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1. Introduction 

There has been a growing interest in recent years in fitting models to data collected from longitudinal 

surveys that use complex sample designs. This interest reflects expansion in requirements by policy 

makers and researchers for in-depth studies of social processes over time. Traditionally, the analyses 

of complex survey samples have been carried out using specialized software packages. More 

recently, a number of statistical analyses packages, for example SAS and SPSS, have implemented 

procedures to handle complex survey data appropriately in the case of regression models with 

continuous and categorical outcome variables. In this guide we describe techniques currently 

implemented in LISREL for analyzing complex surveys data. Research on the longitudinal analysis 

of complex survey data with LISREL was supported by SBIR grant R43 AA014999-01 from NIAAA to 

Scientific Software International. 

 

A common theme in substance use research is that data are usually obtained from a multi-stage or 

so-called complex sampling data. A complex sampling design typically entails stratification, often 

on the basis of geography; defining meaningful clusters of population elements (PSUs); and one or 

more stages of subsampling within each PSU. While a complex sample has the advantages of being 

more economical and practical, guarantees a better representative sample of the population, and does 

not require a complete sampling frame of the population elements, it is generally less efficient than 

simple random sampling. 

 

Multilevel models are particularly useful in the modeling of data from complex surveys. Cluster or 

multi-stage samples designs are frequently used for populations with an inherent hierarchical 

structure. Ignoring the hierarchical structure of data has serious implications. The use of alternatives 

such as aggregation and disaggregation of information to another level can induce an increase in 

collinearity among predictors and large or biased standard errors for the estimates. 

 

The collection of models called Generalized Linear Models (GLIMs) have become important, and 

practical, statistical tools. The basic idea of GLIMs is an adaption of standard regression to quite 

different kinds of data. The variables may be dichotomous, ordinal (as with a 5-point Likert scale), 

counts (number of arrest records), or nominal. The motivation is to tailor the regression relationship 

connecting the outcome to relevant independent variables so that it is appropriate to the properties 

of the dependent variable. The statistical theory and methods for fitting Generalized Linear Models 

(GLIMs) to survey data is described in the Generalized Linear Modeling Guide. Researchers from the 

social and economic sciences are often applying these methods to multilevel data and consequently, 

inappropriate results are obtained. We describe the LISREL statistical module for the analysis of 

multilevel data with design weights. Two estimation methods, MAP (maximization of the posterior 

distribution) and ADAP (adaptive quadrature) for fitting generalized linear models to multilevel data 

are available. The LISREL module allows for a wide variety of sampling distributions and link 

functions. 
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2. Generalized multilevel models  

2.1 Background 

In this guide, we illustrate and outline the statistical theory and methods that are implemented in the 

multilevel generalized linear model (MGLIM) module of LISREL. Section 2.2 reviews the options and 

dialog boxes of the Multilevel, Generalized Linear Model menu on the LISREL System File (LSF) 

window of LISREL. MGLIM syntax files are reviewed in Section 2.3. Illustrative examples are 

provided in Section 2.4. In Section 2.5, the results of the MGLIM module are assessed by simulation 

study. The MGLIM statistical theory for complex survey data is outlined in Section 2.6. 

 

2.2 Graphical User Interface 

2.2.1 The Multilevel, Generalized Linear Model menu 

The Multilevel menu provides you access to three options: Linear Model, Generalized Linear Model 

and Non-Linear Regression. In this guide, the Generalized Linear Model option is introduced. As 

shown below, the Generalized Linear Model option provides a sequence of five dialog boxes that can 

be used to create a MGLIM syntax file interactively. It is located on the LSF (LISREL System File) 

window of LISREL which is used to display, manipulate and process raw data. In other words, you 

must create a LSF file and open it in a LSF window before syntax can be generated interactively. To 

illustrate this, the LSF window for the file ASPART.lsf (Multilevel Generalized Linear Model examples 

folder) with the Multilevel, Generalized Linear Model menu expanded is shown below. 

 

 
 

The typical next step would be to click on the Title and Options option to load the Title and Options 

dialog box (see Section 2.2.2). However, you can directly click on the ID and Weight, 

Distributions/Links, Model Specification or Random Variables option to go to the ID and Weight (see 

Section 2.2.3), the Distributions and Links (see Section 2.2.4), the Model Specification (see Section 

2.2.5), or the Random Variables dialog box (see Section 2.2.6) respectively. 

 

 

 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

7 

2.2.2 The Title and Options dialog box 

The Title and Options dialog box allows you to specify a title and the options of the MGLIM analysis 

interactively and is accessed by selecting the Title and Options option on the Multilevel, Generalized 

Linear Model menu. This selection loads the following Title and Options dialog box. 

 

 

 

Note that the Title and Options dialog box corresponds with the Title and MGLIMOptions commands 

as indicated on the image above.  

 

If desired, you can enter a descriptive title in the Title string field. If the raw data include missing 

values with a global missing value other than -999999, you need to enter the global missing value in 

the Missing Data Value number field. In order to specify missing data values on the outcome variable, 

the Dependent Missing Value field should be used. 

 

Since the MGLIM estimation equations do not have a closed form solution, MGLIM uses an iterative 

algorithm to estimate the parameters of the MGLIM. In this regard, the MAP algorithm and the 

Quadrature algorithm are available in the Optimization Method option. The default algorithm is MAP; 

click the Quadrature radio button to choose that algorithm instead. You can then enter the number of 

quadrature points in the Number of Quadrature Points field if the default of 10 is not appropriate. 

Enter the appropriate convergence criterion in the Convergence Criterion number field if the default 

value of 0.0001 is not to be used. 

Title = <string>; 

 

 

 
 
MGLIMOptions  
MaxIter = 100  
Converge = 0.0001 
 
MissingCode = -999999 
Dependent_Miss=-999999 
 
Method = Quad 
 
NQUADPS = 10 
 
Output = Residuals 
 
Summary = None 
 
ACM = Yes; 
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In the Additional Ouput section, three options are available upon request. If the Residual Files option 

is selected, the residuals will be saved to a file with extensions .ba2 and ba3 for level-2 and level-3 

residuals respectively. These residual files will have the same name than the output file except that 

.out is replaced with .ba2 and .ba3. When the No data summary check box is checked, the data 

summary will not be written to the output file. The Asymptotic covariance option provides the user 

the option to save the asymptotic covariance file for the fixed and random part of the model to 

additional files with extension _fixed.acm and _random.acm. Once you are done with the Title and 

Options dialog box, click on the Next button to go to the Distributions and Links dialog box.  

 

2.2.3 The ID and Weight Variables dialog box 

The Level-2 ID variable and Level-3 ID variable boxes on the ID and Weight Variables dialog box is 

used to select the variables in the LISREL data file (*.lsf) that identify the various levels of the 

hierarchy. The Weight variable box is used to define the weight variable to be used in the analysis. 

The image below shows the default settings for this dialog box and, to the right, the corresponding 

syntax commands. See the alphabetical list of syntax commands for details on the options available 

other than the default settings: IDn command (section 2.3.6) and WEIGHT command (section 2.3.15). 

 

 
 

The Next button provides access to the Distributions and Links dialog box.  

 

ID2 = <name of variable identifying 

level-2 units>; 
 

ID3 = <name of variable identifying 

level-3 units>; 

 

WEIGHT = <name of the weight 
variable>; 
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2.2.4 The Distributions and Links dialog box 

The Distributions and Links dialog box allows you to specify the sampling distribution and the link 

function of the MGLIM interactively. A summary of the combinations of sampling distributions and 

link functions that are available in this module is listed in Table 1. 

 

The Distributions and Links dialog box is, as shown below, usually accessed by clicking on the Next 

button of the ID and Weight Variables dialog box. It can also be accessed by selecting the Distributions 

/ Links option from the Multilevel, Generalized Linear Model menu. 

 

Table 1: Sampling Distribution and Link Functions 

 

                     

Link 

 

Distribution 

CLL Identity Log Logit OCLL OLogit OProbit Power Probit 

Bernoulli x   x     x 

Binomial x   x     x 

Gamma   x     x  

Inverse Gaussian   x     x  

Multinomial    x x x x   

Negative 

binomial 
  x       

Normal   x        

Poisson   x       

 

Note that the Distributions and Links dialog box corresponds with the Distribution, Link, Intercept, 

Dispersion and Scale commands as indicated on the image below. 

 
Use the Distribution type and the Link function drop-down list boxes to select the distribution and 

link function for your MGLIM. If an intercept for the mean model of the MGLIM is not required, you 

should activate the No radio button. 
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Some MGLIMs include dispersion or scale parameters. These MGLIMs are listed in Table 2. If a scale 

parameter is desired, you can select the appropriate scale parameter from the Estimate scale? drop-

down list box. In the case of a dispersion parameter, you can fix its value by activating the Fixed 

value radio button.  

 

Once the Distributions and Links dialog box has been completed, the Next button is clicked to go to 

the Dependent and Independent Variables dialog box.  

 

Distribution = POI; 

Intercept = Yes; 

Link = LOG; 

Scale = None; 

Dispersion = No; 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

11 

Table 2: Scale and Dispersion Parameters 

 

Parameters 

             

Distribution 

Scale Dispersion 
Maximum 

Likelihood 
Pearson Deviance 

Binomial x   x x 

Gamma x  x x x 

Inverse Gaussian x  x x x 

Negative binomial  x    

Normal x   x x 

Poisson x   x x 

 

2.2.5 The Dependent and Independent Variables dialog box 

 

Access to this dialog box is obtained by clicking on the Next button of the Distributions and Links 

dialog box or by selecting the Model Specification option from the Multilevel, Generalized Linear 

Model menu. Examples of the Dependent and Independent Variables dialog box are shown above. 

 

The model for the means of the outcome variable is a function of a set of covariates. You specify the 

outcome variable by first selecting it from the Variables in data list box and then by clicking on the 

Add button of the Dependent variable section. The covariates of the model can either be categorical 

or continuous variables. Dummy variables are also regarded as continuous variables. Categorical 

covariates are specified by first selecting the covariates from the Variables in data list box and then 

by clicking on the Categorical button. In a similar fashion, the Continuous button is used to specify 

the continuous covariates and dummy variables of the model. 

 

The Dependent and Independent Variables dialog box allows you to specify the model for the means 

of the outcome variable and, if applicable, a frequency variable. In the case of a multinomial model 

with ordinal link functions, the dialog box contains the Event Variable field. This field corresponds 

to the optional CENSOR_VAR command. Note that the Event Variable cannot have the same name as 

the dependent and independent variables selected for inclusion in the model. 

 

The Dependent and Independent Variables dialog box for a multinomial model with ordinal link 

function corresponds with the DEPVAR, COVARS and CENSOR_VAR commands as shown on the 

image below.  
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MGLIM can process models for count outcomes with offset variable. Specify the offset variable by 

first selecting it from the Variables in data list box and then by clicking on the Add button of the 

Offset variable section. This option is only available if a Poisson model is selected. This field 

corresponds to the optional OFFSET command.  

 

The Dependent and Independent Variables dialog box for a Poisson model corresponds with the 

DEPVAR, COVARS and OFFSET commands as shown on the image below.  

 

DepVar = <label>; 

 

CoVars = <label(s)>; 

 

Event Variable = <label> 
 

 

 

<label>; 
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Once the variables have been selected, click the Next button to load the Random Variables dialog 

box. 

 

2.2.6 The Random Variables dialog box 

The Random Variables dialog box is used to select the variables for which coefficients are assumed 

to be random from the LISREL data file (*.lsf). Default settings for this dialog box are shown in the 

image below. To the right, the corresponding syntax commands are given. See the alphabetical list 

of syntax commands for details on the options available other than the default settings: RANDOMn 

command (section 2.3.11). Note that the number of interactions cannot exceed the toatl number of 

predictors selected. The default number of interactions is 0. 

 

DepVar = <label>; 

 

CoVars = <label(s)>; 

 

Offset = <label>; 
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Once all the options are set as desired, click the Finish button to generate the syntax.  

 

2.3 Syntax 

2.3.1 The structure of the syntax file 

The syntax file, which is generated by the interface of the MGLIM module, can also be prepared by 

using the LISREL text editor or any other text editor such as Notepad and WordPad. The structure of 

the syntax file follows. 

 
MGLIMOPTIONS <options>;       Required 
TITLE = <string>;        Optional 
SY = '<filename>';        Required 
IDn = <label>; name of variable identifying level n units    Required 
DEPENDENT_MISS = <value>;       Optional 
WEIGHT = <label>;         Optional 
DISTRIBUTION = <name>;       Required 
LINK = <function>;        Required 
INTERCEPT = <option>;       Required 
DISPERSION = <option>;       Optional 
SCALE = <type>;        Required 
DEPVAR = <label>;        Required 
COVARS = <label(s)>;        Required 
OFFSET = <label>;        Optional 

RANDOM2 = <names of variables 
random on level-2 of the model>;
  

 

 

 

RANDOM3 = <names of variables 
random on level-3 of the model>;
  

Interactions=<number>;
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RANDOMn = <label>; names of variables included as random effects  
                       on level n of the model      Required 
CENSOR_VAR = <name>;       Optional 
INTERACTIONS=<value>;       Optional 

 

where <label> denotes a case sensitive variable name used in the raw data file, <filename> denotes a 

complete name (including the drive and folder names) of a file, <option> is either Yes or No, <type> 

is one of None, Pearson, Deviance or ML (see Section 2.3.5), <name> is one of BER, BIN, GAM, INVG 

MUL, NBIN, NOR or POI (see Section 2.3.6) and <function> is one of CLL, IDEN, LOG, LOGIT, OLOGIT, 

OCLL, OPROBIT, POW[n] and PROBIT (see Section 2.3.8). <options> denotes a list of options for the 

analysis, each of which has the following syntax: 

 
                                  <keyword> = <selection> 

 

where <keyword> is one or more of ACM, CONVERGE, MAXITER, METHOD, MISSINGCODE, 

NQUADPTS, OUTPUT, REFCAT or SUMMARY and <selection> denotes a number, an option or a name 

(see Section 2.3.9). In many applications, optional commands and keywords can be left out if there 

are program default values available. 

 

The TITLE, WEIGHT, DISPERSION, DEPENDENT_MISS, CENSOR_VAR, INTERACTIONS and OFFSET 

commands are optional commands while the other ten commands are all required. The 

MGLIMOPTIONS and SY commands should be the first two commands respectively, but the other 

commands can be entered in any order. Except for variable labels, the contents of the syntax file are 

not case-sensitive. Blank lines can be inserted in any section of the syntax file. 

 

In the following sections, the seventeen MGLIM commands are discussed separately in alphabetical 

order. 

 

2.3.2       COVARS command 

The purpose of the COVARS command is to specify the covariates of the model for the means of the 

outcome variable and it is a required command. The COVARS command corresponds with the 

Independent variables section on the Dependent and Independent Variables dialog box (see Section 

2.5). 

 
Syntax 

 
 COVARS = <label(s)>; 
 

where <label(s)> denotes the case sensitive label(s) of the covariates of the model. In the case of a 

categorical variable, the label should be augmented with a $ symbol. Dummy variables are regarded 

as continuous variables. Consequently, dummy variable labels are not augmented with a $ symbol. 
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Example 

 

Suppose that the covariates of the model consist of a dummy variable, sex, a categorical variable, 

edu, and a continuous variable, age. For this example, the corresponding COVARS command is given 

by  

 
 COVARS = sex edu$ age; 
 

2.3.3 CENSOR_VAR command 

    The purpose of the CENSOR_VAR command is to specify the frequency variable in the case of 

multinomial models with ordinal link functions and it is an optional command. The CENSOR_VAR 

command corresponds with the Event Variable section on the Dependent and Independent Variables 

dialog box (see Section 2.5). Note that the Event Variable cannot have the same name as the 

dependent and independent variables selected for inclusion in the model. 

 
Syntax 

 
 CENSOR_VAR = <name>; 
 

where <name)> denotes the case sensitive label(s) of the offset variable.  

 

2.3.4 DEPENDENT_MISS command 

The DEPENDENT_MISS command is used to specify the value of missing values, if any, on the 

outcome variable of the model and it is an optional command. It corresponds with the 

Dependent_Miss section on the Dependent and Independent Variables dialog box (see Section 2.5). 

 
Syntax 

 
 DEPENDENT_MISS = <value>; 
 

where <value> denotes the value of the missing data indicator on the outcome variable of the model. 

By default, the value is set to – 999999. 

 

2.3.5 DEPVAR command 

The DEPVAR command is used to specify the outcome variable of the model and it is a required 

command. It corresponds with the Dependent variable section on the Dependent and Independent 

Variables dialog box (see Section 2.5). 

 
Syntax 

 
 DEPVAR = <label>; 
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where <label> denotes the label of the outcome variable of the model. Note that variable names are 

case sensitive. 

 
Example 

 

Suppose that the variable, depr, is the outcome variable to be used. In this case, the corresponding 

DEPVAR command would be 

 
 DEPVAR = depr; 
 

2.3.6      DISPERSION command 

The Negative Binomial sampling distribution, for example, has a dispersion parameter. This 

parameter is specified by using the DISPERSION command. Since not all sampling distributions 

involve a dispersion parameter, the command is optional with default of no dispersion to be 

estimated. The DISPERSION command corresponds with the Estimate dispersion? section on the 

Distributions and Links dialog box (see Section 2.4). 

 
Syntax 

 
 DISPERSION = <option>; 
 

where <option> is either Yes or No.  

 
Default 

 
 DISPERSION = No; 
 

2.3.7      DISTRIBUTION command 

Each MGLIM involves the sampling distribution of the outcome variable. The sampling distribution 

is specified by means of the DISTRIBUTION command, which is optional. The DISTRIBUTION 

command corresponds with the Distribution type drop-down list box on the Distributions and Links 
dialog box (see Section 2.4) as shown below. 

 
Syntax 

 
 DISTRIBUTION = <name>; 
 

where <name> is one of BER (Bernoulli), BIN (Binomial), GAM (Gamma), INVG (Inverse Gaussian), 

MUL (Multinomial), NBIN (Negative Binomial), NOR (Normal) or POI (Poisson). 

 
Default 

 
 DISTRIBUTION = MUL; 
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2.3.8      IDn command 

The ID command(s) are used to indicate the variable(s) identifying the units on the different levels of 

the hierarchy. ID command(s) are required command(s). 

 

 If the model specified is a 2-level model, the command ID2 is required. Likewise, if a level-3 model 

is to be considered, the ID2 and ID3 commands are required in the syntax file.  

 

Variables listed in the ID commands must be included in the data file (*.lsf file). Variable names are 

case sensitive, therefore the spelling and case in which they are given need to correspond to that 

given in the spreadsheet.  

 
Syntax 
 

IDn = <variable name identifying level-n units>; 

 
Example 

 

Suppose the raw data file contains information on the test scores, age and gender of pupils belonging 

to classes within schools, and the variables school, class, pupil, age, gender and score are contained in 

the data file. The following ID commands may be used to identify the levels of the hierarchical 

structure: 
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     ID3 = school; 

     ID2 = class;  

     

The Identification Variables dialog box shown below shows the settings needed to obtain these 

commands. 

 

 
 

2.3.9 INTERACTIONS command 

The purpose of the INTERACTIONS command is to allow specification of the number of interactions. 

It is an optional command. The INTERACTIONS command corresponds with the Number of 

Interactions section on the Random Variables dialog box. The number of interactions cannot exceed 

the number of selected predictors. 

 
Syntax 

 
 INTERACTIONS = <number>; 
 

 
Default 

 
 INTERACTIONS=0; 
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2.3.10 INTERCEPT command 

Many MGLIMs can either include or exclude an intercept parameter for the model for the means of 

the outcome variable. The purpose of the INTERCEPT command is to allow you to either include or 

exclude an intercept parameter and it is an optional command. The INTERCEPT command 

corresponds with the Include intercept? section on the Distributions/Links dialog box (see Section 

2.3). 

 
Syntax 

 
 INTERCEPT = <option>; 
 

where <option> is either Yes or No. 

 
Default 

 
 INTERCEPT = Yes; 
 

2.3.11      LINK command 

The link function of a MGLIM describes the relationships between the means of the outcome variable 

and the means of the corresponding linear model. The LINK command is used to specify the link of 

the MGLIM, and corresponds with the Link function drop-down list box on the Distributions/Links 

dialog box as shown below. It is an optional command. 

 
Syntax 

 
 LINK = <name>; 
 

where <name> is one of CLL (complementary log-log), IDEN (identity), LOG (log), LOGIT (logit), 

OCLL (proportional hazards), OLOGIT (cumulative logit), OPROBIT (cumulative probit), and PROBIT 

(probit). 

 
Default 

 
 LINK = Iden; 
 

2.3.12      MGLIMOPTIONS command 

The purpose of the MGLIMOPTIONS command is to select the iterative algorithm to be used and to 

specify options for the selected iterative algorithm. In addition, it is used to specify a global missing 

data value and the output to be generated. Finally, it allows you to specify the variance adjustment 

proposed by Morel (1989) if the estimated asymptotic covariance matrix of the parameter estimators 

is not positive definite. The MGLIMOPTIONS command must always be the first command and is a 

required command. It corresponds with the Title and Options dialog box (see Section 2.2). 
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Syntax 
 
 MGLIMOPTIONS <options>; 
 

where <options> is a list of options each of which has the following syntax: 

 
 <keyword> = <selection> 

 

where <keyword> is one or more of ACM, CONVERGE, MAXITER, METHOD, MISSINGCODE, 

NQUADPTS, OUTPUT, REFCAT or SUMMARY and <selection> refers to a name, a number or an option. 

 

2.3.12.1 ACM keyword 

The ACM keyword is used to print the large-sample covariance matrices of the estimated parameters 

in the fixed part and random part of the model. This keyword is controlled from the Title and Options 

dialog box. 

 

Standard errors of the estimated parameters are equal to the square roots of the diagonal elements. 

The non-duplicated elements of these asymptotic covariance matrices are written to external files 

with the following default names: 
 
<Outputfilename>_fixed.acm 
<Outputfilename>_random.acm 

 

If the output file name is, for example, aspart.out, then the large-sample covariance matrices are 

saved to the files aspart_fixed.acm and aspart_random.acm. 

 
Syntax 
 

 ACM = <option> 
 

where <option> is either Yes or No. 

 
Default 

 
 ACM = No 

 

No asymptotic covariance matrices will be printed by default. 

 
Example 

 

In the MGLIMOPTIONS command below, the ACM keyword is used to request the printing of the 

asymptotic covariance matrices at convergence. A convergence criterion of 0.0001 is set as the 

requirement for convergence, and 30 iterations is indicated as the maximum number of iterations to 

be performed. 

 
MGLIMOPTIONS MAXITER = 30 CONV = 0.0001 ACM = Yes; 
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2.3.12.2 CONVERGE keyword 

The tolerance limit of the convergence criterion of the selected iterative algorithm is specified by 

using the CONVERGE keyword which is an optional keyword. The CONVERGE keyword corresponds 

with the Convergence Criterion section on the Title and Options dialog box (see Section 2.5.2.2). 

 
Syntax 

 
 CONVERGE = <number> 
 

where <number> denotes a real number greater than zero. 

 
Default 

 
 CONVERGE = 0.0001 
 

2.3.12.3 MAXITER keyword 

You can control the maximum number of iterations of the selected iterative algorithm by means of 

the MAXITER keyword which is an optional keyword. The MAXITER keyword corresponds with the 

Maximum Number of Iterations section on the Title and Options dialog box (see Section 2.5.2.2). 

 
Syntax 

 
 MAXITER = <number> 
 

where <number> denotes a positive integer. 

Default 
 
 MAXITER = 100 
 

2.3.12.4 METHOD keyword 

MGLIM implements the MAP and quadrature iterative algorithms to obtain the estimates and standard 

error estimates of the MGLIM parameters. The METHOD keyword is used to select one of these 

algorithms and it is an optional keyword. It corresponds with the Optimization Method section on the 

Title and Options dialog box (see Section 2.2). 

 
Syntax 

 
 METHOD = <method> 

 

where <method> is either MAP or QUAD. 

 
Default 

 
 METHOD = MAP 
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2.3.12.5 MISSINGCODE keyword 

Raw data often include missing values. MGLIM uses list-wise deletion for handling data with missing 

values if you specify a global missing value by means of the MISSINGCODE option, which is 

optional. The MISSINGCODE keyword corresponds with the Missing Data Value section on the Title 

and Options dialog box (see Section 2.2). 

 
Syntax 

 
 MISSINGCODE = <number> 
 

where <number> denotes a real number. 

 
Default 

 
 MISSINGCODE = -999999 
 

2.3.12.6 NQUADPTS keyword 

The NQUADPTS keyword is used to define the number of quadrature points (per random-effect 

dimension) to use in the evaluation of the log-likelihood function and derivatives using numerical 

integration. It is usually between 10 and 20 for 1 random effect and 5 to 10 for 2 or 3 effects.  

 

Syntax 
 

NQUADPTS = <number> 

 

where number is a positive integer. 

 

Default 
 

NQUADPTS = 10 
 

2.3.12.7 OUTPUT option 

MGLIM can write the residuals of the MGLIM analysis to separate CSV files. The OUTPUT keyword is 

used to request this file and is an optional keyword. The OUTPUT keyword corresponds with the 

Residual files option in the Additional Output section on the Title and Options dialog box (see Section 

2.2.2). 

 
Syntax 

 
 OUTPUT = Residuals 
 

When residual file is requested, MGLIM will save the file to a separate CSV file, which has the same 

name as the LSF, except that .lsf is replaced with _RES.CSV. 
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Default 
 

No residual file is generated. 

 

2.3.12.8 REFCAT keyword 

The REFCAT is an option to select whether the first or last category of the outcome should be used 

as the reference category. It is to be used with nominal outcomes only. 

  
Syntax 

 
REFCAT = <keyword> 

 

The keyword is either LAST or FIRST. 

 

Default 
 

REFCAT = Last 
 

2.3.12.9 SUMMARY keyword 

The SUMMARY keyword is used to suppress the printout of the data summary table.  

 
Syntax 

 
 SUMMARY = <option> 
 

where <option> is either Yes or No. 

 
Default 

 
 SUMMARY = Yes; 

 

the summary table containing sample sizes of units within the various levels of the hierarchy is 

printed. 

 

2.3.12.10 MGLIMOPTIONS example 

Suppose that the quadrature algorithm with a 10 quadrature points and a convergence criterion 

tolerance limit of 0.0001 with printed details is required. Suppose the residual file and asymptotic 

covariances files are required, no data summary is printed and the global missing value for the raw 

data is -9. For this example, the GLIMOPTIONS command is given by 

 
MGlimOptions Converge=0.0001 MaxIter=100 MissingCode=-9  Method=Quad NQUADPTS=10 
Output=Residuals Summary=None ACM=Yes ; 

 

This MGLIMOPTIONS command corresponds with the following Title and Options dialog box. 
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2.3.13 OFFSET command 

The OFFSET command is an optional command used for count outcomes only. It is used to define 

the offset (exposure) variable. 

 

Count models are also appropriate for rate data, where the rate is a count of events occurring for a 

particular unit of observation, divided by a measure of that unit's exposure. An example is the death 

rates in geographic areas as the count of deaths (outcome variable) divided by person-years 

(exposure). In count models, this is handled by an offset where the exposure variable is a predictor 

with regression coefficient constrained to 1. 

 

Syntax 
 

OFFSET = <variable name>; 
 

Example 
 

OFFSET = Pers_Yrs; 
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2.3.14 RANDOMn command 

The RANDOMn command is used to identify those variables whose coefficients are allowed to vary 

randomly over level-2 and 3 of the hierarchy. One RANDOM command is allowed for each level of 

the hierarchy. When the syntax file is created through the interface, the RANDOM command(s) are 

automatically generated. Variables listed, except for the variable intcept (intercept), must be included 

in the data spreadsheet (*.lsf file). The spelling and case in which they are given need to correspond 

to that given in the spreadsheet. By default, the intercept is automatically included as a random effect 

at level-2 and 3 of the model. To exclude the intercept term at any level, the corresponding Intercept 

check box (see the Random Variables dialog box below) must be unchecked.  

 
Syntax 
 

RANDOMn = <list of variables names to be included as random effects on level n> ; 

 

where n = 2 or 3. 

 
Example 
 

 
 

The Random Variables dialog box shown above corresponding to the commands 

 
RANDOM2 = intcept PreTHKS; 
RANDOM3 = intcept; 
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The settings corresponding to the following commands are shown on the Random Variables 

dialog box below: 
 

   RANDOM3 = intcept X2 X1 ; 

   RANDOM2 = time; 

 

 
 

From this hypothetical example the following can be seen: 

 

o The random variables may be listed in any order. 

o Any or all of the possible predictors may be included in a RANDOM command at any level 

of the model. 

 

2.3.15 SCALE command 

Some sampling distributions such as the Poisson, Binomial, Gamma, Inverse Gaussian and Normal 

distributions have an optional scale parameter. This parameter is specified by using the SCALE 

command. Since not all sampling distributions involve a scale parameter, the command is optional. 

The SCALE command corresponds with the Estimate scale? drop-down list box on the Distributions 

and Links dialog box as shown below. 
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Syntax 
 
 SCALE = <type>; 
 

where <type> is one of None, Pearson or Deviance. 

 
Default 

 
 SCALE = None; 
 

2.3.16 SY command 

MGLIM can process raw data or frequency data that are available in the form of a LSF (LISREL System 

Data file). The LSF to be processed is specified by means of the SY command. The SY command is a 

required command and must be the second command listed in the syntax file. The SY command 

corresponds with the LSF window. 

 
Syntax 

 
 SY = '<filename>'; 
 

where <filename> denotes the complete name (including drive and folder names) of the LSF. The 

drive and folder names may be omitted if the LSF and syntax file are in the same folder. Note the use 

of single quotes in this command. 
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Example 

 

Suppose that the data to be processed are listed in the file ASPART.lsf which is located in the 

SGLIMEX folder on the C drive. In this case, the SY command is given by 

 
 SY = 'C:\MGLIMEX\ASPART.LSF'; 
 

2.3.17 TITLE command 

It is often convenient to label a specific analysis to distinguish it from other analyses. This can be 

accomplished by using the TITLE command which is an optional command. The TITLE command 

corresponds with the Title string field on the Title and Options dialog box (see Section 2.2.2). 

 
Syntax 

 
 TITLE = <string> ; 
 

where <string> denotes a descriptive title for the analysis. 

 
Example 

 

Consider an analysis in which a Bernoulli-Probit model was fitted to substance abuse data. In this 

case, one possible TITLE command is given by 

 
 TITLE = MGLIMEX2: Binary outcome variable, logit link function; 
 

2.3.18 WEIGHT command 

Design weights are constructed for the ultimate sampling units of complex surveys. The purpose of 

the WEIGHT command is to allow you to specify the design weight variable. Since surveys without 

design weights are permitted, the WEIGHT command is an optional command. The WEIGHT 

command corresponds with the Weight variable section on the ID and Weight Variables dialog box 

(see Section 2.2.3).  

 
Syntax 

 
 WEIGHT = <label>; 
 

where <label> denotes the case sensitive label of the design weight variable. 
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Example 

 

Suppose that the variable A2TWA0 is used to capture the design weight for each observation. For this 

example, the WEIGHT command is given by 

 
 WEIGHT = A2TWA0; 

 

2.4 Examples 

2.4.1 Introduction 

2.4.1.1 Generalized linear models (GLIM) 

Many popular statistical methods are based on mathematical models that assume data follow a 

normal distribution. The most obvious among these are the analysis of variance for planned 

experiments and multiple regression for general analyses of independent and dependent variables. In 

many situations, the normality assumption is not plausible. Consequently, use of methods that 

assume normality may perform unsatisfactorily. In these cases, other alternatives that do not require 

data to have a normal distribution are attractive. 

 

A generalized linear model is a useful generalization of ordinary least square (OLS) regression. In 

OLS, the outcome variable is assumed to follow a normal distribution. However, this assumption is 

often invalid especially when dealing with categorical outcomes. A GLM assumes that the outcome 

variable follows a distribution function in the exponential family. It allows a linear transformation 

of the non-normal outcome variable. And it carries the regression concepts of OLS. 

 

2.4.1.2 Multilevel model 

The collection of models called Generalized Linear Models (GLIMs) have become important, and 

practical, statistical tools. The basic idea of GLIMs is an adaptation of standard regression to quite 

different kinds of data. The variables may be dichotomous (agree/disagree), categorical (as with a 5-

point Likert scale), counts (number of arrest records), or nominal (choose among six candidates for 

mayor). The motivation is to tailor the regression relationship connecting the outcome to relevant 

independent variables so that it is appropriate to the properties of the dependent variable. The payoff 

is an analysis that often is more justifiable for the particular problem than a standard regression model 

would be. 

 

The statistical theory and methods for fitting Generalized LInear Models (GLIMs) to simple random 

sample data are described in, amongst others, McCullach & Nelder (1989) and Agresti (2002). 

However, researchers from the social and economic sciences are often applying these methods to 

multilevel data. 

 

Consequently, inappropriate results are obtained if these methods are applied to multilevel data. 

Statistical applications such as HLM (Raudenbush & Bryk 2007) and SAS PROC NLIN (SAS Institute 

2004) implement methods to fit generalized linear models to multilevel data. 
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LISREL includes a statistical module for the analysis of multilevel data and uses two estimation 

methods, MAP (maximization of the posterior distribution) and ADAP (adaptive quadrature), which 

fits generalized linear models to multilevel data. The LISREL module allows for a wide variety of 

sampling distributions and link functions. 

 

In the following sections, examples are provided to illustrate the MAP and ADAP methods to fit 

generalized linear models for binary, count, ordinal, and nominal response variables to multilevel 

data. 

 

2.4.2 Models for binary outcomes 

2.4.2.1 Binary outcome and its distribution 

A binary random variable is a discrete random variable that has only two possible values, such as 

whether a subject dies (event) or lives (non-event). Such events are often described as success versus 

failure. The binary variable is often presented by the values 0 or 1. Obviously, the assumption of 

normality of the outcome variable does not hold anymore. The most common distribution for the 

binary outcome is Bernoulli distribution, which takes value 1 with success probability p and value 0 

with failure probability 1q p= − . The selection of the distribution for the outcome variable is not 

fixed. For example, if the occurrence is very rare, Poisson distribution can be used. 

 

Linear predictors 
 

The linear predictor is a quantity which relate to the expectation through the link function. For 

example, y is used as our binary outcome variable;   is the transformed linear predictor; 

( )1 nx x=x  is the vector of all the predictors; and ( )1 n =β  denotes the unknown regression 

parameters. Thus,  = x β  is the GLIM. Instead of y,   is being analyzed. For the binary outcome, 

the probability of success   is the predictor of interest.  

 

Link functions 
 

The link function provides the relationship between the linear predictor   and the distribution 

function. These link functions transform the observed outcome value to   and ensure that the 

predicted probability lies within the (0, 1) interval. 

 

The available link functions for binary outcomes with Bernoulli distribution in MGLIM include logit, 

probit and complementary log-log functions. Table 3 gives each of these link function and the 

corresponding cumulative distribution functions (cdf), which are the inverse functions of each other, 

and its mean and variance.  
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Table 3: Link functions for Bernoulli distribution 

 

Link name Link function 
( )1F p−
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log-log 
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-0.577 
2

6



 
 

These link functions map the probability   with an open interval (0,1) to the entire real numbers .  

 

The logit and probit link functions are both symmetric. The logit function has a larger variance. The 

complementary log-log link function is asymmetric. When p is extremely small or large, the linear 

relationship does not hold. Understand the link function is essential when interpreting the outcomes.  

 

2.4.3  Binary models with logit link function 

2.4.3.1 The data 

The data set forms part of the data library of the Alcohol and Drug Services Study (ADSS). The ADSS 

is a national study of substance abuse treatment facilities and clients. Background data and data on 

the substance abuse of a sample of 1752 clients were obtained. The sample was stratified by census 

region (CENREG) and within each stratum a sample was obtained for each of three facility treatment 

types (FACTYPE) within each of the four census regions. More information on the ADSS and the data 

are available at http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/03088.xml. 

 

The specific data set is provided in the Multilevel Generalized Linear Model examples folder as the 

LSF file Depress.LSF. The first portion of this file is shown in the following LSF window. 

 

 
 

http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/03088.xml
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The variables of interest are: 

o DEPR addresses the question of whether the patient has depression. (1 = Yes; 0 = No)  

o A2TWA0 is the sampling weight 

o SEX is a dummy variable indicating the gender (0 for male and 1 for female) of the client 

o RACE_D is a dummy variable representing the ethnicity (0 for black and 1 for white) of the 

client 

o SEXxRACE is the interaction term of gender and race. 

o LEV2ID is the variable used to identify the level-2 ID or grouping variable.  

 

2.4.3.2 Importing the data  

The data set shown previously is available in the form of a spreadsheet file, named depress.lsf. This 

file contains data for the 2,214 respondents who reported some form of depression.  

 

The first step is to create the LISREL spreadsheet file (lsf) from the Excel file. Use the Import Data File 

option on the File menu to load the Open dialog box. Select Excel (*.xls) from the Files of type drop-

down list. Browse for the file depress.xls. Select the file and click on the Open button to open the 

following LISREL spreadsheet window for depress.lsf. 

 

 
 

Besides EXCEL data files, LISREL is capable of importing SAS, SPSS, STATA and most of the data 

files in other formats. The data import processes are similar, and will not be discussed again in this 

document. 

 

When the external data is imported into LISREL, the default variable type is Ordinal. Variables that 

have more than 15 categories are treated as continuous. To change the default settings for the variable 

type, click on the Data, Define variables menu and change the settings. In this example the default 

setting is valid, and no further changes are needed. 
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2.4.3.3 Exploring the data 

Graphics are often a useful data-exploring technique through which the researcher may familiarize 

her- or himself with the data. Relationships and trends may be conveyed in an informal and simplified 

visual form via graphical displays.  

 

The Graphs option provides univariate, bivariate, and multivariate graphs. Univariate graphs are 

particularly useful in obtaining an overview of the characteristics of a variable.  

 

2.4.3.4 Univariate graphs 

As a first step, we take a look at the distribution of depression (DEPR), which is the potential 

dependent variable in this study.  

 

Pie chart 

A pie chart gives a good picture of probability of success. To create a pie chart for DEPR, select the 

Univariate option from the Graphs menu as shown below. 

 

 
 

The Univariate plot dialog box appears. Select the variable DEPR and indicate that a Pie chart is to be 

graphed. Click the Plot button to display the pie chart. 
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The pie below shows that about 58.9% of the respondents have depression. Since the probability is 

not extremely large or small, the Bernoulli distribution should be appropriate for our study.  

 

 
 

2.4.3.5 The model 

The first model fitted to the depression data explores the relationship between DEPR, gender, and 

race, as represented by the variables SEX and RACE_D. The level-1 model is at a individual level, 

while the level-2 model is at a PSU level. The model can be expressed as follows.  

 

For the binary case with logit link considered here 

  

Prob(DEPR 1)
1
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ij
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e

e




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where ij  represents the log of the odds of success. With the logit link function, the probability 

Prob( 1| )ijy = β  is transformed to lie in the interval (0,1). And (for the current model) the two level 

model can be expressed as 

 

Level-1 model:  

( ) ( )0 1 2SEX RACE_dij i i i ijij ij
b b b e = +  +  +

 
Level-2 model: 

0 0 0

1 1 1

2 2

i i

i i

i

b u

b u

b







= +

= +

=
 

where  

( )
( )

20,

0,

i i

i i

e N

N

 I

u Σ
 

 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

36 

0  denotes the average expected ij , which can be converted to the expected probability of getting 

depression. 1  denotes the coefficient of the predictor variable SEX (slope) in the fixed part of the 

model. The random coefficients 0iu  and ije  denote the variation in the average expected DEPR value 

between PSUs and between patients respectively.  

 

2.4.3.6 Setting up the analysis 

Open the LISREL spreadsheet depress.lsf used during the exploratory analysis discussed previously. 

The next step is to describe the model to be fitted. We use the LISREL interface to provide the model 

specifications. From the main menu bar, select the Multilevel, Generalized Linear Model, Title and 

Options option.  

 

 
 

The multilevel generalized linear model contains five consequential dialogs boxes. The Titles and 

Options dialog box as shown below enables the user to input the title, maximum number of iteration, 

convergence criterion, missing values, and method and request additional output. Enter a title for the 

analysis in the Title text boxes (optional) and keep all the other settings as default.  
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Proceed to the ID and Weights screen by clicking on the Next button. Highlight LEV2ID from the 

Variables in data list and click on the upper Add button to select is as the Level-2 ID variable. Similarly, 

highlight the variable A2TWA0 and click on the lower Add button to select it as the Weight variable 

and obtain the screen shown below.  
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Click on the Next button to load the Distribution and Links dialog box. Select Binomial from the 

Distribution type dropdown list box. By default, the logit link function is selected. Keep the other 

default settings unchanged as shown below, and click on the Next button. 
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On the Dependent and Independent Variables dialog box screen, first select DEPR and click on the 

upper Add button to define it as the Dependent variable. Then, select SEX and RACE_D and click on 

the Continuous button to add these variables in the Independent variables list box as shown below. 

 

 
 

Click on the Next button to proceed to the Random Variables dialog box once these settings have 

been defined. Keep the Intercept check box checked so as to include a level-2 intercept.  
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Click on the Finish button to generate the PRELIS syntax file (.prl) that corresponds to the above 

settings. Select the File, Save As option, and provide a name (depress1.prl) for the model 

specification file. The default folder for the syntax to be saved in is the same folder used for the data 

file. 

 

 
 

2.4.3.7 The syntax file 

The syntax file contains the following information: 

o The MGlimOptions keyword requests the MGLIM module to run. The first two lines, together 

with the Title line, correspond to the settings entered in the Title and Options dialog box. 

o The SY line indicates the location of the .lsf data file. 
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o ID2 is the level-2 id variable, while Weight corresponds with the weight variable. These are 

defined in the ID and Weights dialog box. 

o The syntax lines for Distribution, Link and level-1 Intercept are set up in the Distribution and 

Links dialog box. 

o The DepVar line, which represents the dependent variable and the CoVars line, which 

represents the covariate variable, are defined in the Dependent and Independent Variables 

dialog box. 

o Finally, the RANDOM2 syntax line corresponds to the Random Variables dialog box.  

 

Understanding how the syntax works enables the user to make changes directly to the syntax file. 

Run the analysis by selecting the Run PRELIS button to generate the output file depress.out. The 

output file has the same file name as the syntax file with a different extension .out. It is saved in the 

same folder as the syntax file. 

 

2.4.3.8 Discussion of results 

Portions of the output file depress.out are shown below.  

 

Program information and syntax 

At the top of the output file, program information is given. It states the version number, corporate 

and technical support information, the date and time of analysis, and the locations of data file and 

syntax file.  

 

 
 

Program information is followed by the Multilevel GLIM syntax. This section echoes the contents of 

the syntax file depress.prl. For more information on syntax and keywords, please see Section 2.2.3. 
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Model and data description 

In the next section of the output file as shown above, descriptions of the distribution, the link 

function, the weight variable and the hierarchical structure of the data are provided. Data from a total 

of 10 level-2 units and 2,214 respondents were included at levels 2 and 1 of the model. In addition, 

a summary of the number of respondents nested within each level-2 unit is provided.  

 

 
 

Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included in the model. 

Since DEPR is defined as a binary variable, it is presented by two dummy variables depr1 and depr2.  

 

  
 

Results for the model without any random effects 

Descriptive statistics are followed by the results for the model without any random effects. These 

parameters are used in the initial step of the iterative algorithm. They are obtained by ordinary 

weighted least squares (WLS) regression. The goodness of WLS fit statistics are also given as shown 

below.  
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Results for the model with fixed and random effects 
Number of iterations and fit statistics 
 

The total number of (macro) iterations is reported. As shown below, there are 58 iterations to get the 

converged results. 

 

In addition to the likelihood function value at convergence, a number of related statistical measures 

for assessing model adequacy are available. The most common of these are the likelihood ratio test, 

Pearson chi-square, and Akaike's and Schwarz's criteria. Both the Akaike information criterion (AIC) 

and the Schwarz Bayesian criterion (SBC) are functions of the number of estimated parameters, and 

therefore "penalize" models with large numbers of parameters. In the LISREL output file, all three of 

these are reported. A chi-square scale factor, with which a chi-square value obtained from the 

difference between two deviance statistics should be multiplied to yield a corrected chi-square 

statistic in the case of a weighted analysis, may also be found in this section. 
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o The Pearson Chi-square is defined as 
( )
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o The deviance is defined as 2ln L− . For a pair of nested models, the difference in 2ln L−  

values has a 2  distribution, with degrees of freedom equal to the difference in number of 

parameters estimated in the models compared.  

o The AIC was originally proposed for time-series models, but is also used in regression. It is 

defined as 2ln 2L r− + , where r  denotes the number of parameters estimated in the model. 

The model with minimum AIC, in a set of nested models, will be the most parsimonious 

according to this criterion. 

o The SBC is defined as 2ln logL r n− + , where n  denotes the number of units at the highest 

level of the hierarchy. A smaller value of this criterion would indicate the most parsimonious 

of the models being compared.  

 

Estimated regression weights 

The output describing the estimated regression weights after fit statistics is shown next. The estimates 

are shown in the column with heading Estimate and correspond to the coefficients 0 1,   and 2  in 

the model specification. From the z-values and associated exceedance probabilities, we see that all 

three estimates are highly significant at 10% level.  

 

 
 

The estimated intercept is -0.0990, which is the average logit. The estimated coefficients associated 

with gender (SEX) is – 0.7838, which indicates that the female respondents (SEX = 1) have a smaller

̂ . The estimate for the indicator of race (RACE_D) shows that white clients have higher ̂  value. 

To describe the ’s in an more accessible way to readers of reports, we need the link functions to 

transform them into probabilities. 

 

Interpreting estimated regression weights by using link function 

First, we substitute the regression weights and obtain the function for îj   
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( ) ( )

( ) ( )

0 1 2
ˆ ˆ ˆˆ SEX RACE_d

0.0990 0.7838 SEX 0.6460 RACE_d

ij i i iij ij

ij ij

b b b = +  + 

= − +  − 
. 

 

For a black male, we have SEX = 0, RACE_d = 0, thus  

 

ˆ 0.0990 0.7838 0 0.6460 0

0.0990

ij = − +  − 

= − .  

 

Similarly, the calculation of îj  for a BLACK female (SEX = 1, RACE_d = 0) is 

 

ˆ 0.0990 0.7838 1 0.6460 0

0.6848

ij = − +  − 

= . 

  

Next, we transform the îj ’s into corresponding probabilities by using the logit link function. Take 

the black male as the example, the probability is calculated as below. 

 

ˆ

ˆ ˆ 0.0990

1 1
Prob(DEPR 1) 47.53%

11 1

ij

ij ij
ij

e

ee e



 −
= = = = =

++ +  
 

Thus we can conclude that the estimated probability for a black male who has depression is about 

47.53%. Similarly, the probability of having depression for different gender and ethnicity are 

calculated in the following table.  

 

Group Code ̂
 Prob (DEPR = 1) 

Black, male sex = 0, race_d = 0 0.1018 47.53% 

Black, female sex = 1, race_d = 0 0.6848 66.48% 

White, male sex = 0, race_d = 1 -0.7450 32.19% 

White, female sex = 1, race_d = 1 0.0388 50.97% 

 

Estimated level-2 variance  

The output for the estimated level-2 variance is shown in the image below. The p value of intercept 

shows the probability of getting depression differs significantly from PSU to PSU (the level-2 units).  
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ICCs and % variance explained 

The intraclass coefficient (ICC), or say the percentage of variance explained by level-2 unit is 

calculated by  

 

level 2 variation

level 1 variation + level 2 variation
ICC =

 

 

In the case of a model with only a random intercept, the variation in the random intercept at the level-

2 unit, and the residual variation at level-1. The intracluster coefficient is defined as 

 

0

0
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var( ) var( )
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ij i
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

 
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+  

Level-1 variation 

As mentioned earlier, for the dichotomous outcome model, it is assumed that the level-1 error 

variance is equal to 
2 / 3  for the logistic link function if the model is true (see, e.g., Hedeker & 

Gibbons (2006), p. 157). Thus, 

 

2

0Var(level1) var( ) 3.2865
3

ie


= = =

 

 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

47 

2.4.4 Binary models with probit link function 

2.4.4.1 The model 

In the model just discussed the logistic link function was used. We now will fit another model by 

using the probit link function. We will only include a random intercept at level-2. On the other hand, 

the interaction between gender and race will be considered at level-1. The model can be expressed 

as follows. 

 

The probit link function is 

  

( )1Prob(DEPR )ij  −= = 

 
 

where ij  represents the log of the odds of success. With the probit link function, the probability 

Prob( 1| )ijy = β  is transformed to lie in the interval (0,1). And (for the current model) the two level 

model can be expressed as 

 

Level-1 model:  

( ) ( ) ( )0 1 2 3SEX RACE_d SEXxRACEij i i i i ijij ij ij
b b b b e = +  +  +  +

 
 

Level-2 model: 

0 0 0

1 1

2 2

3 3

i i

i

i

i

b u

b

b

b




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= +

=

=

=  
 

The current model only assumes the intercepts differ between PSUs, but the slopes are the same for 

all the level-2 units. 

 

2.4.4.2 Setting up the analysis 

Open the LISREL spreadsheet depress.lsf used previously, Select the Multilevel, Generalized Linear 

Model, Title and Options option. Input the new analysis title in the Titles and Options dialog box and 

keep all the other settings as default.  
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Proceed to the ID and Weights screen by clicking on the Next button. The settings of this screen are 

exactly the same as the previous model. Highlight LEV2ID from the Variables in data list and click on 

the upper Add button to select is as the Level-2 ID variable. Similarly, highlight the A2TWA0 and click 

on the lower Add button to select it as the Weight variable to obtain the screen shown below.  

 

Click on the Next button to load the Distribution and Links dialog box. Select Binomial from the 

Distribution type dropdown list box. Select Probit from the Link function drop-down list. Keep the 

other default settings unchanged as shown below, and click on the Next button. 
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On the Dependent and Independent Variables dialog box screen, first select DEPR and click on the 

upper Add button to define it as the Dependent variable. Then select the variables SEX, RACE_D and 

SEXxRace and click on the Continuous button to add them to the Independent variables list box as 

shown below. 
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Click on the Next button to proceed to the Random Variables dialog box. Keep the Intercept check 

box checked to include the random effect for the level-2 intercept.  
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Click the Finish button to generate the PRELIS syntax file (.prl) that corresponds to the above settings. 

Select the File, Save As option, and provide a name (depress2.prl) for the model specification file. 

The default folder to which the the syntax file will be save is the folder in which the data file is 

located. 

 

 
 

2.4.4.3 The syntax file 

Note that the following syntax lines are different from the previous model: 

o Link = PROBIT defines the probit link function, which is defined in the Distribution and Links 
dialog box. 

o CoVars = sex racd_d SEXxRace, now includes one more independent variable than was the 

case in the previous model. 

 

Run the analysis by selecting the Run PRELIS button to generate the output file depress2.out, which 

is saved to the same folder as the syntax file. 

 

2.4.4.4 Discussion of results 

Portions of the output file are shown below.  

 

Model and data descriptions 

The program info and the syntax are printed on the top of the output file. In the next section of the 

output file as shown below, descriptions of the distribution, the link function, the weight variable 

and the hierarchical structure of the data is provided. Note that probit link function is used as the link 

function.   

 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

52 

 
 

Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included in the model. 

 

 
 

Results for the model without any random effects 

The descriptive statistics is followed by the results for the model without any random effects. The 

deviance can be used for comparison tests of nested models. The estimated regression weights 

without any random effect are given below. 
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Results for the model with fixed and random effects 
Number of iterations and fit statistics 

As shown below, 1iteration was needed to obtain convergence. The likelihood ratio test, Akaike's 

and Schwarz's criteria are given after the iteration number. For detailed information about these 

statistics, please refer to the previous section. 

 

  
 

Estimated regression weights 

The output describing the estimated regression weights for the multilevel model is shown next. The 

estimates are shown in the column with heading Estimate and correspond to the coefficients 0 1,  , 

2  and 3  in the model specification. From the z-values and associated exceedance probabilities, 

we see that the intercept and the regression weight for SEXxRace are not significant at a 10% level 

of significance. 

 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

54 

 
 

The estimated intercept has changed to -0.0544 in this second model. The estimated coefficient 

associated with gender (sex) is now 0.4612, which indicates that the female respondents (sex = 1) 

have a smaller ̂ . The estimate for the indicator of race (race_d) shows that white clients have a 

higher ̂  value in the current model. The interaction term of gender and race is positive, but not 

significant. The probit link function is needed to transform these results into probabilities. 

 

Interpreting estimated regression weights by using link function 

First, we substitute the regression weights and obtain the function for îj   

 

( ) ( ) ( )

( ) ( ) ( )

0 1 2 3
ˆ ˆ ˆ ˆˆ sex race_d SEXxRace

0.0544 0.4612 sex 0.4207 race_d 0.0805 SEXxRace

ij i i i iij ij ij

ij ij ij

b b b b = +  +  + 

= − +  −  + 
. 

 

For a black male, we have SEX = 0, RACE_d = 0 and SEXxRace = 0 thus  

 

ˆ 0.0544ij = −
.  

 

Similarly, the calculation of îj  for a black female (SEX = 1, RACE_d = 0 and SEXxRace = 0) is 

 

ˆ 0.0544 0.4612 1

0.4068

ij = − + 

= . 

  

Next, we transform the îj ’s into corresponding probabilities by using the probit link function. 

Taking  black males as the example, the probability is calculated as shown below. 

 

( )Prob(DEPR 1) 0.0544 47.83%ij = = − =
 

 

Similarly, the probabilities of having depression for different gender and ethnicity groups are 

reported in the following table.  
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Group Code ̂
 Prob (DEPR = 1) 

Black, male sex = 0, race_d = 0 -0.0544 47.83% 

Black, female sex = 1, race_d = 0  0.4068 65.79% 

White, male sex = 0, race_d = 1 -0.4751 31.74% 

White, female sex = 1, race_d = 1 0.0666 52.65% 

 

Estimated level-2 variance and covariance 

The output for the estimated level-2 variance and covariance is shown in the image below. In the 

previous model, we have discussed the interpretation of these in detail. In this model, the random 

part of the current model is simpler than in the previous model.  

 

 
 

2.4.5 Bernoulli distribution with complementary log-log link function 

2.4.5.1 The model 

In the previous model, the probit link function is used. We now fit the same model by using a 

complementary log-log link function.  

 

The complementary log-log link function is defined as  

  

( )( )1-exp exp ij−
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The level-1 and level-2 models are unchanged.  

 

Level-1 model:  

 

( ) ( ) ( )0 1 2 3SEX RACE_d SEXxRACEij i i i i ijij ij ij
b b b b e = +  +  +  +

 
 

Level-2 model: 
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2.4.5.2 Edit the existing syntax file 

To obtain the model discussed above, we can either go through the multilevel generalized linear 

model dialog boxes as we did in the previous models or modify the existing syntax file directly. Here, 

we will illustrate how to modify the syntax file generated in the previous example. 

 

First, open the syntax file for the previous model and save it under a different name so as not to 

overwrite the syntax file associated with the previous analysis. To do so, click on the File, Open 

option on the LISREL main window. Keep the Syntax Only (*.spl, *.lis, *.prl) dropdown list unchanged. 

Browse for the saved syntax file (depress2.prl) of the previous model. Double click on the 

depress2.prl to open it. Select the File, Save As option, and provide a new name (depress3.prl) for 

the model specification file.  

 

As a first step, give an appropriate title by changing the Title line. Next, change the probit link 

function to a complementary log-log link function by modifying the syntax line Link=PROBIT to Link 

= CLL to produce the following syntax file. The CLL keyword refers to the complementary log-log 

link. For all the syntax available in MGLIM, please refer to Section 2.2.3. 

 

Run the analysis by selecting the Run PRELIS button to generate the output file depress3.out, which 

is saved to the same folder as the syntax file. 

 

2.4.5.3 Discussion of results 

Portions of the output file depress3.out are shown below.  
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Model and data description 

The model and data descriptions clearly show that complementary log-log (CLL) link function is used 

in the model.   

 

 
 

Results for the model with fixed and random effects 
 
Number of iterations and fit statistics 

Six iterations were needed to obtain convergence. The likelihood ratio test, Pearson chi-square, and 

Akaike's and Schwarz's criteria are given after to the iteration number.  

 

  
 

Estimated regression weights 

The output describing the estimated regression weights is shown next. The estimates are shown in 

the column with heading Estimate and correspond to the coefficients 0 1,  , 2  and 3  in the model 

specification. From the z-values and associated exceedance probabilities, we see that the intercept 

and the regression weight for SEXxRace is not significant at a 10% level of significance.  
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The estimated coefficient for the intercept is negative in value in this model. The estimated 

coefficient associated with gender (SEX) is – 0.5508. The estimate for the ethnicity indicator 

(RACE_D) also shows that white clients are likely to have a higher ̂  value. The coefficient 

representing the iinteraction of gender and ethnicity is also negative and implies a decrease in ̂ .  To 

transform these results into probabilities, we use the complementary log-log link function. 

 

Interpreting estimated regression weights by using the link function 

First, we substitute the regression weights and obtain an expression for îj  : 

 

( ) ( ) ( )

( ) ( ) ( )

0 1 2 3
ˆ ˆ ˆ ˆˆ SEX RACE_d SEXxRACE

0.4403 0.5005 SEX 0.5452 RACE_d 0.1646 SEXxRACE

ij i i i iij ij ij

ij ij ij

b b b b = +  +  + 

= − +  −  + 
. 

 

For a black males, we have SEX = 0, RACE_d = 0 and SEXxRace = 0 thus  

 

ˆ 0.4403ij = −
.  

 

Similarly, the calculation of îj  for black females (SEX = 1, RACE_d = 0 and SEXxRace = 0) is 
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ˆ 0.4403 0.5005

0.0602

ij = − +

= . 

  

Next, we transform the îj ’s into the corresponding probabilities by using the complementary log-

log link function. Taking the black males as an example, we calculate their probability of being 

depressed as 

 

( )( )Prob(DEPR 1) 1-exp exp 61.18%ij ij= = − =
 

 

The probabilities of having depression for different gender and ethnicity groups are reported in the 

following table.  

 

Group Code ̂
 Prob (DEPR = 1) 

Black, male sex = 0, race_d = 0 -0.4403 47.47% 

Black, female sex = 1, race_d = 0 0.0602 65.43% 

White, male sex = 0, race_d = 1 -0.9855 31.15% 

White, female sex = 1, race_d = 1 -0.3204 51.61% 

 

In all three binary models, even though the estimated ̂ ’s are different, the estimated probabilities 

are close to each other in all groups.  

 

The three models we discussed in this section demonstrated the use of link functions available in 

multilevel analysis with MGLIM. In the next section, we will discuss the MGLIM functions available 

for count outcomes. 

 

2.4.6 Models for count outcomes from the NESARC data 

2.4.6.1 Count variable and its distributions 

A count variable is used to count a number of discrete occurrences that take place during a time 

interval. For example, the occurrence of cancer cases in a hospital during a given period of time, the 

number cars that pass through a toll station per day and the phone calls at a call center are all count 

variables.  

 

The most common distribution for a count variable is the Poisson distribution. Besides the Poisson 

distribution, the negative binomial distribution is also used to model count variables. In this guide 

models for the Poisson and negative binomial distributions will be discussed.  
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Poisson distribution  

Poisson distribution is a discrete probability distribution. It is an appropriate distribution to express 

the probability of a number of events occurring in a fixed time period with a known average rate, 

and are independent of time. The probability with k occurrences is 

 

( ; ) 0,1,2
!

ke
f k for k

k




−

= =  

 

where k is a non-negative integer and   is a positive real number, which equals the expected number 

of occurence during the given interval. The cumulative probability function is 

 

0

Pr( ; ) 0,1,2
!

ik

i

e
k for k

i




−

=

= =  

 

with the single parameter λ. A Poisson distribution has an important property: the mean number of 

occurrences   equals the variance ( ) ( )varE f f = = .  

 

The smaller the value of λ, the more skewed the probability distribution becomes. When λ is large, 

the Poisson distribution is close to the normal distribution.  

 

Negative binomial distribution 

The negative binomial distribution is the probability distribution of the number of failures before the 

r-th success in a Bernoulli process, with probability p of success on each trial. 

 

Log link function 

The log link function is generally used for the Poisson distribution. Assume the response 

measurements for a count variable 1, , ny y  are independent and 

 

( ) 1 1~ , i p ipx x

i i iy Poi where e
 

 
+ +

=
 

 

To make inference on the unknown parameters, we take the natural logarithm on the above equation.  

 

( ) 1 1log i i p ipx x  = + +  

2.4.6.2 The data 

The data set is from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), 

which was designed to be a longitudinal survey with its first wave fielded in 2001–2002. This data 

contains information on the occurrences of major depression, family history of major depression and 

dysthymia of 2339 dysthymia respondents. After list-wise deletion, the sample size is 1981. 
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The variables of interest are: 

 

o PSU denotes the Census 2000/2001 Supplementary Survey (C2SS) primary sampling unit. 

o FINWT represents the NESARC weights sample results used to form national level estimates. 

The final weight is the product of the NESARC base weight and other individual weighting 

factors. 

o CONCENTR contains the information captured in field S4CQ3A6 of the NESARC data. It 

represents the response to the statement "Often had trouble concentrating/keeping mind on 

things," with 1 indicating "Yes," and 0 indicating "No." 

o AGE_ONS is based on field S4CQ7AR of the NESARC data. It represents the age at onset of 

first episode. 

o N_DEP is recoded from field S4CQ6A of the NESARC data, and gives the number of 

depression/dysthymia episodes. This is the count variable we would like to use as outcome 

variable in the examples to follow. 

2.4.6.3 Exploring the data 

Inspecting the distribution of the intended outcome variable, N_DEP, before starting with the model 

is important. The number of depression episode ranges from 1 to 29, with most respondents having 

a small number of reported episodes of depression. 

2.4.6.4 The model 

The first model fitted to the data explores the relationship between N_DEP and the variables 

indicating concentration (or lack thereof) and age, as represented by the variables CONCENTR and 

AGE_ONS.  

 

The level-1 model is 

( ) 0 1 2log CONC_DEP AGE_DEPij ij ij   = +  + 
 

 

where the expected number of depression episodes is ( )= N_DEPij ijE .  
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The level-2 model is 

0 00 0 1 10 2 20, andib v b b  = + = = . 

 

Another way of writing the combined model is 

 

( ) 00 10 20 0log CONC_DEP AGE_DEPij ij ij ib b b v = +  +  +
. 

 

In this model, 00b
e  denotes the average expected count of depression episodes, and 10b  represents the 

estimated coefficient for the respondent's level of concentration.  

 

Taking exponents on both sides, we also have 

 

 

00 10 20 0

10 2000 0

ij ij i

ij ij i

b b b v

ij

b bb v

e

e e e e


+  +  +

 

=

=

CONC_DEP AGE_DEP

CONC_DEP AGE_DEP

 
 

For a person who had problems concentrating (CONCENTR = 1), the expected average number of 

episodes 00b
e  is multiplied by 1e


, compared to an expected count of 00b

e  for a person for whom  

CONCENTR = 0. Similarly, an increase of one year in age increases the estimated number of episodes 

by a factor of  20b
e . For example, a respondent with concentration problems who is two years older 

than another respondent who had no concentration problems is expected to have 00 10 202b b b
e e e  episodes 

compared to only 00b
e  episodes for the younger person without concentration problems.  

 

The random part of the model is represented by 0iv
e , which denotes the variation in average count of 

depression episodes over PSU and between respondents (or, in other words, over respondents nested 

within PSU). For a Poisson distribution, the assumption of normality at level 1 is not realistic, as the 

level-1 random effect can only assume a number of distinct values. Thus, this random effect cannot 

have homogeneous variance.  

2.4.6.5 Setting up the analysis 

Open the LISREL data spreadsheet file nesarc_poi.lsf and select the Multilevel, Generalized Linear 

Model option from the main menu bar as shown below.  
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Proceed to fill in the Title and Options (number of quadrature points is 6); ID and Weight (Level-2 ID 

is PSU); Distributions/Links (Poisson, log-link); Model Specification (Dependent variable is N_DEP, 

predictors are intcept, CONCENTR and AGE_ONS); and the Random Variables dialog (Intercepts only). 

When done, click the Finish button to create the syntax file nesarc_poi.prl. Save this file as 

nesarc_poi1.prl using the File, Save As option. 

 

 
 

2.4.6.6 Discussion of results 

Portions of the output file nesarc_poi.out are shown below.  

 

Model and data description 

A description of the hierarchical structure follows the syntax: data from a total of 395 PSUs and 1981 

respondents were included at levels 2 and 1 of the model. In addition, an enumeration of the number 

of respondents nested within each of the 395 PSUs is provided.  

 

 
 

 
 
 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

64 

Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included in the model. 

The mean of 1.8970 and standard deviation of 2.3304 are reported for the outcome N_DEP indicating 

that, on average, 1.8970 episodes of depression were recorded. 

 

 
 

Descriptive statistics are followed by the results for a fixed-effects-only model, i.e. a model without 

random coefficients.  

 

Fixed effects results 

At the top of the final results, the number of iterations required for convergence of the iterative 

procedure is given. Next, the number of quadrature points per dimension is reported which, in this 

case, is the default number of points. The log likelihood and the deviance, which is defined as 2ln L−

, are listed next. For a pair of nested models, the difference in 2ln L−  values has a 2  distribution, 

with degrees of freedom equal to the difference in number of parameters estimated in the models 

compared. 
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The estimated intercept is 0.7982, which means that the average number of depression episodes is 
0.7982e =2.2215 , implying that on average the number of episodes is about two. The estimated 

coefficient for CONCENTR is 0.2922, which indicates that respondents who had trouble concentrating 

on things tended to have 
0.29222.2215e  ( )( )= 2.2215 1.3394 =2.9754 episodes at the same age as 

respondents without concentration problems. The estimate of the effect of age at the onset of the first 

episode (AGE_ONS) shows that the onset age does not affect the number of episodes much, since 
-0.0165e = 0.98 . A slight reduction in the expected number of episodes is expected with increasing age. 

If one compares two typical respondents with reported concentration problems, but with one 

respondent ten years older than the other, one would expect the older respondent to have 

( )( ) 10(-0.0165)
e2.2215 1.3394 =2.5229  episodes, compared to 2.9268 expected episodes for the younger 

respondent. In other words, the longer it takes for the first episode to occur, the fewer episodes a 

respondent is expected to have. Of course, it has to be kept in mind that the younger a respondent is 

at the first episode, the longer that person must live with the condition and thus the more time there 

is for subsequent episodes to occur. 

 
Random effects results  

The output for the level-2 random effect variance term follows next. The estimated variation in the 

average estimated N_DEP at level 2 is 0.1347, which is highly significant. Respondents are different 

in terms of their average expected number of episodes, holding all other variables constant. 

 

 
 

Level-1 variation for Poisson distribution 

The variance-to-mean ratio is a measure of the dispersion of a probability distribution:  

2

variance-to-mean ratioR



= =

 
For the Poisson distribution, where the variance equals the mean, this implies 1R = . Thus, we use a 

value of one as our level-1 variation. In the cases when over-dispersion ( 1R  ) or under-dispersion 

( 1R  ) is assumed, different level-1 variation values will apply. The details of these scenarios are 

not discussed in this guide. 
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2.4.6.7 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

First, we substitute the regression weights and obtain the following function for ( )log N_DEPij
:  

( ) 00 10 20log N_DEP CONC_DEP AGE_DEP

0.7982 0.2922 CONC_DEP 0.0165 AGE_DEP .

ij ijij

ij ij

b b b
  

= +  + 

= +  − 

 

For example, at age 40, the estimated ( )log N_DEPij
 for a typical respondent who does not often 

have trouble concentrating (CONCENTR = 0), we find that  

( ) 00 1 2
ˆ ˆ ˆlog N_DEP CONC_DEP AGE_DEP

0.7982 0.2922 CONC_DEP 0.0165 AGE_DEP

0.7982 0.2922 0 0.0165 40

0.1382.

ij ijij

ij ij

b  = +  + 

= +  − 

= +  − 

=

 

Keeping in mind that we defined the relationship between   and the predictors as 

( ) 1 1log ij i p ipx x  = + + , 

it follows that 

 
0.1382ˆ 1.1482.ij e = =

 
We can estimate the count of the occurrence of depression episodes for typical individuals of 

different ages in the same way. Results are summarized in the table below. The results show a 

decrease in the expected number of episodes with increasing age, regardless of whether they had 

concentration problems or not.  

 

Estimated number of episodes under the Poisson log model 

 

AGE_ONS 10 20 30 40 50 60 70 

CONCENTR = 1 2.5229 2.1391 1.8138 1.5379 1.3040 1.1056 0.9374 

CONCENTR = 0 1.8836 1.5971 1.3542 1.1482 0.9736 0.8255 0.6999 

 

We clearly see that the correspondents who often had trouble concentrating (CONCENTR = 1) have 

a higher estimated number of depression episodes. It also shows that the number of episodes is 

expected to decrease as people get older. 

 
Level 2 ICC 

The percentage of variance explained over level-2 units, or intraclass correlation coefficient (ICC),  

is calculated as 

 

level-2 variation

level-1 variation + level-2 variation 
ICC =
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In this example, under the assumption that the level-1 variation is fixed at a value of one, we have 

 

0.1347
100% 11.8%

1 + 0.1347 
ICC =  =

 
 

We can conclude that most of the unexplained variation in the outcome (approximately 78%) is 

between measurements at the lowest level of the hierarchy.  

 

2.4.7 Negative binomial model for the NESARC data 

2.4.7.1 The model 

In the previous section a Poisson model was fitted to the data. It was also noted that a Poisson 

distribution has an important property: the mean number of occurrences is equal to the variance. The 

negative binomial distribution can be used as an alternative to the Poisson distribution. It is especially 

useful for discrete data that assumes values 0, 1, 2, 3… whose sample variance exceeds the sample 

mean. In such cases, the observations are over-dispersed with respect to a Poisson distribution, for 

which the mean is equal to the variance. Since the negative binomial distribution has one more 

parameter than the Poisson, the second parameter can be used to adjust the variance independently 

of the mean. It can be shown that a model based on the negative binomial distribution with a 

dispersion parameter close to zero will produce results that correspond closely to those obtained for 

the Poisson model. In this section, we fit a negative binomial model, utilizing the same predictors 

and a small dispersion parameter, to the NESARC data. Subsequently larger values of the dispersion 

parameter will be used to study the impact on parameter estimates and the deviance statistic. Again, 

adaptive quadrature is used as the method of optimization. 

 

The negative binomial distribution can be expressed as 

 

( )
( )

( ) ( )

( )

( )
1/

1/

1 1/ 1

i

i

y

i i

i y

i i

y
f y

y


 

 
+

 +
= 
 +  +

  
 

with ( )2 2

i i iy  = +  where   denotes an additional parameter and it can no longer be assumed 

that the variance is a known function of the mean. We assume   to be a fixed parameter. 

 

The model fitted to the data explores the relationship between N_DEP and the variables indicating 

concentration (or lack thereof) and age, as represented by the variables CONCENTR and AGE_ONS.  

 

The level-1 model is 

( ) 0 1 2log E N_DEP CONC_DEP AGE_DEPij ij ij    = +  + 
   

The level-2 model is 

0 00 0ib v = + , 1 10b =   and 2 20.b =  
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2.4.7.2 Setting up the analysis 

Make sure that the spreadsheet nesarc_poi.lsf is the active window and keeping all the other settings 

for a Multilevel, Generalized Linear Model unchanged, set the Distribution Model to negative binomial, 

and the Dispersion Parameter to 0.0001 as shown below.  

 

 
 

 

Save the revised syntax file as nesarc_poi2.prl, and click the PRELIS, Run icon button to start the 

iterative process. 
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2.4.7.3 Discussion of results 

Portions of the output file nesarc_poi2.out are shown below.  

 
Fixed and random effect results 

The estimated regression coefficients for fixed effects in the model are shown below. Recall that the 

estimated coefficients of the intercept, CONCENTR, and AGE_ONS under the Poisson model reported 

in the previous section were 0.7982, 0.2922, and -0.0165 respectively. The estimated variation in the 

average estimated N_DEP at level-2 was 0.1347, and highly significant. Note that with the dispersion 

parameter set at 0.0001, results of the two models are almost identical.  

 

 
 

2.4.7.4 Changing the value of the dispersion parameter 

Save the syntax file for the negative binomial model as nesarc_poi3.prl and change the dispersion 

value to 0.1 before running the analysis and making a note of the deviance value (6760.73 in this 

case). Repeat the procedure for dispersion values of 0.2, 0.3, 0.4, 0.5 and 0.6 respectively. The list 

of (dispersion; deviance)-values are shown below in the LISREL data file dispersion.lsf. 
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From the main menu-bar select the Graphs, Bivariate Plots option to request a line plot of the 

deviance-statistic against dispersion. 

  

 
 

The plot shown below, shows that the best model fit is obtained for a dispersion-value of 0.2 (best 

fit corresponds to smallest deviance value). 

 

 
 

The output for the fixed and random effects is listed below. All the parameter estimates are 

significant, but different from those reported for the Poisson model. 
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2.4.8 Weighted  2-level models 

2.4.8.1 The data 

The sampling frame of many multistage surveys frequently entails selection of units with known, but 

unequal, selection probabilities. This situation is the result of a number of design factors, of which 

the cost of doing the survey is an important consideration. When this is the case, it is appropriate to 

weigh observations in order to produce unbiased estimates of the population parameters.  

 

The variable FINWT represents the NESARC weights sample results used to form national-level 

estimates. The final weight is the product of the NESARC base weight and other individual weighting 

factors. In this section, we explore the effect of inclusion of the weights on the results obtained in 

the section describing the unweighted Poisson model.  
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2.4.8.2 Setting up the analysis 

The models remain the same, with only the selection of the weight variable on the Advanced tab of 

the Model Specification screen to be added. Below, we show how this is done in the case of the 

Poisson distribution model. 

 

Open the syntax file for the Poisson distribution model (nesarc_poi1.prl). Save the syntax file file as 

nesarc_poi3.prl and add Weight = FINWT below the ID2 paragraph as shown below.  

 

 
 

Save the file and run the analysis.  

 

2.4.8.3 Discussion of results 

Results for this analysis are reported in the table below. The results from the unweighted Poisson 

distribution model are included in order to facilitate evaluation of the impact of the weights on the 

results. 

 

Comparison of results for weighted and unweighted Poisson models 

 

Parameter 
Unweighted model Weighted model 

Estimate Standard error Estimate Standard error 

intcept 0.7982 0.0641 0.7225 0.0660 
CONCENTR 0.2922 0.0510 0.3055 0.0532 
AGE_ONS –0.0165 0.0012 –0.0156 0.0013 

Level-2 variance 0.1347 0.0184 0.1378 0.1089 

 

 

Results for the two models are very similar, and interpretation of the results of both models would 

lead to the same conclusions, both in terms of significance and in terms of the expected number of 

depression episodes. However, this is more the exception than the rule – users are cautioned to use 

weight variables whenever they are available in order to prevent skewed or biased results that may 

occur when weights are excluded in the analysis of a disproportionally drawn sample. 
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2.4.9 Models for count outcomes using ASPART data 

2.4.9.1 The data 

The data for this example are taken from a paper by McKnight and Van Den Eeden (1993), who 

reported on the number of headaches in a two treatment, multiple period crossover trial. Specifically, 

the number of headaches per week was repeatedly measured for 27 patients. Following a seven day 

placebo run-in period, subjects received either aspartame or placebo in four seven-day treatment 

periods according to the double-blind crossover treatment design. Each treatment period was 

separated by a washout day. The sample size is 122. Data for the first 10 observations of all the 

variables used in this section, contained in the file aspart.lsf are shown below in the form of an 

LSF spreadsheet window. 

 

 
 

The variables of interest are: 

 

o ID is the patient ID (27 patients in total). 

o Headache is the number of headaches during the week (from 0 to 7). 

o Period1 is a period 1 treatment indicator (1 for the first treatment period and 0 otherwise). 

o Period2 is a period 2 treatment indicator (1 for the second treatment period and 0 otherwise). 

o Period3 is a period 3 treatment indicator (1 for the third treatment period and 0 otherwise). 

o Period4 is a period 4 treatment indicator (1 for the fourth treatment period and 0 otherwise). 

o DrugAsp indicates the type of drug being used for the treatment, (0 = placebo and 1 = 

aspartame). 75 observations used placebo and 47 used aspartame. 

o Nperiods is the number of periods the individual was observed (from 2 to 5).  

o NTDays is the number of treatment days in the period (from 1 to 7).  

 

2.4.9.2 The model 

To model the relationship between the number of headaches during the week (Headache) and the 

treatment indicators (Period1 to Period4) and the type of drug administered (DrugAsp), the following 

Poisson regression model with a random intercept may be used: 

( ) 0 1 2 3

4 5 0

log Period1 Period2 Period3

Period4 DrugAsp

ij ij ij ij

ij ij iv

    

 

= +  +  + 

+  +  +
 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

74 

where 
ij   denotes the mean number of headaches of patient i  for treatment period j ;  ijPeriod1 , 

ijPeriod2 , ijPeriod3  and ijPeriod4  denote the values of the dummy variables Period1, Period2, 

Period3 and Period4 for patient i  for treatment period j  respectively; ijDrugAsp  denotes the value 

of the DrugAsp for patient i  for treatment period j ; 0 , 1 , 2 , 3 , 4  and 5  denote unknown 

parameters; and 0iv  denotes the random intercept for patient i  for 1,2, ,27i =  and 0,1,2,3j = . 

This model is fitted to the data in aspart.ss3 as described below. 

 

2.4.9.3 Setting up the analysis 

Start by opening aspart.lsf. Select the Multilevel, Generalized Linear Model option on the main menu 

bar. 

 

 
 

Using the Titles and Options dialog enter the title: 2-level Poisson log random intercept model, ASPART 

data. Select Quadrature and set the number of quadrature points to 20. 
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Click the Next button to activate the ID and Weight dialog and select the variable ID, which defines 

the second level of the hierarchy, as the Level-2 ID. To proceed to the Distributions/Links dialog, click 

the Next button and enter the values shown below. 

 

 
 

Proceed to the Dependent and Independent variable dialog and select count outcome variable 

Headache as the dependent variable.  

 

The variables Period1, Period2, Period3, Period4, and DrugAsp are specified as the independent 

variables of the model. By default, an intercept model is included in the fixed part of the model, 

along with a random intercept at level 2. 
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Click the Finish button on the Random Variables dialog to produce the syntax file shown below. 

 

 
 

Before running the analysis, save the file as aspart1.prl and click the RUN PRELIS icon button to start 

the analysis.   

2.4.9.4 Discussion of results 

Portions of this output file are shown below.  

 
Model and data description 

The output file indicates that there are 27 subjects with 122 observations nested within them. The 

number of observations per subject varies between 2 and 5. 
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Descriptive statistics 

The descriptive statistics for all the variables is shown next. The variance of Headache is 
21.8863 3.5581= , which is substantially larger than the mean 1.6803. This might conflict with our 

assumption that the Poisson distribution is an appropriate choice for these data. As pointed out in 

Section 2.4.7, this can be verified by fitting a negative binomial model with a small dispersion 

parameter. 

 

 
 
Results for the model without any random effects 

The results for the model without any random effects are shown below. In this section the goodness 

of fit statistics, estimated regression weights and event rate ratio and 95% event rate confidence 

intervals are included. 
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Fixed and random effect results 

The final results are shown next. The number of iterations needed for convergence and the deviance 

information are given first, followed by the estimates. 

 

The random-effect variance component is estimated as .4327 which is significant at the 5% level. 

Regarding the regression coefficients, all effects are non-significant. The results indicate that the 

model does not fit the data very well. 

 

The event ratio and 95% event rate confidence interval and estimated level-2 variances and 

covariances are shown next to the estimated regression weights. The event ratios are the exponents (

e


) of the estimated regression coefficients. 
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2.4.9.5 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

The expected number of headaches can be obtained in the following fashion. First, we substitute the 

estimated coefficients in the model formulation 

0 1 2

3 4 5

log Headache Period1 Period2

Period3 Period4 DrugAsp

0.2572 0.0807 Period1 0.0345 Period2

0.2267 Period3 0.1592 Period4 0.2151 DrugAsp .

ij ij ij

ij ij ij

ij ij

ij ij ij

  

  

   

  

 
= +  +  

 

+  +  + 

= +  + 

−  −  + 

 

or, after taking exponents on both sides, as 

Headache exp(0.2572 0.0807 Period1 0.0345 Period2

0.2267 Period3 0.1592 Period4 0.2151 DrugAsp ).

ij ij ij

ij ij ij



= +  + 

−  −  +   
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As an example, we calculate the expected number of headaches for a typical patient to whom 

aspartame was administered (DrugAsp = 1). During the first treatment period, we find that for such a 

patient 

Headache exp(0.2572 0.0807 0.2151)

1.7385.

ij



= + +

=

 

The expected numbers of headaches for a typical patient (again with DrugAsp = 1) for the second, 

third, and fourth treatment periods are calculated as 

Headache exp(0.2572 0.0345 0.2151)

1.6600,

ij



= + +

=
 

 

Headache exp(0.2572 0.2267 0.2151)

1.2784,

ij



= − +

=
 

and 

Headache exp(0.2752 0.1592 0.2151)

1.3677

ij



= − +

=

 

respectively. Complete results for all groups are given in Table 5.2. 

 

Estimated outcomes for groups: population-average results 

The latent response variable model,   

 
' '

(1) (1) (1)ij ij i ij ijy e= + +z b x β
, 

makes the assumption that 2(0, )ij ee LID  . For a Poisson distribution it is assumed that 
2 1e = . 

Under the assumption that iv  and ije  are independently distributed, it follows that 

 
2 ' 2.

ij iy ij v ij e = +z z
 

The design effect ijd  is defined as  

 

2

2
,

ijy

ij

e

d


=


 
which, for the current model, may be calculated as  

( )
2

0

2

var 1
1.4290

1

ijy i

ij

e

v
d

 +
= = =


 
where ( )0var 0.4290iv = , with 0iv  denoting the random intercept coefficient. The estimated 

population-average probabilities (Hedeker & Gibbons, 2006) are obtained in a similar fashion as the 

unit-specific probabilities, after replacing the exponent in the formula used for calculation of the 

estimated unit-specific probabilities with exp exp/ ijd=  as shown below.  

Headache exp[(0.2572 0.0807 Period1 0.0345 Period2 0.2267 Period3

0.1592 Period4 0.2151 DrugAsp ) / 1.4290].

ij ij ij ij

ij ij



= +  +  − 

−  + 
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The expected unit-specific and population average probabilities are summarized in Table 5.3. We 

see that there is very little difference in the estimated number of headaches. This result is to be 

expected as the design effect is 1.4290 1.1954= . 

 

Estimated unit-specific and population average results for groups 

 

DRUGASP Period 
Estimated headaches 
(unit-specific) 

Estimated headaches 
(population-average) 

0 1 1.4020 1.1728 

0 2 1.3387 1.1199 

0 3 1.0310 0.8624 

0 4 1.1030 0.9227 

1 1 1.7385 1.4543 

1 2 1.6600 1.3886 

1 3 1.2784 1.0694 

1 4 1.3677 1.1441 

2.4.10 Poisson log model with an offset variable 

2.4.10.1 The model 

The previous analysis assumed that the counts were all observed for the same number of days. 

However, this was not the case since the number of treatment days in the period did vary to some 

degree. Most of the counts were based on the full seven days in the week; however, some 

observations were made only for 1 day in the given week. To take this into account, we need to 

specify a so-called OFFSET variable. The offset variable indicates the amount of time that each count 

is based on. If OFFSET = no is specified, as was the case in the previous example, it is assumed that 

all counts are based on the same amount of time.  

 

The offset variable is introduced into the Poisson model in the following way: 

 'log log(offset variable)ij ij i
 

 = +   
 

x b  

where ijx  represent the values of the covariates corresponding to level-1 unit j  nested within level-

2 unit i  and ib  denotes the coefficient vector containing both fixed and random effects. 

In the current situation, the variable NTDays is the appropriate choice as the OFFSET variable. The 

model to be fitted to the data now changes to: 

( ) ( ) 0 1 2

3 4 5 0

log Headache log NTDays ( Period1 Period2

Period3 Period4 DrugAsp ).

ij ij ij

ij ij ij iv

  

  

= + +  + 

+  +  +  +
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2.4.10.2 Setting up the analysis 

To create the model specifications for this model, ensure that aspart.lsf is displayed as the active 

window. Select the variable NTDays from the Variables in data: list as the Offset Variable by 

proceeding to the Dependent and Independent Variables dialog. 

 

 
 

Click the Next button to proceed to the Random Variables dialog and then click Finish to create the 

syntax file (saved as Aspart2.prl) shown below. 

.  
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2.4.10.3 Discussion of results 

Fixed and random effect results 

 

Results for this model differ from those obtained for the model without offset variable discussed in 

the previous section. While the overall trend in predictor coefficient estimates is similar, the intercept 

is now estimated as –1.7127, compared to 0.2572 previously. The variance in intercept over patients 

for this model is estimated as 0.4775 compared to 0.4290 previously.   

 

2.4.10.4 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

The expected number of headaches can be obtained in the following fashion. First, we substitute the 

estimated coefficients in the model formulation 
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( )

( )

1 2

3 4 5

log Headache log NTDays ( Period1 Period2

Period3 Period4 DrugAsp )

log NTDays ( 1.7127 0.1001 Period1 0.0879 Period2

0.2116 Period3 0.0787 Period4 0.2797

ij ij ij ij

ij ij ij

ij ij ij

ij ij

 

  

  

  

 
= +  +  

 

+  +  + 

= + − +  + 

−  −  + DrugAsp ),ij

 

 

or, after taking exponents on both sides, as 

 

Headache NTDays exp( 1.7127 0.1001 Period1 0.0879 Period2

0.2116 Period3 0.0787 Period4 0.2797 DrugAsp ).

ij ij ij ij

ij ij ij



=  − +  + 

−  −  + 
 

 

As most observations had a value of NTDays = 7, we start by considering typical patients with a full 

set of treatment days. We also assume that DrugAsp = 1, in other words, that aspartame rather than a 

placebo was administered. 

 

During the first treatment period, we find that for such a patient 

Headache 7exp( 1.7127 0.1001 0.2797)

7exp( 1.3329)

1.8460.

ij



= − + +

= −

=

 

The expected numbers of headaches for a typical patient (again with NTDays = 7 and DrugAsp = 1) 

for the second, third, and fourth treatment periods are calculated as 

Headache 7 exp( 1.7127 0.0879 0.2797)

1.8236,

ij



= − + +

=
 

Headache 7 exp( 1.7127 0.2116 0.2797)

1.3516,

ij



= − − +

=
 

and 

Headache 7 exp( 1.7127 0.0787 0.2797)

1.5437

ij



= − − +

=

 

respectively.  

 

For a typical patient with only 5 treatment days, the expected numbers of headaches in each of the 

four treatment periods are 1.3186, 1.3026, 0.9654, and 1.1027 respectively.  

 

When the expected numbers of headaches for a typical patient receiving aspartame under the Poisson 

model without offset variable (see previous section) and the Poisson model with offset variable are 

compared, we clearly see the impact of the inclusion of the offset variable on the estimated 

coefficients. These results are shown in Table 5.4. 
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Comparison of results for Poisson models 

 

Period Without offset variable 
With offset variable 
(NTDays = 7) 

With offset variable 
(NTDays = 5) 

1 1.7385 1.846 1.3186 

2 1.6600 1.8236 1.3026 

3 1.2784 1.3516 0.9654 

4 1.3677 1.5437 1.1027 

 

Level 2 Bayes results 

As requested during the model specification stage, the empirical Bayes estimates of the random 

effects are written to the file aspart2.ba2. The first few lines of this file are shown below. 

 

 
 

The file aspart.ba2 contains five pieces of information per individual:  

 

o the individual's ID,  

o the number of the random effect (only intercept in this case),  

o the empirical Bayes estimate for that individual (which is the mean of the posterior 

distribution),  

o the associated posterior variance, and 

o the name of the relevant random coefficient.  

 

Since they are estimates of 0ib  for each individual, the empirical Bayes estimates are expressed on 

the standard normal scale. Inspection of these estimates indicates that subject 13 has a very high 

score. This person's estimate of 1.469 (with variance .031) suggests a very high level of headaches. 

This agrees well with the raw data, which reveals that this person recorded 7 headaches on four 

occasions and 6 on the only other occasion. 
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2.4.11 Models for ordinal outcomes using NIMH data 

2.4.11.1 Description of the  NIMH data 

To illustrate the application of the mixed-effects ordinal logistic regression model to longitudinal 

data, we examined data collected in the NIMH Schizophrenia Collaborative Study on treatment-

related changes in overall severity. Specifically, Item 79 of the Patient Multidimensional Psychiatric 

Scale (IMPS; Lorr & Klett, 1966) was used. In this study, patients were randomly assigned to receive 

one of four medications: placebo, chlorpromazine, fluphenazine, or thioridazine. Since previous 

analyses (Longford, 1993, and Gibbons & Hedeker, 1994) revealed similar effects for the three anti-

psychotic drug groups, they were combined in the present analysis. Finally, again based on previous 

analysis, a square root transformation of time was chosen to linearize the relationship of the IMPS79 

scores over time.  

 

Data for the first 10 observations are shown below in the form of a LISREL System File (LSF) 

spreadsheet file, named nimh_study.lsf. 

 

 
 

The variables of interest are: 

 

o ID indicates the subject (437 patients in total). 

o IMPS79 represents the original score on Item 79 of the Patient Multidimensional Psychiatric 

Scale. It was scored as: 1 = normal, or not at all ill; 2 = borderline mentally ill; 3 = mildly ill; 

4 = moderately ill; 5 = markedly ill; 6 = severely ill; and 7 = among the most extremely ill. 

o IMPS79D is a recoded version of the same scale, but in binary form, where scores up to, but 

excluding 3.5 were coded 0, and scores of 3.5 or higher were coded 1. The value "0" is 

associated with measurements classified as normal, borderline, mildly, or moderately 

mentally ill, while the value "1" was assigned to measurements corresponding to "markedly 

ill" through "most extremely ill." 

o IMPS79O is also a recoded version of the same scale, but with the 7 original categories 

reduced to four: 1 = normal or borderline mentally ill, 2 = mildly or moderately ill, 3 = 

markedly ill, and 4 = severely or among the most extremely ill. 

o DRUG indicates the treatment group, where 0 indicates the placebo patients, and 1 refers to 

the drug patients.  
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o WEEK represents the time during the course of the study when a specific measurement was 

made, and ranges between 0 and 6. 

o SQRTWEEK is the square root of WEEK. This variable is generated within the LISREL 

spreadsheet.  

o WSQRTxDR is the product of the treatment group and the square root of WEEK. 

 

In this data file, each subject's data consist of seven lines, these being the repeated measurements on 

seven occasions. Notice that there are missing value codes (–9) for some subjects at specific time 

points. The data from these time points will not be used in the analysis, but data from these subjects 

at other time points where there are no missing data will be used in the analysis. Thus, for inclusion 

into the analysis, a subject's data (both the dependent variable and all model covariates being used in 

a particular analysis) at a specific time point must be complete. The number of repeated observations 

per subject then depends on the number of time points for which there are non-missing data for that 

subject. The specification of missing data codes will be illustrated in the model specification section 

to follow. 

 

2.4.11.2 Defining variables 

Defining column properties for the ordinal data is recommended. We use the column of IMPS79O as 

an example. First, highlight the column of IMPS79O by clicking on its header. Then right click and 

select the Define Variables option as shown below to open the Define Variables dialog box. 

 

 
 

Select variable IMPS79O as shown below to activate all the options on the Define Variables dialog 

box.  
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Click on the Category Labels option to activate the Category Labels for IMPS79O dialog box. Enter 1 

in the Value box and corresponding Label of Norm, click on the Add button to add the first label for 

IMPS79O, with 1 = Norm. Similarly, add the next three labels: 2 = Mod, 3 = Mark, and 4 = Sev as shown 

below. 

 

 
 

Click on the OK button to return to the Define Variables dialog box. Click on OK button to return to 

the LSF window. Save the change to the data set by clicking on the File, Save option. 

 

2.4.11.3 Univariate graphs 

As a first step, we take a look at the ordinal variable IMPS79O which is the potential dependent 

variable in this study.  
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Pie chart 

To generate a pie chart for IMPS79O, first open the nimh_study.lsf spreadsheet. Next, select the 

Graphs, Univariate option to load the Univariate plot dialog box. Select the variable IMPS79O and 

indicate that a Pie Chart is to be graphed as shown below.  

 

 
 

Click the Plot button to display the following pie chart.  

 

 
 

Note that most of the observations fall into the severe illness category. Keep in mind that the pie 

chart takes all observations, regardless of the time of measurement, into account. As such, it is 

informative about the distribution of all observed values of the potential outcome, but does not 

provide any information on possible trends in illness level over time. 
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2.4.11.4 Bivariate graphs 

It is hoped that the severity of the illness (IMPS79O) will decrease over the treatment period. Before 

considering fitting a model to these data, we would like to explore the relationship between IMPS79O 

and WEEK using a bivariate bar chart.  

 

Bivariate bar chart 

 

 
 

A bivariate bar chart is accessed via the Graphs, Bivariate option on the File menu. The Bivariate 

dialog box is completed as below: select the outcome variable IMPS79O as the Y-variable of interest, 

and the predictor WEEK to be plotted on the X-axis. Check the 3D Bar Chart option, and click Plot. 

 

  
 

As shown above, most patients did not participate in the study at weeks 2, 4 and 5. At the beginning 

of the study (week 0), a large percentage of patients are markedly or severely ill. By the end of the 

study (week 6), most patients are reported as normal or moderate. 
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2.4.12 An ordinal regression model with random intercept 

2.4.12.1 Introduction 

An ordinal variable is a categorical variable where there is a logical ordering to the categories. In 

most cases, treating an ordinal outcome as a continuous variable is inadvisable. As in the case of a 

binary outcome variable, a link function is used in order to take the ceiling and floor effects of the 

ordinal outcome into account. The available link functions in LISREL include probit, logistic, 

complementary log-log and log-log. Detailed information on these link functions are given in Section 

2.2.6. 

 

2.4.12.2 The model 

Let the outcome variable be coded into c categories, where 1,2,...,c C= . In this example, the ordinal 

variable IMPS79O defines the severity of the illness in terms of four categories, and thus 4C = . As 

ordinal models utilize cumulative comparisons of the categories, define the cumulative probabilities 

for the C categories of the outcome Y as ( )
1

Pr
c

ijc ij ijk

k

P Y c p
=

=  = , where ijkp  represents the 

probability that the response of the j-th measurement on patient i occurs in category k.  

 

The type of drug, time elapsed since start of treatment, and the interaction between drug taken and 

time elapsed are of interest as predictors. The logistic regression model with IMPS79O as outcome 

can then be written as  

 

Level-1 model:   

 

( )0 1 2 3log DRUG SQRTWEEK WSQRT DR
1

ijc

ij c i i i i i i i
ijc

P
y b b b b

P


 
 = = − + + +     −  , 

1 ; 1,2, , 1ij n c C=   = −  

Level-2 model:  

 

0 0 0

1 1

2 2

3 3

, 1i i

i

i

i

b v i N

b

b

b









= + =  

=

=

=

 

 

 

The cumulative probability can be expressed by 
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( )

( )

0 1 2 3

0 1 2 3

DRUG SQRTWEEK WSQRT DR

DRUG SQRTWEEK WSQRT DR
1

c i i i i i i i

c i i i i i i i

b b b b

ijc b b b b

e
P

e





 − + + +  

 − + + +  

=
+  

 

To obtain the probability for category c ,  

 

, , 1 ,ij c ij c ij cp P P+= −
 

 

As shown above, the intercept 0ib  is estimated by a level-2 equation. It indicates that patient i's initial 

IMPS79O value is not only determined by the population average 0 , but also by the patient difference

0iv . In other words, patients may have different average intercepts, and the model makes provision 

for this eventuality. The slopes are assumed to be the same for all the patients, which imply that each 

patient's trend line is parallel to the population trend. 

 

The connection between an ordinal outcome variable y  with C categories and an underlying 

continuous variable *y  is  

*

1 , 1,2,...,j jy c y c C −=    =
 

 

where it is assumed that 0 = −  and C = + . In addition, 1  is usually set to 0 to avoid 

identification problems. 

 

2.4.12.3 Setting up the analysis 

Open the LISREL spreadsheet nimh_study.lsf and select Title and Options option on the Multilevel, 

Generalized Linear Model menu.  
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In the Title and Options dialog box, enter a title for the analysis in the Title text boxes. Keep the 

default settings for the Maximum Number of Iterations and Convergence Criterion. The Missing Data 

Value text box is used to specify the values of missing data for both outcome and predictors. We 

notice that the missing value –9 is presented in the data. Define the missing value by entering the 

number -9 in the Missing Data Value text box as shown above. Activate Quadrature radio button in 

the Optimization Method section and change the Number of Quadrature Points to 25 to obtain the 

above screen. Proceed to the ID and Weight Variables dialog box by clicking on the Next button.  

 

Select ID from the Variables in data list box. Click on the Add button of the Level-2 ID variable section 

to obtain the following dialog box. 
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Proceed to the Distribution and Links dialog box by clicking on the Next button. Use the default 

Distribution type, which is Multinomial. The default link function is the logit link function. To change 

it to the ordinal logit link function corresponding to the model formulation above, click on the Link 

function drop-down list and select the Ordinal logit link function. Select Subtract from the Model 

terms drop-down list box as shown below.  
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Click on the Next button to proceed to the Dependent and Independent Variables dialog box.  

 

The Dependent and Independent Variables dialog box is used to specify the dependent and 

independent variables. First, select the dependent variable IMPS79O from the Variables in data list 

box and then click on the Add button to define it as the Dependent variable. Next, select DRUG, 

SQRTWEEK and WSQRTxDR one at a time and click on the Continuous button to add them as 

Independent variables as shown below. 
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Click on the Next button to activate the Random Variables dialog box. By default, the Intercept check 

box in the Random Level-2 is checked, indicating the inclusion of a random intercept at this level in 

the model. Keep the default settings as shown below and click on the Finish button to generate the 

PRELIS syntax (prl) file. 

 

 
 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

97 

Before running the analysis, the PRELIS syntax file could be saved under a different file name. Select 

the File, Save As option, and provide a name (nimh_study1.prl) for the syntax file. Run the analysis 

by selecting the Run PRELIS icon as shown below.  

 

 
 

2.4.12.4 Discussion of results 

Syntax 

The syntax lines are repeated in the output file corresponding to the PRELIS syntax (*.prl) file we 

saved. Refer to Section 2.2.3 for detailed information about the syntax.  

 

Model and data description 

The next section of the output file contains a description of the hierarchical structure and model 

specifications. The use of a logistic response function (logit link function) with the assumption of a 

normal distribution of random effects is indicated. This is followed by a summary of the number of 

observations nested within each patient. As shown below, 437 patients with a total of 1603 

observations are included in this study after listwise deletion. The number of observations per patient 

(level-2 unit) varies between 2 and 5. 
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Descriptive statistics and starting values 

Next, the descriptive statistics for all the variables are given. Notice that the variable name 

WSQRTxDR is truncated to WSQRTxDR. This is because LISREL only recognizes the first 8 characters 

of a variable name. 

 

 
 

Descriptive statistics are followed by the parameter estimates of a model with no random effects. 

 

 
 

The final results after 4 iterations are shown next. The estimates are shown in the column with 

heading Estimate and correspond to the coefficients 0 1 3, , ,    in the model specification. The 

standard error, z-value and p-value are also printed. 
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The variation in the intercept over the subjects is estimated as  3.7739, and from the associated p-

value we conclude that there is significant variation in the (random) intercept between the patients 

included in this analysis. In the case of the fixed effects, a 2-tailed p-value is used, as the alternative 

hypothesis considered here is of the form 1 : 0H   . As variances are constrained to be elements of 

the interval [0, )+  and thresholds are constrained so that 1 2 3    , the p-values used for these 

effects are 1-tailed. The results indicate that the treatment groups do not differ significantly at 

baseline (the estimated DRUG coefficient is not significant). The placebo group seems to improve 

over time, as the SQRTWEEK coefficient is both significant and negative. Note that the interpretation 

of the main effects depends on the coding of the variable, and on the significance of the WSQRTxDR 

interaction which forms part of the model.  

 

As noted before, it is assumed that 0 = −  and C = + . For the present example, C = 4, and from 

the output we see that 1 5.8593


= − , 2 2.8264


= −  and 3 0.7085.


= −
 
These values are used in 

combination with the coefficients of DRUG, SQRTWEEK, and WSQRTxDR to calculate estimated 

outcomes for different groups of patients. 
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Intraclass correlation (ICC) 

An estimate of the level-2 variance of the intercept and of the intracluster correlation (ICC) is given 

in the next section of the output. The residual variance for the logistic link function is assumed to be
2 / 3 . 

 

 
 

The ICC in this model refers to the intra-person correlation. It is reported as 0.534, which is fairly 

high. Generally, the shorter the interval between the repeated measurements, the higher the ICCs will 

be. 

 

Interpreting the output 
Estimated outcomes for groups: unit-specific probabilities 

To evaluate the expected effect of the treatment group and the square root of time of treatment, while 

allowing for the interaction between treatment and the square of time, we use the expression below: 

( )1 2 3

ˆ
ˆ ˆ ˆˆlog DRUG SQRTWEEK WSQRT×DRUG

ˆ1

ijc

c i i i i i i

ijc

P
b b b

P


 
 = − + + 
  −   

or, in the notation introduced in Section 2.4.12.2,  

( )

ˆ
log

ˆ1

ˆ 0.0585 DRUG 0.7658 SQRTWEEK
1.2061 WSQRT×DRUG .

ijc

ijc

ijc

c i i

i

P

P




 
= 

 − 
= −  + 
+ 

 

 

When c = 1, we find that, for a patient from the control group (DRUG = 0, SQRTWEEK = WSQRTxDR 

= 0),  

1

1

1

1

1

1

ˆ
log 5.8593

ˆ1

ˆ 0.0028

1

ij

ij

ij

ij

ij

ij

P

P

e
P

e











 
= = − 

 − 

= =

+
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Similarly, the probabilities that a typical patient from the control group responded in a specific 

category at the start of the study are obtained by using 2 2 8264.


= − , and 
3 0 7085.



= − . 

 

The cumulative probabilities we calculated are 

2

2

3

3

-2.8264

2 -2.8264

-0.7085

3 -0.7085

ˆ 0.0559
1

1

ˆ 0.3299.
1

1

ij

ij

ij

ij

ij

ij

e e
P

e
e

e e
P

e
e

















= = =
+

+

= = =
+

+

 

 

Thus, the estimated category probabilities we have for such a group (category 1 to 4) are obtained as 

1

2

3

4

ˆ 0.0028 0 0.0028

ˆ 0.0559 0.0028 0.0531

ˆ 0.3299 0.059 0.2740

ˆ 1 0.3299 0.6701.

ij

ij

ij

ij

p

p

p

p

= − =

= − =

= − =

= − =
 

 

For this group of patients (DRUG = 0) at the starting week, the expected percentages of patients in 

each of the categories are as follows: 0.3% of the patients are normal or borderline mentally ill; 5.3% 

of the patients are mildly or moderately ill; 27.4% are markedly ill and 67% are severely or extremely 

ill. Similarly, we can calculate the estimated percentages for both groups at all the time points as 

shown in Table 8. 

 

The contents of Table 8 can be graphically represented as shown in Figures 3 and 4. It clearly shows 

that the numbers of markedly and severely ill patients decrease dramatically over time. The 

improvement for the drug patients is larger than the placebo patients. 

 

Table 6: Estimated % for both groups at 7 time points  

 

 Drug patients (drug = 1) Placebo patients (drug = 0) 

severity normal moderate marked severe normal moderate marked severe 

week 0 0.30% 5.61% 28.39% 65.70% 0.28% 5.31% 27.40% 67.01% 

week 1 0.65% 11.25% 40.99% 47.11% 2.01% 27.84% 48.11% 22.04% 

week 2 0.89% 14.76% 45.02% 39.34% 4.43% 44.62% 39.84% 11.10% 

week 3 1.13% 18.00% 47.16% 33.71% 7.99% 56.32% 29.43% 6.26% 

week 4 1.38% 21.13% 48.21% 29.28% 12.84% 62.51% 20.87% 3.79% 

week 5 1.65% 24.17% 48.50% 25.69% 19.00% 63.96% 14.63% 2.41% 

week 6 1.94% 27.13% 48.24% 22.69% 26.32% 61.79% 10.29% 1.60% 
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A 2-level random intercept model and trend model 

In this section, we fit a model with random intercept and slope. To do this, the level-1 model is 

unchanged; only the level-2 model is modified. 

 

The model 

Level-1 model:   

 

( )0 1 2 3log DRUG SQRTWEEK WSQRT×DRUG
1

ijc

ij c i i i i i i i
ijc

P
y b b b b

P


 
 = = − + + +    −  ,  

   1 ; 1,2, , 1ij n c C=   = −  

 

Level-2 model:  

 

0 0 0

1 1

2 2 2

3 3

, 1i i

i
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i
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
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
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As shown above, the slope of the time variable 2ib  is now estimated by a level-2 equation containing 

both a fixed and a random effect. It indicates that patients are now not only assumed to have different 

intercepts, but may also exhibit different responses to the treatment over time.  

 
Setting up the analysis 

In this example, we want to use 10 quadrature points and include SQRTWEEK as level-2 random 

effect. We modify the commands syntax previously saved to nimh_study1.prl to obtain the new 

model setup. 

 

First, click on File, Open to browse and open nimh_study1.prl. Next, we change the string in the 

NQUADPTS = 10 in the MGLIM command. Change RANDOM2 = intcept SQRTWEEK and save the 

syntax file to nimh_study2.prl. 

 

 
 

Click on the Run PRELIS icon to produce the output file nimh_study2.out.  
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Discussion of results 
Fixed effect results, adaptive quadrature 

The final results after 7 iterations are listed below. While the values of the estimated coefficients 

differ from those in the random-intercept-only model, the overall picture remains very similar. The 

decline in severity over time noticed in the crosstabulation is captured by the significant fixed effect 

coefficient of –0.8840 for SQRTWEEK. 
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Random effects results 

Note that the estimated coefficient for the random SQRTWEEK slope is highly significant, indicating 

that patients not only start at different points but follow different paths during the treatment period.  

 

 
 

Interpreting the output 
Estimated outcomes for groups: unit-specific results 

To evaluate the expected effect of the treatment group and the square root of time of treatment, while 

allowing for the interaction between treatment and the square root of time, we use the expression 

below: 

( )0 1 2 3

ˆ
ˆ ˆ ˆ ˆˆlog DRUG SQRTWEEK WSQRT×DRUG
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c i i i i i i i
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 
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so that 

 

( )

ˆ 7.3793 0.0553 DRUG 0.8841 SQRTWEEK

1.6940 WSQRT×DRUG

ijc c i i

i

 


= − +  + 

+ 
 

 

As illustrated in the previous example, by substituting the values for DRUG, SQRTWEEK and 

WSQRTxDR, the results shown in Table 7 can be obtained. 

 

Table 7: Estimated unit-specific results for random intercept & slope model 

 
 Placebo patients (drug = 0) Drug patients (drug = 1) 

severity normal moderate marked severe normal moderate marked severe 

week 0 0.06% 2.96% 26.90% 70.08% 0.07% 3.13% 27.90% 68.91% 

week 1 0.15% 6.87% 43.81% 49.17% 0.86% 29.42% 55.32% 14.40% 

week 2 0.22% 9.61% 50.03% 40.15% 2.47% 51.90% 39.98% 5.81% 

week 3 0.29% 12.32% 53.77% 33.62% 5.42% 68.72% 23.37% 2.49% 

week 4 0.36% 15.09% 55.99% 28.55% 10.27% 74.85% 13.62% 1.26% 

week 5 0.45% 17.94% 57.12% 24.49% 17.38% 73.94% 7.99% 0.69% 

week 6 0.54% 20.84% 57.44% 21.17% 26.72% 68.08% 4.80% 0.40% 

 

We can again represent the results from the above table graphically, as shown in Figures 5 and 6. 

The graphs tell us the same story as the previous model: patients from the treatment group showed 

more improvement over time than patients from the control group. While a very small proportion of 

treatment patients were still diagnosed as being severely ill at the end of the treatment period (0.42% 

according to table 9), 20% of the control group were still classified as being severely ill by week 6. 

 
Estimated time trend variance 

When we consider the heterogeneity in responses across time, we notice that the estimated variance 

in the time trend is 
1

2 2 2(1.29774) ( 0.57054) 2.0096v = + − = . The estimates for the time trends are 

-0.88295 for SQRTWEEK and -1.69416  for WSQRTxDR respectively. Thus the estimated trends for 

the placebo and drug groups are -0.88295 and -0.88295 -1.69416 = -2.57711 . Thus the 95% 

confidence interval of the time trend for the placebo group is ( )-0.88295 1.96 2.0096   

( )-3.6615,1.896 .=  Similarly, the confidence interval for the drug group is ( )-5.3556, 0.2014 .  Notice 

that both intervals are fairly large and include negative and positive slopes, which reflects the wide 

heterogeneity in trends. The estimated correlation value is –0.402, which is moderately large. This 

indicates that the patients who are initially less severely ill improve at a smaller rate. The more 

severely ill patients improve at a greater rate.  

2.4.13 Models for nominal outcomes using NHIS data 

2.4.13.1 Introduction 

In statistics, the kinds of significance tests and model fitting procedures that are appropriate depend 

on the level of measurement of the variables concerned. A widely accepted classification scheme, 

proposed by Stevens (1946), is listed below and consists of four levels of measurement: 
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o nominal (also categorical or discrete) 

o ordinal 

o interval 

o ratio 

 

Interval and ratio variables are usually grouped together as continuous variables. 

 

In the case of nominal variables there are no "less than" or "greater than" relations among the 

categories of the variable and operations such as addition or multiplication do not exist. 

 

Examples of nominal variables are  

 

o Cancer Type (1 = breast, 2 = lung, 3 = brain, 4 = leukemia, 5 = liver, 6 = colon, 7 = other),  

o Smoking Status (1 = never smoked, 2 = former smoker, 3 = current smoker),  

o Preference for U.S. President (1 = Democrat, 2 = Republican, 3 = Independent),  

o Type of Sweetener (1 = sugar, 2 = saccharin, 3 = aspartame, 4 = other),   

o Pain Reliever (1 = Acetaminophen,  2 = Aspirin, 3 = Ibuprofen, 4 = Ketoprofen,  

       5 = Naproxen, 6 = other). 

 

In many research situations, the underlying variable type is continuous. However, to ensure 

anonymity of respondents, information is obtained by categorizing variables. For example: 

 

o Annual Income (1 = not employed, 2 = less or equal to $20,000, 3 = more than $20,000 

but less than or equal to $50,000, 4 = more than $50,000 but less than or equal to 

$100,000, 5 = more than $100,000) 

o Age when diagnosed (1 = not applicable, 2 = younger than 25 years, 3 = 25 years or older 

but less than 50 years, 4 = 50 years or older but less than 70 years, 5 = 70 years and older). 

 

In both the cases above, the available data values are coded 1, 2, 3, 4 and 5. Arithmetic operation 

with these codes will not provide accurate estimates of the actual age and income characteristics and 

in both cases the first category makes "less than" and "more than" comparisons less feasible. 

 

In this guide we illustrate the analysis of a nominal outcome variable by fitting a three-level model 

to health related data. 

 

2.4.13.2 The data 

The data set comes from the data library of the National Health Interview Survey (NHIS). The NHIS 

is a national longitudinal health survey. During 2002, background data and data on the health 

conditions of a sample of 28,737 participants were obtained. The 2002 sample was stratified into  64 

strata and into 601 PSUs. Using this data, we created a subset consisting of 57 strata (the level-3 
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units), 399 PSUs (the level-2 units) and 6445 participants. A partial list of the data is given below in 

the form of a LISREL spreadsheet file, named nihs_subset.lsf. 

 

 
 

A description of the variables is as follows:  

 

o CSTRATM is the stratum used as level-3 ID (57 strata). 

o CPSUM is the primary sampling unit (PSU) and is used as level-2 ID (399 clusters). 

 

o PATWT is the participant design weight. 

o PASTVIS is the value of the nominal variable for the number of visits to a medical doctor 

during the past 12 months (1 = none or unknown, 2 = 1 to 2, 3 = 3 to 5, 4 = 6 medications 

and more).  

o NUMMED is the number of medications. 

o GENDER, where 0 = Female and 1 = Male. 

o USETOBAC indicates whether a participant smoked cigarettes or not, where 0 = no and 1 

= yes. 

o PRIMCARE, where 0 = none and 1 = participant has primary care. 

o INJURY indicates whether a participant suffered from an injury or not (0 = no, 1 = yes). 

o BLODPRES, where 0 = blood pressure not measured and 1 = blood pressure measured. 

o URINE, where 0 = no urine tested, 1 = tested. 

o XRAY, where 0 = no X rays taken and 1 = X ray taken. 

o EXERCISE, where 0 = no exercise and 1 = participant does exercise. 

o RACER indicates the ethnicity of a participant where 1 = White, 2 = Black and 3 = Other. 

o AGER indicates in which age category a participant belongs. Coded as follows: 1 = Under 

15, 2 = 15 to 24, 3 = 25 to 44, 4 = 45 to 64, 5 = 65 to 74, 6 = 75 and older. 

o AGE1 to AGE5 are five dummy variables coded as follows: 

Table 8: Dummy variables 

 
Age AGE1 AGE2 AGE3 AGE4 AGE5 

Under 15 1 0 0 0 0 

15 to 24 0 1 0 0 0 

25 to 44 0 0 1 0 0 

45 to 64 0 0 0 1 0 

65 to 74 0 0 0 0 1 

75 and older 0 0 0 0 0 
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2.4.13.3 The model 

A general multilevel nominal model 

In the nominal case we need to consider the values corresponding to the unordered multiple 

categories of the response variable. We thus assume that the C response categories are coded as 

1,2,3,...,C . 

 

Let ( )| , ,ijkc ijk c ic ijcP P y c= = β υ υ  denote the probability that a response occurs in category c, 

conditional on a ( )1p  vector of fixed regression parameters cβ , the ( )1m  vector of level-2 

random effects ijcυ  and the ( )1r  vector of level-3 random effects icυ . It is further assumed that the 

level-2 random effects ijcυ  are independent and identically distributed (i.i.d.) as a ( )(2),N 0 Φ  random 

variable. Uncorrelated with ijcυ , the level-3 random effects are i.i.d. ( )(3),N 0 Φ . The scalar ijky  

denotes the value of the nominal variable associated with level-1 unit k, 1,2, , ijk n= , nested within 

level-2 unit j, 1,2, ij n= , which in turn is nested within the i-th level-3 unit, where 1,2, ,i N= . 

The probabilities ijkcP  are computed as 

 

( )

( )

( )
1

1

| , ,

exp
, 1,2, , 1

1 exp

ijkc ijk c ic ijc

ijkc

C

ijkc

h

P P y c

c C



−

=

= =

= = −

+

β υ υ

 

 

where 

( ) ( )2 3ijkc ijk c ijc icijk ijk
   = + +x β z υ z υ

 
 

Note that ijk
x , 

( )2ijk
z  and 

( )3ijk
z  are design vectors for the explanatory variables and the level-2 and 

level-3 random effects respectively. 

 

Random intercept model with two explanatory variables 

For the nihs_subset.lsf data set considered earlier, let PASTVIS denote the outcome variable. Assume 

further that GENDER and EXERCISE are the only predictors and that only intercepts are allowed to 

vary randomly across level-3 and level-2 units. The corresponding estimated probability model is 

given by 
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( )
( )

( )
3

1

exp
PASTVIS , 1,2,3

1 exp

ijkc

k

ijkh

h

P c c



=

= = =

+
 

where  

 

0 1 1GENDER EXERCISEijkh h h k h k ijh ih     = +  +  + +
 

 

and where PASTVISk , GENDERk  and EXERCISEk  denote values of the variables for client k 

nested within unit ( ),i j . Note that for PASTVIS the number of categories is 4C = . 

 

Remarks: 

The probability ( )PASTVIS 4kP =  is obtained as ( )
3

1

1 PASTVISk

c

P c
=

− = . In the formulation 

above, we used the last category as the so-called reference category. 

 

MGLIM allows the user to select the first or the last category as the reference category. If the first 

category is selected as reference category, then  

 

( )
( )

( )
4

2

exp
PASTVIS , 2,3,4.

1 exp

ijkc

k

ijkh

h

P c c



=

= = =

+
 

 

( ) ( )
4

2

PASTVIS 1 1 PASTVISk k

c

P P c
=

= = − =
. 

 

2.4.13.4 A random intercept model with fourteen predictors 

Preparing the data 

The model to be fitted to the data is contained in nihs_subset1.lsf. This file was created from the 

SPSS data file nihs_subset1.sav as follows. 

 

Use the File, Import Data File option to activate the display of an Open dialog box. From the Files of 

type drop-down list, select SPSS Data File (*.sav). Browse for the file nih_subset.lsf. Select the file 

and click the Open button to activate Save As dialog box. Enter the file name nih_subset.lsf and click 

on the Save button to display nih_subset.lsf as a LISREL spreadsheet. 

 

Exploring the data 

To obtain some insight into the distributional properties and possible relationships between variables, 

it is useful to present these properties graphically using the Graphs option. Prior to making visual 

presentations, it is a good idea to assign labels to the categories of the nominal and ordinal variables. 
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First, highlight the column of PASTVIS by clicking on its header. Then right click and select the 

Define Variables option as shown below to open the Define Variables dialog box. 

 

 
 

Select variable PASTVIS as shown below to activate all the options on the Define Variables dialog 

box.  

 
 

Click on the Category Labels option to activate the Category Labels for PASTVIS dialog box. Enter 

the labels None, 1 to 2, 3 to 5 and >5 as shown below and click OK. 

 

 
 

Click on the OK button to return to the Define Variables dialog box. Click on OK button to return to 

the LSF window. Save the change to the data set by clicking on the File, Save option. 
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From the main menu bar, select the Graphs, Bivariate option. By clicking on the Bivariate tab of the 

pop-up menu, the Bivariate plot dialog box is invoked. Select PASTVIS as the Y variable and 

PRIMCARE as the X variable. 

 

 
 

Next, check the 3D Bar Chart check box and then the Plot button to obtain the bivariate bar chart of 

PRIMCARE versus PASTVIS. The graph below shows that there is an increase in the use of primary 

care with the number of visits to a medical doctor. 

 

 
 

Setting up the analysis 

From the main menu bar of the LSF window, select the Multilevel, Generalized Linear Model, Title 

and Options option. Enter a title for the analysis in the Title text boxes. Keep the default settings for 

the Maximum Number of Iterations, Convergence Criterion and the Missing Data Value. Activate 

Quadrature radio button in the Optimization Method section and change the Number of Quadrature 

Points to 8 to obtain the above screen. Proceed to the ID and Weight Variables dialog box by clicking 

on the Next button.  
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Select CPSUM from the Variables in data list box. Click on the upper Add button of the Level-2 ID 

variable section to define the level-2 ID. Similarly define CSTRATM and click on the middle Add 

button to define it as Level-3 ID variable. 
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Proceed to the Distribution and Links dialog box by clicking on the Next button. Keep all the default 

settings on this dialog box as shown below.  
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Click on the Next button to proceed to the Dependent and Independent Variables dialog box.  

 

The Dependent and Independent Variables dialog box is used to specify the dependent and 

independent variables. First, select the dependent variable PASTVIS from the Variables in data list 

box and then click on the Add button to define it as the Dependent variable. Next, select NUMMED, 

GENDER, PRIMCARE, INJURY, BLODPRES, URINE, XRAY, EXERCISE, AGE1, AGE2,  AGE3,  AGE4 

and AGE5 and click on the Continuous button to add them as Independent variables as shown below. 

 

 
 

Click on the Next button to activate the Random Variables dialog box. By default, the Intercept check 

box in the Random Level-2 and Random Level-3 are checked, indicating the inclusion of a random 

intercept at level-2 and 3 in the model. Keep the default settings as shown below and click on the 

Finish button to generate the PRELIS syntax (prl) file. 
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Before running the analysis, the PRELIS syntax file should be saved. Select the File, Save As option, 

and provide a name (nhis1.prl) for the syntax file. Run the analysis by selecting the Run PRELIS icon 

as shown below.  
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Discussion of results 
Model and data description 

 

 
 

The first part of the output file gives a description of the model specifications. This is followed by a 

data summary of the number of observations nested within each subject.  

 
Descriptive statistics and starting values 

The data summary is followed by descriptive statistics for all the variables included in the model.  
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Each category of the nominal outcome variable is denoted as , 1,2,3, 4.i i =PASTVIS  From the 

output it can be seen that the distribution of respondents over these categories are 6.9%, 36.8%, 

28.6%, and 27.7% respectively. The age distribution is given in Table 9. 

 

Table 9: Age distribution of respondents 

 
Age Percentage 

Younger than 15 (AGE1) 19.7 

15 to 24 (AGE2) 6.4 

25 to 44 (AGE3) 22.8 

45 to 64 (AGE4) 26.7 

65 to 74 (AGE5) 11.6 

75 and older 12.8* 

 

*: calculated as 100 – (19.7+6.4+22.8+26.7+11.6) 
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The estimated parameters for the model, assuming no random effects, are reported next. For each 

response code i  versus code 4, 1,2,3,i =  there are 14 parameter estimates. Only the estimates for 

response code 1 versus response code 4 are displayed. Comparing these estimates with those obtained 

when allowance is made for the hierarchical structure of the data, a considerable difference is 

apparent. 

 
Fixed effects estimates and fit statistics 

The final results obtained using adaptive quadrature are given next. Using 8 quadrature points, 6 

iterations were required to reach convergence. The deviance statistic ( 2ln L− ) allows the user to 

compare the current model with other nested models.  

 

 
 

A study of the p -values associated with the parameter estimates indicates that the estimated 

GENDER, INJURY, URINE, and XRAY coefficients are not significant, regardless of the values of the 

category of the outcome variable. 
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Random effect estimates 

The last part of the output file shows the variance estimates for the level-2 and level-3 random effects. 

Both effects are highly significant. 

 

 
 

 
Interpreting the output 
Estimated unit-specific probabilities 

The estimated regression coefficients given in the adaptive quadrature portion of the output provide 

the information necessary to compute unit-specific probabilities for a typical participant that is 

associated with each possible combination of the predictor variables. For example, consider a typical 

female patient (GENDER = 0) that received 3 medications (NUMMED = 3), has primary care 

(PRIMCARE = 1), had no injuries (INJURY = 0), did not have a blood pressure or urine test (BLODPRES 

= URINE = 0), does not exercise (EXERCISE = 0), and is in the age group 25 to 44 (AGE3 = 1). 

 

For response code 1 vs. code 4: 

1 1.5004 0.3320(NUMMED ) 0.0395(GENDER ) 1.0176(PRIMCARE )

....1.0945(AGE1 ) 1.3539(AGE2 ) 0.9306(AGE3 )

0.7572(AGE4 ) 0.1136(AGE5 )

1.5004 3(0.3320) 1(1.0176) 1(0.9306)
2.5834

ijk ijk ijk ijk

ijk ijk ijk

ijk ijk




= − − − −

+ + +

+ +

= − − − +
= −

 

 

so that 
1exp 0.0755.ijk

 
= 

 
 

 

For response code 2 vs. 4, we find that 

 2 0.3737 3(0.2360) 1(0.9167) 1(0.6972)

0.5538
ijk



= − − +

= −
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and thus  

2exp 0.5748.ijk
 

= 
 

 

For response code 3 vs. code 4 

3 0.3440 3(0.0718) 1(0.3004) 1(0.2070)

0.0352
ijk



= − − +

=
 

and thus  

3exp 1.0358.ijk
 

= 
 

 

Using these values, it follows that 

 

( )

0.0755

1 0.0755 0.5748 1.0358

0.0281.

Prob respondent not seen doctor previously

=
+ + +

=  
 

The next two tables contain a selection of unit-specific probabilities for the four categories of 

PASTVIS for females (GENDER = 0). 

 

Unit-specific probabilities for females with XRAY = no, INJURY = no, URINE = no, and 
BLODPRES = no 

 

NUMMED 
PRIM 

CARE 

EXER 

CISE 
AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

none no no < 15 –0.406 1.393 0.628 0.088 0.532 0.248 0.132 

none no no 25:44 –0.570 1.071 0.551 0.091 0.469 0.279 0.161 

none no no >= 75 –1.500 0.374 0.344 0.055 0.356 0.345 0.245 

none no yes < 15 0.347 1.776 0.953 0.130 0.541 0.238 0.092 

none no yes 25:44 0.183 1.454 0.876 0.135 0.482 0.270 0.113 

none no yes >= 75 –0.748 0.757 0.669 0.085 0.384 0.351 0.180 

none yes no < 15 –1.424 0.476 0.328 0.057 0.380 0.327 0.236 

none yes no 25:44 –1.587 0.154 0.251 0.056 0.319 0.351 0.274 

none yes no >= 75 –2.518 –0.543 0.044 0.030 0.215 0.386 0.370 

none yes yes < 15 –0.671 0.859 0.653 0.088 0.408 0.332 0.173 

none yes yes 25:44 –0.835 0.537 0.576 0.088 0.348 0.361 0.203 

none yes yes >= 75 –1.765 –0.160 0.369 0.049 0.246 0.417 0.288 

three no no < 15 –1.402 0.685 0.413 0.052 0.418 0.319 0.211 

three no no 25:44 –1.566 0.363 0.336 0.052 0.355 0.346 0.247 

three no no >= 75 –2.496 –0.334 0.129 0.028 0.244 0.387 0.341 

three no yes < 15 –0.649 1.068 0.738 0.080 0.446 0.321 0.153 

three no yes 25:44 –0.813 0.746 0.661 0.081 0.384 0.353 0.182 

three no yes >= 75 –1.744 0.049 0.454 0.046 0.276 0.414 0.263 

three yes no < 15 –2.420 –0.232 0.112 0.030 0.264 0.373 0.333 

three yes no 25:44 –2.584 –0.554 0.035 0.028 0.214 0.386 0.372 

three yes no >= 75 –3.514 –1.251 –0.172 0.014 0.133 0.390 0.463 

three yes yes < 15 –1.667 0.151 0.437 0.048 0.298 0.397 0.256 
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three yes yes 25:44 –1.831 –0.171 0.360 0.047 0.245 0.417 0.291 

three yes yes >= 75 –2.761 –0.868 0.153 0.024 0.158 0.440 0.378 

 

From these tables we conclude that the proportion of female patients, regardless of age group, that 

indicated no prior visits to a medical practitioner (PASTVIS = 1) is generally low. Females who 

exercise have a lower probability of having several past visits when compared to those who do not 

exercise. 

Unit-specific probabilities for females with XRAY = no, INJURY = no, URINE = no, and 
BLODPRES = yes 

 

NUMMED 
PRIM 

CARE 

EXER 

CISE 
AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   No no < 15 –0.096 1.712 0.839 0.093 0.567 0.237 0.102 

  none   No no 25:44 –0.260 1.390 0.762 0.097 0.506 0.270 0.126 

  none   No no >=75 –1.191 0.693 0.555 0.060 0.396 0.345 0.198 

  none   No yes < 15 0.657 2.095 1.164 0.135 0.570 0.225 0.070 

  none   No yes 25:44 0.493 1.773 1.088 0.142 0.512 0.258 0.087 

  none   No yes >=75 –0.438 1.076 0.880 0.092 0.420 0.345 0.143 

  none   Yes no < 15 –1.114 0.795 0.539 0.062 0.421 0.326 0.190 

  none   Yes no 25:44 –1.278 0.473 0.462 0.062 0.359 0.355 0.224 

  none   Yes no >=75 –2.208 –0.224 0.255 0.034 0.250 0.403 0.313 

  none   Yes yes < 15 –0.361 1.178 0.864 0.095 0.444 0.324 0.137 

  none   Yes yes 25:44 –0.525 0.856 0.787 0.096 0.383 0.358 0.163 

  none   Yes yes >=75 –1.456 0.159 0.580 0.056 0.280 0.426 0.239 

  three  No no < 15 –1.092 1.004 0.624 0.057 0.460 0.315 0.169 

  three  No no 25:44 –1.256 0.682 0.547 0.057 0.396 0.346 0.200 

  three  No no >=75 –2.187 –0.015 0.340 0.032 0.281 0.401 0.286 

  three  No yes < 15 –0.339 1.387 0.949 0.086 0.482 0.311 0.120 

  three  No yes 25:44 –0.503 1.065 0.872 0.088 0.421 0.347 0.145 

  three  No yes >=75 –1.434 0.368 0.665 0.052 0.312 0.420 0.216 

  three  Yes no < 15 –2.110 0.087 0.323 0.034 0.304 0.384 0.278 

  three  Yes no 25:44 –2.274 –0.235 0.246 0.032 0.249 0.403 0.315 

  three  Yes no >=75 –3.204 –0.932 0.039 0.016 0.159 0.420 0.404 

  three  Yes yes < 15 –1.357 0.470 0.649 0.054 0.335 0.401 0.210 

  three  Yes yes 25:44 –1.521 0.148 0.572 0.053 0.279 0.427 0.241 

  three  Yes yes >=75 –2.452 –0.549 0.365 0.028 0.186 0.464 0.322 

 
Estimated population-average probabilities 

The population-average probabilities are obtained by dividing the ETA1, ETA2 and ETA3 values given 

in the previous two tables by the square root of the corresponding design effects. For the intercepts-

only model, this quantity is obtained as 

 ( ) ( ) ( ) ( )00 0var var var / var , 1,2,3.c ij ic ijk ijkd v v e e c


 = + + =
 

 

For the logistic model it is assumed that  

( )
2

var 3.290.
3

ijke


= =
 

Therefore 
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( )1 4.707 1.009 3.290 / 3.290

2.737

1.6545.

d = + +

=

=  
Similarly, 

( )2 3.237 0.921 3.290 / 3.290

2.264

1.5046

d = + +

=

=  
and 

( )3 1.077 0.848 3.290 / 3.290

1.585

1.2590.

d = + +

=

=  
 

Using these values, we obtain the population-average probabilities for the four categories of PASTVIS 

for a female respondent. Summaries of a selected number of population-average probabilities are 

given in the tables below. 

 

Population-average probabilities for females with XRAY = no, INJURY = no, URINE = no, and 
BLODPRES = no 

 

NUMMED 
PRIM 

CARE 

EXER 

CISE 
AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   No no < 15 –0.245 0.926 0.499 0.131 0.424 0.277 0.168 

  none   No no 25:44 –0.344 0.712 0.438 0.134 0.385 0.293 0.189 

  none   No no >= 75 –0.907 0.248 0.273 0.101 0.320 0.329 0.250 

  none   No yes < 15 0.210 1.180 0.757 0.162 0.427 0.280 0.131 

  none   No yes 25:44 0.111 0.966 0.696 0.165 0.389 0.297 0.148 

  none   No yes >= 75 –0.452 0.503 0.532 0.128 0.331 0.341 0.200 

  none   Yes no < 15 –0.860 0.317 0.260 0.103 0.335 0.317 0.244 

  none   Yes no 25:44 –0.960 0.102 0.199 0.103 0.299 0.329 0.269 

  none   Yes no >= 75 –1.522 –0.361 0.035 0.074 0.236 0.351 0.339 

  none   Yes yes < 15 –0.405 0.571 0.519 0.130 0.346 0.328 0.195 

  none   Yes yes 25:44 –0.504 0.357 0.457 0.131 0.310 0.343 0.217 

  none   Yes yes >= 75 –1.067 –0.106 0.293 0.096 0.251 0.374 0.279 

  three  No no < 15 –0.847 0.455 0.328 0.098 0.359 0.316 0.228 

  three  No no 25:44 –0.946 0.241 0.267 0.098 0.321 0.329 0.252 

  three  No no >= 75 –1.509 –0.222 0.102 0.071 0.256 0.354 0.320 

  three  No yes < 15 –0.392 0.710 0.586 0.123 0.369 0.326 0.182 

  three  No yes 25:44 –0.491 0.496 0.525 0.124 0.332 0.342 0.202 

  three  No yes >= 75 –1.054 0.032 0.360 0.091 0.271 0.376 0.262 

  three  Yes no < 15 –1.462 –0.154 0.089 0.073 0.269 0.344 0.314 

  three  Yes no 25:44 –1.562 –0.368 0.028 0.072 0.236 0.351 0.341 

  three  Yes no >= 75 –2.124 –0.831 –0.136 0.049 0.179 0.359 0.412 

  three  Yes yes < 15 –1.007 0.101 0.347 0.094 0.285 0.364 0.257 

  three  Yes yes 25:44 –1.107 –0.114 0.286 0.093 0.251 0.375 0.281 

  three  Yes yes >= 75 –1.669 –0.577 0.122 0.065 0.195 0.392 0.347 
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Population-average probabilities for females with XRAY = no, INJURY = no, URINE = no, and 
BLODPRES = no 

 

NUMMED 
PRIM 

CARE 

EXER 

CISE 
AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   No no < 15 –0.058 1.138 0.667 0.135 0.445 0.278 0.143 

  none   No no 25:44 –0.157 0.924 0.605 0.138 0.406 0.295 0.161 

  none   No no >= 75 –0.720 0.460 0.441 0.105 0.343 0.336 0.216 

  none   No yes < 15 0.397 1.392 0.925 0.165 0.446 0.279 0.111 

  none   No yes 25:44 0.298 1.178 0.864 0.169 0.408 0.298 0.126 

  none   No yes >= 75 –0.265 0.715 0.699 0.132 0.351 0.346 0.172 

  none   Yes no < 15 –0.673 0.529 0.428 0.108 0.358 0.324 0.211 

  none   Yes no 25:44 –0.772 0.314 0.367 0.108 0.320 0.338 0.234 

  none   Yes no >= 75 –1.335 –0.149 0.202 0.079 0.257 0.366 0.299 

  none   Yes yes < 15 –0.218 0.783 0.686 0.134 0.366 0.332 0.167 

  none   Yes yes 25:44 –0.317 0.569 0.625 0.136 0.329 0.348 0.186 

  none   Yes yes >= 75 –0.880 0.106 0.461 0.101 0.270 0.386 0.243 

  Three  No no < 15 –0.660 0.667 0.496 0.101 0.382 0.321 0.196 

  Three  No no 25:44 –0.759 0.453 0.434 0.102 0.343 0.337 0.218 

  Three  No no >= 75 –1.322 –0.010 0.270 0.075 0.278 0.367 0.280 

  Three  No yes < 15 –0.205 0.922 0.754 0.126 0.390 0.329 0.155 

  Three  No yes 25:44 –0.304 0.708 0.693 0.128 0.352 0.347 0.173 

  Three  No yes >= 75 –0.867 0.244 0.528 0.096 0.291 0.386 0.228 

  Three  Yes no < 15 –1.275 0.058 0.257 0.077 0.292 0.356 0.275 

  Three  Yes no 25:44 –1.374 –0.156 0.196 0.076 0.257 0.366 0.301 

  Three  Yes no >= 75 –1.937 –0.619 0.031 0.053 0.198 0.380 0.368 

  Three  Yes yes < 15 –0.820 0.313 0.515 0.098 0.305 0.374 0.223 

  Three  Yes yes 25:44 –0.919 0.098 0.454 0.098 0.271 0.386 0.245 

  Three  Yes yes >= 75 –1.482 –0.365 0.290 0.070 0.213 0.410 0.307 

 

2.4.13.5 A random intercept model with ten predictors 

Setting up the analysis 

In the previous example, we included 14 possible predictors of PASTVIS in the fixed part of the 

model. The output indicated that the variables GENDER, INJURY, URINE and XRAY did not contribute 

significantly to explaining the variation in PASTVIS outcomes.  

 

To run the model without these fixed effects, use the File, Open Syntax File option and select the 

command syntax previously saved to the file NHIS1.prl. Delete the variables GENDER, INJURY, 

URINE and XRAY from the Predictors paragraph and save the modified syntax file as NHIS2.prl. To 

run this syntax file, select the Run option from the Analysis menu. 
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Interpreting the output 
Fit statistics 

Only a portion of the output file NIHS2.out is shown below. Recall that the deviance statistic for the 

previous model was 14329.75, with 48 free parameters. For the current model, the deviance statistic 

is equal to 14351.80 and the number of free parameters is equal to 36. To test whether the removal 

of GENDER, INJURY, URINE and XRAY made a significant difference to the model fit, we use the fact 

that the difference in deviance statistics for two nested models follows a 2 -distribution with degrees 

of freedom equal to the difference in the number of parameters estimated. 

 

The 2 -value obtained for this test is 14351.80 – 14329.75 = 22.05, with 12 degrees of freedom. 

Since the associated p -value equals 0.04, the 2 -value is significant at the 5% level, but not at the 

1% level of significance. We therefore conclude that, based on the 2 -difference test, we do not 

have a definitive answer to the question of whether the 4 predictors should remain in the model or 

not. A summary of the Akaike and Schwarz criteria is shown in Table 14. 

 

Table 14: Akaike and Schwarz fit criteria for two nested models   

  
Fit statistic 14 predictors 10 predictors 

Akaike 14425.75 14423.80 

Schwarz 14750.75 14667.55 

 

Each of these criteria states that the model with the smallest value is the model to be selected. Based 

on this decision rule, we conclude that the model without the four predictors should be used, since it 

is more parsimonious and very little information regarding the explanation of variation in PASTVIS 

is lost. 

 
Odds ratios and 95% confidence intervals for the odds ratios 

An odds ratio of 1 indicates the event under study is equally likely in both the outcome category of 

interest and in the reference category. An odds ratio greater than 1 indicates that the event is more 

likely to occur in the category of interest. 
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The intercept coefficient is the expected log-odds that a participant in the present study indicated no 

past visits (PASTVIS = 1) relative to the category PASTVIS = 4 (6 or more visits), given that the 

remaining predictors are held constant at zero. The estimated conditional expected log-odds is –

1.4156, corresponding to an odds ratio of exp(–1.4156)=0.2428. This implies that a qualifying 

participant (a participant with NUMMED = 0, GENDER = 0, …, AGE5 = 0) has 0.2427 times the odds 

of having had no previous visits, as opposed to 6 or more visits.  

 

 
 

The 95% confidence interval for the odds ratio is obtained by first computing a 95% confidence 

interval for the intercept coefficient. This confidence interval is given by 

 

 
0 01.96 . .std error 

  
  

 
 

 

From the output, it follows that this interval is 

 

 

( )
( )
1.4161 1.96 0.2377; 1.4161 1.96 0.2377

1.8822; 0.9500 .

− −  − + 

= − −
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Using these values, we obtain the 95% confidence interval for the odds ratio as 

 

 

( )( )
( )
exp 1.8822 ;exp( 0.9500)

0.1523;0.3867 .

− −

=
 

 

2.5 Evaluation 

2.5.1  Introduction 

In this section we report the results of simulation studies for the evaluation of the various estimation 

procedures and outcome variable types available in the LISREL MGLIM (multilevel generalized linear 

models) module. These simulation studies were also done to determine the effect of fitting models 

to data that are missing at random (MAR). We started by doing a comparison of the performance of 

a continuous outcome variable versus a binary outcome variable. The same datasets were used, but 

for the binary case the outcome variable was dichotomized based on the threshold concept. The 

results of this study are reported next. 

 

2.5.2 Parameter estimation results for normal and binary outcome variables 
with complete data and with MAR observations  

The simulation results given below shows that the ML estimates for continuous normal data have 

good properties for both the complete data and missing data sets. However, in the binary case 

parameter estimates using adaptive Gaussian quadrature (10 points) have good properties for the 

complete data cases but poor properties when there are missing observations. 

 

Simulation results: normal and binary outcome variables 

 

  
0   1   2   3      

Normal True 5.32 0.12 -0.23 -0.8 0.32 0.06 0.28 

Complete AE 5.34 0.07 -0.26 -0.75 0.30 0.06 0.25 

 RB 0.02 -0.05 -0.03 0.05 -0.02 0.00 -0.03 

 PB 0.38 -44.24 12.22 -6.66 -5.17 -3.16 -11.11 

 SB 19.07 -66.31 -19.16 47.76 -13.16 -2.53 -45.30 

 RMSE 0.11 0.10 0.15 0.12 0.13 0.08 0.08 

 ASE 0.11 0.08 0.15 0.11 0.13 0.07 0.07 

 CR 0.94 0.92 0.94 0.94 0.94 0.96 0.90 

Missing AE 5.32 0.12 -0.24 -0.80 0.30 0.07 0.27 

 RB 0.00 0.00 -0.01 0.00 -0.02 0.01 -0.01 

 PB 0.04 -1.13 3.91 -0.24 -6.63 9.25 -2.92 

 SB 2.02 -1.84 -6.23 1.84 -17.75 8.14 -13.13 

 RMSE 0.10 0.07 0.14 0.11 0.12 0.07 0.06 

2

0 0 1  2

1
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 ASE 0.10 0.08 0.15 0.11 0.12 0.07 0.06 

 CR 0.95 0.95 0.96 0.95 0.94 0.94 0.95 

Binary True 6.025 0.281 -1.477 -1.587 7.43 -2.27 3.12 

Complete AE 6.215 0.232 -1.711 -1.481 7.429 -2.241 3.207 

 RB 0.190 -0.049 -0.234 0.106 -0.001 0.029 0.087 

 PB 3.159 -17.500 15.872 -6.708 -0.013 -1.291 2.801 

 SB 8.381 -4.670 -11.190 10.830 -0.023 1.607 4.836 

 RMSE 2.279 1.054 2.108 0.989 4.308 1.823 1.809 

 ASE 1.701 0.873 1.322 0.777 4.458 1.796 1.472 

 CR 0.930 0.955 0.957 0.960 0.888 0.906 0.921 

Missing AE 5.280 0.277 -1.624 -0.974 4.277 -1.528 2.139 

 RB -0.745 -0.004 -0.147 0.613 -3.153 0.742 -0.981 

 PB -12.367 -1.460 9.966 -38.654 -42.436 -32.700 -31.439 

 SB -35.743 -0.380 -7.718 61.733 -92.798 47.864 -60.941 

 RMSE 2.214 1.080 1.913 1.168 4.636 1.719 1.885 

 ASE 1.575 0.949 1.239 0.834 3.284 1.457 1.319 

 CR 0.787 0.948 0.949 0.809 0.662 0.776 0.696 

 
TRUE= The parameter values used to generate data 

AE= Average Estimate 

RB= Raw bias 

PB= Percent bias 

SB= Standardized bias 

RMSE= Root Mean Square Error 

ASE= Average Asymptotic Standard Error of an estimate 

CR= Proportion Coverage 

 

Table 16: Average percentage missing at time points 
 

T1 T2 T3 T4 

0 3.689 % 12.073% 17.606 % 

 

It is speculated that the reason for the poor performance for the MAR binary case may mainly be 

contributed to the fact that the distribution of the binary outcome is so severely skewed that when 

missing values are present, some of the level-2 units contained only a single value for the outcome 

variable. To test this hypothesis, we dichotomized the continuous variable in such a way that the 

distribution of values is approximately 15% and 85%. The table below is a summary of this 

simulation study indicating that as the outcome variable distribution becomes more symmetric, the 

behavior of parameter estimation under MAR improves.  
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2.5.3 Parameter estimation results for the binary outcome variables with 
complete data and with MAR observations using a smaller intercept 
parameter 

Table 17: Simulation results: binary outcome variables 

 

         

Binary True 2.247 -1.037 0.236 -0.877 0.36 0.06 0.28 

Complete AE 2.390 -1.131 0.240 -0.887 0.778 -0.274 0.570 

 RB 0.143 -0.094 0.004 -0.010 0.458 -0.334 0.290 

 PB 6.383 9.027 1.623 1.122 143.269 -557.010 103.430 

 SB 36.043 -32.647 0.832 -2.735 51.987 -58.165 55.630 

 RMSE 0.423 0.302 0.460 0.360 0.994 0.665 0.596 

 ASE 0.398 0.289 0.463 0.359 0.807 0.533 0.495 

 CR 0.955 0.962 0.959 0.944 0.862 0.955 0.891 

Missing AE 2.253 -0.850 0.217 -0.974 0.508 -0.140 0.445 

 RB 0.006 0.187 -0.019 -0.097 0.188 -0.200 0.165 

 PB 0.260 -18.021 -8.019 11.053 58.852 -333.770 59.080 

 SB 1.571 64.383 -4.204 -25.893 27.425 -45.933 37.955 

 RMSE 0.372 0.345 0.451 0.387 0.712 0.480 0.466 

 ASE 0.377 0.295 0.451 0.371 0.620 0.422 0.435 

 CR 0.937 0.881 0.957 0.948 0.781 0.968 0.853 

 

Table 18: Average percentage missing at time points 

 

T1 T2 T3 T4 

0 5.05 15.85 28.84 

 

2.5.4 Parameter estimation results for count outcome variables with 
complete data and with MAR observations 

The simulation results given below are ML estimates of the parameters for a count outcome variable. 

The parameter estimates using adaptive Gaussian quadrature (10 points) have good properties for 

both the complete data and missing observations cases. 

 

0 1 2 3
2

0 0 1  2

1
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Table 19: Simulation results: count outcome variables 

 

Count True 1.1 0.002 0.05 -0.31 0.51 0.054 0.24 

Complete AE 1.093 -0.003 0.060 -0.306 0.502 0.056 0.238 

 RB -0.007 -0.005 0.010 0.004 -0.008 0.002 -0.002 

 PB -0.621 -246.119 20.278 -1.186 -1.490 4.061 -0.789 

 SB -7.781 -7.547 8.216 4.115 -9.494 5.212 -4.485 

 RMSE 0.088 0.065 0.124 0.089 0.080 0.042 0.042 

 ASE 0.090 0.065 0.124 0.091 0.079 0.040 0.040 

 CR 0.964 0.949 0.941 0.959 0.935 0.933 0.921 

Missing AE 1.087 0.039 0.060 -0.311 0.506 0.037 0.228 

 RB -0.013 0.037 0.010 -0.001 -0.004 -0.017 -0.012 

 PB -1.186 1865.099 19.456 0.462 -0.774 -30.805 -5.071 

 SB -14.655 52.161 7.815 -1.505 -4.884 -36.162 -28.813 

 RMSE 0.090 0.081 0.125 0.095 0.081 0.049 0.044 

 ASE 0.091 0.071 0.125 0.096 0.080 0.043 0.042 

 CR 0.960 0.903 0.943 0.957 0.939 0.925 0.912 

 

Table 20: Average percentage missing at time points 

 

T1 T2 T3 T4 

0 4.02 17.25 30.59 

 

2.5.5 Additional Simulation studies 

Two-level binary and ordinal models without missing observations have been tested with simulated 

data. For the non-linear models two methods of estimation, these being ADAP (adaptive quadrature) 

and MAP (Maximization of the Posterior distribution), were evaluated. Results of those tests are 

tabulated below. Overall, the ADAP procedure performed quite well as opposed to the MAP estimators 

that exhibited high bias and lower coverage rate. It was found, however, that the MAP performance 

improves for larger numbers of level-1 units nested within the higher order units and in general, the 

MAP estimates provided good starting value for the ADAP procedure.  

 

Note that the MAP (Maximization of the Posterior distribution) method is always used to obtain 

starting values for models with non-normal outcome variables. This method does not use numerical 

quadrature and for a very large number of random effects, it might be the only viable method in 

LISREL for fitting mixed effects models.     

 

Results in the following tables are based on the 1000 simulated datasets; each with 150 subjects 

followed over five time points.  
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Table 21: Simulation results for a binary outcome using ADAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

True 6.025 0.281 -1.477 -1.587 7.43 -2.23 3.12 

AE 6.282 0.252 -1.760 -1.511 7.814 -2.506 3.430 

RB 0.257 -0.029 -0.283 0.076 0.384 -0.236 0.310 

PB 4.257 -10.248 19.137 -4.790 5.173 10.410 9.948 

SB 12.177 -2.369 -16.641 7.564 6.826 -8.932 14.869 

RMSE 2.122 1.216 1.722 1.008 5.644 2.656 2.110 

ASE 2.228 1.401 1.742 1.167 5.653 2.620 1.904 

CR 0.895 0.947 0.942 0.969 0.853 0.887 0.920 

 

Table 22: Simulation results for a binary outcome using MAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

True 6.025 0.281 -1.477 -1.587 7.43 -2.23 3.12 

AE 4.283 -0.036 -1.193 -0.938 2.440 -0.595 0.851 

RB -1.742 -0.317 0.284 0.649 -4.990 1.675 -2.269 

PB -28.909 -112.769 -19.219 -40.868 -67.155 -73.774 -72.718 

SB -138.787 -42.866 21.867 83.311 -313.142 179.992 -305.950 

RMSE 2.148 0.804 1.329 1.013 5.240 1.917 2.388 

ASE 0.830 0.592 0.948 0.664 0.429 0.270 0.203 

CR 0.284 0.854 0.844 0.760 0.038 0.180 0.052 

 

A plot of the empirical CDF of the –2 log-likelihood function is presented for the adaptive quadrature 

procedure using 7, 11, 15 and 20 points respectively. For the simulated data these curves are 

essentially the same and it is therefore concluded that the choice of 10 points in the simulation study 

is acceptable.  

0 1 2 3
2

0 0 1  2

1

0 1 2 3
2

0 0 1  2

1
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Figure 8: Plot of empirical CDF of -2 ln L function using ADAP 
 

Table 23: Simulation results for an ordinal outcome using ADAP 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

True 3.912 6.528 -0.875 0.111 -1.724 7.13 -0.41 2.06 

AE 3.964 6.606 -0.883 0.134 -1.754 7.335 -0.442 2.168 

RB 0.052 0.078 -0.008 0.023 -0.030 0.205 -0.032 0.108 

PB 1.323 1.197 0.887 20.963 1.726 2.873 7.704 5.234 

SB 14.197 15.398 -3.174 4.117 -8.137 9.208 -4.279 15.352 

RMSE 0.368 0.513 0.245 0.566 0.367 2.234 0.739 0.711 

ASE 0.456 0.409 0.246 0.563 0.357 2.123 0.734 0.669 

CR 0.980 0.883 0.950 0.953 0.946 0.929 0.942 0.938 

 

2

0 0 1  2

11 2 30T
1T
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Table 24: Simulation results for an ordinal outcome using MAP 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

True 3.912 6.528 -0.875 0.111 -1.724 7.13 -0.41 2.06 

AE 3.389 5.652 -0.750 0.114 -1.453 3.930 0.442 0.902 

RB -0.523 -0.876 0.125 0.003 0.271 -3.200 0.852 -1.158 

PB -13.382 -13.414 -14.325 3.039 -15.699 -44.887 -207.772 -56.190 

SB -196.585 -240.885 63.221 0.717 91.575 -249.059 198.558 -382.912 

RMSE 0.588 0.949 0.235 0.471 0.401 3.450 0.954 1.197 

ASE 0.330 0.306 0.175 0.420 0.255 0.814 0.344 0.229 

CR 0.666 0.227 0.853 0.922 0.778 0.161 0.282 0.044 

 

2.6 Theory 

2.6.1  Distribution models and link functions 

2.6.1.1 Introduction 

 

It is assumed that ijky  is an outcome variable, where 1, 2, ...,i N=  denotes level-3 units and 

1, 2, ..., ij n=  denotes level-2 units, nested within each level-3 unit i . The level-1 units 1, 2, ..., ijk n=  

are nested within the ( , )i j -th (level-3; level-2) combination. 

 

For 2-level models, the subscript i  is omitted and jky  denotes level-1 unit k  nested within level-2 

unit j . 

 

A multilevel model with a non-normal outcome variable is transformed to a linear model by using a 

link function which defines the relationship between the dependent variable ijk  of the linear model 

and the mean ijk  of the distribution selected. More specifically, the linear model of a multilevel 

generalized linear model is given by 

 

 
' ' '

(2) (3) ,ijk ijk ijk ij ijk i = + +x β z v z v
 

 

where ijkx  is a 1p  vector of predictors, (2)ijkz  is a 1q  design vector associated with the level-2 

random effects ijv . Likewise, (3)ijkz  is a 1r  design vector associated with the level-3 random effects 

iv . Typically, the elements of (3)ijkz  and (2)ijkz  are subsets of the elements of ijkx . 

 

It is further assumed that the level-3 and level-2 random effect vectors are uncorrelated and also that 

( )(3),i Nv 0 Φ  and that ( )(2),ij Nv 0 Φ . 

2
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2.6.1.2 Link function and derivatives 

The link functions available are the log, logistic, complimentary log-log, log-log, and probit. Table 

1 contains a summary of these link functions and their derivatives. The cumulative distribution for 

each link is denoted by ( )CDF   and the corresponding probability distribution function by PDF , 

where .PDF CDF



=


 The second-order derivatives of   with respect to the link function is 

denoted by .PDF





 The CDF  of a standardized normal variable is denoted by ( )  , while 

( )1 expc = − , and ( )
1

2 exp
1

c
c

= = . 

 

Table 25: Probability and cumulative distribution functions 

 

Function ( )CDF   ( )PDF   
.PDF





  

Logistic 
1

1 1c+  
(1 )CDF CDF−  

2( 1 2)c c PDF−   

Probit ( )
 

21 1
exp

22



−

 
PDF−   

Complementary log-log ( )1 exp 2c− −
 

( )2 1c CDF−
 

(1 2)c PDF−  

Log-log ( )exp 1c−
 

1c CDF  ( 1 1)c PDF−  

Log 2c  2c  2c  

 

In subsequent sections, short descriptions of the different distribution-link type models are given. 

 

2.6.1.3 The Poisson-log model 

Assume ijky  follows a Poisson distribution with mean ijk . In other words, the probability density 

function of ijky  is given by 

 

 ( ) ( )    , ln , ln ln !
!

ijk ijky

ijk

ijk ijk ijk ijk ijk ijk ijk ijk

ijk

e
f y f y y y

y




   

−

=  = − −

            

 (1.1) 

 

and the variance of ijky is given by 
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     ( )2

ijk ijky =     (1.2) 

 

Suppose further that the following exponential model is imposed on the means of ijky  

 

     ( )expijk ijk =     (1.3) 

 

The model in (2.3) is transformed to a linear model by using the log link function. In other words 

 

     ( )lnijk ijk =      (1.4) 

 

2.6.1.4 Models for the Bernoulli sampling distribution 

Sampling distribution 

    
1

( ) (1 )ijk ijky y

ijk ijk ijkf y  
−

= −     (1.5) 

Variance 

    
2 ( ) (1 )ijk ijk ijky  = −    (1.6) 

 

2.6.1.4.1 The logistic model 

 
Model for means 

 
( )

1

1 exp
ijk

ijk




=
+ −

        (1.7) 

Link function 

   logit( ) ln
1

ijk

ijk ijk

ijk


 



  
= =  

−  

    (1.8) 

 

2.6.1.4.2 The complementary log-log model 

Model for means 

    ( ) 1 exp expijk ijk = − −     (1.9) 

Link function 

    ln( ln(1 ))ijk ijk = − −      (1.10) 
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2.6.1.4.3 The probit model 

Model for means 

     ( )ijk ijk =      (1.11) 

 

where ( )   denotes the cumulative distribution function of the standard Normal distribution.  

 
Link function 

     
1( )ijk ijk −=      (1.12) 

    

2.6.1.4.4 The log-log model 

Model for means 

    ( ) exp expijk ijk = − −     (1.13) 

Link function 

    ( ) ln lnijk ijk = − −      (1.14) 

 

2.6.1.5 Models for the Binomial distribution 

Sampling distribution  

 

Let ijky  denote the proportion of successes in ijkn  independent trials:  

 

   ( )
( )1

( ) 1
ijk ijkijk ijk

n yijk n y

ijk ijk ijk

ijk ijk

n
f y

n y
 

− 
= −  
 

   (1.15) 

Variance 

    
( )

2
1

( )
ijk ijk

ijk

ijk

y
n

 


−
=    (1.16) 

 

The models for the means and the link functions are identical to those of the Bernoulli-logit model 

described in Section 2.6.1.4. 

 

2.6.1.6 The Negative Binomial-log model 

Sampling distribution 

   

( )

( )

( )
1

1

( )
1

11

ijk

ijk

y
ijk

ijk

ijk
y

ijkijk

y

f y

y 






+

 
 + 
 =

 
+ +  

 

   (1.17) 
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Variance 

    ( )2 2

ijk ijk ijky  = +    (1.18) 

 

The model for means and the link function are identical to those of the Poisson-log model described 

in Section 2.6.1.3. 

 

2.6.1.7 The Gamma-log model 

Sampling distribution 

   

1

1
( ) exp

1

ijk ijk

ijk

ijk ijk
ijk

y y
f y

y



   



   
= −            

 

   (1.19) 

Variance 

     ( )2 2

ijk ijky =    (1.20) 

 

The model for means and the link function are identical to those of the Poisson-log model described 

in Section 2.6.1.3. 

 

2.6.1.8 The Inverse Gaussian-log model 

Sampling distribution 

  

2

3

1 1
( ) exp

22

ijk ijk

ijk

ijkijkijk

y
f y

yy




 

  −
 = −      

   (1.21) 

Variance 

     ( )2 3

ijk ijky =    (1.22) 

 

The model for means and the link function are identical to those of the Poisson-log model described 

in Section 2.6.1.3.  

 

2.6.1.9 Models for the Multinomial sampling distribution 

Sampling distribution 
 

( )
1

,
, 1

1

,1 ,2 , 1 , ,1 1
1

, ,

11

!
, ,...,

! !

C

ijk ijk l
ijk l l

C n y
yijk

ijk ijk ijk C ijk l ijk CC C
l

ijk l ijk ijk l

ll

n
f y y y

y n y

 

−

=

− −

− − −
=

==

 
=  
    

−  
  




  (1.23) 
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Covariance matrix 
 

    
*( )

ijkijk ijk ijk
= −Σ y D μ μ    (1.24) 

 

where 
*

,1 ,2 , 1ijk ijk ijk ijk Cy y y −

 =  y and 
ijkD denotes a ( 1) ( 1)C C−  −  diagonal matrix with the 

elements of ,1 ,2 , 1ijk ijk ijk ijk C   −

 =  μ  on the diagonal. 

 

2.6.1.10 The generalized logistic (nominal) Model 

Model for means 

   
 

 

,

, 1

,

1

exp
1,2, , 1

1 exp

ijk l

ijk l C

ijk l

l

l C





−

=

=  = −

+
   (1.25) 

Link function 

    
,

, ,

,

logit( ) ln
ijk l

ijk l ijk l

ijk C


 



  
= =  

 

   (1.26) 

 

2.6.1.11 The cumulative logistic (ordinal) model 

Model for means 

  
 
 

 

,

, ,

,

*

1

exp
, 1

1 exp

1

1 exp

l ijk l

ijk l ijk r

l ijk l

ijk

l

r

l C
 

 
 





=

−
= =  = −

+ −

=
+ −

   (1.27) 

 

where 

, ,ijk l l ijk l   = −
 

 

 the elements of 1 2, 1, , C   −  denote threshold parameters. 

 
Link function 

    
,

, ,

,

clogit( ) ln
1

ijk l

ijk l ijk l

ijk l


 





 



  
= =  

−  

   (1.28) 
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2.6.1.12 The proportional hazards (cumulative complimentary log-log) model 

Model for means 

   ( ), , ,

1

1 exp exp 1,2, , 1
l

ijk l ijk r ijk l

r

l C   

=

= = − −  = −   (1.29) 

   ( )( ), , ,cloglog( ) ln ln 1ijk l ijk l ijk l    = = − −    (1.30) 

2.6.1.13 The cumulative log-log model 

Model for means 

   ( ), , ,

1

exp exp 1,2, , 1
l

ijk l ijk r ijk l

r

l C   

=

= = − −  = −   (1.31) 

   ( )( ), , ,loglog( ) ln lnijk l ijk l ijk l    = = − −    (1.32) 

 

2.6.1.14 The cumulative probit model 

Model for means 

  ( ), , ,

1

1, 2, , 1
l

ijk l ijk r ijk l

r

l C   

=

= =   = −    (1.33) 

where ( )   denotes the cumulative distribution function of the standard normal distribution. 

 
Link function 

     ( )1

, ,ijk l ijk l  − =      (1.34) 

2.6.1.15 The estimation of scale and dispersion parameters 

A number of sampling distributions discussed in the previous sections have a dispersion parameter 

and/or a scale parameter. A summary of these distributions with respect to dispersion and scale 

parameters and their estimates is shown in Table 16. 

 

Table 16:  Scale and dispersion parameters 

 

Distribution Deviance Dispersion Pearson Scale 

Binomial x   x x 

Gamma x x x x 

Inverse 

Gaussian 
x x x x 

Negative 

binomial 
x x x   

Poisson x   x x 
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2.6.1.16 The deviance 
2
χ  estimate 

  
2

ˆ D
D

d


 =       (1.35) 

 
2 ˆ2ln ( | ) 2ln ( | )D L L = −y y μ y      (1.36) 

  
1 1 1

iji
nnN

ijk

i j k

d w q
= = =

= −      (1.37) 

 

2.6.1.17 The Pearson 
2  estimate 

   
2

ˆ P
P

d


 =               (1.38) 

  
( )

( )

2

2

2
1 1 1

ˆ

ˆ

iji
nnN

ijk ijk ijk

P

i j k ijk

w y

y




= = =

−
=              (1.39) 

2.6.2 Theoretical aspects: level-3 generalized linear models 

2.6.2.1 Notation 

Let ijy  denote a 1ijn   vector of outcomes with typical element ijky , where i  denotes the level-3 

units, j  denotes the level-2 units nested within the i -th level-3 unit and k  denotes the level-1 units 

nested within ij . 

 

Assume further that there are N  level-3 units so that 1,2,..., .i N= Within a typical level-3 unit there 

are in  level-2 units, 1,2,..., ij n=  and nested within ij  there are ijn  level-1 units so that 1,2,..., .ijk n=

There are, therefore, 
1

N

i

i

n
=

  level-2 units and 
1 1

inN

ij

i j

n
= =

  level-1 units. 

 

Let 
*

iy  and 
*

iv  denote 
1

1
in

ij

j

n
=

  vectors partitioned as follows: 

 

1

2*

i

i

i

i

in

 
 
 =
 
  
 

y

y
y

y

; 

1

2*

i

i

i

i

in

 
 
 =
 
  
 

v

v
v

v

, 1,2, ,i N=  
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Under the assumption that 

  ( )1, , . . . ,
ii in i i d Nv v 0 Φ    (1.40) 

and 

  ( ), 1, , . . . ,i i N i i d N=v 0 Ψ   (1.41) 

 

with ( )'cov ,ij i =v v 0 , it follows that 

  
( ) ( ) ( )

( ) ( ) ( )

* * * * *

* * *

, , | , ,

| ,

i i i i i i i i

i i i i i

f f g

f g g

= 

= 

y v v y v v v v

y v v v v
  (1.42) 

Therefore 

( ) ( ) ( ) ( )
*

* * * * *| ,

i i

i i i i i i i if f g d g d
  

=  
  
 
v v

y y v v v v v v

 
 

From (1.40), it follows that 

( ) ( ) ( ) ( )* *

1

| , | ,
in

i i i i ij ij i ij

j

f g f g
=

 =y v v v y v v v

. 

 

Hence 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

*

1

1 1

| ,

| ,

i

i ij

iji

i ij

n

i i i i ij ij i i

j

nn

ijk ij i ij ij i i

j k

f f g d g d

f y g d g d

=

= =

  
=  

  

   
=   

    

 

  

v v

v v

y y v v v v v v

v v v v v v

 (1.43) 

 

Using the Poisson distribution model as an example,  

 

( )
( )

,

exp
| ,

!

ijky

ijk ijk

ijk ij i

ijk

f y
 



−
=v v

 
where 

 ' ' '

(2) (3)exp .ijk ijk ijk ij ijk i = + +x β z v z v
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2.6.2.2 Log-likelihood function 

Let 

( )

( )  ( )

*

1

ln

ln
i

i

i i

n

ij i i

j

l f

h g d
=

=

= 
v

y

v v v

 
where 

( ) ( ) ( )
1

exp ln | ,
ij

ij

n

ij ijk ij i ij i

k

h f g d
=

= 
v

v y v v v v

 
 

Note that 

 

( ) ( ) ' 1 1

1 2

11 1

1 1
exp exp

2 2

iji i

ij

nn n

ij i ijk ij ij ij i i

kj j

h g K l d K− −

== =

   
  = − −   

   
  

u

v v v Φ v v v Ψ v

 
Let 

   
' 1

1

1
ln

2

ijn

ij ijk ij ij u

k

t l K−

=

= − + v Φ v   (1.44) 

    ( )ln | ,ijk ijk ij il f y= v v   (1.45) 

and 

    11
ln ,

2
i v i iq K −= − v Ψ v   (1.46) 

        
( )

1 22
2

r

uK 
−−

= Φ
 

         
( )

1 22
2

m

vK 
−−

= Ψ
. 

 

From (1.44), (1.45) and (1.46) it follows that 
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2

1

2

1

*

2

1

exp exp

exp ln exp exp
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i

i ij

i

i ij

i
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ij ij i i
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j
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K q q d
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=

=
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with 

 
* exp .

ij

ij ij ijq t d= 
v

v

 

 

Therefore 

 ( ) ( )*ln ln ln ln ln exp

i

i v i v ij i i

v

l K f K q q dv= + = + +y   (1.47) 

where 

 

*

1

ln
in

ij ij

j

q q
=

=
 

 

2.6.2.3 Empirical Bayes estimates 

Estimates of the random effects are obtained as the conditional expectation of ijku  given the 

observations 
*

iy . More specifically, 

   

( ) ( ) ( )* *| exp /ijk i v i ij ijk i iE u K q q p d f = +
 y v y

      
 (1.48) 

where  

( )
1

222
m

vK 
−−

= Ψ
, 

11

2
i i iq −= − v Ψ v

 
and where 

( ) ( )| ,

ij

ijk ijk ij i ij ij ijp u f g d= 
v

y v v v v

 
Likewise 

  ( ) ( ) ( )* *| exp /ijk ijl i v i ij ijkl i iE v v K q q c d f = +
 y v y

 
 (1.49) 

 

where 

( ) ( )| ,

ij

ijkl ijk ijl ij i ij ij ijc v v f g d= 
v

y v v v v

. 

 

2.6.2.4 Derivatives of the log-likelihood function 

Fixed effects:  -derivatives  

( ) ( )*ln ln expi i v i ij il f K q q d= = +y v
 

 

Therefore 
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( ) ( ) ( )
1

ln exp ln | ,
i

i ij

n

i ij i ij ij i i
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l f g g d
=

  
=  

  
 
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y v v v v v
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*

*
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  (1.50) 

Since 

*

1
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ij ij

j

q q
=

=
, 

it follows that 
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q
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
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and  
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*

1

1
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n
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=
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
=


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v
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 (1.51) 

 

Level-2 variance components:   - derivatives 

 
( )
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where  
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( )1 ' 1.ij ij ij

− −= −P Φ v v Φ Φ
 

 

Level-3 variance components:  - derivatives 
 

  
( )

( ) ( )
*

ln 1
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i

i
ij ij i i

rs rsi

l
q q q dv

f 
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  (1.53) 
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11
ln

2
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i i i v
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g

−= −  +

=
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   ( )
,

2

2

i
i r s
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q rs



 − 
 =    

P    (1.54) 

where  

 

( )1 ' 1.i i i

− −=  − P v v
 

 
Second order derivatives  

The method for obtaining second order partial derivatives is illustrated below for the terms 
2 ln i

uv rs

l

 



 
 

and 
2 ln i

uv rs

l

 



 
. The derivatives for 

2 ln i

u rs

l

 



 
 etc. are obtained in a similar way. 

 

( ),uv rs  : 

 

From (1.53) 
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Hence 



                                                                                                                                                                                                                                                                                                                                                                             

 

 

145 
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    ( ) 1 1 1 1
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ln ln exp
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i

i

i i i i ij i
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i i
i i i ij i ur vs us vru v r s

uv rsi

g g q q d
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l lcons
P P q q d cons

f

 

 

   
 

− − − −

  
+  + 
  

 
−
 

 
=  + − − +

 





v

v

v v v v

v
y

           (1.55) 

( )( )2 2

2

uv rs
cons

 − −
=

 
 

From (1.55) it follows that 

 

             
2

1 1 1 1

| | |

ln
.

i i i

i
y i y i y i i ur vs us vruv rs uv rs

uv rs

f
cons E E E

 

− − − −
= −  + +


P P P P ψ ψ ψ ψ (1.56) 

 

( )uv rs,I Φ Φ : 

 

From (1.52) we have 

( )
( ) ( )

*

ln 1
ln exp

i

i
i ij i i

rs rsi

l
g q q d

f 

  
= + 

  

v

v v
y

 
and 

( ) ( )
1

ln | ,
ij

ij

n

ij ij i ij ij ij

k

q f g d
=

= 
v

y v v v v

. 

Thus 

1

2
_

2

in

ij

jrs

rs
q E PIJ EPIJ



 =

 −
= =




, 

where 
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( ) ( ) ( )* ,

1 2
_ | ,

2
ij ij i ij ij ijr s

ij

rs
E PIJ P f g d

q

− 
=  

 
 y v v v v

, 

and 

  
( )

( )
*

ln 1
exp

i

i
ij i i

rs i

l
EPIJ q q d

f


= +

 
v

v
y

  (1.57) 

1

_
in

j

EPIJ E PIJ
=

=
, 

and therefore 

 

( )
( )

2 2

*

ln ln ln1
exp

i

i i i
ij ij ij i ij i

uv rs uv rs uv rs uv rsi

l l l
q q q q q d

f     

      
= +  + −   

        

v

v
y

. 

 

Hence 

( )
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2
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1

1 1 1 1

1
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i
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i

n

i
y ij ij i ij iuv rs
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N
i i

i ur vs us vr
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=
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   = +       

  
 +  +  +      





v

P P v
y

Φ Φ Φ Φ

 
 

2.6.2.5 Evaluation of integrals 

In the preceding sections expressions for the log-likelihood function and derivatives are given in 

terms of multiple integrals. In general, no closed form solution to these multiple integrals exists and 

therefore use is made of numerical integration to evaluate them. 

 

Consider a general integral of the form   

 

 
( ) ( )| ,i i i iI f g d=  y v v v

 
 

where it is assumed that ( ),i Nv 0 Φ . This integral can equivalently be written as follows: 

 

 

( )
( ) ( )

( )

|
| ,

|

i i i i

i i i

i i

f g d
I d



  
=  

  


y v v v
v y v

v y
 

where 

 ( ) 11
| exp ,

2
i ii i i i ik

 
−    

= − − −    
    

v y v v Σ v v   (1.58) 
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( )| ,i i iE


=v v y

 

( )|i i iCov



= v yΣ , 

and  

   ( )
/2 1/22 | | .i

r
k 


− −= Σ     (1.59) 

 

Consider the transformation of variables 

 

   
11

2
ii i i


−  

= − 
 

z T v v     (1.60) 

where 

'

i i i


= ΣTT  

and hence 

( ) ( )
1 1

' .i ii
− −

=Σ T T  

 

From (1.60) it follows that 

( ) 2 ,ii i i i i



= = +v v z Tz v  

 

The Jacobian of the transformation is given by 

 

 

*

*

| | ,

2 .

i i i

i i

d d=

=

v T z

T T  
 

Using the change in variables, it follows that 

 

  
( ) ( )' *

'

|
exp | | .

exp

i i i

i i i i

i i

f g
I k d

k

 
= −  

− 


y v v
z z T z

z z
  (1.61) 

 

2.6.2.6 Adaptive quadrature 

To evaluate (1.61), use is made of a direct implementation of Gauss-Hermite quadrature. With this 

rule 

 

 

2exp{ } ( )z f z dz



−

−
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can be approximated by  

 1

( )
G

w f z 

=


, 

 

where the w  and z  denote weights and nodes of the Hermite polynomial of degree G . 

 

Applying this to the multiple integral defined by (1.61), it follows that 
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g g
G G

g g i i i g i g

g g

I C w w f g

C m m f g

= =

= =

=

 

 

z z T y v z v z

T y v z v z  

 

( ) ( )

( ) ( )

*

1
1

*

1
1

( ) ( )
1 1

( ) ( )
1 1

exp |

|

i i i ir
r

i i i ir
r

g g

g g

G G
I C w w f gg g g g g g

G G
C m m f gg g g g

= =

= =

  

 =

z z T y v z v z

T y v z v z

 
 

where 

 

( )
/ 2 1/ 22 | | ,

r
C 

− −= Φ

 

 
( )exp ln ,g g gm z w

  
= 

 
and 

 
( )1 2, , ..., .g g g grz z z z=

 
 

Values of i



v  and i

Σ  (cf. Section 2.3.3) are iteratively updated. This implies that the location and 

scale of the area under the integral changes over iterations and depends on the observed values for a 

particular level-3 or level-2 unit.  

 

2.6.3 Starting values for generalized linear models 

2.6.3.1 Introduction 

LISREL uses an algorithm based on the maximization of the posterior distribution (MAP) with respect 

to the random effects. 
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In the sections to follow, we assume a level-2 model with a count outcome variable. It is also assumed 

that the Poisson model is appropriate for level-2 data with a subset of the regression coefficients 

assumed to be random. 

 

2.6.3.2 Illustration of the procedure for a count outcome variable 

Let ijy  be a count outcome variable where i  denotes level-2 units, 1,2, ,i N=  and j  level-1 units 

nested within the level-2 units 1,2, , ij n= . 

 

Under the assumption of conditional independence 

 

  ( ) ( ) ( )
1

2

i

ij

n
y

i i ij ij ij

j

f | exp y ! 
−

=

= −y v   (1.62) 

 

Suppose that the following exponential model is imposed on the means of the elements ijy  of the 

1in   vector iy  

 

  ( ) ( )' '

ij ij ij ij iexp exp , = = +x β z v    (1.63) 

 

where ijx  is a 1p  vector of covariates and the elements of 
'

1 2, , , p   =  β  denote unknown, 

but fixed, parameters. Generally, the 1m  vector ijz   is a subset of the columns of ijx . Additionally, 

it is assumed that 1 2, , , Nv v v  are i.i.d. ( ),N 0 Φ . 

 

The model (1.63) is transformed to a linear model by using the log link function. In other words, 

 

    ( )ij ijln = .    (1.634) 

 

Using standard results for conditional distributions, it follows that 
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( ) ( ) ( )

i i i i i

i i i i

f | f , / f
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=
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v y v y y
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Hence 
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( ) ( ) ( )

( )  ( )
1

i

i i i i i

n

ij ij ij ij i

j

ln f | ln f | ln g K

y ln ln y ! g K , 
=

= + −

= − + − + +

v y y v v

v
 (1.65) 

2.6.3.3 Gradient vector and Hessian matrix 

Given β  and Φ , it follows that 
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1

1 2
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ij ij ij i
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 
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v
v  (1.66) 

 

Since 

   
ij
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z
v





=


,     (1.67) 
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' 1
22

1
2 exp

2

r
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and hence 
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1
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i
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i r

g
−


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v
Φ v
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   (1.68) 

it follows that 
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  1

1

ln |
, 1, 2, , , .

in
i i

ijr ij ij i r
jir

f
z y r m

v
 −

=


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
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Φ v  

 

Maximization of ( )ln |i if v y  is equivalent to the minimization of  

 

   ( ) ( )
2 1

i i i

F F

F ln f | ln g .= −v y v    (1.69) 

Hence the gradient vector is defined by 

 

    
( )ln |i ii

ir ir

fF

v v


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 

v y
.  (1.70) 

 

Furthermore, 

 
2

1

1

1 2
in

i
ij ir ijr ,s

jir is

F
z z s, r , s , , , ,m.

v v
−

=


 = + =  

Φ  (1.71) 

 

Let H  denote the Hessian matrix, where 
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    
2

,
,i r s

ir is

F

v v


=
 

H     (1.72) 

then 

    ( )1

,,
1

,
in

i r s ijr ijs ijr s
j

E z z E −

=

= +H Φ    (1.73) 

where 

  ( )  ( )' '

ij ij ij ijE E exp = +x β z v .   (1.74) 

Therefore 

   1

1

1

2
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j

E exp z z .−

=

  
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H Φ x β z Φz   (1.75) 

 

2.6.3.4 The MAP algorithm 

Set 0.1


= Φ I , 1 2, , , N

  

=v v v 0  

Calculate 


β  given 


Φ  and i



v  

Given the current estimates 


β  of β  and 


Φ   of Φ , calculate i



v , 1,2, ,i N=  using the Newton-

Raphson method: 

 

  
( ) ( 1)

1( ) ( ) , 1,2,
k k

k k
i i i i k

−
−= + =v v H g   (1.76) 

where 

    , 1, 2, , .i
i r

ir

F
r m

v


= =


g    (1.77) 

Obtain (see, e.g., du Toit, 1993) a revised estimate 


Φ  of Φ  from 

 

  ( ) ( )( )
'1

|i i iiCov
N

  
= + − − 

 
Φ v y v v v v   (1.78) 

where 

  ( ) ( )
1

|i i iCov E
−

=   v y H     (1.79) 

and 

   
1

1 in

i ij

ji

v
n =

= v .     (1.80) 

Repeat steps (2) to (4) until convergence is attained. 
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2.6.3.5 Starting values for adaptive quadrature 

As initial estimates of the fixed and random parameters, we use the values of 


β  and 


Φ  at 

convergence. The iv  and ( | )i iCov v y  (see (1.79) and (1.80)) are used as initial estimates of the 

empirical Bayes means and the covariances in the adaptive quadrature procedure described in Section 

2.6.2.  

 

2.7 References 

Agresti, A. (2002). Categorical Data Analysis, Second Edition. New York: Wiley. 

 

Binder, D.A. (1983). On the Variances of Asymptotically Normal Estimators from Complex 

Surveys. International Statistical Review, 51, 279-292. 

 

Bishop, Y.M.M., Feinberg, S.E. & Holland, P.W. (1988). Discrete Multivariate Analysis: Theory 

and Practice. Cambridge: MIT Press. 

 

McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models. Chapman & Hall: London. 

Morel, G. (1989). Logistic Regression under Complex Survey Designs. Survey Methodology, 15, 

203-223. 

 

SAS Institute, Inc. (2004). SAS/STAT®: User's Guide. Cary, NC: SAS Institute, Inc. 

 

 


