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1 Multilevel Structural Equations Models 

 

Social science research often entails the analysis of data with a hierarchical structure. A frequently cited example 

of multilevel data is a dataset containing measurements on children nested within schools, with schools nested 

within education departments. 
 

The need for statistical models that take account of the sampling scheme is well recognized and it has been shown 

that the analysis of survey data under the assumption of a simple random sampling scheme may give rise to 

misleading results. 
 

Iterative numerical procedures for the estimation of variance and covariance components for unbalanced designs 

were developed in the 1980s and were implemented in software packages such as MLWIN, SAS PROC MIXED and 
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HLM. At the same time, interest in latent variables, that is, variables that cannot be directly observed or can only 

imperfectly  be observed, led to the theory providing for the definition, fitting and testing of general models for 

linear structural relations for data from simple random samples.  
  

A more general model for multilevel structural relations, accommodating latent variables and the possibility of 

missing data at any level of the hierarchy and providing the combination of developments in these two fields, was 

a logical next step. In papers by Goldstein and MacDonald (1988), MacDonald and Goldstein (1989) and 

McDonald (1993), such a model was proposed. Muthén (1990, 1991) proposed a partial maximum likelihood 

solution as simplification in the case of an unbalanced design. An overview of the latter can be found in Hox 

(1993).  

 

General two-level structural equations modeling is available in LISREL. Full information maximum likelihood 

estimation is used, and a test for goodness of fit is given. An example, illustrating the implementation of the 

results for unbalanced designs with missing data at both levels of the hierarchy, is also given. 
 

2 A General Two-level Structural Equations Model 

 

Consider a data set consisting of 3 measurements, math 1, math 2, and math 3, made on each of 1000 children 

who are nested within N = 100 schools. This data set can be schematically represented for school i as follows 

 

For the i-th level-2 unit (school), we can write 
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where for child 4 within school i 
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A model which allows for between- and within-schools variation in math scores is the following simple variance 

component model 
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or , 1,2, ,ij i ij i N= + =y v u , where it is assumed that 1 2, , , Nv v v  are i.i.d. (0, )BN Σ  and that 1, ,i iNu u  are 

i.i.d (0, )WN Σ . It is additionally assumed that  

 

 ( , ) 0, 1, , ; 1,2, ,i ij iCov i N j n= = =v u . 

 

From the distributional assumptions it follows that 
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or 
' '( , )i i B WCov =  + y y 11 Σ I Σ . 

 

It also follows that 
 

( )iE =y 0 . 
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In practice, the latter assumption ( )iE =y 0  is seldom realistic, since measurements such as math scores do not 

have zero means. One approach to this problem is to use grand mean centering. Alternatively, one can add a fixed 

component to the model ,ij i ij= +y v u  so that  

 

 ,ij ij i ij= + +y X β v u  (1) 

 

where ijX  denotes a design matrix and β  a vector of regression coefficients. 

 

 

Suppose that for the example above, the only measurements available for child 1 are math 1 and math 3 and for 

child 2 math 2 and math 3. 
 

Let 1iS  and 2iS  be selection matrices defined as follows 
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In general, if p measurements were made, ijS  (see, for example, du Toit, 1995) consists of a subset of the rows 

of the p p  identity matrix pI , where the rows of ijS  correspond to the response measurements available for the 

(i, j)-th unit. 

 

The above model can be generalized to accommodate incomplete data by the inclusion of these selection matrices. 

Hence 
 

 ( )ij y ij ij i ij ij= + +y X β S v S u  (2) 

 

where ( )yX  is a design matrix of the appropriate dimensions. 

 

If we further suppose that we have a 1q  vector of variables ix  characterizing the level-2 units (schools), then 

we can write the observed data for the i-th level-2 unit as 
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' ' ' ' '
1 2[ , ,..., , ],

ii i i in i=y y y y x  

 

where  
 

'
1 2[ , ,..., ]ij ij ij ijpy y y=y   

and   

 
'

1 2[ , ,..., ].i i i iqx x x=x  (3) 

 

We assume that ijy  and ix  can be written as  

 

 ( ) , 1,2,ij y ij y ij i ij ij ij n= + + =y X β S v S u  (4) 

 ( ) , 1,2,i x i x i i i N= + =x X R w  (5) 

 

where ( )yX  and ( )xX  are design matrices for fixed effects, and ijS  and iR  are selection matrices for random 

effects of order ijp p  and iq q  respectively. Note that (4) defines two types of random effects, where iv  is 

common to level-3 units and iju  is common to level-1 units nested within a specific level-2 unit. 

 

 

Additional distributional assumptions are 
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From (4) and (5), it follows that 

 
( )

1

( )

in

y i y i i ij ij

ji

x i x i i

=

 
+ + 

=  
 + 

X β S v Z u
y

X β R r

 (7) 

 

where 
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From the distributional assumptions given above, it follows that 
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Remark 
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If i q=R I  and ij p=S I , corresponding to the case of no missing y or x variables, then '
i yx i yx= S Σ R 1 Σ  where 

'
1  is a 1in   row vector (1,1, …,1). 

 

Furthermore, for , 1,2, ,ij p ij n= =S I  

 

 
'

ii n W B=  + V I Σ 11 Σ  

 

(see, for example, MacDonald and Goldstein, 1989). The unknown parameters in (8) and (9) are β , BvecsΣ , 

WvecsΣ , xyvecsΣ  and .xxvecsΣ  

 

Structural models for the type of data described above may be defined by restricting the elements of β , BΣ , WΣ

, xyΣ , and xxΣ  to be some basic set of parameters '
1 2( , , , )k  =γ . 

For example, assume the following pattern for the matrices WΣ  and BΣ , where WΣ  refers to the within (level-

1) covariance matrix and BΣ  to the between (level-2) covariance matrix: 

 

 

'

' .

W W W W W

B B B B B

= +

= +

Σ Λ Ψ Λ D

Σ Λ Ψ Λ D
 (10) 

 

Factor analysis models typically have the covariance structures defined by (10).  

 

Consider a confirmatory factor analysis model with 2 factors and assume 6p = . 
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If we restrict all the parameters across the level-1 and level-2 units to be equal, then 

 

 
'

11 21 44 11 22 11 66[ , , , , , , , , ]      =γ  

 

is the vector of unknown parameters. 

 

3 Maximum Likelihood for General Means and Covariance Structures 

 

In this section, we give a general framework for normal maximum likelihood estimation of the unknown 

parameters. In practice, the number of variables (p + q) and the number of level-1 units within a specific level-2 

unit may be quite large, which leads to iΣ  matrices of very high order. It is therefore apparent that further 

simplification of the likelihood function derivatives and Hessian is required if the goal is to implement the 

theoretical results in a computer program. These aspects are addressed in du Toit and du Toit (2008). 

 

Denote the expected value and covariance matrix of iy  by iμ  and iΣ  respectively (see (8) and (9)). The log-

likelihood function of 1 2, , , Ny y y  may then be expressed as 

 

 
1 '
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Instead of maximizing ln L , maximum likelihood estimates of the unknown parameters are obtained by 

minimizing ln L−  with the constant term omitted, i.e., by minimizing the following function 
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Its minimum 
( )F

=


γ
0

γ
 yields the normal maximum likelihood estimator 



γ  of the unknown vector of parameters 

γ . 

 

Unless the model yields maximum likelihood estimators in closed form, it will be necessary to make use of an 

iterative procedure to minimize the discrepancy function. The optimization procedure (Browne and du Toit, 1992) 

is based on the so-called Fisher scoring algorithm, which in the case of structured means and covariances may be 

regarded as a sequence of Gauss-Newton steps with quantities to be fitted as well as the weight matrix changing 

at each step. Fisher scoring algorithms require the gradient vector and an approximation to the Hessian matrix.  

 

 

4 Fit Statistics and Hypothesis Testing 

 

The multilevel structural equations model, ( )M γ , and its assumptions imply a covariance structure ( )BΣ γ , 

( )WΣ γ , ( )xyΣ γ , ( )xxΣ γ  and mean structure ( )μ γ  for the observable random variables where γ  is a 1k   vector 

of parameters in the statistical model.  It is assumed that the empirical data are a random sample of N level-2 units 

and 
1

N

ii
n

=  level-1 units, where in  denotes the number of level-1 units within the i-th level-2 unit. From this 

data, we can compute estimates of μ , BΣ , …, xxΣ  if no restrictions are imposed on their elements. The number 

of parameters for the unrestricted model is  

 

 
* 1 1

2 ( 1) ( 1)
2 2

k m p p pq q q
 

= + + + + + 
 

 

 

and is summarized in the * 1k   vector π . The unrestricted model ( )M π  can be regarded as the "baseline" model.  

 

To test the model ( )M γ , we use the likelihood ratio test statistic 

 2ln ( ) 2ln ( )c L L
 

= − −γ π  (14) 

 

If the model ( )M γ  holds, c has a 
2 -distribution with *d k k= −  degrees of freedom. If the model does not hold, 

c has a non-central 
2 -distribution with d degrees of freedom and non-centrality parameter   that may be 

estimated as (see Browne and Cudeck, 1993): 

 max{( ),0}c d


= −  (15) 
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These authors also show how to set up a confidence interval for  . 

 

It is possible that the researcher has specified a number of competing models 1 1 2 2( ), ( ), , ( ).k kM M Mγ γ γ  If the 

models are nested in the sense that : 1j jk γ  is a subset of : 1i ik γ , then one may use the likelihood ratio test 

with degrees of freedom i jk k−  to test ( )jM γ  against ( )iM γ . 

 

Another approach is to compare models on the basis of some criteria that take parsimony as well as fit into 

account. This approach can be used regardless of whether or not the models can be ordered in a nested sequence. 

Two strongly related criteria are the AIC measure of Akaike (1987) and the CAIC of Bozdogan (1987). 

 

 AIC 2c d= +  (16) 

 

1

CAIC (1 ln )
N

i

i

c n d
=

= + +   (17) 

The use of c as a central 
2 -statistic is based on the assumption that the model holds exactly in the population. 

A consequence of this assumption is that models that hold approximately in the population will be rejected in 

large samples. 

 

Steiger (1990) proposed the root mean square error of approximation (RMSEA) statistic that takes particular 

account of the error of approximation in the population 

 

 
0

,
F

RMSEA
d



=  (18) 

 

where 0F


 is a function of the sample size, degrees of freedom and the fit function. To use the RMSEA as a fit 

measure in multilevel SEM, we propose 

 

 0 max ,0
c d

F
N

  − 
=   

  
 (19) 

 

Browne and Cudeck (1993) suggest that an RMSEA value of 0.05 indicates a close fit and that values of up to 0.08 

represent reasonable errors of approximation in the population. 
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5 Starting Values and Convergence Issues 

 

In fitting a structural equations model to a hierarchical data set, one may encounter convergence problems unless 

good starting values are provided. A procedure that appears to work well in practice is to start the estimation 

procedure by fitting the unrestricted model to the data. The first step is therefore to obtain estimates of the fixed 

components ( )β  and the variance components ( , , and ).B xy xx WΣ Σ Σ Σ  Our experience with the Gauss-Newton 

algorithm (see, for example, Browne and du Toit, 1992) is that convergence is usually obtained within less than 

15 iterations, using initial estimates , , ,B p xy xx q= = = =β 0 Σ I Σ 0 Σ I  and W p=Σ I . At convergence, the value of 

2ln L−  is computed. 

 

Next, we treat 

 

B yx

B

xy xx

 

 

 
 =
 
  

Σ Σ
S

Σ Σ

 and W
W

 
 =
  

0S
0 0

 

 

as sample covariance matrices and fit a two group structural equations model to the between- and within-groups. 

Parameter estimates obtained in this manner are used as the elements of the initial parameter vector 0γ .  

 

In the third step, the iterative procedure is restarted and kγ  updated from 1k−γ , k = 1,2,… until convergence is 

reached. 

 

The following example illustrates the steps outlined above. The data set used in this section forms part of the data 

library of the Multilevel Project at the University of London and comes from the Junior School Project (Mortimore 

et al, 1988). Mathematics and language tests were administered in three consecutive years to more than 1000 

students from 49 primary schools, which were randomly selected from primary schools maintained by the Inner 

London Education Authority. 
 

The following variables were selected from the data file: 

 

• School    School code (1 to 49) 

• Math1    Score on mathematics test in year 1 (score 1 - 40) 

• Math2   Score on mathematics test in year 2 (score 1 - 40) 

• Math3    Score on mathematics test in year 3 (score 1 - 40) 

 

The school number (School) is used as the level-2 identification. 
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Figure 1: Confirmatory factor analysis model 

 

A simple confirmatory factor analysis model (see Figure 1) is fitted to the data: 

 

 

'

'

,

,

B B

W W

= +

= +

Σ λΨλ D

Σ λΨλ D
 

where 

 

 
'

21 31(1, , ) =λ  

 

and BD  and WD  are diagonal matrices with diagonal elements equal to the unique (error) variances of Math1, 

Math2 and Math3. The variance of the factor is denoted by  . Note that we assume equal factor loadings and 

factor variances across the between- and within-groups, leading to a model with 3 degrees of freedom. The 

SIMPLIS (see Jöreskog and Sörbom, 1993) syntax file to fit the factor analysis model is shown below. Note that 

the between- and within-groups covariance matrices are the estimated BΣ  and WΣ  obtained in the first step by 

fitting the unrestricted model. 

 
Group 1: Between Schools JSP data (Level 2) 
Observed Variables: Math1 Math2 Math3 
Covariance matrix 
3.38885 
2.29824    5.19791 
 2.31881    3.00273    4.69663 
 Sample Size=24   ! Taken as (n1+n2+...nN)/N rounded to  
                  ! nearest integer 
Latent Variables: Factor1 
Relationships 
Math1=1*Factor1 
Math2-Math3=Factor1 
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Group 2: Within Schools JSP data (Level 1) 
Covariance matrix 
47.04658 
38.56798    55.37006 
30.81049    36.04099    40.71862 
Sample Size=1192  ! Total number of pupils 
! Set the Variance of Factor1  Free ! Remove comment to  
                                    !free parameter 
Set the Error Variance of Math1  Free 
Set the Error Variance of Math2  Free 
Set the Error Variance of Math3  Free 
Path Diagram 
LISREL OUTPUT ND=3 
End of Problem 
 
 
Table 1: Parameter estimates and standard errors for factor analysis model 

 

 SIMPLIS Multilevel SEM 

 Estimate Standard error Estimate Standard 
error 

Factor loadings  

11  1.000 - 1.000 - 

21  1.173 0.031 1.177 0.032 

31  0.939 0.026 0.947 0.028 

Factor variance  

  32.109 1.821 31.235 1.808 
Error variances 

(between) 
 

Math1 1.640 0.787 1.656 0.741 

Math2 2.123 1.059 2.035 0.942 

Math3 1.868 0.779 1.840 0.734 
Error variances 

(within) 
 

Math1 14.114 0.810 14.209 0.890 

Math2 10.274 0.884 10.256 0.993 

Math3 11.910 0.699 11.837 0.806 
Chi-square 36.233 46.56 
Degrees of freedom 3 3 

 

Table 1 shows the parameter estimates, estimated standard errors and 
2 -statistic values obtained from the 

SIMPLIS output and from the multilevel SEM output respectively. 

 
Remarks: 
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1. The between-groups sample size of 26 used in the SIMPLIS syntax file was computed as 
1

1 N

ii
n

N = , where 

N is the number of schools and in  the number of children within school i. Since this value is only used to 

obtain starting values, it is not really crucial how the between-group sample size is computed. See, for 

example, Muthén (1990,1991) for an alternative formula. 

2. The within-group sample size of 1192 used in the SIMPLIS file syntax is equal to the total number of school 

children. 

3. The number of missing values per variable is as follows: 

 

Math1:    38 

Math2:    63 

Math3:  239 

 

The large percentage missing for the Math3 variable may partially explain the relatively large difference 

in 2 -values from the SIMPLIS and multilevel SEM outputs. 

4. If one allows for the factor variance parameter to be free over groups, the 2  fit statistic becomes 1.087 

at 2 degrees of freedom. The total number of multilevel SEM iterations required to obtain convergence 

equals eight. 

 


