

~2""'~q' q ~ p. The function F is now considered as a function G(~)

of ~1'~2""'~q' Derivatives OG/O~ and 02G/d~d~' are obtained from

OF/d?:: and o2F/o?jJ?Y by omitting rows and columns corresponding to the fixed

A's. Among ~1'~2' ""~q , let there be some r distinct parameters denoted

~1'~2,···,Kr' r ~ q , so that each ~i is equal to one and only one Kj ,
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but possibly several :refS equal the same ~. Let

order q x r with elements ki j = 1 if :rei = K
j

The function F (or G) is now a function H(~)

have

K =

and

of

(k .. ) be a matrix of
lJ

k .. = 0 otherwise.
lJ

and we

(10)

Thus, the derivatives of H are simple sums of the derivatives of· G •

The minimization of H(~) is now a straightforward application of

the Fletcher-Powell method for which a computer program is available

(Gruvaeus & J8reskog, 1970). This method makes use of a matrix ~, which

is evaluated in each iteration. Initially ~ is any positive definite

matrix approximating the inverse of d~/d~~r. In subsequent iterations

E is improved, using the information built up about the function so that

ultimately E converges to an approximation of the inverse of d2H/d~d~r

at the minimum. If there are many parameters, the number of iterations

may be excessive, but can be considerably decreased by the provision of a

good initial estimate of E. Such an estimate may be obtained by inverting

the information matrix

where e(d
2G/d:red:re r) is obtained from

e(d
2

Fj2friJAr) R: e(dFjd"A dF/d[)t)
~ - ~

(11)

(12)
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-7-

as described above. When the minimum of H has been found, the inverse

of the information matrix m~y be computed again to obtain standard errors

of all the parameters in ~. A general method for obtaining the elements

of e(dF/dAdF/dA t ) is given in Appendix A2..- -
The application of the Fletcher-Powell method requires formulas for

the derivatives of F with respect to the elements of ~, r, ~, !'

~o and §E . These may be obtained by matrix differentiation as shown in

Appendix AI. Writing A:;;; B-1, D:;;; B-~ and

(13)

the derivatives are

dF~ :;;; N(Drn D + Drn + n D + n )
- - -yy- - -yx -xy- -xx

(14)

(16)

(17)

(18)

In these expressions we have not taken into account that ~ and :t are

symmetric and that ~~ and e are diagonal matrl·ces. Th f'~ .
·-u -E e 0 ~-dlagonal
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zero elements of ~~ and ~E are treated as fixed parameters and the off­

diagonal elements of ¢ and ! as constrained parameters.

When the maximum likelihood estimates of the parameters have been obtained}

the goodness of fit of the model may be tested} in large samples} by the

likelihood ratio technique. Let H
O

be the null hypothesis of the model

under the given specifications of fixed, constrained and free parameters_

The alternative hypothesis HI may be that ~ is any positive definite

matrix.

Under HI' the maximum of log L is (see e.g.) Anderson} 1958, Chapter

log Ll '= -~ N(log 121 + m + n)

Under Ha , the maximum of log L is equal to minus the minimum value

Fa of F. Thus minus 2 times the logarithm of the likelihood ratio

becomes

u '= 2F - N loglSI - N(m + n)a ~

If the model holds, U is distributed} in large samples} as

1
d = 2 (m + n)(m + n + 1) - r

2 .
X wJ.th

(20 )

(21)

degrees of freedom} where} as before, r is the total number of independent

parameters estimated under H .o
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4. The Special Case of No Errors of Measurement

If there are no errors of measurement in y and x, the model (1)

may be written

By :::: rx + u (22)

where we have written u instead of s. In (22) we have altered the model

slightly, compared to (1), (2) and (3), in that the mean vectors have been

eliminated. This is no limitation, however, since constant terms in the

equations can be handled by using an x -variable that has the value 1 for

every observation. In this case, of course, S should be the raw moment

matrix instead of the dispersion matrix.

This type pf model has been studied for many years by econometricians

under the names of causal chains and interdependent systems (e.g., Wold &

Jureen, 1953). The variables y and x are economic variables and in

the econometric terminology, the variables are classified as exogenous

and endogenous variables, the idea beign that the exogenous variables

are given from the outside and the endogenous variables are accounted for

by the model. From a statistical point of view the distinction is rather

between the independent or predetermined variables ~ and the dependent

variables ~. The residual u represents a random disturbance term assumed

to be uncorrelated with the predetermined variables. Observations and

on y and x are usually in the form of a time series.

Equation (22) is usually referred to as the structural form of the

model. When (2'2) is premultiplied by ~-l one obtains the reduced form

 23338504, 1970, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2333-8504.1970.tb00783.x by C

ochraneItalia, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Y=~+B-*

-10-

, (23)

where * B-1 ....l(.u = u. l,I." is the vector of residuals in the

reduced form.

In this case, ~5 and ~€ in (4) are zero and therefore I~l and

E-l in (7) can be written explicitly. It is readily verified that

and

Using these results, log L becomes

If ~ is unconstrained, maximizing log L with respect to ¢ gives

"CI? == S ,which is to be expected, since CI? in this case is the variance-
~ ~XX

covariance matrix of x After the likelihood has been maximized with

respect to ~, the reduced likelihood is equal to a constant plus

(24)
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If also * is unconstrained, further simplification can be obtained,

for then (24) is maximized with respect to *, for given Band!.:,

when 1V is equal to

,

so that the function to be maximized with respect to B and r becomes a

constant plus

log L** == -~ N[ log I~rI - log IBI 2
]

1
log( I* I / IB1

2
)== -"2 N - -

== _IN log IB-l*Bt -11
2 - --

where

, (26)

1\r*== S
-yy

- S II' - lIS + lIS II'-yx- --xy __xx_

In deriving (26), we started from the likelihood function (7) based on

the assumption of multinormality of y- and !. Such an assumption may be

very unrealistic in most economic applications. Koopmans, Rubin and Leipnik

(1950) derived (24) and (26) from the assumption of multinormal residuals.

~ , which is probably a better assumption. However, the criterion (26)

has intuitive appeal regardless of distributional assumptions and con-

nections with the maximum likelihood method. The matrix l' in (25) is the

variance-covariance matrix of the residuals u in the structural form (22)
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and the matrix W* in (27) is the variance-covariance matrix of the residuals

u* in the reduced form (23). Maximizing (26) is equivalent to minimizing

IW*I • Since IW*I is a generalized variance, this method has been called

the full information least generalized residual variance (FILGRV) method

(see, e.g., Goldberger, 1964, Chapter 7). Several other estimation criteria

based on W* have been proposed. Brown (1960) suggested the minimization

of tr(W*) and Zellner (1962) proposed the "minimization of tr(~-l!,*)

where ¥. is proportional to S = S - S S-lS Malinvaud (1966,.- -yy·x -yy -yx...xx~xy

Chapter 9) cons idered the family of estimation criteria tr (.s.t* ) with

arbitrary positive definite weighting matrices ~.

Since the original article by Koopmans, Rubin and Leipnik (1950) several

authors have contributed to the development of the FILGRV method (Chernoff

& Divinsky, 1953; Klein, 1953, 1969; Brown, 1959; Eisenpress, 1962; Eisenpress

& Greenstadt, 1964 ; Chow, 1968; Wegge, 1969). Thi s paper will add another

computational algorithm to those already existing.

Minimizing 1**1 is equivalent to minimizing

(28)

Matrix derivatives of F with respect to B and r may be obtained by

matrix differentiation as shown in Appendix A3. The results are

(30 )

dFfO~ = 2!-l(~yy - ~xy) _ J;i~ -1 (29)

"" 21V -lem - BS )
~ --xx ~~YX

of/dr

The function F is to be minimized with respect to the elements of

B and E' taking into account that some elements are fixed and others are

constrained in some way. As will be demonstrated in sections 5 and 6,
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allowing for equalities among the elements of ~ and r, is not sufficient

to handle some economic applications. Instead, more general constraints may

be involved. Usually these constraints are linear but even models with

nonlinea~ constraints have been studied (see, e.g., Klein, 1969). Such

constraints can be handled as follows.

Let ~I = (~1'~2""J~q) be the vector of all nonfixed elements in

B and r. Each of these elements may be a known linear or nonlinear

function of K' = (Kl,K2, ••• ,Kr ) , the parameters to be estimated, i.eo,

i 1,2, ••• ,q (31)

Then F is regarded as a function H(K) of The derivatives

of H of first and second order are again given by (9) and (10), but now

K is the matrix of order q x r whose ijth element is df./dK .•
i. J

The

function H(~) may be minimized by the Fletcher-Powell method as before.

The advantage of this method compared to the more general one of the

preceding section is that the function now contains many fewer parameters

and the minimization is therefore faster. The Fletcher-Powell algorithm

is relatively easy to apply even in the nonlinear case and the iterations

converge quadratically from an arbitrary starting point to a minimum of

the function, although there is no guarantee that this is the absolute

minimum if several local minima exist.

5. Analysis of Artificial Data

The following hypothetical economic.model is taken from Brown (1959),

(32a)
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(32b)

::: Y (32c)

C + E ::: Y

where the dependent variables are

C ::: consumer expenditures

W ::: wage-salary bill

IT ::: nonwage income

Y = total income, production and expenditure

and the predetermined variables are

T ::: government net revenue
g

E ::: all nonconsumer spending on newly produced final goods

Y-l ::: value of Y lagged one time period

(32d)

and where and are random disturbance terms assumed to be uncor-

related with the predetermined variables. This hypothetical model will be

used to illustrate some of the ideas and methods of the previous sections.

To begin with we shall assume that the variables involved in this model

are not directly observed. Instead they are assumed to represent true vari-

ables that can only be measured with errors. Such an assumption may not be

unreasonable, as pointed out by Johnston (1963):

To be realistic we must recognize that most economic statistics
contain errors of measurement, so that they are only approximations
to the underlying "true" values. Such errors may arise because
totals are estimated on a sample basis or, even if a complete
enumeration is attempted, errors and inaccuracies may creep in.
Often, too, the published statistics may represent an attempt to
measure concepts which are different from those postUlated in the
theory (p. 148).
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-15-

Converting the variables to deviations from mean values and writing

~' = (C,W,IT,Y), E' = (Tg,E,y_l) and S' = (ul , U2,O,O) , model (32) may

be written in the form of (1) as

1 -a -a °1 2

° 1 ° °
° .1 1 ~

°
~ + S

1 ° ° -1

There are 19 independent pat'ameters in this model, namely 4 in Band r

6in

cP = , (34)

3 in

2
a

ul
2a a

! '"
ulu2 u2 (35),

° ° 0

0 0 ° °
and 6 in~6 = diag(8T ,8E,8y ) and ~€ = diag(8c,eW,eIT, oy) Note that

s -1
since (32c) and (32d) are error-free equations, * has the form (35) with

zero variances and covariances for ~. and u4 Also since Y-l is Y

lagged, we have assumed that the error variances in Y and Y-l are the

same. Therefore, @6 and ~€ have only 6 independent elements.
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-16-

Data were generated from this model by assigning the following values

to each of the 19 parameters

al = 0.8 a2 = 0.4 b1 = 0.:; be = 0.2

2 = 1.0
2

~ = :;.0CT
T CT

E
= 2.0

g -1

CTT E = 0.1 crT Y = 0.2 CT
EY

= 0.1 •
.g g -1 -1 (:;6)

2 = 0.2 2 = 0.:; = 0.1cr CT cr
u1

u2 u1u2

eT = 0.4 e =0.6 ey = 0·5
g E -1

ec = 0·5 ew= 0.6 err = 0·9 e = 0·5y

The resulting ~ , obtained from (4) and rounded to :; decimals, is

C W rr y T E Y
c 4·599 g -1

W 2.481 2.069

rr 4.659 2.159 7·514
y 6.449 :;·7:;1 7.409 10·799 (37)
T -0.692 -0.138 -1.454 -0·592 1.160g
E 2.100 1.250 2·750 4.100 0.100 2.:;60

Y-l 0.442 0·763 -0.421 0·542 0.200 0.100 3.250

For the purpose of illustrating the estimation method of section 3, the

above matrix is regarded as a sample dispersion matrix S to be analyzed.

The order of the vector A is 78, since there are 78 elements in B, [',

p, *", §;)e and §€ all together. Of these, 54 are fixed and. 24 are

nonfixed, so that ~ is of order 24. Because of the symmetry of ~ and ~

and the imposed equality of ey and ey ,there are 19 independent param-
-1

eters, so that the order of ~ is 19.
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-17-

The minimization o~ H(~) started at the point

a l '" 0.6 , a2 '" 0·3 , b '" 0.4 , b2 '" 0.1
1

2 2.0 2 2.0 2 2.0(TT '" , (TE :=; , (Ty '"
g -1

(TT E := (TT Y := (TEY = 0.0
g g -1 -1

2 0·3 » '" 0·3 0.0(T = , , (T '"u
l

u2 ~u2

ST :=; 0.4 , e
E

:= 0.6 , ey := 0·5
g -1

e '" 0·5 , ew = 0.6 , @rr = 0·9 , ey = 0.5c

From this point seven steepest descent iterations were per~ormed. There-

a~ter Fletcher-Powell iterations were used and it took 23 such iterations

to reach a point where all derivatives were less than 0.00005 in absolute

value. At this point, the solution was correct to four decimals and

the ~ in (37) was reproduced exactly. Twenty-three Fletcher-Powell

iterations required ~or convergence is not considered excessive since no

in~ormation about second-order derivatives was used and it takes at least

19 Fletcher-Powell iterations to build up an estimate o~ the matrix o~

second order derivatives.

We now consider model (32a-d) in the case when the variables are

observed without errors o~ measurement. Then the method o~ section 3

cannot be applied directly since the two identities (32c) and (32d) imply

that 2: is singular. There~ore, two o~ the endogenous variables must be

eliminated ~rom the system. It seems most convenient to eliminate C and

Y. When these variables have been eliminated, the structural equations

become
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-18-

- b 1

(58)

This system may be estimated by the method of section 4.

To illustrate the application o~ the estimation procedure we use a

dispersion matrix S obtained ~rom ~ in (37) by subtracting the error

variances from the diagonal elements and deleting rows and columns corres­

ponding to C and Y. There are 6 nonf'Lxed elements in Band !',

These elements are functions of'

namely I3U '

o~ the vector

1312 '

:rc •

1321 ) and These are the elements

and

b2 defined by [compare equation (31)]

1311 -1 0 0 0

1312 0 -1 0 0 a
l

1321 0 0 -1 0 a2 1
::: + (39)

1322 0 0 -1 0 b
l

0

0 0 1 0 b
2

0 0 0 1

Thus the function F is a function o~ 4 independent parameters.

The function F was'minimized using only Fletcher-Powell iterations

starting from the point

The solution point, found after 8 iterations, was, as expected, a
l

= 0.8 ,

a2 ::: 0.4) bl = 0·3, b
2:::

0.2 with
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0·3

-19-

I~I = 0.05

6. An Economic Application

In this section we apply methods SFLGRV and RFLGRV to a small economic

model taken from the literature. The model is Klein's model of United

States economy presented in Klein (1950, Pl'. 58-66):

C == aO + alP + a2P_l + a,w + ~

I == bO + blP + b2P_l + b
3K_l + u2

W* == Co + clE + c2E_l + c3A + u:;
Y + T == C + I + G

Consumption:

Investment:

Private wages:

Product:

Income:

Capital:

Wages:

Private product:

y=p+w

K == K_l + I

w==W*+W**

E=Y+T-W** ,

(40a)

(40b)

(40c)

(40d)

(40e)

(40f)

(J+Og )

(40h)

where the endogenous variables are

C == consumption

I == investment

~. == private wage bill

P == profits

Y == national income

K = end-of-year capital stock

W == total wage bill

E = private product

 23338504, 1970, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2333-8504.1970.tb00783.x by C

ochraneItalia, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



-20-

and the predetermined variables are the lagged endogenous variables P-l,

K_l and E_l and the exogenous variables

1 ::: unity

W** == government wage bill

T indirect taxes

G == government expenditures

A = time in years :from 1931.

All variables except 1 and A are in billions of 1934 dollars.

This model contains eight dependent variables and eight predetermined

variables. There are three equations involving residual terms. The other

five equations are identities. Using the five identities (40d) - (40h),

P, Y, K, W and E may be solved for and substituted into (40a) -

(40c). This gives a model with the following structural form

C
- a - a al - ~) (:)1 1
- b 1 - b bl1 1
- c - c 11 1

1

T

(0 a
3

- a -a a
1 0 a

2 0

~j
G1 1

:::: b
O - b -b b

l 0 b
2

b
3

A (41)1 1
Co - c 0 c1 c

3
0 0 P- l1

K_l
E_l

There are 24 nonfixed elements in B and r . These are all linear
~

functions of the 12 unknown coefficients in (40a-c) as follows
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1311
0 -1 0 0 0 0 0 0 0 0 0 0 1

(312 0 -1 0 0 0 0 0 0 0 0 0 0 0

(313 0 1 0 -1 0 0 0 0 0 0 0 0 0

1321
0 0 0 0 0 -1 0 0 0 0 0 0 0

(322 0 0 0 0 0 -1 0 0 0 0 0 0 rao 1

1323
0 0 0 0 0 1 0 0 0 0 0 0 0

a1
(331 0 0 0 0 0 0 0 0 0 -1 0 0 0

(332 0 0 0 0 0 0 0 0 0 -1 0 0 a2 0

r11
1 0 0 0 0 0 0 0 0 0 0 0 a

3
0

r12
0 -1 0 1 0 0 0 0 0 0 0 0

bO
0

r13
0 -1 0 0 0 0 0 0 0 0 0 0 0

714 = 0 1 0 0 0 0 0 0 0 0 0 0
b1 + 0 (42)

r16 0 0 1 0 0 0 0 0 0 0 0 0 b2
0

r21
0 0 0 0 1 0 0 0 0 0 0 0 b

3
0

722 0 0 0 0 0 -1 0 0 0 0 0 0 0

723
0 0 0 0 0 -1 0 0 0 0 0 0 Co 0

724 0 0 0 0 0 1 0 0 0 0 0 0 c1
0

726 0 0 0 0 0 0 1 0 0 0 0 0 0
c2

727
0 0 0 0 0 0 0 1 0 0 0 0 0

r31 0 0 0 0 0 0 0 0 1 0 0 0
C
3 0

r32 0 0 0 0 0 0 0 0 0 -1 0 0 0

r34 0 0 0 0 0 0 0 0 0 1 0 0 0

r35
0 0 0 0 0 0 0 0 0 0 0 11 0

r38 0 0 0 0 0 0 0 0 0 0 1 OJ 0

From annual observations, United States, 1921-1941 the f'o11owing raw

moment matrices are obtained:

C I W*-

e (62166063

28560086)

S = I 1679,01 286.02
~yy

W* 42076.78 1217·92
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-22-

C I W*
1 1133·90 26.60 763. fJJ

W** 5977·33 103.80 4044.07
T 7858.86 160 .40 5315·62
G 11633.68 243.19 7922.46

s = A 577·70 -105.60 460·90-xy

P-1 18929·37 655·33 12871·73
K_1 227767·38 5073·25 153470 ·56
E_1 66815·25 1831.13 45288·51

1 W** T G A P K_1
E_
1\1 21.00 -1

W** 107·50 626.87
T 142·90 789·27 1054·95
G 208.20 1200.19 1546.11 2369·94

\s = 238.00 176.00 421·70-ocx A 0.00 770.00

P-1 343·90 1746~22 2348.48 3451.86 -11·90 5956.29
K_1 4210.40 21683.18 28766.23 42026.14 590.60 69073·54 846132·70
E_1 1217·70 6364.43 8436·53 12473·50 495·60 20542.22 244984·77 72200.03

The ~o11owing estimated model was obtained

with

C = 18.318 - 0.229P + 0.384p + 0.802W + u "1",-1 1

I = 27·278 - 0·797P + 1.051P_1 - 0.l48K_1 + ~ I

W* = 5·766 + 0.235E + 0.284E_1 + 0.234A + ~ .~
(43)

(44)
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-23-

The standard errors of the estimated parameters may be obtained from a

formula for the asymptotic variance-covariance matrix developed by Rothenberg

and Leenders (1964).

7. The Special Case of No Residuals

When there are no residuals in (1), the relations between ~ and ~

are exact. The joint distribution of ~ and ~ is singular and of rank n •

vanishes. In general)

and r or in ~ e
-5

and e ) this model has to be estimated by the method of section 3. This
~E

In the equation (4) for ~ ) the second term in ~-yy

when there are fixed and constrained elements in B

may be done by choosing 0/ = 0 and specifying the fixed elements and the

constraints as described in that section.

The matrix ~ can also be written

,

where

e = (~E Q) ,
Q ~5

(46)

from which it is seen that the model is identical to a certain restricted

factor analysis model. Several special cases will ~ow be considered.

If B = I and r is unconstrained, i.e., all elements of r are- -
regarded as free parameters, model (45) is formally equivalent to an un­

re stricted factor model (JClreskog, 1969). The matrix i\. in (46) may be

obtained from any 0* of order (m + n) x n satisfying
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-24-

2r. == 11.* /1,*' + e

by a transformation of 11.* to a reference variables solution where the x's

are used as reference variables. Maximum likelihood estimates of 11.* and e

may be obtained by the method of JBreskog (1967a,b) which also yields a large

sample x
2

test of goodness of fit. Let the estimate of 11.* be partitioned

as

, (48)

where is of order m x n and ~ of order n x n • Then the maximum

likelihood estimates of r and ~ are

(50 )

If B == I and r is constrained to have some fixed elements while the

remaining elements in r are free parameters, model (45) is formally equiva-

lent to a restricted factor model in the sense of JBreskog (1969). This model

may be estimated by the procedure described in the same paper and, in large

samples, standard errors of the estimates and a goodness of fit test can also

be obtained. A computer program for this procedure is available (JBreskog &

Gruvaeus, 1967).

A more general case is when B is lower triangular. The structural

equation system for the true variates is then a causal chain. In general

such a causal chain may be estimated by the method described in section 3
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of the paper, though there may be simpler methods. One example occurs when

the system is normalized by fixing one element in each row of r to unity

and B has the form

B :

o
1322

o
••• 0

where all the I3ls are free parameters. Then there is a one-to-one trans­

formation between the free parameters of B and the free elements of

A : B-1• One may therefore estimate A instead of B. In this case,

the variance-covariance matrix ~ is of the form

where

Model (51) is a special case of a general model for covariance structures

developed by J8reskog (1970) and may be estimated using the computer program

ACOVS (J8reskog, Gruvaeus & van Thillo, 1970). In this model £, 1?

and e may contain fixed parameters and even parameters constrained to be
-€

equal in groups. The computer program gives maximum likelihood estimates of

the free parameters in ~, r , and, in large samples,

standard errors of these estimates and a test of overall goodness of fit of

the model can also be obtained.
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More generally, the above mentioned method may be used whenever ~

can be written in the form (51) such that there is a one-to-one correspondence

between the free parameters in Band r and the distinct free elements in

B* and A. For a less trivial example, see J8reskog (1970, .section 2.6).

8. A Psychological Application

In this section we consider a simplified model for the prediction of

achievements in mathematics (M) and science (S) at different grade levels.

To estimate the model we make use of longitudinal data from a growth study

conducted at Educational Testing Service (Anderson &Maier, 1963; Hilton,

1969). In this study a nationwide sample of fifth graders was tested in

1961 and then again in 1963, 1965 and 1967 as seventh, ninth and eleventh

graders, respectively. The test scores employed in this model are the

verbal (V) and quantitative (Q) parts of SCAT (Scholastic Aptitude

Test) obtained in 1961 and the achievement tests in mathematics (M5,~,M9'

Ml l ) and science (S5,S7,8
9,Sll)

obtained in 1961, 1963, 1965, and 1967,

respectively. The achievement tests have been scaled so that the unit of

measurement is approximately the same at all grade levels.

The model is depicted in Figure 1, where V

Ml l , 8
5

,

~l' S2' •• " ~8

is

8
7

, 8
9

and 8
11

denote the true scores of the tests and

the corresponding residuals. The model for the true scores

(53a)

(53b)
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This model postulates the major influences of a student's achievement in

mathematics and science at various grade levels. At grade 5 the main

determinants of a student 's achievements are his verbal and quantitative

(53c)

(53d)

(53e)

(53g)

(53h)

abilities at that stage. At higher grade levels, however, the achievements

are mainly determined by his achievements in the earlier grades. Thus,

achievements in mathematics in grade i is determined mainly by the

achievements in mathematics in grade i - 2 , whereas achievements in sci-

ence in grade i is determined mainly by the achievements in science in

grade i - 2 and in mathematics in grade i, i = 7,9,11 •

The structural form of this model is

1 0 0 0 0 0 0 0 M
5

a1 a
2 Sl

0 "I 0 0 0 0 0 0 8
5

bl b
2 s2

-c 0 1 0 0 0 0 0
~

0 0 S31
0 -d -d 1 0 0 0 0 8

7
0 0

(:) +
S41 2 =

0 0 -e 0 1 0 0 0 M
9

0 0 S51
0 0 0 -f -f 1 0 0 8

9
0 0 S61 2

0 0 0 0 -gl 0 1 0 MIl 0 o I S7
0 0 0 0 0 -hI -h 8

11 0 o I Sa2 J
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-28-

It is seen that this model is a causal chain. The model can be estimated by

the method described in section 5, provided some assumption is made about the

intercorrelations of residuals Sl'S2' ••• 'S8. Without such an assumption

the model is not identified. We have chosen to make the assumption that

all residuals are uncorrelated except Sl and S2· This assumption does

not seem to be too unrealistic.

The data that we use consist of a random sample of 730 boys taken from

all the boys that took all tests at all occasions. The variance-covariance

matrices are

M
5

130.690

115·645

116.162

90·709

119·564

104.430

119·712

90·916

179·617

125.858·

114.364

l25·223

135·074

126.470

116·950

193·557

120.426

155·885

157.827

149·930

117.439

148.648

120.492

133·231

112.218

109·187

215·894

159·783

175·497

155.839

218.067

149·045

147.115

264.071

143·218 190.763

,

~
106.837

87·859

8
9

107.75°

72·534

MIl
107·042

89·617
,

v
s = V (.158.014
~xx Q \ 73.518

The estimated model is

~ "= o.64ov + 0.415Q + ~1 (55a)

(55b)

(55c)
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-29-

8
7

= 0.3258
5 + 0.493M7 + ~4

M9 = 1.027M7 + ~5

(55d)

(55e)

(55f)

(55g)

(55h)

The estimated variance-covariance matrix of the true scores V and Q is

V

A V (105048
(l> = Q 73.95

Estimated residual variances and error variances for each measure are given

below

Measure

V

Q

M
5

8
5

M
7

8
7

M
9

8
9

Ml l
811

Residual Variance

10.0

22·5

26.4

29·5
25·2

28·5

75·7
20.0

Error Variance

}?l

4.4
25.4
11.8
40·3 .
24.3

29·3
36.1
18.8

47.7
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The estimated correlation between ~l and ~2 is 0.17·

The estimated reduced form for the true scores is

M = 0.640v + 0.415Q + ~*
5 1

~ = 0·70211 + 0.455Q + ~3

M
9

= 0·721V + 0.467Q + ~5

8
9

= 0.815V + 0.296Q + ~6

811 = 0.663V + 0.277Q + ~8

The relative variance contributions of V and Q, the residual ~* and

the error, to each test's total variance are shown below:

Measure V and Q Residual Error

M5 0·73 0.08 0.19
8
5 0.78 0.15 0.07

~ 0·59 0.20 0.21
8
7 0·56 0.28 0.16

M
9

0·56 0.30 0.14
8
9 0·52 0.32 0.16

Ml l 0.42 0·51 0.07
811 0.42 0·33 0.25

(56a)

(56c)

(56e)

(56f)

(56g)

(56h)
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It is not easy to give a clear-cut interpretation of these results.

Inspecting first the equations (55c), (55e) and (55g), it is seen that.a

unit increase in M. 2 tends to have a smaller effect on M. the larger
1. - 1.

i is. This agrees with the· fact that the growth curves in mathematics

"flattens" out at the higher grade levels. One would expect that the co-

efficient in (55g), like in (55c) and el in (55e), would be

greater than one, since, in general, for these data, the correlation of status,

M. - M. 2 ' are positive although usually very small.
1. 1.-

However, the large residual variance ~7 suggests that M
9

alone is not

sufficient to account for Ml l• This is probably due to the fact that

mathematics courses at the higher grades change character from being

mainly Itarithemetic computation" to involving more "algebraic reasoning."

Inspecting next the equations (55d), (55f) and (55h) describing

science achievements, it is Seen that the influence of mathematics on

science tends to decrease at the higher grades. This is natural since

science courses in the lower grades are based mainly on "logical reasoning"

whereas in the higher grades they are based on "memorizing of facts. It The

effect of science achievements on science two years later first increases

and then decreases. This is probably because the science courses special-

ize into different courses (Biology, Physics, etc.) at grade 11 whereas

the science test at the lower grades measures some kind of overall 11science

knowledge."

Whatever may be the best interpretations of these results, the example

serves to illustrate that it is possible to have both errors in equations

and errors in variables and still have an estimable model.

 23338504, 1970, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2333-8504.1970.tb00783.x by C

ochraneItalia, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



-32-

References

Anderson, T. W. An introduction to multivariate statistical analysis. New

York: Wiley, 1958.

Anderson, S. B., & Maier, M. H. 34,000 pupils and how they grew. Journal

of Teacher Education, 1963, ~ 212-216.

Blalock, H. M. Causal inferences in nonexperimental research. Chapel Hill,

N. C.: University of North Carolina Press, 1964.

Brown, T. M. Simplified full maximum likelihood and comparative structural

estimates. Econometrica, 1959, g]j 638-653.

Brown, T. M. Simultaneous least squares: a distribution free method of

equation system structure estimation. International Economic Review,

1960, b 173-191.

Chernoff, H., & Divinsky, N. The computation of maximum-likelihood estimates

of linear structural equations. In W. C. Hood & T. C. Koopmans (Eds.),

Studies in econometric method, Cowles Commission Monograph 14. New York:

Wiley, 1953. pp. 236-269.

Chow, G. C. Two methods of computing full-information maximum likelihOod

estimates in simultaneous stochastic equations. International Economic

Review, 1968, 2." 100-112.

Eisenpress, H. Note on the computation of full-information maximum-likelihood

estimates of coefficients of a simultaneous system. Econometrica, 1962,

2£, 343-348.

Eisenpress, H., & Greenstadt, J. The estimation of non-linear econometric

systems. Econometrica, 1966, ~ 851-861.

 23338504, 1970, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2333-8504.1970.tb00783.x by C

ochraneItalia, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



-33-

Fletcher, R., & Powell, M. J. D. A rapidly convergent descent method ~or

minimization. The Computer Journal, 1963, £, 163-168.

Goldberger, A. S. Econometric theory. New York: Wiley, 1964.

Gruvaeus, G., & J8reskog, K. G. A comPuter program for minimizing a function

o~ several variables. Research Bulletin 70-14. Princeton, N. J.:

Educational Testing Service, 1970.

Hilton, T. L. Growth study annotated bibliography. Progress Report 69-11.

Princeton, N. J.: Educational Testing Service, 1969.

Johnston, J. Econometric methods. New York: McGraw-Hill, 1963.

J8reskog, K. G. Some contributions to maximum likelihood factor analysis.

Psychometrika, 1967, ~ 443-482. (a)

J8reskog, K. G. UMLFA--A computer program for unrestricted maximum likelihood

~actor analysis. Research Memorandum 66-20. Princeton, N. J.: Educational

Testing Service, revised edition, 1967. (b)

J8reskog, K. G. A general approach to confirmatory maximum likelihood factor

analysis. Psychometrika, 1969, ~ 183-202.

J8reskog, K. G. A general method for analysis of covariance structures.

Biometrika.. 1970, 2L 239-251-

J8reskog, K. G., & Gruvaeus, G. RMLFA--A computer program for restricted

maximum likelihood factor analysis. Research Memorandum 67-21. Princeton:

N. J.: Educational Testing Service, 1967.

J8reskog, K. G., Gruvaeus, G. T., & van Thil1o, M. ACfJVS--A general computer

program ~or analysis of covariance structures. Research Bulletin 70-15.

Princeton, N. J.: Educational Testing Service, 1970.

 23338504, 1970, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2333-8504.1970.tb00783.x by C

ochraneItalia, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



-34-

JBreskog, K. G., & van Thill0, M. LISREL--A general computer program for

estimating linear structural relationships. Research Bulletin 70-00.

Princeton, N. J.: Educational Testing Service, in preparation.

Klein, L. R. Economic fluctuations in the United States, 1921-1941, Cowles

Commission Monograph 11. New York: Wiley, 1950.

Klein, L. R. A textbook of econometrics. Evanston: Row, Peterson, 1953.

Klein, L. R. Estimation of interdependent systems in macroeconometrics.

Econometrica, 1969, 2L 171-192.

Koopmans , T. C., Rubin, H., & Leipnik, R. B. Measuring the equation systems

of dynamic economics. In T. C. Koopmans (Ed.), Statistical inference

in dynamic economic models, Cowles Commission Monograph 10. New York:

Wiley, 1950. pp. 53-237·

Malinvaud, E. Statistical methods of econometrics. Chicago: Rand-McNally,

1966.

Rothenberg, T. G., & Leenders, C. T. Efficient estimation of simultaneous

equation systems. Econometrica, 1964, 32, 57-76.

Turner, M. E., & Stevens, C. D. The regression analysis of causal paths.

Biometrics, 1959, Q, 236-258·

Wegge, L. L. A family of functional iterations and the solution of maximum

likelihood estimation equations. Econometrica, 1969, 2L 122-130.

Werts, C. E., & Linn, R. L. Path analysis: Psychological examples.

Psychological Bulletin, 1970, Ii (3), 193-212.

Wold, H., & Jureen, L. Demand analysis. New York: Wiley, 1953.

Zellner, A. An efficient method of estimating seemingly unrelated

regressions and tests for aggregation bias. Journal of the

American Statistical Association, 1962, 21, 348-368.

 23338504, 1970, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/j.2333-8504.1970.tb00783.x by C

ochraneItalia, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



-35-

A. Appendices of Mathematical Derivations

Al. Matrix Derivatives of Function F in Section 3

The function is

(Al)

which is regarded as a function of B, r, ~, ~, ~o' ~E defined by

(4). To derive the matrix derivatives we shall make u£e of matrix dif­

ferentials. In general, dX = (dx
i j

) will denote a matrix of differentials

and if F is a function of X and dF = tr(Q~t) then dF/d~ = Q •
-1 1

Writing A = Band Q == ~- r = AI' we have

= Adf' - AdBAr

== Adf' - AdBD

Furthermore, since in general,

(A2)

(A3)

and

dlog Ixl
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we obtain from (Al),

(A4)

where n is defined by (12) and dE is partitioned the same way as n in

(12) .

From (~-) and the def'initicns of' A and D we have

z :::: DPDf + ~'k~t
2

+ e-yy -€

L. :::: r;' :::: ~:QI-xy -yx

L. :::: ~ + r£<}
-xx -5

(A5)

(A6)

from which we obtain

dL. :::: D~dD' + Dd~D' + dD~D'
-yy

+ A'VdAt + Ad1jrA' + dA1jrAI

+ 213 de
_E ~e

(AB)

(A10)
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Substitution of dA and dD from (A2) and (A3) into (AB) and (A9)

gives

+ AdI\1!D' - AdB])1lD'

- A"ljrA'dB'A' - AdBA1jfAt

+ Dd<PD' + Ad1jfA' + 2e de
. -€ -€

, (All)

c1>D rdB'A' + d<!JDt (A12)

Substitution of (All), (A12) and (AIO) into (A4), noting that tr(CtdX)

= tr(~rg) = tr(2~t) and collecting terms, shows that the matrices multiplying

d!lt, dr', d~, dljr, d~8 and d@€ are the matrices on the right sides of

equations (14), (15), (17), (18) and (19) respectively. These are therefore

the corresponding matrix derivatives.

A2. Information Matrix for the General Model of Section 3

In this section we shall prove a general theorem concerning the expected

second-order derivatives of any function of the type (8) and show how this

theorem can be applied to compute all the elements of the information matrix

(12).

We first prove the following
N

Lemma: Let S = (liN) ~l (~a - ~)( ~a - ~) r ). where ~l' ~2' ••• , ~N are

independently distributed according to N(~,~). Then the asymptotic
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distribution of the elements of n = E-l(E - S)~-l is multivariate
..... ..... -- ......-

normal with means zero and variances and covariances given by

(A13)

Proof: The proof follows immediately by multiplying w~ = E E ~ag(~gh - Sgh)~h~
.. g h

and w = E E ~l(~.. - s .. )crJ V and using the fact that the asymptotic vari-
I-J.V .. lJ lJ .

1 J
ances and covariances of S are given by

Ne [(cr h - s h)(cr .. - s . .)]
g g lJ lJ

(see e.g., Anderson, Theorem 4.2.4).

IT .~ • + C1 ~
gl hJ gj hi

We can now prove the following general theorem.

Theorem: Under the conditions of the above lemma let the elements of E be

functions of two parameter matrices ~ = (I-J.
gh

) and N = (V
i j

)

let F(~,~) = ~ N[logl~1 + tr(§~-l)] with OF/O~ = NAnB and

OF/O~ = N~p. Then we have asymptotically

and

( / ) ( ,2 ,I ") -1) ( -1) ( ~ '"-In) . (B! E-Ie! )h' . ( 4)1 Ned 11) OI-J. hOv.. = (IV:, e I • B!E D h' + ~ Al
g lJ gl J gJ ].

Proof: Writing OF/OI-J.gh = Na~p)O:p'bAh and OF/Ov .. = Nc, w d . , where it
g..;:. I f-' f-' lJ ljl I-J.V YJ

is assumed that every repeated subscript is to be summed over, we have

2
(I/N)e(o F/Ojl hOY .. ) = (l/N)e(OF/OI-J. hOF/Ov.. )

g lJ g lJ

= N e(a~P)NAbA~c. w d j)g..;:. ~ pr; au I-J. v V

= N a~bAhc. d .e(w~w )
o~ f-' ll-J. vJ "'1-" I-J. v
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It should be noted that the theorem is quite general in that both M

and N may be row or column vectors or scalars and M and N may be

identical in which case, of course, ~ ~ 9 and B = D •

We now show how the above theorem can be applied repeatedly to compute

all the elements of the information matrix (12). To do so we write the

derivatives (14) - (19) in the form required by the theorem.

Let A ~ B-1 and ~ ~ ~-l~ , as before, and

T[m x (m + n)] ~ [A' 0]

P[(m + n) x m] ~~~' + ~!~J
<PD'

Q[(m + n) x n] . (;)
~[(m + n) x n ] • G)

Then it is readily verified that

dF/OB ~ -NT.I1P

dF/dr ~ NT.I1Q

dF/d(J) = NR'.I1R

(A15)

(Al6)

(A18)

(A20)

(A21)

(A22)
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dF/d8 :::: Nne (A23)

In the last equation we have combined (18) and (19) using 8 ::::~o 9\.- ~ 8J

A3. Matrix Derivatives of Funct:i,on F in Section 4

The function is defined by

,

where

One finds immediately that

( -1 ) -1 )dF :::: tr ~ d~ - 2tr(B dB
"'" "'" -"....

:::: tr[~-l(dBS B t + BS dB' - dES r t - rs dB')]
- ~~YY- --yy - ~-yx- --x:y- .' ~

-1
- 2tr(!? d~)

,

so that the derivatives dFf2JB and dFf2Jr are those given by (29) and- ~

()O ).
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