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A General Method for Estimating a Linear Structural
Equeation System
Karl G. J8reskog

Educational Testing Service
Abstract

A general wmethod for estimating the unknown coefficients in a set
of linear structural equations is described. In its most general form the
method allows for both errors in equations (residuals, disturbances) and
errors in veriebles (errors of measurement, observational errors) and ylelds
estimates of the residual variance-covariance matrix and the measurement error
variances as well as estimates of the unknown coefficients in the structural
equaticns, provided all these parameters are identified. Two special
cases of this general method are discussed separately. One is ﬁhen there
are errors in equations bubt no errors in varisbles. The other is when there
are errors in variables but no errors in equations. The methods are applied

and illustrated using artificial, economic and psychological data.
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A General Method for Estimating a Linear Structural

Eguation System¥

1. Introduction

We shall describe a general method for estimating the unknown coefficients
in a set of linear structural equatidns. In its most general form the method
will allow for both errors iﬁ equations (residuals, disturbances) and errors
in varisbles (errors of measurement, observational errors) and will yield
estimates of %he regidual variance-covariance ﬁatrix and the measurement error
variances as well as estimates of the unknown coefficients in the structura;
equations, provided all these parameters are identified. After giving
the results for this general case, two special cases will be considered.

The first is the case when there are errors in eguations but no errors in
variables. This case has been studied extensively by econometricians (see
e.g., Goldberger, 1964, Chapter 7). The second case is when there are

errors in variables but no errors in equations. Models of this kind have
been studied under the name of path analysis by biometricians (see e.g.,
Turner & Stevens, 1959), sociologists (see e.g., Blalock, 196%) and psycholo-
gists (Werts & ILinn, 1970).

It is assumed that the observed variables have a multinormal distribu-
tion and the unknown parameters are estimated by the maximum likelihood method.
The estimates are computed numerically using & modification of the Fletcher-
Powell minimization algorithm (Fletcher & Powell, 1963; Gruvaeus & J8reskog,
1970). Stendard errors of the estimated parameters may be obtained by

computing the inverse of the information metrix. A computer program,

*This research has been supported in part by grant NSF-GB-12959 from the
National Science Foundation. The author wishes to thank Professor Arthur
Goldberger for his comments on an earlier draft of the paper and Marielle
ven Thillo, who wrote the computer programs, checked the mathematical
derivations and gave other valuable assistance throughout the work.
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LISREL, in FORTRAN IV, that performs all the necessary computations has been
written and tested out on the IBM 360/65; a write-up of this is under
preparation (J8reskog & van Thillo, 1970).

In the first special case referred to above, where there are no errors
of measurement in the observed variables the general method to be presented

is equivalent to the full information maximum likelihood (FIML) method of

Koopmans, Rubin and Leipnik (1950) also called full information least

generalized residual variance (FILGRV) method (Goldberger, 196k, Chapter T7),

provided that no constraints are imposed on the residual variance-covariance
matrix and the veriance-covariance matrix of the independent variables.
However, with the general method described here, 1t is possible to assign
fixed values to some elements of these matrices and also to have equality

constraints among the remaining elements.

2. The General Model

Consider random vectors 7' = (nl,ne,..-,qm) and £' = (gl,gg,...,gn)
of true dependent and indépendent variables, respectively, and the following

system of linear structural relations

By =Tt + ¢ | (1)

where B(m x m) and T'(m x n) are coefficient matrices and ¢t = (gl,§2,...,
Cm) is & random vector of residuals (errors in equations, random disturbance
terms). Without loss of generality it may be assumed that &(n) = €(¢t)=0
and €(£) =0 . It is furthermore assumed that £ is uncorrelated with

¢ and that B is nonsingular.

~
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The wvectors 1 and é are not observed but instead vectors y' =

(yl,ye,...,ym) and x' = (xl’XQ""’Xn) are observed, such that

AR AR (2)
X=v+ E+Dd (3)

where ¢

~

ely), v =2¢6x) and € and B are vectors of errors of measure-

ment in y and x , respectively. It is convenient to refer to y and x

~

as the observed variables and 7 and é ag the true variables. The errors
of measurement are assumed to be unecorrelated with the true varistes and
among themselves.

Let ©(n x n) and Y¥(m x m) be the variance-covariance matrices of

£ and ¢{ , respectively, @2 and @2 the diagonsl matrices of error

~0

variances for y and x , respectively. Then it follows, from the above
assumptions, that the variance-covariance matrix S[(m+n) x (m+n)]l of
z = (y':x')' is

1

s lroript ™t 4 g7 hyet Tt 4 6 BTime

z = _ (%)

\@I"B"l . + @g

The elements of & are functions of the elements of B, I', &, V¥,

LS

@8 and @é . In applicatiohs some of these elements are fixed and equal

~

to assigned wvalues. In particular this is so for elements in B and T,

~

but we shall allow for fixed values even in the other matrices. For the
remaining nonfixed elements of the six parameter matrices one or more subsets
mey have identical but unknown values. Thus parameters in B, T', ¢,

g

, and @,  are of three kinds: (i) fixed parameters that have been
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assigned given values, (ii) constrained parameters that are unknown but equal

to one or more other parameters and (iii) free parameters that are unknown and

not constrained to be equal to any other parameter.

Before an attempt is made to estimate a model of this kind, the identi-
fication problem must be examined. The identification problem depends on
the specification of fixed, constrained and free parameters. Under a given
specification, a given structure B, r, ¢, V¥, 9 » Qe generates
one and only one Z but there may be several structures generating the
same X . If two or more structures generate the same £ , the structures
are said to be equivalent. If a parameter has the same value in all equiva-
lent structures, the parameter is said to be identified. If all parameters
of the model are identified, the whole model is said to be identified. When
a model is identified one can usually find consistent estimates of all its

parameters. Some rules for investigating the identification problem when

there are no errors in varisbles are given by Goldberger (1964, pp. 306-318).

3. Estimation of the General Model

Let z,,%p,--+»Zy be N observations of z = (y*,x')' . Since no

constraints are imposed on the mean vector (B',yﬁ" the maximum likelihood
estimate of this is the usual sample mean vector Z = (¥%,%')' . Let

N
2 z -2z, - Z)°F 5
E (- Dz - D (5)

T
il
Hl

be the usual sample variance-covariance matrix, partitioned as

§yy(m X m) ny(m X n)
Sl(m+n) x (m+n)] = . (6)

§xy(n x m) §Xx(n X n)
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The logarithm of the likelihood function, omitting a function of the

observations, is given by
log L = --%— NM1log |=] + tr(sg“l)] . (7}

This is regarded as a function of the independent distinct parameters

in B, E R ? s Y s @5 and @e and 1s to be maximized with respect

to these, taking into account that some elements may be fixed and some
may be constrained to be equal to some others, Maximizing log I is equiva-

lent %o minimizing
' -1
F = (N/2)[1log |Z]| + tr(sZ )] . (8)

Such a minimization problem may be formalized as follows.
Let A! = (%1,%2,...,%b) be a vector of all the elements of B, T,

®, ¢, ©

8 and @e arranged in a prescribed order. Then F may be

regarded as a function F(b) of Kl,%é,...,%b , which is continuous and has
continuous derivatives BF/BXS and BQF/BKSBKt of first and second order,
except where I 1s singular. The totality of these derivatives is repre-
sented by a gradient vector 5F/B§ and a symmetric matrix BEF/BIB}' . Now
let some p - ¢ of the A's be fixed and denote the remaining A's by P
ng,...,ﬂq s 2<p .+ The function F 1is now considered as a function G(g)
of LRI Derivetives 3G/On and aaG/Bgag' are obtained from

OF /0N and BEF/Bbab' by omitting rows and columns corresponding to the fixed

A's. Among xl,ﬂg,...,nq , let there be some r distinct parameters denoted

nl,ne,...,mr s r <q, so that each ni is equal to one and only one «k

j 2
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but possibly several n's equel the same «k . Let K = (kij) be a matrix of

order q x r with elements k., =1 if =, = v, and k,. = O otherwise.
ij 1 J iJ

The function F (or G ) is now a function H(k) of kysKpy ooy k,  and we

have

OH/Ok = K'(3¢/dx) (9)
PHRK = K (K (10)

Thus, the derivatives of H are simple sums of the derivatives of - G .
The minimization of H(k) is now a straightforward application of
the Fletcher-Powell method for which a computer program is available
(Gruvaeus & J8reskog, 1970). This method makes use of a matrix E , which
is evaluated in each iteration. Initially E is any positive definite
matrix spproximating the inverse of BQH/Bfag' . In subsequent iterations
E 1is improved, using the information built up about the function so that
ultimately E converges to an approxiﬁation of the inverse of BQH/BEBE'
at the minimum. If there are many parameters, the number of iterations
may be excessive, but can be considerably decreased by the provision of a
good initial estimate of E . Such an estimate may be obtained by inverting

the information matrix
2 2
e(d H/afan') = K'e(d°g/omdnt )k (11)
where S(BQG/BﬂBﬂ') is obtained from

e(3°F/NN) = E(3F/ON SF/R) (12)
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as described gbove. When the minimum of H has been found, the inverse
of the information matrix may be computed again to obtain standard errors
of all the parameters in‘ x . A general method for obtaining the elements
of S(BF/abbF/ab') is given in Appendix A2.

The application of the Fletcher-Powell method requires formulas for
the derivatives of F with respect to the elements of B, I, ¢, Vv,

@ and ©_ . These may be obtained by matrix differentiation ag shown in

Appendix Al. Writing A = Bt , D= BT ang

~

) £ N
VYW _ _
Q= -zHE - st (13)
0 Q
~Xy  “XX
the derivatives are
= —N(A'Q ' 4+ ATQ AVA? + ATQ OD! (14)
3F/oB m(a ~W]2(2]3 ~ ~:yy~‘]~’~ N p )
= N(A'Q DO + A'Q & (15)
OF/or = N(A'Q DO + A0 )
OF = N(D'QC D + DO Q0 <l6)
/a? (2 Yy o~ ~yX * ~xy]3 * -@xx)
OF/dY = NA'Q A (17)
Y 2 A
_ (18)
aF/a@5 - Ngxx@G
d - (19)
F/8@€ Ngyy@e

In these expressions we have not taken into account that @ and ¥ are

symmetric and that @5 and @e are diagonal matrices. The off-diagonal
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zero elements of 8y and @e are treated as fixed parameters and the off-
diagonal elements of ¢ and ¥ as constrained parameters.

When the maximum likelihood estimates of the parameters have been obtained,
the goodness of fit of the model may be teéted, in large samples, by the
likelihood ratio technigque. Iet HO

under the given specificatlons of fiked, constrained and free parameters.

be the null hypothesis of the model

The alternative hypothesis Hl mey be that L 1is any positive definite

matrix.

Under Hl , the meximum of log L is (see e.g., Anderson, 1958, Chapter

3)

log L. = -é— N(log |s] + w + n) .

1

Under HO , the maximum of log L is equal to minus the minimum value

Fb of F . Thus minus 2 times the logarithm of the likelihood ratio

becomes
U=2F, -§ log|§| - N{m + n)} . (20)

2
If the model holds, U is distributed, in large samples, as X  with

a = % (m+n)(m+n+1)-r (1)

degrees of freedom, where, as before, r is the total number of independent

parameters estimated under Hb .
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4. The Special Case of No Errors of Measurement

If there are no errors of measurement in y and x , the model (1)

~

nay be written
By = Ix + u (22)

where we have written u instead of E . In (22) we have altered the model
slightly, compared to (1), (2) and (3), in that the mean vectors have been
eliminated. This is no limitation, however, since constant terms in the
equations can be handled by using an x -variable that has the value 1 for
every observation. In this case, of course, S should be the raw moment
‘matrix instead of the dispersion matrix.

This type of model has been studied for many years by econometricians

under the names of causal chains and interdependent systems (e.g., Wold &

Jureen, 1953). The variables y and X are ecopomic variables and in
the econometric terminology, the variables are classified as exogenous
and endogenous variables, the idea beign that the exogenous variables

ere given from the outside and the endogencus variasbles are accounted for

by the model. From a statistical point of view the distinction is rather

between the independent or predetermined varisbles x and the dependent
variables y . The residual u represents a random disturbance term assumed

to be uncorrelated with the predetermined variables. Observations and

Jo

Xy On ¥ and x are usually in the form of a time series.

Equation (22) is usually referred to6 as the structural form of the

model. When (22) is premultiplied by §_l one obtains the reduced form
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y:]b{+*

~~

4
.

where g = B—lf and u¥ = B-l

u - ™ is the vector of residuals in the

reduced form.

In this case, @y @nd @ 1in (4) are zero and therefore |§i and

571 i (7) can be written explicitly. It is readily verified that

~

Izl = I8l ®lal Iyl

~

and

Using these results, log L becomes
1 ' -1 1 2
log L = -5 N[log |?| + tr (§xxg ) - §-N{log |Y| - log |3l
-1
+ tr[(BS._B' - BS I'* -Is_B*+TIS_T
r[(~~yy~ BS ' - I8, B + T8 T Wi

If ¢ 1is unconstrained, waximizing log L with respect to 0 gives

L= 04

= §xx » which is to be expected, since ¢ in this case is the variance-
covariance matrix of x . After the likelihood has been maximized with

respect to ¢ , the reduced likelihood is equal to a constant plus
2
log I¥ = -= N{log |yl - log |8l

-1
+ tp[(BS_BY - BS I'" - TS B +I5 T")y .
r[(NNyy~ ke T oy s L'y i

(23)

(24)
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If also V¥ 1s unconstrained, further slmplification can be obtained,

for then (24) is maximized with respect to V¥ , for given § and f ;

vhen ¥ 1is equal to

bmBB B - BT SIS B I8 I, (23)

~

so that the function to be maximized with respect to B and [I' becomes a

constant plus

log L¥* = -% Nl log ’lgrl ~ log l§|2]
2
= —%—N 10g(lyl/IBI%)
= -12'-'1\1 1og |37ymr
1
= -é-N log l"?‘*' » (26)
where
=8 -8 I'-IS +0I8 It . 2
P 8.y = S0 IS, o+ U5 1 (27)

In deriving (26), we started from the likelihood function (7) based on
the assumption of multinormality of y and x . Such an assumption may be
very unreelistic in most'economic epplications. Koopmans, Rubin and Ieipnik
(1950) derived (24) and (26) from the assumption of multinormel residuals.

u , which is probably a better assumption. However, the criﬁerion (26)
has intuitive appeal regardless of disiributional assumptions and con-
nections with the maximum likelihood method. The matrix V¥ in (25) is the

veriance-covariance matrix of the residuals u in the structural form (22)
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and the matrix V¥* in (27) is the variance-covariance matrix of the residuals
u* in the reduced form (23). Meximizing (26) is equivalent to minimizing
|W*| « Since |¢*| is a generaligzed variance, this method has been called

the full information least generalized residual variance (FILGRV) method

(see, e.g., Goldberger, 196k, Chapter 7). Several other estimation criteries
based on * have been proposed. Brown (1960) suggested the minimization
of tr(?*) and Zellner (1962) proposed the.minimization of tr(@mlg*)
where W is proportional to §yy-x = §yy - §yx§;i§xy . Malinvaud (1966,
Chapter 9) considered the family of estimation criteria tr(A¥*) with
arbitrary positive definite weighting matrices 4 .

Since the original article by Koopmans, Rubin and Leipnik (1950) several
authors have contributed to the development of the FILGRV method (Chernoff
& Divinsky, 1953; Xlein, 1953, 1969; Brown, 1959; Eisenpress, 1962; Eisenpress
& Greenstadt, 1964; Chow, 1968; Wegge, 1969). This paper will add another
computational algorithm to those already existing.

Minimizing IW*! is equivalent to minimizing
2
F=Jpg|y]—13g|§[ . (28)

Matrix derivatives of F with respect to B and ' may be obtained by

matrix differentiation as shown in Appendix A3. The results are

OFfB = 24 MBS, - 18, ) - e (29)
FP - 2S5 ) (0)

The function F is to be minimized with respect to the elements of
B and f taking into account that some elements are fixed and others are

constrained in some way. As will be demonstrated in sections 5 and 6,
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allowing for equalities among the elements of B and I', is not sufficient
to handle some economic applications. Instead, more genersal constraints may
be involved. Ususally these constraints are linear but even models with
nonlinear constraints have.been studied (see, e.g., Klein, 1969). Such
constraints can be handled as follows.

Let ' = (x

l’“z""’ﬁq) be the vector of all nonfixed elements in

B and @'« Each of these elements mey be a known linear or nonlinear

function of k' = (k. ,k.,e+s,k_) , the parameters to be estimated, i.e.,
~ 1272 r ?
Uti = fi(E) » i = l,g,ao.’q . (51)

Then F is regerded as a function H(k) of Kyskpyeoes K o The derivatives
of H of first and second order are again given by (9) and (10), but now

K is the matrix of order ¢ x r whose ijth element is 5i&/5nj . The
function H(k) way be minimized by the Fletcher-Powell method as before.

The advantage of this method compared to the more general one of the
preceding section is that the function now contains many fewer parameters
and the minimization is therefore faster. The Fletcher-Powell algorithm

is relatively easy to apply even in the nonlinear case and the iterations
converge quadratically from an arbitrary starting point to a minimum of

the function, although there 1s no guasrantee that this is the absolute

minimum if several local wminima exist.

5. Analysis of Artificiel Data

The following hypothetical economic model is taken from Brown (1959),

¢ = &, + alW + aen + Uy (32a)
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_ 2o
W=Dyt by¥ +bY (320)
W+I+T =Y (52(:)
C+E=7Y (324)

where the dependent variables are

C = consumer expenditures
W = wage-salery bill
II = nonwage income

Y = total income, production and expenditure

and the predetermined varisbles are

Tg = government net revenue

I = all nonconsumer spending on newly produced final goods

Y_l = value of Y lagged one time period

‘and where ul and u2 are random disturbance terms assumed to be uncor-

related with the predetermined variesbles. This hypothetical model will be
used to illustrate some of the ideas and methods of the previous sections.

To begin with we shall assume that the variables involved in this model
are not directly observed. Instead they are assumed to represent true vari-
ables that can only be measured with errors. Such an assumption may not be
unreasoneble, as pointed out by Johnston (1963):

To be realistic we must recognize that most economic statistics
contain errors of measurement, so that they are only approximations
to the underlying "true” values. Such errors may arise because
totals are estimated on a sample basis or, even if a complete
enumeration is attempted, errors and inaccuracies may creep in.
Often, too, the published statistics may represent an attempt to
measure concepts which are different from those postulated in the
theory (p. 148).
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Converting the wvariables to deviations from mean values and writing

0,0) , model (32) may

E' = {c,w,I,Y) , £ = (Tg,E,Y_l) and g' = (u]_’ug’

be written in the form of (1) as

1 —al -a2 ] 0 0 0]
0 -b 0 0 b
1 2
0 .1 1 -1]"=l.1 o o |&F £ - (33)
1 -1 0o -1 0

6 in
(2
iy
g
g 02
o | TE E
~7\ & 5 : (54)
g a O;
TY, °EY, Y,
%3 in
s -
OU.
1
y =] M 2 , (35)
0 0o 0
0 o 0 ©
= -

Tg,GE,GY l) and O = diag(0,,0,,6p,0,) « Note that

since (32c) and (32d) are error-free equations, V¥ has the form (35) with

and 6 in @y = diag(e

zero variances and covariances for Uz, and v - Also since Y, is ¥
lagged, we have assumed thet the error variances in Y and Y—l are the

same. Therefore, @5 and @e have only 6 independent elements.
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Data were generated from this model by assigning the following values

to each of the 19 parameters

a.l = o-8 a2 = 0-’4‘ bl = O.3 b2 = 002
2
o = 1.0 6° =2.0 & =3.0
E .

g -1
o =0.1 ¢© = 0.2 @ = 0.1 ¢
.TgE TgY-—l EY-l : (56)
oﬁ = 0.2 oﬁ =03 o =0.1

1 ) 172
6, =04 g =0.6 9, =0.5
Tg £ T,

= L ] 3 ) = k] = O.
6q 0.5 ew 0.6 6 0.9 Oy 5

The resulting Z , obteined from (4) and rounded to 3 decimals, is

c W I Y T E Y
c %.599 g -1
W 2.481 2.069
I k659  2.159  7.51%
Y 6.4h9 3.731 7.409  10.799 (37)
Tg -0.692 -0.138 -1.h54 -0.592 1.160
E 2.100 1.250 2.750 4,100 0.100 2.360
Y, O.4k2 0.763 -0.k21 0.542 0.200 0.100 3.250

For the purpose of illustrating the estimetion method of section 3, the

sbove matrix is regarded as a sample dispersion matrix S to be analyzed.

~

The order of the vector A 1is 78, since there ere 78 elements in B, [,

®, ¥, 8 and @ all together. Of these, 54 are fixed and 24 are

~ ~

nonfixed, so that =x is of order 24. Because of the symmetry of ¢ and ¥

Y Y

and the imposed equality of @4 and 9 , there are 19 independent param-
=1 )

eters, so that the order of g is 19.
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The minimizaetion of H(k) started at the point

a.l = 006 3y a2 = 0.3 > bl = Onh' 3 b2 = 0.1
2 2 2
O'T = 200 P GE = 200 > O-Y = 2-0
g -1
0'§=O.5, o‘i:O.B, o, =0.0
1 D b
bp = 0.4, o = 0.6 , oy = 0.5
g -1

C
From this point seven steepest descent iterations were performed. There-
after Fletcher-Powell iterations were used and it took 23 such lterations
to reach a point where all derivatives were less than 0.00005 in absolute
value. At this point, the solution was correct to four decimals and
the & in (37) was reproduced exactly. Twenty-three Fletcher-Powell
iterations required for convergence is not considered excessive since no
information about second-order derivatives was used and it takes at least
19 Fletcher-Powell iterations to build up an estimate of the matrix of
second order derivatives.

We now consider model (32a-d) in the cese when the variables are
observed without errors of measurement. Then the method of section 3
cannot be applied directly since the two identities (32¢) and (32d4) imply
thet X is singular. Therefore, two of the endogenous varisbles must be
eliminated from the system. It seems most convenient to eliminate € and
Y . When these variables have been eliminated, the structural equations

become

35U8217 suoWIWoD aA a1 a|qedt|dde ayy Aq peusenob are sajoie YO ‘asn Jo sajnJ oy A%id 1 auluQ /8|1 UO (SUOIIPUOD-PUR-SWIB) 0D AS | IM" AReIq BU I [UO//SdNY) SUORIPUOD pUe SWd | 8y 88S *[2z02/2T/90] uo Ariqiauluo AB|IM eleleuUeIyd0D Aq X'€8/0001 06T Y0S8-€EEZ [/200T OT/I0p/W0"AS | 1M Azeld 1 jpul|uo//:sdny wouy pepeojumod ‘2 ‘06T ‘YOS8EEEZ



This system may be
To illustrate
dispersion matrix

variances from the

I

E |+ . (58)

estimated by the method of section 4.

the application of the estimation procedure we use a

S obtained from £ in (37) by subtracting the error

diagonal elements and deleting rows and columns corres-

ponding to C and Y . There are 6 nonfixed elements in ‘§ and T,

namely Bll s 612

2

Bpy

of the vector x . These elements are functions of &

822 s 7oy and 723 . These are the elements

8, , b, and

b, defined by [compare equation (31)]

By
Bio

Poy |

-

0

0

1’ 2 1
al 1
a 1 .
2 + . (39)
by 0
b2 0
0

Thus the function F is a function of 4 independent parameters.

The function F was minimized using only Fletcher-Powell iterations

starting from the point

The solution point, found after 8 iterations, was, as expected, a

8o 1

= 0.4, b, =0.3,

b

15008,

o = 0.2 with
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N 0.2 0.1 .
y* = ) |v*¥| = 0.05 .

0.1 0.3

6. An Economic Application

In this section we apply methods SFIGRV and RFIGRV to a small economic

moedel taken from the literature. The model is Klein's model of United

States economy presented in Klein (1950, pp. 58-66):

Consumption: C = 3 + alP + a2P_l + aBW + uy
Investment: I= bO + blP + bgP__l + bBK—l +ou,
Private wages: W=y + B+ o c3A7+ U
Product: Y+ T=C+TI+¢G

Income: Y=P+W

Capital: K=K, +1

Wages: ' W o= W* + W

Private product: E=Y+ T - W

where the endogenous variables are

c

consumption
I = investment

W¥ = private wage bill

P = profits

Y = national income

K = end-of-year capital stock
W = total wage bill

E = private product

(40a)

(40b)
(40c)
(4od)
(Loe)
(hor)
(kog)

(40n)
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and the predetermined variables are the lagged endogencus variables P_l s
K-l and E_l and the exogenocus variables
1 = unity
W¥* = government wage bill

T indirect taxes

G = government expenditures

i

A = time in years from 1931.

All varisbles except 1 and A are in billions of 1934 dollars.

This model contains eight dependent variables and eight predetermined
variables. There are three equations involving residuvel terms. The other
five equations are identities. Using the five identities (40d) - (kOnh),
P, Y, X, W and E may be solved for and substituted into (40a) -

(40c). This gives a model with the following structural form

1 - a -8 8y - a5 C
- bl 1 - bl bl I
- ¢ - cy 1 w*
1
WX
T
2y a3 -a, ta A 0 a, 0 0 G
=[ b, - b, -b 0 b, O ) A . (k1)
< - e 0 ¢y c3 0 ¢, P—l
L)
E--l

There are 2L nonfixed elements in B and I . These are all linesr

functions of the 12 unknown coefficients in (40a-c) as follows
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From annual observations, United States, 1921-1941 the following raw

moment meatrices are obtalned:



oo

c I i
1 1133.90 26.60 763 .60
W¥ 5977.33 103.80 40h4 .07
T 7858.86 160 .40 5315.62
G 11633.68 2l3.19 7922.46
“xy A 577.70  -105.60 460.90
P,| 18929.57  655.35  12871.73
K . 227767.38  5073.25  153470.56
E_, | 66815.25 1831.13 h5288.5;
1 WK T G A
1 21.00
¥ 107.50 626.87
T 142.90 789.27  1054.95
G 208.20 1200.19 1546.11 2369.94
T A 0.00  23%8.00  176.00  421.70 770.00
P, | 343.90 17h6.22  2348.48  3451.86 -11.90
K 1 4210.4%0 21683.18 28766.23 L2026.14% 590.60
E_, \J217.70 6364 .13  8436.53 12473.50

495,60 20542.22 244984.77 T72200.03

The following estimated model was obtained

c

I

H]

18.318 - 0.229P + o.58hP_l + 0.802W + u

1

27.278 - 0.T9TP + 1.051P | - 0.148K , + u,

W& = 5.766 + 0.235E + 0.28hE_l + 0.234A + U

with
N 43.775
¥* =1 80.456 265.856
~ 9.834 80.247

37.5&0)

5956.29
69073.54 846132.70

‘%
J

(43)

(k)
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The standard errors of the estimated parameters may be obtained from a
formula for the asymptotic variance-covariance matrix developed by Rothenberg

and Leenders (196k4).

7. The Special Case of No Residuals

When there are no residusls in (1), the relations between 7 and ¢

are exact. The joint distribution of N and g is singular and of rank n .
In the equation (k&) for § , the second term in gyy vanishes. In genersal,
when there are fixed and constrained elements in B and g or in ? 5 @8
and 95 , this mpdel has to be estimated by the method of section 3. This
may be done by choosing Y = 9 and specifying the fixed elements and the

constraints as described in that section.

The matrix X can also be written

Z =t re” (45)
where
-1
A= =l % 2 46
o and @= b ( )
I Q8 |

from which it is seen that the model is identical to a certain restricted

factor analysis model. Several special cases will now be congidered.

If B=I and I' is unconstrained, i.e., all elements of [' are
regarded as free parameters, model (45) is formally equivalent to an un-
restricted factor model (J8reskog, 1969). The matrix A in (46) may be

obtained from any A% of order (m + n) x n satisfying
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§ — A*{}'X" + @2

(17)

by a transformation of A* to a reference variasbles solution where the x's

ere used as reference variables. Maximum likelihood estimates of /¥ and ©
may be obtained by the method of J8reskog (1967a,b) which also ylelds a large
sample X2 test of goodness of fit. Let the estimate of é* be partitioned

as

w = , (48)

where @i is of order mx n and @; of order n x n . Then the maximum

likelihood estimates of I' and ¢ are

ey -1

BT (49)

~

1
i

~

o = Mt . | (50)

If B=1I and I' is constrained to heve some fixed elements while the
remaining elements in [' are free parsmeters, model (45) is formally equiva-
lent to a restricted factor model in the sense of J8reskog (1969). This model
may be estimated by the procedure described in the same paper and, in large
samples, standard errors of the estimates and a goodness of fit test can also
be obtained. A computer program for this procedure is availlable (J8reskog &
Gruvaeus, 1967).

A more general case is when B 1s lower triangular. The structural

equation system for the true variates is then a causal chain. In general

such a causal chain may be estimated by the method described in section 3
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of the paper, though there may be simpler methods. One example occurs when

the system is normalized by fixing one element in each row of I' to unity

and B has the form

By, O 0
p=|P Poz O
Bml Bm2 Bmm

where all the B's are free parameters. Then there is a one-to-one trans-
formation between the free parameters of B and the free elements of

1

A =BT . One may therefore estimate A instead of B . In this case,

the variance-covariance matrix X 1s of the form

T o= BAGATEF! + (51)

where

s o r 6,
B¥ = ) A= ;) 8= . (52)
0 I ! 0 %

~

Model (51) is a special case of a general model for covariance structures
developed by J8reskog (1970) and may be estimated using the compuber program
ACOVS (J8reskog, Gruvaeus & van Thillo, 1970). In this model T, ¢ y B
and @e mey contein fixed parameters and even parameters constrained to be
equal in groups. The computer progrem gives maximum likelihood estimates of
the free parameters in A, I', ¢, O and 9. and, in large samples,

standard errors of these estimates and a test of overall goodness of fit of

_the model can also be obtained.
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More generally, the above mentioned method may be used whenever
can be written in the form (51) such that there is a one-to-one correspondence
between the free parameters in B and T and the distinet free elements in

B¥ and A . For a less trivial example, see Joreskog (1970, section 2.6).

8. A Psychological Application

In this section we consider a simplified model for the prediction of
achievements in mathematics (M) and science (8) at different grade levels.
To estimate the model we make use of longitudinal data from a growth study

conducted at Educational Testing Service (Anderson & Maier, 1963; Hilton,

1969). 1In this study a nationwide sample of fifth graders was tested in
1961 and then again in 1963, 1965 and 1967 as seventh, ninth and eleventh
graders, respectively. The test scores employed in this model are the
verbal (V) and quantitative (Q) perts of SCAT (Scholastic Aptitude
Test) obtained in 1961 and the achievement tests in mathematics (M5,MT,M9,

My
respectively. The achievement tests have been scaled so that the unit of

) eand science (SS,ST,Sg,Sll) obtained in 1961, 1963, 1965, and 1967,

measurement is approximately the same at all grade levels.

The model is depicted in Figure 1, where V , Q, M5 s M7 ’ M§ ;
Mll R 85 s ST s S9 and Sll denote the true scores of the tests and
§l,§2,...,§8 the corresponding residuals. The model for the true scores

is
M = 2V + a0+ £, (53a)
— b
35 = b,V + b,Q + ;2 (53b)
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M7 = clMS + QB (53¢)
S = dySg + M, + 8 (53d)
My = el + ¢ (5%¢)
Sg = T35, + £ Mg + & . (531)
M)y =gy * 6 (53¢)
813 = WS+ e+ b (53n)

This model postulates the major influences of a student’s achievement in
mathematics and science at various grade levels. At grade 5 the main
determinants of & studentts achievements are his verbal and quantitative
abilities at that stage. At higher grade levels, however, the achievements
are mainly determined by his achievements in the earlier grades. Thus,
achievements in mathematics in grade i 1s determined mainly by the
achievements in mathematics in grade i - 2 , whereas achievements in sci-
ence in grade 1 1is determined mainly by the achievements in science in
grade i - 2 and in mathematics in grade 1, 1 = 7,9,11 .

The structural form of this model is

i1 0 0 0 0O 0 o0 © M5 "al a; ¢

© 1 0 0o 0o 0 o0 oflfsg b, by, ¢,

e, 0 1 0 0 0 o0 olfm 0 o §3

0 -4, -4, 1 0 0 0 ofs, | _jo o0 (V) RERE
O ~; 0 1 0 0 O 0 o0 1]\q gs

0 0 0 -f -f, 1 0 Of}8, 0. 0 te

0 0 0 0 -g 0 1 oOf\M, 0 0 \Cr{

© 0 0 0 0 -h -h 814 0 O | ¢

(54)
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Tt is seen that this model is a causal chain.

28 -

The model can be estimated by

the method described in section 3, provided some assumption is made about the

intercorrelations of residuals gl,ge,...,QB « Without such an assumption

the model is not identified.

We have chosen to make the assumption that

all residuals are uncorrelated except §l and §2 . This assumption does

not seem to be too unrealistic.

all the boys that took all tests at all occasions.

The data that we use consist of & random sample of 730 boys taken from

matrices are

~XX

]

M
Mg 130?690
s5 115.645
My 116.162
ST‘ 90.709
M9 1.19.56k4
39 104 . 430
M ;| 119.712
8.5 90.916

M5

Q \78.527 82.389

v
Vv [138.014
Q 73.518

S
p

179.617

123.838 .

11h.364
125,223
135.07h4
126.470
116.950

S

Q

oo

The estimated model is

It

"5

w2
]

5

= 1.097M5 + 25

MT

193.537
120.426
155.883
137.827
149.93%0
117.439

87.859 65.703

0.640V + 0.415Q + El

1.296V - 0.175Q + 22

148.648
120.ko2
133.231
112.218
109.187

5 Y T M
V /97.544 122.919 106.837 96.252 108.7h8 107.750 107.042 9oh.613
72.534  89.617 6&4%.453

91..502

215.894
159.783
175.497
133.839

S

The varience-covariance

218.067
149.045 264.071
47.115 143.218 190.763

Mll sll

(55a)
(55b)

(55¢)
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The estimated

S =O¢
7

= L
Mg

8 =0.
9

-29-

3058 + o.l+93M7 + Eh

5
02T, + EB

+ 0.383M_ + 26

70387 9

My, = 0.9514 + ET

Sll

1

ol

e

0.65859 + o.lshmll +

9

Ss

v
105.48 )
73.95 76.68

variance-covariance matrix of the true scores V and Q is

(554)
(55¢)
(55¢)
(55¢)

(55h)

Estimated residual variances and error variances for each measure are given

below

Measure Resldual Variance Error Variance
' - 33,1
Q -- L.h
My 10.0 25.4
S5 22.5 11.8
M7 26.4 40.% -
ST 29.5 24h .3
M9 25.2 29.3
s9 28.5 36.1
M 5.7 18.8
sll 20.0 W77
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The estimated correlation between Cl and C2 is 0.17.

The estimated reduced form for the true scores is

M = 0.640V + 0.415Q + Ei (562.)
S = 1.296V - 0.175Q + Eg (56b)
M, = 0.702V + 0.455Q + Eg (56¢)
S, = O.T6TV + 0.167Q + Eﬁ (564)
My = 0.T21V + 0.467Q + Eg (56e )
Sy = 0.815V + 0.296Q + @Z | (56f)
My, = 0.686V + 0.4kkq + Ez; (56¢)
8y, = 0-663V + 0.277Q + Eg (56h)

The relative variance contributions of V and Q , the residual (¥ and

the error, to each testls total varience are shown below:

Measure V and Q Residual Error
Mg 0.73 0.08 0.19
35 0.78 0.15 0.07
M7 0.59 0.20 0.21
S7 0.56 - 0.28 0.16
Mé 0.56 0.30 0.14
s9 0.52 0.32 0.16
M., 0.42 0.51 0.07
8.4 0.42 0.33 0.25
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It is not essy to give a clear-cut interpretation of these results.
Inspecting first the equations (55¢), (55e) and (55g), it is seen that a
unit increase in Mi—2 tends to have a smaller effect on Mi the larger
i is. This agrees with the fact that the growth curves in mathematics
"flattens” out at the higher grade levels. One would éxpect that the co-

efficlent g, in (55g), like c in (55e), would be

1

. in (55¢) and e

greater than one, since, in general, for these data, the correlation of status,

M, o, and gain, M, - M, , , are positive although usually very small.

However, the large residual variance §7 suggests that M.9 alone is not
sufficient to account for M.. . This 1s probably due to the fact that

11

mathematics courses at the higher grades change character from being
mainly "arithemetic computation" to involving more "algebraic reasoning."

Inspecting next the equations (554), (55f) and (55h) describing
science achieévements, it is seen that the influence of mathematics on
science tends to decrease at the higher grades. This is natural since
science courses in the lower grades are based mainly on "logical reasoning”
whereas in the higher grades they are based on "memorizing of facts." The
effect of science achlevements on science two years later first increases
and then decreases. This is probably because the séience courses special-
ize into different courses (Biology, Physics, etc.) at grade 1l whereas
the science test at the lower grades measures some kind of overall "science
knowledge."

Whatever may be the best interpretations of these results, the example
serves to illustrate that it is possible to have both errors in equations

and errors in variables and still have an estimable model.

35U8217 suoWIWoD aA a1 a|qedt|dde ayy Aq peusenob are sajoie YO ‘asn Jo sajnJ oy A%id 1 auluQ /8|1 UO (SUOIIPUOD-PUR-SWIB) 0D AS | IM" AReIq BU I [UO//SdNY) SUORIPUOD pUe SWd | 8y 88S *[2z02/2T/90] uo Ariqiauluo AB|IM eleleuUeIyd0D Aq X'€8/0001 06T Y0S8-€EEZ [/200T OT/I0p/W0"AS | 1M Azeld 1 jpul|uo//:sdny wouy pepeojumod ‘2 ‘06T ‘YOS8EEEZ



-30a

References

Anderson, T. W. An introduction to multivariate statistical analysis. New

York: Wiley, 1958.
Anderson, 8. B., & Maier, M. H. 34,000 pupils and how they grew. Journal

of Teacher Education, 1963, 1k, 212-216.

Blalock, H. M. Causal inferences in nonexperimental research. Chapel Hill,

N. C.: University of North Carolina Press, 1964.
Brown, T. M. Simplified full maximum likelihood and comparative structural

estimates. Econometrica, 1959, 27, 638-653.

Brown, T. M. Simultaneous least squares: a distribution free method of

equation system structure estimstion. International Economic Review,

1960, 1, 173-191.
Chernoff, H., & Divinsky, N. The computation of maximum-likelihood estimates
of linear structural equations. In W. C. Hood & T. C. Koopmans (Eds.),

Studies in econometric method, Cowles Commission Monogreph 4. New York:

Wiley, 1953. Pp. 236-269.
Chow, G. C. Two methods of computing full-information maximum likelihood

estimates in simultaneous stochastic equations. International Economic

Review, 1968, 9, 100-112.
Eisenpress, H. Note on the computation of full-information maximum~likelihood

estimates of coefficients of a simultaneous system. Kconometrica, 1962,

30, 343-348.

Eisenpress, H., & Greenstadt, J. The estimation of non-linear econometric

systems. Econometrica, 1966, 3k, 851-861.

35U8217 suoWIWoD aA a1 a|qedt|dde ayy Aq peusenob are sajoie YO ‘asn Jo sajnJ oy A%id 1 auluQ /8|1 UO (SUOIIPUOD-PUR-SWIB) 0D AS | IM" AReIq BU I [UO//SdNY) SUORIPUOD pUe SWd | 8y 88S *[2z02/2T/90] uo Ariqiauluo AB|IM eleleuUeIyd0D Aq X'€8/0001 06T Y0S8-€EEZ [/200T OT/I0p/W0"AS | 1M Azeld 1 jpul|uo//:sdny wouy pepeojumod ‘2 ‘06T ‘YOS8EEEZ



_55_

Fletcher, R., & Powell, M. J. D. A rapidly convergent descent method for

minimization. The Computer Journal, 1963, 6, 163-168.

Goldberger, A. S. Econometric theory. New York: Wiley, 196L.

Gruvaeus, G., & J8reskog, K. G. A computer program for winimizing a function
of several varisbles. Research Bulletin T7O-14. Princeton, N. J.:
Educational Testing Service, 1970.

Hilton, T. L. Growth study annotated bibliography. Progress Report 63-11.
Princeton, N. J.: Educational Testing Service, 1969.

Johnston, J. Bconometric methods. New York: McGraw-Hill, 1963.

JBreskog, K. G. Some contributions to maximum likelihood factor analysis.

Psychometrika, 1967, 32, 443-482. (a)

J8reskog, K. G. UMLFA--A computer program for unrestricted maximum likelihood

factor analysis. Research Memorandum 66-20. Princeton, N. J.: Educational

Testing Service, revised edition, 1967. (b)
J8reskog, K. G. A general approach to confirmatory maximum likelihood factor

analysis. Psychometrika, 1969, 34, 183-202.

J8reskog, K. G. A general method for analysis of covariance structures.

Biometrika, 1970, 57, 239-251.

J8reskog, K. G., & Gruvaeus, G. RMLFA--A computer program for restricted

maximum likelihood factor eanalysis. Research Memorandum 67-21. Princeton:

N. J.: ZEducational Testing Service, 1967.
J8reskog, K. G., Gruveeus, G. T., & van Thillo, M. ACOVS--A general computer
program for analysis of covariance structures. Research Bulletin 70-15.

Princeton, N. J.: Educational Testing Service, 1970.

35U8217 suoWIWoD aA a1 a|qedt|dde ayy Aq peusenob are sajoie YO ‘asn Jo sajnJ oy A%id 1 auluQ /8|1 UO (SUOIIPUOD-PUR-SWIB) 0D AS | IM" AReIq BU I [UO//SdNY) SUORIPUOD pUe SWd | 8y 88S *[2z02/2T/90] uo Ariqiauluo AB|IM eleleuUeIyd0D Aq X'€8/0001 06T Y0S8-€EEZ [/200T OT/I0p/W0"AS | 1M Azeld 1 jpul|uo//:sdny wouy pepeojumod ‘2 ‘06T ‘YOS8EEEZ



3l -

J8reskog, K. G., & van Thillo, M. LISREL--A general computer program for
estimating linear structural relationships. Research Bulletin 70-0C.
Princeton, N. J.: Educational Testing Service, in preparation.

Xlein, L. R. Economic fluctuations in the United States, 1921-1941, Cowles

Commission Monograph ll. New York: Wiley, 1950.

Klein, L. R. A textbook of econometrics. Evanston: Row, Peterson, 1953.

Klein, L. R. Estimetion of interdependent systems in macroeconometrics.

Econometrica, 1969, 37, 171-192.

Koopmans, T. C., Rubin, H., & Leipnik, R. B. Measuring the equation systems

of dynamic economics. In T. C. Koopmans (Ed.), Statistical inference

in dynamic economic models, Cowles Commission Monograph 10. New York:

Wiley, 1950. Pp. 55-237.

Melinvaud, E. Statistical methods of econometrics. Chicago: Rand-McNally,

1966.

Rothenberg; T. G., & Leenders, C. T. Efficient estimation of simultaneous

equation systems. Econometrica, 1964, 32, 57-76.

Turner, M. E., & Stevens, C. D. The regression analysis of causal paths.
Biometrics, 1959, 13, 236-258.
Wegge, L. L. A family of functional iterations and the solution of maximum

likelihood estimation equations. Econometrica, 1969, 37, 122-130.

Werts, C. BE., & Limn, R. L. Path analysis: Psychological examples.

Psychological Bulletin, 1970, 74 (3), 193-212.

Wold, H., & Jureen, L. Demand snalysis. New York: Wiley, 1953.

Zellner, A. An efficient method of estimating seemingly unrelated

regressions and tests for aggregation bias. Journal of the

Americen Statistical Association, 1962, 57, 348-368.

35U8217 suoWIWoD aA a1 a|qedt|dde ayy Aq peusenob are sajoie YO ‘asn Jo sajnJ oy A%id 1 auluQ /8|1 UO (SUOIIPUOD-PUR-SWIB) 0D AS | IM" AReIq BU I [UO//SdNY) SUORIPUOD pUe SWd | 8y 88S *[2z02/2T/90] uo Ariqiauluo AB|IM eleleuUeIyd0D Aq X'€8/0001 06T Y0S8-€EEZ [/200T OT/I0p/W0"AS | 1M Azeld 1 jpul|uo//:sdny wouy pepeojumod ‘2 ‘06T ‘YOS8EEEZ



-55_

A. Appendices of Mathematical Derivations

Al. Matrix Derivaetives of Funection F in Section 3

The function is

F = log |Z| + tr(§§'l) (A1)

which is regarded as a function of B, ’? , @, Y s By, 8, defined by
(4). To derive the matrix derivatives we shall make use of matrix dif-
ferentials. In general, dX = (dxij) will denote a matrix of differentials
and if F 1s a function of ¥ end A4F = tr(Cd%') then OF/OX = C .

-1 -
Writing A =B and D =B lg = AT’ we have

~ e

ah - -B7lapn " = -adA (42)
ap = BAr + aAT

= AdD - AdBAT

= Adl' - AdBD . (A3)

Furthermore, since in general,
-1
dlog Ix| = tr(X™ax)
and
atr(Ax™Y) = tr(aaxl)

tr(ax Taxg ™)

I
1
ot
H
~
»
=
&
~
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we obtain from (A1),

aF

Il

il

where { is defined by (12) and d§ is partitioned the same way as

(12).
From (4)

from which we

az

tr(Q
(~YY

dlog =] + atr(ssh)
tr(z7taz) - tr(z sz lan)
er[(27 - 27hgn ™ az)

b (qa2)

+0 AN +Q &  +Q0 4t )
~YRTXY XY AYX L SXX AXX

and the definiticns of A and D we have

]

2
? 1
DIDF + AYAY + @€

~ o~

t - G
~yx R

cobtain

DPAD' + DASD! + ADID?

~a A ~ s o~

AYdA' + AdYA! + dAyA!

~r~ ~ e ~ o~

2099

%4D* + dgp"

d® + 20,548y

(A4)

in

(5)

(46)

(A7)

(48)

(89)

(A10)
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Substitution of dA and dD from (A2) and (A3) into (A8) and (A9)
gives

42 = DOAT*A' - DOD'AB'A?
~W A~ e A ~ o~ ~ o~

+ AAT®D' - AABDID'

~ e ~

- AVA'GB'A' - AQBAVYA®

[adadad ~ ~ s

+ DAOD* + AQyA' + 2@ de. (A11)

~ e ~

dz = (I)dI"iA! - & ld_'BIA! o) 1
Sy~ Q4C'AT - OD'ABIAT + 49D (a12)

Substitution of (All), (A12) and (A10) into (A4), noting that tr{ctdax)
= tr(aX'C) = tr(CdX') and collecting terms, shows that the matrices multiplying
Bt , art, a4a¢, a4y, d8y and d@e are the matrices on the right sides of

equations (1%), (15), (17), (18) and (19) respectively. These are therefore

the corresponding matrix derivatives.

AZ2. Information Mstrix for the General Model of Section 3

In this section we shall prove a general theorem concerning the expected
second-order derivatives of any function of the type (8) and show how this
theorem can be applied to compute all the elemenﬁs of the information matrix
(12).

We first prove the following

N
Lemma: Let S = (1/N) o1 (2, - 8)zy - 2)' ,. vhere ZisBpreeesZy 8TE

independently distributed according to N(p,Z) . Then the asymptotic
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distribution of the elements of { = §~l(2 - S)Z"l is multivarlate

normal with means zero and variances and covariances given by

o _Bv Qwoﬁp
= O + 0 . Al
NE (G, ) (A13)
Proof: The proof follows immediately by multiplying D = LT o g(a - sgh)ahB
. gh
and ®., = Z L G“l(o 5" ij)GJv and using the fact that the asymptotic vari-
J

ances and covariances of S are given by

- - = -+
ve (o, San? (T35 = 83301 = 0505 * 90

(see e.g., Anderson, Theorem 4.2.4).
We can now prove the following general theorem.

Theorem: Under the conditions of the asbove lemma let the elements of X be

functions of two parameter matrices M = (pgh) and N = (vi.) and

let F(M,N) = 5 Nllog|E| + tr(S2™)] with OF/dM - NAQB and

e

OF/ON = NCOD . Then we have asymptotically

o

-1

(l/N)S(é%V&ughavij) =(AZ-lC‘)gi(B’Z-lD)h (A" D) (B'E c') . (A14)

Proof: Writing aF/augh = Nagogbebsh and BF/avi. Ncluwuvdv , where it

is assumed that every repeated subscript is to be summed over, we have

(1/¥ )e(agp/aughavij) (1/N)E(F/3u , 3F/3v, )

1

W &(2u0fgbensuQuvdvs )

)

i

N agabsh 1uav KA GB v

_ G Bv Cv Bu
= agubahciudvj(c BV + PP )
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BHC )

oh Bv Oty
= (aga Ciu)(bshc avj) + (agao dvj)(bahc "

_ -1 1y + AZ-l !Z_ll
= (a7le) (15 TD), L+ (a27D) (BB,
It should be noted that the theorem is quite general in that both

and N may be row or column vectors or scalars and M and N may be

identical in which case, of course, Az C and B D.

~

M

We now show how the above theorem can be applied repeatedly to compute

2ll the elements of the information matrix (12). To do so we write the

derivatives (14) - (19) in the form required by the theorem.

Let A=B"T and D =BT , as before, and
T[m x (m + n)] = [A* 0]
DID' + AYA?
P[(m + n) xm] = |77~ o
~ D!

i

9[(m + n) x n]

()

~

(5

R[{m + n) x n]

Then it is readily verified that

OF/oD = -MT0E
OF/ar = 110
9F/% - NR'OR
or/3y = war

(A15)

(A16)

(A17)

(A18)

(419)

(420)

(A21)

(A22)
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OF/de = NO® (a23)
5 C
In the last equation we have combined (18) and (19) using @ ={"
~ OC 6
A%. Matrix Derivatives of Funchbion F in Section U
The function is defined by
2
F = log |¥| - log |B]" (s2k)
where
- ' - Bg Tt -TS_B'+I§ T .
=B B -DBS I -TS B +T8 T (a25)

One finds immediately that

- -1
aF = tr(v lay) - 2tr(8 aB)
-1
= S. B! + BS_dB' - 4BS__I'' - I'S_dB')]
trly (a1~3~yy~ BS 4B BS [I' - IS, dB )
- 2tr(§'ld§)
L. T ' P+ TS gre
+ trly (B8 ATt - aIs B + aL8 ' + I8, alv)]
1

-1 ‘_ .
= 2tr{ly (e, - 5,0) - B lasd

- 2erly (I8, - B8 )Ar

o that the derivatives OF/OB and OF/OT' are those given by (29) and

(30).
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