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1.

Introduction

There has been a growing interest in recent years in fitting models to data collected from longitudinal
surveys that use complex sample designs. This interest reflects expansion in requirements by policy
makers and researchers for in-depth studies of social processes over time. Traditionally, the analyses
of complex survey samples have been carried out using specialized software packages. More
recently, a number of statistical analyses packages, for example SAS and spss, have implemented
procedures to handle complex survey data appropriately in the case of regression models with
continuous and categorical outcome variables. In this guide we describe techniques currently
implemented in LISREL for analyzing complex surveys data. Research on the longitudinal analysis
of complex survey data with LISREL was supported by SBIR grant R43 AA014999-01 from NIAAA to
Scientific Software International.

A common theme in substance use research is that data are usually obtained from a multi-stage or
so-called complex sampling data. A complex sampling design typically entails stratification, often
on the basis of geography; defining meaningful clusters of population elements (PSuUs); and one or
more stages of subsampling within each PSU. While a complex sample has the advantages of being
more economical and practical, guarantees a better representative sample of the population, and does
not require a complete sampling frame of the population elements, it is generally less efficient than
simple random sampling.

Multilevel models are particularly useful in the modeling of data from complex surveys. Cluster or
multi-stage samples designs are frequently used for populations with an inherent hierarchical
structure. Ignoring the hierarchical structure of data has serious implications. The use of alternatives
such as aggregation and disaggregation of information to another level can induce an increase in
collinearity among predictors and large or biased standard errors for the estimates.

The collection of models called Generalized Linear Models (GLIMs) have become important, and
practical, statistical tools. The basic idea of GLIMs is an adaption of standard regression to quite
different kinds of data. The variables may be dichotomous, ordinal (as with a 5-point Likert scale),
counts (number of arrest records), or nominal. The motivation is to tailor the regression relationship
connecting the outcome to relevant independent variables so that it is appropriate to the properties
of the dependent variable. The statistical theory and methods for fitting Generalized Linear Models
(GLIMs) to survey data is described in the Generalized Linear Modeling Guide. Researchers from the
social and economic sciences are often applying these methods to multilevel data and consequently,
inappropriate results are obtained. We describe the LISREL statistical module for the analysis of
multilevel data with design weights. Two estimation methods, MAP (maximization of the posterior
distribution) and ADAP (adaptive quadrature) for fitting generalized linear models to multilevel data
are available. The LISREL module allows for a wide variety of sampling distributions and link
functions.



2. Generalized multilevel models

2.1 Background

In this guide, we illustrate and outline the statistical theory and methods that are implemented in the
multilevel generalized linear model (MGLIM) module of LISREL. Section 2.2 reviews the options and
dialog boxes of the Multilevel, Generalized Linear Model menu on the LISREL System File (LSF)
window of LISREL. MGLIM syntax files are reviewed in Section 2.3. Illustrative examples are
provided in Section 2.4. In Section 2.5, the results of the MGLIM module are assessed by simulation
study. The MGLIM statistical theory for complex survey data is outlined in Section 2.6.

2.2 Graphical User Interface

2.2.1 The Multilevel, Generalized Linear Model menu

The Multilevel menu provides you access to three options: Linear Model, Generalized Linear Model
and Non-Linear Regression. In this guide, the Generalized Linear Model option is introduced. As
shown below, the Generalized Linear Model option provides a sequence of five dialog boxes that can
be used to create a MGLIM syntax file interactively. It is located on the LSF (LISREL System File)
window of LISREL which is used to display, manipulate and process raw data. In other words, you
must create a LSF file and open it in a LSF window before syntax can be generated interactively. To
illustrate this, the LSF window for the file ASPART.Isf (Multilevel Generalized Linear Model examples
folder) with the Multilevel, Generalized Linear Model menu expanded is shown below.

@ LISREL for Windows - ASPART.Isf ‘

File Edit Data Transformation Statistics Graphs SurveyGLIM  View Window Help
I'DO&E e Ba (B =0 1 I Linear Model v
N = Generalized Linear Model 4 Title and Options...
[} ASPART.Isf - ; i
Mon-Linear Regression 4 ID and Weight...
e HeadAche | Druumsp rerouT FEMOY  Distributions/Links..
L 0.00 0.00 0.00 Model Specification poij-
2 200 5.00 1.00 1.00 _ pV . 0=
! 3 2.00 2.00 0.00 0.00 [T et BRI R s b0
i 4 5.00 3.00 0.00 0.00 0.00 0.00 0.00
b 5.00 0.00 1.00 1.00 0.00 0.00 0.00

The typical next step would be to click on the Title and Options option to load the Title and Options
dialog box (see Section 2.2.2). However, you can directly click on the ID and Weight,
Distributions/Links, Model Specification or Random Variables option to go to the ID and Weight (see
Section 2.2.3), the Distributions and Links (see Section 2.2.4), the Model Specification (See Section
2.2.5), or the Random Variables dialog box (see Section 2.2.6) respectively.



2.2.2 The Title and Options dialog box

The Title and Options dialog box allows you to specify a title and the options of the MGLIM analysis
interactively and is accessed by selecting the Title and Options option on the Multilevel, Generalized
Linear Model menu. This selection loads the following Title and Options dialog box.

Title: -

| ——

M aimum Mumber of lterations; |100

Title = <string>;

Cornvergence Criterion: 0.0001

T  MGLIMOptions
Mizzing D ata Walue: -333333 \ Maxlter = 100

T Converge = 0.0001
Dependent Missing Value: -333333

Optimization Method O — MissingCode = -999999
Dependent_Miss=-999999

—|
Method =
Mumber of Quadrature Points: |10 _I \\ ethod = Quad

" AP {* Quadrature

NQUADPS =10

Additonal Qutput |

[ Residual files [ Ma data sunirman Output = Residuals

[ Asymptotic covanance Summary = None

ACM = Yes;

Mest »» Cancel | OF. |

Tobuild zyntas, proceed to the B andom Wariables screen and
click the Finizh button

Note that the Title and Options dialog box corresponds with the Title and MGLIMOptions commands
as indicated on the image above.

If desired, you can enter a descriptive title in the Title string field. If the raw data include missing
values with a global missing value other than -999999, you need to enter the global missing value in
the Missing Data Value number field. In order to specify missing data values on the outcome variable,
the Dependent Missing Value field should be used.

Since the MGLIM estimation equations do not have a closed form solution, MGLIM uses an iterative
algorithm to estimate the parameters of the MGLIM. In this regard, the MAP algorithm and the
Quadrature algorithm are available in the Optimization Method option. The default algorithm is MAP;
click the Quadrature radio button to choose that algorithm instead. You can then enter the number of
quadrature points in the Number of Quadrature Points field if the default of 10 is not appropriate.
Enter the appropriate convergence criterion in the Convergence Criterion number field if the default
value of 0.0001 is not to be used.



In the Additional Ouput section, three options are available upon request. If the Residual Files option
is selected, the residuals will be saved to a file with extensions .ba2 and ba3 for level-2 and level-3
residuals respectively. These residual files will have the same name than the output file except that
.out is replaced with .ba2 and .ba3. When the No data summary check box is checked, the data
summary will not be written to the output file. The Asymptotic covariance option provides the user
the option to save the asymptotic covariance file for the fixed and random part of the model to
additional files with extension _fixed.acm and _random.acm. Once you are done with the Title and
Options dialog box, click on the Next button to go to the Distributions and Links dialog box.

2.2.3 The ID and Weight Variables dialog box

The Level-2 ID variable and Level-3 ID variable boxes on the ID and Weight Variables dialog box is
used to select the variables in the LISREL data file (*.Isf) that identify the various levels of the
hierarchy. The Weight variable box is used to define the weight variable to be used in the analysis.
The image below shows the default settings for this dialog box and, to the right, the corresponding
syntax commands. See the alphabetical list of syntax commands for details on the options available
other than the default settings: IDn command (section 2.3.6) and WEIGHT command (section 2.3.15).

VYariables in data:

Add »> Level 2 ID variable:
D ‘

|HeadAche ID2 = <name of variable identifying

Efud*‘zﬁp << Remove ‘ level-2 units>;
erio
Period2
Period3
| |Periodd Add » Level 3 ID variable: : : _
| | NPeriods | ID3 = <name of variable identifying
‘l NTDays << Remove L

level-3 units>;

Add >> Weight variable:

| WEIGHT = <name of the weight
“—-— variable>;

<< Remove

L«Previousl [ Next >> ] ‘ Cancel J O

To build syntax, proceed to the Random Yariables screen and click
the Finish button

E

The Next button provides access to the Distributions and Links dialog box.



2.2.4 The Distributions and Links dialog box

The Distributions and Links dialog box allows you to specify the sampling distribution and the link
function of the MGLIM interactively. A summary of the combinations of sampling distributions and
link functions that are available in this module is listed in Table 1.

The Distributions and Links dialog box is, as shown below, usually accessed by clicking on the Next
button of the ID and Weight Variables dialog box. It can also be accessed by selecting the Distributions
/ Links option from the Multilevel, Generalized Linear Model menu.

Table 1: Sampling Distribution and Link Functions

Li CLL | Identity | Log Logit | OCLL | OLogit | OProbit | Power | Probit

Distribution
Bernoulli

Binomial X X X
Gamma X X
Inverse Gaussian X X
Multinomial X X X X

Negative
binomial
Normal X

Poisson X

Note that the Distributions and Links dialog box corresponds with the Distribution, Link, Intercept,
Dispersion and Scale commands as indicated on the image below.

Use the Distribution type and the Link function drop-down list boxes to select the distribution and
link function for your MGLIM. If an intercept for the mean model of the MGLIM is not required, you
should activate the No radio button.



Distributions and Links ! ol @
Distribution type: [Poisson vj Distribution = POI;
Link function: [Log v]
Link = LOG;
Include intercept?
Qver——— Intercept = Yes;
| v
N ol Vel Dispersion = No;
=23 (@) Fixed value
Estimate gcale? [None V] Scale = None:
|
|
l << Previous ‘ [ Next >> ] ‘ Cancel l [ OK ] |
|
To huild syntax, proceed to the Random Variables screen and click I
the Finish button
I |
== — — —= =4,

Some MGLIMs include dispersion or scale parameters. These MGLIMs are listed in Table 2. If a scale
parameter is desired, you can select the appropriate scale parameter from the Estimate scale? drop-
down list box. In the case of a dispersion parameter, you can fix its value by activating the Fixed
value radio button.

Once the Distributions and Links dialog box has been completed, the Next button is clicked to go to
the Dependent and Independent Variables dialog box.

10



Table 2: Scale and Dispersion Parameters

rameters Maximum
Scale Dispersion - Pearson Deviance
o Likelihood

Distribution

Binomial
Gamma X X X X
Inverse Gaussian
Negative binomial X
Normal
Poisson X X X

2.2.5 The Dependent and Independent Variables dialog box

Access to this dialog box is obtained by clicking on the Next button of the Distributions and Links
dialog box or by selecting the Model Specification option from the Multilevel, Generalized Linear
Model menu. Examples of the Dependent and Independent Variables dialog box are shown above.

The model for the means of the outcome variable is a function of a set of covariates. You specify the
outcome variable by first selecting it from the Variables in data list box and then by clicking on the
Add button of the Dependent variable section. The covariates of the model can either be categorical
or continuous variables. Dummy variables are also regarded as continuous variables. Categorical
covariates are specified by first selecting the covariates from the Vvariables in data list box and then
by clicking on the Categorical button. In a similar fashion, the Continuous button is used to specify
the continuous covariates and dummy variables of the model.

The Dependent and Independent Variables dialog box allows you to specify the model for the means
of the outcome variable and, if applicable, a frequency variable. In the case of a multinomial model
with ordinal link functions, the dialog box contains the Event Variable field. This field corresponds
to the optional CENSOR_VAR command. Note that the Event Variable cannot have the same name as
the dependent and independent variables selected for inclusion in the model.

The Dependent and Independent Variables dialog box for a multinomial model with ordinal link

function corresponds with the DEPVAR, COVARS and CENSOR_VAR commands as shown on the
image below.

11



Dependent and Independent Vanables -

o |

Yanables in data:

| School
Class
THKSard
THESbin

Intn:Et

<< Previous ‘

Add » | Dependent variable:

e

Independent wvariables:

DepVar = <label>;

Continuos 3> '

Categorical »»

e

add s Ewent Wariable:

| Cancel | |

Tobuild spntax, procesed to the Random Yariables screen and
click the Finizh button

CoVars = <label(s)>;

Event Variable = <label>

MGLIM can process models for count outcomes with offset variable. Specify the offset variable by
first selecting it from the Variables in data list box and then by clicking on the Add button of the
Offset variable section. This option is only available if a Poisson model is selected. This field
corresponds to the optional OFFSET command.

The Dependent and Independent Variables dialog box for a Poisson model corresponds with the
DEPVAR, COVARS and OFFSET commands as shown on the image below.
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Once the variables have been selected, click the Next button to load the Random Variables dialog
box.

2.2.6 The Random Variables dialog box

The Random Variables dialog box is used to select the variables for which coefficients are assumed
to be random from the LISREL data file (*.Isf). Default settings for this dialog box are shown in the
image below. To the right, the corresponding syntax commands are given. See the alphabetical list
of syntax commands for details on the options available other than the default settings: RANDOMnN
command (section 2.3.11). Note that the number of interactions cannot exceed the toatl number of
predictors selected. The default number of interactions is 0.
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Once all the options are set as desired, click the Finish button to generate the syntax.

2.3 Syntax

2.3.1 The structure of the syntax file

The syntax file, which is generated by the interface of the MGLIM module, can also be prepared by
using the LISREL text editor or any other text editor such as Notepad and WordPad. The structure of
the syntax file follows.

MGLIMOPTIONS <options>; Required
TITLE = <string>; Optional
SY = <filename>', Required
IDn = <label>; name of variable identifying level n units Required
DEPENDENT_MISS = <value>; Optional
WEIGHT = <label>; Optional
DISTRIBUTION = <name>; Required
LINK = <function>; Required
INTERCEPT = <option>; Required
DISPERSION = <option>; Optional
SCALE = <type>; Required
DEPVAR = <label>; Required
COVARS = <label(s)>; Required
OFFSET = <label>; Optional
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RANDOMN = <label>; names of variables included as random effects

on level n of the model Required
CENSOR_VAR = <name>; Optional
INTERACTIONS=<value>; Optional

where <label> denotes a case sensitive variable name used in the raw data file, <filename> denotes a
complete name (including the drive and folder names) of a file, <option> is either Yes or No, <type>
is one of None, Pearson, Deviance Or ML (see Section 2.3.5), <name> is one of BER, BIN, GAM, INVG
MUL, NBIN, NOR or POI (see Section 2.3.6) and <function> is one of CLL, IDEN, LOG, LOGIT, OLOGIT,
OCLL, OPROBIT, POW[n] and PROBIT (see Section 2.3.8). <options> denotes a list of options for the
analysis, each of which has the following syntax:

<keyword> = <selection>

where <keyword> is one or more of ACM, CONVERGE, MAXITER, METHOD, MISSINGCODE,
NQUADPTS, OUTPUT, REFCAT or SUMMARY and <selection> denotes a number, an option or a name

(see Section 2.3.9). In many applications, optional commands and keywords can be left out if there
are program default values available.

The TITLE, WEIGHT, DISPERSION, DEPENDENT_MISS, CENSOR_VAR, INTERACTIONS and OFFSET
commands are optional commands while the other ten commands are all required. The
MGLIMOPTIONS and SY commands should be the first two commands respectively, but the other
commands can be entered in any order. Except for variable labels, the contents of the syntax file are
not case-sensitive. Blank lines can be inserted in any section of the syntax file.

In the following sections, the seventeen MGLIM commands are discussed separately in alphabetical
order.

2.3.2 COVARS command

The purpose of the COVARS command is to specify the covariates of the model for the means of the
outcome variable and it is a required command. The COVARS command corresponds with the

Independent variables section on the Dependent and Independent Variables dialog box (see Section
2.5).

Syntax
COVARS = <label(s)>;

where <label(s)> denotes the case sensitive label(s) of the covariates of the model. In the case of a
categorical variable, the label should be augmented with a $ symbol. Dummy variables are regarded
as continuous variables. Consequently, dummy variable labels are not augmented with a $ symbol.
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Example

Suppose that the covariates of the model consist of a dummy variable, sex, a categorical variable,
edu, and a continuous variable, age. For this example, the corresponding COVARS command is given

by

COVARS = sex edu$ age;

2.3.3 CENSOR_VAR command

The purpose of the CENSOR_VAR command is to specify the frequency variable in the case of
multinomial models with ordinal link functions and it is an optional command. The CENSOR_VAR
command corresponds with the Event Variable section on the Dependent and Independent Variables
dialog box (see Section 2.5). Note that the Event Variable cannot have the same name as the
dependent and independent variables selected for inclusion in the model.

Syntax

CENSOR_VAR = <name>;

where <name)> denotes the case sensitive label(s) of the offset variable.

2.3.4 DEPENDENT_MISS command

The DEPENDENT_MISS command is used to specify the value of missing values, if any, on the
outcome variable of the model and it is an optional command. It corresponds with the
Dependent_Miss section on the Dependent and Independent Variables dialog box (see Section 2.5).

Syntax
DEPENDENT_MISS = <value>;

where <value> denotes the value of the missing data indicator on the outcome variable of the model.
By default, the value is set to — 999999.

2.3.5 DEPVAR command

The DEPVAR command is used to specify the outcome variable of the model and it is a required
command. It corresponds with the Dependent variable section on the Dependent and Independent
Variables dialog box (see Section 2.5).

Syntax

DEPVAR = <label>;
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where <label> denotes the label of the outcome variable of the model. Note that variable names are
case sensitive.

Example

Suppose that the variable, depr, is the outcome variable to be used. In this case, the corresponding
DEPVAR command would be

DEPVAR = depr;

2.3.6 DISPERSION command

The Negative Binomial sampling distribution, for example, has a dispersion parameter. This
parameter is specified by using the DISPERSION command. Since not all sampling distributions
involve a dispersion parameter, the command is optional with default of no dispersion to be
estimated. The DISPERSION command corresponds with the Estimate dispersion? section on the
Distributions and Links dialog box (see Section 2.4).

Syntax

DISPERSION = <option>;
where <option> is either Yes or No.

Default

DISPERSION = No;

2.3.7 DISTRIBUTION command

Each MGLIM involves the sampling distribution of the outcome variable. The sampling distribution
is specified by means of the DISTRIBUTION command, which is optional. The DISTRIBUTION
command corresponds with the Distribution type drop-down list box on the Distributions and Links
dialog box (see Section 2.4) as shown below.

Syntax

DISTRIBUTION = <name>;

where <name> is one of BER (Bernoulli), BIN (Binomial), GAM (Gamma), INVG (Inverse Gaussian),
MUL (Multinomial), NBIN (Negative Binomial), NOR (Normal) or pPoI (Poisson).

Default

DISTRIBUTION = MUL;

17



F i |
Distributions and Links‘ ﬁ

Distribution type: [Poisson v]
Bernaulli
Binomial

Link function: Gamma

Inwerse Gaussian
Megative Binomial

hultinomial
Mormal l
Include intercept? I
) ) |
@)Yes (@] \
|
|
Yes (@) Fixed value:
||
| |
. [
Estimate scale? [None V] i
[
[
|
£< Previous l l Mext > l l Cancel l [ OK. |
Tobuild syntax, proceed to the Random Yariables screen and click I
the Finish button |
1
|
——

2.3.8 IDn command

The ID command(s) are used to indicate the variable(s) identifying the units on the different levels of
the hierarchy. ID command(s) are required command(s).

If the model specified is a 2-level model, the command ID2 is required. Likewise, if a level-3 model
is to be considered, the ID2 and ID3 commands are required in the syntax file.

Variables listed in the ID commands must be included in the data file (*.Isf file). Variable names are
case sensitive, therefore the spelling and case in which they are given need to correspond to that
given in the spreadsheet.

Syntax

IDn = <variable name identifying level-n units>;
Example

Suppose the raw data file contains information on the test scores, age and gender of pupils belonging
to classes within schools, and the variables school, class, pupil, age, gender and score are contained in
the data file. The following ID commands may be used to identify the levels of the hierarchical
structure:
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ID3 = school;
ID2 = class;

The Identification Variables dialog box shown below shows the settings needed to obtain these
commands.

ID and Weight Varia E]

Yariahles in data:
Zchool Add >> Level 2 1D variable:

THKShin
Intrept

PreTHKS
cC Add >3 Level 31D vaniable:

:
oo

Add >> Weight wariahle:

<< Remowve I:l

lg(PreviDus] l Mext 2> ] l Cancel 0K

Tobuild syntex, proceed to the Random Variables screen and click
the Finish button

2.3.9 INTERACTIONS command

The purpose of the INTERACTIONS command is to allow specification of the number of interactions.
It is an optional command. The INTERACTIONS command corresponds with the Number of
Interactions section on the Random Variables dialog box. The number of interactions cannot exceed

the number of selected predictors.

Syntax

INTERACTIONS = <number>;

Default

INTERACTIONS=0;
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2.3.10 INTERCEPT command

Many MGLIMs can either include or exclude an intercept parameter for the model for the means of
the outcome variable. The purpose of the INTERCEPT command is to allow you to either include or
exclude an intercept parameter and it is an optional command. The INTERCEPT command
corresponds with the Include intercept? section on the Distributions/Links dialog box (see Section
2.3).

Syntax
INTERCEPT = <option>;

where <option> is either Yes or No.

Default

INTERCEPT = Yes;

2.3.11 LINK command

The link function of a MGLIM describes the relationships between the means of the outcome variable
and the means of the corresponding linear model. The LINK command is used to specify the link of
the MGLIM, and corresponds with the Link function drop-down list box on the Distributions/Links
dialog box as shown below. It is an optional command.

Syntax

LINK = <name>;

where <name> is one of CLL (complementary log-log), IDEN (identity), LOG (log), LOGIT (logit),
OCLL (proportional hazards), OLOGIT (cumulative logit), OPROBIT (cumulative probit), and PROBIT
(probit).

Default

LINK = Iden;

2.3.12 MGLIMOPTIONS command

The purpose of the MGLIMOPTIONS command is to select the iterative algorithm to be used and to
specify options for the selected iterative algorithm. In addition, it is used to specify a global missing
data value and the output to be generated. Finally, it allows you to specify the variance adjustment
proposed by Morel (1989) if the estimated asymptotic covariance matrix of the parameter estimators
is not positive definite. The MGLIMOPTIONS command must always be the first command and is a
required command. It corresponds with the Title and Options dialog box (see Section 2.2).
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Syntax

MGLIMOPTIONS <options>;

where <options> is a list of options each of which has the following syntax:

<keyword> = <selection>

where <keyword> is one or more of ACM, CONVERGE, MAXITER, METHOD, MISSINGCODE,
NQUADPTS, OUTPUT, REFCAT or SUMMARY and <selection> refers to a name, a number or an option.

23121 ACM keyword

The AcM keyword is used to print the large-sample covariance matrices of the estimated parameters
in the fixed part and random part of the model. This keyword is controlled from the Title and Options
dialog box.

Standard errors of the estimated parameters are equal to the square roots of the diagonal elements.
The non-duplicated elements of these asymptotic covariance matrices are written to external files
with the following default names:

<Outputfilename>_fixed.acm
<Outputfilename>_random.acm

If the output file name is, for example, aspart.out, then the large-sample covariance matrices are
saved to the files aspart_fixed.acm and aspart_random.acm.

Syntax
ACM = <option>
where <option> is either Yes or No.
Default
ACM = No

No asymptotic covariance matrices will be printed by default.

Example
In the MGLIMOPTIONS command below, the ACM keyword is used to request the printing of the
asymptotic covariance matrices at convergence. A convergence criterion of 0.0001 is set as the
requirement for convergence, and 30 iterations is indicated as the maximum number of iterations to
be performed.

MGLIMOPTIONS MAXITER = 30 CONV = 0.0001 ACM = Yes;
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2.3.12.2 CONVERGE keyword

The tolerance limit of the convergence criterion of the selected iterative algorithm is specified by
using the CONVERGE keyword which is an optional keyword. The CONVERGE keyword corresponds
with the Convergence Criterion section on the Title and Options dialog box (see Section 2.5.2.2).

Syntax

CONVERGE = <number>

where <number> denotes a real number greater than zero.

Default

CONVERGE = 0.0001

2.3.12.3 MAXITER keyword

You can control the maximum number of iterations of the selected iterative algorithm by means of
the MAXITER keyword which is an optional keyword. The MAXITER keyword corresponds with the
Maximum Number of Iterations section on the Title and Options dialog box (see Section 2.5.2.2).

Syntax

MAXITER = <number>

where <number> denotes a positive integer.
Default

MAXITER = 100

23124 METHOD keyword

MGLIM implements the MAP and quadrature iterative algorithms to obtain the estimates and standard
error estimates of the MGLIM parameters. The METHOD keyword is used to select one of these
algorithms and it is an optional keyword. It corresponds with the Optimization Method section on the
Title and Options dialog box (see Section 2.2).

Syntax

METHOD = <method>

where <method> is either MAP or QUAD.

Default

METHOD = MAP
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2.3.12.5 MISSINGCODE keyword

Raw data often include missing values. MGLIM uses list-wise deletion for handling data with missing
values if you specify a global missing value by means of the MISSINGCODE option, which is
optional. The MISSINGCODE keyword corresponds with the Missing Data Value section on the Title
and Options dialog box (see Section 2.2).

Syntax

MISSINGCODE = <number>

where <number> denotes a real number.

Default

MISSINGCODE = -999999

2.3.12.6 NQUADPTS keyword
The NQUADPTS keyword is used to define the number of quadrature points (per random-effect
dimension) to use in the evaluation of the log-likelihood function and derivatives using numerical
integration. It is usually between 10 and 20 for 1 random effect and 5 to 10 for 2 or 3 effects.

Syntax

NQUADPTS = <number>

where number is a positive integer.

Default

NQUADPTS = 10

2.3.12.7 OUTPUT option

MGLIM can write the residuals of the MGLIM analysis to separate CSV files. The oUTPUT keyword is
used to request this file and is an optional keyword. The ouTPUT keyword corresponds with the
Residual files option in the Additional Output Section on the Title and Options dialog box (see Section
2.2.2).

Syntax
OUTPUT = Residuals

When residual file is requested, MGLIM will save the file to a separate CSV file, which has the same
name as the LSF, except that .Isf is replaced with _RES.CSV.
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Default

No residual file is generated.

2.3.12.8 REFCAT keyword

The REFCAT is an option to select whether the first or last category of the outcome should be used
as the reference category. It is to be used with nominal outcomes only.

Syntax

REFCAT = <keyword>

The keyword is either LAST or FIRST.

Default

REFCAT = Last

2.3.12.9 SUMMARY keyword
The SUMMARY keyword is used to suppress the printout of the data summary table.
Syntax
SUMMARY = <option>

where <option> is either Yes or No.

Default

SUMMARY = Yes;

the summary table containing sample sizes of units within the various levels of the hierarchy is
printed.

2.3.12.10 MGLIMOPTIONS example

Suppose that the quadrature algorithm with a 10 quadrature points and a convergence criterion
tolerance limit of 0.0001 with printed details is required. Suppose the residual file and asymptotic
covariances files are required, no data summary is printed and the global missing value for the raw
data is -9. For this example, the GLIMOPTIONS command is given by

MGIlimOptions Converge=0.0001 Maxlter=100 MissingCode=-9 Method=Quad NQUADPTS=10
Output=Residuals Summary=None ACM=Yes ;

This MGLIMOPTIONS command corresponds with the following Title and Options dialog box.
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2.3.13 OFFSET command

The OFFSET command is an optional command used for count outcomes only. It is used to define

the offset (exposure) variable.

Count models are also appropriate for rate data, where the rate is a count of events occurring for a
particular unit of observation, divided by a measure of that unit's exposure. An example is the death
rates in geographic areas as the count of deaths (outcome variable) divided by person-years
(exposure). In count models, this is handled by an offset where the exposure variable is a predictor

with regression coefficient constrained to 1.

Syntax
OFFSET = <variable name>;
Example

OFFSET = Pers_Yrs;



2.3.14 RANDOMnN command

The RANDOMNn command is used to identify those variables whose coefficients are allowed to vary
randomly over level-2 and 3 of the hierarchy. One RANDOM command is allowed for each level of
the hierarchy. When the syntax file is created through the interface, the RANDOM command(s) are
automatically generated. Variables listed, except for the variable intcept (intercept), must be included
in the data spreadsheet (*.Isf file). The spelling and case in which they are given need to correspond
to that given in the spreadsheet. By default, the intercept is automatically included as a random effect
at level-2 and 3 of the model. To exclude the intercept term at any level, the corresponding Intercept
check box (see the Random Variables dialog box below) must be unchecked.

Syntax

RANDOMnN = <list of variables names to be included as random effects on level n> ;

where n =2 or 3.

Example
Random Variables ﬁ
Yariables in data Fandom Level 2
Schoal V| Intercept PraTHKS
Class
THESord
THKShin Add >
EEC— | <o
[
T
DT
Random Level 3
V| Intercept
Add x>
<< Femowe
| << Presvious | | Einish | | Cancel | | 0K
Tobuild syntax, click the Finish button .
i -

The Random Variables dialog box shown above corresponding to the commands

RANDOM2 = intcept PreTHKS;
RANDOM3 = intcept;
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The settings corresponding to the following commands are shown on the Random Variables
dialog box below:

RANDOMS = intcept X2 X1 ;
RANDOM2 = time;

Random Variables ﬁ
Wariahles in data Random Level 2
id3 [intercept tirrie
N
count Add >>
fime
time_sg
o << Remowve
I =2 I
Random Level 3
Intercept i
1
£< Femowe
<< Presvious ‘ l Einish ‘ l Cancel ‘ l 0K
Tobuild syntax, click the Finish buttan .
LS -

From this hypothetical example the following can be seen:

o The random variables may be listed in any order.
o Any or all of the possible predictors may be included in a RANDOM command at any level
of the model.

2.3.15 SCALE command

Some sampling distributions such as the Poisson, Binomial, Gamma, Inverse Gaussian and Normal
distributions have an optional scale parameter. This parameter is specified by using the SCALE
command. Since not all sampling distributions involve a scale parameter, the command is optional.
The SCALE command corresponds with the Estimate scale? drop-down list box on the Distributions
and Links dialog box as shown below.
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Syntax
SCALE = <type>;

where <type> is one of None, Pearson or Deviance.

Default

SCALE = None;

2.3.16 SY command

MGLIM can process raw data or frequency data that are available in the form of a LSF (LISREL System
Data file). The LSF to be processed is specified by means of the SY command. The SY command is a
required command and must be the second command listed in the syntax file. The SY command
corresponds with the LSF window.

Syntax

SY = <filename>";

where <filename> denotes the complete name (including drive and folder names) of the LSF. The
drive and folder names may be omitted if the LSF and syntax file are in the same folder. Note the use
of single quotes in this command.
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Example

Suppose that the data to be processed are listed in the file ASPART.Isf which is located in the
SGLIMEX folder on the C drive. In this case, the SY command is given by

SY = 'C:\MGLIMEX\ASPART.LSF';

2.3.17 TITLE command

It is often convenient to label a specific analysis to distinguish it from other analyses. This can be
accomplished by using the TITLE command which is an optional command. The TITLE command
corresponds with the Title string field on the Title and Options dialog box (see Section 2.2.2).

Syntax
TITLE = <string> ;

where <string> denotes a descriptive title for the analysis.

Example

Consider an analysis in which a Bernoulli-Probit model was fitted to substance abuse data. In this
case, one possible TITLE command is given by

TITLE = MGLIMEX2: Binary outcome variable, logit link function;

2.3.18 WEIGHT command

Design weights are constructed for the ultimate sampling units of complex surveys. The purpose of
the WEIGHT command is to allow you to specify the design weight variable. Since surveys without
design weights are permitted, the WEIGHT command is an optional command. The WEIGHT
command corresponds with the Weight variable section on the ID and Weight Variables dialog box
(see Section 2.2.3).

Syntax

WEIGHT = <label>;

where <label> denotes the case sensitive label of the design weight variable.
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Example

Suppose that the variable A2TWAO is used to capture the design weight for each observation. For this
example, the WEIGHT command is given by

WEIGHT = A2TWAQO;

2.4 Examples

2.4.1 Introduction

2.4.1.1 Generalized linear models (GLIM)

Many popular statistical methods are based on mathematical models that assume data follow a
normal distribution. The most obvious among these are the analysis of variance for planned
experiments and multiple regression for general analyses of independent and dependent variables. In
many situations, the normality assumption is not plausible. Consequently, use of methods that
assume normality may perform unsatisfactorily. In these cases, other alternatives that do not require
data to have a normal distribution are attractive.

A generalized linear model is a useful generalization of ordinary least square (OLS) regression. In
OLS, the outcome variable is assumed to follow a normal distribution. However, this assumption is
often invalid especially when dealing with categorical outcomes. A GLM assumes that the outcome
variable follows a distribution function in the exponential family. It allows a linear transformation
of the non-normal outcome variable. And it carries the regression concepts of OLS.

2.4.1.2 Multilevel model

The collection of models called Generalized Linear Models (GLIMs) have become important, and
practical, statistical tools. The basic idea of GLIMs is an adaptation of standard regression to quite
different kinds of data. The variables may be dichotomous (agree/disagree), categorical (as with a 5-
point Likert scale), counts (number of arrest records), or nominal (choose among six candidates for
mayor). The motivation is to tailor the regression relationship connecting the outcome to relevant
independent variables so that it is appropriate to the properties of the dependent variable. The payoff
is an analysis that often is more justifiable for the particular problem than a standard regression model
would be.

The statistical theory and methods for fitting Generalized LInear Models (GLIMs) to simple random
sample data are described in, amongst others, McCullach & Nelder (1989) and Agresti (2002).
However, researchers from the social and economic sciences are often applying these methods to
multilevel data.

Consequently, inappropriate results are obtained if these methods are applied to multilevel data.
Statistical applications such as HLM (Raudenbush & Bryk 2007) and SAS PROC NLIN (SAS Institute
2004) implement methods to fit generalized linear models to multilevel data.
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LISREL includes a statistical module for the analysis of multilevel data and uses two estimation
methods, MAP (maximization of the posterior distribution) and ADAP (adaptive quadrature), which
fits generalized linear models to multilevel data. The LISREL module allows for a wide variety of
sampling distributions and link functions.

In the following sections, examples are provided to illustrate the MAP and ADAP methods to fit
generalized linear models for binary, count, ordinal, and nominal response variables to multilevel
data.

2.4.2 Models for binary outcomes
2.4.2.1 Binary outcome and its distribution

A binary random variable is a discrete random variable that has only two possible values, such as
whether a subject dies (event) or lives (non-event). Such events are often described as success versus
failure. The binary variable is often presented by the values 0 or 1. Obviously, the assumption of
normality of the outcome variable does not hold anymore. The most common distribution for the
binary outcome is Bernoulli distribution, which takes value 1 with success probability p and value 0
with failure probabilityg=1— p. The selection of the distribution for the outcome variable is not

fixed. For example, if the occurrence is very rare, Poisson distribution can be used.

Linear predictors

The linear predictor is a quantity which relate to the expectation through the link function. For
example, y is used as our binary outcome variable; 7 is the transformed linear predictor;

x=(x...X,) is the vector of all the predictors; and p=(4,...5,) denotes the unknown regression

parameters. Thus, r7 =X'p is the GLIM. Instead of y, 77 is being analyzed. For the binary outcome,
the probability of success 7 is the predictor of interest.

Link functions

The link function provides the relationship between the linear predictor 7 and the distribution
function. These link functions transform the observed outcome value to 7 and ensure that the
predicted probability lies within the (0, 1) interval.

The available link functions for binary outcomes with Bernoulli distribution in MGLIM include logit,
probit and complementary log-log functions. Table 3 gives each of these link function and the
corresponding cumulative distribution functions (cdf), which are the inverse functions of each other,
and its mean and variance.
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Table 3: Link functions for Bernoulli distribution

Link name Link function Ffl(p), 0<p<l CDF ~®°<W<® IMean Variance
w 2
logit (logistic logit(p) =1 (pj € 0 z
git (logistic) | oait(p) =i & £ i
@™ (p), where o is the inverse
probit of the standard normall @®(w) 0 1
cumulative distribution
complementary ] 2
log-log log(~log(1- p)) 1-exp(—exp(w)) 0.577 5

These link functions map the probability 77 with an open interval (0,1) to the entire real numbers R.

The logit and probit link functions are both symmetric. The logit function has a larger variance. The
complementary log-log link function is asymmetric. When p is extremely small or large, the linear
relationship does not hold. Understand the link function is essential when interpreting the outcomes.

2.4.3 Binary models with logit link function

2.4.3.1 The data

The data set forms part of the data library of the Alcohol and Drug Services Study (ADSS). The ADSS
is a national study of substance abuse treatment facilities and clients. Background data and data on
the substance abuse of a sample of 1752 clients were obtained. The sample was stratified by census
region (CENREG) and within each stratum a sample was obtained for each of three facility treatment
types (FACTYPE) within each of the four census regions. More information on the ADSS and the data

are available at http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/03088.xml.

The specific data set is provided in the Multilevel Generalized Linear Model examples folder as the

LSF file Depress.LSF. The first portion of this file is shown in the following LSF window.

|: Depress.|sf

[f=0 [=+} IENY ([=r] [} BN (1000 (N0 B

-
=]

E=REcE ™"
sex race d | SEXxRace | A2TwA0 | LEV2ID | |

0.00 1.00 0.00 316.80 200 4

1.00 0.00 0.00 0.00 276,60 200 |E
1.00 1.00 0.00 0.00 27660 2.00
1.00 0.00 0.00 0.00 27660 2.00
1.00 1.00 0.00 0.00 27660 2.00
0.00 0.00 0.00 0.00 276.60 2.00
1.00 1.00 0.00 0.00 27660 2.00
1.00 1.00 0.00 0.00 276.60 2.00
1.00 0.00 0.00 0.00 276 60 2.00

1.00 0.00 0.00 0.00 276,60 200 o~
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The variables of interest are:

o DEPR addresses the question of whether the patient has depression. (1 = Yes; 0 = No)
A2TWAO is the sampling weight
SEX is a dummy variable indicating the gender (0 for male and 1 for female) of the client

RACE_D is a dummy variable representing the ethnicity (0 for black and 1 for white) of the
client

SEXxXRACE is the interaction term of gender and race.
LEV2ID is the variable used to identify the level-2 ID or grouping variable.

o O O

O

2.4.3.2Importing the data

The data set shown previously is available in the form of a spreadsheet file, named depress.Isf. This
file contains data for the 2,214 respondents who reported some form of depression.

The first step is to create the LISREL spreadsheet file (Isf) from the Excel file. Use the Import Data File
option on the File menu to load the Open dialog box. Select Excel (*.xIs) from the Files of type drop-
down list. Browse for the file depress.xIs. Select the file and click on the Open button to open the
following LISREL spreadsheet window for depress.|sf.

m Depress.Isf E@
depr sex race_d | SEXxRace | A2TwA0 | LEv2iID | |
1 0.00 1.00 0.00 316.80 200 -
2 1.00 0.00 0.00 0.00 276,60 200 |2
3 1.00 1.00 0.00 0.00 276,60 2.00
4 1.00 0.00 0.00 0.00 276,60 200
5 1.00 1.00 0.00 0.00 276,60 200
6 0.00 0.00 0.00 0.00 276,60 2.00
7 1.00 1.00 0.00 0.00 276,60 200
8 1.00 1.00 0.00 0.00 276,60 200
9 1.00 0.00 0.00 0.00 276,60 2.00
10 1.00 0.00 0.00 0.00 276,60 200 -

Besides EXCEL data files, LISREL is capable of importing SAS, SPSS, STATA and most of the data
files in other formats. The data import processes are similar, and will not be discussed again in this
document.

When the external data is imported into LISREL, the default variable type is Ordinal. Variables that
have more than 15 categories are treated as continuous. To change the default settings for the variable
type, click on the Data, Define variables menu and change the settings. In this example the default
setting is valid, and no further changes are needed.
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2.4.3.3 Exploring the data

Graphics are often a useful data-exploring technique through which the researcher may familiarize

her- or himself with the data. Relationships and trends may be conveyed in an informal and simplified
visual form via graphical displays.

The Graphs option provides univariate, bivariate, and multivariate graphs. Univariate graphs are
particularly useful in obtaining an overview of the characteristics of a variable.

2.4.3.4 Univariate graphs

As a first step, we take a look at the distribution of depression (DEPR), which is the potential
dependent variable in this study.

Pie chart

A pie chart gives a good picture of probability of success. To create a pie chart for DEPR, select the
Univariate option from the Graphs menu as shown below.

File Edit Data Transformation Statistics | Graphs | Multilevel

0= e B (& =N 1 ¢ Univariate ..
Bivariate...
|+ Depressisf Multivariate...
depr sex [ Tace_a [
1 0.00 1.00
2 1.00 .00 0.00

The Univariate plot dialog box appears. Select the variable DEPR and indicate that a Pie chart is to be
graphed. Click the Piot button to display the pie chart.

Univariate Plots *

List of variahles

:

58X 9

race_d i
T Hist

SErxPace 1stagram

i\é\?zTDAD Interpolated curve owverlay

(") Barchart

MHarmal curve overlay

The default number of class intervals for
a histograrm is 15. This number may be

changed to & smallervalue in the range
of5-14.

MNumber of class intenvals 15

Flat l ’ Cancel
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The pie below shows that about 58.9% of the respondents have depression. Since the probability is
not extremely large or small, the Bernoulli distribution should be appropriate for our study.

B o depr

910 (41.1%)

1304 (58.9%)

2.4.3.5The model

The first model fitted to the depression data explores the relationship between DEPR, gender, and
race, as represented by the variables SEX and RACE_D. The level-1 model is at a individual level,
while the level-2 model is at a PSU level. The model can be expressed as follows.

For the binary case with logit link considered here

e’7u

Prob(DEPRij =1) :1 -
+e"

where 7; represents the log of the odds of success. With the logit link function, the probability

Prob(y; =1[B) is transformed to lie in the interval (0,1). And (for the current model) the two level
model can be expressed as

Level-1 model:
17; =g +10y ><(SEX)ij +h, x(RACE_d)ij +e;
Level-2 model:
Do = L, + Uy,
b.li = +Uy
b2i =5,
where
& ~N(0,071,)
u;~N(0,%)
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B, denotes the average expected 7, , which can be converted to the expected probability of getting
depression. S, denotes the coefficient of the predictor variable SEX (slope) in the fixed part of the
model. The random coefficients u;, and e; denote the variation in the average expected DEPR value
between PSUs and between patients respectively.

2.4.3.6 Setting up the analysis

Open the LISREL spreadsheet depress.Isf used during the exploratory analysis discussed previously.
The next step is to describe the model to be fitted. We use the LISREL interface to provide the model
specifications. From the main menu bar, select the Multilevel, Generalized Linear Model, Title and
Options option.

Graphs | Multilevel | SurveyGLIM View Window Help

Linear Model r
Generalized Linear Model 4 Title and Options...
Mon-Linear Regression 4 ID and Weight...
2k | Usism) || ssoasinss Distributions/Links..
0.00 1.00 0.0 Maodel Specification...
0.00 0.00 00 Random Variabl
100 o0 A andom Variables...

The multilevel generalized linear model contains five consequential dialogs boxes. The Titles and
Options dialog box as shown below enables the user to input the title, maximum number of iteration,
convergence criterion, missing values, and method and request additional output. Enter a title for the
analysis in the Title text boxes (optional) and keep all the other settings as default.

36



P

Title and Options

1

Title:
IBernu:quIi-Lu:ugit model based on the Depreszion Data

b aximum Mumber of lterations: | 100 =
Convergence Criterior: 0.00a1
Missing D ata Value: -333333

Dependent Mizzing Walue: -339333

— Optimization kethod

i MaP % Quadrature

Mumber of Quadrature Paints; |10 il

—Additonal Output
[~ Residual files [T Mo data summary

[T Asymptotic covarance

et > | Cancel | ] I

Tobuild zyntas, proceed to the B andom Yariables soreen and
click the Finizh button

Proceed to the ID and Weights screen by clicking on the Next button. Highlight LEV2ID from the
Variables in data list and click on the upper Add button to select is as the Level-2 ID variable. Similarly,
highlight the variable A2TwA0 and click on the lower Add button to select it as the Weight variable
and obtain the screen shown below.
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Yariables in data: I
depr Add »> Lewvel 2 ID wvariahle:
SEX LEWZID

Add »> Lewvel 3 1D wvariahle:

Add »> Weightwariakle:

AZTWAD

5(Previ0us] I MNext »> ] I Cancel oK

To build syntax, proceed to the Random YWariahles screen and click
the Finish button

Click on the Next button to load the Distribution and Links dialog box. Select Binomial from the
Distribution type dropdown list box. By default, the logit link function is selected. Keep the other
default settings unchanged as shown below, and click on the Next button.

Distribution type: ’Elernoulli v]

Link function: [Logit VI

Include intercept?

@ves ()Mo

Dispersion parameter

Yes (@) Fixed value:

Estimate scale? hd

5(Previ0us] I MNext »» ] I Cancel ] [ QK. ]

To build syntax, proceed to the Random Yariables screen and click
the Finish button
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On the Dependent and Independent Variables dialog box screen, first select DEPR and click on the
upper Add button to define it as the Dependent variable. Then, select SEX and RACE_D and click on
the Continuous button to add these variables in the Independent variables list box as shown below.

Dependent and Independent Variables ﬁ

Yariables in data:

depr Add »> Dependentwvariable:
=P—
SExxRace
AZTWAD Independent variahles:
LEWZID
SEX
Confinuous »> race_d
Categorical >>
[ << Remowve
I
|
5(Previ0us] I MNext »» ] I Cancel ] [ (0]

To build syntax, proceed to the Random YWariahles screen and click
the Finish button

Click on the Next button to proceed to the Random Variables dialog box once these settings have
been defined. Keep the Intercept check box checked so as to include a level-2 intercept.
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Random Variables ﬁ E
Yariables in data Fiandom Level 2
depr [¥]Intercept
SEX
race_d
SEXxRace Add >
AZTWAD
LEV2ID << Remowve
Intercept

H Add 2>

| << Remove
I << Previous ] I Finish ] I Cancel ] I Ok

To build syntax, click the Finish button .

Click on the Finish button to generate the PRELIS syntax file (.prl) that corresponds to the above
settings. Select the File, Save As option, and provide a name (depressl.prl) for the model
specification file. The default folder for the syntax to be saved in is the same folder used for the data

MGlimOptions Converge=0.0001 MaxTter=100 MissingCode=-9%9599
Method=Quad NQUADPTS=E;
Title=Bernoulli-Logit model based on Depression data;
S¥=Depress.LSF;
IDZ=LEV2ID;
Weight=A2TWAD;
Distribution=BER;
Link=LOGIT;
Intercept=Yes;
DepVar=depr;
CoVars=sex race d ;
RANDOMZ=intcept;

2.4.3.7 The syntax file

The syntax file contains the following information:

o The MGIlimOptions keyword requests the MGLIM module to run. The first two lines, together
with the Title line, correspond to the settings entered in the Title and Options dialog box.

o The sy line indicates the location of the .Isf data file.
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o ID2 is the level-2 id variable, while weight corresponds with the weight variable. These are
defined in the ID and Weights dialog box.

o The syntax lines for Distribution, Link and level-1 Intercept are set up in the Distribution and
Links dialog box.

o The Depvar line, which represents the dependent variable and the Covars line, which
represents the covariate variable, are defined in the Dependent and Independent Variables
dialog box.

o Finally, the RANDOM2 syntax line corresponds to the Random Variables dialog box.

Understanding how the syntax works enables the user to make changes directly to the syntax file.
Run the analysis by selecting the Run PRELIS button to generate the output file depress.out. The
output file has the same file name as the syntax file with a different extension .out. It is saved in the
same folder as the syntax file.

2.4.3.8 Discussion of results

Portions of the output file depress.out are shown below.

Program information and syntax
At the top of the output file, program information is given. It states the version number, corporate
and technical support information, the date and time of analysis, and the locations of data file and
syntax file.

|j Depress.OUT E\@

MLGLIM module of LISREL 9.1
Generalized Linear Modeling
of
Multilevel (Hierarchical) Data

Copyright by Scientific Software International, Inc., 2012
Scientific Software International, Inc.

Website: www._ ssicentral._com

Support: techsupport@ssicentral . com

DATE OF ANALYSIS: August 15, 2012

TIME OF ANALYSIS: 17H41:22

DATA FILE:

C:\LISREL9 Examples\MGLIMEX\Depress. lsf
INPUT FILE:

C:\LISREL9 Examples\MGLIMEX\Depress PRL

Program information is followed by the Multilevel GLIM syntax. This section echoes the contents of
the syntax file depress.prl. For more information on syntax and keywords, please see Section 2.2.3.
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Model and data description
In the next section of the output file as shown above, descriptions of the distribution, the link
function, the weight variable and the hierarchical structure of the data are provided. Data from a total
of 10 level-2 units and 2,214 respondents were included at levels 2 and 1 of the model. In addition,
a summary of the number of respondents nested within each level-2 unit is provided.

|: Depress.OUT E\@

-~

o
Bernoulli-Logit model based on Depression data |

o
|
I
o o

m

Model and Data Descriptions

Sampling Distribution = Bernoulli
Link Function = Logistic
PROB (Success)= 1.0/[1.0+EXP(-ETA)]

Level-1 Weight Variable = A2TWAD
Number of Level-2 Units =10
Number of Level-1 Units = 2214

Number of Level-1 Units per Level-2 Unit
62 598 34 126 416 148 363 141 246 80

Descriptive statistics
The data summary is followed by descriptive statistics for all the variables included in the model.
Since DEPR is defined as a binary variable, it is presented by two dummy variables deprl and depr2.

[/* Depress.ouT E=8 Bl =™
o] o -
| Descriptive statistics for all the variables in the model |
o] o

Standard
Variable Minimum Maximum Mean Deviation =
depr 0.0000 1.0000 0.5890 0.4921
depr2 0.0000 1.0000 0.4110 0.4921
intcept 1.0000 1.0000 1.0000 0.0000
sex 0.0000 1.0000 0.2882 0.4530
race_d 0.0000 1.0000 0.3071 0.4614 -
4 i 3

Results for the model without any random effects
Descriptive statistics are followed by the results for the model without any random effects. These
parameters are used in the initial step of the iterative algorithm. They are obtained by ordinary
weighted least squares (WLS) regression. The goodness of WLS fit statistics are also given as shown
below.
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|j Depress.OUT E\@

o] o -
| Results for the model without any random effects |
o] o

Goodness of fit statistics

Statistic Value DF Ratio
Likelihood Ratio Chi-square 3324 9263 2211 1.5038
Pearson Chi-square 2575.8286 2211 1.1650

m

Estimated regression weights

Standard
Parameter Estimate Error z Value P Value
intcept -0.1433 0.0551 -2.6007 0.0093
sex 0.6949 0.0981 T7.0822 0.0000
race_d -0.5683 0.1034 -5.4950 0.0000

Results for the model with fixed and random effects
Number of iterations and fit statistics

The total number of (macro) iterations is reported. As shown below, there are 58 iterations to get the
converged results.

In addition to the likelihood function value at convergence, a number of related statistical measures
for assessing model adequacy are available. The most common of these are the likelihood ratio test,
Pearson chi-square, and Akaike's and Schwarz's criteria. Both the Akaike information criterion (AIC)
and the Schwarz Bayesian criterion (SBC) are functions of the number of estimated parameters, and
therefore "penalize” models with large numbers of parameters. In the LISREL output file, all three of
these are reported. A chi-square scale factor, with which a chi-square value obtained from the
difference between two deviance statistics should be multiplied to yield a corrected chi-square
statistic in the case of a weighted analysis, may also be found in this section.

|27 DepressOUT E=NEcE =<7
Q=== ————————————————=—=—==()
| Optimization Method: Adaptive Quadrature |
J==============—=====—==—==—=—=—=—==—==—==—==—========x(
Number of quadrature points = 10
Number of free parameters = 4
Number of iterations used = 2
-21nL (deviance statistic) = 2892 37979
Akaike Information Criterion 2900 .37979
Schwarz Criterion 2923 19002
4 1l 3
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2
N MW L — 1.

o The Pearson Chi-square is defined as 2 =>">"%" - (};”k 2, :

i=1l j=1 k=1 (o} (yijk)

o The deviance is defined as—2InL. For a pair of nested models, the difference in —2InL
values has a y* distribution, with degrees of freedom equal to the difference in number of
parameters estimated in the models compared.

o The AIC was originally proposed for time-series models, but is also used in regression. It is
defined as—2In L+ 2r, where r denotes the number of parameters estimated in the model.
The model with minimum AIC, in a set of nested models, will be the most parsimonious
according to this criterion.

o The sSBC is defined as—2InL+rlogn, where n denotes the number of units at the highest

level of the hierarchy. A smaller value of this criterion would indicate the most parsimonious
of the models being compared.

Estimated regression weights
The output describing the estimated regression weights after fit statistics is shown next. The estimates
are shown in the column with heading Estimate and correspond to the coefficients f,, £, and g, in

the model specification. From the z-values and associated exceedance probabilities, we see that all
three estimates are highly significant at 10% level.

[~ Depress.OUT E=R[EcE~>"
Estimated regression weights
Standard
Parameter Estimate Error z Value P Value
intcept -0.0990 0.1908 -0.5187 0.6040 =
sex 0.7838 0.1021 T.6777 0.0000
race_d -0.6460 0.1110 -5.8182 0.0000
4 I »

The estimated intercept is -0.0990, which is the average logit. The estimated coefficients associated
with gender (SEX) is — 0.7838, which indicates that the female respondents (SEx = 1) have a smaller
77. The estimate for the indicator of race (RACE_D) shows that white clients have higher 7 value.

To describe the7’s in an more accessible way to readers of reports, we need the link functions to
transform them into probabilities.

Interpreting estimated regression weights by using link function
First, we substitute the regression weights and obtain the function for ﬁij
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A, = by + by x (SEX), +b,, x (RACE_d)

i ij

——0.0990+0.7838 x (SEX)_ —0.6460x (RACE_d)

ij ij )
For a black male, we have SEX = 0, RACE_d =0, thus

17; =—0.0990 +0.7838 x 0 - 0.6460 x 0
=-0.0990

Similarly, the calculation of ﬁij for a BLACK female (SEX =1, RACE_d =0) is

17; =—0.0990 +0.7838 x1-0.6460 %0
=0.6848

Next, we transform the ﬁij ’s into corresponding probabilities by using the logit link function. Take
the black male as the example, the probability is calculated as below.

X 1 1

=== = 47.53%
1+eh 1+ 14"

Prob(DEPRj =1) =

Thus we can conclude that the estimated probability for a black male who has depression is about
47.53%. Similarly, the probability of having depression for different gender and ethnicity are
calculated in the following table.

Group Code U Prob (DEPR = 1)
Black, male |sex=0,race d=0| 0.1018 47.53%
Black, female| sex =1, race d =0 | 0.6848 66.48%
White, male |sex =0, race d=1|-0.7450 32.19%
White, female| sex =1, race d=1| 0.0388 50.97%

Estimated level-2 variance

The output for the estimated level-2 variance is shown in the image below. The p value of intercept
shows the probability of getting depression differs significantly from PSU to PSU (the level-2 units).
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|: Depress.OUT E@

Estimated level 2 variances and covariances -
Standard
Parameter Estimate Error Z Value P Value
intcept/intcept 0.3204 0.1633 1.9621 0.0498

Level 2 covariance matrix

intcept
intcept 0.320389

Calculation of the intracluster correlation

residual variance = pi*pi / 3 (assumed)
cluster variance = 0.3204

m

intracluster correlation = 0.3204 / { 0.3204 + (pi*p1/3)) = 0.089

< 11 3

ICCs and % variance explained
The intraclass coefficient (ICC), or say the percentage of variance explained by level-2 unit is
calculated by

level 2 variation
ICC = — —
level 1 variation + level 2 variation

In the case of a model with only a random intercept, the variation in the random intercept at the level-
2 unit, and the residual variation at level-1. The intracluster coefficient is defined as

ICC - var(u,,)

A

var(e; ) +var(u,,)

Level-1 variation
As mentioned earlier, for the dichotomous outcome model, it is assumed that the level-1 error

variance is equal to z°/3 for the logistic link function if the model is true (see, e.g., Hedeker &
Gibbons (2006), p. 157). Thus,

2

Var(level 1) = var(e,)) = % = 3.2865
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2.4.4 Binary models with probit link function
2.4.4.1 The model

In the model just discussed the logistic link function was used. We now will fit another model by
using the probit link function. We will only include a random intercept at level-2. On the other hand,
the interaction between gender and race will be considered at level-1. The model can be expressed
as follows.

The probit link function is

Prob(DEPR;, =») =@ (7)

where 7, represents the log of the odds of success. With the probit link function, the probability
Prob(y; =1[p) is transformed to lie in the interval (0,1). And (for the current model) the two level
model can be expressed as

Level-1 model:
17; =0y + by X (SEX)” +h,, x (RACE_d)iJ_ +Dby % (SEXxRACE)iJ_ +€;
Level-2 model:
by = By + Uy
bli = ﬂl
b2i = ﬂz
b3| = ﬂs

The current model only assumes the intercepts differ between PSuUs, but the slopes are the same for
all the level-2 units.

2.4.4.2 Setting up the analysis

Open the LISREL spreadsheet depress.Isf used previously, Select the Multilevel, Generalized Linear
Model, Title and Options option. Input the new analysis title in the Titles and Options dialog box and
keep all the other settings as default.
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r bl
Title and Cptions A [ﬂ

Title:
Bernoulli-Probit model bazed on the Depression Data

b aximumn Mumber of terations: (100 g

Corvergence Criterion: 0.0001
Missing Data Yalue: -333333
Dependent Mizsing Y alue: -333333

: Optimization ethod

| " MAP + Quadrature
|

| Mumber of Quadrature Paints: |10 g

Additonal Dutput
[ Residual files [ Mo data surnmay

[ Asymptotic covarance

Mext »» Cancel | ] |

Tobuild syntas, proceed to the Random Variables screen and
click the Finizh button

Proceed to the ID and Weights screen by clicking on the Next button. The settings of this screen are
exactly the same as the previous model. Highlight LEv2ID from the Vvariables in data list and click on
the upper Add button to select is as the Level-2 ID variable. Similarly, highlight the A2TwAO0 and click
on the lower Add button to select it as the Weight variable to obtain the screen shown below.

Click on the Next button to load the Distribution and Links dialog box. Select Binomial from the
Distribution type dropdown list box. Select Probit from the Link function drop-down list. Keep the
other default settings unchanged as shown below, and click on the Next button.
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Distribution type: ’Elernoulli v]

Link function: [Probit VI

Include intercept?

@) es

Dispersion parameter

Yes (@) Fixed value:

Estimate scale?

5(Previ0us] I MNext »» ] I Cancel ] [ (0] ]

To build syntax, proceed to the Random YWariahles screen and click
the Finish button

On the Dependent and Independent Variables dialog box screen, first select DEPR and click on the
upper Add button to define it as the Dependent variable. Then select the variables SEX, RACE_D and
SEXxRace and click on the Continuous button to add them to the Independent variables list box as
shown below.
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Dependent and Independent Valia_ E

Yariables in data:

depr Add »> Dependentwvariable: i
e —
depr
| e
Independent variahles:
LEWZID
SEX
) race_d
Confinuous »> SE%Race
Categorical >>
<< Remowve
5(Previ0us] I MNext »» ] I Cancel ] I Ok

To build syntax, proceed to the Random YWariahles screen and click
the Finish button

Click on the Next button to proceed to the Random Variables dialog box. Keep the Intercept check
box checked to include the random effect for the level-2 intercept.

Yariahbles in data

depr [¥]Intercept
SEX

race_d
SEXxRace Add >>

AZTWAD
LEV2ID << Remowve

Fandom Level 2

Fandom Lewvel 3

Intercept

Add »>

<< Remove

5(Previ0us] I Finish ] I Cancel ] | (0]

To build syntax, click the Finish button .
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Click the Finish button to generate the PRELIS syntax file (.prl) that corresponds to the above settings.
Select the File, Save As option, and provide a name (depress2.prl) for the model specification file.
The default folder to which the the syntax file will be save is the folder in which the data file is
located.

depress.prl EI@

MzlimOptions Converge=0.0001 MaxIter=100 MissingCode=—9%99%99%
Method=0Quad NQUADPTS=8;

Title=Bernoulli-Probit model based on Depression data;

S¥=Depress.LSF;

ID2=LEV2ID;

Weight=A2TWAD;

Distribution=BER;

Link=PROBIT;

Intercept=Yes;

DepVar=depr;

CoVars=sex race d SEXxRace;

RANDOMZ2=intcept;

2.4.4.3The syntax file

Note that the following syntax lines are different from the previous model:
o Link = PROBIT defines the probit link function, which is defined in the Distribution and Links
dialog box.

o CoVars = sex racd_d SEXxRace, now includes one more independent variable than was the
case in the previous model.

Run the analysis by selecting the Run PRELIS button to generate the output file depress2.out, which
is saved to the same folder as the syntax file.

2.4.4.4 Discussion of results

Portions of the output file are shown below.

Model and data descriptions
The program info and the syntax are printed on the top of the output file. In the next section of the
output file as shown below, descriptions of the distribution, the link function, the weight variable
and the hierarchical structure of the data is provided. Note that probit link function is used as the link
function.
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|: Depress2.0UT E@

0= === =0
| Bernoulli-Probit model based on Depression data |

0= === =0

m

Model and Data Descriptions

Bernoulli
Probit

Sampling Distribution
Link Function
PROB(Success)= PHI(ETA)
PHI denotes the CDF of the standard Normal distribution

Level-1 Weight Variable = A2TWAD
Number of Level-2 Units = 10
Number of Level-1 Units = 2214

Number of Level-1 Units per Level-2 Unit
62 598 34 126 416 148 363 141 246 80

4 I b

Descriptive statistics
The data summary is followed by descriptive statistics for all the variables included in the model.

|: Depress2.QUT E@
Q=== === === === === === === ==0 -
| Descriptive statistics for all the variables in the model |
0=== === === === === === === ==0

Standard
Variable Minimum Maximum Mean Deviation
depri 0.0000 1.0000 0.5890 0.4921 i
depr2 0.0000 1.0000 0.4110 0.4921
intcept 1.0000 1.0000 1.0000 0.0000
sex 0.0000 1.0000 0.2882 0.4530
race_d 0.0000 1.0000 0.3071 0.4614
SEXxRace 0.0000 1.0000 0.0980 0.2974
4 I I

Results for the model without any random effects
The descriptive statistics is followed by the results for the model without any random effects. The
deviance can be used for comparison tests of nested models. The estimated regression weights
without any random effect are given below.
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0= === === === Q
| Results for the model without any random effects |

o= === === === 0

Goodness of fit statistics

Statistic Value DF
Likelihood Ratio Chi-square 3325 8392 2210
Pearson Chi-square 25781501 2210

m

Estimated regression weights

Standard
Parameter Estimate Error 7z Value P Value
intcept -0.0857 0.0357 -2.4036 0.0162
sex 0.4175 0.0703 5.9361 0.0000
race_d -0.3712 0.0762 -4 8706 0.0000
SEXxRace 0.0610 0.1396 0.4368 0.6623 o
4 il 3

Results for the model with fixed and random effects
Number of iterations and fit statistics

As shown below, literation was needed to obtain convergence. The likelihood ratio test, Akaike's
and Schwarz's criteria are given after the iteration number. For detailed information about these
statistics, please refer to the previous section.

[ Depress2.0uT E=SEcE ==
0=== =0
| Optimization Method: Adaptive Quadrature |
Q=== =0
Number of quadrature points = 10
Number of free parameters = 5
Number of iterations used = 1
-2InL (deviance statistic) = 2892 .01070
Akaike Information Criterion 2902 .01070
Schwarz Criterion 2930 .52348
4 i 3

Estimated regression weights
The output describing the estimated regression weights for the multilevel model is shown next. The
estimates are shown in the column with heading Estimate and correspond to the coefficients ,, £,,

S, and g, in the model specification. From the z-values and associated exceedance probabilities,

we see that the intercept and the regression weight for SEXxRace are not significant at a 10% level
of significance.
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Estimated regression weights -
Standard
Parameter Estimate Error z Value P Value
intcept -0.0544 0.1186 -0.4582 0.6468
sex 0.4612 0.0723 6.3824 0.0000 =
race_d -0.4207 0.0805 -5.2282 0.0000
| SEXxRace 0.0805 0.1430 0.5628 0.5736
4 il 2

The estimated intercept has changed to -0.0544 in this second model. The estimated coefficient
associated with gender (sex) is now 0.4612, which indicates that the female respondents (sex = 1)
have a smaller 7. The estimate for the indicator of race (race_d) shows that white clients have a

higher 7 value in the current model. The interaction term of gender and race is positive, but not
significant. The probit link function is needed to transform these results into probabilities.

Interpreting estimated regression weights by using link function
First, we substitute the regression weights and obtain the function for 7,

A; = by + by x (sex), +b,, x (race_d), +by, x(SEXxRace)

i ij

=-0.0544 +0.4612 x (sex), —0.4207 x (race_d), +0.0805 x (SEXxRace)

ij i ij .
For a black male, we have SEX = 0, RACE_d = 0 and SEXxRace = 0 thus

17; =—0.0544
Similarly, the calculation of 7; for a black female (SEX = 1, RACE_d = 0 and SEXxRace = 0) is

17; =—0.0544 +0.4612 x1
=0.4068

Next, we transform the ﬁij ’s into corresponding probabilities by using the probit link function.
Taking black males as the example, the probability is calculated as shown below.

Prob(DEPR;; =1) = ®(~0.0544) = 47.83%

Similarly, the probabilities of having depression for different gender and ethnicity groups are
reported in the following table.
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Group Code i Prob (DEPR = 1)
Black, male |sex =0, race d=0| -0.0544 47.83%
Black, female|sex =1, race d=0| 0.4068 65.79%
White, male [sex =0, race d=1| -0.4751 31.74%
White, female|sex =1, race d=1| 0.0666 52.65%

Estimated level-2 variance and covariance
The output for the estimated level-2 variance and covariance is shown in the image below. In the
previous model, we have discussed the interpretation of these in detail. In this model, the random
part of the current model is simpler than in the previous model.

e pas1 - -

|7 Depress2.0UT EI@
Estimated Tevel 2 variances and covariances )
Standard
Parameter Estimate Error z Value P Value
intcept /intcept 01231 0.0625  1.9685  0.0490

Level 2 covariance matrix

intcept
intcept 0.123079

Calculation of the intracluster correlation

residual variance = 1 (assumed)
cluster variance = 0.1231

m

intracluster correlation = 0.1231 /7 ( 0.1231 + 1.000) = 0.110

< 1 b

2.4.5 Bernoulli distribution with complementary log-log link function
2.4.5.1 The model

In the previous model, the probit link function is used. We now fit the same model by using a
complementary log-log link function.

The complementary log-log link function is defined as

1-exp (—exp(nij ))
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The level-1 and level-2 models are unchanged.

Level-1 model:
M = By, +1Dy; % (SEX)ij +h,, x (RACE_d)ij +Dby, x (SEXXRACE)ij +€;
Level-2 model:
bOi = ﬁo + Uy,
bli = ﬁl
2i = ﬂz
b3| = ﬁa

2.4.5.2 Edit the existing syntax file

To obtain the model discussed above, we can either go through the multilevel generalized linear
model dialog boxes as we did in the previous models or modify the existing syntax file directly. Here,
we will illustrate how to modify the syntax file generated in the previous example.

First, open the syntax file for the previous model and save it under a different name so as not to
overwrite the syntax file associated with the previous analysis. To do so, click on the File, Open
option on the LISREL main window. Keep the Syntax Only (*.spl, *.lis, *.prl) dropdown list unchanged.
Browse for the saved syntax file (depress2.prl) of the previous model. Double click on the
depress2.prl to open it. Select the File, Save As option, and provide a new name (depress3.prl) for
the model specification file.

As a first step, give an appropriate title by changing the Title line. Next, change the probit link
function to a complementary log-log link function by modifying the syntax line Link=PROBIT t0 Link
= CLL to produce the following syntax file. The CLL keyword refers to the complementary log-log
link. For all the syntax available in MGLIM, please refer to Section 2.2.3.

Run the analysis by selecting the Run PRELIS button to generate the output file depress3.out, which
is saved to the same folder as the syntax file.

2.4.5.3 Discussion of results

Portions of the output file depress3.out are shown below.

56



Model and data description

The model and data descriptions clearly show that complementary log-log (CLL) link function is used

in the model.

’; Depress3.0UT

E=REON ™%

Model and Data Descriptions
Sampling Distribution
Link Function

PROB (Success)= 1.0-EXP[-EXP(ETA)]
Level-1 Weight Variable
Number of Level-2 Units
Number of Level-1 Units
Number of Level-1 Units
62 598 34 126

per Level-2
416 148

LI}

Fa

Bernoull1
Complementary Log-Log (CLL)

m

= AZTWAO
=10
= 2214
Unit =
363 141 246 80

Results for the model with fixed and random effects

Number of iterations and fit statistics

Six iterations were needed to obtain convergence. The likelihood ratio test, Pearson chi-square, and

Akaike's and Schwarz's criteria are given after to th

D Depress3.0UT

e iteration number.

e i

-

Q==
| Optimization Method: Adaptive Qu

adrature

0==

Number of quadrature points =
Number of free parameters =
Number of iterations used =
-2InL (deviance statistic) =
Akaike Information Criterion
Schwarz Criterion

il

Estimated regression weights

10
5
2

m

2891.
2901.
2929

16332
16332
67610

The output describing the estimated regression weights is shown next. The estimates are shown in
the column with heading Estimate and correspond to the coefficients g,, 5,, #, and f; in the model

specification. From the z-values and associated exceedance probabilities, we see that the intercept

and the regression weight for SExxRace is not signi

ficant at a 10% level of significance.
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Estimated regression weights

Standard
Parameter Estimate Error Z Value P Value
intcept -0.4403 0.1397 -3.1525 0.0016
sex 0.5005 0.0771 6.4902 0.0000
race_d -0.5452 0.1048 -5.2029 0.0000
SEXxRace 0.1646 0.1678 0.9808 0.3267

Estimated level 2 variances and covariances

Standard
Parameter Estimate Error Z Value P Value
intcept/intcept 0.1714 0.0852 2.0124 0.0442

|Ca1cu1at1on of the intracluster correlation

residual variance pi*pi / 6 (assumed)
cluster variance 0.1714

m

intracluster correlation = 0.1714 7 { 0.1714 + (p1*p1/6)) = 0.094

< 11 »

The estimated coefficient for the intercept is negative in value in this model. The estimated
coefficient associated with gender (SEX) is — 0.5508. The estimate for the ethnicity indicator
(RACE_D) also shows that white clients are likely to have a higher 7 value. The coefficient

representing the iinteraction of gender and ethnicity is also negative and implies a decrease in 77. To
transform these results into probabilities, we use the complementary log-log link function.

Interpreting estimated regression weights by using the link function
First, we substitute the regression weights and obtain an expression for 7; :

f; = by +0y x(SEX). +b,; x(RACE_d). +b;, x(SEXXRACE)

ij ij ij

62i
=-0.4403+0.5005 x (SEX ), —0.5452 x (RACE_d), +0.1646 x (SEXXRACE)

i ij )
For a black males, we have SEX = 0, RACE_d = 0 and SExxRace = 0 thus

7 =-0.4408

Similarly, the calculation of 7, for black females (SEX = 1, RACE_d = 0 and SEXxRace = 0) is
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17; =—0.4403 +0.5005
=0.0602

Next, we transform the 7; ’s into the corresponding probabilities by using the complementary log-

log link function. Taking the black males as an example, we calculate their probability of being
depressed as

Prob(DEPR; =1) = l-exp(—exp(nij )) =61.18%

The probabilities of having depression for different gender and ethnicity groups are reported in the
following table.

A

Group Code n  |Prob (DEPR =1)
Black, male |sex =0, race d=0 |-0.4403 47.47%
Black, female| sex =1, race d =0 | 0.0602 65.43%
White, male |sex =0, race d=1-0.9855 31.15%
White, female| sex =1, race d =1 |-0.3204 51.61%

In all three binary models, even though the estimated 7;’s are different, the estimated probabilities
are close to each other in all groups.

The three models we discussed in this section demonstrated the use of link functions available in
multilevel analysis with MGLIM. In the next section, we will discuss the MGLIM functions available
for count outcomes.

2.4.6 Models for count outcomes from the NESARC data
2.4.6.1 Count variable and its distributions

A count variable is used to count a number of discrete occurrences that take place during a time
interval. For example, the occurrence of cancer cases in a hospital during a given period of time, the
number cars that pass through a toll station per day and the phone calls at a call center are all count
variables.

The most common distribution for a count variable is the Poisson distribution. Besides the Poisson
distribution, the negative binomial distribution is also used to model count variables. In this guide
models for the Poisson and negative binomial distributions will be discussed.
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Poisson distribution
Poisson distribution is a discrete probability distribution. It is an appropriate distribution to express
the probability of a number of events occurring in a fixed time period with a known average rate,
and are independent of time. The probability with k occurrences is

et Ak

f(k;A) = for k=0,12...

where k is a non-negative integer and A is a positive real number, which equals the expected number
of occurence during the given interval. The cumulative probability function is

K e—ﬂﬂi

Pr(k; A) =) T for k=0,1,2...
i=0 -

with the single parameter A. A Poisson distribution has an important property: the mean number of
occurrences A equals the variance E( f )=var(f)=A.

The smaller the value of A, the more skewed the probability distribution becomes. When A is large,
the Poisson distribution is close to the normal distribution.

Negative binomial distribution
The negative binomial distribution is the probability distribution of the number of failures before the
r-th success in a Bernoulli process, with probability p of success on each trial.

Log link function
The log link function is generally used for the Poisson distribution. Assume the response
measurements for a count variable y,,..., y, are independent and

y,~Poi(4),  where =g

To make inference on the unknown parameters, we take the natural logarithm on the above equation.

log(4)=fXy+...+ B%,
2.4.6.2 The data
The data set is from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC),
which was designed to be a longitudinal survey with its first wave fielded in 2001-2002. This data

contains information on the occurrences of major depression, family history of major depression and
dysthymia of 2339 dysthymia respondents. After list-wise deletion, the sample size is 1981.
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E nesarc_pol.LSF E@

PSU FINWT |CONCENTR | AGE_ONS | N_DEP | |
1 7266.15 0.00 51.00 100 =
2 1011.00 3476 67 1.00 48.00 100 |
3 1011.00 3062.10 1.00 59.00 1.00
4 1011.00 1182.08 1.00 36.00 2.00
5 1011.00 304106 1.00 17.00 1.00
6 1011.00 8342 94 0.00 16.00 1.00
7 1011.00 6767.06 1.00 29.00 1.00
8 1011.00 3460 29 1.00 43.00 1.00
9 101600 316729 1.00 56.00 1.00
10 1018.00 101456 0.00 37.00 100 -

The variables of interest are:

PSU denotes the Census 2000/2001 Supplementary Survey (C2SsS) primary sampling unit.

o FINWT represents the NESARC weights sample results used to form national level estimates.
The final weight is the product of the NESARC base weight and other individual weighting
factors.

o CONCENTR contains the information captured in field S4CQ3A6 of the NESARC data. It
represents the response to the statement "Often had trouble concentrating/keeping mind on
things," with 1 indicating "Yes," and 0 indicating "No."

o AGE_ONS is based on field S4CQ7AR of the NESARC data. It represents the age at onset of
first episode.

o N_DEP is recoded from field s4cQe6A of the NESARC data, and gives the number of
depression/dysthymia episodes. This is the count variable we would like to use as outcome
variable in the examples to follow.

2.4.6.3 Exploring the data

Inspecting the distribution of the intended outcome variable, N_DEP, before starting with the model
is important. The number of depression episode ranges from 1 to 29, with most respondents having
a small number of reported episodes of depression.

2.4.6.4 The model

The first model fitted to the data explores the relationship between N_DEP and the variables
indicating concentration (or lack thereof) and age, as represented by the variables CONCENTR and
AGE_ONS.

The level-1 model is
log(4; ) = 5, + 3, x CONC_DEP,; + 3, x AGE_DEP,

where the expected number of depression episodes is 4; =E(N_DEP” )

61



The level-2 model is
/30 = boo +Vio, ﬂl = blO and ﬂz = bzo-

Another way of writing the combined model is

log ( 4; ) =y, + by, x CONC_DEP; +b,, x AGE_DEP, g

In this model, ™ denotes the average expected count of depression episodes, and by, represents the
estimated coefficient for the respondent'’s level of concentration.

Taking exponents on both sides, we also have

A= oo b xCONC_DEP; 40 xAGE_DEP; +Vig
j

xCONC_DEP; _b,oxAGE_DEP;
0 I 20 |

ig JeViO

=ee
For a person who had problems concentrating (CONCENTR = 1), the expected average number of

episodes €™ is multiplied by e”, compared to an expected count of € for a person for whom
CONCENTR = 0. Similarly, an increase of one year in age increases the estimated number of episodes

by a factor of e . For example, a respondent with concentration problems who is two years older
than another respondent who had no concentration problems is expected to have e*e™e®™ episodes
compared to only e™ episodes for the younger person without concentration problems.

The random part of the model is represented by e“ , which denotes the variation in average count of
depression episodes over PSU and between respondents (or, in other words, over respondents nested
within PSU). For a Poisson distribution, the assumption of normality at level 1 is not realistic, as the
level-1 random effect can only assume a number of distinct values. Thus, this random effect cannot
have homogeneous variance.

2.4.6.5 Setting up the analysis

Open the LISREL data spreadsheet file nesarc_poi.lsf and select the Multilevel, Generalized Linear
Model option from the main menu bar as shown below.

Multilevel | SurveyGLIM View Window Help

Linear Model -

Generalized Linear Model 4 Title and Options...
, Mon-Linear Regression 4 ID and Weight...
|[CORCENTR] AGE_URS T N Distributions/Links...
: 0.00 51.00 Model Specification...
. 1 Eg iigg Random Variables...
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Proceed to fill in the Title and Options (number of quadrature points is 6); ID and Weight (Level-2 ID
IS PSU); Distributions/Links (Poisson, log-link); Model Specification (Dependent variable is N_DEP,
predictors are intcept, CONCENTR and AGE_ONS); and the Random Variables dialog (Intercepts only).
When done, click the Finish button to create the syntax file nesarc_poi.prl. Save this file as
nesarc_poil.prl using the File, Save As option.

nesarc_poil.PRL E\@

HGlimOptions Converge=0.0001 MaxIter=100 MissingCode=-9%999%
Method=0uad NQUADPTS=10 ;

Title=Random Intercept Polisson Model fitted to NESARC datas

SY='nesarc pol.LSF';

ID2=PSU;

Distribution=°POI;

Link=L0Oz;

Intercept=Yes;

Scale=None;

DepWVar=N_DEP;

CoVars=CONCENTR AGE ONS;

RANDOMZ=intcept;

2.4.6.6 Discussion of results

Portions of the output file nesarc_poi.out are shown below.

Model and data description
A description of the hierarchical structure follows the syntax: data from a total of 395 PSus and 1981
respondents were included at levels 2 and 1 of the model. In addition, an enumeration of the number
of respondents nested within each of the 395 PSUs is provided.

|j nesarc_poil.OUT E\@
0 o]
| Random Intercept Poisson Model fitted to NESARC data |
|c o]
Model and Data Descriptions =
Sampling Distribution = Poisson
Link Function = Log
Number of Level-2 Units 395
Number of Level-1 Units 1981
Number of Level-1 Units per Level-2 Unit =
8 1 1 5 5 5 1 5 1 5 2 5
3 31 16 3 1 7 5 3 2 1 9 1
7 6 3 22 8 1 8 2 1 1 1 2
5 51 8 25 8 10 4 1 4 4 10 2
19 7 5 2 2 10 7 3 1 6 6 1
3 8 4 3 10 2 4 2 1 6 2 1
16 18 5 3 7 3 1 6 4 8 5 3 v
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Descriptive statistics

The data summary is followed by descriptive statistics for all the variables included in the model.
The mean of 1.8970 and standard deviation of 2.3304 are reported for the outcome N_DEP indicating

that, on average, 1.8970 episodes of depression were recorded.

|: nesarc_poil.OUT E@ |
0= = = =0 -~
| Descriptive statistics for all the variables in the model |
0= = = =0
Standard
Variable Minimum Maximum Mean Deviation =
N_DEP 1.0000 29.0000 1.8970 2.3304
intcept 1.0000 1.0000 1.0000 0.0000
CONCENTR 0.0000 1.0000 0.5304 0.3754
AGE_ONS 5.0000 84 0000 32.1100 15.8535 i
4 I b

Descriptive statistics are followed by the results for a fixed-effects-only model, i.e. a model without

random coefficients.

Fixed effects results

At the top of the final results, the number of iterations required for convergence of the iterative
procedure is given. Next, the number of quadrature points per dimension is reported which, in this
case, is the default number of points. The log likelihood and the deviance, which is defined as —2InL

, are listed next. For a pair of nested models, the difference in —2InL values hasa y* distribution,
with degrees of freedom equal to the difference in number of parameters estimated in the models

compared.

D nesarc_poil.OUT EI@
Number of quadrature points = 10 -
Number of free parameters = 4
Number of iterations used = 3
-21nL (deviance statistic) = 7001.29533
Akaike Information Criterion 7009 .29533
Schwarz Criterion 7031.66076

Estimated regression weights
Standard
Parameter Estimate Error Z Value P value
intcept 0.7982 0.0641 12.4481 0.0000
CONCENTR 0.2922 0.0510 5.7276 0.0000
AGE_ONS -0.0165 0.0012 -13.9444 0.0000

Event Rate Ratio and 95% Event Rate Confidence Intervals

Bounds
Parameter Estimate Event Rate Lower Upper
intcept 0.7982 2.2216 1.9592 2.519
CONCENTR 0.2922 1.3394 1.2119 1.4802
AGE_ONS -0.0165 0.9836 0.9813 0.9859

m
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The estimated intercept is 0.7982, which means that the average number of depression episodes is

e%"=2.2215, implying that on average the number of episodes is about two. The estimated
coefficient for CONCENTR is 0.2922, which indicates that respondents who had trouble concentrating

on things tended to have 2.2215e°** =(2.2215)(1.3394)=2.9754episodes at the same age as

respondents without concentration problems. The estimate of the effect of age at the onset of the first

episode (AGE_ONS) shows that the onset age does not affect the number of episodes much, since

e®%%=0.98. A slight reduction in the expected number of episodes is expected with increasing age.

If one compares two typical respondents with reported concentration problems, but with one
respondent ten years older than the other, one would expect the older respondent to have
(2.2215)(1.3394) ™™ =2.5229 episodes, compared to 2.9268 expected episodes for the younger

respondent. In other words, the longer it takes for the first episode to occur, the fewer episodes a
respondent is expected to have. Of course, it has to be kept in mind that the younger a respondent is
at the first episode, the longer that person must live with the condition and thus the more time there
is for subsequent episodes to occur.

Random effects results
The output for the level-2 random effect variance term follows next. The estimated variation in the
average estimated N_DEP at level 2 is 0.1347, which is highly significant. Respondents are different
in terms of their average expected number of episodes, holding all other variables constant.

|j nesarc_poil.OUT E@
Estimated level 2 variances and covariances -
Standard
Parameter Estimate Error 7z Value P Value
intcept/intcept 0.1347 0.0184 7.3058 0.0000

Level 2 covariance matrix

intcept
intcept 0.134671

m

Level-1 variation for Poisson distribution
The variance-to-mean ratio is a measure of the dispersion of a probability distribution:
. . 0'2
R = variance-to-mean ratio = —
U
For the Poisson distribution, where the variance equals the mean, this implies R=1. Thus, we use a
value of one as our level-1 variation. In the cases when over-dispersion (R >1) or under-dispersion
(R<1) is assumed, different level-1 variation values will apply. The details of these scenarios are
not discussed in this guide.
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2.4.6.7 Interpreting the results

Estimated outcomes for groups: unit-specific results
First, we substitute the regression weights and obtain the following function for log ( N_DEP; ) :

Iog(N_DEPij ) = boo-+ biox CONC_DEP, +bzx AGE_DEP,
=0.7982+0.2922x CONC_DEP; —0.0165x AGE_DEP;.
For example, at age 40, the estimated Iog(N_DEP”) for a typical respondent who does not often
have trouble concentrating (CONCENTR = 0), we find that
log ( N_DEP, ) = by, + B, x CONC_DEP, + 3, x AGE_DEP,
=0.7982+0.2922x CONC_DEP,; —0.0165x AGE_DEP;

=0.7982+0.2922x0—-0.0165x 40
=0.1382.
Keeping in mind that we defined the relationship between A and the predictors as
log (4; )= By +.-.+ ByXy.
it follows that
Jy; =e%% =1.1482.

We can estimate the count of the occurrence of depression episodes for typical individuals of
different ages in the same way. Results are summarized in the table below. The results show a
decrease in the expected number of episodes with increasing age, regardless of whether they had
concentration problems or not.

Estimated number of episodes under the Poisson log model

AGE_ONS 10 20 30 40 50 60 70
CONCENTR =1| 2.5229| 2.1391] 1.8138] 1.5379] 13040, 1.1056| 0.9374
CONCENTR =0| 1.8836] 1.5971] 1.3542| 1.1482) 0.9736| 0.8255] 0.6999

We clearly see that the correspondents who often had trouble concentrating (CONCENTR = 1) have
a higher estimated number of depression episodes. It also shows that the number of episodes is
expected to decrease as people get older.

Level 21CC
The percentage of variance explained over level-2 units, or intraclass correlation coefficient (ICC),
is calculated as

level-2 variation
ICC = — —
level-1 variation + level-2 variation
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In this example, under the assumption that the level-1 variation is fixed at a value of one, we have

0.1347

ICC=———
1+0.1347

x100% =11.8%

We can conclude that most of the unexplained variation in the outcome (approximately 78%) is
between measurements at the lowest level of the hierarchy.

2.4.7 Negative binomial model for the NESARC data
2.4.7.1 The model

In the previous section a Poisson model was fitted to the data. It was also noted that a Poisson
distribution has an important property: the mean number of occurrences is equal to the variance. The
negative binomial distribution can be used as an alternative to the Poisson distribution. It is especially
useful for discrete data that assumes values 0, 1, 2, 3... whose sample variance exceeds the sample
mean. In such cases, the observations are over-dispersed with respect to a Poisson distribution, for
which the mean is equal to the variance. Since the negative binomial distribution has one more
parameter than the Poisson, the second parameter can be used to adjust the variance independently
of the mean. It can be shown that a model based on the negative binomial distribution with a
dispersion parameter close to zero will produce results that correspond closely to those obtained for
the Poisson model. In this section, we fit a negative binomial model, utilizing the same predictors
and a small dispersion parameter, to the NESARC data. Subsequently larger values of the dispersion
parameter will be used to study the impact on parameter estimates and the deviance statistic. Again,
adaptive quadrature is used as the method of optimization.

The negative binomial distribution can be expressed as

_ T(y+la) (as;)”
f(yi)_l"(yi+1)l“(1/a)x(1+az )yi+1/a

with o?(y;) = 1 + au® where ¢ denotes an additional parameter and it can no longer be assumed
that the variance is a known function of the mean. We assume « to be a fixed parameter.

The model fitted to the data explores the relationship between N_DEP and the variables indicating
concentration (or lack thereof) and age, as represented by the variables CONCENTR and AGE_ONS.

The level-1 model is
log| E(N_DEP; ) | = 8, + 8, x CONC_DEP, + 8, x AGE_DEP,
The level-2 model is
By =by+Vi,, f=b, and S, =h,,.

67



2.4.7.2 Setting up the analysis
Make sure that the spreadsheet nesarc_poi.lsf is the active window and keeping all the other settings

for a Multilevel, Generalized Linear Model unchanged, set the Distribution Model t0 negative binomial,
and the Dispersion Parameter t0 0.0001 as shown below.

|

Distribution type: [Negati\.fe Binormial

Link function: [Log

Include intercept?

@) Yes

Dispersion parameter

Yes @ FEixedvalue:  0.0001|

Estimate scale? Mone

5<Previousl l Mext >> ] l Cancel ] [ (0]4 ]

Tobuild syntax, proceed to the Random Yariables screen and click
the Finish button

Save the revised syntax file as nesarc_poi2.prl, and click the PRELIS, Run icon button to start the
iterative process.

S — —

MGlimOptions Converge=0.0001 MaxIter=100 MissingCode=-999599
Method=Quad NQUADPTS=10 ;

Title=Random Intercept Poisson Model fitted to NESARC data;

SY¥='nesarc_poi.LSF';

IDZ2=PSU;

Distributicn=NBIN;

Link=L0OG;

Intercept=Yes;

Dispersion=0.001;
DepVar=N_DEE;
CoVars=CONCENTR AGE_ONS;
RANDOMZ=intcept;
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2.4.7.3 Discussion of results

Portions of the output file nesarc_poi2.out are shown below.

Fixed and random effect results

The estimated regression coefficients for fixed effects in the model are shown below. Recall that the
estimated coefficients of the intercept, CONCENTR, and AGE_ONS under the Poisson model reported
in the previous section were 0.7982, 0.2922, and -0.0165 respectively. The estimated variation in the
average estimated N_DEP at level-2 was 0.1347, and highly significant. Note that with the dispersion

parameter set at 0.0001, results of the two models are almost identical.

2.4.7.4 Changing the value of the dispersion parameter

Save the syntax file for the negative binomial model as nesarc_poi3.prl and change the dispersion
value to 0.1 before running the analysis and making a note of the deviance value (6760.73 in this
case). Repeat the procedure for dispersion values of 0.2, 0.3, 0.4, 0.5 and 0.6 respectively. The list

|: nesarc_poi2.OUT EI@
Number of quadrature points = 10 i
Number of free parameters = 4
Number of i1terations used = 3
-21nL (deviance statistic) 7000.81243
Akaike Infarmation Criterian 7008.81243
Schwarz Criterion 7031.17786
Estimated regression weights
Standard
Parameter Estimate Error z Value P Value
intcept 0.7982 0.0641 124471 0.0000
CONCENTR 0.2922 0.0510 5.7270 0.0000
AGE_ONS 0.0165 0.0012 -13.9420 0.0000
Event Rate Ratio and 95% Event Rate Confidence Intervals
Bounds
Parameter Estimate Event Rate Lower Upper
intcept 0.7982 2.2216 1.9592 2.5191
CONCENTR 0.2922 1.3394 1.2119 1.4802
AGE_ONS 0.0165 0.9836 0.9813 0.9859
| Estimated level 2 variances and covariances ]
Standard
Parameter Estimate Error 7z Value P Value
intcept/intcept 0.1346 0.0184 7.3039 0.0000

of (dispersion; deviance)-values are shown below in the LISREL data file dispersion.Isf.




|: dispersion.LSF E@
DISP | DEVIANCE | |

1 7000810

2 0100  6760.730

3 0200  6716.200

4 0300  6737.190

5 0400 6791270

6 0500 6862620

7 0.600  6943.790

From the main menu-bar select the Graphs, Bivariate Plots option to request a line plot of the
deviance-statistic against dispersion.

Bivariate Plots

List of variables

DEY!

IANCE

Y wariahle:

Select »>

<< Remove

= wariable:

Select»>

<< Bemowve

[T Box and WWhisker Plot

The plot shown below, shows that the best model fit is obtained for a dispersion-value of 0.2 (best
fit corresponds to smallest deviance value).

DEVIANCE

7100+
7000+
6900+
6800+
6700+

6600
0

Plot of DEVIANCE on DISP

N=7

r=0.077
{Preduct Moment)

01

02

03 04 05 06
DISP

0.7

The output for the fixed and random effects is listed below. All the parameter estimates are
significant, but different from those reported for the Poisson model.
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|: nesarc_poi2. OUT e T[T 5™

Number of quadrature point 10

Number of free parameters 4

Number of iterations used 2

-21nL (deviance statistic) = 6715.20779

Akaike Information Criterion 6723.20779

Schwarz Criterion 6745 57322

Estimated regression weights
Standard

Parameter Estimate Error Z Value P Value

intcept 0.8075 0.0709 11.3889 0.0000

CONCENTR 0.2836 0.0577 4 9117 0.0000

AGE_ONS -0.0154 0.0014 -11.3724 0.0000

Event Rate Ratio and 95% Event Rate Confidence Intervals
Bounds

Parameter Estimate Event Rate Lower Upper

intcept 0.8075 2.2422 1.9513 2 5765

CONCENTR 0.2836 1.3279 1.1858 1.4870

AGE_ONS -0.0154 0.9347 0.9821 0.9873

Estimated level 2 variances and covariances =
Standard

Parameter Estimate Error z Value P Value
intcept/intcept 0.0709 0.0155 4 5810 0.0000

2.4.8 Weighted 2-level models

2.4.8.1 The data

The sampling frame of many multistage surveys frequently entails selection of units with known, but
unequal, selection probabilities. This situation is the result of a number of design factors, of which
the cost of doing the survey is an important consideration. When this is the case, it is appropriate to
weigh observations in order to produce unbiased estimates of the population parameters.

The variable FINWT represents the NESARC weights sample results used to form national-level
estimates. The final weight is the product of the NESARC base weight and other individual weighting
factors. In this section, we explore the effect of inclusion of the weights on the results obtained in

the section describing the unweighted Poisson model.
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2.4.8.2 Setting up the analysis

The models remain the same, with only the selection of the weight variable on the Advanced tab of
the Model Specification screen to be added. Below, we show how this is done in the case of the
Poisson distribution model.

Open the syntax file for the Poisson distribution model (nesarc_poil.prl). Save the syntax file file as
nesarc_poi3.prl and add Weight = FINWT below the ID2 paragraph as shown below.

MGlimOptions Converge=0.0001 MaxTter=100 MissingCode=—9%%%%%% ~
Method=Quad NQUADFTS=10 ;

Title=Random Intercept Poisson Model fitted to NESARC data;

SY='nesarc poi.LSF';

ID2=PSU;

Distribution=POI;

Link=L0OG;

Intercept=Yes;

Scale=None;

DepVar=N_DEF;

CoVars=CONCENTR AGE ONS;

EANDOMZ=intcept;

Save the file and run the analysis.

2.4.8.3 Discussion of results

Results for this analysis are reported in the table below. The results from the unweighted Poisson
distribution model are included in order to facilitate evaluation of the impact of the weights on the
results.

Comparison of results for weighted and unweighted Poisson models

Parameter Unv_veighted model Wei_ghted model
Estimate Standard error | Estimate Standard error
intcept 0.7982 0.0641 0.7225 0.0660
CONCENTR 0.2922 0.0510 0.3055 0.0532
AGE_ONS —0.0165 0.0012 —0.0156 0.0013
Level-2 variance 0.1347 0.0184 0.1378 0.1089

Results for the two models are very similar, and interpretation of the results of both models would
lead to the same conclusions, both in terms of significance and in terms of the expected number of
depression episodes. However, this is more the exception than the rule — users are cautioned to use
weight variables whenever they are available in order to prevent skewed or biased results that may
occur when weights are excluded in the analysis of a disproportionally drawn sample.
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2.4.9 Models for count outcomes using ASPART data
2.4.9.1 The data

The data for this example are taken from a paper by McKnight and Van Den Eeden (1993), who
reported on the number of headaches in a two treatment, multiple period crossover trial. Specifically,
the number of headaches per week was repeatedly measured for 27 patients. Following a seven day
placebo run-in period, subjects received either aspartame or placebo in four seven-day treatment
periods according to the double-blind crossover treatment design. Each treatment period was
separated by a washout day. The sample size is 122. Data for the first 10 observations of all the
variables used in this section, contained in the file aspart.Isf are shown below in the form of an
LSF spreadsheet window.

[ ASPART.Isf [l 3]
1D HeadAche DrugAsp Period1 Period? Period3 | Period4

1 0.00 0.00 0.00 0.00 0.00 0.00 =

2 2.00 5.00 1.00 1.00 0.00 0.00 0.00 =
3 2.00 2.00 0.00 0.00 1.00 0.00 0.00
4 5.00 3.00 0.00 0.00 0.00 0.00 0.00
5 5.00 0.00 1.00 1.00 0.00 0.00 0.00
6 5.00 2.00 0.00 0.00 1.00 0.00 0.00
7 5.00 0.00 1.00 0.00 0.00 1.00 0.00
8 5.00 0.00 0.00 0.00 0.00 0.00 1.00
9 13.00 7.00 0.00 0.00 0.00 0.00 0.00

10 18.00 7.00 1.00 1.00 0.00 0.00 000 -
4 (1 2

The variables of interest are:

o ID is the patient ID (27 patients in total).

o Headache is the number of headaches during the week (from 0 to 7).

o Periodl is a period 1 treatment indicator (1 for the first treatment period and 0 otherwise).

o Period2 is a period 2 treatment indicator (1 for the second treatment period and O otherwise).

o Period3 is a period 3 treatment indicator (1 for the third treatment period and O otherwise).

o Period4 is a period 4 treatment indicator (1 for the fourth treatment period and O otherwise).

o DrugAsp indicates the type of drug being used for the treatment, (0 = placebo and 1 =
aspartame). 75 observations used placebo and 47 used aspartame.

o Nperiods is the number of periods the individual was observed (from 2 to 5).

o NTDays is the number of treatment days in the period (from 1 to 7).

2.4.9.2 The model

To model the relationship between the number of headaches during the week (Headache) and the
treatment indicators (Period1 to Period4) and the type of drug administered (DrugAsp), the following
Poisson regression model with a random intercept may be used:

log(4;) = 3, + B, x PeriodL; + 8, x Period2, + 3, x Period3;
+f3, x Period4; + f; x DrugAsp;; +Vv,,
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where 4, denotes the mean number of headaches of patient i for treatment period j; Periodl;,
Period2;, Period3; and Period4; denote the values of the dummy variables Period1, Period2,
Period3 and Period4 for patient i for treatment period j respectively; DrugAsp; denotes the value
of the DrugAsp for patient i for treatment period j; 5,, B, B, B, B, and S, denote unknown
parameters; and v,, denotes the random intercept for patient i for i=12,...,27 and j=0,1,2,3.

This model is fitted to the data in aspart.ss3 as described below.

2.4.9.3 Setting up the analysis

Start by opening aspart.Isf. Select the Multilevel, Generalized Linear Model option on the main menu
bar.

Multilevel | SurveyGLIM View Window Help

Linear Model v
Generalized Linear Model 4 Title and Options...
MNon-Linear Regression 4 ID and Weight...
_DragAasp | Perodr T P Distributions/Links..
0.00 0.00 Maodel Specification...
égg égg Réndom Variablesl...

Using the Titles and Options dialog enter the title: 2-level Poisson log random intercept model, ASPART
data. Select Quadrature and set the number of quadrature points to 20.

Title:
|2-Level Poigzon Log random intercept model, ASPART data

Masimum Mumber of lterations: (100 J;I
Corwergence Criterian: 0.0001

: Mizzing Data W alue: ’W

Il Dependent Missing alue: ’W

: Optimization kethod

1 " MAP * Quadrature

: Murber of Quadrature Paints: |10 g

Additonal Output
[v Fesidual fles [ Mo data summmary

[ Asymplotic covarance

MHest > Cancel | ak |

Taobuid zpmtax, proceed to the Random Y arniable: screen and
click the Firizh buttan
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Click the Next button to activate the ID and Weight dialog and select the variable ID, which defines
the second level of the hierarchy, as the Level-2 ID. To proceed to the Distributions/Links dialog, click
the Next button and enter the values shown below.

F
Distributions and Li_ M
I~ —
Distribution type: iPoisson V]
Link function: iLDg V]
I
I Include intercept?
@ ves (@)
Yes (@) Fixed value:
Estimate scale? lNone v]
g(Previous] ’ Mext 2> ] ’ Cancel ] [ Ok l

To build syntax, proceed to the Random Yariables screen and click
the Finish button

Proceed to the Dependent and Independent variable dialog and select count outcome variable
Headache as the dependent variable.

The variables Period1, Period2, Period3, Period4, and DrugAsp are specified as the independent
variables of the model. By default, an intercept model is included in the fixed part of the model,
along with a random intercept at level 2.
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F |
Dependent and Independem u

YYariahles in data:

[n] Add >> Dependentwariable:
HeadAche
Period2 Independent variables:
Feriod3 -
Period4 Perind] I
MFeriods Continuous »> Perind?
MNTDays Per!DdS
Categorical >» Period4
Drugdsp
<< Bemowve
Add 3> Offset Wariable:
£< Previous l l Mext > l l Cancel l [ OK. ]

Tobuild syntax, proceed to the Random Yariables screen and click
the Finish button

Click the Finish button on the Random Variables dialog to produce the syntax file shown below.

MGlimOptions Converge=0.0001 MaxIter=100 MissingCode=-999%9%9%
IterDetails=No Method=Quad NQUADPTS=10 Output=Residuals;
Title=Poisson - Log random intercept model, ASPART data;
S¥=aspart.lsf;

ID2=1ID;

Distribution=POI;

Link=LOG;

Intercept=Yes;

Scale=None;

DepVar=HeadAche;

CoVars=Druglhsp Periodl Period2 Pericd3 Pericd4 Drughsp;
EANDOM2=intcept;

Before running the analysis, save the file as aspart1.prl and click the RUN PRELIS icon button to start
the analysis.

2.4.9.4 Discussion of results

Portions of this output file are shown below.

Model and data description
The output file indicates that there are 27 subjects with 122 observations nested within them. The
number of observations per subject varies between 2 and 5.
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[} ASPARTLOUT

=N ol ™™
Model and Data Descriptions -
Sampling Distribution = Poisson
Link Function = Log E
Number of Level-2 Units 27
Number of Level-1 Units 122
Number of Level-1 Units per Level-2 Unit =
3 5 5 3 5 5 5 5 5 5 4 2
5 5 5 5 5 5 5 5 5 5 5 5
5 3 2

Descriptive statistics

The descriptive statistics for all the variables is shown next. The variance of Headache is
1.8863° = 3.5581, which is substantially larger than the mean 1.6803. This might conflict with our

assumption that the Poisson distribution is an appropriate choice for these data. As pointed out in
Section 2.4.7, this can be verified by fitting a negative binomial model with a small dispersion

parameter.

[ ASPARTL.OUT =N o
0 === === === === ====0 &
| Descriptive statistics for all the variables in the model |
0 === === === === ====0

Standard
Variable Minimum Maximum Mean  Deviation AL
HeadAche 0.0000 7.0000 1.6803 1.88863
intcept 1.0000 1.0000 1.0000 0.0000
Periodi 0.0000 1.0000 0.2213 0.4168
Period2 0.0000 1.0000 0.2049 0.4053
Period3 0.0000 1.0000 0.1803 0.3860
Period4 0.0000 1.0000 0.1721 0.3791
DrugAsp 0.0000 1.0000 0.3852 0.4887

Results for the model without any random effects

The results for the model without any random effects are shown below. In this section the goodness
of fit statistics, estimated regression weights and event rate ratio and 95% event rate confidence

intervals are included.
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|- AsPARTLOUT E=8 Bl =™
Statistic Value DF Ratio
Likelihood Ratio Chi-square 243 8257 116 2.1019
Pearson Chi-square 253 .8934 116 2.1887

Estimated regression weights

Standard
Parameter Estimate Error z Value P Value
intcept 0.4654 0.1525 3.0516 0.0023
Period1 0.0916 0.2265 0.4043 0.6860
Period2 0.0131 0.2276 0.0575 0.9542
Period3 -0.2245 0.2471 -0.9084 0.3637
Period4 -0.1840 0.2540 -0.7242 0.4689
DrugAsp 0.2332 0.1596 1.4612 0.1440

Event Rate Ratio and 95% Event Rate Confidence Intervals

Bounds
Parameter Estimate Event Rate Lower Upper
intcept 0.4654 1.5926 1.1811 2.1474
Period1 0.0916 1.0959 0.7030 1.7085
Period2 0.0131 1.0132 0.6486 1.5827
Period3 -0.2245 0.7989 0.4923 1.2967
Period4 -0.1840 0.8320 0.5057 1.3688
DrugAsp 0.2332 1.2626 0.9235 1.7263

Fixed and random effect results

The final results are shown next. The number of iterations needed for convergence and the deviance

information are given first, followed by the estimates.

The random-effect variance component is estimated as .4327 which is significant at the 5% level.
Regarding the regression coefficients, all effects are non-significant. The results indicate that the

model does not fit the data very well.

The event ratio and 95% event rate confidence interval and estimated level-2 variances and
covariances are shown next to the estimated regression weights. The event ratios are the exponents (

e”) of the estimated regression coefficients.

m

78



[+ ASPARTLOUT =N R <"

Number of quadrature points = 20 -

Number of free parameters = 7
Number of iterations used = 3
-21nL (deviance statistic) = 406 35386
Akaike Information Criterion 420.35386
Schwarz Criterion 439 98201

Estimated regression weights

Standard
Parameter Estimate Error z Value P Value
intcept 0.2507 0.2051 1.2222 0.2216
Periodi 0.0806 0.2350 0.3429 0.7317
Period2 0.0345 0.2236 0.1541 0.8775
Period3 -0.2273 0.2546 -0.8927 0.3720
Period4 -0.1594 0.2528 -0.6306 0.5283
DrugAsp 0.2151 0.1639 1.3123 0.1894

Event Rate Ratio and 95% Event Rate Confidence Intervals

Bounds

Parameter Estimate Event Rate Lower Upper

intcept 0.2507 1.2849 0.8596 1.9208

Periodi 0.0806 1.0839 0.6838 1.7181

Period2 0.0345 1.0351 0.6677 1.6045

Period3 -0.2273 0.7967 0.4837 1.3122

Period4 -0.1594 0.8526 0.5194 1.3995 E
DrugAsp 0.2151 1.2399 0.8993 1.7096

Estimated Tevel 2 variances and covariances
Standard

Parameter Estimate Error z Value P Value
intcept/intcept 0.4327 0.1737 24917 0.0127 -

2.4.9.5 Interpreting the results

Estimated outcomes for groups: unit-specific results
The expected number of headaches can be obtained in the following fashion. First, we substitute the
estimated coefficients in the model formulation

log (Heaaacheu j = &0+ ,élx Periodl; + ,ézx Period2;

+,33>< Period3; + ﬁ4>< Period4; + ﬁsx DrugAsp;;

=0.2572+0.0807 x Periodl; +0.0345x Period2;

—0.2267 x Period3; —0.1592x Period4;; +0.2151x DrugAsp; .
or, after taking exponents on both sides, as

Headache; = exp(0.2572 +0.0807 x Periodl, +0.0345x Period2,
—0.2267 x Period3; —0.1592x Period4; +0.2151x DrugAsp;).
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As an example, we calculate the expected number of headaches for a typical patient to whom
aspartame was administered (DrugAsp = 1). During the first treatment period, we find that for such a
patient

Heaaachei,- =exp(0.2572+0.0807 + 0.2151)

=1.7385.
The expected numbers of headaches for a typical patient (again with DrugAsp = 1) for the second,
third, and fourth treatment periods are calculated as

Headache;; = exp(0.2572 + 0.0345 + 0.2151)
=1.6600,

Headache;; = exp(0.2572 —0.2267 +0.2151)

=1.2784,
and

Headache; = exp(0.2752 — 0.1592 + 0.2151)

=1.3677
respectively. Complete results for all groups are given in Table 5.2.

Estimated outcomes for groups: population-average results
The latent response variable model,

Yi = Z(l)ijbi +X(1)ijB(1) +€;
makes the assumption that e; ~ LID(0,57). For a Poisson distribution it is assumed that 2 =1.
Under the assumption that v; and e; are independently distributed, it follows that

2 2
oy, —zijCI)vizij + ;.

The design effect d; is defined as

which, for the current model, may be calculated as

2

G, var(v,)+1

dy =—r _Var(vo)+1 ) o0
c 1

e

where var(v,,)=0.4290, with v,, denoting the random intercept coefficient. The estimated

population-average probabilities (Hedeker & Gibbons, 2006) are obtained in a similar fashion as the
unit-specific probabilities, after replacing the exponent in the formula used for calculation of the

estimated unit-specific probabilities with exp = exp/ \/I as shown below.
Heaaachei,- = exp[(0.2572+0.0807 x Periodl; +0.0345x Period2; —0.2267 x Period3;
—0.1592 x Period4;; +0.2151x DrugAsp;;) / V1.4290].
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The expected unit-specific and population average probabilities are summarized in Table 5.3. We
see that there is very little difference in the estimated number of headaches. This result is to be

expected as the design effect is +/1.4290 =1.1954

Estimated unit-specific and population average results for groups

oRUoASP [ perog | EsiTaed headache | Eimated eadeche
0 1 1.4020 1.1728
0 2 1.3387 1.1199
0 3 1.0310 0.8624
0 4 1.1030 0.9227
1 1 1.7385 1.4543
1 2 1.6600 1.3886
1 3 1.2784 1.0694
1 4 1.3677 1.1441
2.4.10 Poisson log model with an offset variable
2.4.10.1 The model

The previous analysis assumed that the counts were all observed for the same number of days.
However, this was not the case since the number of treatment days in the period did vary to some
degree. Most of the counts were based on the full seven days in the week; however, some
observations were made only for 1 day in the given week. To take this into account, we need to
specify a so-called OFFSET variable. The offset variable indicates the amount of time that each count
is based on. If OFFSET = no is specified, as was the case in the previous example, it is assumed that
all counts are based on the same amount of time.

The offset variable is introduced into the Poisson model in the following way:

log (/Alij ) = log(offset variable) + [x' b. J

iji
where X; represent the values of the covariates corresponding to level-1 unit j nested within level-
2 unit i and b, denotes the coefficient vector containing both fixed and random effects.

In the current situation, the variable NTDays is the appropriate choice as the OFFSET variable. The
model to be fitted to the data now changes to:

log ( Headache, ) = log (NTDays)+ (3, + 3, x Periodl, + 3, x Period2,
+p3, x Period3; + B, x Period4; + B x DrugAsp;; +V,).
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2.4.10.2 Setting up the analysis
To create the model specifications for this model, ensure that aspart.Isf is displayed as the active

window. Select the variable NTDays from the Variables in data: list as the Offset Variable by
proceeding to the Dependent and Independent Variables dialog.

Dependent and Independent Variables — M

YWariahles in data:

I Add »> Dependent variahle:
peanfche HeadAche
Periodl
Per!DdE Independentwariables:
Feriod3
[ Feriod4 E;:,g;;ﬁp
MHFeriod !
|| Bnoos Continuous »> Pario?
] Ferod3
Ca 1>>
et Period4
<< Remove
Add »> Offzet Variable:
MTDEys
< Previousl l MWent > ] l Cancel ] l oK, ]

Tobuild syntax, proceed to the Randam Variables screen and click
the Finish button

Click the Next button to proceed to the Random Variables dialog and then click Finish to create the
syntax file (saved as Aspart2.prl) shown below.

MGlimOptions Converge=0.0001 MaxIter=100 MissingCode=—%993%9% ”
IterDetails=No Method=Quad NQUADPTS=10 Output=Residuals;
Title=Poisson — Log random intercept model, ASPART data;
SY¥=aspart.lsif;

ID2=1ID;

Distribution=P0OI;

Link=LOG;

Intercept=Yes;

Scale=None;

DepVar=HeadAche;

CoVars=Drughsp Periodl PeriodZ Period3 Period4 Drughsp;

Offset=NTDays;
REANDOMZ=intcept;
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2.4.10.3 Discussion of results

Fixed and random effect results

[ AspaRT2.0UT [E=0 el
Number of quadrature points = 20 i
Number of free parameters = T
Number of iterations used = 3
-21nL (deviance statistic) = 404 .86839
Akaike Information Criterion 418.86839
Schwarz Criterion 43849654

Estimated regression weights

Standard
Parameter Estimate Error z Value P Value
intcept 1.7127 0.2105 -8.1371 0.0000
DrugAsp 0.2797 0.1641 1.7044 0.0883
Period1 0.1001 0.2357 0.4247 0.6711
Period2 0.0879 0.2250 0.3909 0.6959
Period3 -0.2116 0.2567 -0.8242 0.4098
Period4 0.0787 0.2545 -0.3092 0.7571

Event Rate Ratio and 95% Event Rate Confidence Intervals

Bounds

Parameter Estimate Event Rate Lower Upper

intcept 1.7127 0.1804 0.1194 0.2725

DrugAsp 0. 2797 1.3227 0 9589 1. 8245

Period1 0.1001 1.1053 0.6963 1.7544

Period2 0.0879 1.0919 0.7026 1.6971

Period3 -0.2116 0.8093 0.4894 1.3385 =
Period4 0.0787 0.9243 0.5613 1.5220

Estimated level 2 variances and covariances
Standard

Parameter Estimate Error Z Value P value
intcept/intcept 0.4775 0.1924 2.4811 0.013“

Results for this model differ from those obtained for the model without offset variable discussed in
the previous section. While the overall trend in predictor coefficient estimates is similar, the intercept
is now estimated as —1.7127, compared to 0.2572 previously. The variance in intercept over patients
for this model is estimated as 0.4775 compared to 0.4290 previously.

24.104 Interpreting the results

Estimated outcomes for groups: unit-specific results
The expected number of headaches can be obtained in the following fashion. First, we substitute the
estimated coefficients in the model formulation
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log (Heaaacheu j = log(NTDays; ) + (% Period;, + B, Period2,

+ﬁ3x Period3; + Ex Period4; + ,%SX DrugAsp;)
= log (NTDays; ) + (—1.7127 +0.1001x Period, +0.0879 x Period2,
—0.2116x Period3; —0.0787 x Period4;, +0.2797 x DrugAsp;,),

or, after taking exponents on both sides, as

Headache; = NTDays, x exp(—1.7127 +0.1001x Periodl, +0.0879x Period2,
—0.2116x Period3; —0.0787 x Period4;; +0.2797 x DrugAsp; ).

As most observations had a value of NTDays = 7, we start by considering typical patients with a full
set of treatment days. We also assume that DrugAsp = 1, in other words, that aspartame rather than a
placebo was administered.

During the first treatment period, we find that for such a patient

Headache;; = 7 exp(~1.7127 + 0.1001+ 0.2797)
=T7exp(-1.3329)

=1.8460.
The expected numbers of headaches for a typical patient (again with NTDays = 7 and DrugAsp = 1)
for the second, third, and fourth treatment periods are calculated as

Headache; = 7 exp(~1.7127 +0.0879+0.2797)
—1.8236,

Headache; = 7 exp(~1.7127 —0.2116 + 0.2797)
—1.3516,
and

Headache; = 7 exp(~1.7127 — 0.0787 +0.2797)

=1.5437
respectively.

For a typical patient with only 5 treatment days, the expected numbers of headaches in each of the
four treatment periods are 1.3186, 1.3026, 0.9654, and 1.1027 respectively.

When the expected numbers of headaches for a typical patient receiving aspartame under the Poisson
model without offset variable (see previous section) and the Poisson model with offset variable are
compared, we clearly see the impact of the inclusion of the offset variable on the estimated
coefficients. These results are shown in Table 5.4.
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Comparison of results for Poisson models

Period | Without offset variable \(/I\\/li_f_rlgg;fssit;/)ariable z/l\fli_}gg;gsitg/)ariable
1 1.7385 1.846 1.3186
2 1.6600 1.8236 1.3026
3 1.2784 1.3516 0.9654
4 1.3677 1.5437 1.1027

Level 2 Bayes results
As requested during the model specification stage, the empirical Bayes estimates of the random
effects are written to the file aspart2.ba2. The first few lines of this file are shown below.

[ % ASPART.ba2 =N <
2.00 1 0.2935469 0.1218081 1ntcept e
5.00 1 -0.2884135  0.1342702 intcept

13.00 1 1.4694549 0.0306922 1ntcept
16.00 1 0.0260684  0.1468933 intcept
19.00 1 -0.5848823 0.1636481 1ntcept =
23.00 1 0.7594687  0.0583995 intcept
25.00 1 0.6363209 0.0649615 1ntcept
1.00 1 -0.0479152  0.1122400 intcept
3.00 1 0.3374529 0.0829698 1ntcept
6.00 1 -0.1651083  0.1223822 1intcept
9.00 1 -0.0789878 0.1424260 1ntcept
17.00 1 0.7312116  0.1857659 intcept
18.00 1 -0.5892655 0.1634112 1intcept
21.00 1 0.6305610  0.0649110 intcept
22.00 1 -0.4339204 0.1476636 1ntcept .

The file aspart.ba2 contains five pieces of information per individual:

the individual's ID,
the number of the random effect (only intercept in this case),

the empirical Bayes estimate for that individual (which is the mean of the posterior
distribution),

o the associated posterior variance, and
the name of the relevant random coefficient.

Since they are estimates of b., for each individual, the empirical Bayes estimates are expressed on

the standard normal scale. Inspection of these estimates indicates that subject 13 has a very high
score. This person's estimate of 1.469 (with variance .031) suggests a very high level of headaches.
This agrees well with the raw data, which reveals that this person recorded 7 headaches on four
occasions and 6 on the only other occasion.
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2.4.11

24111

Models for ordinal outcomes using NIMH data

Description of the NIMH data

To illustrate the application of the mixed-effects ordinal logistic regression model to longitudinal
data, we examined data collected in the NIMH Schizophrenia Collaborative Study on treatment-
related changes in overall severity. Specifically, Item 79 of the Patient Multidimensional Psychiatric
Scale (IMPs; Lorr & Klett, 1966) was used. In this study, patients were randomly assigned to receive
one of four medications: placebo, chlorpromazine, fluphenazine, or thioridazine. Since previous
analyses (Longford, 1993, and Gibbons & Hedeker, 1994) revealed similar effects for the three anti-
psychotic drug groups, they were combined in the present analysis. Finally, again based on previous
analysis, a square root transformation of time was chosen to linearize the relationship of the IMPS79
scores over time.

Data for the first 10 observations are shown below in the form of a LISREL System File (LSF)
spreadsheet file, named nimh_study.Isf.

[ NIHM_Study.LSF o )
ID IMPS79 | IMPS79D | IMPS790 DRUG WEEK | SQRTWEEK |

1 B 5O 1.00 400 1.00 0.00 000 =
2 1103.00 3.00 0.00 2.00 1.00 1.00 1.00)=
3 1103.00 -9.00 -9.00 -9.00 1.00 2.00 1.41
4 1103.00 2 B0 0.00 2.00 1.00 3.00 173
5 1103.00 -9.00 -9.00 -9.00 1.00 400 2.00
6 1103.00 -9.00 -9.00 -9.00 1.00 5.00 224
7 1103.00 400 1.00 2.00 1.00 6.00 2 45
8 110400 6.00 1.00 400 1.00 0.00 0.00
9 110400 3.00 0.00 2.00 1.00 1.00 1.00
10 110400 -9.00 -9.00 -9.00 1.00 2.00 141 <

4 |l 2

The variables of interest are:

ID indicates the subject (437 patients in total).

IMPS79 represents the original score on Item 79 of the Patient Multidimensional Psychiatric
Scale. It was scored as: 1 = normal, or not at all ill; 2 = borderline mentally ill; 3 = mildly ill;
4 = moderately ill; 5 = markedly ill; 6 = severely ill; and 7 = among the most extremely ill.

IMPS79D is a recoded version of the same scale, but in binary form, where scores up to, but
excluding 3.5 were coded 0, and scores of 3.5 or higher were coded 1. The value "0" is
associated with measurements classified as normal, borderline, mildly, or moderately
mentally ill, while the value "1" was assigned to measurements corresponding to "markedly
ill" through "most extremely ill."

IMPS790 is also a recoded version of the same scale, but with the 7 original categories
reduced to four: 1 = normal or borderline mentally ill, 2 = mildly or moderately ill, 3 =
markedly ill, and 4 = severely or among the most extremely ill.

DRUG indicates the treatment group, where 0 indicates the placebo patients, and 1 refers to
the drug patients.
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o WEEK represents the time during the course of the study when a specific measurement was
made, and ranges between 0 and 6.

o SQRTWEEK is the square root of WEEK. This variable is generated within the LISREL
spreadsheet.

o WSQRTxDR is the product of the treatment group and the square root of WEEK.

In this data file, each subject's data consist of seven lines, these being the repeated measurements on
seven occasions. Notice that there are missing value codes (-9) for some subjects at specific time
points. The data from these time points will not be used in the analysis, but data from these subjects
at other time points where there are no missing data will be used in the analysis. Thus, for inclusion
into the analysis, a subject’s data (both the dependent variable and all model covariates being used in
a particular analysis) at a specific time point must be complete. The number of repeated observations
per subject then depends on the number of time points for which there are non-missing data for that
subject. The specification of missing data codes will be illustrated in the model specification section
to follow.

24.11.2 Defining variables

Defining column properties for the ordinal data is recommended. We use the column of IMPS790 as
an example. First, highlight the column of IMPS790 by clicking on its header. Then right click and
select the Define Variables option as shown below to open the Define Variables dialog box.

IMPS790 | DRUG | WEEK |
Define Variables... 00

m Delete Variables gg
Insert Variable a0

1.00 4.00

Select variable IMPS790 as shown below to activate all the options on the Define Variables dialog
box.
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Univariate graphs

-

Define Variables

D

IMPS79

IMPS79D
IMPS790
DRUG
WEEK
SQRTWEEK
WSORTXDR

Insert

Rename

“ariahle Type

Category Labels

hissing Walues

K

)

Cancel

warighles to be selected

To select more than one variable at & time,hold
dowen the CTRL key while clicking on the

Click on the category Labels option to activate the Category Labels for IMPS790 dialog box. Enter 1
in the value box and corresponding Label of Norm, click on the Add button to add the first label for
IMPS790, with 1 = Norm. Similarly, add the next three labels: 2 = Mod, 3 = Mark, and 4 = Sev as shown

Category Labels for IMPS79D ... e ]

Walue

Lakel

1 = MNarm
2= Med
3 = Mark
4= "Sev

\e—

Click on the OK button to return to the Define Variables dialog box. Click on OK button to return to
the LSF window. Save the change to the data set by clicking on the File, Save option.

As a first step, we take a look at the ordinal variable IMPS790 which is the potential dependent
variable in this study.
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Pie chart

To generate a pie chart for IMPS790, first open the nimh_study.Isf spreadsheet. Next, select the
Graphs, Univariate option to load the Univariate plot dialog box. Select the variable IMPS790 and
indicate that a Pie Chart is to be graphed as shown below.

F
Univariate Plots

- =

List of wariables

D
IMPS79
IMPS730
IMAPS730

DRUG
WEEK.
SORTWEEK
WSORT<DR

() Barchart

Q)

Histogram

Interpolated curve owerlay

Mormal curve overlay

The default number of class intervals for
a histogram is 15. This number may be
changed to a smallerwvalue in the range

ofB-14.
MNumber of class intervals 15
[ Plot J l Cancel

Click the Plot button to display the following pie chart.

H :

474 (29.6%)

IMPS790

190 (11.9%)

527 (32.9%)

412 (25.7%)

Note that most of the observations fall into the severe illness category. Keep in mind that the pie
chart takes all observations, regardless of the time of measurement, into account. As such, it is
informative about the distribution of all observed values of the potential outcome, but does not
provide any information on possible trends in illness level over time.
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Bivariate graphs

It is hoped that the severity of the illness (IMPS790) will decrease over the treatment period. Before
considering fitting a model to these data, we would like to explore the relationship between IMPS790
and WEEK using a bivariate bar chart.

Bivariate bar chart

I N
Bivariate Plots ‘ ‘ =

List of variahles

iy ﬂ] " wariahle:

IMFPS79 2!

M 750

PSS 730 £< Remove

DRUG

WWEEK o

SORTWEEK variable:

WEORTxDR

[7] Box and ‘¥hisker Plat

["] Scatter Plat
I [ Line Plat

A bivariate bar chart is accessed via the Graphs, Bivariate option on the File menu. The Bivariate
dialog box is completed as below: select the outcome variable IMPS790 as the Y-variable of interest,
and the predictor WEEK to be plotted on the X-axis. Check the 3D Bar Chart option, and click Plot.

)

3D Bar Chart of IMPS7%0 and WEEK

Norm

.J_r-'j-lﬂd

j 6

5

- é‘gr
ot &

M=d Mark Sev

IMPS720

As shown above, most patients did not participate in the study at weeks 2, 4 and 5. At the beginning
of the study (week 0), a large percentage of patients are markedly or severely ill. By the end of the
study (week 6), most patients are reported as normal or moderate.
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2.4.12 An ordinal regression model with random intercept
24.12.1 Introduction

An ordinal variable is a categorical variable where there is a logical ordering to the categories. In
most cases, treating an ordinal outcome as a continuous variable is inadvisable. As in the case of a
binary outcome variable, a link function is used in order to take the ceiling and floor effects of the
ordinal outcome into account. The available link functions in LISREL include probit, logistic,
complementary log-log and log-log. Detailed information on these link functions are given in Section
2.2.6.

2.4.12.2 The model

Let the outcome variable be coded into c categories, wherec =1,2,...,C . In this example, the ordinal

variable IMPS790 defines the severity of the illness in terms of four categories, and thusC =4. As
ordinal models utilize cumulative comparisons of the categories, define the cumulative probabilities

for the C categories of the outcome Y asP, :Pr(Yij SC)=Zpijk, where p;, represents the
k=1

probability that the response of the j-th measurement on patient i occurs in category k.

The type of drug, time elapsed since start of treatment, and the interaction between drug taken and
time elapsed are of interest as predictors. The logistic regression model with IMPS790 as outcome
can then be written as

Level-1 model:

P.
y; = log (1_—’J =7, —| by + b;DRUG, + b, SQRTWEEK, +b, (WSQRT xDR), |
ijc

i=1...n;c=12,...,C-1

Level-2 model:
Do =fy +Vy, 1=1...,N
bli :,31
b2i :ﬂz
b3i :ﬂ3

The cumulative probability can be expressed by
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e}/cf[bm +13;DRUG; + b, SQRTWEEK; +b3i(WSQRT><DR)i]

- 1+ e}/c {bm +1y;DRUG; +b,;SQRTWEEK; +by; (WSQRTxDR)i]

ijc
To obtain the probability for category ¢,

Bij.c = Fjca— Pij,c

As shown above, the intercept by, is estimated by a level-2 equation. It indicates that patient i's initial
IMPS790 value is not only determined by the population average £, , but also by the patient difference
v,; - In other words, patients may have different average intercepts, and the model makes provision

for this eventuality. The slopes are assumed to be the same for all the patients, which imply that each
patient's trend line is parallel to the population trend.

The connection between an ordinal outcome variable y with C categories and an underlying
continuous variable y* is

y=coy,,<y <y;,, c=12..,C

where it is assumed that y,=-c and y. =+oo. In addition, y, is usually set to O to avoid
identification problems.

2.4.12.3 Setting up the analysis

Open the LISREL spreadsheet nimh_study.Isf and select Title and Options option on the Multilevel,
Generalized Linear Model menu.
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Title and Options A ﬁ

Title:
|F|anu:|n:um Intercept Multinomial-logistic model with ardinal outcome

b aximum Mumber of lterations; |100 _|

Canvergence Criterian: 0.000m
tizsing D ata alue: -9
Dependent Missing * alue: -433333

Optimization Method

" MAP {* Quadrature

Mumber of Quadrature Paints; |25 =

Additanal Output
[v Residual files [ Mo data summary

[ Azymphobic covanance

Mext = Cancel | Ok |

Tobuld syntas, proceed to the A andom Yanables screen and
click the Finizh button

In the Title and Options dialog box, enter a title for the analysis in the Title text boxes. Keep the
default settings for the Maximum Number of Iterations and Convergence Criterion. The Missing Data
Value text box is used to specify the values of missing data for both outcome and predictors. We
notice that the missing value -9 is presented in the data. Define the missing value by entering the
number -9 in the Missing Data Value text box as shown above. Activate Quadrature radio button in
the Optimization Method section and change the Number of Quadrature Points t0 25 to obtain the
above screen. Proceed to the ID and Weight Variables dialog box by clicking on the Next button.

Select ID from the Variables in data list box. Click on the Add button of the Level-2 ID variable section
to obtain the following dialog box.
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[ = |
ID and Weight Variables L ‘ e

YYariahles in data:

NN [ .o, | level2iDvaricble
i

IMPS790

DRUG

WWEEK

SORTWEEK Add >> Level 3 ID variable:

<< Bemove

Add >> Weight wariable:

<< Remowve I:l

lg{PreviDusl l MNext > l l Cancel l O

I Tobuild syntax, proceed to the Random Yariables screen and click
l the Finish button

Proceed to the Distribution and Links dialog box by clicking on the Next button. Use the default
Distribution type, which is Multinomial. The default link function is the logit link function. To change
it to the ordinal logit link function corresponding to the model formulation above, click on the Link
function drop-down list and select the Ordinal logit link function. Select Subtract from the Model
terms drop-down list box as shown below.
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Distributions and Links ﬁ

Distribution type: lMuItianiaI 7‘
Link function: [Ordinal logit 7‘
Madel terms: ISubtrad .J

“Yes Mo

“Yes Fixed value:

-
£< Previous ‘ l Mext > ‘ l Cancel ‘ l OK.

Tobuild syntax, proceed to the Random Yariables screen and click
the Finish button

Click on the Next button to proceed to the Dependent and Independent Variables dialog box.

The Dependent and Independent Variables dialog box is used to specify the dependent and
independent variables. First, select the dependent variable IMPS790 from the Variables in data list
box and then click on the Add button to define it as the Dependent variable. Next, select DRUG,
SQRTWEEK and WSQRTxDR one at a time and click on the Continuous button to add them as
Independent variables as shown below.
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|
Yariables in data:
I |io add s Dependent variable:
IMPS 73 IMP5750
IMP5 730 <« Remove
|MPS 730

DRUG

|Independent variables:

DRUG
SURTWEEK
WIGHRT=DR

it

Cantinuous »>

Categonical >

<¢ Femove

i

Add s Ewent Wariable:

<¢ Femove I

<4 Pleviousl Mt >3 | Cancel | 0K |

I

Tobuild syntax, proceed to the Bandom Yarniables screen and
click the Finish button

Click on the Next button to activate the Random Variables dialog box. By default, the Intercept check
box in the Random Level-2 is checked, indicating the inclusion of a random intercept at this level in
the model. Keep the default settings as shown below and click on the Finish button to generate the

PRELIS syntax (prl) file.

Y ariables in data Randam Level 2

o ¥ Intercept
IMPS79

IMPS74D

IMPS730 ﬂl
DRUG |
WEER << Remave

SORTWEEK
WSHRT=DR

Fandom Level 3
¥ Intercent

Add »»

<4 Remave

Murber of inkeractions: IEI _,3
<< Previous Finizh Cancel | )8 I

To build syntax, click the Finish buttar .

96



Before running the analysis, the PRELIS syntax file could be saved under a different file name. Select
the File, Save As option, and provide a name (nimh_study1.prl) for the syntax file. Run the analysis
by selecting the Run PRELIS icon as shown below.

MGlimOptions Converge=0.0001 MaxIter=100 MissingCode=-%9 ~
Method=Quad NQUADPTS=25 Output=Residuals ModelTerms=sub;

Title=Random Intercept Multinomial-logistic model with ordinal ocutcome;

SY=NIHM Study.lsf;

ID2=ID;

Distribution=MUL;

Link=0LOGIT;

DepVar=IMPS790;

CoVars=DRUz SQRTWEEE WSQRT=DE;

EANDOMZ=intcept;

2.4.12.4 Discussion of results

Syntax
The syntax lines are repeated in the output file corresponding to the PRELIS syntax (*.prl) file we
saved. Refer to Section 2.2.3 for detailed information about the syntax.

Model and data description
The next section of the output file contains a description of the hierarchical structure and model
specifications. The use of a logistic response function (logit link function) with the assumption of a
normal distribution of random effects is indicated. This is followed by a summary of the number of
observations nested within each patient. As shown below, 437 patients with a total of 1603
observations are included in this study after listwise deletion. The number of observations per patient
(level-2 unit) varies between 2 and 5.

[ % NIHM_Study1.0UT =R ™
0== =0
| Random intercept multinomial Togistic model with ordinal outcome |
Q== =0 =

Model and Data Descriptions

Sampling Distribution Multinomial

Link Function Cumulative Logit
Number of Level-2 Units 437

Number of Level-1 Units 1603

Number of Level-1 Units per Level-2 Unit

N N (N N Y
[ A
NI S N VI
RN S SN SN
FoN N SN VI Y
[ S I E I - N
o W
NI SN SN
[N N SN N Y
F-N SN A N
[FVI S SN VI Y

A
—
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Descriptive statistics and starting values

Next, the descriptive statistics for all the variables are given. Notice that the variable name
WSQRTxDR is truncated to WSQRTxDR. This is because LISREL only recognizes the first 8 characters

of a variable name.

[ % NIHM_Study1.0UT =N ECE
Q===== === === === === === === === =0 ~
| Descriptive statistics for all the variables in the model |
Q===== === === === === === === === =0

Standard
Variable Minimum Maximum Mean Deviation
IMPS7901 0.0000 1.0000 0.1185 0.3233 0
IMPS7902 0.0000 1.0000 0.2957 0.4565
IMPS7903 0.0000 1.0000 0.2570 0.4371
IMPS7904 0.0000 1.0000 0.3288 0.4699
DRUG 0.0000 1.0000 0.7642 0.4246
SQRTWEEK 0.0000 24495 1.2204 0.8965
WSAQRTxDR 0.0000 2.4495 0.9442 0.9454

Descriptive statistics are followed by the parameter estimates of a model with no random effects.

| NIHM_Study.oUT

Goodness of fit statistics

Jtatistic Value

Likelihood Ratioc CThi-sguare 375€.1553
Fearson Chi-=sguare 442€_5403
Log Likelihood —1B8TH.057E&
Akaike Information Criterion 347€08.1553
Schwarzs Criterion 2B00.4731

Estimated regression weights

dtandard
Parameter Estimate Error = Value
Thre=hl -3.80732 0.185% -20.0532
Thresh2 -1.7€02 g.1702 -10.3375
Thre=h3 -0.4221 0.1£3€ -2.578¢&
DRTE -0.000€ 0.1882 -0.0022
3ORIWEEE -0.532€E€E 0.1108 -4 8427
WIQRIxDR -0.7510 0.1277 -5.8817

oE

1597
1557

The final results after 4 iterations are shown next. The estimates are shown in the column with
heading Estimate and correspond to the coefficients 3,, 3, ..., #; in the model specification. The

standard error, z-value and p-value are also printed.
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[ NIHM_Study1.0UT =N EoE <

Number of quadrature points = 25 =
Number of free parameters = T
Number of iterations used = 4
-2InL (deviance statistic) = 3402 .75922
Akaike Information Criterion 3416 .75922
Schwarz Criterion 3454 .41665
Estimated regression weights
Standard
Parameter Estimate Error z Value P Value
Thresht -5.8593 0.3318 -17 .6565 0.0000
Thresh2 -2.8264 0.2900 -9.7458 0.0000
Thresh3 -0.7085 0.2750 -2 5766 0.0100
DRUG -0.0585 0.3137 -0.1863 0.8522
SQRTWEEK -0.7658 0.1308 -5.8561 0.0000
WSQRTxDR -1.2061 0.1527 -7.9005 0.0000
Odds Ratio and 95% Odds Ratio Confidence Intervals

Bounds i
Parameter Estimate Odds Ratio Lower Upper
Thresht -5.8593 0.0029 0.0015 0.0055
Thresh2 -2.8264 0.0592 0.0335 0.1046
Thresh3 -0.7085 0.4924 0.2873 0.58440
DRUG -0.0585 0.9432 0.5100 1.7445
SQRTWEEK -0.7658 0.4650 0.3598 0.6008
WSQRTxDR -1.2061 0.2994 0.2219 0.4038 =

4 1 3

The variation in the intercept over the subjects is estimated as 3.7739, and from the associated p-
value we conclude that there is significant variation in the (random) intercept between the patients
included in this analysis. In the case of the fixed effects, a 2-tailed p-value is used, as the alternative
hypothesis considered here is of the form H, : § = 0. As variances are constrained to be elements of

the interval [0,+c0) and thresholds are constrained so that y, <y, <y,, the p-values used for these

effects are 1-tailed. The results indicate that the treatment groups do not differ significantly at
baseline (the estimated DRUG coefficient is not significant). The placebo group seems to improve
over time, as the SQRTWEEK coefficient is both significant and negative. Note that the interpretation
of the main effects depends on the coding of the variable, and on the significance of the WSQRTxDR
interaction which forms part of the model.

As noted before, it is assumed that y, = —co0 and y. =+oo. For the present example, C = 4, and from

the output we see that ;Axl =-5.8593, ;/2 =-2.8264 and ;A/3 =-0.7085. These values are used in

combination with the coefficients of DRUG, SQRTWEEK, and WSQRTxDR to calculate estimated
outcomes for different groups of patients.
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Intraclass correlation (ICC)
An estimate of the level-2 variance of the intercept and of the intracluster correlation (ICC) is given
in the next section of the output. The residual variance for the logistic link function is assumed to be
2
7°13.

[ NIHM_Study1.0UT =N R =™
Estimated Tevel 2 variances and covariances -
Standard
Parameter Estimate Error z Value P Value
intcept/intcept 3.7739 0.4652 8.1132 0.0000

Calculation of the intracluster correlation

residual variance pi*p1 / 3 (assumed)
cluster variance 3.7739

m

intracluster correlation = 3.7739 | ( 3.7739 + (pi*pi/3)) = 0.534

4 T I

The I1cc in this model refers to the intra-person correlation. It is reported as 0.534, which is fairly
high. Generally, the shorter the interval between the repeated measurements, the higher the Iccs will
be.

Interpreting the output
Estimated outcomes for groups: unit-specific probabilities

To evaluate the expected effect of the treatment group and the square root of time of treatment, while
allowing for the interaction between treatment and the square of time, we use the expression below:

P, - - -
|og[ e ] = 7.~| B;DRUG, + b, SQRTWEEK, + b, (WSQRTXDRUG), |

1-P, i
ijc
or, in the notation introduced in Section 2.4.12.2,
I I-:)I]C A
0 ~— | = ije
g 1P, 1ij

=y.—0.0585x DRUG, + 0.7658x SQRTWEEK
+1.2061><(WSQRT><DRUG)

When ¢ = 1, we find that, for a patient from the control group (DRUG = 0, SQRTWEEK = WSQRTXDR

= O),
| Pu_|_p 5.8593
Og _ F3 - 77”1
i1
i e';'“
B, =—=00028
1+
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Similarly, the probabilities that a typical patient from the control group responded in a specific

category at the start of the study are obtained by using ;A/z =-2.8264, and ;A/3 =-0.7085.

The cumulative probabilities we calculated are

R e’;ijz e—2.8264
P, = . = 1y o2 0.0559
1+e™
'Air3 -0.7085
A e e
Pis = : =1 SO =0.3299.
1+e™

Thus, the estimated category probabilities we have for such a group (category 1 to 4) are obtained as
p;, =0.0028-0=0.0028
Py, = 0.0559-0.0028 = 0.0531
P;5 = 0.3299-0.059 = 0.2740
P4 =1-0.3299 =0.6701.

For this group of patients (DRUG = 0) at the starting week, the expected percentages of patients in
each of the categories are as follows: 0.3% of the patients are normal or borderline mentally ill; 5.3%
of the patients are mildly or moderately ill; 27.4% are markedly ill and 67% are severely or extremely
ill. Similarly, we can calculate the estimated percentages for both groups at all the time points as
shown in Table 8.

The contents of Table 8 can be graphically represented as shown in Figures 3 and 4. It clearly shows
that the numbers of markedly and severely ill patients decrease dramatically over time. The
improvement for the drug patients is larger than the placebo patients.

Table 6: Estimated % for both groups at 7 time points

Drug patients (drug = 1) Placebo patients (drug = 0)

severity |normal moderate marked severe |normal moderate marked severe
week 0 | 0.30%  5.61% 28.39% 65.70% | 0.28%  5.31% 27.40% 67.01%
week 1 | 0.65% 11.25% 40.99% 47.11% | 2.01% 27.84% 48.11% 22.04%
week 2 | 0.89% 14.76% 45.02% 39.34% | 4.43% 44.62% 39.84% 11.10%
week 3 | 1.13% 18.00% 47.16% 33.71% | 7.99% 56.32% 29.43% 6.26%
week 4 | 1.38% 21.13% 48.21% 29.28% |12.84% 62.51% 20.87% 3.79%
week 5 | 1.65% 24.17% 48.50% 25.69% |19.00% 63.96% 14.63% 2.41%
week 6 | 1.94% 27.13% 48.24% 22.69% |26.32% 61.79% 10.29% 1.60%
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A 2-level random intercept model and trend model
In this section, we fit a model with random intercept and slope. To do this, the level-1 model is
unchanged; only the level-2 model is modified.

The model
Level-1 model:

1- F’ijC i

P
Y, = Iog( e ] =7, —[ by + b;DRUG, +b, SQRTWEEK, +b,, (WSQRTXDRUG), |

j=L"‘,n-'C=1,2,...,C_1

Level-2 model:
bOi =,BO + Vyis i=1...,N
bli :,31
b2i :ﬂz +Vy,
b3i :ﬁs

As shown above, the slope of the time variable b,, is now estimated by a level-2 equation containing

both a fixed and a random effect. It indicates that patients are now not only assumed to have different
intercepts, but may also exhibit different responses to the treatment over time.

Setting up the analysis
In this example, we want to use 10 quadrature points and include SQRTWEEK as level-2 random
effect. We modify the commands syntax previously saved to nimh_studyl.prl to obtain the new
model setup.

First, click on File, Open to browse and open nimh_study1.prl. Next, we change the string in the
NQUADPTS = 10 in the MGLIM command. Change RANDOM2 = intcept SQRTWEEK and save the
syntax file to nimh_study2.prl.

MzlimOptions Converge=0.0001 MaxIter=100 MissingCode=-9 ”
Method=Quad NQUADPTS=10 Output=Residuals ModelTerms=sub;

Title=Random Intercept Multinomial-logistic model with ordinal outcome;

SY=NTHM Study.lsf;

IDZ2=ID;

Distribution=MUL;

Link=0OLOGIT;

DepVar=IMPST790;

CoVars=DRU= SQRTWEEE WSQRT=DE:

BANDOMZ=intcept SORTWEEE;

Click on the Run PRELIS icon to produce the output file nimh_study2.out.
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[+ NIHM_Study2.0UT = ECE ~<™

0 0 -
| Results for the model without any random effects |
o] 0

Goadness of fit statistics

Statistic Value DF Ratio
Likelihood Ratio Chi-square 3756.1953 1597 2.3520
Pearson Chi-square 4426 5410 1597 2.7718

Estimated regression weights

Standard
Parameter Estimate Error z Value P Value
Thresh1 -3.8073 0.1899 -20.0532 0.0000 =
Thresh2 -1.7602 0.1703 -10.3375 0.0000
Thresh3 -0.4221 0.1636 -2.5796 0.0099
DRUG -0.0006 0.1883 -0.0032 0.9974
SQRTWEEK -0.5366 0.1108 -4.8427 0.0000
WSARTXDR -0.7510 0.1277 -5.8817 0.0000
| 0Odds Ratio and 95% Odds Ratio Confidence Intervals
Bounds
Parameter Estimate Odds Ratio Lower Upper
Thresh1 -3.8073 0.0222 0.0153 0.0322
Thresh2 -1.7602 0.1720 0.1232 0.2402
Thresh3 -0.4221 0.6557 0.4758 0.9036
DRUG -0.0006 0.9994 0.6909 1.4456
SQRTWEEK -0.5366 0.5847 0.4706 0.7266
WSARTXDR -0.7510 0.4719 0.3674 0.6061

Discussion of results
Fixed effect results, adaptive quadrature

The final results after 7 iterations are listed below. While the values of the estimated coefficients
differ from those in the random-intercept-only model, the overall picture remains very similar. The
decline in severity over time noticed in the crosstabulation is captured by the significant fixed effect
coefficient of —0.8840 for SQRTWEEK.
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[7% NIHM_Study2.0UT =N R =

o= === === === === === ==0 -
| Optimization Method: Adaptive Quadrature |
o= === === === === === ==0

Number of quadrature points = 10

Number of free parameters = 9

Number of iterations used = 7

-21nL (deviance statistic) = 3325.49276

Akaike Information Criterion 3343 49276

Schwarz Criterion 3391 .90945

Estimated regression weights

Standard
Parameter Estimate Error z Value P Value 3
Thresh1 T7.3234 0.4726 -15.4954 0.0000
Thresh2 -3.4214 0.3862 -8.8597 0.0000
Thresh3 -0.8151 0.3517 -2 3177 0.0205
DRUG 0.0553 0.3912 0.1414 0.8875
SQRTWEEK 0.8840 0.2183 -4.0495 0.0001
WSQRTxDR 1.6939 0.2525 -6.7091 0.0000 i
4 LI 4

Random effects results
Note that the estimated coefficient for the random SQRTWEEK slope is highly significant, indicating
that patients not only start at different points but follow different paths during the treatment period.

[ % NIHM_Study2.0UT =R ~<"
Estimated level 2 variances and covariances =
Standard
Parameter Estimate Error z Value P Value
intcept/intcept 7.0058 1.3190 5.3114 0.0000
SARTWEEK/intcept -1.5122 0.5320 -2.8424 0.0045 _
SARTWEEK/SQRTWEEK 2.0118 0.4181 4. 8112 0.0000 (=
4 1} 2

Interpreting the output
Estimated outcomes for groups: unit-specific results
To evaluate the expected effect of the treatment group and the square root of time of treatment, while
allowing for the interaction between treatment and the square root of time, we use the expression
below:
log| —% :}?C—[bm +b,DRUG, + b, SQRTWEEK, +b, (WSQRTXDRUG)J

ijc
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so that

Ny = 7. —7.3793+0.0553x DRUG, + 0.8841x SQRTWEEK,
+1.6940x (WSQRTXDRUG)

As illustrated in the previous example, by substituting the values for DRUG, SQRTWEEK and
WSQRTXDR, the results shown in Table 7 can be obtained.

Table 7: Estimated unit-specific results for random intercept & slope model

Placebo patients (drug = 0) Drug patients (drug = 1)

severity |normal moderate marked severe |normal moderate marked severe
week 0 | 0.06% 2.96% 26.90% 70.08% | 0.07% 3.13% 27.90% 68.91%
week 1l | 0.15% 6.87% 43.81% 49.17% | 0.86% 29.42% 55.32% 14.40%
week 2 | 0.22% 9.61% 50.03% 40.15% | 2.47% 51.90% 39.98% 5.81%
week 3 | 0.29% 12.32% 53.77% 33.62% | 5.42% 68.72% 23.37% 2.49%
week 4 | 0.36% 15.09% 55.99% 28.55% |10.27% 74.85% 13.62% 1.26%
week 5 | 0.45% 17.94% 57.12% 24.49% (17.38% 73.94% 7.99% 0.69%
week 6 | 0.54% 20.84% 57.44% 21.17% |26.72% 68.08% 4.80% 0.40%

We can again represent the results from the above table graphically, as shown in Figures 5 and 6.
The graphs tell us the same story as the previous model: patients from the treatment group showed
more improvement over time than patients from the control group. While a very small proportion of
treatment patients were still diagnosed as being severely ill at the end of the treatment period (0.42%
according to table 9), 20% of the control group were still classified as being severely ill by week 6.

Estimated time trend variance

When we consider the heterogeneity in responses across time, we notice that the estimated variance
in the time trend is o = (1.29774)” +(-0.57054)* = 2.0096 . The estimates for the time trends are

-0.88295 for SQRTWEEK and -1.69416 for WSQRTxDR respectively. Thus the estimated trends for
the placebo and drug groups are -0.88295 and -0.88295 -1.69416 =-2.57711. Thus the 95%

confidence interval of the time trend for the placebo group is -0.88295i(1.96x\/2.0096)

=(-3.6615,1.896). Similarly, the confidence interval for the drug group is (-5.3556, 0.2014). Notice

that both intervals are fairly large and include negative and positive slopes, which reflects the wide
heterogeneity in trends. The estimated correlation value is —0.402, which is moderately large. This
indicates that the patients who are initially less severely ill improve at a smaller rate. The more
severely ill patients improve at a greater rate.

2.4.13 Models for nominal outcomes using NHIS data

2.4.13.1 Introduction

In statistics, the kinds of significance tests and model fitting procedures that are appropriate depend
on the level of measurement of the variables concerned. A widely accepted classification scheme,
proposed by Stevens (1946), is listed below and consists of four levels of measurement:
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nominal (also categorical or discrete)
ordinal

interval

ratio

0 O O O

Interval and ratio variables are usually grouped together as continuous variables.

In the case of nominal variables there are no "less than" or "greater than" relations among the
categories of the variable and operations such as addition or multiplication do not exist.

Examples of nominal variables are

Cancer Type (1 = breast, 2 = lung, 3 = brain, 4 = leukemia, 5 = liver, 6 = colon, 7 = other),
Smoking Status (1 = never smoked, 2 = former smoker, 3 = current smoker),

Preference for U.S. President (1 = Democrat, 2 = Republican, 3 = Independent),

Type of Sweetener (1 = sugar, 2 = saccharin, 3 = aspartame, 4 = other),

Pain Reliever (1 = Acetaminophen, 2 = Aspirin, 3 = Ibuprofen, 4 = Ketoprofen,

5 = Naproxen, 6 = other).

o O O O O

In many research situations, the underlying variable type is continuous. However, to ensure
anonymity of respondents, information is obtained by categorizing variables. For example:

o Annual Income (1 = not employed, 2 = less or equal to $20,000, 3 = more than $20,000
but less than or equal to $50,000, 4 = more than $50,000 but less than or equal to
$100,000, 5 = more than $100,000)

o Age when diagnosed (1 = not applicable, 2 = younger than 25 years, 3 = 25 years or older
but less than 50 years, 4 = 50 years or older but less than 70 years, 5 = 70 years and older).

In both the cases above, the available data values are coded 1, 2, 3, 4 and 5. Arithmetic operation
with these codes will not provide accurate estimates of the actual age and income characteristics and
in both cases the first category makes "less than™ and "more than" comparisons less feasible.

In this guide we illustrate the analysis of a nominal outcome variable by fitting a three-level model
to health related data.

2.4.13.2 The data

The data set comes from the data library of the National Health Interview Survey (NHIS). The NHIS
is a national longitudinal health survey. During 2002, background data and data on the health
conditions of a sample of 28,737 participants were obtained. The 2002 sample was stratified into 64
strata and into 601 Psus. Using this data, we created a subset consisting of 57 strata (the level-3
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units), 399 Psus (the level-2 units) and 6445 participants. A partial list of the data is given below in
the form of a LISREL spreadsheet file, named nihs_subset.Isf.

|j nihs_subset.LSF \E\@
CSTRATM CPSUM PATWT PASTYIS NUMMED GENDER | USETOBAC |
1 100013.00 5024500 3.00 2.00 1.00 1.00 -
2 20102101.00 100013.00 5024500 3.00 2.00 1.00 000 =
3 20102101.00 100013.00 5024500 3.00 4.00 1.00 0.00
4 20102101.00 100013.00 5024500 3.00 2.00 1.00 0.00
b 20102101.00 100013.00 5024500 2.00 1.00 0.00 0.00
6 20102101.00 100015.00 72B81.00 4.00 0.00 1.00 0.00
i 2010210100 1000185.00 72581.00 300 200 1.00 000
8 20102101.00 100015.00 72B81.00 3.00 2.00 0.00 0.00
9 20102101.00 100015.00 72B81.00 1.00 1.00 0.00 0.00
10 20102101.00 100015.00 72B81.00 3.00 0.00 1.00 000 -
4 |1 3

A description of the variables is as follows:

o O O

O O O O O O O O

o

CSTRATM is the stratum used as level-3 ID (57 strata).
CPSUM is the primary sampling unit (PSU) and is used as level-2 ID (399 clusters).

PATWT is the participant design weight.

PASTVIS is the value of the nominal variable for the number of visits to a medical doctor
during the past 12 months (1 = none or unknown, 2 =110 2, 3 =310 5, 4 = 6 medications
and more).

NUMMED is the number of medications.

GENDER, wWhere 0 = Female and 1 = Male.

USETOBAC indicates whether a participant smoked cigarettes or not, where 0 = no and 1
= yes.

PRIMCARE, where 0 = none and 1 = participant has primary care.

INJURY indicates whether a participant suffered from an injury or not (0 = no, 1 = yes).
BLODPRES, where 0 = blood pressure not measured and 1 = blood pressure measured.
URINE, where 0 = no urine tested, 1 = tested.

XRAY, where 0 = no X rays taken and 1 = X ray taken.

EXERCISE, where 0 = no exercise and 1 = participant does exercise.

RACER indicates the ethnicity of a participant where 1 = White, 2 = Black and 3 = Other.
AGER indicates in which age category a participant belongs. Coded as follows: 1 = Under
15,2=15t024,3=25t044,4=45t064,5=651t0 74, 6 = 75 and older.

AGE1 to AGES are five dummy variables coded as follows:

Table 8: Dummy variables

Age AGE1 AGE2 AGE3 AGE4 AGE5
Under 15 1 0 0 0
15to0 24 0
25 to 44 0
45 to 64 0
65 to 74 0

75 and older 0

(NNl
OO O o
OO PFrr OO
OPr OO O0oOOo
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2.4.13.3 The model

A general multilevel nominal model

In the nominal case we need to consider the values corresponding to the unordered multiple
categories of the response variable. We thus assume that the C response categories are coded as
123,..,C.

Let Py = P(yijk =C|BC,niC,vijc) denote the probability that a response occurs in category c,
conditional on a (px1) vector of fixed regression parameters B, the (mx1) vector of level-2
random effects vy, and the (rx1) vector of level-3 random effects v, . It is further assumed that the

level-2 random effects v, are independent and identically distributed (i.i.d.)asa N (O,Q(Z)) random

variable. Uncorrelated with v

ijc?

the level-3 random effects are i.i.d. N (O,CI)(3)). The scalar y;,
denotes the value of the nominal variable associated with level-1 unitk, k=1,2,...,n., nested within

AL TR

level-2 unit j, j=1,2,...n., which in turn is nested within the i-th level-3 unit, where i=1,2,...,N .
The probabilities P, are computed as

Pijkc = P(yijk :C|Bc1vic'vijc)
exp(7;
- (7sc) ,  c¢=12..,C-1
l+zexp(77ijkc)
h-1
where
Mie = XijePe + Zij(2)Vie + Zije(a)ic
Note that X/

il Zikz) and zj, ., are design vectors for the explanatory variables and the level-2 and

level-3 random effects respectively.

Random intercept model with two explanatory variables

For the nihs_subset.Isf data set considered earlier, let PASTVIS denote the outcome variable. Assume
further that GENDER and EXERCISE are the only predictors and that only intercepts are allowed to
vary randomly across level-3 and level-2 units. The corresponding estimated probability model is
given by
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exp (77ijkc)

F’(PASTVlSk = C) = 5
1+ ZeXp(ﬂijkh)
h-1

, c=123

where
Tin = Lon + B xGENDER, + £, x EXERCISE, + 0y, T Uy,

and where PASTVIS,, GENDER, and EXERCISE, denote values of the variables for client k
nested within unit (i, j). Note that for PASTVIS the number of categories is C=4.

Remarks:
3

The probability P(PASTVIS, =4) is obtained as 1-» P(PASTVIS, =c). In the formulation
c=1

above, we used the last category as the so-called reference category.

MGLIM allows the user to select the first or the last category as the reference category. If the first
category is selected as reference category, then

exp(n;

P(PASTVIS, =¢)=—y P . c=234

1+ZeXp(77ijkh)
h=2
4
P(PASTVISk :1) = 1—2 P(PASTVISk = c)
c=2
24.134 A random intercept model with fourteen predictors

Preparing the data
The model to be fitted to the data is contained in nihs_subseti.Isf. This file was created from the
SPss data file nihs_subset1.sav as follows.

Use the File, Import Data File option to activate the display of an Open dialog box. From the Files of
type drop-down list, select SPSS Data File (*.sav). Browse for the file nih_subset.Isf. Select the file
and click the open button to activate Save As dialog box. Enter the file name nih_subset.Isf and click
on the Save button to display nih_subset.Isf as a LISREL spreadsheet.

Exploring the data
To obtain some insight into the distributional properties and possible relationships between variables,
it is useful to present these properties graphically using the Graphs option. Prior to making visual
presentations, it is a good idea to assign labels to the categories of the nominal and ordinal variables.
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First, highlight the column of PASTVIS by clicking on its header. Then right click and select the
Define Variables option as shown below to open the Define Variables dialog box.

IDER |
Define Variables... 100
Delete Variables 1.00
Insert Variable 1.00
Y, 1.00
1.00 0.00

Select variable PASTVIS as shown below to activate all the options on the Define Variables dialog
box.

Define Variables

CETRATM Ihser
CPSUM
P T
Rename
MNUMMMED
GEMDER Wariahle Type
USETOBAC
FRIMCARE
INJURY Category Lakbels
BLODPRES
URINE hissing values
HRAY
EXERCISE
RACER &
AGER

NUMMED_R il Cancel
ASE

To select more than one variable at & time,hold
down the CTRL key while clicking on the
warighles to be selected

Click on the category Labels option to activate the Category Labels for PASTVIS dialog box. Enter
the labels None, 1 to 2, 3 to 5 and >5 as shown below and click OK.

Category Labels for PASTVIS ... u

“alue

Label
e Delete

[l Apphy ta all

La L [ —
[ T T ]

Cancel

Click on the OK button to return to the Define Variables dialog box. Click on OK button to return to
the LSF window. Save the change to the data set by clicking on the File, Save option.
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From the main menu bar, select the Graphs, Bivariate option. By clicking on the Bivariate tab of the
pop-up menu, the Bivariate plot dialog box is invoked. Select PASTVIS as the Y variable and
PRIMCARE as the X variable.

Bivariate Plots “ M

List of variables

CESTRATM - Salact »> Y watiahle:
CPSLUM i = ) e
FATWT
FASTWIS
HLIMRED
GENDER
LSETOBAC Select>>
FRIMCARE
INJURSY << Bemowve
BLODFRES
LIRIMNE

HRAY [T Box and WWhisker Plot

<< Remove

= wariable:

i i

EXERCISE
RACER L
AGER

NUMMED_R [7] Scatter Plot

G
e

AGE? ~ | [ClLine Plot Cancel

Next, check the 3D Bar Chart check box and then the Plot button to obtain the bivariate bar chart of
PRIMCARE versus PASTVIS. The graph below shows that there is an increase in the use of primary
care with the number of visits to a medical doctor.

3D Bar Chart of PASTVIS and PRIMCARE

1555
244
933

a2z —
311 <§§,
L

o None 1-2 3-5 >5

PASTVIS

Setting up the analysis
From the main menu bar of the LSF window, select the Multilevel, Generalized Linear Model, Title
and Options option. Enter a title for the analysis in the Title text boxes. Keep the default settings for
the Maximum Number of Iterations, Convergence Criterion and the Missing Data Value. Activate
Quadrature radio button in the Optimization Method section and change the Number of Quadrature
Points to 8 to obtain the above screen. Proceed to the ID and Weight Variables dialog box by clicking
on the Next button.
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|- =

Title:
M ational Health Interview Data Maominal Model

b arimurn Mumber of [terations: |1 oo _l::

Corwergence Criterion: IU. 0am
Mizzing Data Y alue: I 333333
Dependent Missing Yalue: I'E‘E‘E‘E‘E‘E‘

— Optimization tethod

7 MaP ' Quadrature

Mumber of Quadrature Paoints: IB _|:j

—Additonal Dutput
[ Residual files [~ Mo data summary

[~ Asymptotic covarance

Mext »» | Cahcel | oK I

Tobuild syntas, proceed to the Random Yanables screen and
click the Finish buttan

Select cPsuM from the Variables in data list box. Click on the upper Add button of the Level-2 ID
variable section to define the level-2 ID. Similarly define CSTRATM and click on the middle Add
button to define it as Level-3 ID variable.
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ID and Weight Variabl‘ e

||

|

|| Add >> Level 21D variable:
S| fw
pet

| |FASTVIS
MUMMED
GEMDER
USETOBAC E Add »> Lewel 3 1D wvariable:
BLODFRES
URINE
HRAY B ) _
ExERCISE Add »> Weight variable:
AGER [ ]
AGER << Remove
MUMMED_F =
<< Previous ] I MNext »» ] I Cancel (0]

To build syntax, proceed to the Random Yariables screen and click
the Finish button

Proceed to the Distribution and Links dialog box by clicking on the Next button. Keep all the default
settings on this dialog box as shown below.

[‘Distributions and Links- =)
Distribution type: ’Multinomial VI
Link function: [Logit VI
Bieference category: ’Last v]

Include intercept?

Dispersion parameter

Yes

Estimate scale? hd

5(Previ0us] I MNext »» ] I Cancel ] | Ok

To build syntax, proceed to the Random Yariables screen and click
the Finish button
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Click on the Next button to proceed to the Dependent and Independent Variables dialog box.

The Dependent and Independent Variables dialog box is used to specify the dependent and
independent variables. First, select the dependent variable PASTVIS from the Variables in data list
box and then click on the Add button to define it as the Dependent variable. Next, select NUMMED,
GENDER, PRIMCARE, INJURY, BLODPRES, URINE, XRAY, EXERCISE, AGE1, AGE2, AGE3, AGE4
and AGE5 and click on the Continuous button to add them as Independent variables as shown below.

" =
Dependent and Independent Variables ﬂ

Yanahles in data:

i

CSTRATM Dependent variable:
LPSUM PASTVIS
PATWT <4 Remowve
FASTWIS
MUMMED Independent variables:
GEMDER TFINE
JSETOBAL -
=Ry —
FRIMCARE
— | |RACER
INJURY AGET )
BLODPRES 2
—_— 1 AGEZ
JRIME
AGE3
=Ry HGE1
EXERCISE LGES il

RACER

Event Variable:

e

1

€ F'reviuus| Mest > | Cancel | aE. |

Tobuild syntax, proceed to the B andom Yanables screen and
click the Finizh button

Click on the Next button to activate the Random Variables dialog box. By default, the Intercept check
box in the Random Level-2 and Random Level-3 are checked, indicating the inclusion of a random
intercept at level-2 and 3 in the model. Keep the default settings as shown below and click on the
Finish button to generate the PRELIS syntax (prl) file.
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r el

Wariables in data Eandam Lewvel 2
CSTRATH ¥ Intercept

CPSURM

PATWT —l

PASTVIS i

HUMMED |

SENDER << Remove

USETOBALC

PRIMCARE

INJURY

ELODFPRES

}%EL":‘{E Fandorn Level 3
EXERCISE ¥ Intercept

R&CER

AGER Add =

HUMMED_R

AGET <+ Remove

AlGEZ

AGE3

AGE4

AlGER

Mumber of interactions: |0 _l
<4 Previouz Finizh Cancel | ] 4 I

Tobuild zpntax, click the Finish button .

Before running the analysis, the PRELIS syntax file should be saved. Select the File, Save As option,
and provide a name (nhis1.prl) for the syntax file. Run the analysis by selecting the Run PRELIS icon
as shown below.

MGlimOptions Converge=0.0001 MaxIter=100 MissingCode=-9%9%599%
Method=Quad NQUADPTS=8 RefCat=last;

Title= Naticnal Health Interview Data Nominal model ;

S¥=nih subset.LSF;

ID2=CPSUM;

ID3=CSTRATM;

Distribution=MUL;

Link=LOGIT;

Intercept=Yes;

DepVar=PASTVIS;

CoVars=NUMMED GENDER PRIMCARE INJURY BLODPRES URINE XERAY EXERCISE AGEL
AGEZ AGE3 AGE4 AGES;

RANDOMZ=intcept;

RANDOM3=intcept;
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Discussion of results
Model and data description

[7 nihsLOUT = o =™
0= = = ===0
| National Health Interview Data Nominal Model |
0= = = ===0 =
Hodb] and Data Descriptions
Sampling Distribution = Multinomial
Link Function = Logistic
Number of Level-3 Units = a7
Number of Level-2 Units = 399
Number of Level-1 Units = 6444
Number of Level-2 Units per Level-3 Unit =
3 5 7 2 4 3 5 14 9 4 7 6
13 12 9 14 6 5 3 11 4 4 11 8
4 6 4 10 4 e] 10 2 7 6 5 6
7 5 8 6 5 6 19 9 5] 18 4 9
2 5] 2 4 T T 4 6 13
Number of level-1 units for the first (level-3, level-2) unit combination =
5 6 9 <

The first part of the output file gives a description of the model specifications. This is followed by a
data summary of the number of observations nested within each subject.

Descriptive statistics and starting values
The data summary is followed by descriptive statistics for all the variables included in the model.

[ " ninsLOUT = ol =<
o] ==0 -
| Descriptive statistics for all the variables in the model |
o] ==0

Standard
Variable Minimum Maximum Mean  Deviation -~
PASTVIST 0.0000 1.0000 0.0691 0.2536
PASTVIS2 0.0000 1.0000 0.3678 0.4822
PASTVIS3 0.0000 1.0000 0.2858 0.4519
PASTVIS4 0.0000 1.0000 0.2773 04477
intcept 1.0000 1.0000 1.0000 0.0000
NUMMED 0.0000 6.0000 1.5286 1.6864
GENDER 0.0000 1.0000 0.4196 0.4935
PRIMCARE 0.0000 1.0000 0.3993 0.4898
INJURY 0.0000 1.0000 0.0906 0.2871
BLODPRES 0.0000 1.0000 0.4008 0.4901
URINE 0.0000 1.0000 0.1041 0.3055
XRAY 0.0000 1.0000 0.0380 0.1913
EXERCISE 0.0000 1.0000 0.1047 0.3063
AGE1 0.0000 1.0000 0.1966 0.3975
AGE2 0.0000 1.0000 0.0644 0.2455
AGE3 0.0000 1.0000 0.2284 0.4199
AGE4 0.0000 1.0000 0.2668 0.4423
AGES 0.0000 1.0000 0.1155 0.3196 -
4 LI} P
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Each category of the nominal outcome variable is denoted as PASTVIS;, i=1,2,3,4. From the

output it can be seen that the distribution of respondents over these categories are 6.9%, 36.8%,
28.6%, and 27.7% respectively. The age distribution is given in Table 9.

Table 9: Age distribution of respondents

Age Percentage
Younger than 15 (AGE1) 19.7
15 to 24 (AGE2) 6.4
25 to 44 (AGE3) 22.8
45 to 64 (AGE4) 26.7
65 to 74 (AGES5) 11.6
75 and older 12.8*

*: calculated as 100 — (19.7+6.4+22.8+26.7+11.6)

[ nihs1.0UT =0 Eon
[o] = ===0 -
| Results for the model without any random effects |
0 = ===Q

Goodness of it statistics

Statistic Value DF
Likelihood Ratio Chi-square 15994 0450 6402
Pearson Chi-square 19269 .4871 6402 =

| Estimated regression weights

Standard

Parameter Estimate Error 7z Value P Value
Response Code 1 vs Code 4

intcept -1.4038 0.1876 -7.4847 0.0000
NUMMED -0.2022 0.0373 -5.4238 0.0000
GENDER 0.0325 0.1110 0.2926 0.7698
PRIMCARE -0.5933 0.1273 -4 6618 0.0000
INJURY 0.0623 0.1883 0.3311 0.7406
BLODPRES 0.7097 0.1276 5.5633 0.0000
URINE 0.4633 0.1634 28359 0.0046
XRAY 0.0299 0.3026 0.0988 0.9213
EXERCISE 0.3110 0.1690 1.8399 0.0658
AGE1 0.2907 0.2186 1.3298 0.1836
AGE2 0.2566 0.2607 0.9842 0.3250
AGE3 0.0970 0.1934 0.5016 0.6160
AGE4 0.1434 0.1906 0.7523 0.4519
AGES -0.0250 0.2305 -0.1086 0.9135
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The estimated parameters for the model, assuming no random effects, are reported next. For each
response code i versus code 4, i=1,2,3, there are 14 parameter estimates. Only the estimates for

response code 1 versus response code 4 are displayed. Comparing these estimates with those obtained
when allowance is made for the hierarchical structure of the data, a considerable difference is
apparent.

Fixed effects estimates and fit statistics
The final results obtained using adaptive quadrature are given next. Using 8 quadrature points, 6
iterations were required to reach convergence. The deviance statistic (—2InL) allows the user to
compare the current model with other nested models.

[+ nihs1.0UT E=0 Eon %=
0 o] -
| Optimization Method: Adaptive Quadrature |
0 o]

Number of quadrature points = 8
Number of free parameters = 45
Number of iterations used = 5
-21nL (deviance statistic) = 14329 .74536
Akaike Information Criterion 14425 74536
Schwarz Criterion 14750 .74879

Estimated regression weights

Standard

Parameter Estimate Error z Value P Value
Response Code 1 vs Code 4

intcept -1.5012 0.2483 -6.0447 0.0000
NUMMED -0.3325 0.0446 -7.4481 0.0000
GENDER -0.0355 0.1285 -0.2764 0.7822
PRIMCARE -1.0197 0.1954 -5.2190 0.0000
INJURY 0.2728 0.2221 1.2282 0.2194
BLODPRES 0.3133 0.1707 1.8351 0.0665
URINE 0.3527 0.1962 1.7979 0.0722
XRAY -0.0141 0.3320 -0.0423 0.9662
EXERCISE 0.7546 0.2047 3.6868 0.0002
AGE1 1.0955 0.2621 4 1803 0.0000
AGE2 1.3540 0.3013 44941 0.0000
AGE3 0.9306 0.2249 4 1374 0.0000
AGE4 0.7571 0.2165 3.4969 0.0005
AGES 0.0916 0.2545 0.3598 0.7190

A study of the p-values associated with the parameter estimates indicates that the estimated

GENDER, INJURY, URINE, and XRAY coefficients are not significant, regardless of the values of the
category of the outcome variable.
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Random effect estimates
The last part of the output file shows the variance estimates for the level-2 and level-3 random effects.
Both effects are highly significant.

[+ nihs1.OUT E=H Bl %=
Estimated level 2 variances and covariances
Standard
Parameter Estimate Error Z Value P Value
intcept1/intcept1 4 7004 0.4312 10.8997 0.0000
intcept2/intcept2 3.2406 0.2791 11.6099 0.0000
intcept3/intcept3 1.0800 0.1386 7.7938 0.0000

Estimated level 3 variances and covariances

Standard
Parameter Estimate Error z Value P Value
intceptl/intceptt 1.0122 0.2513 4 0287 0.0001
intcept2/intcept2 0.9227 0.1875 4. 9221 0.0000
intcept3/intcept3 0.8511 0.1523 5.5881 0.0000 B

Interpreting the output
Estimated unit-specific probabilities

The estimated regression coefficients given in the adaptive quadrature portion of the output provide
the information necessary to compute unit-specific probabilities for a typical participant that is
associated with each possible combination of the predictor variables. For example, consider a typical
female patient (GENDER = 0) that received 3 medications (NUMMED = 3), has primary care
(PRIMCARE =1), had no injuries (INJURY =0), did not have a blood pressure or urine test (BLODPRES
= URINE = 0), does not exercise (EXERCISE = 0), and is in the age group 25 to 44 (AGE3 =1).

For response code 1 vs. code 4:

D = —1.5004 —0.3320(NUMMED,, ) —0.0395(GENDER, ) ~1.0176(PRIMCARE,,)
+...1.0945(AGEL,, ) +1.3539(AGE2,, ) + 0.9306(AGE3,, )
+0.7572(AGE4,, ) +0.1136(AGES5,, )

~1.5004 —3(0.3320) —1(1.0176) +1(0.9306)
—2.5834

so that exp(fyijklj —0.0755.

For response code 2 vs. 4, we find that

Mo = 0.3737 - 3(0.2360) ~1(0.9167) +1(0.6972)
— —0.5538
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and thus
exp(f}ijkzj —0.5748.
For response code 3 vs. code 4

Tis = 0.3440 — 3(0.0718) —1(0.3004) +1(0.2070)
=0.0352
and thus

exp(f;ijksj ~1.0358.
Using these values, it follows that
Prob(respondent not seen doctor previously)

~ 0.0755
1+0.0755+0.5748+1.0358

=0.0281.

The next two tables contain a selection of unit-specific probabilities for the four categories of
PASTVIS for females (GENDER = 0).

Unit-specific probabilities for females with XRAY = no, INJURY = no, URINE = no, and
BLODPRES = no

PRIM EXER

NUMMED CARE CISE AGE ETAl ETA2 ETA3 PROB1 PROB2 PROB3 PROB4
none no no < 15 -0.406 1.393 0.628 0.088 0.532 0.248 0.132
none no no 25:44 -0.570 1.071 0.551 0.091 0.469 0.279 0.1le61
none no no >= 75 -1.500 0.374 0.344 0.055 0.356 0.345 0.245
none no yes < 15 0.347 1.776 0.953 0.130 0.541 0.238 0.092
none no yes 25:44 0.183 1.454 0.876 0.135 0.482 0.270 0.113
none no yes >= 75 -0.748 0.757 0.669 0.085 0.384 0.351 0.180
none yes no < 15 -1.424 0.476 0.328 0.057 0.380 0.327 0.236
none yes no 25:44 -1.587 0.154 0.251 0.056 0.319 0.351 0.274
none yes no >= 75 -2.518 -0.543 0.044 0.030 0.215 0.386 0.370
none yes yes < 15 -0.671 0.859 0.653 0.088 0.408 0.332 0.173
none yes yes 25:44 -0.835 0.537 0.576 0.088 0.348 0.361 0.203
none yes yes >= 75 -1.765 -0.160 0.369 0.049 0.246 0.417 0.288

three no no < 15 -1.402 0.685 0.413 0.052 0.418 0.319 0.211
three no no 25:44 -1.566 0.363 0.336 0.052 0.355 0.346 0.247
three no no >= 75 -2.496 -0.334 0.129 0.028 0.244 0.387 0.341
three no yes < 15 -0.649 1.068 0.738 0.080 0.446 0.321 0.153
three no yes 25:44 -0.813 0.746 0.661 0.081 0.384 0.353 0.182
three no yes >= 75 -1.744 0.049 0.454 0.046 0.276 0.414 0.263
three yes no < 15 -2.420 -0.232 0.112 0.030 0.264 0.373 0.333
three yes no 25:44 -2.584 -0.554 0.035 0.028 0.214 0.386 0.372
three yes no >= 75 -3.514 -1.251 -0.172 0.014 0.133 0.390 0.463
three yes yes < 15 -1.667 0.151 0.437 0.048 0.298 0.397 0.256
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three yes
three yes

yes 25:44
yes >= 75

-1.831
-2.761

-0.171
-0.868

0.360
0.153

0.047
0.024

0.245
0.158

0.417
0.440

0.291
0.378

From these tables we conclude that the proportion of female patients, regardless of age group, that
indicated no prior visits to a medical practitioner (PASTVIS = 1) is generally low. Females who
exercise have a lower probability of having several past visits when compared to those who do not

exercise.

Unit-specific probabilities for females with XRAY = no, INJURY = no, URINE = no, and

BLODPRES =

NUMMED

none
none
none
none
none
none
none
none
none
none
none
none
three
three
three
three
three
three
three
three
three
three
three
three

yes

PRIM
CARE
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes

No

Yes
Yes
Yes
Yes
Yes
Yes

EXER
CISE
no
no
no
yes
yes
yes
no
no
no
yes
yes
yes
no
no
no
yes
yes
yes
no
no
no
yes
yes
yes

AGE

< 15
25:44
>=75
< 15
25:44
>=75
< 15
25:44
>=75
< 15
25:44
>=75
< 15
25:44
>=75
< 15
25:44
>=75
< 15
25:44
>=75
< 15
25:44
>=75

ETAl

-0.096
-0.260
-1.191
0.657

0.493

-0.438
-1.114
-1.278
-2.208
-0.361
-0.525
-1.456
-1.092
-1.256
-2.187
-0.339
-0.503
-1.434
-2.110
-2.274
-3.204
-1.357
-1.521
-2.452

Estimated population-average probabilities
The population-average probabilities are obtained by dividing the ETA1, ETA2 and ETA3 values given
in the previous two tables by the square root of the corresponding design effects. For the intercepts-
only model, this quantity is obtained as

Therefore

ETAZ2

712
.390
.693
.095
.773
.076
. 795
.473
-0.224
1.178
0.856
0.159
1.004
0.682
-0.015
1.387
1.065
0.368
0.087
-0.235
-0.932
0.470
0.148
-0.549

COoORRPNORRE

ETA3

eNeoNololNoNoNoNoNoNoNoloBolNolNoNoNoNoNoll il S lelelNel

.839
.762
.555
.164
.088
.880
.539
.462
.255
.864
.7187
.580
.624
.547
.340
.949
.872
.665
.323
.246
.039
.649
.572
.365

PROB1

.093
.097
.060
.135
.142
.092
.062
.062
.034
.095
.096
.056
.057
.057
.032
.086
.088
.052
.034
.032
.016
.054
.053
.028

eNeoNololNoNoNoNoNoNoNolNoBoloNoNoNoNoNoNololNolNelNe]

PROB2

.567
.506
.396
.570
.512
.420
.421
.359
.250
.444
.383
.280
.460
.396
.281
.482
.421
.312
.304
.249
.159
.335
.279
.186

ecNeoNololBoloNolNoNoNoNoloBolololoNolNololNololelelNo]

de = [ var (vyop )+ Var (vigg )+ var (g, ) |/ var (e ), ¢=1,2,3.

For the logistic model it is assumed that

var (e, )

2
=7 _3290.
3

PROB3

.237
.270
. 345
.225
.258
.345
.326
.355
.403
.324
.358
.426
.315
.346
.401
.311
.347
.420
.384
.403
.420
.401
L4217
.464

eNeoNoBololNoNoNoNoNoNoloBolololNoNoNololNolololNelNo]

PROB4

.102
.126
.198
.070
.087
.143
.190
.224
.313
.137
.163
.239
.169
.200
.286
.120
.145
.216
.278
.315
.404
.210
.241
.322

oloNeoNoNoNoNololololNolololNololNololNololololNelolNe]
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Jd; =/(4.707 +1.009+3.290)/3.290

=+/2.737

=1.6545.
Similarly,
Jd, =/(3.237+0.921+3.290)/3.290
= /2.264
=1.5046
and

Jd; =/(1.077+0.848+3.290)/3.290

=+/1.585
=1.2590.
Using these values, we obtain the population-average probabilities for the four categories of PASTVIS

for a female respondent. Summaries of a selected number of population-average probabilities are
given in the tables below.

Population-average probabilities for females with XRAY = no, INJURY = no, URINE = no, and
BLODPRES = no

PRIM EXER

NUMMED CARE CISE AGE ETAl ETAZ2 ETA3 PROB1 PROB2 PROB3 PROB4
none No no < 15 -0.245 0.926 0.499 0.131 0.424 0.277 0.168
none No no 25:44 -0.344 0.712 0.438 0.134 0.385 0.293 0.189
none No no >= 75 -0.907 0.248 0.273 0.101 0.320 0.329 0.250
none No yes < 15 0.210 1.180 0.757 0.162 0.427 0.280 0.131
none No yes 25:44 0.111 0.966 0.696 0.165 0.389 0.297 0.148
none No yes >= 75 -0.452 0.503 0.532 0.128 0.331 0.341 0.200
none Yes no < 15 -0.860 0.317 0.260 0.103 0.335 0.317 0.244
none Yes no 25:44 -0.960 0.102 0.199 0.103 0.299 0.329 0.269
none Yes no >= 75 -1.522 -0.361 0.035 0.074 0.236 0.351 0.339
none Yes yes < 15 -0.405 0.571 0.519 0.130 0.346 0.328 0.195
none Yes yes 25:44 -0.504 0.357 0.457 0.131 0.310 0.343 0.217
none Yes yes >= 75 -1.067 -0.106 0.293 0.096 0.251 0.374 0.279
three No no < 15 -0.847 0.455 0.328 0.098 0.359 0.316 0.228
three No no 25:44 -0.946 0.241 0.267 0.098 0.321 0.329 0.252
three No no >= 75 -1.509 -0.222 0.102 0.071 0.256 0.354 0.320
three No yes < 15 -0.392 0.710 0.586 0.123 0.369 0.326 0.182
three No yes 25:44 -0.491 0.49¢ 0.525 0.124 0.332 0.342 0.202
three No yes >= 75 -1.054 0.032 0.360 0.091 0.271 0.376 0.262
three Yes no < 15 -1.462 -0.154 0.089 0.073 0.269 0.344 0.314
three Yes no 25:44 -1.562 -0.368 0.028 0.072 0.236 0.351 0.341
three Yes no >= 75 -2.124 -0.831 -0.136 0.049 0.179 0.359 0.412
three Yes yes < 15 -1.007 0.101 0.347 0.094 0.285 0.364 0.257
three Yes yes 25:44 -1.107 -0.114 0.28¢6 0.093 0.251 0.375 0.281
three Yes yes >= 75 -1.669 -0.577 0.122 0.065 0.195 0.392 0.347
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Population-average probabilities for females with XRAY = no, INJURY = no, URINE = no, and
BLODPRES = no

PRIM EXER

NUMMED  ,on  opop AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROBA4
none No no <15 -0.058 1.138 0.667 0.135 0.445 0.278 0.143
none No no 25:44 -0.157 0.924 0.605 0.138 0.406 0.295 0.161
none No no >= 75 -0.720 0.460 0.441 0.105 0.343 0.336 0.216
none No yes < 15 0.397 1.392 0.925 0.165 0.446 0.279 0.111
none No yes 25:44 0.298 1.178 0.864 0.169 0.408 0.298 0.126
none No yes >= 75 -0.265 0.715 0.699 0.132 0.351 0.346 0.172
none Yes no < 15 -0.673 0.529 0.428 0.108 0.358 0.324 0.211
none Yes no 25:44 -0.772 0.314 0.367 0.108 0.320 0.338 0.234
none Yes no >= 75 -1.335 -0.149 0.202 0.079 0.257 0.366 0.299
none Yes yes < 15 -0.218 0.783 0.686 0.134 0.366 0.332 0.167
none Yes yes 25:44 -0.317 0.569 0.625 0.136 0.329 0.348 0.186
none Yes yes >= 75 -0.880 0.106 0.461 0.101 0.270 0.386 0.243
Three No no < 15 -0.660 0.667 0.496 0.101 0.382 0.321 0.196
Three No no 25:44 -0.759 0.453 0.434 0.102 0.343 0.337 0.218
Three No no >= 75 -1.322 -0.010 0.270 0.075 0.278 0.367 0.280
Three No yes < 15 -0.205 0.922 0.754 0.126 0.390 0.329 0.155
Three No yes 25:44 -0.304 0.708 0.693 0.128 0.352 0.347 0.173
Three No yes >= 75 -0.867 0.244 0.528 0.096 0.291 0.386 0.228
Three Yes no <15 -1.275 0.058 0.257 0.077 0.292 0.356 0.275
Three Yes no 25:44 -1.374 -0.156 0.196 0.076 0.257 0.366 0.301
Three Yes no >= 75 -1.937 -0.619 0.031 0.053 0.198 0.380 0.368
Three Yes vyes < 15 -0.820 0.313 0.515 0.098 0.305 0.374 0.223
Three Yes vyes 25:44 -0.919 0.098 0.454 0.098 0.271 0.386 0.245
Three Yes yes >= 75 -1.482 -0.365 0.290 0.070 0.213 0.410 0.307

2.4.135 A random intercept model with ten predictors

Setting up the analysis
In the previous example, we included 14 possible predictors of PASTVIS in the fixed part of the
model. The output indicated that the variables GENDER, INJURY, URINE and XRAY did not contribute
significantly to explaining the variation in PASTVIS outcomes.

To run the model without these fixed effects, use the File, Open Syntax File option and select the
command syntax previously saved to the file NHIS1.prl. Delete the variables GENDER, INJURY,
URINE and XRAY from the Predictors paragraph and save the modified syntax file as NHIS2.prl. To
run this syntax file, select the Run option from the Analysis menu.
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MzlimOptions Converge=0.0001 MaxTter=100 MissingCode=-55555%
Method=Quad NQUADPTS=8 RefCat=last;

Title= National Health Interview Data Nominal model ;

S¥=nih subset.LSF;

ID2=CPSUM;

ID3=CSTRATM;

Distribution=MUL;

Link=LOGIT;

Intercept=Y¥es;

DepVar=PASTVIS;

CoVars=NUMMED PRIMCARE BLCODPRES EXERCISE AGE]L EGEZ AGE3 AGE4 AGES;

RANDOMZ=intcept;

RANDOM3=intcept;

Interpreting the output
Fit statistics

Only a portion of the output file NIHS2.out is shown below. Recall that the deviance statistic for the
previous model was 14329.75, with 48 free parameters. For the current model, the deviance statistic
is equal to 14351.80 and the number of free parameters is equal to 36. To test whether the removal
of GENDER, INJURY, URINE and XRAY made a significant difference to the model fit, we use the fact
that the difference in deviance statistics for two nested models follows a y? -distribution with degrees

of freedom equal to the difference in the number of parameters estimated.

The y°-value obtained for this test is 14351.80 — 14329.75 = 22.05, with 12 degrees of freedom.
Since the associated p -value equals 0.04, the x*-value is significant at the 5% level, but not at the

1% level of significance. We therefore conclude that, based on the y”-difference test, we do not

have a definitive answer to the question of whether the 4 predictors should remain in the model or
not. A summary of the Akaike and Schwarz criteria is shown in Table 14.

Table 14: Akaike and Schwarz fit criteria for two nested models

Fit statistic 14 predictors 10 predictors
Akaike 14425.75 14423.80
Schwarz 14750.75 14667.55

Each of these criteria states that the model with the smallest value is the model to be selected. Based
on this decision rule, we conclude that the model without the four predictors should be used, since it
is more parsimonious and very little information regarding the explanation of variation in PASTVIS
is lost.

Odds ratios and 95% confidence intervals for the odds ratios
An odds ratio of 1 indicates the event under study is equally likely in both the outcome category of
interest and in the reference category. An odds ratio greater than 1 indicates that the event is more
likely to occur in the category of interest.
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The intercept coefficient is the expected log-odds that a participant in the present study indicated no
past visits (PASTVIS = 1) relative to the category PASTVIS = 4 (6 or more visits), given that the
remaining predictors are held constant at zero. The estimated conditional expected log-odds is —
1.4156, corresponding to an odds ratio of exp(-1.4156)=0.2428. This implies that a qualifying
participant (a participant with NUMMED = 0, GENDER =0, ..., AGE5 = 0) has 0.2427 times the odds
of having had no previous visits, as opposed to 6 or more Visits.

[* nihs2.0UT =N EaR~><™
Response Code 1 vs Code 4 -
intcept -1.4149 0.2429 0.1525 0.3871
NUMMED -0.3414 0.7108 0.6517 0.7753
PRIMCARE -1.0147 0.3625 0.2490 0.5278
BLODPRES 0.3338 1.3963 1.0033 1.9431
EXERCISE 0.7936 2.2225 1.4941 3.3060
AGE1 1.0546 2.8707 1.7234 4.7817
AGE2 1.3594 3.8940 2.1604 7.0186
AGE3 0.9288 2.5316 1.6309 3.9296
AGE4 0.7429 2.1021 1.3765 3.2101
AGES 0.0656 1.0678 0.6491 1.7566

Response Code 2 vs Code 4

intcept 0.4636 1.5898 1.1447 2.2080
NUMMED -0.2382 0.7881 0.7456 0.8329
PRIMCARE -0.9058 0.4042 0.3057 0.5345
BLODPRES 0.2925 1.3398 1.0492 1.7108 =
EXERCISE 0.3891 1.4757 1.1091 1.9635
AGE1 0.9978 2.7122 1.9344 3.8027
AGE2 1.2602 3.5261 2.3691 5.2483
AGE3 0.6881 1.9899 1.4823 2.6713
AGE4 0.6576 1.9302 1.4647 2.5435
AGES 0.0956 1.1003 0.8053 1.5033 hd

The 95% confidence interval for the odds ratio is obtained by first computing a 95% confidence
interval for the intercept coefficient. This confidence interval is given by

ﬁoil.% std.error(,&oj.

From the output, it follows that this interval is

(~1.4161-1.96x0.2377;-1.4161+1.96x 0.2377)
— (~1.8822;-0.9500).
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Using these values, we obtain the 95% confidence interval for the odds ratio as

foel

exp(—1.8822);exp(-0.9500)
(0.1523;0. 3867)

2.5 Evaluation
2.5.1 Introduction

In this section we report the results of simulation studies for the evaluation of the various estimation
procedures and outcome variable types available in the LISREL MGLIM (multilevel generalized linear
models) module. These simulation studies were also done to determine the effect of fitting models
to data that are missing at random (MAR). We started by doing a comparison of the performance of
a continuous outcome variable versus a binary outcome variable. The same datasets were used, but
for the binary case the outcome variable was dichotomized based on the threshold concept. The
results of this study are reported next.

2.5.2 Parameter estimation results for normal and binary outcome variables
with complete data and with MAR observations

The simulation results given below shows that the ML estimates for continuous normal data have
good properties for both the complete data and missing data sets. However, in the binary case
parameter estimates using adaptive Gaussian quadrature (10 points) have good properties for the
complete data cases but poor properties when there are missing observations.

Simulation results: normal and binary outcome variables

IBO :81 ﬂz 133 O'g 0,0, 012
Normal True 5.32 0.12 -0.23 -0.8 0.32 0.06 0.28
Complete AE 5.34 0.07 -0.26 -0.75 0.30 0.06 0.25
RB 0.02 -0.05 -0.03 0.05 -0.02 0.00 -0.03
PB 0.38 -44.24 12.22 -6.66 -5.17 -3.16 -11.11
SB 19.07 -66.31 -19.16 47.76 -13.16 -2.53 -45.30
RMSE 0.11 0.10 0.15 0.12 0.13 0.08 0.08
ASE 0.11 0.08 0.15 0.11 0.13 0.07 0.07
CR 0.94 0.92 0.94 0.94 0.94 0.96 0.90
Missing AE 5.32 0.12 -0.24 -0.80 0.30 0.07 0.27
RB 0.00 0.00 -0.01 0.00 -0.02 0.01 -0.01
PB 0.04 -1.13 3.91 -0.24 -6.63 9.25 -2.92
SB 2.02 -1.84 -6.23 1.84 -17.75 8.14 -13.13
RMSE 0.10 0.07 0.14 0.11 0.12 0.07 0.06
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ASE 0.10 0.08 0.15 0.11 0.12 0.07 0.06
CR 0.95 0.95 0.96 0.95 0.94 0.94 0.95

Binary True 6.025 0.281 -1.477 -1.587 7.43 -2.27 3.12

Complete AE 6.215 0.232 -1.711 -1.481 7.429 -2.241 3.207
RB 0.190 -0.049 -0.234 0.106 -0.001 0.029 0.087
PB 3.159 | -17.500 15.872 | -6.708 -0.013 | -1.291 2.801
SB 8.381 -4.670 -11.190 | 10.830 | -0.023 1.607 4.836
RMSE 2.279 1.054 2.108 0.989 4.308 1.823 1.809
ASE 1.701 0.873 1.322 0.777 4.458 1.796 1.472
CR 0.930 0.955 0.957 0.960 0.888 0.906 0.921

Missing AE 5.280 0.277 -1.624 -0.974 4.277 -1.528 2.139
RB -0.745 -0.004 -0.147 0.613 -3.153 0.742 -0.981
PB -12.367 | -1.460 9.966 | -38.654 | -42.436 |-32.700| -31.439
SB -35.743 | -0.380 -7.718 61.733 | -92.798 | 47.864 | -60.941
RMSE 2.214 1.080 1.913 1.168 4.636 1.719 1.885
ASE 1.575 0.949 1.239 0.834 3.284 1.457 1.319
CR 0.787 0.948 0.949 0.809 0.662 0.776 0.696

TRUE= The parameter values used to generate data

AE= Average Estimate

RB= Raw bias

PB= Percent bias

SB= Standardized bias

RMSE= Root Mean Square Error

ASE= Average Asymptotic Standard Error of an estimate

CR= Proportion Coverage

Table 16: Average percentage missing at time points
T1 T2 T3 T4
0 3.689 % [12.073%17.606 %

It is speculated that the reason for the poor performance for the MAR binary case may mainly be
contributed to the fact that the distribution of the binary outcome is so severely skewed that when
missing values are present, some of the level-2 units contained only a single value for the outcome
variable. To test this hypothesis, we dichotomized the continuous variable in such a way that the
distribution of values is approximately 15% and 85%. The table below is a summary of this
simulation study indicating that as the outcome variable distribution becomes more symmetric, the
behavior of parameter estimation under MAR improves.
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2.5.3 Parameter estimation results for the binary outcome variables with
complete data and with MAR observations using a smaller intercept
parameter

Table 17: Simulation results: binary outcome variables

2

2

b B b, Bs Oy 0,0, 0
Binary True 2.247 -1.037 0.236 -0.877 0.36 0.06 0.28
Complete AE 2.390 -1.131 0.240 -0.887 0.778 -0.274 0.570
RB 0.143 -0.094 0.004 -0.010 0.458 -0.334 0.290
PB 6.383 9.027 1.623 1.122 143.269 | -557.010 103.430
SB 36.043 | -32.647 | 0.832 -2.735 51.987 -58.165 55.630
RMSE 0.423 0.302 0.460 0.360 0.994 0.665 0.596
ASE 0.398 0.289 0.463 0.359 0.807 0.533 0.495
CR 0.955 0.962 0.959 0.944 0.862 0.955 0.891
Missing AE 2.253 -0.850 0.217 -0.974 0.508 -0.140 0.445
RB 0.006 0.187 -0.019 | -0.097 0.188 -0.200 0.165
PB 0.260 -18.021 | -8.019 | 11.053 58.852 -333.770 59.080
SB 1.571 64.383 | -4.204 | -25.893 27.425 -45.933 37.955
RMSE 0.372 0.345 0.451 0.387 0.712 0.480 0.466
ASE 0.377 0.295 0.451 0.371 0.620 0.422 0.435
CR 0.937 0.881 0.957 0.948 0.781 0.968 0.853
Table 18: Average percentage missing at time points
Tl T2 T3 T4
0 5.05 15.85 28.84

2.5.4 Parameter estimation

complete data and with MAR observations

results for count outcome variables with

The simulation results given below are ML estimates of the parameters for a count outcome variable.
The parameter estimates using adaptive Gaussian quadrature (10 points) have good properties for
both the complete data and missing observations cases.
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Table 19: Simulation results: count outcome variables

Count True 1.1 0.002 0.05 -0.31 0.51 0.054 0.24

Complete AE 1.093 -0.003 0.060 | -0.306 | 0.502 0.056 0.238
RB -0.007 -0.005 0.010 0.004 | -0.008 0.002 -0.002
PB -0.621 -246.119 20.278 | -1.186 | -1.490 4.061 -0.789
SB -7.781 -1.547 8.216 4.115 | -9.494 5.212 -4.485
RMSE 0.088 0.065 0.124 0.089 | 0.080 0.042 0.042
ASE 0.090 0.065 0.124 0.091 | 0.079 0.040 0.040
CR 0.964 0.949 0.941 0.959 | 0.935 0.933 0.921

Missing AE 1.087 0.039 0.060 | -0.311 | 0.506 0.037 0.228
RB -0.013 0.037 0.010 | -0.001 | -0.004 | -0.017 -0.012
PB -1.186 1865.099 | 19.456 | 0.462 | -0.774 | -30.805 -5.071
SB -14.655 52.161 7.815 | -1.505 | -4.884 | -36.162 | -28.813
RMSE 0.090 0.081 0.125 0.095 | 0.081 0.049 0.044
ASE 0.091 0.071 0.125 0.096 | 0.080 0.043 0.042
CR 0.960 0.903 0.943 0.957 | 0.939 0.925 0.912

Table 20: Average percentage missing at time points

T1 T2 T3 T4
0 4.02 17.25 30.59

2.5.5 Additional Simulation studies

Two-level binary and ordinal models without missing observations have been tested with simulated
data. For the non-linear models two methods of estimation, these being ADAP (adaptive quadrature)
and MAP (Maximization of the Posterior distribution), were evaluated. Results of those tests are
tabulated below. Overall, the ADAP procedure performed quite well as opposed to the MAP estimators
that exhibited high bias and lower coverage rate. It was found, however, that the MAP performance
improves for larger numbers of level-1 units nested within the higher order units and in general, the
MAP estimates provided good starting value for the ADAP procedure.

Note that the MAP (Maximization of the Posterior distribution) method is always used to obtain
starting values for models with non-normal outcome variables. This method does not use numerical
quadrature and for a very large number of random effects, it might be the only viable method in
LISREL for fitting mixed effects models.

Results in the following tables are based on the 1000 simulated datasets; each with 150 subjects
followed over five time points.
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Table 21: Simulation results for a binary outcome using ADAP

By B 5 Bs e 0,0, of
True 6.025 0.281 -1.477 -1.587 7.43 -2.23 3.12
AE 6.282 0.252 -1.760 -1.511 7.814 -2.506 3.430
RB 0.257 -0.029 -0.283 0.076 0.384 -0.236 0.310
PB 4.257 -10.248 19.137 -4.790 5.173 10.410 9.948
SB 12.177 -2.369 -16.641 7.564 6.826 -8.932 14.869
RMSE 2.122 1.216 1.722 1.008 5.644 2.656 2.110
ASE 2.228 1.401 1.742 1.167 5.653 2.620 1.904
CR 0.895 0.947 0.942 0.969 0.853 0.887 0.920
Table 22: Simulation results for a binary outcome using MAP

b B b, Bs O-g 0,0, 012
True 6.025 0.281 -1.477 -1.587 7.43 -2.23 3.12
AE 4.283 -0.036 -1.193 -0.938 2.440 -0.595 0.851
RB -1.742 -0.317 0.284 0.649 -4.990 1.675 -2.269
PB -28.909 -112.769 -19.219 -40.868 -67.155 -73.774 -72.718
SB -138.787 -42.866 21.867 83.311 -313.142 179.992 -305.950
RMSE 2.148 0.804 1.329 1.013 5.240 1.917 2.388
ASE 0.830 0.592 0.948 0.664 0.429 0.270 0.203
CR 0.284 0.854 0.844 0.760 0.038 0.180 0.052

A plot of the empirical CDF of the -2 log-likelihood function is presented for the adaptive quadrature
procedure using 7, 11, 15 and 20 points respectively. For the simulated data these curves are
essentially the same and it is therefore concluded that the choice of 10 points in the simulation study
is acceptable.
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Figure 8: Plot of empirical CDF of -2 In L function using ADAP

Table 23: Simulation results for an ordinal outcome using ADAP

- ADAP20

ADAPT
ADAPT
ADAP1S

To T, B 5 Bs o) 0,0, oy

True 3.912 6.528 -0.875 | 0.111 |-1.724 7.13 -0.41 2.06

AE 3.964 6.606 -0.883 | 0.134 |-1.754| 7.335 -0.442 2.168
RB 0.052 0.078 -0.008 | 0.023 |-0.030| 0.205 -0.032 0.108
PB 1.323 1.197 0.887 |20.963|1.726 | 2.873 7.704 5.234
SB 14.197 15.398 | -3.174 | 4.117 |-8.137| 9.208 -4.279 | 15.352
RMSE| 0.368 0.513 0.245 | 0.566 | 0.367 | 2.234 0.739 0.711
ASE 0.456 0.409 0.246 |0.563|0.357 | 2.123 0.734 0.669
CR 0.980 0.883 0.950 [0.953|0.946 | 0.929 0.942 0.938
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Table 24: Simulation results for an ordinal outcome using MAP

To T B B, B o) 0,0, oy
True 3.912 | 6528 | -0.875 | 0.111 | -1.724 7.13 -0.41 2.06
AE 3.389 | 5652 | -0.750 | 0.114 | -1.453 3.930 0.442 0.902
RB -0.523 | -0.876 | 0.125 |0.003| 0.271 -3.200 0.852 -1.158
PB -13.382 [ -13.414 | -14.325 | 3.039 | -15.699 | -44.887 -207.772 -56.190
SB -196.585|-240.885| 63.221 | 0.717 | 91.575 | -249.059 198.558 -382.912
RMSE 0.588 | 0.949 0.235 0471 ] 0.401 3.450 0.954 1.197
ASE 0.330 | 0.306 0.175 |0.420 | 0.255 0.814 0.344 0.229
CR 0.666 | 0.227 0.853 |0.922 | 0.778 0.161 0.282 0.044
2.6 Theory

2.6.1 Distribution models and link functions

2.6.1.1 Introduction

It is assumed that y; is an outcome variable, where i=12,.., N denotes level-3 units and
i=12,..., n denotes level-2 units, nested within each level-3 unit i . The level-1 units k =1, 2, ..., n;

are nested within the (i, j) -th (level-3; level-2) combination.

For 2-level models, the subscript i is omitted and y, denotes level-1 unit k nested within level-2
unit j.

A multilevel model with a non-normal outcome variable is transformed to a linear model by using a
link function which defines the relationship between the dependent variable 7, of the linear model

and the mean 4, of the distribution selected. More specifically, the linear model of a multilevel
generalized linear model is given by

M = XijkB+Z(2)ijkVij +Z )i Vi

where x;, isa px1 vector of predictors, z,;, isa gx1 design vector associated with the level-2
random effects v;; . Likewise, z,;, isa rx1 design vector associated with the level-3 random effects
v;. Typically, the elements of z,,, and z,; are subsets of the elements of x;, .

It is further assumed that the level-3 and level-2 random effect vectors are uncorrelated and also that
v, ~N(0,®,) and that v, ~ N (0,@, ).
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2.6.1.2 Link function and derivatives

The link functions available are the log, logistic, complimentary log-log, log-log, and probit. Table
1 contains a summary of these link functions and their derivatives. The cumulative distribution for
each link is denoted by CDF (7) and the corresponding probability distribution function by PDF ,

0

where PDF =—CDF. The second-order derivatives of 7 with respect to the link function is

on

denoted by iPDF. The CDF of a standardized normal variable is denoted by @(-), while

on

cl=exp(-7),and c2=exp(7) :cil'

Table 25: Probability and cumulative distribution functions

0

Function CDF(n7) PDF () %PDF-

Logistic — CDF (1-CDF) (c1—c2)x PDF?
1+cl
Probit @ (n) L exp—=n’ x PDF
robi ——exXp—= —
7 Lz 2 7

Complementary log-log 1—exp(—c2) c2(1-CDF) (1-c2)PDF
Log-log exp(—cl) clx CDF (c1-1)PDF
Log c2 c2 c2

In subsequent sections, short descriptions of the different distribution-link type models are given.

2.6.1.3 The Poisson-log model

Assume Y, follows a Poisson distribution with mean ;. In other words, the probability density

function of y;, is given by

f (yijk1:uijk):—

and the variance of Yj; is given by

=Inf (yijk1:uijk ) = Vi In {:uijk } = Hij — In{yijk !} (1.1)
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o (Vi) = (1.2)
Suppose further that the following exponential model is imposed on the means of Yy
1y = X7 ) (13)
The model in (2.3) is transformed to a linear model by using the log link function. In other words

ik = In(/uijk) (1.4)

2.6.1.4 Models for the Bernoulli sampling distribution

Sampling distribution

f (yijk) = /ui}llgk (1_:uijk )1_yijk (1.5)
Variance
O'Z(yijk) = phy (L= 12 (1.6)
2.6.1.4.1 The logistic model
Model for means
1
Hiik (1.7)
1+exp( -1y, )
Link function
My = 10git(25.) = In al (1.8)
1_:uijk

2.6.1.4.2 The complementary log-log model

Model for means
Hijy :1_eXp{_eXp(77ijk )} (1.9)
Link function

My = In(=In(1— 24, )) (1.10)
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2.6.1.4.3 The probit model

Model for means

My = q)(nijk) (1.11)

where @(-) denotes the cumulative distribution function of the standard Normal distribution.

Link function

M = q)_l(:uijk) (1.12)
2.6.1.4.4 The log-log model
Model for means
Hige =EXP {_eXp(_Uijk )} (1.13)
Link function
My =—1In {_In(:uijk )} (1.14)

2.6.1.5 Models for the Binomial distribution

Sampling distribution

Let Y, denote the proportion of successes in N independent trials:

ni'k Mii Vi Nijk | 1= Yijk
f(yijk):[ J ]/uijlg & (l_luijk) ) (1.15)
Mk Vi
Variance
Hi (1= 14
o (Yy) = % (1.16)

ik

The models for the means and the link functions are identical to those of the Bernoulli-logit model
described in Section 2.6.1.4.

2.6.1.6 The Negative Binomial-log model

Sampling distribution

F(y.. +1] Vi
fyy) =¥ G (1.17)

o3 v )
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Variance
o’ (yijk ) = Hix + ‘//,Uu?k (1.18)

The model for means and the link function are identical to those of the Poisson-log model described
in Section 2.6.1.3.

2.6.1.7 The Gamma-log model

Sampling distribution

() = [ i } exp(— i ] (1.19)
F(;jyijk Hy Y My

o’ (yijk ) = Wﬂu?k (1.20)

Variance

The model for means and the link function are identical to those of the Poisson-log model described
in Section 2.6.1.3.

2.6.1.8 The Inverse Gaussian-log model

Sampling distribution

2
1 1| Vi — Mg
f (Yy) = —————exp| - L ‘ J] /w (L.21)
g \/2”y3ijk'// 2Yix Hik

o’ (yijk ) = l//'ui?k (1.22)

Variance

The model for means and the link function are identical to those of the Poisson-log model described
in Section 2.6.1.3.

2.6.1.9 Models for the Multinomial sampling distribution

Sampling distribution

Miie !

c-1
f (yijk,l’ Yijk,20e00 yijk,C—l) =7 o1 (Hﬂiﬁjfil
(H Yiik.1 !j[nijk _Z Yiik.1 ]! =
I-1

1=1

”ijk*ciiYijk.l
jﬂijk,c " (1.23)
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Covariance matrix

Z(y;}k) = Dﬂijk _uijkui,jk (1.24)

where y;-k :[yijk'l Vi yijk,Cfli| and Dm,-k denotes a (C-1)x(C-1) diagonal matrix with the

elements of p;, :[luijk,l L g -+ ﬂijkm] on the diagonal.

2.6.1.10 The generalized logistic (nominal) Model
Model for means
EXP\ ik
/Uijk,l = c1 { ! } \vd |:1,2,...,C—1 (125)

1+ ;exp{nijk,l}

Link function

. Hijy,
Mt = 10git(z,,) =In e } (1.26)
Hij.c
2.6.1.11 The cumulative logistic (ordinal) model
Model for means
| exp T, —1n;
i, :Z:uijk,r = p{ I anYI} vV I=.,C-1 (1.27)
r=1 1+ eXp{ﬂ _nijk,l}
_ 1
1+exp{-7; |
where
ni?k,l =T ~ i,
the elements of 7, 7, ... ,7;; denote threshold parameters.
Link function
_— ey ,Ui]ka
ik = Cloglt(,uiju) =1In — (1.28)
— Hijk,
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2.6.1.12 The proportional hazards (cumulative complimentary log-log) model

Model for means
M :Zﬂijk’r :1—exp(—exp{77i’;kyl}) vV 1=12,..C-1 (1.29)
i = cloglog (s, ) =In(=In (1 sz5,, ) (1.30)
2.6.1.13 The cumulative log-log model

Model for means

|
M, :Z:uijk,r :eXp(_EXp{_UiTk,l}) v 1=12--C-1 (131
r=1

Ui’j‘k,l = IOglOg(/'li;kJ) =—In (_ In (,Ui?k,l )) (1.32)
2.6.1.14 The cumulative probit model
Model for means
|
iy =Dty = () ¥V 1=12,...,C-1 (1.33)
r=1

where @ (-) denotes the cumulative distribution function of the standard normal distribution.

Link function
ni}k,l = q)_l(ﬂijjk,l) (1.34)

2.6.1.15 The estimation of scale and dispersion parameters

A number of sampling distributions discussed in the previous sections have a dispersion parameter
and/or a scale parameter. A summary of these distributions with respect to dispersion and scale
parameters and their estimates is shown in Table 16.

Table 16: Scale and dispersion parameters

Distribution Deviance] Dispersion| Pearson| Scale
Binomial X X X
Gamma X X X X
Inverse

) X X X X
Gaussian
Negative

) ) X X X

binomial
Poisson X X X
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2.6.1.16 The deviance X2 estimate

|1
¢D—\/: (1.35)

75 =2InL(y|y)-2InL(iy) (1.36)
d=233 W, - (137
i=1 j=1 k=1
2.6.1.17 The Pearson Zz estimate

e
9 = \/Z (1.38)

%2 _ iii Wik (yijk _[Iijk )2
P

1.39
i1 j=1 k=L 62 (yijk ) ( )

2.6.2 Theoretical aspects: level-3 generalized linear models

2.6.2.1 Notation

Let Y; denote a N; x1 vector of outcomes with typical element Yii » where i denotes the level-3
units, j denotes the level-2 units nested within the i -th level-3 unit and k denotes the level-1 units
nested within ij.

Assume further that there are N level-3 units so that i =1, 2,..., N.Within a typical level-3 unit there
are N; level-2 units, ] =1,2,...,N; and nested within ij there are N level-1 units so that k =1,2,...,n;.

N N n
There are, therefore, Z n; level-2 unitsand > > n; level-1 units.
i=1

i=1 j=1

Let yf and VT denote Z n; x1 vectors partitioned as follows:
=1

yil il
* yi2 * V|2 i
y|: . l V|: y |:1,2,...,N
yini Vln
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Under the assumption that

and

with cov(vy,v,)=0, it follows that

f(yrviov)=f(yi1vivi)-g(vi.v,) (1.42)
= f(yiIvi.vi)-g(vi)a(v;)
Therefore
1) {1 1071973 900 o o
From (1.40), it follows that
1) 0 (w)=TT (1% v )a ()
Hence
f(y,):j n_ { f(y, |v,,v,)~g(vu)dv”}g(v,)dvI
' Jn " n (1.43)
:J' ,1{"{1} f (Y IvyV, )} g(v“)dvu}g(v,)dvI

f (yijk |Vij,Vi):
where

A =€xp {Xijkﬂ +Ziy o) Vii T Zijkz) Vi } :
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2.6.2.2 Log-likelihood function

Let
L =Inf(y;)
=In jn{h(vij )}g (v;)dv,
v; =
where
h(v;)= Iexka“:In (v vy v Ja vy )av,
Vi =1
Note that
I_I[h(vIJ )]g (v;)= H{Klj exp{ilijk v, @, }dvij } K, exp—%v{‘l’lvi
i1 =0 k=1
Let
t; = L —lv;jquvij +InK, (1.44)
P} 2
Iijk =Inf (yijk |Vij ) Vi) (1-45)
and
q =InK, —%V{‘I”lvi, (1.46)

K, =(27) " |@

u

K, =(27) " |w[ "

v

From (1.44), (1.45) and (1.46) it follows that

vi | 1=y

f(yi)= sz{ln_[ | exptudv”}equ,dvI
= sz'exp{iln I exptijdvij}equidvi

v = vy

=K, J' exp[i Ing; +q, ]dvi

v; =t
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with

q; = jexptijdvij.

]

Therefore
Inl, =InK, +In f (y)=InK, +In [exp(q; +q;)dv, (1.47)

where

O = Z In g
-1

2.6.2.3 Empirical Bayes estimates

Estimates of the random effects are obtained as the conditional expectation of Uy given the

observations y, More specifically,

E (uijk | yT) = I:KvJ‘eXp(qi +q; )pijkdvi:ll f (yf) (1.48)
where
m 1
K,=(27) 2|¥2
G = _% V¥l
and where
Pij = J. Uy, (yij | Vi,V ) g (Vij )dvij
Likewise u
E (Vijk Vi | yT) = I:vaeXp(qi + 0 )Cijkl dv, :|/ f (yf) (1.49)
where

Cija = _[Vijkvijl f (yij | v, Vii ) g (Vij )dvij

Vij

2.6.2.4 Derivatives of the log-likelihood function

Fixed effects: £ -derivatives

L =Inf(y;)=InK, [exp(q; +q; )dv,

Therefore
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n;

I = Injexp{ InJ. f(yIJ |v,, vu)g(vij )}g(vi)dvi

=1 Vi

olnl; _
o5 K '[ exp qIJ +q
(1.50)

1 o
1) K”J{aﬂr qij}eXp(qu G, )dv,

Vi

Since

q; = Ing;
j=1 ,
it follows that

0

——1n
%y 25/3 q”

aﬂr =1 qij
and

%qﬁ | ZeXlenf(y.,klv v )a(vy)dv,
R (1.51)
‘ In f (yijk |Vi’Vij) f (yij |Vi,Vij)g (Vij )dvij'

k=1 r

Level-2 variance components: @ - derivatives
%:ﬁ&ﬂ%ﬁq”}exp(qu +, Jv, (1.52)
DLy
=i
%:iq_lf{{ajﬁrs Ing(v, )} (v 1V vy )9 (v Jav,
. E, Iy, {azrs Ing( )}

=t qu

2-0
EVij/yi |: 2 E (Pij )r,s:|

j=1 G

=

where
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P, =" (VIJ

1

cp)qu

Level-3 variance components: Y - derivatives

olnl,

oW

where

Second order derivatives

The method for obtaining second order partial derivatives is illustrated below for the terms

. v;

il e

q = —%vi‘Plvi +InK,
=Ing(v;)

_ 09 :{2—&3(&) }
al//rs 2 r,s

P=9"(v,v,— )P

2 2
and o”Inl, . The derivatives for etc. are obtained in a similar way.
a¢UVa rs aﬁual//rs

[V ¥es):
From (1.53)

olnl, _@inf(y)

al//rs alf//l'S

_ J{a—v/rslng }exp(q,ﬁq)d

Hence

(1.53)

(1.54)

o’ Inl,

0 l//uva Vis
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82 In Ii _ 1 82
al//uval//l‘s B f (yr)‘.":|:al//uvlr//rs " g( )i| exp(qi +qij )dvi

! 0 Ing(v,) 0 Ing(v )}exp(qﬁqij)dvi

t(yi)ulove OV
Ing (v }exp( +q”)dv}

gl

_l_

i Vi uv

0 0
| | . I
{Wwwrs ng(v 81/45 ng(v,)a%v no(v) }Xexp( o
_6In|i alnli
Wy, OV
cons olnl. olnl.
=7 P. P. xEXPLq; + dVi - : : _ConSWJrll//\;sl+‘//lIsll//\;rl
f(Y.)\!:[ ]u,v[ ]r,s ( J) al//uv al//rs
(1.55)
2—-0uv)(2-ors
cons:( )( )

From (1.55) it follows that

[P], Ey [P, —Ey [P, [P, +warwid + wilwi | (1.56)

olnl; _ 1>ﬁ J‘[@‘;Smg( )}exp(q,ﬁrq)d

oy t(yi):
and
G :él I (v [vivy ) g (v )av,
Thus |
0 & 2—0TrS B
8¢rs ; E_PIJ=EPIJ
where
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E_PU :é (Pij)r,s{z_jrs} v 1viovy ) g (v )av,
]
and
alnl. 1
I

EPIJ :iE_PIJ

=L

and therefore

oIl 1 .[ 0 0+ iq Xiq exp(q 1q )Olv_alnli_alnli
a¢uva¢rs f (yT ) a¢uv¢rs ! a¢UV ! a¢I’S ! I ! I aq) uv aq) rs

Vi

Hence

uv rs

2t -
oo fc((;/ns)I {JZ; S P ]”V[P”]“}exp(qi e

N
LG OInG | onsx o |[oel o) ]
oD, oD <

uv rs

2.6.2.5 Evaluation of integrals

In the preceding sections expressions for the log-likelihood function and derivatives are given in
terms of multiple integrals. In general, no closed form solution to these multiple integrals exists and
therefore use is made of numerical integration to evaluate them.

Consider a general integral of the form
| :I f (Yi |Vi)g(vi)dvi’

where it is assumed that Vv, ~ N (0,<I)) . This integral can equivalently be written as follows:

1= fo(v m){ : (y}lﬁziv)i ?y(iv)i)dvi }dV“

where

é(v, |yi):kexp(—%(vi—\%)Z({vi—inj), (1.58)
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\A/i =E(vily;),

A

and
k=(27) "= [ 2. (1.59)
Consider the transformation of variables
7 —iTl(v —Q-j (1.60)
i \/E i i ! .
where
X VAN
TT =i
and hence

From (1.60) it follows that
v, =V,(z,)=2Tz +vi,
The Jacobian of the transformation is given by

dv; =| Ti* |dz;,

T =42T,.

Using the change in variables, it follows that

| :_"kexp—ziz;(f(y‘ lv‘)g(.V‘)Jl'l'i*ldzi. (1.61)
kexp-z;z,

2.6.2.6 Adaptive quadrature

To evaluate (1.61), use is made of a direct implementation of Gauss-Hermite quadrature. With this
rule

T exp{-z°}f (2)dz
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can be approximated by

Sw,f(z,)

where the W, and Z, denote weights and nodes of the Hermite polynomial of degree G .

Applying this to the multiple integral defined by (1.61), it follows that

1=C> .> W, .w, expz,z, |T, | f (yi |vi(zg))g(vi(zg))

g,=1 g,=1
G G

=CY .y m.my [T f(yvi(zy))a(vi(z,))

g=1 g,=1
G G *
l=C 2 - 2 w, W expz 47y T f(yi |vi(zg))g(vi(zg))

0,=1 g,=1 % 9

*

T

=C m. --m
g=1 g,=1 9 9r

f(yilvﬂzg))g(vng))

where
C=(2z)""|®[*?,
m, = exp(zga Inw, )
and

Z, =(zgl, Zgpr oo zgr).

A AN
Values of v; and Xi (cf. Section 2.3.3) are iteratively updated. This implies that the location and
scale of the area under the integral changes over iterations and depends on the observed values for a
particular level-3 or level-2 unit.

2.6.3 Starting values for generalized linear models
2.6.3.1 Introduction

LISREL uses an algorithm based on the maximization of the posterior distribution (MAP) with respect
to the random effects.
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In the sections to follow, we assume a level-2 model with a count outcome variable. It is also assumed
that the Poisson model is appropriate for level-2 data with a subset of the regression coefficients
assumed to be random.

2.6.3.2 lllustration of the procedure for a count outcome variable

Let Y; be a count outcome variable where I denotes level-2 units, i =1,2,..., N and j level-1 units

nested within the level-2 units j =12,..., 1.

Under the assumption of conditional independence
n; ) 1
f (yi |Vi ) = HEXp(_ﬂij )/uijyIj (yij !) (1.62)
j=2

Suppose that the following exponential model is imposed on the means of the elements Y; of the

n; x1 vector Y;
My =EXp (77ij ) =€exp (XlijB +2Z;V; ) , (1.63)

where X;; isa px1 vector of covariates and the elements of g = [,31, Bos e ﬁp]' denote unknown,
but fixed, parameters. Generally, the mx1 vector Z; is a subset of the columns of X; . Additionally,
it is assumed that Vi, Vs, ..., Vy areiii.d. N(0,®).

The model (1.63) is transformed to a linear model by using the log link function. In other words,
7y =In(s). (1.634)

Using standard results for conditional distributions, it follows that

F(vily) =T (viy)/ f(v)

f(yi |Vi)'g(Vi)/ f(Yi)-

Hence
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Inf(v;ly;)=Inf(y;lv;)+Ing(v;)-K

i (1.65)
:Z{—yij +y; g —In(y, !)}+g(vi)+ K,
j=1
2.6.3.3 Gradient vector and Hessian matrix
Given g and @, it follows that
onf(vly,) < 0 0 0
R S B LA - —Inu. ———u. s +——Ing(Vv.),
a[Vi]r ; y” avir /JIJ avir lu“ avir g( I) (166)
r=12,....m
Since
Ot
avi: = HyZie s (1.67)
o1 1.
a(v)=(2x) F[af exp -2y
and hence
olng(v;) o
2 U oty |, 1.68
8[Vi]r [ V']r ( )
it follows that
olnf(vily,) & .
T:;zijr{yij—yu}—[m 1Vi:|r, r=12,...,..., m.
Maximization of In f (v, |y;) is equivalent to the minimization of
F=Inf(v,]y;)-Ing(v;). (1.69)
F2 —
Hence the gradient vector is defined by
oF _ dln f(v,]y;) | (1.70)
aVir avlr
Furthermore,
'R =[<I)‘1] +i,u..z. Z.s r,s=12 m (1.71)
v ov. PWEL : 25 yeen, M. :

Let H denote the Hessian matrix, where
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0°F

H| = : 1.72
[ ']r,s aViravis ( )
then
E[Hi]r,s = (I);ls +zlzijrzijsE(:uij)’ (1.73)
j=1
where
E () =E(exp{x;B+7;vy})- (1.74)
Therefore
4 : 1.
E[Hi]r,s = d)ri +Zl[exp {xijﬂ+§zij(l)zij H Zi Zs - (1.75)
i
2.6.3.4 The MAP algorithm
Set (i):O.l*I, \A/1,\/}2,...,\A/N =0
Calculate ﬁ given ® and \A/i
Given the current estimates ﬁ of B and o of ®, calculate \/}i, i1=12,...,N using the Newton-
Raphson method:
Vit =u e H0g0 k=12, (1.76)
where
oF,
[0:] =— r=12..m (1.77)
' aVir

Obtain (see, e.g., du Toit, 1993) a revised estimate ® of ® from

&):%Z{Cov(% |yi)+(§i —3)(% —3)} (1.78)

where
Cov(vily,)=[E(H;)]" (1.79)
and
Vi= niivij . (1.80)

Repeat steps (2) to (4) until convergence is attained.
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2.6.3.5 Starting values for adaptive quadrature

As initial estimates of the fixed and random parameters, we use the values of p and o at

convergence. The vi and Cov(\A/i ly,) (see (1.79) and (1.80)) are used as initial estimates of the

empirical Bayes means and the covariances in the adaptive quadrature procedure described in Section
2.6.2.
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